WorldWideScience

Sample records for policy-based autonomic control

  1. Time dependent policy-based access control

    DEFF Research Database (Denmark)

    Vasilikos, Panagiotis; Nielson, Flemming; Nielson, Hanne Riis

    2017-01-01

    Access control policies are essential to determine who is allowed to access data in a system without compromising the data's security. However, applications inside a distributed environment may require those policies to be dependent on the actual content of the data, the flow of information, while...... also on other attributes of the environment such as the time. In this paper, we use systems of Timed Automata to model distributed systems and we present a logic in which one can express time-dependent policies for access control. We show how a fragment of our logic can be reduced to a logic...... that current model checkers for Timed Automata such as UPPAAL can handle and we present a translator that performs this reduction. We then use our translator and UPPAAL to enforce time-dependent policy-based access control on an example application from the aerospace industry....

  2. 76 FR 54426 - Effects of Foreign Policy-Based Export Controls

    Science.gov (United States)

    2011-09-01

    ... (Embargoes and Other Special Controls). These controls apply to a range of countries, items, activities and..., production, or overhaul of commercial aircraft engines, components, and systems (Sec. 742.14); Encryption... Foreign Policy-Based Export Controls AGENCY: Bureau of Industry and Security, Commerce. ACTION: Request...

  3. 75 FR 54540 - Effects of Foreign Policy-Based Export Controls

    Science.gov (United States)

    2010-09-08

    ... and Other Special Controls). These controls apply to a range of countries, items, activities and..., production, or overhaul of commercial aircraft engines, components, and systems (Sec. 742.14); encryption.... 100719301-0303-02] Effects of Foreign Policy-Based Export Controls AGENCY: Bureau of Industry and Security...

  4. 77 FR 55183 - Effects of Foreign Policy-Based Export Controls

    Science.gov (United States)

    2012-09-07

    ... and Other Special Controls). These controls apply to a range of countries, items, activities and..., production, or overhaul of commercial aircraft engines, components, and systems (Sec. 742.14); Encryption... Foreign Policy-Based Export Controls AGENCY: Bureau of Industry and Security, Commerce. ACTION: Request...

  5. Structured control for autonomous robots

    International Nuclear Information System (INIS)

    Simmons, R.G.

    1994-01-01

    To operate in rich, dynamic environments, autonomous robots must be able to effectively utilize and coordinate their limited physical and occupational resources. As complexity increases, it becomes necessary to impose explicit constraints on the control of planning, perception, and action to ensure that unwanted interactions between behaviors do not occur. This paper advocates developing complex robot systems by layering reactive behaviors onto deliberative components. In this structured control approach, the deliberative components handle normal situations and the reactive behaviors, which are explicitly constrained as to when and how they are activated, handle exceptional situations. The Task Control Architecture (TCA) has been developed to support this approach. TCA provides an integrated set of control constructs useful for implementing deliberative and reactive behaviors. The control constructs facilitate modular and evolutionary system development: they are used to integrate and coordinate planning, perception, and execution, and to incrementally improve the efficiency and robustness of the robot systems. To date, TCA has been used in implementing a half-dozen mobile robot systems, including an autonomous six-legged rover and indoor mobile manipulator

  6. 78 FR 54623 - Effects of Foreign Policy-Based Export Controls

    Science.gov (United States)

    2013-09-05

    ... Nuclear Non-Proliferation Act of 1978 (42 U.S.C. 2139a). Under the provisions of section 6 of the EAA... proliferation controls. BIS is also interested in industry information relating to the following: 1. Information on the effect of foreign policy-based export controls on sales of U.S. products to third countries (i...

  7. Policy based traffic light control – Balancing weights of user groups

    NARCIS (Netherlands)

    Vreeswijk, Jacob Dirk; Wismans, Luc Johannes Josephus; Tutert, Bas

    2013-01-01

    On the basis of policy-based target groups, we developed a prioritization strategy for traffic streams and applied it with the adaptive urban traffic control (UTC) ImFlow. Our main aim was to gain understanding of the possibilities of a policy driven prioritization in an urban context. We conclude

  8. Autonomous Control of Space Reactor Systems

    International Nuclear Information System (INIS)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-01-01

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are available to perform intelligent control functions that are necessary for both normal and abnormal operational conditions

  9. Autonomous Control of Space Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  10. Autonomous power system intelligent diagnosis and control

    Science.gov (United States)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  11. Autonomous Control System for Precise Orbit Maintenance

    OpenAIRE

    Aorpimai, Manop; Hashida, Yoshi; Palmer, Phil

    2000-01-01

    In this paper, we describe a closed-loop autonomous control system that enables orbit operations to be performed without the need of any ground segment. The growing availability of GPS receivers on satellites provides an excellent means for autonomous orbit determination and our work builds upon previous work on orbit determination algorithms developed here at Surrey. The orbit is described using a set of epicycle parameters which provide an analytic model of LEO orbits. The parameters in thi...

  12. Advanced control architecture for autonomous vehicles

    Science.gov (United States)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  13. Control of autonomous robot using neural networks

    Science.gov (United States)

    Barton, Adam; Volna, Eva

    2017-07-01

    The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.

  14. Control algorithms for autonomous robot navigation

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1985-01-01

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced

  15. Distributed formation control for autonomous robots

    NARCIS (Netherlands)

    Garcia de Marina Peinado, Hector Jesús

    2016-01-01

    This thesis addresses several theoretical and practical problems related to formation-control of autonomous robots. Formation-control aims to simultaneously accomplish the tasks of forming a desired shape by the robots and controlling their coordinated collective motion. This kind of robot

  16. Control algorithms for autonomous robot navigation

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, C.C.

    1985-09-20

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced.

  17. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  18. An autonomous control framework for advanced reactors

    Directory of Open Access Journals (Sweden)

    Richard T. Wood

    2017-08-01

    Full Text Available Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

  19. An autonomous control framework for advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard T.; Upadhyaya, Belle R.; Floyd, Dan C. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

  20. Autonomous Control, Climate and Environmental Changes Effects ...

    African Journals Online (AJOL)

    Autonomous Control, Climate and Environmental Changes Effects on Trypanosomiasis in Sub-Saharan Africa: A Review. ... African trypanosomiasis is a parasitic disease that causes serious economic losses in livestock due to anemia, loss of condition and emaciation. The disease when neglected is lethal and untreated ...

  1. Intelligent control for autonomous aircraft missions

    Science.gov (United States)

    Neidhoefer, James Christian

    The focus of this dissertation is the design and implementation of a full-envelope, nonlinear aircraft controller that includes stability augmentation, tracking control, and autonomous path generation. The control system was demonstrated by using a 6 degree of freedom high performance aircraft model with nonlinear kinematics, full-envelope nonlinear aerodynamics, and first-order thrust and actuator dynamics. Ideas from the emerging field of intelligent control were used in the definition of the controller architecture. More specifically, "Levels of Intelligent Control" were used to provide a systematic structure for the architecture. Several ideas from the field of Artificial Intelligence were also used, including Neural Networks, Genetic Algorithms, and Adaptive Critics.

  2. Autonomous grain combine control system

    Science.gov (United States)

    Hoskinson, Reed L.; Kenney, Kevin L.; Lucas, James R.; Prickel, Marvin A.

    2013-06-25

    A system for controlling a grain combine having a rotor/cylinder, a sieve, a fan, a concave, a feeder, a header, an engine, and a control system. The feeder of the grain combine is engaged and the header is lowered. A separator loss target, engine load target, and a sieve loss target are selected. Grain is harvested with the lowered header passing the grain through the engaged feeder. Separator loss, sieve loss, engine load and ground speed of the grain combine are continuously monitored during the harvesting. If the monitored separator loss exceeds the selected separator loss target, the speed of the rotor/cylinder, the concave setting, the engine load target, or a combination thereof is adjusted. If the monitored sieve loss exceeds the selected sieve loss target, the speed of the fan, the size of the sieve openings, or the engine load target is adjusted.

  3. Longitudinal Control for Mengshi Autonomous Vehicle via Gauss Cloud Model

    Directory of Open Access Journals (Sweden)

    Hongbo Gao

    2017-12-01

    Full Text Available Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control technique of autonomous vehicle is basic theory and one key complex technique which must have the reliability and precision of vehicle controller. The longitudinal control technique is one of the foundations of the safety and stability of autonomous vehicle control. In our paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. The longitudinal control algorithm mainly uses cloud model generator to control the acceleration of the autonomous vehicle to achieve the goal that controls the speed of Mengshi autonomous vehicle. The proposed longitudinal control algorithm based on cloud model is verified by real experiments on Highway driving scene. The experiments results of the acceleration and speed show that the algorithm is validity and stability.

  4. Autonomous Robot Control via Autonomy Levels (ARCAL)

    Science.gov (United States)

    2015-08-21

    10 LINCOLN LABORATORY JOURNAL ■ VOLUME 22, 2015 Autonomous Robot Control via Autonomy Levels (ARCAL) Lawrence A.M. Bush and Andrew Wang In the...Adjustable autonomy technolo- gies, concepts, and simulation environments to evaluate teaming behaviors will enable researchers to develop these systems...A damaged nuclear energy facility also Unmanned aircraft systems (UAS) need to handle more autonomy and perform more intelligent behaviors. These

  5. Development of a Commercially Viable, Modular Autonomous Robotic Systems for Converting any Vehicle to Autonomous Control

    Science.gov (United States)

    Parish, David W.; Grabbe, Robert D.; Marzwell, Neville I.

    1994-01-01

    A Modular Autonomous Robotic System (MARS), consisting of a modular autonomous vehicle control system that can be retrofit on to any vehicle to convert it to autonomous control and support a modular payload for multiple applications is being developed. The MARS design is scalable, reconfigurable, and cost effective due to the use of modern open system architecture design methodologies, including serial control bus technology to simplify system wiring and enhance scalability. The design is augmented with modular, object oriented (C++) software implementing a hierarchy of five levels of control including teleoperated, continuous guidepath following, periodic guidepath following, absolute position autonomous navigation, and relative position autonomous navigation. The present effort is focused on producing a system that is commercially viable for routine autonomous patrolling of known, semistructured environments, like environmental monitoring of chemical and petroleum refineries, exterior physical security and surveillance, perimeter patrolling, and intrafacility transport applications.

  6. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    National Research Council Canada - National Science Library

    McCamish, Shawn B

    2007-01-01

    This research contributes to multiple spacecraft control by developing an autonomous distributed control algorithm for close proximity operations of multiple spacecraft systems, including rendezvous...

  7. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  8. Reactive navigational controller for autonomous mobile robots

    Science.gov (United States)

    Hawkins, Scott

    1993-12-01

    Autonomous mobile robots must respond to external challenges and threats in real time. One way to satisfy this requirement is to use a fast low level intelligence to react to local environment changes. A fast reactive controller has been implemented which performs the task of real time local navigation by integrating primitive elements of perception, planning, and control. Competing achievement and constraint behaviors are used to allow abstract qualitative specification of navigation goals. An interface is provided to allow a higher level deliberative intelligence with a more global perspective to set local goals for the reactive controller. The reactive controller's simplistic strategies may not always succeed, so a means to monitor and redirect the reactive controller is provided.

  9. Longitudinal Control for Mengshi Autonomous Vehicle via Cloud Model

    Science.gov (United States)

    Gao, H. B.; Zhang, X. Y.; Li, D. Y.; Liu, Y. C.

    2018-03-01

    Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control method of autonomous is a key technique which has drawn the attention of industry and academe. In this paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. An experiments is applied to test the implementation of the longitudinal control algorithm. Empirical results show that if the longitudinal control algorithm based Gauss cloud model are applied to calculate the acceleration, and the vehicles drive at different speeds, a stable longitudinal control effect is achieved.

  10. A Review of Cardiovascular Autonomic Control in Cluster Headache

    DEFF Research Database (Denmark)

    Barloese, Mads C J

    2016-01-01

    of the pathophysiological mechanisms behind cluster headache. Cranial autonomic features are an inherent and diagnostic feature; however, a number of studies and clinical observations support the involvement of systemic autonomic control in its pathophysiology. Further, cluster headache attacks are apparently more easily......," "autonomic nervous system," and "cardiac." References of identified articles were also searched for relevant articles. Studies were included if they contained data on cardiovascular or autonomic responses to autonomic tests, induced or spontaneous attacks. RESULTS: In total, 22 studies investigating cardiac...... autonomic control in cluster headache were identified. Three overall categories of investigations exist: (1) Those studying changes in heart rate, blood pressure, and electrocardiographic changes; (2) those employing various clinical autonomic tests; and finally (3) those using spectral and nonlinear...

  11. Research of autonomous landing control of unmanned combat air vehicle

    Science.gov (United States)

    Li, Shaoyan; Chen, Zongji

    2003-09-01

    This paper is to present a robust controller design method for developing autonomous landing systems of Unmanned Combat Air Vehicle (UCAV). We first analyze the characteristic of autonomous landing of UCAV, and put forward its landing performance specifications. Structure singular value μ| synthesis is used to develop autonomous landing systems to accurately follow the pre-designed ideal landing track or online generated optimal landing track. The robust performance of system is analyzed. The simulation results demonstrate that the designed autonomous landing system satisfies the performance requirements of autonomous landing of UCAV when there are uncertainties of UCAV aircraft model, measurement noises and exogenous disturbances.

  12. Contour Tracking Control for the REMUS Autonomous Underwater Vehicle

    National Research Council Canada - National Science Library

    Van Reet, Alan R

    2005-01-01

    In the interest of enhancing the capabilities of autonomous underwater vehicles used in US Naval Operations, controlling vehicle position to follow depth contours presents exciting potential for navigation...

  13. Autonomous Control of Space Nuclear Reactors

    Science.gov (United States)

    Merk, John

    2013-01-01

    Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long-duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for failsafe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. The Reactor Instrumentation and Control System (RICS) consists of two functionally independent systems: the Reactor Protection System (RPS) and the Supervision and Control System (SCS). Through these two systems, the RICS both supervises and controls a nuclear reactor during normal operational states, as well as monitors the operation of the reactor and, upon sensing a system anomaly, automatically takes the appropriate actions to prevent an unsafe or potentially unsafe condition from occurring. The RPS encompasses all electrical and mechanical devices and circuitry, from sensors to actuation device output terminals. The SCS contains a comprehensive data acquisition system to measure continuously different groups of variables consisting of primary measurement elements, transmitters, or conditioning modules. These reactor control variables can be categorized into two groups: those directly related to the behavior of the core (known as nuclear variables) and those related to secondary systems (known as process variables). Reliable closed-loop reactor control is achieved by processing the acquired variables and actuating the appropriate device drivers to maintain the reactor in a safe operating state. The SCS must prevent a deviation from the reactor nominal conditions by managing limitation functions in order to avoid RPS actions. The RICS has four identical redundancies that comply with physical separation, electrical isolation, and functional independence. This architecture complies with the

  14. Dynamics control of autonomous vehicle at driving limits and experiment on an autonomous formula racing car

    Science.gov (United States)

    Ni, Jun; Hu, Jibin

    2017-06-01

    In this paper, a novel dynamics controller for autonomous vehicle to simultaneously control it to the driving limits and follow the desired path is proposed. The dynamics controller consists of longitudinal and lateral controllers. In longitudinal controller, the G-G diagram is utilized to describe the driving and handling limits of the vehicle. The accurate G-G diagram is obtained based on phase plane approach and a nonlinear vehicle dynamic model with accurate tyre model. In lateral controller, the tyre cornering stiffness is estimated to improve the robustness of the controller. The stability analysis of the closed-looped error dynamics shows that the controller remains stable against parameters uncertainties in extreme condition such as tyre saturation. Finally, an electric autonomous Formula race car developed by the authors is used to validate the proposed controller. The autonomous driving experiment on an oval race track shows the efficiency and robustness of the proposed controller.

  15. Autonomous Control of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Basher, H.

    2003-01-01

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors

  16. Autonomous control of a locomotion vehicle

    International Nuclear Information System (INIS)

    Ichikawa, Yoshiaki; Senoh, Makoto; Miyata, Kenji

    1984-01-01

    A path planner and an execution system are proposed for autonomous vehicle control. The planner creates a near shortest path avoiding obstacles that are represented by combinations of circles and line segments on a two dimensional map. For realizing real time execution, path search procedures employ a heuristic pruning strategies in selecting a node to expand and in generating successor nodes. Nodes are selected for expansion in order, according to a cost assigned to each node. The cost is mainly evaluated by approximating a path length from the initial node to the goal node. In order to expand a node and to generate successor nodes, a specific search procedure is activated that finds positions avoiding obstacles in the direction of the goal, and creates successor nodes corresponding to the positions. The execution system, utilizing an ultrasonic range finder equipped to the vehicle performs a plan repair against unknown obstacles when echoes from the obstacles are observed. The plan repair is conducted by a map edition and replanning in such a way that new circles representing the echoes are added to the map. Obstacle avoidance tests with a vehicle controlled by microprocessors demonstrate the utility of heuristics just outlined. (author)

  17. Distributed Autonomous Control Action Based on Sensor and Mission Fusion

    National Research Council Canada - National Science Library

    Konyk, Jr., Stephen; Swaminathan, Ashish

    2005-01-01

    The research effort focuses on the exploration of sensing and control techniques in the framework of fusion and distributed control pertinent to the problem of deploying autonomous unmanned surface...

  18. Sweden: Autonomous Reactivity Control (ARC) Systems

    International Nuclear Information System (INIS)

    Qvist, Staffan A.

    2015-01-01

    The next generation of nuclear energy systems must be licensed, constructed, and operated in a manner that will provide a competitively priced supply of energy, keeping in consideration an optimum use of natural resources, while addressing nuclear safety, waste, and proliferation resistance, and the public perception concerns of the countries in which those systems are deployed. These issues are tightly interconnected, and the implementation of passive and inherent safety features is a high priority in all modern reactor designs since it helps to tackle many of the issues at once. To this end, the Autonomous Reactivity Control (ARC) system was developed to ensure excellent inherent safety performance of Generation-IV reactors while having a minimal impact on core performance and economic viability. This paper covers the principles for ARC system design and analysis, the problem of ensuring ARC system response stability and gives examples of the impact of installing ARC systems in well-known fast reactor core systems. It is shown that even with a relatively modest ARC installation, having a near-negligible impact on core performance during standard operation, cores such as the European Sodium Fast Reactor (ESFR) can be made to survive any postulated unprotected transient without coolant boiling or fuel melting

  19. Autonomous Orbit Navigator Development, Using GPS, Applied to Autonomous Orbit Control

    Science.gov (United States)

    Galski, Roberto Luiz

    2002-01-01

    The appearance of modem global positioning systems motivated the study and development of precise and robust systems for autonomous orbit determination of artificial satellites. These systems maintain, independently from human intervention from the ground, a precise knowledge of the satellite orbital state, through the processing of the information, autonomously generated on-board, by a receiver of the positioning system used. One of the major motivations for the research and development of autonomous navigators, is the availability of real time information about the position and velocity of the satellite, required, for instance, in earth observation missions, for interpretation and analysis of the generated images. The appearance of global positioning systems and the consequent development of autonomous navigators, by making available onboard space vehicles, updated orbit estimations, with good accuracy level, made feasible the research and development of orbit autonomous control procedures. It allowed the orbital maneuvers execution process to be performed in a way totally independent from ground human intervention. Whereas the satellite attitude control reached a high level of autonomy, due to the fact that the attitude measurements are, in general, naturally generated on-board the spacecraft, the orbit control is still now almost totally planned and executed from ground commanded actions. The proposed work consists of the study, development, simulation and analysis of a simplified navigator coupled to an autonomous orbit control system, applied to the China-Brazil Earth Resources Satellites (CBERS). At first, an autonomous orbit determination procedure is developed and analyzed. Its objective is to improve the coarse geometric solution provided by Global Positioning System (GPS) receivers. This will be done by directly using this solution as input (observation) for a real time Kalman filtering process. The orbital state vector will be extended in order to

  20. Unmanned Tactical Autonomous Control and Collaboration (UTACC) Campaign of Experimentation

    Science.gov (United States)

    2016-09-01

    90 UAV under the control of UTACC software and interfaces. 2. Testing will be broken into three phases. Phase I will begin with a Marine operator...AUTONOMOUS CONTROL AND COLLABORATION (UTACC) CAMPAIGN OF EXPERIMENTATION by Christopher P. Larreur September 2016 Thesis Advisor: Dan...2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE UNMANNED TACTICAL AUTONOMOUS CONTROL AND COLLABORATION (UTACC

  1. An Expert System for Autonomous Spacecraft Control

    Science.gov (United States)

    Sherwood, Rob; Chien, Steve; Tran, Daniel; Cichy, Benjamin; Castano, Rebecca; Davies, Ashley; Rabideau, Gregg

    2005-01-01

    The Autonomous Sciencecraft Experiment (ASE), part of the New Millennium Space Technology 6 Project, is flying onboard the Earth Orbiter 1 (EO-1) mission. The ASE software enables EO-1 to autonomously detect and respond to science events such as: volcanic activity, flooding, and water freeze/thaw. ASE uses classification algorithms to analyze imagery onboard to detect chang-e and science events. Detection of these events is then used to trigger follow-up imagery. Onboard mission planning software then develops a response plan that accounts for target visibility and operations constraints. This plan is then executed using a task execution system that can deal with run-time anomalies. In this paper we describe the autonomy flight software and how it enables a new paradigm of autonomous science and mission operations. We will also describe the current experiment status and future plans.

  2. Autonomous control of distributed storages in microgrids

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    Operation of distributed generators in microgrids has widely been discussed, but would not be fully autonomous, if distributed storages are not considered. Storages in general are important, since they provide energy buffering to load changes, energy leveling to source variations and ride......-through enhancement to the overall microgrids. Recognizing their importance, this paper presents a scheme for sharing power among multiple distributed storages, in coordination with the distributed sources and loads. The scheme prompts the storages to autonomously sense for system conditions, requesting for maximum...

  3. Autonomous Power Controller for Mission Critical Microgrids, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — PCKA is partnering with researchers at CWRU to develop an Autonomous Power Controller (APC) for mission-critical microgrids to supply electric power in a highly...

  4. Intervention in gene regulatory networks via greedy control policies based on long-run behavior

    Directory of Open Access Journals (Sweden)

    Ghaffari Noushin

    2009-06-01

    Full Text Available Abstract Background A salient purpose for studying gene regulatory networks is to derive intervention strategies, the goals being to identify potential drug targets and design gene-based therapeutic intervention. Optimal stochastic control based on the transition probability matrix of the underlying Markov chain has been studied extensively for probabilistic Boolean networks. Optimization is based on minimization of a cost function and a key goal of control is to reduce the steady-state probability mass of undesirable network states. Owing to computational complexity, it is difficult to apply optimal control for large networks. Results In this paper, we propose three new greedy stationary control policies by directly investigating the effects on the network long-run behavior. Similar to the recently proposed mean-first-passage-time (MFPT control policy, these policies do not depend on minimization of a cost function and avoid the computational burden of dynamic programming. They can be used to design stationary control policies that avoid the need for a user-defined cost function because they are based directly on long-run network behavior; they can be used as an alternative to dynamic programming algorithms when the latter are computationally prohibitive; and they can be used to predict the best control gene with reduced computational complexity, even when one is employing dynamic programming to derive the final control policy. We compare the performance of these three greedy control policies and the MFPT policy using randomly generated probabilistic Boolean networks and give a preliminary example for intervening in a mammalian cell cycle network. Conclusion The newly proposed control policies have better performance in general than the MFPT policy and, as indicated by the results on the mammalian cell cycle network, they can potentially serve as future gene therapeutic intervention strategies.

  5. Alterations in cardiac autonomic control in spinal cord injury.

    Science.gov (United States)

    Biering-Sørensen, Fin; Biering-Sørensen, Tor; Liu, Nan; Malmqvist, Lasse; Wecht, Jill Maria; Krassioukov, Andrei

    2018-01-01

    A spinal cord injury (SCI) interferes with the autonomic nervous system (ANS). The effect on the cardiovascular system will depend on the extent of damage to the spinal/central component of ANS. The cardiac changes are caused by loss of supraspinal sympathetic control and relatively increased parasympathetic cardiac control. Decreases in sympathetic activity result in heart rate and the arterial blood pressure changes, and may cause arrhythmias, in particular bradycardia, with the risk of cardiac arrest in those with cervical or high thoracic injuries. The objective of this review is to give an update of the current knowledge related to the alterations in cardiac autonomic control following SCI. With this purpose the review includes the following subheadings: 2. Neuro-anatomical plasticity and cardiac control 2.1 Autonomic nervous system and the heart 2.2 Alteration in autonomic control of the heart following spinal cord injury 3. Spinal shock and neurogenic shock 3.1 Pathophysiology of spinal shock 3.2 Pathophysiology of neurogenic shock 4. Autonomic dysreflexia 4.1 Pathophysiology of autonomic dysreflexia 4.2 Diagnosis of autonomic dysreflexia 5. Heart rate/electrocardiography following spinal cord injury 5.1 Acute phase 5.2 Chronic phase 6. Heart rate variability 6.1 Time domain analysis 6.2 Frequency domain analysis 6.3 QT-variability index 6.4 Nonlinear (fractal) indexes 7. Echocardiography 7.1 Changes in cardiac structure following spinal cord injury 7.2 Changes in cardiac function following spinal cord injury 8. International spinal cord injury cardiovascular basic data set and international standards to document the remaining autonomic function in spinal cord injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Menopause and autonomic control of heart

    OpenAIRE

    Arunima Chaudhuri; Nirmala G Borade

    2012-01-01

    Menopause is associated with decreased heart rate variability, which is due to reduced parasympathetic or increased sympathetic outflow to the heart. Acute myocardial infarction may be accompanied by decreased heart rate variability. The causes of autonomic dysfunction in postmenopausal women may be multi-factorial i.e., dyslipidemia, increased body fat percentage, aging and loss of female sex hormones. The cardiac vagotonic and sympatholytic effects of estrogen can explain, at least in part,...

  7. Policy-based secure communication with automatic key management for industrial control and automation systems

    Science.gov (United States)

    Chernoguzov, Alexander; Markham, Thomas R.; Haridas, Harshal S.

    2016-11-22

    A method includes generating at least one access vector associated with a specified device in an industrial process control and automation system. The specified device has one of multiple device roles. The at least one access vector is generated based on one or more communication policies defining communications between one or more pairs of devices roles in the industrial process control and automation system, where each pair of device roles includes the device role of the specified device. The method also includes providing the at least one access vector to at least one of the specified device and one or more other devices in the industrial process control and automation system in order to control communications to or from the specified device.

  8. H∞ control for path tracking of autonomous underwater vehicle motion

    Directory of Open Access Journals (Sweden)

    Lin-Lin Wang

    2015-05-01

    Full Text Available In order to simplify the design of path tracking controller and solve the problem relating to nonlinear dynamic model of autonomous underwater vehicle motion planning, feedback linearization method is first adopted to transform the nonlinear dynamic model into an equivalent pseudo-linear dynamic model in horizontal coordinates. Then considering wave disturbance effect, mixed-sensitivity method of H∞ robust control is applied to design state-feedback controller for this equivalent dynamic model. Finally, control law of pseudo-linear dynamic model is transformed into state (surge velocity and yaw angular rate tracking control law of nonlinear dynamic model through inverse coordinate transformation. Simulation indicates that autonomous underwater vehicle path tracking is successfully implemented with this proposed method, and the influence of parameter variation in autonomous underwater vehicle dynamic model on its tracking performance is reduced by H∞ controller. All the results show that the method proposed in this article is effective and feasible.

  9. Autonomous Dispersed Control System for Independent Micro Grid

    Science.gov (United States)

    Kawasaki, Kensuke; Matsumura, Shigenori; Iwabu, Koichi; Fujimura, Naoto; Iima, Takahito

    In this paper, we show an autonomous dispersed control system for independent micro grid of which performance has been substantiated in China by Shikoku Electric Power Co. and its subsidiary companies under the trust of NEDO (New Energy and Industrial Technology Development Organization). For the control of grid interconnected generators, the exclusive information line is very important to save fuel cost and maintain high frequency quality on electric power supply, but it is relatively expensive in such small micro grid. We contrived an autonomous dispersed control system without any exclusive information line for dispatching control and adjusting supply control. We have confirmed through the substantiation project in China that this autonomous dispersed control system for independent micro grid has a well satisfactory characteristic from the view point of less fuel consumption and high electric quality.

  10. Policy Based Access Control in Dynamic Grid-based Collaborative Environment

    NARCIS (Netherlands)

    Demchenko, Y.; Gommans, L.; Tokmakoff, A.; van Buuren, R.

    2006-01-01

    This paper describes the design and development of a flexible, customer-driven, security infrastructure for Gridbased Collaborative Environments. The paper proposes further development of the access control model built around a service or resource provisioning agreement (e.g., an experiment or

  11. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    Science.gov (United States)

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  12. Postnatal Cardiac Autonomic Nervous Control in Pediatric Congenital Heart Disease

    Directory of Open Access Journals (Sweden)

    Ineke Nederend

    2016-04-01

    Full Text Available Congenital heart disease is the most common congenital defect. During childhood, survival is generally good but, in adulthood, late complications are not uncommon. Abnormal autonomic control in children with congenital heart disease may contribute considerably to the pathophysiology of these long term sequelae. This narrative review of 34 studies aims to summarize current knowledge on function of the autonomic nervous system in children with a congenital heart defect. Large scale studies that measure both branches of the nervous system for prolonged periods of time in well-defined patient cohorts in various phases of childhood and adolescence are currently lacking. Pending such studies, there is not yet a good grasp on the extent and direction of sympathetic and parasympathetic autonomic function in pediatric congenital heart disease. Longitudinal studies in homogenous patient groups linking autonomic nervous system function and clinical outcome are warranted.

  13. Menopause and autonomic control of heart

    Directory of Open Access Journals (Sweden)

    Arunima Chaudhuri

    2012-01-01

    Full Text Available Menopause is associated with decreased heart rate variability, which is due to reduced parasympathetic or increased sympathetic outflow to the heart. Acute myocardial infarction may be accompanied by decreased heart rate variability. The causes of autonomic dysfunction in postmenopausal women may be multi-factorial i.e., dyslipidemia, increased body fat percentage, aging and loss of female sex hormones. The cardiac vagotonic and sympatholytic effects of estrogen can explain, at least in part, why premenopausal women compared with postmenopausal women have a lower coronary heart disease incidence and mortality rate.

  14. Are Autonomous and Controlled Motivations School-Subjects-Specific?

    Science.gov (United States)

    Chanal, Julien; Guay, Frédéric

    2015-01-01

    This research sought to test whether autonomous and controlled motivations are specific to school subjects or more general to the school context. In two cross-sectional studies, 252 elementary school children (43.7% male; mean age = 10.7 years, SD = 1.3 years) and 334 junior high school children (49.7% male, mean age = 14.07 years, SD = 1.01 years) were administered a questionnaire assessing their motivation for various school subjects. Results based on structural equation modeling using the correlated trait-correlated method minus one model (CTCM-1) showed that autonomous and controlled motivations assessed at the school subject level are not equally school-subject-specific. We found larger specificity effects for autonomous (intrinsic and identified) than for controlled (introjected and external) motivation. In both studies, results of factor loadings and the correlations with self-concept and achievement demonstrated that more evidence of specificity was obtained for autonomous regulations than for controlled ones. These findings suggest a new understanding of the hierarchical and multidimensional academic structure of autonomous and controlled motivations and of the mechanisms involved in the development of types of regulations for school subjects. PMID:26247788

  15. The MAP Autonomous Mission Control System

    Science.gov (United States)

    Breed, Juile; Coyle, Steven; Blahut, Kevin; Dent, Carolyn; Shendock, Robert; Rowe, Roger

    2000-01-01

    The Microwave Anisotropy Probe (MAP) mission is the second mission in NASA's Office of Space Science low-cost, Medium-class Explorers (MIDEX) program. The Explorers Program is designed to accomplish frequent, low cost, high quality space science investigations utilizing innovative, streamlined, efficient management, design and operations approaches. The MAP spacecraft will produce an accurate full-sky map of the cosmic microwave background temperature fluctuations with high sensitivity and angular resolution. The MAP spacecraft is planned for launch in early 2001, and will be staffed by only single-shift operations. During the rest of the time the spacecraft must be operated autonomously, with personnel available only on an on-call basis. Four (4) innovations will work cooperatively to enable a significant reduction in operations costs for the MAP spacecraft. First, the use of a common ground system for Spacecraft Integration and Test (I&T) as well as Operations. Second, the use of Finite State Modeling for intelligent autonomy. Third, the integration of a graphical planning engine to drive the autonomous systems without an intermediate manual step. And fourth, the ability for distributed operations via Web and pager access.

  16. Integrating Autonomous Load Controllers in Power Systems

    DEFF Research Database (Denmark)

    Douglass, Philip James

    these drawbacks, two mitigation strategies are proposed, each of which add valuable services in addition to preventing the above mentioned problems. The first strategy to address time constraints is to operate a synchronous power system at off-nominal frequencies in discrete domains, thus limiting unintended...... and analysis have revealed potential drawbacks of high penetrations of autonomous frequency-sensitive loads: time constraints on the underlying processes which reduce the frequency response, and violations of voltage constraints in the distribution systems arising from synchronized loads. Addressing...... state changes of frequency-sensitive loads. The effect of operating in discrete frequency domains is to dispatch frequency-sensitive loads. Large synchronous machines can only change their frequency setpoint slowly, greatly limiting the rate of change of dispatch symbols. However, energy sources...

  17. Effect of detraining on ambulatory measures of cardiac autonomic control.

    NARCIS (Netherlands)

    Goedhart, A.D.; de Vries, M.; Kreft, J.; Bakker, F.C.; de Geus, E.J.C.

    2008-01-01

    We examined the effect of training state on cardiac autonomic control in a naturalistic setting. Twenty-four vigorous exercisers were compared to age- and sex-matched sedentary controls. The regular exercisers were subjected to a 6-week training program after which they were randomized to 2 weeks of

  18. Decentralized Receding Horizon Control and Coordination of Autonomous Vehicle Formations

    NARCIS (Netherlands)

    Keviczky, T.; Borelli, F.; Fregene, K.; Godbole, D.; Bals, G.J.

    2008-01-01

    This paper describes the application of a novel methodology for high-level control and coordination of autonomous vehicle teams and its demonstration on high-fidelity models of the organic air vehicle developed at Honeywell Laboratories. The scheme employs decentralized receding horizon controllers

  19. Towards Autonomous Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed...... to hinder surges and mechanical fractures. Experimental results verify the performance of the controllers....

  20. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  1. Towards Autonomous Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed...

  2. Towards Autonomous Control of HVAC Systems

    DEFF Research Database (Denmark)

    Brath, P.

    of the system, in order to achieve a realistic test environment. A new scheme for controlling the inlet air temperature was suggested and designed as a part of a cascade control strategy. The control scheme developed can be used in general for control of the inlet air temperature in an air handling unit. A room...... temperature controller, based on airflow control, was designed. Feedback linearisation is used together with an auto-tuning procedure, based on relay feedback. Design of a new CO2 controller was made to achieve a demand controlled ventilation system, in order to save energy. Feedback linearisation was used...... as the system was recognised as a nonlinear first order system. A new tuning method was suggested, based on the results from the flow temperature controller. A supervisor for the demanded controller ventilation system was designed and implemented. The functionality of the supervisor was partly validated through...

  3. Adaptive Control System for Autonomous Helicopter Slung Load Operations

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2010-01-01

    This paper presents design and verification of an estimation and control system for a helicopter slung load system. The estimator provides position and velocity estimates of the slung load and is designed to augment existing navigation in autonomous helicopters. Sensor input is provided by a vision...

  4. Control Design and Performance Analysis for Autonomous Formation Flight Experimentss

    Science.gov (United States)

    Rice, Caleb Michael

    Autonomous Formation Flight is a key approach for reducing greenhouse gas emissions and managing traffic in future high density airspace. Unmanned Aerial Vehicles (UAV's) have made it possible for the physical demonstration and validation of autonomous formation flight concepts inexpensively and eliminates the flight risk to human pilots. This thesis discusses the design, implementation, and flight testing of three different formation flight control methods, Proportional Integral and Derivative (PID); Fuzzy Logic (FL); and NonLinear Dynamic Inversion (NLDI), and their respective performance behavior. Experimental results show achievable autonomous formation flight and performance quality with a pair of low-cost unmanned research fixed wing aircraft and also with a solo vertical takeoff and landing (VTOL) quadrotor.

  5. Autonomous control unit for CAMAC-branch universal driver

    International Nuclear Information System (INIS)

    Efimov, L.G.; Chernykh, E.V.

    1979-01-01

    An autonomous program control module with an instrumental program used in the multipurpose driver of the CAMAC branch is described. The module is designed to provide rapid acquisition and record, into a buffer storage, of information on spatial characteristics of an extracted beam in the system for control the parameters of slow extraction of the synchrophasotron beam. The module makes it possible to reduce the data acquisition and recording time 9 times and also fast control of operation of proportional chamber electronic circuits

  6. The control system of an autonomous underwater vehicle

    Directory of Open Access Journals (Sweden)

    Bjørn Jalving

    1995-04-01

    Full Text Available This paper presents the flight control system of an Autonomous Underwater Vehicle (AUV developed at the Norwegian Defence Research Establishment. A mathematical model of the vehicle is derived and discussed. The system is separated into lightly interacting subsystems and three autopilots are designed for steering, diving and speed control. The design of the separate controllers is based on PID techniques. Results from sea trials show robust performance and stability for the autopilot.

  7. Cooperative Frequency Control for Autonomous AC Microgrids

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2015-01-01

    is then added to primary control, compensating the frequency drop caused by the droop mechanism. The proposed controller is fully distributed, meaning that each source exchange information with only its direct neighbors through a sparse communication network. This controller has a unique feature that it does...... not require measuring the system frequency as compared to the other presented methods. An ac Microgrid with four sources is used to verify the performance of the proposed control methodology....

  8. Semi-autonomous unmanned ground vehicle control system

    Science.gov (United States)

    Anderson, Jonathan; Lee, Dah-Jye; Schoenberger, Robert; Wei, Zhaoyi; Archibald, James

    2006-05-01

    Unmanned Ground Vehicles (UGVs) have advantages over people in a number of different applications, ranging from sentry duty, scouting hazardous areas, convoying goods and supplies over long distances, and exploring caves and tunnels. Despite recent advances in electronics, vision, artificial intelligence, and control technologies, fully autonomous UGVs are still far from being a reality. Currently, most UGVs are fielded using tele-operation with a human in the control loop. Using tele-operations, a user controls the UGV from the relative safety and comfort of a control station and sends commands to the UGV remotely. It is difficult for the user to issue higher level commands such as patrol this corridor or move to this position while avoiding obstacles. As computer vision algorithms are implemented in hardware, the UGV can easily become partially autonomous. As Field Programmable Gate Arrays (FPGAs) become larger and more powerful, vision algorithms can run at frame rate. With the rapid development of CMOS imagers for consumer electronics, frame rate can reach as high as 200 frames per second with a small size of the region of interest. This increase in the speed of vision algorithm processing allows the UGVs to become more autonomous, as they are able to recognize and avoid obstacles in their path, track targets, or move to a recognized area. The user is able to focus on giving broad supervisory commands and goals to the UGVs, allowing the user to control multiple UGVs at once while still maintaining the convenience of working from a central base station. In this paper, we will describe a novel control system for the control of semi-autonomous UGVs. This control system combines a user interface similar to a simple tele-operation station along with a control package, including the FPGA and multiple cameras. The control package interfaces with the UGV and provides the necessary control to guide the UGV.

  9. Pacifier use modifies infant's cardiac autonomic controls during sleep.

    Science.gov (United States)

    Franco, Patricia; Chabanski, Sophie; Scaillet, Sonia; Groswasser, José; Kahn, André

    2004-04-01

    The risk for sudden infant death (SIDS) was postulated to decrease with the use of a pacifier and by conditions increasing parasympathetic tonus during sleep. We evaluated the influence of a pacifier on cardiac autonomic controls in healthy infants. Thirty-four healthy infants were studied polygraphically during one night: 17 infants regularly used a pacifier during sleep and 17 never used a pacifier. Thumb users or occasional pacifier users were not included in the study. The infants were recorded at a median age of 10 weeks (range 6-18 weeks). Autonomic nervous system (ANS) was evaluated by spectral analysis of the heart rate (HR). The high frequency component of HR spectral analysis reflected parasympathetic tonus and the low frequency on high frequency ratio corresponded to the sympathovagal balance. Most infants (63.6%) lost their pacifier within 30 min of falling asleep. Sucking periods were associated with increases in cardiac sympathovagal balance. During non-sucking periods, in both REM and NREM sleep, infants using a pacifier were characterized by lower sympathetic activity and higher parasympathetic tonus compared with non-pacifier users. The use of pacifiers modifies cardiac autonomic controls during both sucking and non-sucking sleep periods. Non-nutritive sucking could regulate autonomic control in infants. These findings could be relevant to mechanisms implicated in the occurrence of sudden infant deaths during sleep.

  10. Modelling of a PMSG Wind Turbine with Autonomous Control

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2014-01-01

    Full Text Available The aim of this research is to model an autonomous control wind turbine driven permanent magnetic synchronous generator (PMSG which feeds alternating current (AC power to the utility grid. Furthermore, this research also demonstrates the effects and the efficiency of PMSG wind turbine which is integrated by autonomous controllers. In order for well autonomous control, two voltage source inverters are used to control wind turbine connecting with the grid. The generator-side inverter is used to adjust the synchronous generator as well as separating the generator from the grid when necessary. The grid-side inverter controls the power flow between the direct current (DC bus and the AC side. Both of them are oriented control by space vector pulse width modulation (PWM with back-to-back frequency inverter. Moreover, the proportional-integral (PI controller is enhanced to control both of the inverters and the pitch angle of the wind turbine. Maximum power point tracking (MPPT is integrated in generator-side inverter to track the maximum power, when wind speed changes. The simulation results in Matlab Simulink 2012b showing the model have good dynamic and static performance. The maximum power can be tracked and the generator wind turbine can be operated with high efficiency.

  11. Autonomous Control of Space Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation....

  12. Enabling autonomous control for space reactor power systems

    International Nuclear Information System (INIS)

    Wood, R. T.

    2006-01-01

    The application of nuclear reactors for space power and/or propulsion presents some unique challenges regarding the operations and control of the power system. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a space reactor power system (SRPS) employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. Thus, a SRPS control system must provide for operational autonomy. Oak Ridge National Laboratory (ORNL) has conducted an investigation of the state of the technology for autonomous control to determine the experience base in the nuclear power application domain, both for space and terrestrial use. It was found that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and basic control for a SRPS is clearly feasible under optimum circumstances. However, autonomous control is primarily intended to account for the non optimum circumstances when degradation, failure, and other off-normal events challenge the performance of the reactor and near-term human intervention is not possible. Thus, the development and demonstration of autonomous control capabilities for the specific domain of space nuclear power operations is needed. This paper will discuss the findings of the ORNL study and provide a description of the concept of autonomy, its key characteristics, and a prospective

  13. Autonomous Control of Space Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors to support future lunar and Mars robotic and manned missions impose new and innovative technological requirements for their control and protection...

  14. Autonomous Visual Control of a Mobile Robot

    National Research Council Canada - National Science Library

    Blackburn, Michael

    1994-01-01

    .... We propose that efficient and extensible solutions to the target acquisition and maintenance problem may be found when the machine sensor-effector control algorithms emulate the mechanisms employed...

  15. Vehicle following controller design for autonomous intelligent vehicles

    Science.gov (United States)

    Chien, C. C.; Lai, M. C.; Mayr, R.

    1994-01-01

    A new vehicle following controller is proposed for autonomous intelligent vehicles. The proposed vehicle following controller not only provides smooth transient maneuvers for unavoidable nonzero initial conditions but also guarantees the asymptotic platoon stability without the availability of feedforward information. Furthermore, the achieved asymptotic platoon stability is shown to be robust to sensor delays and an upper bound for the allowable sensor delays is also provided in this paper.

  16. Research methods of simulate digital compensators and autonomous control systems

    Directory of Open Access Journals (Sweden)

    V. S. Kudryashov

    2016-01-01

    Full Text Available The peculiarity of the present stage of development of the production is the need to control and regulate a large number of process parameters, the mutual influence on each other that when using single-circuit systems significantly reduces the quality of the transition process, resulting in significant costs of raw materials and energy, reduce the quality of the products. Using a stand-alone digital control system eliminates the correlation of technological parameters, to give the system the desired dynamic and static properties, improve the quality of regulation. However, the complexity of the configuration and implementation of procedures (modeling compensators autonomous systems of this type, associated with the need to perform a significant amount of complex analytic transformation significantly limit the scope of their application. In this regard, the approach based on the decompo sition proposed methods of calculation and simulation (realization, consisting in submitting elements autonomous control part digital control system in a series parallel connection. The above theoretical study carried out in a general way for any dimension systems. The results of computational experiments, obtained during the simulation of the four autonomous control systems, comparative analysis and conclusions on the effectiveness of the use of each of the methods. The results obtained can be used in the development of multi-dimensional process control systems.

  17. Autonomous Control Capabilities for Space Reactor Power Systems

    International Nuclear Information System (INIS)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-01-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission

  18. Nonlinear Feedforward Control for Wind Disturbance Rejection on Autonomous Helicopter

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; A. Danapalasingam, Kumeresan

    2010-01-01

    This paper presents the design and verification of a model based nonlinear feedforward controller for wind disturbance rejection on autonomous helicopters. The feedforward control is based on a helicopter model that is derived using a number of carefully chosen simplifications to make it suitable...... for the purpose. The model is inverted for the calculation of rotor collective and cyclic pitch angles given the wind disturbance. The control strategy is then applied on a small helicopter in a controlled wind environment and flight tests demonstrates the effectiveness and advantage of the feedforward controller....

  19. Project Summary: Biology-Inspired Autonomous Control

    Science.gov (United States)

    2011-02-01

    stabilization system will appear as image blur. In the early half of the 20th century, mathematicians such as Norbert Wiener and colleagues...Interscience Publications. 3. Wiener , N., 1948, Cybernetics: Or Control and Communication in the Animal and the Machine, MIT Press, Cambridge Mass. 4

  20. Interactive animated displayed of man-controlled and autonomous robots

    International Nuclear Information System (INIS)

    Crane, C.D. III; Duffy, J.

    1986-01-01

    An interactive computer graphics program has been developed which allows an operator to more readily control robot motions in two distinct modes; viz., man-controlled and autonomous. In man-controlled mode, the robot is guided by a joystick or similar device. As the robot moves, actual joint angle information is measured and supplied to a graphics system which accurately duplicates the robot motion. Obstacles are placed in the actual and animated workspace and the operator is warned of imminent collisions by sight and sound via the graphics system. Operation of the system in man-controlled mode is shown. In autonomous mode, a collision-free path between specified points is obtained by previewing robot motions on the graphics system. Once a satisfactory path is selected, the path characteristics are transmitted to the actual robot and the motion is executed. The telepresence system developed at the University of Florida has been successful in demonstrating that the concept of controlling a robot manipulator with the aid of an interactive computer graphics system is feasible and practical. The clarity of images coupled with real-time interaction and real-time determination of imminent collision with obstacles has resulted in improved operator performance. Furthermore, the ability for an operator to preview and supervise autonomous operations is a significant attribute when operating in a hazardous environment

  1. Fuzzy Logic Based Autonomous Traffic Control System

    Directory of Open Access Journals (Sweden)

    Muhammad ABBAS

    2012-01-01

    Full Text Available The aim of this paper is to design and implement fuzzy logic based traffic light Control system to solve the traffic congestion issues. In this system four input parameters: Arrival, Queue, Pedestrian and Emergency Vehicle and two output parameters: Extension in Green and Pedestrian Signals are used. Using Fuzzy Rule Base, the system extends or terminates the Green Signal according to the Traffic situation at the junction. On the presence of emergency vehicle, the system decides which signal(s should be red and how much an extension should be given to Green Signal for Emergency Vehicle. The system also monitors the density of people and makes decisions accordingly. In order to verify the proposed design algorithm MATLAB simulation is adopted and results obtained show concurrency to the calculated values according to the Mamdani Model of the Fuzzy Control System.

  2. Control concept for autonomous changeable material flow systems

    OpenAIRE

    Wilke, Michael

    2008-01-01

    Today’s material flow systems for mass customization or dynamic productions are usually realized with manual transportation systems. However new concepts in the domain of material flow and device control like function-oriented modularization and intelligent multi-agent-systems offer the possibility to employ changeable and automated material flow systems in dynamic production structures. These systems need the ability to react on unplanned and unexpected events autonomously.

  3. Autonomous aerial vehicles : guidance, control, signal and image processing platform

    International Nuclear Information System (INIS)

    Al-Jarrah, M.; Adiansyah, S.; Marji, Z. M.; Chowdhury, M. S.

    2011-01-01

    The use of unmanned systems is gaining momentum in civil applications after successful use by the armed forces around the globe. Autonomous aerial vehicles are important for providing assistance in monitoring highways, power grid lines, borders, and surveillance of critical infrastructures. It is envisioned that cargo shipping will be completely handled by UAVs by the 2025. Civil use of unmanned autonomous systems brings serious challenges. The need for cost effectiveness, reliability, operation simplicity, safety, and cooperation with human and with other agents are among these challenges. Aerial vehicles operating in the civilian aerospace is the ultimate goal which requires these systems to achieve the reliability of manned aircraft while maintaining their cost effectiveness. In this presentation the development of an autonomous fixed and rotary wing aerial vehicle will be discussed. The architecture of the system from the mission requirements to low level auto pilot control laws will be discussed. Trajectory tracking and path following guidance and control algorithms commonly used and their implementation using of the shelf low cost components will be presented. Autonomous takeo? landing is a key feature that was implemented onboard the vehicle to complete its degree of autonomy. This is implemented based on accurate air-data system designed and fused with sonar measurements, INS/GPS measurements, and vector field method guidance laws. The outcomes of the proposed research is that the AUS-UAV platform named MAZARI is capable of autonomous takeoff and landing based on a pre scheduled flight path using way point navigation and sensor fusion of the inertial navigation system (INS) and global positioning system (GPS). Several technologies need to be mastered when developing a UAV. The navigation task and the need to fuse sensory information to estimate the location of the vehicle is critical to successful autonomous vehicle. Currently extended Kalman filtering is

  4. Bilateral human-robot control for semi-autonomous UAV navigation

    NARCIS (Netherlands)

    Wopereis, Han Willem; Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella

    2015-01-01

    This paper proposes a semi-autonomous bilateral control architecture for unmanned aerial vehicles. During autonomous navigation, a human operator is allowed to assist the autonomous controller of the vehicle by actively changing its navigation parameters to assist it in critical situations, such as

  5. Control design for an autonomous wind based hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Valenciaga, F.; Evangelista, C.A. [CONICET, Laboratorio de Electronica Industrial Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC.91, C.P. 1900, La Plata (Argentina)

    2010-06-15

    This paper presents a complete control scheme to efficiently manage the operation of an autonomous wind based hydrogen production system. This system comprises a wind energy generation module based on a multipolar permanent magnet synchronous generator, a lead-acid battery bank as short term energy storage and an alkaline von Hoerner electrolyzer. The control is developed in two hierarchical levels. The higher control level or supervisor control determines the general operation strategy for the whole system according to the wind conditions and the state of charge of the battery bank. On the other hand, the lower control level includes the individual controllers that regulate the respective module operation assuming the set-points determined by the supervisor control. These last controllers are approached using second-order super-twisting sliding mode techniques. The performance of the closed-loop system is assessed through representative computer simulations. (author)

  6. Multi-Functional Distributed Secondary Control for Autonomous Microgrids

    DEFF Research Database (Denmark)

    Shafiee, Qobad

    or connected to the main grid. Apart from the obvious benefits of MGs, their introduction into the traditional distribution network raises many new challenges, thus, a hierarchical control concept has been introduced for these systems. While the decentralized primary control of this hierarchy ensures...... power exchange with external grid or/and with other MGs and includes functions related to efficiency and economic enhancement. This thesis is focused on development of distributed control strategies for secondary control of autonomous ac and dc MGs to avoid a central controller and complex communication...... to proportionally share the load power even at the presence of different control parameters and initial values. This thesis also proposes a distributed hierarchical control framework for dc MG clusters to ensure smooth connection and reliable operation of these systems. A decentralize adaptive droop method...

  7. Control of Open Contour Formations of Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Uwe Zimmer

    2008-11-01

    Full Text Available In this paper, we propose a distributed elastic behaviour for a deformable chain-like formation of small autonomous underwater vehicles with the task of forming special shapes which have been explicitly defined or are defined by some iso-contour of an environmental concentration field. In the latter case, the formation has to move in such a way as to meet certain formation parameters as well as adapt to the iso-line. We base our controller on our previous models (for manually controlled end points using general curve evolution theory but will also propose appropriate motions for the end robots of an open chain.

  8. A Multifunctional Smart Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  9. Environmentally Friendly Coating Technology for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael; hide

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.

  10. Impact of Restless Legs Syndrome on Cardiovascular Autonomic Control.

    Science.gov (United States)

    Bertisch, Suzanne M; Muresan, Cristen; Schoerning, Laura; Winkelman, John W; Taylor, J Andrew

    2016-03-01

    To examine whether patients with restless legs syndrome demonstrate specific alterations in cardiovascular autonomic control. Patients with moderate-severe restless legs syndrome (n = 20, 80% female) and controls (n = 20) matched for age, sex, body mass index, and free of hypertension and cardiovascular disease were enrolled. We assessed cardiovagal baroreflex gain via the modified Oxford technique, sympathetically mediated vascular responses to isometric exercise to fatigue, bradycardiac response to Valsalva maneuver, and respiratory sinus arrhythmia during paced breathing. Standard electrocardiography, beat-by-beat arterial pressure, respiration, and popliteal blood flow velocity were recorded continuously. Resting blood pressure and heart rate were similar between groups. However, baroreflex gain averaged 14.3 ± 1.4 msec/mm Hg in restless legs syndrome and was lower than in controls (22.6 ± 3.5 msec/mm Hg, P = 0.04). Hemodynamic responses to isometric exercise were similar between groups, though participants with restless legs syndrome had lower leg blood flow (P leg vascular resistance (P restless legs syndrome demonstrate compromised cardiovagal control, specific to the arterial baroreflex, with greater peripheral vascular resistance, potentially due to heightened sympathetic outflow. These autonomic alterations may directly relate to the higher prevalence of cardiovascular disease in restless legs syndrome. © 2016 Associated Professional Sleep Societies, LLC.

  11. Issues and approaches in control for autonomous reactor operation

    International Nuclear Information System (INIS)

    Vilim, R. B.; Khalil, H. S.; Wei, T. Y. C.

    2000-01-01

    A capability for autonomous and passively safe operation is one of the goals of the NERI funded development of Generation IV nuclear plants. An approach is described for evaluating the effect of increasing autonomy on safety margins and load behavior and for examining issues that arise with increasing autonomy and their potential impact on performance. The method provides a formal approach to the process of exploiting the innate self-regulating property of a reactor to make it less dependent on operator action and less vulnerable to automatic control system fault and/or operator error. Some preliminary results are given

  12. Application of Autonomous Spacecraft Power Control Technology to Terrestrial Microgrids

    Science.gov (United States)

    Dever, Timothy P.; Trase, Larry M.; Soeder, James F.

    2014-01-01

    This paper describes the potential of the power campus located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio for microgrid development. First, the benefits provided by microgrids to the terrestrial power grid are described, and an overview of Technology Needs for microgrid development is presented. Next, GRC's work on development of autonomous control for manned deep space vehicles, which are essentially islanded microgrids, is covered, and contribution of each of these developments to the microgrid Technology Needs is detailed. Finally, a description is provided of GRC's existing physical assets which can be applied to microgrid technology development, and a phased plan for development of a microgrid test facility is presented.

  13. Autonomous Congestion Control in Delay-Tolerant Networks

    Science.gov (United States)

    Burleigh, Scott; Jennings, Esther; Schoolcraft, Joshua

    2006-01-01

    This presentation highlights communication congestion control in delay-tolerant networks (DTNs). Large-scale future space exploration will offer complex communication challenges that may be best addressed by establishing a network infrastructure. However, current internet techniques for congestion control are not well suited for operation of a network over interplanetary distances. An alternative, delay-tolerant technique for congestion control in a delay-tolerant network is presented. A simple DTN was constructed and an experimental congestion control mechanism was applied. The mechanism appeared to be effective and each router was able to make its bundle acceptance decisions autonomously. Future research will examine more complex topologies and alternative bundle acceptance rules that might enhance performance.

  14. Different Control Algorithms for a Platoon of Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Zoran Gacovski

    2014-05-01

    Full Text Available This paper presents a concept of platoon movement of autonomous vehicles (smart cars. These vehicles have Adaptive or Advanced cruise control (ACC system also called Intelligent cruise control (ICC or Adaptive Intelligent cruise control (AICC system. The vehicles are suitable to follow other vehicles on desired distance and to be organized in platoons. To perform a research on the control and stability of an AGV (Automated Guided Vehicles string, we have developed a car-following model. To do this, first a single vehicle is modeled and since all cars in the platoon have the same dynamics, the single vehicle model is copied ten times to form model of platoon (string with ten vehicles. To control this string, we have applied equal PID controllers to all vehicles, except the leading vehicle. These controllers try to keep the headway distance as constant as possible and the velocity error between subsequent vehicles - small. For control of vehicle with nonlinear dynamics combi­nation of feedforward control and feedback control approach is used. Feedforward control is based on the inverse model of nominal dynamics of the vehicle, and feedback PID control is designed based on the linearized model of the vehicle. For simulation and analysis of vehicle and platoon of vehicles – we have developed Matlab/Simulink models. Simulation results, discussions and conclusions are given at the end of the paper.

  15. Star sensors for autonomous attitude control and navigation

    Science.gov (United States)

    van Bezooijen, Roelof W. H.

    1992-11-01

    The attitude control and navigation systems of future advanced spacecraft will be characterized by a high degree of autonomy, very high accuracy, efficient commandability, and fast fault recovery. These characteristics are incompatible with the constraints of conventional star sensors which mandate a-priori definition of all onboard attitude fixes and work only if attitude uncertainties remain small. With the availability of accurate, anti-blooming capable CCDs, fast microprocessors, high density memory chips, and star pattern recognition algorithms, it is now feasible to fabricate miniature Autonomous Star Trackers (ASTs) capable of (1) determining their attitude rapidly and reliably while having no a-priori attitude knowledge, (2) autonomous attitude updating, and (3) providing their attitude at rates up to typically 40 Hz. In addition to providing the functionality needed for future missions, ASTs can also be exploited to improve the reliability, mass, power, and cost of spacecraft and reduce the cost of operating them. This paper describes star identification schemes used in the past, it discusses a number of star pattern recognition algorithms, and provides the main characteristics of current CCD star trackers. A number of specific functions enabled or enhanced by an AST are described including fast attitude acquisition, rapid fault recovery, attitude safing, gyroless/cheap-gyro attitude control, autonomous target acquisition by astronomy telescopes, autonomous optical navigation, and precision pointing to terrestrial targets. The AST being developed at Lockheed uses a fast, memory-efficient, and highly robust star pattern recognition algorithm based on matching groups of stars. The algorithm, which is also applicable to star scanners, is described along with a realistic simulation program for testing its performance. It is shown that an AST with an 11.3 degree FOV diameter, a database of 4100 guide stars, a 25 MHz MC68030 class microprocessor, and 800 Kbytes

  16. Fuzzy Adaptive Control for Trajectory Tracking of Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Saeed Nakhkoob

    2014-01-01

    Full Text Available In this paper, the problem of the position and attitude tracking of an autonomous underwater vehicle (AUV in the horizontal plane, under the presence of ocean current disturbances is discussed. The effect of the gradual variation of the parameters is taken into account. The effectiveness of the adaptive controller is compared with a feedback linearization method and fuzzy gain control approach. The proposed strategy has been tested through simulations. Also, the performance of the propos-ed method is compared with other strategies given in some other studies. The boundedness and asymptotic converge-nce properties of the control algorithm and its semi-global stability are analytically proven using Lyapunov stability theory and Barbalat’s lemma.

  17. Unmanned tactical autonomous control and collaboration (utacc) human machine integration measures of performance and measures of effectiveness

    Science.gov (United States)

    2017-06-01

    AUTONOMOUS CONTROL AND COLLABORATION (UTACC) HUMAN-MACHINE INTEGRATION MEASURES OF PERFORMANCE AND MEASURES OF EFFECTIVENESS by Thomas A...TACTICAL AUTONOMOUS CONTROL AND COLLABORATION (UTACC) HUMAN-MACHINE INTEGRATION MEASURES OF PERFORMANCE AND MEASURES OF EFFECTIVENESS 5. FUNDING...Tactical Autonomous Control and Collaboration (UTACC) program seeks to integrate Marines and autonomous machines to address the challenges encountered in

  18. Improving the Lane Reference Detection for Autonomous Road Vehicle Control

    Directory of Open Access Journals (Sweden)

    Felipe Jiménez

    2016-01-01

    Full Text Available Autonomous road vehicles are increasingly becoming more important and there are several techniques and sensors that are being applied for vehicle control. This paper presents an alternative system for maintaining the position of autonomous vehicles without adding additional elements to the standard sensor architecture, by using a 3D laser scanner for continuously detecting a reference element in situations in which the GNSS receiver fails or provides accuracy below the required level. Considering that the guidance variables are more accurately estimated when dealing with reference points in front of and behind the vehicle, an algorithm based on vehicle dynamics mathematical model is proposed to extend the detected points in cases where the sensor is placed at the front of the vehicle. The algorithm has been tested when driving along a lane delimited by New Jersey barriers at both sides and the results show a correct behaviour. The system is capable of estimating the reference element behind the vehicle with sufficient accuracy when the laser scanner is placed at the front of it, so the robustness of the control input variables (lateral and angular errors estimation is improved making it unnecessary to place the sensor on the vehicle roof or to introduce additional sensors.

  19. Ground Operations Autonomous Control and Integrated Health Management

    Science.gov (United States)

    Daniels, James

    2014-01-01

    The Ground Operations Autonomous Control and Integrated Health Management plays a key role for future ground operations at NASA. The software that is integrated into this system is called G2 2011 Gensym. The purpose of this report is to describe the Ground Operations Autonomous Control and Integrated Health Management with the use of the G2 Gensym software and the G2 NASA toolkit for Integrated System Health Management (ISHM) which is a Computer Software Configuration Item (CSCI). The decision rationale for the use of the G2 platform is to develop a modular capability for ISHM and AC. Toolkit modules include knowledge bases that are generic and can be applied in any application domain module. That way, there's a maximization of reusability, maintainability, and systematic evolution, portability, and scalability. Engine modules are generic, while application modules represent the domain model of a specific application. Furthermore, the NASA toolkit, developed since 2006 (a set of modules), makes it possible to create application domain models quickly, using pre-defined objects that include sensors and components libraries for typical fluid, electrical, and mechanical systems.

  20. Guidance and Control of an Autonomous Soaring UAV

    Science.gov (United States)

    Allen, Michael J.; Lin, Victor

    2007-01-01

    Thermals caused by convection in the lower atmosphere are commonly used by birds and glider pilots to extend flight duration, increase cross-country speed, improve range, or simply to conserve energy. Uninhabited Aerial Vehicles (UAVs) can also increase performance and reduce energy consumption by exploiting atmospheric convection. An autonomous soaring research project was conducted at the NASA Dryden Flight Research Center to evaluate the concept through flight test of an electric-powered motorglider with a wingspan of 4.27 m (14 ft). The UAV's commercial autopilot software was modified to include outer-loop soaring guidance and control. The aircraft total energy state was used to detect and soar within thermals. Estimated thermal size and position were used to calculate guidance commands for soaring flight. Results from a total of 23 thermal encounters show good performance of the guidance and control algorithms to autonomously detect and exploit thermals. The UAV had an average climb of 172 m (567 ft) during these encounters.

  1. Cardiac autonomic control in the obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Nouha Gammoudi

    2015-04-01

    Full Text Available Introduction: The sympathetic activation is considered to be the main mechanism involved in the development of cardiovascular diseases in obstructive sleep apnea (OSA. The heart rate variability (HRV analysis represents a non-invasive tool allowing the study of the autonomic nervous system. The impairment of HRV parameters in OSA has been documented. However, only a few studies tackled the dynamics of the autonomic nervous system during sleep in patients having OSA. Aims: To analyze the HRV over sleep stages and across sleep periods in order to clarify the impact of OSA on cardiac autonomic modulation. The second objective is to examine the nocturnal HRV of OSA patients to find out which HRV parameter is the best to reflect the symptoms severity. Methods: The study was retrospective. We have included 30 patients undergoing overnight polysomnography. Subjects were categorized into two groups according to apnea–hypopnea index (AHI: mild-to-moderate OSAS group (AHI: 5–30 and severe OSAS group (AHI>30. The HRV measures for participants with low apnea–hypopnea indices were compared to those of patients with high rates of apnea–hypopnea across the sleep period and sleep stages. Results: HRV measures during sleep stages for the group with low rates of apnea–hypopnea have indicated a parasympathetic activation during non-rapid eye movement (NREM sleep. However, no significant difference has been observed in the high AHI group except for the mean of RR intervals (mean RR. The parasympathetic activity tended to increase across the night but without a statistical difference. After control of age and body mass index, the most significant correlation found was for the mean RR (p=0.0001, r=−0.248. Conclusion: OSA affects sympathovagal modulation during sleep, and this impact has been correlated to the severity of the disease. The mean RR seemed to be a better index allowing the sympathovagal balance appreciation during the night in OSA.

  2. Cardiac autonomic control in the obstructive sleep apnea.

    Science.gov (United States)

    Gammoudi, Nouha; Ben Cheikh, Ridha; Saafi, Mohamed Ali; Sakly, Ghazi; Dogui, Mohamed

    2015-01-01

    The sympathetic activation is considered to be the main mechanism involved in the development of cardiovascular diseases in obstructive sleep apnea (OSA). The heart rate variability (HRV) analysis represents a non-invasive tool allowing the study of the autonomic nervous system. The impairment of HRV parameters in OSA has been documented. However, only a few studies tackled the dynamics of the autonomic nervous system during sleep in patients having OSA. To analyze the HRV over sleep stages and across sleep periods in order to clarify the impact of OSA on cardiac autonomic modulation. The second objective is to examine the nocturnal HRV of OSA patients to find out which HRV parameter is the best to reflect the symptoms severity. The study was retrospective. We have included 30 patients undergoing overnight polysomnography. Subjects were categorized into two groups according to apnea-hypopnea index (AHI): mild-to-moderate OSAS group (AHI: 5-30) and severe OSAS group (AHI>30). The HRV measures for participants with low apnea-hypopnea indices were compared to those of patients with high rates of apnea-hypopnea across the sleep period and sleep stages. HRV measures during sleep stages for the group with low rates of apnea-hypopnea have indicated a parasympathetic activation during non-rapid eye movement (NREM) sleep. However, no significant difference has been observed in the high AHI group except for the mean of RR intervals (mean RR). The parasympathetic activity tended to increase across the night but without a statistical difference. After control of age and body mass index, the most significant correlation found was for the mean RR (p=0.0001, r=-0.248). OSA affects sympathovagal modulation during sleep, and this impact has been correlated to the severity of the disease. The mean RR seemed to be a better index allowing the sympathovagal balance appreciation during the night in OSA.

  3. Meaningful Human Control over Autonomous Systems: A Philosophical Account

    Directory of Open Access Journals (Sweden)

    Filippo Santoni de Sio

    2018-02-01

    Full Text Available Debates on lethal autonomous weapon systems have proliferated in the past 5 years. Ethical concerns have been voiced about a possible raise in the number of wrongs and crimes in military operations and about the creation of a “responsibility gap” for harms caused by these systems. To address these concerns, the principle of “meaningful human control” has been introduced in the legal–political debate; according to this principle, humans not computers and their algorithms should ultimately remain in control of, and thus morally responsible for, relevant decisions about (lethal military operations. However, policy-makers and technical designers lack a detailed theory of what “meaningful human control” exactly means. In this paper, we lay the foundation of a philosophical account of meaningful human control, based on the concept of “guidance control” as elaborated in the philosophical debate on free will and moral responsibility. Following the ideals of “Responsible Innovation” and “Value-sensitive Design,” our account of meaningful human control is cast in the form of design requirements. We identify two general necessary conditions to be satisfied for an autonomous system to remain under meaningful human control: first, a “tracking” condition, according to which the system should be able to respond to both the relevant moral reasons of the humans designing and deploying the system and the relevant facts in the environment in which the system operates; second, a “tracing” condition, according to which the system should be designed in such a way as to grant the possibility to always trace back the outcome of its operations to at least one human along the chain of design and operation. As we think that meaningful human control can be one of the central notions in ethics of robotics and AI, in the last part of the paper, we start exploring the implications of our account for the design and use of non

  4. Study on a control system for autonomous distributed cooperative function

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    1996-01-01

    Developments of an autonomous plant simulator, a plant function model and an indicating function for plant conditions were further progressed in the second stage of this project based on the concept of autonomous plant. And integration of the results from the research of operation control system by Power Reactor and Nuclear Fuel Development Corp. and the research of maintenance system by Institute of Physical and Chemical Research was attempted in this stage. Developments of system techniques which can provide transparent informations on the cooperation among the artificial intelligent units distributed in various sites and the process and results of judgement were conducted focusing on a monitoring system for plant operation. And it became possible to express the plant conditions such as temperature, pressure and flow rate at nearly real time using three-dimensional color graphics. Automatic classification method for clustering the plant conditions was investigated using COBWEB and 14 kinds of conditions were defined using 6 factors. The functional certification of them is undertaken. (M.N.)

  5. Cardiac autonomic control in adolescents with primary hypertension

    Directory of Open Access Journals (Sweden)

    Havlíceková Z

    2009-12-01

    Full Text Available Abstract Background Impairment in cardiovascular autonomic regulation participates in the onset and maintenance of primary hypertension. Objective The aim of the present study was to evaluate cardiac autonomic control using long-term heart rate variability (HRV analysis in adolescents with primary hypertension. Subjects and methods Twenty two adolescent patients with primary hypertension (5 girls/17 boys aged 14-19 years and 22 healthy subjects matched for age and gender were enrolled. Two periods from 24-hour ECG recording were evaluated by HRV analysis: awake state and sleep. HRV analysis included spectral power in low frequency band (LF, in high frequency band (HF, and LF/HF ratio. Results In awake state, adolescents with primary hypertension had lower HF and higher LF and LF/HF ratio. During sleep, HF was lower and LF/HF ratio was higher in patients with primary hypertension. Conclusions A combination of sympathetic predominance and reduced vagal activity might represent a potential link between psychosocial factors and primary hypertension, associated with increased cardiovascular morbidity.

  6. External force/velocity control for an autonomous rehabilitation robot

    Science.gov (United States)

    Saekow, Peerayuth; Neranon, Paramin; Smithmaitrie, Pruittikorn

    2018-01-01

    Stroke is a primary cause of death and the leading cause of permanent disability in adults. There are many stroke survivors, who live with a variety of levels of disability and always need rehabilitation activities on daily basis. Several studies have reported that usage of rehabilitation robotic devices shows the better improvement outcomes in upper-limb stroke patients than the conventional therapy-nurses or therapists actively help patients with exercise-based rehabilitation. This research focuses on the development of an autonomous robotic trainer designed to guide a stroke patient through an upper-limb rehabilitation task. The robotic device was designed and developed to automate the reaching exercise as mentioned. The designed robotic system is made up of a four-wheel omni-directional mobile robot, an ATI Gamma multi-axis force/torque sensor used to measure contact force and a microcontroller real-time operating system. Proportional plus Integral control was adapted to control the overall performance and stability of the autonomous assistive robot. External force control was successfully implemented to establish the behavioral control strategy for the robot force and velocity control scheme. In summary, the experimental results indicated satisfactorily stable performance of the robot force and velocity control can be considered acceptable. The gain tuning for proportional integral (PI) velocity control algorithms was suitably estimated using the Ziegler-Nichols method in which the optimized proportional and integral gains are 0.45 and 0.11, respectively. Additionally, the PI external force control gains were experimentally tuned using the trial and error method based on a set of experiments which allow a human participant moves the robot along the constrained circular path whilst attempting to minimize the radial force. The performance was analyzed based on the root mean square error (E_RMS) of the radial forces, in which the lower the variation in radial

  7. Sensing and control for autonomous vehicles applications to land, water and air vehicles

    CERN Document Server

    Pettersen, Kristin; Nijmeijer, Henk

    2017-01-01

    This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite sy...

  8. Control of autonomous ground vehicles: a brief technical review

    Science.gov (United States)

    Babak, Shahian-Jahromi; Hussain, Syed A.; Karakas, Burak; Cetin, Sabri

    2017-07-01

    This paper presents a brief review of the developments achieved in autonomous vehicle systems technology. A concise history of autonomous driver assistance systems is presented, followed by a review of current state of the art sensor technology used in autonomous vehicles. Standard sensor fusion method that has been recently explored is discussed. Finally, advances in embedded software methodologies that define the logic between sensory information and actuation decisions are reviewed.

  9. Router Agent Technology for Policy-Based Network Management

    Science.gov (United States)

    Chow, Edward T.; Sudhir, Gurusham; Chang, Hsin-Ping; James, Mark; Liu, Yih-Chiao J.; Chiang, Winston

    2011-01-01

    This innovation can be run as a standalone network application on any computer in a networked environment. This design can be configured to control one or more routers (one instance per router), and can also be configured to listen to a policy server over the network to receive new policies based on the policy- based network management technology. The Router Agent Technology transforms the received policies into suitable Access Control List syntax for the routers it is configured to control. It commits the newly generated access control lists to the routers and provides feedback regarding any errors that were faced. The innovation also automatically generates a time-stamped log file regarding all updates to the router it is configured to control. This technology, once installed on a local network computer and started, is autonomous because it has the capability to keep listening to new policies from the policy server, transforming those policies to router-compliant access lists, and committing those access lists to a specified interface on the specified router on the network with any error feedback regarding commitment process. The stand-alone application is named RouterAgent and is currently realized as a fully functional (version 1) implementation for the Windows operating system and for CISCO routers.

  10. [Examination of the self-control mechanism focusing on autonomous motivation and competence].

    Science.gov (United States)

    Terada, Miki; Ura, Mitsuhiro

    2013-12-01

    This study examined the self-control mechanism focusing on autonomous motivation and competence according to the self-control strength model. A laboratory experiment was conducted individually with 90 university students to investigate the impact of autonomous motivation and competence on self-control, and the effect of an interaction of autonomous motivation and competence on the depletion of self-control strength. The results showed that autonomous motivation and competence each had an impact on two important components of self-control: active goal pursuit and temptation resistance. Autonomous motivation influenced temptation resistance, and competence influenced active goal pursuit. Each factor had an exclusive role. Furthermore, the effect of their interaction influenced depletion of self-control strength by mechanisms indicating the different influences of each factor.

  11. Automatic Welding System Using Speed Controllable Autonomous Mobile Robot

    Science.gov (United States)

    Kim, Taewon; Suto, Takeshi; Kobayashi, Junya; Kim, Jongcheol; Suga, Yasuo

    A prototype of autonomous mobile robot with two vision sensors for automatic welding of steel plates was constructed. The robot can move straight, steer and turn around the robot center by controlling the driving speed of the two wheels respectively. At the tip of the movable arm, two CCD cameras are fixed. A local camera observes the welding line near the welding torch and another wide camera observes relatively wide area in front of the welding part. The robot controls the traveling speed in accordance with the shape of the welding line. In the case of straight welding line, the speed of the robot is accelerated and the welding efficiency is improved. However, if the robot finds a corner of welding line, the speed is decelerated in order to realize the precise seam tracking and stable welding. Therefore, the robot can realize precise and high speed seam-tracking by controlling the travel speed. The effectiveness of the control system is confirmed by welding experiments.

  12. Autonomous Path Tracking Steering Controller for Extraterrestrial Terrain Exporation Rover

    Science.gov (United States)

    Ahmed, Mohammed; Sonsalla, Roland; Kirchner, Frank

    Extraterrestrial surface missions typically use a robotic rover platform to carry the science instrumentation (e.g.,the twin MER rovers). Due to the risks in the rover path (i.e. low trafficability of unrecognized soil patches), it is proposed in the FASTER footnote{\\url{https://www.faster-fp7-space.eu}} project that two rovers should be used. A micro scout rover is used for determining the traversability of the terrain and collaborate with a primary rover to lower the risk of entering hazardous areas. That will improve the mission safety and the effective traverse speed for planetary rover exploration. This paper presents the design and implementation of the path following controller for micro scout rover. The objective to synthesize a control law which allows the rover to autonomously follow a desired path in a stable manner. Furthermore, the software architecture controlling the rover and all its subsystems is depicted. The performance of the designed controller is discussed and demonstrated with realistic simulations and experiments, conclusions and an outlook of future work are also given. Key words: Micro Rover, Scout Rover, Mars Exploration, Multi-Rover Team, Mobile, All-Terrain, Hybrid-Legged Wheel, Path Following, Automatic Steer, nonlinear systems.

  13. Biologically inspired autonomous structural materials with controlled toughening and healing

    Science.gov (United States)

    Garcia, Michael E.; Sodano, Henry A.

    2010-04-01

    The field of structural health monitoring (SHM) has made significant contributions in the field of prognosis and damage detection in the past decade. The advantageous use of this technology has not been integrated into operational structures to prevent damage from propagating or to heal injured regions under real time loading conditions. Rather, current systems relay this information to a central processor or human operator, who then determines a course of action such as altering the mission or scheduling repair maintenance. Biological systems exhibit advanced sensory and healing traits that can be applied to the design of material systems. For instance, bone is the major structural component in vertebrates; however, unlike modern structural materials, bone has many properties that make it effective for arresting the propagation of cracks and subsequent healing of the fractured area. The foremost goal for the development of future adaptive structures is to mimic biological systems, similar to bone, such that the material system can detect damage and deploy defensive traits to impede damage from propagating, thus preventing catastrophic failure while in operation. After sensing and stalling the propagation of damage, the structure must then be repaired autonomously using self healing mechanisms motivated by biological systems. Here a novel autonomous system is developed using shape memory polymers (SMPs), that employs an optical fiber network as both a damage detection sensor and a network to deliver stimulus to the damage site initiating adaptation and healing. In the presence of damage the fiber optic fractures allowing a high power laser diode to deposit a controlled level of thermal energy at the fractured sight locally reducing the modulus and blunting the crack tip, which significantly slows the crack growth rate. By applying a pre-induced strain field and utilizing the shape memory recovery effect, thermal energy can be deployed to close the crack and return

  14. Cardiac autonomic control in the obstructive sleep apnea ...

    African Journals Online (AJOL)

    However, only a few studies tackled the dynamics of the autonomic nervous system during sleep in patients having OSA. Aims: To analyze the HRVover sleep stages and across sleep periods in order to clarify the impact of OSA on cardiac autonomic modulation. The second objective is to examine the nocturnal HRV of ...

  15. Review article: Autonomous neural inflammatory reflex and control of

    African Journals Online (AJOL)

    ... and neural autonomic pathway through vagus nerve monitor inflammatory status and coordinate appropriate host defences. Immunomodulatory stimulation of vagus nerve, acetylcholinesterase inhibitory mechanism and 7 nAChR receptor expressed on immune cells plays a role on autonomous neural inflammatory reflex.

  16. MODELING, CONTROL AND NAVIGATION OF AN AUTONOMOUS QUAD-ROTOR HELICOPTER

    Directory of Open Access Journals (Sweden)

    Damir Šoštarić

    2016-06-01

    Full Text Available Autonomous outdoor quad-rotor helicopters increasingly attract the attention of potential researchers. Several structures and configurations have been developed to allow 3D movements. The quadrotor helicopter is made of a rigid cross frame equipped with four rotors. The autonomous quad-rotor architecture has been chosen for this research for its low dimension, good manoeuvrability, simple mechanics and payload capability. This article presents the modelling, control and navigation of an autonomous outdoor quad-rotor helicopter.

  17. Modular Autonomous Systems Technology Framework: A Distributed Solution for System Monitoring and Control

    Science.gov (United States)

    Badger, Julia M.; Claunch, Charles; Mathis, Frank

    2017-01-01

    The Modular Autonomous Systems Technology (MAST) framework is a tool for building distributed, hierarchical autonomous systems. Originally intended for the autonomous monitoring and control of spacecraft, this framework concept provides support for variable autonomy, assume-guarantee contracts, and efficient communication between subsystems and a centralized systems manager. MAST was developed at NASA's Johnson Space Center (JSC) and has been applied to an integrated spacecraft example scenario.

  18. Autonomous Power Control MAC Protocol for Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Battery energy limitation has become a performance bottleneck for mobile ad hoc networks. IEEE 802.11 has been adopted as the current standard MAC protocol for ad hoc networks. However, it was developed without considering energy efficiency. To solve this problem, many modifications on IEEE 802.11 to incorporate power control have been proposed in the literature. The main idea of these power control schemes is to use a maximum possible power level for transmitting RTS/CTS and the lowest acceptable power for sending DATA/ACK. However, these schemes may degrade network throughput and reduce the overall energy efficiency of the network. This paper proposes autonomous power control MAC protocol (APCMP, which allows mobile nodes dynamically adjusting power level for transmitting DATA/ACK according to the distances between the transmitter and its neighbors. In addition, the power level for transmitting RTS/CTS is also adjustable according to the power level for DATA/ACK packets. In this paper, the performance of APCMP protocol is evaluated by simulation and is compared with that of other protocols.

  19. Cohesive Motion Control Algorithm for Formation of Multiple Autonomous Agents

    Directory of Open Access Journals (Sweden)

    Debabrata Atta

    2010-01-01

    Full Text Available This paper presents a motion control strategy for a rigid and constraint consistent formation that can be modeled by a directed graph whose each vertex represents individual agent kinematics and each of directed edges represents distance constraints maintained by an agent, called follower, to its neighbouring agent. A rigid and constraint consistent graph is called persistent graph. A persistent graph is minimally persistent if it is persistent, and no edge can be removed without losing its persistence. An acyclic (free of cycles in its sensing pattern minimally persistent graph of Leader-Follower structure has been considered here which can be constructed from an initial Leader-Follower seed (initial graph with two vertices, one is Leader and another one is First Follower and one edge in between them is directed towards Leader by Henneberg sequence (a procedure of growing a graph containing only vertex additions. A set of nonlinear optimization-based decentralized control laws for mobile autonomous point agents in two dimensional plane have been proposed. An infinitesimal deviation in formation shape created continuous motion of Leader is compensated by corresponding continuous motion of other agents fulfilling the shortest path criteria.

  20. Boxfishes as unusually well-controlled autonomous underwater vehicles.

    Science.gov (United States)

    Gordon, M S; Hove, J R; Webb, P W; Weihs, D

    2000-01-01

    Boxfishes (family Ostraciidae) are tropical reef-dwelling marine bony fishes that have about three-fourths of their body length encased in a rigid bony test. As a result, almost all of their swimming movements derive from complex combinations of movements of their median and paired fins (MPF locomotion). In terms of both body design and swimming performance, they are among the most sophisticated examples known of naturally evolved vertebrate autonomous underwater vehicles. Quantitative studies of swimming performance, biomechanics, and energetics in one model species have shown that (i) they are surprisingly strong, fast swimmers with great endurance; (ii) classical descriptions of how they swim were incomplete: they swim at different speeds using three different gaits; (iii) they are unusually dynamically well controlled and stable during sustained and prolonged rectilinear swimming; and (iv) despite unusually high parasite (fuselage) drag, they show energetic costs of transport indistinguishable from those of much better streamlined fishes using body and caudal fin (BCF) swimming modes at similar water temperatures and over comparable ranges of swimming speeds. We summarize an analysis of these properties based on a dynamic model of swimming in these fishes. This model accounts for their control, stability, and efficiency in moving through the water at moderate speeds in terms of gait changes, of water-flow patterns over body surfaces, and of complex interactions of thrust vectors generated by fin movements.

  1. Laser rangefinders for autonomous intelligent cruise control systems

    Science.gov (United States)

    Journet, Bernard A.; Bazin, Gaelle

    1998-01-01

    THe purpose of this paper is to show to what kind of application laser range-finders can be used inside Autonomous Intelligent Cruise Control systems. Even if laser systems present good performances the safety and technical considerations are very restrictive. As the system is used in the outside, the emitted average output power must respect the rather low level of 1A class. Obstacle detection or collision avoidance require a 200 meters range. Moreover bad weather conditions, like rain or fog, ar disastrous. We have conducted measurements on laser rangefinder using different targets and at different distances. We can infer that except for cooperative targets low power laser rangefinder are not powerful enough for long distance measurement. Radars, like 77 GHz systems, are better adapted to such cases. But in case of short distances measurement, range around 10 meters, with a minimum distance around twenty centimeters, laser rangefinders are really useful with good resolution and rather low cost. Applications can have the following of white lines on the road, the target being easily cooperative, detection of vehicles in the vicinity, that means car convoy traffic control or parking assistance, the target surface being indifferent at short distances.

  2. Autonomic Management of Reconfigurable Embedded Systems using Discrete Control: Application to FPGA

    OpenAIRE

    An, Xin; Rutten, Eric; Diguet, Jean-Philippe; Le Griguer, Nicolas; Gamatié, Abdoulaye

    2013-01-01

    This paper targets the autonomic management of dynamically partially reconfigurable hardware architectures based on FPGAs. Such hardware-level autonomic computing has been less often studied than at software-level. We consider control techniques to model the considered behaviours of the computing system and derive a controller for the control objective enforcement. Discrete Control modelled with Labelled Transition Systems is employed in this paper. Such models are amenable to Discrete Contro...

  3. Autonomic control of heart rate after exercise in trained wrestlers.

    Science.gov (United States)

    Henríquez, Olguín C; Báez, San Martín E; Von Oetinger, A; Cañas, Jamett R; Ramírez, Campillo R

    2013-06-01

    The objective of this study was to establish differences in vagal reactivation, through heart rate recovery and heart rate variability post exercise, in Brazilian jiu-jitsu wrestlers (BJJW). A total of 18 male athletes were evaluated, ten highly trained (HT) and eight moderately trained (MT), who performed a maximum incremental test. At the end of the exercise, the R-R intervals were recorded during the first minute of recovery. We calculated heart rate recovery (HRR60s), and performed linear and non-linear (standard deviation of instantaneous beat-to-beat R-R interval variability - SD1) analysis of heart rate variability (HRV), using the tachogram of the first minute of recovery divided into four segments of 15 s each (0-15 s, 15-30 s, 30-45 s, 45-60 s). Between HT and MT individuals, there were statistically significant differences in HRR60s (p <0.05) and in the non linear analysis of HRV from SD130-45s (p <0.05) and SD145-60s (p <0.05). The results of this research suggest that heart rate kinetics during the first minute after exercise are related to training level and can be used as an index for autonomic cardiovascular control in BJJW.

  4. AUTONOMIC CONTROL OF HEART RATE AFTER EXERCISE IN TRAINED WRESTLERS

    Directory of Open Access Journals (Sweden)

    Carlos F Henríquez

    2013-04-01

    Full Text Available The objective of this study was to establish differences in vagal reactivation, through heart rate recovery and heart rate variability post exercise, in Brazilian jiu-jitsu wrestlers (BJJW. A total of 18 male athletes were evaluated, ten highly trained (HT and eight moderately trained (MT, who performed a maximum incremental test. At the end of the exercise, the R-R intervals were recorded during the first minute of recovery. We calculated heart rate recovery (HRR60s, and performed linear and non-linear (standard deviation of instantaneous beat-to-beat R-R interval variability – SD1 analysis of heart rate variability (HRV, using the tachogram of the first minute of recovery divided into four segments of 15 s each (0-15 s, 15-30 s, 30-45 s, 45-60 s. Between HT and MT individuals, there were statistically significant differences in HRR60s (p <0.05 and in the non linear analysis of HRV from SD130-45s (p <0.05 and SD145-60s (p <0.05. The results of this research suggest that heart rate kinetics during the first minute after exercise are related to training level and can be used as an index for autonomic cardiovascular control in BJJW.

  5. Autonomous Control of a Quadrotor UAV Using Fuzzy Logic

    Science.gov (United States)

    Sureshkumar, Vijaykumar

    UAVs are being increasingly used today than ever before in both military and civil applications. They are heavily preferred in "dull, dirty or dangerous" mission scenarios. Increasingly, UAVs of all kinds are being used in policing, fire-fighting, inspection of structures, pipelines etc. Recently, the FAA gave its permission for UAVs to be used on film sets for motion capture and high definition video recording. The rapid development in MEMS and actuator technology has made possible a plethora of UAVs that are suited for commercial applications in an increasingly cost effective manner. An emerging popular rotary wing UAV platform is the Quadrotor A Quadrotor is a helicopter with four rotors, that make it more stable; but more complex to model and control. Characteristics that provide a clear advantage over other fixed wing UAVs are VTOL and hovering capabilities as well as a greater maneuverability. It is also simple in construction and design compared to a scaled single rotorcraft. Flying such UAVs using a traditional radio Transmitter-Receiver setup can be a daunting task especially in high stress situations. In order to make such platforms widely applicable, a certain level of autonomy is imperative to the future of such UAVs. This thesis paper presents a methodology for the autonomous control of a Quadrotor UAV using Fuzzy Logic. Fuzzy logic control has been chosen over conventional control methods as it can deal effectively with highly nonlinear systems, allows for imprecise data and is extremely modular. Modularity and adaptability are the key cornerstones of FLC. The objective of this thesis is to present the steps of designing, building and simulating an intelligent flight control module for a Quadrotor UAV. In the course of this research effort, a Quadrotor UAV is indigenously developed utilizing the resources of an online open source project called Aeroquad. System design is comprehensively dealt with. A math model for the Quadrotor is developed and a

  6. Development and control of the Naval Postgraduate School Planar Autonomous Docking Simulator (NPADS)

    OpenAIRE

    Porter, Robert D.

    2002-01-01

    Approved for public release, distribution is unlimited The objective of this thesis was to design, construct and develop the initial autonomous control algorithm for the NPS Planar Autonomous Docking Simulator (NPADS). The effort included hardware design, fabrication, installation and integration; mass property determination; and the development and testing of control laws utilizing MATLAB and Simulink for modeling and LabView for NPADS control. The NPADS vehicle uses air pads and a grani...

  7. Autonomous formation flight of helicopters: Model predictive control approach

    Science.gov (United States)

    Chung, Hoam

    Formation flight is the primary movement technique for teams of helicopters. However, the potential for accidents is greatly increased when helicopter teams are required to fly in tight formations and under harsh conditions. This dissertation proposes that the automation of helicopter formations is a realistic solution capable of alleviating risks. Helicopter formation flight operations in battlefield situations are highly dynamic and dangerous, and, therefore, we maintain that both a high-level formation management system and a distributed coordinated control algorithm should be implemented to help ensure safe formations. The starting point for safe autonomous formation flights is to design a distributed control law attenuating external disturbances coming into a formation, so that each vehicle can safely maintain sufficient clearance between it and all other vehicles. While conventional methods are limited to homogeneous formations, our decentralized model predictive control (MPC) approach allows for heterogeneity in a formation. In order to avoid the conservative nature inherent in distributed MPC algorithms, we begin by designing a stable MPC for individual vehicles, and then introducing carefully designed inter-agent coupling terms in a performance index. Thus the proposed algorithm works in a decentralized manner, and can be applied to the problem of helicopter formations comprised of heterogenous vehicles. Individual vehicles in a team may be confronted by various emerging situations that will require the capability for in-flight reconfiguration. We propose the concept of a formation manager to manage separation, join, and synchronization of flight course changes. The formation manager accepts an operator's commands, information from neighboring vehicles, and its own vehicle states. Inside the formation manager, there are multiple modes and complex mode switchings represented as a finite state machine (FSM). Based on the current mode and collected

  8. Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States

    Science.gov (United States)

    2017-01-09

    state.; 2. Correct the relative path with in-time deck state to reform the inertial A-V-P command. The advantage of the method is in that: if the...Contract # N00014-14-C-0004 Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States Progress Report...framework will focus on some of the most critical components of autonomous landing control laws with the objective of improving safety and expanding the

  9. Guidance and control for an autonomous soaring UAV

    Science.gov (United States)

    Allen, Michael J. (Inventor)

    2008-01-01

    The present invention provides a practical method for UAVs to take advantage of thermals in a manner similar to piloted aircrafts and soaring birds. In general, the invention is a method for a UAV to autonomously locate a thermal and be guided to the thermal to greatly improve range and endurance of the aircraft.

  10. A practical receding horizon control framework for path planning and control of autonomous vtol vehicles

    Science.gov (United States)

    Liu, C.; Chen, W.-H.

    2013-12-01

    This paper describes an integrated path planning and tracking control framework for autonomous vertical-take-off-and-landing (VTOL) vehicles, particularly quadrotors. The path planning adopts a receding horizon strategy to repeatedly plan a local trajectory that satisfies both the vehicle dynamics and obstacle-free requirement. A tracking controller is then designed to track the planned path. The differential flatness property of the quadrotor is exploited in both path planner and tracking controller designs. The proposed framework is verified by real-time simulations incorporating online optimization.

  11. Study of Model Predictive Control for Path-Following Autonomous Ground Vehicle Control under Crosswind Effect

    Directory of Open Access Journals (Sweden)

    Fitri Yakub

    2016-01-01

    Full Text Available We present a comparative study of model predictive control approaches of two-wheel steering, four-wheel steering, and a combination of two-wheel steering with direct yaw moment control manoeuvres for path-following control in autonomous car vehicle dynamics systems. Single-track mode, based on a linearized vehicle and tire model, is used. Based on a given trajectory, we drove the vehicle at low and high forward speeds and on low and high road friction surfaces for a double-lane change scenario in order to follow the desired trajectory as close as possible while rejecting the effects of wind gusts. We compared the controller based on both simple and complex bicycle models without and with the roll vehicle dynamics for different types of model predictive control manoeuvres. The simulation result showed that the model predictive control gave a better performance in terms of robustness for both forward speeds and road surface variation in autonomous path-following control. It also demonstrated that model predictive control is useful to maintain vehicle stability along the desired path and has an ability to eliminate the crosswind effect.

  12. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice

    Directory of Open Access Journals (Sweden)

    Laurie L. Baggio

    2017-11-01

    Conclusions: GLP-1R agonists increase HR through multiple mechanisms, including regulation of autonomic nervous system function, and activation of the atrial GLP-1R. Surprisingly, the isolated atrial GLP-1R does not transduce a direct chronotropic effect following exposure to GLP-1R agonists in the intact heart, or isolated atrium, ex vivo. Hence, cardiac GLP-1R circuits controlling HR require neural inputs and do not function in a heart-autonomous manner.

  13. Speed Control of an Autonomous Mobile Robot: Comparison between a PID Control and a Control Using Fuzzy Logic

    OpenAIRE

    Silveira, P. E.; Souza Jr., R. de; Biazotto, V. M.

    2002-01-01

    An Autonomous Mobile Robot battery driven, with two traction wheels and a steering wheel is being developed. This Robot central control is regulated by an IPC, which controls every function of security, steering, positioning localization and driving. Each traction wheel is operated by a DC motor with independent control system. This system is made up of a chopper, an encoder and a microcomputer. The IPC transmits the velocity values and acceleration ramp references to the PIC microcontrollers...

  14. Autonomous Control of Eye Based Electric Wheel Chair with Obstacle Avoidance and Shortest Path Findings Based on Dijkstra Algorithm

    OpenAIRE

    Kohei Arai; Ronny Mardiyanto

    2011-01-01

    Autonomous Eye Based Electric Wheel Chair: EBEWC control system which allows handicap person (user) to control their EWC with their eyes only is proposed. Using EBEWC, user can move to anywhere they want on a same floor in a hospital autonomously with obstacle avoidance with visible camera and ultrasonic sensor. User also can control EBEWC by their eyes. The most appropriate route has to be determined with avoiding obstacles and then autonomous real time control has to be done. Such these pro...

  15. The Use of Software Agents for Autonomous Control of a DC Space Power System

    Science.gov (United States)

    May, Ryan D.; Loparo, Kenneth A.

    2014-01-01

    In order to enable manned deep-space missions, the spacecraft must be controlled autonomously using on-board algorithms. A control architecture is proposed to enable this autonomous operation for an spacecraft electric power system and then implemented using a highly distributed network of software agents. These agents collaborate and compete with each other in order to implement each of the control functions. A subset of this control architecture is tested against a steadystate power system simulation and found to be able to solve a constrained optimization problem with competing objectives using only local information.

  16. Control of an Autonomous Vehicle for Registration of Weed and Crop in Precision Agriculture

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Andersen, Palle; Pedersen, Tom Søndergaard

    2002-01-01

    The paper describes the development of an autonomous electrical vehicle to be used for weed mapping in precision agriculture with special focus on the conceptual framework of the control system. The lowest layer of the control system is the propulsion and steering control, the second layer...... coordinates the movements of the wheel units, the third layer is path execution and perception and the upper layer performs planning and reasoning. The control system is implemented on an autonomous vehicle. The vehicle has been tested for path following and position accuracy. Based on the results a new...... vehicle is under construction....

  17. A shorter set reduces the loss of cardiac autonomic and baroreflex control after resistance exercise.

    Science.gov (United States)

    Mayo, Xián; Iglesias-Soler, Eliseo; Carballeira-Fernández, Eduardo; Fernández-Del-Olmo, Miguel

    2016-11-01

    Set configuration may affect the recovery pattern of cardiac vagal autonomic and reflex modulation after a resistance exercise, since it is closely associated with intensity and volume and determines the metabolic involvement of the session. We tested the hypothesis that longer set configurations have a higher impact on cardiac autonomic control and baroreflex sensitivity compared with shorter set configurations. We studied the effects of three set configurations with the same components of work on the cardiac autonomic control and baroreflex sensitivity. Seventeen subjects performed one control session and three experimental sessions of a leg-press exercise with the same volume (40 repetitions), resting time (720 s) and intensity (10RM load): (a) 5 sets of 8 repetitions with 3 min of rest between sets (8S), (b) 10 sets of 4 repetitions with 80 s of rest between sets (4S) and (c) 40 sets of 1 repetition with 18.5 s of rest between each repetition (1S). Longer set configurations (8S and 4S) induced greater reductions of the vagal cardiac autonomic control and baroreflex sensitivity (p ≤ .001) compared with a shorter set configuration (1S). Also, 1S had non-significant reductions versus the control session (p > .05). These findings suggest that a shorter set configuration can reduce the impact of resistance exercise on the post-exercise cardiac vagal autonomic control and baroreflex sensitivity.

  18. Control of an Autonomous Vehicle for Registration of Weed and Crop in Precision Agriculture

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Andersen, Palle; Pedersen, Tom Søndergaard

    2002-01-01

    The paper describes the development of an autonomous electrical vehicle to be used for weed mapping in precision agriculture with special focus on the conceptual framework of the control system. The lowest layer of the control system is the propulsion and steering control, the second layer...

  19. Enriching the hierarchical model of achievement motivation: autonomous and controlling reasons underlying achievement goals.

    Science.gov (United States)

    Michou, Aikaterini; Vansteenkiste, Maarten; Mouratidis, Athanasios; Lens, Willy

    2014-12-01

    The hierarchical model of achievement motivation presumes that achievement goals channel the achievement motives of need for achievement and fear of failure towards motivational outcomes. Yet, less is known whether autonomous and controlling reasons underlying the pursuit of achievement goals can serve as additional pathways between achievement motives and outcomes. We tested whether mastery approach, performance approach, and performance avoidance goals and their underlying autonomous and controlling reasons would jointly explain the relation between achievement motives (i.e., fear of failure and need for achievement) and learning strategies (Study 1). Additionally, we examined whether the autonomous and controlling reasons underlying learners' dominant achievement goal would account for the link between achievement motives and the educational outcomes of learning strategies and cheating (Study 2). Six hundred and six Greek adolescent students (Mage = 15.05, SD = 1.43) and 435 university students (Mage M = 20.51, SD = 2.80) participated in studies 1 and 2, respectively. In both studies, a correlational design was used and the hypotheses were tested via path modelling. Autonomous and controlling reasons underlying the pursuit of achievement goals mediated, respectively, the relation of need for achievement and fear of failure to aspects of learning outcomes. Autonomous and controlling reasons underlying achievement goals could further explain learners' functioning in achievement settings. © 2014 The British Psychological Society.

  20. The Role of the Suprachiasmatic Nucleus in Cardiac Autonomic Control during Sleep.

    Directory of Open Access Journals (Sweden)

    S D Joustra

    Full Text Available The suprachiasmatic nucleus (SCN may play an important role in central autonomic control, since its projections connect to (parasympathetic relay stations in the brainstem and spinal cord. The cardiac autonomic modifications during nighttime may therefore not only result from direct effects of the sleep-related changes in the central autonomic network, but also from endogenous circadian factors as directed by the SCN. To explore the influence of the SCN on autonomic fluctuations during nighttime, we studied heart rate and its variability (HRV in a clinical model of SCN damage.Fifteen patients in follow-up after surgical treatment for nonfunctioning pituitary macroadenoma (NFMA compressing the optic chiasm (8 females, 26-65 years old and fifteen age-matched healthy controls (5 females, 30-63 years underwent overnight ambulatory polysomnography. Eleven patients had hypopituitarism and received adequate replacement therapy. HRV was calculated for each 30-second epoch and corrected for sleep stage, arousals, and gender using mixed effect regression models.Compared to controls, patients spent more time awake after sleep onset and in NREM1-sleep, and less in REM-sleep. Heart rate, low (LF and high frequency (HF power components and the LF/HF ratio across sleep stages were not significantly different between groups.These findings suggest that the SCN does not play a dominant role in cardiac autonomic control during sleep.

  1. Diagnosis of Fault Modes Masked by Control Loops with an Application to Autonomous Hovercraft Systems

    Directory of Open Access Journals (Sweden)

    Ioannis A. Raptis

    2013-01-01

    Full Text Available This paper introduces a methodology for the design, testing and assessment of incipient failure detection techniques for failing components/systems of an autonomous vehicle masked or hidden by feedback control loops. It is recognized that the optimum operation of critical assets (aircraft, autonomous systems, etc. may be compromised by feedback control loops by masking severe fault modes while compensating for typical disturbances. Detrimental consequences of such occurrences include the inability to detect expeditiously and accurately incipient failures, loss of control and inefficient operation of assets in the form of fuel overconsumption and adverse environmental impact. We pursue a systems engineering process to design, construct and test an autonomous hovercraft instrumented appropriately for improved autonomy. Hidden fault modes are detected with performance guarantees by invoking a Bayesian estimation approach called particle filtering. Simulation and experimental studies are employed to demonstrate the efficacy of the proposed methods.

  2. Design and Lyapunov Stability Analysis of a Fuzzy Logic Controller for Autonomous Road Following

    Directory of Open Access Journals (Sweden)

    Yi Fu

    2010-01-01

    Full Text Available Autonomous road following is one of the major goals in intelligent vehicle applications. The development of an autonomous road following embedded system for intelligent vehicles is the focus of this paper. A fuzzy logic controller (FLC is designed for vision-based autonomous road following. The stability analysis of this control system is addressed. Lyapunov's direct method is utilized to formulate a class of control laws that guarantee the convergence of the steering error. Certain requirements for the control laws are presented for designers to choose a suitable rule base for the fuzzy controller in order to make the system stable. Stability of the proposed fuzzy controller is guaranteed theoretically and also demonstrated by simulation studies and experiments. Simulations using the model of the four degree of freedom nonholonomic robotic vehicle are conducted to investigate the performance of the fuzzy controller. The proposed fuzzy controller can achieve the desired steering angle and make the robotic vehicle follow the road successfully. Experiments show that the developed intelligent vehicle is able to follow a mocked road autonomously.

  3. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator.

    Science.gov (United States)

    Ka, Hyun W; Chung, Cheng-Shiu; Ding, Dan; James, Khara; Cooper, Rory

    2018-02-01

    We developed a 3D vision-based semi-autonomous control interface for assistive robotic manipulators. It was implemented based on one of the most popular commercially available assistive robotic manipulator combined with a low-cost depth-sensing camera mounted on the robot base. To perform a manipulation task with the 3D vision-based semi-autonomous control interface, a user starts operating with a manual control method available to him/her. When detecting objects within a set range, the control interface automatically stops the robot, and provides the user with possible manipulation options through audible text output, based on the detected object characteristics. Then, the system waits until the user states a voice command. Once the user command is given, the control interface drives the robot autonomously until the given command is completed. In the empirical evaluations conducted with human subjects from two different groups, it was shown that the semi-autonomous control can be used as an alternative control method to enable individuals with impaired motor control to more efficiently operate the robot arms by facilitating their fine motion control. The advantage of semi-autonomous control was not so obvious for the simple tasks. But, for the relatively complex real-life tasks, the 3D vision-based semi-autonomous control showed significantly faster performance. Implications for Rehabilitation A 3D vision-based semi-autonomous control interface will improve clinical practice by providing an alternative control method that is less demanding physically as well cognitively. A 3D vision-based semi-autonomous control provides the user with task specific intelligent semiautonomous manipulation assistances. A 3D vision-based semi-autonomous control gives the user the feeling that he or she is still in control at any moment. A 3D vision-based semi-autonomous control is compatible with different types of new and existing manual control methods for ARMs.

  4. Effects of inspiratory muscle training on cardiovascular autonomic control: A systematic review.

    Science.gov (United States)

    de Abreu, Raphael Martins; Rehder-Santos, Patrícia; Minatel, Vinicius; Dos Santos, Gabriela Lopes; Catai, Aparecida Maria

    2017-12-01

    To carry out a systematic review to determine if inspiratory muscle training (IMT) promotes changes in cardiovascular autonomic responses in humans. The methodology followed the PRISMA statement for reporting systematic review analysis. MEDLINE, PEDro, SCOPUS and PubMed electronic databases were searched from the inception to March 2017. The quality assessment was performed using a PEDro scale. The articles were included if: (1) primary objective was related to the effects of IMT on the cardiovascular autonomic nervous system, and (2) randomized clinical trials and quasi-experimental studies. Exclusion criteria were reviews, short communications, letters, case studies, guidelines, theses, dissertations, qualitative studies, scientific conference abstracts, studies on animals, non-English language articles and articles addressing other breathing techniques. Outcomes evaluated were measures of cardiovascular autonomic control, represented by heart rate variability (HRV) and blood pressure variability (BPV) indexes. The search identified 729 citations and a total of 6 studies were included. The results demonstrated that IMT performed at low intensities can chronically promote an increase in the parasympathetic modulation and/or reduction of sympathetic cardiac modulation in patients with diabetes, hypertension, chronic heart failure and gastroesophageal reflux, when assessed by HRV spectral analysis. However, there was no study which evaluated the effects of IMT on cardiovascular autonomic control assessed by BPV. IMT can promote benefits for cardiac autonomic control, however the heterogeneity of populations associated with different protocols, few studies reported in the literature and the lack of randomized controlled trials make the effects of IMT on cardiovascular autonomic control inconclusive. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Autonomic symptoms in idiopathic REM behavior disorder: a multicentre case-control study.

    Science.gov (United States)

    Ferini-Strambi, Luigi; Oertel, Wolfgang; Dauvilliers, Yves; Postuma, Ronald B; Marelli, Sara; Iranzo, Alex; Arnulf, Isabelle; Högl, Birgit; Birgit, Högl; Manni, Raffaele; Miyamoto, Tomoyuki; Fantini, Maria-Livia; Puligheddu, Monica; Jennum, Poul; Sonka, Karel; Santamaria, Joan; Zucconi, Marco; Rancoita, Paola M V; Leu-Semenescu, Smeranda; Frauscher, Birgit; Terzaghi, Michele; Miyamoto, Masayuki; Unger, Marcus; Stiasny-Kolster, Karin; Desautels, Alex; Wolfson, Christina; Pelletier, Amélie; Montplaisir, Jacques

    2014-06-01

    Patients with idiopathic REM sleep behavior disorder (iRBD) are at very high risk of developing neurodegenerative synucleinopathies, which are disorders with prominent autonomic dysfunction. Several studies have documented autonomic dysfunction in iRBD, but large-scale assessment of autonomic symptoms has never been systematically performed. Patients with polysomnography-confirmed iRBD (318 cases) and controls (137 healthy volunteers and 181 sleep center controls with sleep diagnoses other than RBD) were recruited from 13 neurological centers in 10 countries from 2008 to 2011. A validated scale to study the disorders of the autonomic nervous system in Parkinson's disease (PD) patients, the SCOPA-AUT, was administered to all the patients and controls. The SCOPA-AUT consists of 25 items assessing the following domains: gastrointestinal, urinary, cardiovascular, thermoregulatory, pupillomotor, and sexual dysfunction. Our results show that compared to control subjects with a similar overall age and sex distribution, patients with iRBD experience significantly more problems with gastrointestinal, urinary, and cardiovascular functioning. The most prominent differences in severity of autonomic symptoms between our iRBD patients and controls emerged in the gastrointestinal domain. Interestingly, it has been reported that an altered gastrointestinal motility can predate the motor phase of PD. The cardiovascular domain SCOPA-AUT score in our study in iRBD patients was intermediate with respect to the scores reported in PD patients by other authors. Our findings underline the importance of collecting data on autonomic symptoms in iRBD. These data may be used in prospective studies for evaluating the risk of developing neurodegenerative disorders.

  6. Autonomous Close Formation Flight Control with Fixed Wing and Quadrotor Test Beds

    Directory of Open Access Journals (Sweden)

    Caleb Rice

    2016-01-01

    Full Text Available Autonomous formation flight is a key approach for reducing energy cost and managing traffic in future high density airspace. The use of Unmanned Aerial Vehicles (UAVs has allowed low-budget and low-risk validation of autonomous formation flight concepts. This paper discusses the implementation and flight testing of nonlinear dynamic inversion (NLDI controllers for close formation flight (CFF using two distinct UAV platforms: a set of fixed wing aircraft named “Phastball” and a set of quadrotors named “NEO.” Experimental results show that autonomous CFF with approximately 5-wingspan separation is achievable with a pair of low-cost unmanned Phastball research aircraft. Simulations of the quadrotor flight also validate the design of the NLDI controller for the NEO quadrotors.

  7. Design and Evaluation of Autonomous Hybrid Frequency-Voltage Sensitive Load Controller

    DEFF Research Database (Denmark)

    Douglass, Philip James; Garcia-Valle, Rodrigo; Sossan, Fabrizio

    2013-01-01

    The paper introduces an algorithm for control of autonomous loads without digital communication interfaces to provide both frequency regulation and voltage regulation services. This hybrid controller can be used to enhance frequency sensitive loads to mitigate line overload arising from reduced...... load diversity. Numerical simulations of the hybrid controller in a representative distribution system show the peak system load was reduced by 12% compared to a purely frequency sensitive load controller....

  8. Sleep biology updates: hemodynamic and autonomic control in sleep disorders.

    Science.gov (United States)

    Tamisier, Renaud; Weiss, J Woodrow; Pépin, Jean Louis

    2018-03-20

    Sleep disorders like obstructive sleep apnea syndrome, periodic limb movements in sleep syndrome, insomnia and narcolepsy-cataplexy are all associated with an increased risk of cardiovascular diseases. These disorders share an impaired autonomic nervous system regulation that leads to increased cardiovascular sympathetic tone. This increased cardiovascular sympathetic tone is, in turn, likely to play a major role in the increased risk of cardiovascular disease. Different stimuli, such as intermittent hypoxia, sleep fragmentation, decrease in sleep duration, increased respiratory effort, and transient hypercapnia may all initiate the pathophysiological cascade leading to sympathetic overactivity and some or all of these are encountered in these different sleep disorders. In this manuscript, we outline the different pathways leading to sympathetic over-activity in different sleep conditions. This augmented sympathetic tone is likely to play an important role in the development of cardiovascular disease in patients with sleep disorders, and it is further hypothesized to that sympathoexcitation contributes to the metabolic dysregulation associated with these sleep disorders. Copyright © 2018. Published by Elsevier Inc.

  9. Low intensity resistance training improves systolic function and cardiovascular autonomic control in diabetic rats.

    Science.gov (United States)

    Mostarda, Cristiano T; Rodrigues, Bruno; de Moraes, Oscar Albuquerque; Moraes-Silva, Ivana C; Arruda, Paula Barros Olinto; Cardoso, Ruymar; Scapini, Katia Bilhar; Dos Santos, Fernando; De Angelis, Kátia; Irigoyen, Maria Cláudia

    2014-01-01

    We evaluated the effects of low intensity resistance training (RT) on left ventricular (LV) function, baroreflex sensitivity (BRS), and cardiovascular autonomic control of streptozotocin-induced diabetic rats. Male Wistar rats were divided into (n=8 each group): sedentary control (SC), trained control (TC), sedentary diabetic (SD), and trained diabetic (TD). Trained groups underwent low intensity RT (40%-50% 1 repetition maximum) for 10 weeks. Echocardiographic evaluation, arterial pressure (AP), heart rate (HR), BRS, and autonomic measurements were performed. Diabetes induced an increase in glycemia and a reduction in body weight in diabetics when compared with control animals. Diabetic rats displayed cardiac dysfunction, reduced systolic AP and HR, impaired BRS and autonomic derangement when compared to control rats. RT improved ejection fraction (SD: 68%±1.3% vs. TD: 75%±3.0%) and velocity of circumferential fiber shortening (SD: 0.32±0.02 vs. TD: 0.40±0.01 circ/seg.10(-4)). Trained diabetic rats presented increased AP (+10.2%), HR (+10.4%), and BRS after RT protocol. Low intensity RT induced an increase in systolic function in diabetic rats. This may be due to positive LV remodeling and BRS improvement, which may have played an important role in the attenuation of hemodynamic impairment and cardiac autonomic neuropathy in streptozotocin-diabetic rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. An Autonomous Sensor System Architecture for Active Flow and Noise Control Feedback

    Science.gov (United States)

    Humphreys, William M, Jr.; Culliton, William G.

    2008-01-01

    Multi-channel sensor fusion represents a powerful technique to simply and efficiently extract information from complex phenomena. While the technique has traditionally been used for military target tracking and situational awareness, a study has been successfully completed that demonstrates that sensor fusion can be applied equally well to aerodynamic applications. A prototype autonomous hardware processor was successfully designed and used to detect in real-time the two-dimensional flow reattachment location generated by a simple separated-flow wind tunnel model. The success of this demonstration illustrates the feasibility of using autonomous sensor processing architectures to enhance flow control feedback signal generation.

  11. Investigating Autonomic Control of the Cardiovascular System: A Battery of Simple Tests

    Science.gov (United States)

    Johnson, Christopher D.; Roe, Sean; Tansey, Etain A.

    2013-01-01

    Sympathetic and parasympathetic divisions of the autonomic nervous system constantly control the heart (sympathetic and parasympathetic divisions) and blood vessels (predominantly the sympathetic division) to maintain appropriate blood pressure and organ blood flow over sometimes widely varying conditions. This can be adversely affected by…

  12. Unmanned Tactical Autonomous Control and Collaboration (UTACC) unmanned aerial vehicle analysis of alternatives

    OpenAIRE

    Roth, Brian M.; Buckler, Jade L.

    2016-01-01

    Approved for public release; distribution is unlimited Includes supplementary material The further development of Unmanned Tactical Autonomous Control and Collaboration (UTACC) requires a thorough analysis of potential unmanned aerial vehicles (UAV) capable of supporting the program. This thesis developed a comprehensive database with which to conduct an analytical evaluation of UAVs to include physical specifications, performance specifications, and sensor capabilities. This research d...

  13. A collision model for safety evaluation of autonomous intelligent cruise control.

    Science.gov (United States)

    Touran, A; Brackstone, M A; McDonald, M

    1999-09-01

    This paper describes a general framework for safety evaluation of autonomous intelligent cruise control in rear-end collisions. Using data and specifications from prototype devices, two collision models are developed. One model considers a train of four cars, one of which is equipped with autonomous intelligent cruise control. This model considers the car in front and two cars following the equipped car. In the second model, none of the cars is equipped with the device. Each model can predict the possibility of rear-end collision between cars under various conditions by calculating the remaining distance between cars after the front car brakes. Comparing the two collision models allows one to evaluate the effectiveness of autonomous intelligent cruise control in preventing collisions. The models are then subjected to Monte Carlo simulation to calculate the probability of collision. Based on crash probabilities, an expected value is calculated for the number of cars involved in any collision. It is found that given the model assumptions, while equipping a car with autonomous intelligent cruise control can significantly reduce the probability of the collision with the car ahead, it may adversely affect the situation for the following cars.

  14. Unmanned Tactical Autonomous Control and Collaboration (UTACC) Unmanned Aerial Vehicle Analysis of Alternatives

    Science.gov (United States)

    2016-03-01

    The further development of Unmanned Tactical Autonomous Control and Collaboration (UTACC) requires a thorough analysis of potential unmanned aerial...vehicles ( UAV ) capable of supporting the program. This thesis developed a comprehensive database with which to conduct an analytical evaluation of UAVs

  15. Autonomous Mobile Robot with Independent Control and ExternallyDriven Actuation

    Science.gov (United States)

    2016-10-09

    Autonomous Mobile Robot with Independent Control and Externally Driven Actuation Hanlin Wang1 and Michael Rubenstein2 Abstract— Complexity, cost, and...to create a motion controller that allows the robot to move from its current position to any other position on the table in approximately a straight...line. We show this controller working in simulation as well as on an experimental hardware system. I. INTRODUCTION Traditionally, robots used for swarm

  16. Emulation of MS DOS Operational System on the Autonomous Crate-Controller with I8086 microprocessor

    International Nuclear Information System (INIS)

    Hons, Z.; Cizek, P.; Streit, V.

    1988-01-01

    KM-DOS operating system for CAMAC autonomous crate-controller based on Intel 8086/8087 microprocessor connected with Pravec-16 IBM PC is described. The KM-DOS system fully emulates the MS DOS environment on the CAMAC controller. Thus ASSEMBLER, FORTRAN, C and PASCAL programs compiled and linked on IBM PC and compatible can be run on the CAMAC controller and parall work of both computers is enabled

  17. Adaptive Control for Autonomous Navigation of Mobile Robots Considering Time Delay and Uncertainty

    Science.gov (United States)

    Armah, Stephen Kofi

    Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always be improved. The fundamental issues affecting the stability of the control systems include the undesired nonlinear effects introduced by actuator saturation, time delay in the controlled system, and uncertainty in the model. This research work develops robustly stabilizing control systems by investigating and addressing such nonlinear effects through analytical, simulations, and experiments. The control systems are designed to meet specified transient and steady-state specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot AR.Drone 2.0) mobile robots. Firstly, an effective autonomous navigation control system is developed for X80SV using logic control by combining 'go-to-goal', 'avoid-obstacle', and 'follow-wall' controllers. A MATLAB robot simulator is developed to implement this control algorithm and experiments are conducted in a typical office environment. The next stage of the research develops an autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-feedback control is used to achieve stabilization. The quadrotor's nonlinear dynamics and kinematics are implemented using MATLAB S-function to generate the state output. Secondly, the white-box and black-box approaches are used to obtain a linearized

  18. Chaos synchronization in autonomous chaotic system via hybrid feedback control

    International Nuclear Information System (INIS)

    Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng; Chang Yingxiang

    2009-01-01

    This paper presents the synchronization of chaos by designing united controller. First, this method is implemented in synchronization of a simple system, then we realize the synchronization of Lue hyperchaotic system, we also take tracking control to realize the synchronization of Lue hyperchaotic system. Comparing with results, we can find that hybrid feedback control approach is more effective than tracking control for hyperchaotic system. Numerical simulations show the united synchronization method works well.

  19. approximate controllability of a non-autonomous differential equation

    Indian Academy of Sciences (India)

    53

    controllability results of a semilinear control system by assuming monotonicity con- ditions on the nonlinear part. Dauer and Mahmudov [7] studied the approximate controllability of functional differential equation by using the Schauder fixed point theorem when the semigroup is compact, and the Banach fixed theorem when ...

  20. Integrated Guidance and Control Based Air-to-Air Autonomous Attack Occupation of UCAV

    Directory of Open Access Journals (Sweden)

    Chang Luo

    2016-01-01

    Full Text Available An approach of air-to-air autonomous attack occupation for Unmanned Combat Aerial Vehicles (UCAVs is proposed to improve attack precision and combat effectiveness. According to the shortage of UCAV in the task of attack occupation, kinematic and dynamic models of UCAV and missile loaded on it are formed. Then, attack zone and no-escape zone are calculated by pattern search algorithm, and the optimum attack position is indicated. To arrive at the optimum attack position accurately with restriction of gesture, a novel adaptive sliding mode control method is suggested to design the integrated guidance and control system of UCAV in the process of autonomous attack occupation. Key parameters of the control system are adaptively regulated, which further economize control energy at the same time. The simulation results show that compared with traditional methods our approach can guide the UCAV to the optimum attack position with stable gesture and economize nearly 25% control energy.

  1. Improving Energy Efficiency of an Autonomous Bicycle with Adaptive Controller Design

    Directory of Open Access Journals (Sweden)

    David Rodriguez-Rosa

    2017-05-01

    Full Text Available A method is proposed to achieve lateral stability of an autonomous bicycle with only the rotation of the front wheel. This can be achieved with a classic controller. However, if the energy consumption of the bicycle also has to be minimized, this solution is not valid. To solve this problem, an adaptive controller has been designed, which modifies its gains according to the bicycle’s forward velocity, adapting its response with minimum energy consumption and satisfying the design specifications. The study demonstrates the efficiency of the proposed control, achieving an energy saving of 73 . 8 % in trajectory tracking with respect to a conventional proportional-integral ( P I controller. These results show the importance of designing energy-efficient controllers, not only for autonomous vehicles but also for any automatic system where the energy consumption can be minimized.

  2. A New Smart Grid Control and Operation Concept - Autonomic Power System

    Directory of Open Access Journals (Sweden)

    Gao Bo

    2016-01-01

    Full Text Available As the distributed energy resource (DER penetrance increasing, future power system will be more large-scale with much complexity and uncertainty. Taking an active approach, active distribution network (ADN can deal with future complex and uncertain challenges to some extent. However, too much re-lying on information exchange of each layer, ADN will lack global adaptability and stability. To make up for the deficiency, this paper proposes a new smart grid control and operation concept, namely autonomic power system (APS. Based on goal-directed mechanism, APS obtains global self-adaptive management. Meanwhile, under the concept of distributed coordination and autonomic control, autonomic units (AUs in APS coordinate each other and make their own autonomic operation. APS takes not only an optimally and co-ordinately active control of power system, but also brings more intelligence with characteristics of self-configuration, self-optimization, self-protection and self-healing, i.e. self-management and overall self-adaption. Thus, APS completes real-time dynamic goals and makes the operation of future power system more intelligent, effective, safe and reliable.

  3. A Path Tracking Algorithm Using Future Prediction Control with Spike Detection for an Autonomous Vehicle Robot

    Directory of Open Access Journals (Sweden)

    Muhammad Aizzat Zakaria

    2013-08-01

    Full Text Available Trajectory tracking is an important aspect of autonomous vehicles. The idea behind trajectory tracking is the ability of the vehicle to follow a predefined path with zero steady state error. The difficulty arises due to the nonlinearity of vehicle dynamics. Therefore, this paper proposes a stable tracking control for an autonomous vehicle. An approach that consists of steering wheel control and lateral control is introduced. This control algorithm is used for a non-holonomic navigation problem, namely tracking a reference trajectory in a closed loop form. A proposed future prediction point control algorithm is used to calculate the vehicle's lateral error in order to improve the performance of the trajectory tracking. A feedback sensor signal from the steering wheel angle and yaw rate sensor is used as feedback information for the controller. The controller consists of a relationship between the future point lateral error, the linear velocity, the heading error and the reference yaw rate. This paper also introduces a spike detection algorithm to track the spike error that occurs during GPS reading. The proposed idea is to take the advantage of the derivative of the steering rate. This paper aims to tackle the lateral error problem by applying the steering control law to the vehicle, and proposes a new path tracking control method by considering the future coordinate of the vehicle and the future estimated lateral error. The effectiveness of the proposed controller is demonstrated by a simulation and a GPS experiment with noisy data. The approach used in this paper is not limited to autonomous vehicles alone since the concept of autonomous vehicle tracking can be used in mobile robot platforms, as the kinematic model of these two platforms is similar.

  4. Development of autonomous controller system of high speed UAV from simulation to ready to fly condition

    Science.gov (United States)

    Yudhi Irwanto, Herma

    2018-02-01

    The development of autonomous controller system that is specially used in our high speed UAV, it’s call RKX-200EDF/TJ controlled vehicle needs to be continued as a step to mastery and to developt control system of LAPAN’s satellite launching rocket. The weakness of the existing control system in this high speed UAV needs to be repaired and replaced using the autonomous controller system. Conversion steps for ready-to-fly system involved controlling X tail fin, adjusting auto take off procedure by adding X axis sensor, procedure of way points reading and process of measuring distance and heading to the nearest way point, developing user-friendly ground station, and adding tools for safety landing. The development of this autonomous controller system also covered a real flying test in Pandanwangi, Lumajang in November 2016. Unfortunately, the flying test was not successful because the booster rocket was blown right after burning. However, the system could record the event and demonstrated that the controller system had worked according to plan.

  5. Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems

    Science.gov (United States)

    Esogbue, Augustine O.

    1998-01-01

    The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of

  6. Hypothalamic control of energy metabolism via the autonomic nervous system

    NARCIS (Netherlands)

    Kalsbeek, A.; Bruinstroop, E.; Yi, C. X.; Klieverik, L. P.; La Fleur, S. E.; Fliers, E.

    2010-01-01

    The hypothalamic control of hepatic glucose production is an evident aspect of energy homeostasis. In addition to the control of glucose metabolism by the circadian timing system, the hypothalamus also serves as a key relay center for (humoral) feedback information from the periphery, with the

  7. Autonomic cardiovascular control and sports classification in Paralympic athletes with spinal cord injury.

    Science.gov (United States)

    West, Christopher R; Krassioukov, Andrei V

    2017-01-01

    Purpose To investigate the relationship between the classification systems used in wheelchair sports and cardiovascular function in Paralympic athletes with spinal cord injury (SCI). Methods 26 wheelchair rugby (C3-C8) and 14 wheelchair basketball (T3-L1) were assessed for their International Wheelchair Rugby and Basketball Federation sports classification. Next, athletes were assessed for resting and reflex cardiovascular and autonomic function via the change (delta) in systolic blood pressure (SBP) and heart rate (HR) in response to sit-up, and sympathetic skin responses (SSRs), respectively. Results There were no differences in supine, seated, or delta SBP and HR between different sport classes in rugby or basketball (all p > 0.23). Athletes with autonomically complete injuries (SSR score 0-1) exhibited a lower supine SBP, seated SBP and delta SBP compared to those with autonomically incomplete injuries (SSR score >1; all p athletes with SCI. We suggest that testing for remaining autonomic function, which is closely related to the degree of cardiovascular control, should be incorporated into sporting classification. Implications for Rehabilitation Spinal cord injury is a debilitating condition that affects the function of almost every physiological system. It is becoming increasingly apparent that spinal cord injury induced changes in autonomic and cardiovascular function are important determinants of sports performance in athletes with spinal cord injury. This study shows that the current sports classification systems used in wheelchair rugby and basketball do not accurately reflect autonomic and cardiovascular function and thus are placing some athletes at a distinct disadvantage/advantage within their respective sport.

  8. Autonomous Coil Alignment System Using Fuzzy Steering Control for Electric Vehicles with Dynamic Wireless Charging

    Directory of Open Access Journals (Sweden)

    Karam Hwang

    2015-01-01

    Full Text Available An autonomous coil alignment system (ACAS using fuzzy steering control is proposed for vehicles with dynamic wireless charging. The misalignment between the power receiver coil and power transmitter coil is determined based on the voltage difference between two coils installed on the front-left/front-right of the power receiver coil and is corrected through autonomous steering using fuzzy control. The fuzzy control is chosen over other control methods for implementation in ACAS due to the nonlinear characteristic between voltage difference and lateral misalignment distance, as well as the imprecise and constantly varying voltage readings from sensors. The operational validity and feasibility of the ACAS are verified through simulation, where the vehicle equipped with ACAS is able to align with the power transmitter in the road majority of the time during operation, which also implies achieving better wireless power delivery.

  9. Evolution of an artificial neural network based autonomous land vehicle controller.

    Science.gov (United States)

    Baluja, S

    1996-01-01

    This paper presents an evolutionary method for creating an artificial neural network based autonomous land vehicle controller. The evolved controllers perform better in unseen situations than those trained with an error backpropagation learning algorithm designed for this task. In this paper, an overview of the previous connectionist based approaches to this task is given, and the evolutionary algorithms used in this study are described in detail. Methods for reducing the high computational costs of training artificial neural networks with evolutionary algorithms are explored. Error metrics specific to the task of autonomous vehicle control are introduced; the evolutionary algorithms guided by these error metrics reveal improved performance over those guided by the standard sum-squared error metric. Finally, techniques for integrating evolutionary search and error backpropagation are presented. The evolved networks are designed to control Carnegie Mellon University's NAVLAB vehicles in road following tasks.

  10. 3D Vision Based Landing Control of a Small Scale Autonomous Helicopter

    Directory of Open Access Journals (Sweden)

    Zhenyu Yu

    2008-11-01

    Full Text Available Autonomous landing is a challenging but important task for Unmanned Aerial Vehicles (UAV to achieve high level of autonomy. The fundamental requirement for landing is the knowledge of the height above the ground, and a properly designed controller to govern the process. This paper presents our research results in the study of landing an autonomous helicopter. The abovetheground height sensing is based on a 3D vision system. We have designed a simple planefitting method for estimating the height over the ground. The method enables vibration free measurement with the camera rigidly attached on the helicopter without using complicated gimbal or active vision mechanism. The estimated height is used by the landing control loop. Considering the ground effect during landing, we have proposed a twostage landing procedure. Two controllers are designed for the two landing stages respectively. The sensing approach and control strategy has been verified in field flight test and has demonstrated satisfactory performance.

  11. Designing, modeling and controlling a novel autonomous laser weeding system

    DEFF Research Database (Denmark)

    Shahrak Nadimi, Esmaeil; Andersson, Kim Johan; Jørgensen, Rasmus Nyholm

    2009-01-01

      Abstract: in this paper, the process of designing and developing a novel laser weeding test setup is explained. The main purpose of designing this system was to simulate the dynamic field conditions of a mobile vehicle capable of targeting weeds. This system consists of a rig containing three...... conveyor belts fully controlled by a Siemens PLC controller (programmable logic controller), a stereo vision system consisting of two cameras, a 2-axis laser beam deflection unit and a laser source. The main challenge in this project was to accurately estimate and reconstruct the weed growth center using...

  12. Impact of combined exercise training on cardiovascular autonomic control and mortality in diabetic ovariectomized rats.

    Science.gov (United States)

    Sanches, Iris C; Conti, Filipe F; Bernardes, Nathalia; Brito, Janaina de O; Galdini, Elia G; Cavaglieri, Cláudia R; Irigoyen, Maria-Cláudia; De Angelis, Kátia

    2015-09-15

    The purpose of this study was to compare the effects of aerobic, resistance, or combined exercise training on cardiovascular autonomic control and mortality in diabetic ovariectomized rats. Female Wistar rats were divided into one of five groups: euglycemic sedentary (ES), diabetic ovariectomized sedentary (DOS), diabetic ovariectomized aerobic-trained (DOTA), diabetic ovariectomized resistance-trained (DOTR), or diabetic ovariectomized aerobic+resistance-trained (DOTC). Arterial pressure (AP) was directly recorded and baroreflex sensitivity was evaluated by heart rate responses to AP changes. Cardiovascular autonomic modulation was evaluated by spectral analyses. No differences were observed in body weight and glycemia between diabetic rats. Animals in the DOTC and DOTA groups exhibited an increase in running time, whereas animals in the DOTC and DOTR groups showed greater strength. Trained groups exhibited improvement in total power and the high-frequency band of pulse interval and reduced mortality (vs. DOS). Animals in the DOTC (bradycardic and tachycardic responses) and DOTA (tachycardic responses) groups exhibited attenuation in baroreflex dysfunction that was observed in DOS and DOTR animals, and an improvement in AP variance. In conclusion, all training protocols led to reduced mortality, which may be due to an increase in physical capacity and to cardiovascular and autonomic benefits following training, regardless of any improvement in glycemic control. In this model, the aerobic and combined trainings seem to promote additional cardiovascular autonomic benefits when compared with resistance training alone. Copyright © 2015 the American Physiological Society.

  13. Adaptive artificial neural network for autonomous robot control

    Science.gov (United States)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    The topics are presented in viewgraph form and include: neural network controller for robot arm positioning with visual feedback; initial training of the arm; automatic recovery from cumulative fault scenarios; and error reduction by iterative fine movements.

  14. Autonomous and controlled motivation for eating disorders treatment: baseline predictors and relationship to treatment outcome.

    Science.gov (United States)

    Carter, Jacqueline C; Kelly, Allison C

    2015-03-01

    This study aimed to identify baseline predictors of autonomous and controlled motivation for treatment (ACMT) in a transdiagnostic eating disorder sample, and to examine whether ACMT at baseline predicted change in eating disorder psychopathology during treatment. Participants were 97 individuals who met DSM-IV-TR criteria for an eating disorder and were admitted to a specialized intensive treatment programme. Self-report measures of eating disorder psychopathology, ACMT, and various psychosocial variables were completed at the start of treatment. A subset of these measures was completed again after 3, 6, 9, and 12 weeks of treatment. Multiple regression analyses showed that baseline autonomous motivation was higher among patients who reported more self-compassion and more received social support, whereas the only baseline predictor of controlled motivation was shame. Multilevel modelling revealed that higher baseline autonomous motivation predicted faster decreases in global eating disorder psychopathology, whereas the level of controlled motivation at baseline did not. The current findings suggest that developing interventions designed to foster autonomous motivation specifically and employing autonomy supportive strategies may be important to improving eating disorders treatment outcome. The findings of this study suggest that developing motivational interventions that focus specifically on enhancing autonomous motivation for change may be important for promoting eating disorder recovery. Our results lend support for the use of autonomy supportive strategies to strengthen personally meaningful reasons to achieve freely chosen change goals in order to enhance treatment for eating disorders. One study limitation is that there were no follow-up assessments beyond the 12-week study and we therefore do not know whether the relationships that we observed persisted after treatment. Another limitation is that this was a correlational study and it is therefore important

  15. Design of a Control System for an Autonomous Vehicle Based on Adaptive-PID

    Directory of Open Access Journals (Sweden)

    Pan Zhao

    2012-07-01

    Full Text Available The autonomous vehicle is a mobile robot integrating multi-sensor navigation and positioning, intelligent decision making and control technology. This paper presents the control system architecture of the autonomous vehicle, called “Intelligent Pioneer”, and the path tracking and stability of motion to effectively navigate in unknown environments is discussed. In this approach, a two degree-of-freedom dynamic model is developed to formulate the path-tracking problem in state space format. For controlling the instantaneous path error, traditional controllers have difficulty in guaranteeing performance and stability over a wide range of parameter changes and disturbances. Therefore, a newly developed adaptive-PID controller will be used. By using this approach the flexibility of the vehicle control system will be increased and achieving great advantages. Throughout, we provide examples and results from Intelligent Pioneer and the autonomous vehicle using this approach competed in the 2010 and 2011 Future Challenge of China. Intelligent Pioneer finished all of the competition programmes and won first position in 2010 and third position in 2011.

  16. Team-oriented Adaptive Droop Control for Autonomous AC Microgrids

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Nasirian, Vahidreza; Guerrero, Josep M.

    2014-01-01

    This paper proposes a distributed control strategy for voltage and reactive power regulation in ac Microgrids. First, the control module introduces a voltage regulator that maintains the average voltage of the system on the rated value, keeping all bus voltages within an acceptable range. Dynamic....... The proposed controllers are fully distributed; i.e., each source requires information exchange with only a few other sources, those in direct contact through the communication infrastructure. A Microgrid test bench is used to verify the proposed controlmethodology, where different test scenarios such as load...... consensus protocol is used to estimate the average voltage across the Microgrid. This estimation is further utilized by the voltage regulator to elevate/lower the voltage-reactive power (Q-E) droop characteristic, compensating the drop caused by the droop mechanism. The second module, the reactive power...

  17. Automated procedure execution for space vehicle autonomous control

    Science.gov (United States)

    Broten, Thomas A.; Brown, David A.

    1990-01-01

    Increased operational autonomy and reduced operating costs have become critical design objectives in next-generation NASA and DoD space programs. The objective is to develop a semi-automated system for intelligent spacecraft operations support. The Spacecraft Operations and Anomaly Resolution System (SOARS) is presented as a standardized, model-based architecture for performing High-Level Tasking, Status Monitoring and automated Procedure Execution Control for a variety of spacecraft. The particular focus is on the Procedure Execution Control module. A hierarchical procedure network is proposed as the fundamental means for specifying and representing arbitrary operational procedures. A separate procedure interpreter controls automatic execution of the procedure, taking into account the current status of the spacecraft as maintained in an object-oriented spacecraft model.

  18. Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots

    Directory of Open Access Journals (Sweden)

    Brandon Sights

    2006-10-01

    Full Text Available High-level intelligence allows a mobile robot to create and interpret complex world models, but without a precise control system, the accuracy of the world model and the robot's ability to interact with its surroundings are greatly diminished. This problem is amplified when the environment is hostile, such as in a battlefield situation where an error in movement or a slow response may lead to destruction of the robot. As the presence of robots on the battlefield continues to escalate and the trend toward relieving the human of the low-level control burden advances, the ability to combine the functionalities of several critical control systems on a single platform becomes imperative.

  19. Intelligent piloting tools for control of an autonomous mobile robot

    Science.gov (United States)

    Malotaux, Eric; Alimenti, Rodolphe; Bogaert, Marc; Gaspart, Pierre

    1991-03-01

    Mobile robots usually suffer from a problem of continuous localization for position control feedback (indeed dead reckoning is often unreliable because of slippage and drift). One solution to this problem is to involve dedicated environment perception in the motion process. There is also a need for a very precise flexible and inexpensive in computation time path execution control algorithm. It must produce natural trajectories and not only straight lines and circles joined by stop points and must take into account all the physical constraints on speed and acceleration. All these requirements are handled by the " pilot" we present here.

  20. Semi-autonomous controller for data acquisition, the Brilliant ADC

    International Nuclear Information System (INIS)

    Breidenbach, M.; Frank, E.; Hall, J.; Nelson, D.

    1977-10-01

    A set of high speed 16-bit computers and ADC's designed and built for the data collection, compression, and correction system of the SLAC/LBL Mark II Magnetic Detector. The ''Brilliant ADC'' controls the analog multiplexing of a CAMAC crate of data acquisition modules, digitizes the analog data, and executes microprogrammed algorithms for data handling and correction

  1. Alterations in cardiac autonomic control in spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Biering-Sørensen, Tor; Liu, Nan

    2018-01-01

    parasympathetic cardiac control. Decreases in sympathetic activity result in heart rate and the arterial blood pressure changes, and may cause arrhythmias, in particular bradycardia, with the risk of cardiac arrest in those with cervical or high thoracic injuries. The objective of this review is to give an update...

  2. Autonomous health management for PMSM rail vehicles through demagnetization monitoring and prognosis control.

    Science.gov (United States)

    Niu, Gang; Jiang, Junjie; Youn, Byeng D; Pecht, Michael

    2018-01-01

    Autonomous vehicles are playing an increasingly importance in support of a wide variety of critical events. This paper presents a novel autonomous health management scheme on rail vehicles driven by permanent magnet synchronous motors (PMSMs). Firstly, the PMSMs are modeled based on first principle to deduce the initial profile of pneumatic braking (p-braking) force, then which is utilized for real-time demagnetization monitoring and degradation prognosis through similarity-based theory and generate prognosis-enhanced p-braking force strategy for final optimal control. A case study is conducted to demonstrate the feasibility and benefit of using the real-time prognostics and health management (PHM) information in vehicle 'drive-brake' control automatically. The results show that accurate demagnetization monitoring, degradation prognosis, and real-time capability for control optimization can be obtained, which can effectively relieve brake shoe wear. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Control of Oscillating Foil for Propulsion of Biorobotic Autonomous Underwater Vehicle (AUV

    Directory of Open Access Journals (Sweden)

    S. N. Singh

    2005-01-01

    Full Text Available The paper treats the question of control of a laterally and rotationally oscillating hydrofoil for the propulsion of biologically inspired robotic (biorobotic autonomous underwater vehicles (BAUVs. Sinusoidal oscillations of foils produce maneuvering and propulsive forces. The design is based on the internal model principle. Two springs are used to transmit forces from the actuators to the foil. Oscillating fins produce periodic forces, which can be used for fish-like propulsion and control of autonomous underwater vehicles (AUVs. The equations of motion of the foil include hydrodynamic lift and moment based on linear, unsteady, aerodynamic theory. A control law is derived for the lateral and rotational sinusoidal oscillation of the foil. In the closed-loop system, the lateral displacement and the rotational angle of the foil asymptotically follow sinusoidal trajectories of distinct frequencies and amplitudes independently. Simulation results are presented to show the trajectory tracking performance of the foil for different freestream velocities and sinusoidal command trajectories.

  4. Autonomic control of cardiorespiratory interactions in fish, amphibians and reptiles.

    Science.gov (United States)

    Taylor, E W; Leite, C A C; Skovgaard, N

    2010-07-01

    Control of the heart rate and cardiorespiratory interactions (CRI) is predominantly parasympathetic in all jawed vertebrates, with the sympathetic nervous system having some influence in tetrapods. Respiratory sinus arrhythmia (RSA) has been described as a solely mammalian phenomenon but respiration-related beat-to-beat control of the heart has been described in fish and reptiles. Though they are both important, the relative roles of feed-forward central control and peripheral reflexes in generating CRI vary between groups of fishes and probably between other vertebrates. CRI may relate to two locations for the vagal preganglionic neurons (VPN) and in particular cardiac VPN in the brainstem. This has been described in representatives from all vertebrate groups, though the proportion in each location is variable. Air-breathing fishes, amphibians and reptiles breathe discontinuously and the onset of a bout of breathing is characteristically accompanied by an immediate increase in heart rate plus, in the latter two groups, a left-right shunting of blood through the pulmonary circuit. Both the increase in heart rate and opening of a sphincter on the pulmonary artery are due to withdrawal of vagal tone. An increase in heart rate following a meal in snakes is related to withdrawal of vagal tone plus a non-adrenergic-non-cholinergic effect that may be due to humoral factors released by the gut. Histamine is one candidate for this role.

  5. Autonomic and Apoptotic, Aeronautical and Aerospace Systems, and Controlling Scientific Data Generated Therefrom

    Science.gov (United States)

    Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)

    2015-01-01

    A self-managing system that uses autonomy and autonomicity is provided with the self-* property of autopoiesis (self-creation). In the event of an agent in the system self-destructing, autopoiesis auto-generates a replacement. A self-esteem reward scheme is also provided and can be used for autonomic agents, based on their performance and trust. Art agent with greater self-esteem may clone at a greater rate compared to the rate of an agent with lower self-esteem. A self-managing system is provided for a high volume of distributed autonomic/self-managing mobile agents, and autonomic adhesion is used to attract similar agents together or to repel dissimilar agents from an event horizon. An apoptotic system is also provided that accords an "expiry date" to data and digital objects, for example, that are available on the internet, which finds usefulness not only in general but also for controlling the loaning and use of space scientific data.

  6. Autonomous Reconfigurable Control Allocation (ARCA) for Reusable Launch Vehicles

    Science.gov (United States)

    Hodel, A. S.; Callahan, Ronnie; Jackson, Scott (Technical Monitor)

    2002-01-01

    The role of control allocation (CA) in modern aerospace vehicles is to compute a command vector delta(sub c) is a member of IR(sup n(sub a)) that corresponding to commanded or desired body-frame torques (moments) tou(sub c) = [L M N](sup T) to the vehicle, compensating for and/or responding to inaccuracies in off-line nominal control allocation calculations, actuator failures and/or degradations (reduced effectiveness), or actuator limitations (rate/position saturation). The command vector delta(sub c) may govern the behavior of, e.g., acrosurfaces, reaction thrusters, engine gimbals and/or thrust vectoring. Typically, the individual moments generated in response to each of the n(sub a) commands does not lie strictly in the roll, pitch, or yaw axes, and so a common practice is to group or gang actuators so that a one-to-one mapping from torque commands tau(sub c) actuator commands delta(sub c) may be achieved in an off-line computed CA function.

  7. Lighter than Air Robots Guidance and Control of Autonomous Airships

    CERN Document Server

    Bestaoui Sebbane, Yasmina

    2012-01-01

    An aerial robot is a system capable of sustained flight with no direct human control and able to perform a specific task. A lighter than air robot is an aerial robot that relies on the static lift to balance its own weight. It can also be defined as a lighter than air unmanned aerial vehicle or an unmanned airship with sufficient autonomy. Lighter than air systems are particularly appealing since the energy to keep them airborne is small. They are increasingly considered for various tasks such as monitoring, surveillance, advertising, freight carrier, transportation. This book familiarizes readers with a hierarchical decoupled planning and control strategy that has been proven efficient through research. It is made up of a hierarchy of modules with well defined functions operating at a variety of rates, linked together from top to bottom. The outer loop, closed periodically, consists of a discrete search that produces a set of waypoints leading to the goal while avoiding obstacles and weighed regions. The sec...

  8. Autonomous mathematical models: constructing theories of metabolic control.

    Science.gov (United States)

    Donaghy, Josephine

    2013-01-01

    This paper considers how the relationship between mathematical models and theories in biology may change over time, on the basis of a historical analysis of the development of a mathematical model of metabolism, metabolic control analysis, and its relationship to theories of metabolic control. I argue that one can distinguish two ways of characterising the relationship between models and theories, depending on the stage of model and/or theory development that one is considering: partial independence and autonomy. Partial independence describes a model's relationship with existing theory, thus referring to relationships that have already been established between model and theory during model construction. By contrast, autonomy is a feature of relationships which may become established between model and theory in the future, and is expressed by a model's open ended role in constructing emerging theory. These characteristics have often been conflated by existing philosophical accounts, partly because they can only be identified and analysed when adopting a historical perspective on scientific research. Adopting a clear distinction between partial independence and autonomy improves philosophical insight into the changing relationship between models and theories.

  9. Autonomous Control Strategy of DC Microgrid for Islanding Mode Using Power Line Communication

    Directory of Open Access Journals (Sweden)

    Dong-Keun Jeong

    2018-04-01

    Full Text Available This paper proposes a DC-bus signaling (DBS method for autonomous power management in a DC microgrid, used to improve its reliability. Centralized power management systems require communication between the power sources and loads. However, the DBS method operates based on the common DC-bus voltage and does not require communication. Based on the DC-bus voltage band, the DC-bus voltage can be used to inform the status of the DC-bus in various scenarios. The DC microgrid operates independently to maintain the system stably in the DC-bus voltage band. The DC microgrid can be divided into a grid-connected mode and an islanding mode. This paper proposes a control strategy based on power management of various independent components in islanding mode. In addition, the autonomous control method for switching the converter’s operation between grid-connected mode and islanding mode is proposed. A DC microgrid test bed consisting of a grid-connected AC/DC converter, a bidirectional DC/DC converter, a renewable energy simulator, DC home appliances and a DC-bus protector is used to test the proposed control strategy. The proposed autonomous control strategy is experimentally verified using the DC microgrid test bed.

  10. User evaluation of a GUI for controlling an autonomous persistent surveillance team

    Science.gov (United States)

    Scerri, Paul; Owens, Sean; Sycara, Katia; Lewis, Michael

    2010-04-01

    In future military missions, there will be many sensor assets collecting much important information about the environment. User control over surveillance assets is important to ensure that the specific data collected is appropriate for the current mission. Unfortunately, previous work has shown that individual users cannot effectively control more than about four assets, even if the assets have significant autonomy. In the ACCAST project, we hypothesized that by including autonomous teamwork between the assets and allowing users to interact by describing what the team as a whole and specific sub-teams should do, we could dramatically scale up the number of assets an individual user could effectively control. In this paper, we present the results of an experiment where users controlled up to 30 autonomous assets performing a complex mission. The assets autonomously worked together using sophisticated teamwork and the user could tell sub-teams to execute team oriented plans which described the steps required to achieve a team objective without describing exactly which asset performed which role and without having to specify how the team should handle routine information sharing, communications and failure circumstances. The users, soldiers from Fort Benning, were surprisingly good at managing the assets and were all able to complete the complex mission with extremely low friendly and civilian casualties.

  11. Safety Verification of a Fault Tolerant Reconfigurable Autonomous Goal-Based Robotic Control System

    Science.gov (United States)

    Braman, Julia M. B.; Murray, Richard M; Wagner, David A.

    2007-01-01

    Fault tolerance and safety verification of control systems are essential for the success of autonomous robotic systems. A control architecture called Mission Data System (MDS), developed at the Jet Propulsion Laboratory, takes a goal-based control approach. In this paper, a method for converting goal network control programs into linear hybrid systems is developed. The linear hybrid system can then be verified for safety in the presence of failures using existing symbolic model checkers. An example task is simulated in MDS and successfully verified using HyTech, a symbolic model checking software for linear hybrid systems.

  12. Autonomous Supervision and Control of Parametric Roll Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto

    therefore two objectives. The first is to develop methods for detection of the inception of parametric roll resonance. The second is to develop control strategies to stabilize the motion after parametric roll has started. Stabilisation of parametric roll resonance points to two possible courses of action...... strategies are then combined to stabilise parametric roll resonance within few roll cycles. Limitations on the maximum stabilisable roll angle are analysed and linked to the ii slew rate saturation and hydrodynamic stall characteristics of the fin stabilisers. The study on maximum stabilisable roll angle...... leads to the requirements for early detection. Two novel detectors are proposed, which work within a shorttime prediction horizon, and issue early warnings of parametric roll inception within few roll cycles from its onset. The main idea behind these detection schemes is that of exploiting the link...

  13. Control Surface Fault Diagnosis for Small Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens

    2011-01-01

    Small unmanned aerial vehicles require a large degree of fault-tolerance in order to fulfil their duties in an satisfactory way, both with respect to economy and safety in operation. Small aerial vehicles are commonly constructed without much redundancy in hardware, primarily for reasons of cost...... on hardware or are analytical, and formulates residuals from which faults can be prognosed or diagnosed. An approach is suggested where detailed modelling is not needed but normal behaviour is learned from short segments of flight data using adaptive methods for learning. Statistical characterisation...... of distributions and change detection methods are employed to reach decisions about not-normal behaviour and it is shown how control surface faults can be diagnosed for a specific UAV without adding additional hardware to the platform. Only telemetry data from the aircraft is used together with a basic model...

  14. Autonomic control of the heart in the Asian swamp eel (Monopterus albus)

    DEFF Research Database (Denmark)

    Iversen, Nina Kerting; Huong, Do Thi Thanh; Bayley, Mark

    2011-01-01

    The Asian swamp eel (Monopterus albus) is an air-breathing teleost with very reduced gills that uses the buccal cavity for air-breathing. Here we characterise the cardiovascular changes associated with the intermittent breathing pattern in M. albus and we study the autonomic control of the heart.......3 cm H2O). The autonomic control of the heart during water- and air-breathing was revealed by infusion of the β-adrenergic antagonist propranolol and muscarinic antagonist atropine (3 mg kg− 1) in eels instrumented with an arterial catheter. Inhibition of the sympathetic and parasympathetic...... innervations of the heart revealed a strong vagal tone on the heart of water-breathing eels and that the tachycardia during air-breathing is primarily mediated by withdrawal of cholinergic tone....

  15. Autonomous collision avoidance system by combined control of steering and braking using geometrically optimised vehicular trajectory

    Science.gov (United States)

    Hayashi, Ryuzo; Isogai, Juzo; Raksincharoensak, Pongsathorn; Nagai, Masao

    2012-01-01

    This study proposes an autonomous obstacle avoidance system not only by braking but also by steering, as one of the active safety technologies to prevent traffic accidents. The proposed system prevents the vehicle from colliding with a moving obstacle like a pedestrian jumping out from the roadside. In the proposed system, to avoid the predicted colliding position based on constant-velocity obstacle motion assumption, the avoidance trajectory is derived as connected two identical arcs. The system then controls the vehicle autonomously by the combined control of the braking and steering systems. In this paper, the proposed system is examined by real car experiments and its effectiveness is shown from the results of the experiments.

  16. Autonomous controller (JCAM 10) for CAMAC crate with 8080 (INTEL) microprocessor

    International Nuclear Information System (INIS)

    Gallice, P.; Mathis, M.

    1975-01-01

    The CAMAC crate autonomous controller JCAM-10 is designed around an INTEL 8080 microprocessor in association with a 5K RAM and 4K REPROM memory. The concept of the module is described, in which data transfers between CAMAC modules and the memory are optimised from software point of view as well as from execution time. In fact, the JCAM-10 is a microcomputer with a set of 1000 peripheral units represented by the CAMAC modules commercially available

  17. Direct Inverse Control using an Artificial Neural Network for the Autonomous Hover of a Helicopter

    Science.gov (United States)

    2014-10-05

    MONITOR’S ACRONYM(S) ARO 8. PERFORMING ORGANIZATION REPORT NUMBER 19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Michael Frye Michael T... Frye , Robert S. Provence 206022 c. THIS PAGE The public reporting burden for this collection of information is estimated to average 1 hour per...October 05, 2014 2 Direct Inverse Control using an Artificial Neural Network for the Autonomous Hover of a Helicopter Michael T. Frye , Ph.D. Department

  18. 10451 Abstracts Collection -- Runtime Verification, Diagnosis, Planning and Control for Autonomous Systems

    OpenAIRE

    Havelund, Klaus; Leucker, Martin; Sachenbacher, Martin; Sokolsky, Oleg; Williams, Brian C.

    2011-01-01

    From November 7 to 12, 2010, the Dagstuhl Seminar 10451 ``Runtime Verification, Diagnosis, Planning and Control for Autonomous Systems'' was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, 35 participants presented their current research and discussed ongoing work and open problems. This document puts together abstracts of the presentations given during the seminar, and provides links to extended abstracts or full papers, if available.

  19. Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    Science.gov (United States)

    Ivancic, William D.; Paulsen, Phillip E.; Miller, Eric M.; Sage, Steen P.

    2013-01-01

    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data.

  20. Audit, Control and Monitoring Design Patterns (ACMDP) for Autonomous Robust Systems (ARS)

    OpenAIRE

    C. Trad; A. Trad

    2008-01-01

    This paper proposes the Audit, Control and Monitoring Design Patterns (ACMDP) for building Autonomous and Robust Systems (ARS) such as Mobile Robot Systems (MRS). These patterns are also applicable to other Mission Critical and Complex Systems (MCCS). This paper presents a proposal which will help ARS project managers and engineers design, build and estimate the probability that an ARS will succeed or fail. Furthermore, this proposal offers the possibility to ARS problems with...

  1. Autonomous Quality Control of Joint Orientation Measured with Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Karina Lebel

    2016-07-01

    Full Text Available Clinical mobility assessment is traditionally performed in laboratories using complex and expensive equipment. The low accessibility to such equipment, combined with the emerging trend to assess mobility in a free-living environment, creates a need for body-worn sensors (e.g., inertial measurement units—IMUs that are capable of measuring the complexity in motor performance using meaningful measurements, such as joint orientation. However, accuracy of joint orientation estimates using IMUs may be affected by environment, the joint tracked, type of motion performed and velocity. This study investigates a quality control (QC process to assess the quality of orientation data based on features extracted from the raw inertial sensors’ signals. Joint orientation (trunk, hip, knee, ankle of twenty participants was acquired by an optical motion capture system and IMUs during a variety of tasks (sit, sit-to-stand transition, walking, turning performed under varying conditions (speed, environment. An artificial neural network was used to classify good and bad sequences of joint orientation with a sensitivity and a specificity above 83%. This study confirms the possibility to perform QC on IMU joint orientation data based on raw signal features. This innovative QC approach may be of particular interest in a big data context, such as for remote-monitoring of patients’ mobility.

  2. Linear and Nonlinear Analyses of the Cardiac Autonomic Control in Children With Developmental Coordination Disorder: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    Jorge L. Cavalcante Neto

    2018-03-01

    Full Text Available Children with Developmental Coordination Disorder (DCD and children at risk for DCD (r-DCD present motor impairments interfering in their school, leisure and daily activities. In addition, these children may have abnormalities in their cardiac autonomic control, which together with their motor impairments, restrict their health and functionality. Therefore, this study aimed to assess the cardiac autonomic control, by linear and nonlinear analysis, at supine and during an orthostatic stimulus in DCD, r-DCD and typically developed children. Thirteen DCD children (11 boys and 2 girls, aged 8.08 ± 0.79 years, 19 children at risk for DCD (13 boys and 6 girls, aged 8.10 ± 0.96 years and 18 typically developed children, who constituted the control group (CG (10 boys and 8 girls, aged 8.50 ± 0.96 years underwent a heart rate variability (HRV examination. R-R intervals were recorded in order to assess the cardiac autonomic control using a validated HR monitor. HRV was analyzed by linear and nonlinear methods and compared between r-DCD, DCD, and CG. The DCD group presented blunted cardiac autonomic adjustment to the orthostatic stimulus, which was not observed in r-DCD and CG. Regarding nonlinear analysis of HRV, the DCD group presented lower parasympathetic modulation in the supine position compared to the r-DCD and CG groups. In the within group analysis, only the DCD group did not increase HR from supine to standing posture. Symbolic analysis revealed a significant decrease in 2LV (p < 0.0001 and 2UV (p < 0.0001 indices from supine to orthostatic posture only in the CG. In conclusion, r-DCD and DCD children present cardiac autonomic dysfunction characterized by higher sympathetic, lower parasympathetic and lower complexity of cardiac autonomic control in the supine position, as well as a blunted autonomic adjustment to the orthostatic stimulus. Therefore, cardiovascular health improvement should be part of DCD children's management, even in cases of

  3. Agent Based Software for the Autonomous Control of Formation Flying Spacecraft

    Science.gov (United States)

    How, Jonathan P.; Campbell, Mark; Dennehy, Neil (Technical Monitor)

    2003-01-01

    Distributed satellite systems is an enabling technology for many future NASA/DoD earth and space science missions, such as MMS, MAXIM, Leonardo, and LISA [1, 2, 3]. While formation flying offers significant science benefits, to reduce the operating costs for these missions it will be essential that these multiple vehicles effectively act as a single spacecraft by performing coordinated observations. Autonomous guidance, navigation, and control as part of a coordinated fleet-autonomy is a key technology that will help accomplish this complex goal. This is no small task, as most current space missions require significant input from the ground for even relatively simple decisions such as thruster burns. Work for the NMP DS1 mission focused on the development of the New Millennium Remote Agent (NMRA) architecture for autonomous spacecraft control systems. NMRA integrates traditional real-time monitoring and control with components for constraint-based planning, robust multi-threaded execution, and model-based diagnosis and reconfiguration. The complexity of using an autonomous approach for space flight software was evident when most of its capabilities were stripped off prior to launch (although more capability was uplinked subsequently, and the resulting demonstration was very successful).

  4. Effects of hypothermia and rewarming on cardiovascular autonomic control in vivo.

    Science.gov (United States)

    Dietrichs, Erik Sveberg; Håheim, Brage; Kondratiev, Timofei; Traasdahl, Erik; Tveita, Torkjel

    2017-12-21

    Rewarming from accidental hypothermia is associated with cardiovascular dysfunction that complicates rewarming and contributes to a high mortality rate. We investigated autonomic cardiovascular control, as well as the separate effects of cooling, hypothermia and rewarming on hemodynamic function, aiming to provide knowledge of the pathophysiology causing such complications in these patients. A rat model designed for circulatory studies during cooling, hypothermia (15{degree sign}C) and rewarming was used. Spectral analysis of diastolic arterial pressure and heart rate allowed assessment of the autonomic nervous system. Hemodynamic variables were monitored using a conductance catheter in the left ventricle and a pressure transducer connected to the left femoral artery. Sympathetic cardiovascular control was reduced after rewarming. Stroke volume (SV) increased during cooling, but decreased during stable hypothermia and did not normalize during rewarming. Despite autonomic dysfunction, total peripheral resistance increased during cooling and did not normalize after rewarming. The present data show that sympathetic cardiovascular control is reduced by hypothermia and rewarming. A simultaneous systolic dysfunction is seen in rewarmed animals, caused by reduced filling of the left ventricle and impaired contractile function, in presence of normal diastolic function. These findings show that dysfunction of the efferent sympathetic nervous system could be instrumental in development of rewarming shock.

  5. Design of a Remote-Controlled and GPS-Guided Autonomous Robot for Precision Farming

    Directory of Open Access Journals (Sweden)

    Ilker Ünal

    2015-12-01

    Full Text Available Determining variations in fields is important for precision farming applications. Precision farming is used to determine, analyse, and manage factors such as temporal and spatial variability to obtain maximum profit, sustainability, and environmental protection. However, precision farming is excessively dependent on soil and plant test processes. Furthermore, test processes are time-consuming, laborious and expensive. These processes also cannot be performed quickly by humans. For these reasons, autonomous robots should be designed and developed for the detection of field variations and variable-rate applications. In this study, a remote-controlled and GPS-guided autonomous robot was designed and developed, which can be controlled via the 3G internet and is suitable for image-processing applications. The joystick is used to manually remotely control the robot movements in any direction or speed. Real-time video transmission to the remote computer can be accomplished with a camera placed on the vehicle. Navigation software was developed for steering the robot autonomously. In the results of the field test for the navigation software, it was found that the linear target point precision ranged from 10 to 12 cm and the distributed target point precision ranged from 15 to 17 cm.

  6. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation thru the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The application of many different types of AI techniques for flight will be explored during this research effort. The research concentration will be directed to the application of different AI methods within the UAV arena. By evaluating AI approaches, which will include Expert Systems, Neural Networks, Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI techniques applied to achieving true autonomous operation of these systems thus providing new intellectual merit to this research field. The major area of discussion will be limited to the UAV. The systems of interest include small aircraft, insects, and miniature aircraft. Although flight systems will be explored, the benefits should apply to many Unmanned Vehicles such as: Rovers, Ocean Explorers, Robots, and autonomous operation systems. The flight system will be broken down into control agents that will represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework of applying a Security Overseer will be added in an attempt to address errors, emergencies, failures, damage, or over dynamic environment. The chosen control problem was the landing phase of UAV operation. The initial results from simulation in FlightGear are presented.

  7. Inter-Vehicle Communication System Utilizing Autonomous Distributed Transmit Power Control

    Science.gov (United States)

    Hamada, Yuji; Sawa, Yoshitsugu; Goto, Yukio; Kumazawa, Hiroyuki

    In ad-hoc network such as inter-vehicle communication (IVC) system, safety applications that vehicles broadcast the information such as car velocity, position and so on periodically are considered. In these applications, if there are many vehicles broadcast data in a communication area, congestion incurs a problem decreasing communication reliability. We propose autonomous distributed transmit power control method to keep high communication reliability. In this method, each vehicle controls its transmit power using feed back control. Furthermore, we design a communication protocol to realize the proposed method, and we evaluate the effectiveness of proposed method using computer simulation.

  8. Fractal analysis of heart rate variability reveals alterations of the integrative autonomic control of circulation in paraplegic individuals.

    Science.gov (United States)

    Castiglioni, Paolo; Merati, Giampiero

    2017-05-01

    The autonomic nervous system plays a major role in the integrative control of circulation, possibly contributing to the 'complex' dynamics responsible for fractal components in heart rate variability. Aim of this study is to evaluate whether an altered autonomic integrative control is identified by fractal analysis of heart rate variability. We enrolled 14 spinal cord injured individuals with complete lesion between the 5th and 11th thoracic vertebra (SCI H ), 14 with complete lesion between 12th thoracic and 5th lumbar vertebra (SCI L ), and 34 able-bodied controls (AB). These paraplegic subjects have an altered autonomic integrative regulation, but intact autonomic cardiac control and, as to SCI L individuals, intact autonomic splanchnic control. Power spectral and fractal analysis (temporal spectrum of scale coefficients) were performed on 10 min tachograms. AB and SCI L power spectra were similar, while the SCI L fractal spectrum had higher coefficients between 12 and 48 s. SCI H individuals had lower power than controls at 0.1 Hz; their fractal spectrum was morphologically different, diverging from that of controls at the largest scales (120 s). Therefore, when the lesion compromises the autonomic control of lower districts, fractal analysis reveals alterations undetected by power spectral analysis of heart rate variability.

  9. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation through the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The applications of several different types of AI techniques for flight are explored during this research effort. The research concentration is directed to the application of different AI methods within the UAV arena. By evaluating AI and biological system approaches. which include Expert Systems, Neural Networks. Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI and CAS techniques applied to achieving true autonomous operation of these systems. Although flight systems were explored, the benefits should apply to many Unmanned Vehicles such as: Rovers. Ocean Explorers, Robots, and autonomous operation systems. A portion of the flight system is broken down into control agents that represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework for applying an intelligent agent is presented. The initial results from simulation of a security agent for communication are presented.

  10. Cycling before and after Exhaustion Differently Affects Cardiac Autonomic Control during Heart Rate Matched Exercise.

    Science.gov (United States)

    Weippert, Matthias; Behrens, Martin; Mau-Moeller, Anett; Bruhn, Sven; Behrens, Kristin

    2017-01-01

    During cycling before (PRE) and after exhaustion (POST) different modes of autonomic cardiac control might occur due to different interoceptive input and altered influences from higher brain centers. We hypothesized that heart rate variability (HRV) is significantly affected by an interaction of the experimental period (PRE vs. POST) and exercise intensity (HIGH vs. LOW; HIGH = HR > HR at the lactate threshold (HR LT ), LOW = HR ≤ HR LT ) despite identical average HR. Methods: Fifty healthy volunteers completed an incremental cycling test until exhaustion. Workload started with 30 W at a constant pedaling rate (60 revolutions · min -1 ) and was gradually increased by 30 W · 5 min -1 . Five adjacent 60 s inter-beat (R-R) interval segments from the immediate recovery period (POST 1-5 at 30 W and 60 rpm) were each matched with their HR-corresponding 60 s-segments during the cycle test (PRE 1-5). An analysis of covariance was carried out with one repeated-measures factor (PRE vs. POST exhaustion), one between-subject factor (HIGH vs. LOW intensity) and respiration rate as covariate to test for significant effects ( p exhaustion at HIGH intensity. On the opposite, at LOW intensity cycling, a stronger coactivational cardiac autonomic modulation pattern occurs during PRE-exhaustion if compared to POST-exhaustion cycling. The different autonomic modes during these phases might be the result of different afferent and/or central inputs to the cardiovascular control centers in the brainstem.

  11. Building on the Enriched Hierarchical Model of Achievement Motivation: Autonomous and Controlling Reasons Underlying Mastery Goals

    Directory of Open Access Journals (Sweden)

    Aikaterini Michou

    2016-07-01

    Full Text Available Two motivational theories – the Achievement Goal Theory and Self-Determination Theory – have recently been combined to explain students’ motivation, making it possible to study the “what” and the “why” of learners’ achievement strivings. The present study built on this approach by (a investigating whether the distinction between autonomous or volitional and controlling or pressuring reasons can be meaningfully applied to the adoption of mastery-avoidance goals, (b investigating the concurrent and prospective relations between mastery-avoidance goals and their underlying reasons and learning strategies when mastery-approach goals and their underlying reasons were also considered, and by (c incorporating psychological need experiences as an explanatory variable in the relation between achievement motives (i.e., the motive to succeed and motive to avoid failure and both mastery goals and their underlying reasons. In two Turkish university students samples ('N' = 226, 'Mage '= 22.36; 'N' = 331, 'Mage '= 19.5, autonomous and controlling reasons appeared applicable to mastery-avoidance goals and regression and path analysis further showed that mastery-avoidance goals and their underlying autonomous reasons fail to predicted learning strategies over and above the pursuit of mastery-approach goals and their underlying reasons. Finally, need experiences were established as mediators between achievement motives and both mastery goals and their underlying reasons.

  12. Cardio-autonomic control and wellbeing due to oscillating color light exposure.

    Science.gov (United States)

    Grote, Vincent; Kelz, Christina; Goswami, Nandu; Stossier, Harald; Tafeit, Erwin; Moser, Maximilian

    2013-04-10

    We investigated the cardio-autonomic and psychological effects of colored light cycling with the wavelength of ultradian rhythms. In two consecutive experiments, an explorative, longitudinal test followed by a randomized crossover design, 20 healthy subjects each were exposed to oscillating red, green and blue light. Heart rate, heart rate variability (HRV) and subjective wellbeing were measured. Significant effects of the oscillating color light exposure were observed for heart rate and cardio-autonomic control rhythms, derived from HRV (p≤.001). These effects on HRV were replicated in the second experiment in comparison to a similar white light exposure protocol (p≤.05). Vigilance showed improvement over the two weeks (p≤.001) in the longitudinal study. External color light cycling at the wavelength of blood pressure oscillations appears to amplify the endogenous autonomic oscillations. This leads to an optimization of cardio-autonomic control; an effect that was reflected shortly after the onset of the light exposure sessions by the increase of heart rate variability. From the results, we conclude that it takes repeated light exposure session to foster the positive effects on the psychological aspects, as we observed an increase of subjectively perceived mood only in the longitudinal study, not for the crossover design study. The results of our study imply some possible health effects of a color light exposure that is adjusted to 10 s and 1 min oscillations of humans' ultradian rhythms. These novel results show possible applications of oscillating visual inputs to the activation of processes connected to physiological regulation. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Audit, Control and Monitoring Design Patterns (ACMDP for Autonomous Robust Systems (ARS

    Directory of Open Access Journals (Sweden)

    A. Trad

    2005-03-01

    Full Text Available This paper proposes the Audit, Control and Monitoring Design Patterns (ACMDP for building Autonomous and Robust Systems (ARS such as Mobile Robot Systems (MRS. These patterns are also applicable to other Mission Critical and Complex Systems (MCCS. This paper presents a proposal which will help ARS project managers and engineers design, build and estimate the probability that an ARS will succeed or fail. Furthermore, this proposal offers the possibility to ARS problems with the help of audit, monitoring and controlling components, adjust the project management pathways, and define the problem sources as well as their possible solutions, in order to deliver an ARS or an MRS.

  14. Audit, Control and Monitoring Design Patterns (ACMDP for Autonomous Robust Systems (ARS

    Directory of Open Access Journals (Sweden)

    C. Trad

    2008-11-01

    Full Text Available This paper proposes the Audit, Control and Monitoring Design Patterns (ACMDP for building Autonomous and Robust Systems (ARS such as Mobile Robot Systems (MRS. These patterns are also applicable to other Mission Critical and Complex Systems (MCCS. This paper presents a proposal which will help ARS project managers and engineers design, build and estimate the probability that an ARS will succeed or fail. Furthermore, this proposal offers the possibility to ARS problems with the help of audit, monitoring and controlling components, adjust the project management pathways, and define the problem sources as well as their possible solutions, in order to deliver an ARS or an MRS.

  15. Autonomous Active Power Control for Islanded AC Microgrids with Photovoltaic Generation and Energy Storage System

    DEFF Research Database (Denmark)

    Wu, Dan; Tang, Fen; Dragicevic, Tomislav

    2014-01-01

    In an islanded AC microgrid with distributed energy storage system (ESS), photovoltaic (PV) generation and loads, a coordinated active power regulation is required to ensure efficient utilization of renewable energy, while keeping the ESS from overcharge and over discharge conditions. In this paper......, an autonomous active power control strategy is proposed for AC islanded microgrids in order to achieve power management in a decentralized manner. The proposed control algorithm is based on frequency bus-signaling of ESS and uses only local measurements for power distribution among microgrid elements. Moreover...

  16. Simvastatin-induced cardiac autonomic control improvement in fructose-fed female rats

    Directory of Open Access Journals (Sweden)

    Renata Juliana da Silva

    2011-01-01

    Full Text Available OBJECTIVE: Because autonomic dysfunction has been found to lead to cardiometabolic disorders and because studies have reported that simvastatin treatment has neuroprotective effects, the objective of the present study was to investigate the effects of simvastatin treatment on cardiovascular and autonomic changes in fructose-fed female rats. METHODS: Female Wistar rats were divided into three groups: controls (n=8, fructose (n=8, and fructose+ simvastatin (n=8. Fructose overload was induced by supplementing the drinking water with fructose (100 mg/L, 18 wks. Simvastatin treatment (5 mg/kg/day for 2 wks was performed by gavage. The arterial pressure was recorded using a data acquisition system. Autonomic control was evaluated by pharmacological blockade. RESULTS: Fructose overload induced an increase in the fasting blood glucose and triglyceride levels and insulin resistance. The constant rate of glucose disappearance during the insulin intolerance test was reduced in the fructose group (3.4+ 0.32%/min relative to that in the control group (4.4+ 0.29%/min. Fructose+simvastatin rats exhibited increased insulin sensitivity (5.4+0.66%/min. The fructose and fructose+simvastatin groups demonstrated an increase in the mean arterial pressure compared with controls rats (fructose: 124+2 mmHg and fructose+simvastatin: 126 + 3 mmHg vs. controls: 112 + 2 mmHg. The sympathetic effect was enhanced in the fructose group (73 + 7 bpm compared with that in the control (48 + 7 bpm and fructose+simvastatin groups (31+8 bpm. The vagal effect was increased in fructose+simvastatin animals (84 + 7 bpm compared with that in control (49 + 9 bpm and fructose animals (46+5 bpm. CONCLUSION: Simvastatin treatment improved insulin sensitivity and cardiac autonomic control in an experimental model of metabolic syndrome in female rats. These effects were independent of the improvements in the classical plasma lipid profile and of reductions in arterial pressure. These results

  17. Planning and control in a semi-autonomous planetary micro-rover

    Science.gov (United States)

    Malafeew, Eric J.

    1994-07-01

    The paper describes a semi-autonomous control system on board a small mobile robot intended to explore planetary environments with minimal human supervision. The algorithm performs dead reckoning, hazard mapping, trajectory planning, motion control, health monitoring, and supervisor telemetry. A remote operator station provides a graphical interface for real time telemetry, guidance, and performance tuning. Design emphasis was placed on processing efficiency and robust performance for implementation with inexpensive sensors and microcontrollers. Of novel contribution are a high-level behavioral task architecture and a reactive trajectory planning routine that explicitly incorporates steering and safety constraints. Simulation and field test results under various operating conditions are presented.

  18. Zebrafish heart as a model to study the integrative autonomic control of pacemaker function

    Science.gov (United States)

    Stoyek, Matthew R.; Quinn, T. Alexander; Croll, Roger P.

    2016-01-01

    The cardiac pacemaker sets the heart's primary rate, with pacemaker discharge controlled by the autonomic nervous system through intracardiac ganglia. A fundamental issue in understanding the relationship between neural activity and cardiac chronotropy is the identification of neuronal populations that control pacemaker cells. To date, most studies of neurocardiac control have been done in mammalian species, where neurons are embedded in and distributed throughout the heart, so they are largely inaccessible for whole-organ, integrative studies. Here, we establish the isolated, innervated zebrafish heart as a novel alternative model for studies of autonomic control of heart rate. Stimulation of individual cardiac vagosympathetic nerve trunks evoked bradycardia (parasympathetic activation) and tachycardia (sympathetic activation). Simultaneous stimulation of both vagosympathetic nerve trunks evoked a summative effect. Effects of nerve stimulation were mimicked by direct application of cholinergic and adrenergic agents. Optical mapping of electrical activity confirmed the sinoatrial region as the site of origin of normal pacemaker activity and identified a secondary pacemaker in the atrioventricular region. Strong vagosympathetic nerve stimulation resulted in a shift in the origin of initial excitation from the sinoatrial pacemaker to the atrioventricular pacemaker. Putative pacemaker cells in the sinoatrial and atrioventricular regions expressed adrenergic β2 and cholinergic muscarinic type 2 receptors. Collectively, we have demonstrated that the zebrafish heart contains the accepted hallmarks of vertebrate cardiac control, establishing this preparation as a viable model for studies of integrative physiological control of cardiac function by intracardiac neurons. PMID:27342878

  19. Method to measure autonomic control of cardiac function using time interval parameters from impedance cardiography

    International Nuclear Information System (INIS)

    Meijer, Jan H; Boesveldt, Sanne; Elbertse, Eskeline; Berendse, H W

    2008-01-01

    The time difference between the electrocardiogram and impedance cardiogram can be considered as a measure for the time delay between the electrical and mechanical activities of the heart. This time interval, characterized by the pre-ejection period (PEP), is related to the sympathetic autonomous nervous control of cardiac activity. PEP, however, is difficult to measure in practice. Therefore, a novel parameter, the initial systolic time interval (ISTI), is introduced to provide a more practical measure. The use of ISTI instead of PEP was evaluated in three groups: young healthy subjects, patients with Parkinson's disease, and a group of elderly, healthy subjects of comparable age. PEP and ISTI were studied under two conditions: at rest and after an exercise stimulus. Under both conditions, PEP and ISTI behaved largely similarly in the three groups and were significantly correlated. It is concluded that ISTI can be used as a substitute for PEP and, therefore, to evaluate autonomic neuropathy both in clinical and extramural settings. Measurement of ISTI can also be used to non-invasively monitor the electromechanical cardiac time interval, and the associated autonomic activity, under physiological circumstances

  20. Distributed Control Strategy for Autonomous Operation of Hybrid AC/DC Microgrid

    Directory of Open Access Journals (Sweden)

    Jongbok Baek

    2017-03-01

    Full Text Available This paper proposes a distributed control strategy that considers several source characteristics to achieve reliable and efficient operation of a hybrid ac/dc microgrid. The proposed control strategy has a two-level structure. The primary control layer is based on an adaptive droop method, which allows local controllers to operate autonomously and flexibly during disturbances such as fault, load variation, and environmental changes. For efficient distribution of power, a higher control layer adjusts voltage reference points based on optimized energy scheduling decisions. The proposed hybrid ac/dc microgrid is composed of converters and distributed generation units that include renewable energy sources (RESs and energy storage systems (ESSs. The proposed control strategy is verified in various scenarios experimentally and by simulation.

  1. Modifications of Control Loop to Improve the Depth Response of Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Sheng-Ping Hsu

    2014-01-01

    Full Text Available During a constant depth maneuver of an autonomous underwater vehicle (AUV, its pitch attitude and stern plane deflections create forces and moments to achieve equilibrium in the vertical plane. If an AUV has a proportional controller only in its depth control loop, then different weights or centers of gravity will cause different steady-state depth errors at trimmed conditions. In general, a steady-state depth error can be eliminated by adding an integral controller in the depth control loop. However, an improper integrator may lead to a bad transient response, even though the steady-state depth error can finally be eliminated. To remove the steady-state depth error, this study proposes methods that adjust the depth command and add a switching integral controller in the depth control loop. Simulation results demonstrate that the steady-state depth error can be eliminated and the transient response can be improved.

  2. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    Science.gov (United States)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  3. An Intelligent Propulsion Control Architecture to Enable More Autonomous Vehicle Operation

    Science.gov (United States)

    Litt, Jonathan S.; Sowers, T. Shane; Simon, Donald L.; Owen, A. Karl; Rinehart, Aidan W.; Chicatelli, Amy K.; Acheson, Michael J.; Hueschen, Richard M.; Spiers, Christopher W.

    2018-01-01

    This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety.

  4. Using the centre of percussion to design a steering controller for an autonomous race car

    Science.gov (United States)

    Kritayakirana, Krisada; Gerdes, J. Christian

    2012-01-01

    Understanding how a race car driver controls a vehicle at its friction limits can provide insights into the development of vehicle safety systems. In this paper, a race car driver's behaviour inspires the design of an autonomous racing controller. The resulting controller uses the vehicle's centre of percussion (COP) to design feedforward and feedback steering. At the COP, the effects of rotation and translation from the rear tire force cancel each other out; consequently, the feedforward steering command is robust to the disturbances from the rear tire force. Using the COP also simplifies the equations of motion, as the vehicle's lateral motion is decoupled from the vehicle's yaw motion and highlights the challenge of controlling a vehicle when the rear tires are highly saturated. The resulting dynamics can be controlled with a linear state feedback based on a lane-keeping system with additional yaw damping. Utilising Lyapunov theory, the closed-loop system is shown to remain stable even when the rear tires are highly saturated. The experimental results demonstrate that an autonomous vehicle can operate at its limits while maintaining a minimal lateral error.

  5. Electric Drive Discrete Control System with Automatic Switching-On Reserve for Autonomous Settlement

    Directory of Open Access Journals (Sweden)

    Tsytovich L.I.

    2015-08-01

    Full Text Available The paper aims at developing of control the water supply system’s electric drives for autonomous settlement. The system provides automatic switching to a reserve control channel at refusal of any of the functional elements of the working regulation channel. Usually, such systems have a test signal generator and analyzer to system response to their impact. This result to an increase in the structural redundancy of the system, increase its cost and increase the requirements for the staff qualification. A specific feature of the system is its ability to self-diagnosis of catastrophic malfunctions of scheme’s components and an automatic switching-on the reserve control channels, without applying any test signals to the whole complex of electrical equipment. Multi-zone integrating regulator with frequency-pulse-width modulation realizes this technical solution. Control system structure and signals timing diagrams are presented. The construction principle of adaptive interval-code synchronization device with improved noise stability to control the voltage regulators serving for smooth start-up of asynchronous motors of water pumps is considered as well. Such solution allowing increase noise stability and reliability work of the system in conditions of limited power electrical networks, which is characteristic for the autonomous settlements. The article may be of interest to specialists in the field of power electronics and information electronics, electric drives and process automation.

  6. Simulation Modeling of Intelligent Control Algorithms for Constructing Autonomous Power Supply Systems with Improved Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Gimazov Ruslan

    2018-01-01

    Full Text Available The paper considers the issue of supplying autonomous robots by solar batteries. Low efficiency of modern solar batteries is a critical issue for the whole industry of renewable energy. The urgency of solving the problem of improved energy efficiency of solar batteries for supplying the robotic system is linked with the task of maximizing autonomous operation time. Several methods to improve the energy efficiency of solar batteries exist. The use of MPPT charge controller is one these methods. MPPT technology allows increasing the power generated by the solar battery by 15 – 30%. The most common MPPT algorithm is the perturbation and observation algorithm. This algorithm has several disadvantages, such as power fluctuation and the fixed time of the maximum power point tracking. These problems can be solved by using a sufficiently accurate predictive and adaptive algorithm. In order to improve the efficiency of solar batteries, autonomous power supply system was developed, which included an intelligent MPPT charge controller with the fuzzy logic-based perturbation and observation algorithm. To study the implementation of the fuzzy logic apparatus in the MPPT algorithm, in Matlab/Simulink environment, we developed a simulation model of the system, including solar battery, MPPT controller, accumulator and load. Results of the simulation modeling established that the use of MPPT technology had increased energy production by 23%; introduction of the fuzzy logic algorithm to MPPT controller had greatly increased the speed of the maximum power point tracking and neutralized the voltage fluctuations, which in turn reduced the power underproduction by 2%.

  7. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  8. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  9. A model predictive speed tracking control approach for autonomous ground vehicles

    Science.gov (United States)

    Zhu, Min; Chen, Huiyan; Xiong, Guangming

    2017-03-01

    This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.

  10. Efficient Multivariable Generalized Predictive Control for Autonomous Underwater Vehicle in Vertical Plane

    Directory of Open Access Journals (Sweden)

    Xuliang Yao

    2016-01-01

    Full Text Available This paper presents the design and simulation validation of a multivariable GPC (generalized predictive control for AUV (autonomous underwater vehicle in vertical plane. This control approach has been designed in the case of AUV navigating with low speed near water surface, in order to restrain wave disturbance effectively and improve pitch and heave motion stability. The proposed controller guarantees compliance with rudder manipulation, AUV output constraints, and driving energy consumption. Performance index based on pitch stabilizing performance, energy consumption, and system constraints is used to derive the control action applied for each time step. In order to deal with constrained optimization problems, a Hildreth’s QP procedure is adopted. Simulation results of AUV longitudinal control show better stabilizing performance and minimized energy consumption improved by multivariable GPC.

  11. Coordinated Formation Control of Multiple Autonomous Underwater Vehicles for Pipeline Inspection

    Directory of Open Access Journals (Sweden)

    Xianbo Xiang

    2010-02-01

    Full Text Available This paper addresses the control problem of inspecting underwater pipeline on the seabed, with coordinated multiple autonomous underwater vehicles in a formation. Based on the leader-follower strategy, the dedicated nonlinear path following controller is rigorously built on Lyapunov-based design, driving a fleet of vehicles onto assigned parallel paths elevated and offset from the underwater pipeline, while keeping a triangle formation to capture complete 3D images for inspection. Due to the spatial-temporal decoupling characteristics of individual path following controller, the velocities of the followers can be adapted in the coordinated control level, only relying on the information of generalized along-path length from the leader, in order to build the desired formation. Thus, the communication variable broadcast from the leader is kept to a minimum, which is feasible under the severely constraints of acoustic communication bandwidth. Simulation results illustrate the efficiency of coordinated formation controller proposed for underwater pipeline inspection.

  12. High–Level Control System for Biomimetic Autonomous Under-water Vehicle

    Directory of Open Access Journals (Sweden)

    Praczyk Tomasz

    2017-01-01

    Full Text Available Usually, a rough software architecture designed for a robot can be can be shortly presented in the form of layers. The lowest layer is responsible for direct control of the hardware, i.e. engines, energy system, sensors, navigation devices, etc. A next layer is a low–level control which knows how to use the hardware in order to achieve a desired state of the robot, e.g. to stay on a desired course. And the last layer, the layer which is the nearest to the human–operator, is a high–level control which decides how to use the low–level control and sometimes also individual pieces of the hardware to achieve predefined objectives. The paper describes architecture, tasks and operation of the high–level control system (HLCS designed for Biomimetic Autonomous Underwater Vehicle (BAUV.

  13. Distributed Control for Autonomous Operation of a Three-Port AC/DC/DS Hybrid Microgrid

    DEFF Research Database (Denmark)

    Wang, Peng; Jin, Chi; Zhu, Dexuan

    2015-01-01

    This paper presents a distributed control scheme for reliable autonomous operation of a hybrid three-port ac/dc/distributed storage (ds) microgrid by means of power sharing in individual network, power exchange between ac and dc networks, and power management among three networks. The proposed...... distributed control scheme includes: 1) a fully decentralized control, which is achieved by local power sharing (LPS) in individual ac or dc network, global power sharing (GPS) throughout ac/dc networks, and storage power sharing (SPS) among distributed storages. Upon fully decentralized control, each power...... ac/dc networks and operations of DS units with the benefit of reducing power exchange losses and prolonging storage lifetime. The proposed distributed control strategy has been verified by the simulation and experimental results....

  14. Venous and autonomic function in formerly pre-eclamptic women and BMI-matched controls.

    Science.gov (United States)

    Heidema, Wieteke M; van Drongelen, Joris; Spaanderman, Marc E A; Scholten, Ralph R

    2018-03-25

    Pre-pregnancy reduced plasma volume increases the risk on subsequent pre-eclamptic pregnancy. Reduced plasma volume is thought to reflect venous reserve capacity, especially when venous vasculature is constricted and sympathetic tone is elevated. As obesity might affect these variables and also relates to pre-eclampsia, increased body weight may underlie these observations. We hypothesized that the relationship between reduced venous reserve and preeclampsia is independent of body mass index (BMI). We compared the non-pregnant venous reserve capacity in 30 formerly pre-eclamptic women, equally divided in 3 BMI-classes (BMI 19.5-24.9, BMI 25-29.9, BMI ≥30) to 30 controls. Cases and controls were matched for BMI, age and parity. The venous reserve capacity was quantified by assessing plasma volume and venous compliance. The autonomic nervous system regulating the venous capacitance was evaluated with heart rate variability analysis in resting supine position and during positive head-up tilt (HUT). Formerly pre-eclamptic women had in supine position lower plasma volume than controls (1339 ± 79 vs 1547 ± 139 ml/m 2 (pBMI-matched controls, reduced venous reserve capacity. This is reflected by lower plasma volume and venous compliance, the autonomic balance is shifted towards sympathetic dominance and lower baroreceptor sensitivity. This suggests that not BMI, but underlying reduced venous reserve relates to pre-eclampsia. This article is protected by copyright. All rights reserved.

  15. Job autonomy in relation to work engagement and workaholism: Mediation of autonomous and controlled work motivation.

    Science.gov (United States)

    Malinowska, Diana; Tokarz, Aleksandra; Wardzichowska, Anna

    2018-02-07

    This study integrates the Self Determination Theory and the Job Demands-Resource model in explaining motivational antecedents of 2 forms of excessive work: work engagement and workaholism. It specifically examines the relationship between job autonomy, situational work motivation, work engagement, and workaholism. The sample comprised 318 full-time employees of an international outsourcing company located in Poland. The mediation analysis was used for testing hypotheses about the mediation of autonomous and controlled motivation in the relationship between job autonomy, work engagement, and workaholism. The results have confirmed that autonomous motivation mediates the relationship between job autonomy and work engagement. The assumption about the mediation role of controlled motivation in the relationship between job autonomy and workaholism has not been confirmed; however, external regulation (i.e., controlled motivation) is a significant predictor of workaholism. Giving employees more job autonomy might increase their intrinsic and identified regulation and may therefore lead to more energetic, enthusiastic, and dedicated engagement with their jobs. Workaholism may be predicted by external regulation, and work characteristics other than job autonomy may play an important role in enhancing this controlled type of motivation. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  16. 3D Vision Based Landing Control of a Small Scale Autonomous Helicopter

    Directory of Open Access Journals (Sweden)

    Zhenyu Yu

    2007-03-01

    Full Text Available Autonomous landing is a challenging but important task for Unmanned Aerial Vehicles (UAV to achieve high level of autonomy. The fundamental requirement for landing is the knowledge of the height above the ground, and a properly designed controller to govern the process. This paper presents our research results in the study of landing an autonomous helicopter. The above-the-ground height sensing is based on a 3D vision system. We have designed a simple plane-fitting method for estimating the height over the ground. The method enables vibration free measurement with the camera rigidly attached on the helicopter without using complicated gimbal or active vision mechanism. The estimated height is used by the landing control loop. Considering the ground effect during landing, we have proposed a two-stage landing procedure. Two controllers are designed for the two landing stages respectively. The sensing approach and control strategy has been verified in field flight test and has demonstrated satisfactory performance.

  17. A randomized controlled trial of exercise training on cardiovascular and autonomic function among renal transplant recipients.

    Science.gov (United States)

    Kouidi, Evangelia; Vergoulas, George; Anifanti, Maria; Deligiannis, Asterios

    2013-05-01

    There are conflicting data regarding the effects of renal transplantation (RT) on uraemic autonomic dysfunction. Moreover, no study has examined the impact of physical training on the cardiac autonomic function in RT patients. Thus, we studied the effects of exercise training on heart rate variability (HRV) and arterial baroreflex sensitivity (BRS), which are sensitive markers of cardiac autonomic outflow, in RT recipients. Eleven patients (Exercise group-aged 52.1 ± 5.6 years) were studied before and after 6 months of exercise training. Twelve age- and sex- matched RT patients (Sedentary) and 12 healthy sedentary individuals (Healthy), who remained untrained, served as controls. At baseline and follow-up, all the subjects underwent cardiopulmonary exercise testing for the evaluation of peak oxygen consumption (VO2peak), a tilt test for the evaluation of BRS and baroreflex effectiveness index (BEI) and an ambulatory 24-h Holter monitoring for time- and frequency-domain measures of HRV. In the exercise group, VO2peak increased by 15.8% (P training. Specifically, the standard deviation of all normal-to-normal (NN) intervals (SDNN) significantly increased by 92.5%, the root-mean-square of the differences between consecutive NN intervals by 45.4%, the percentage value of NN50 count by 58.2%, the high-frequency by 74.8% and low-frequency spectral power by 41.6%, BRS by 43.7% and BEI by 57.3%. None of the variables studied was altered over time in either control group. The increased cardiorespiratory fitness by exercise training was associated with an improved BRS function and a modification of the sympathovagal control of HRV towards a persistent increase in parasympathetic tone. These alterations may lead to a better cardiovascular prognosis in RT recipients.

  18. Autonomic and Vascular Control in Prehypertensive Subjects with a Family History of Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Josária Ferraz Amaral

    2018-02-01

    Full Text Available Abstract Background: Individuals with a family history of systemic arterial hypertension (FHSAH and / or prehypertension have a higher risk of developing this pathology. Objective: To evaluate the autonomic and vascular functions of prehypertensive patients with FHSAH. Methods: Twenty-five young volunteers with FHSAH, 14 normotensive and 11 prehypertensive subjects were submitted to vascular function evaluation by forearm vascular conductance(VC during resting and reactive hyperemia (Hokanson® and cardiac and peripheral autonomic modulation, quantified, respectively, by spectral analysis of heart rate (ECG and systolic blood pressure (SBP (FinometerPRO®. The transfer function analysis was used to measure the gain and response time of baroreflex. The statistical significance adopted was p ≤ 0.05. Results: Pre-hypertensive individuals, in relation to normotensive individuals, have higher VC both at rest (3.48 ± 1.26 vs. 2.67 ± 0.72 units, p = 0.05 and peak reactive hyperemia (25, 02 ± 8.18 vs. 18.66 ± 6.07 units, p = 0.04. The indices of cardiac autonomic modulation were similar between the groups. However, in the peripheral autonomic modulation, greater variability was observed in prehypertensive patients compared to normotensive individuals (9.4 [4.9-12.7] vs. 18.3 [14.8-26.7] mmHg2; p < 0.01 and higher spectral components of very low (6.9 [2.0-11.1] vs. 13.5 [10.7-22.4] mmHg2, p = 0.01 and low frequencies (1.7 [1.0-3.0] vs. 3.0 [2.0-4.0] mmHg2, p = 0.04 of SBP. Additionally, we observed a lower gain of baroreflex control in prehypertensive patients compared to normotensive patients (12.16 ± 4.18 vs. 18.23 ± 7.11 ms/mmHg, p = 0.03, but similar delay time (-1.55 ± 0.66 vs. -1.58 ± 0.72 s, p = 0.90. Conclusion: Prehypertensive patients with FHSAH have autonomic dysfunction and increased vascular conductance when compared to normotensive patients with the same risk factor.

  19. Applications of Probabilistic Graphical Models to Diagnosis and Control of Autonomous Vehicles

    DEFF Research Database (Denmark)

    Madsen, Anders L.; Kjærulff, Uffe Bro; Kalwa, Jörg

    2004-01-01

    We present the main elements of a distributed architecture supporting diagnosis and control of autonomous robots. The purpose of the architecture is to assist the operator or piloting system in managing fault detection, risk assessment, and recovery plans under uncertainty. The architecture is ge....... The architecture supports the use of multiple artificial intelligence techniques collaborating on the task of handling uncertainty....... is generic, open, and modular consisting of a set of interacting modules including a decision module (DM) and a set of intelligent modules (IMs). The DM communicates with the IMs to request and obtain diagnosis and recovery action proposals based on data obtained from the robot piloting module...

  20. Robust H∞ output-feedback control for path following of autonomous ground vehicles

    Science.gov (United States)

    Hu, Chuan; Jing, Hui; Wang, Rongrong; Yan, Fengjun; Chadli, Mohammed

    2016-03-01

    This paper presents a robust H∞ output-feedback control strategy for the path following of autonomous ground vehicles (AGVs). Considering the vehicle lateral velocity is usually hard to measure with low cost sensor, a robust H∞ static output-feedback controller based on the mixed genetic algorithms (GA)/linear matrix inequality (LMI) approach is proposed to realize the path following without the information of the lateral velocity. The proposed controller is robust to the parametric uncertainties and external disturbances, with the parameters including the tire cornering stiffness, vehicle longitudinal velocity, yaw rate and road curvature. Simulation results based on CarSim-Simulink joint platform using a high-fidelity and full-car model have verified the effectiveness of the proposed control approach.

  1. Perancangan Autonomous Landing pada Quadcopter Menggunakan Behavior-Based Intelligent Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Chalidia Nurin Hamdani

    2013-09-01

    Full Text Available Quadcopter adalah salah satu platform unmanned aerial vehicle (UAV yang saat ini banyak diriset karena kemampuannya melakukan take-off dan landing secara vertikal. Karena menggunakan 4 motor brushless sebagai penggerak utama, quadcopter memiliki kompleksitas yang cukup tinggi baik dalam pemodelan maupun pengendalian. Landing merupakan salah satu mekanisme pada quadcopter yang membutuhkan kecepatan yang akurat dan aman dengan tetap mempertahankan keseimbangan. Pada penelitian ini, penulis menggunakan Behavior-Based Intelligent Fuzzy Control (BBIFC sebagai dasar kontrol untuk penerapan autonomous landing pada quadcopter. BBIFC adalah salah satu skema high-level control di mana desain kontrol terdiri dari beberapa layer. Ada 2 layer yang digunakan pada penelitian ini yaitu layer untuk pengendalian sudut pitch, roll, yaw dan layer untuk pengendalian ketinggian. Setiap layer memiliki mekanisme kontrol yang berbeda yang didesain menggunakan Intelligent Fuzzy Controller dan kontroler PID. Dengan metode ini dihasilkan algoritma untuk mekanisme safe autonomous landing dengan mengikuti sinyal eksponensial di mana quadcopter mencapai titik 0 (nol meter dalam waktu 15 detik dan Kontroler PID dapat mengendalikan keseimbangan quadcopter dalam waktu 7.97 detik untuk roll dan pitch serta 1.25 detik untuk yaw sejak gangguan sudut diberikan.

  2. Factors influencing the role of cardiac autonomic regulation in the service of cognitive control.

    Science.gov (United States)

    Capuana, Lesley J; Dywan, Jane; Tays, William J; Elmers, Jamie L; Witherspoon, Richelle; Segalowitz, Sidney J

    2014-10-01

    Working from a model of neurovisceral integration, we examined whether adding response contingencies and motivational involvement would increase the need for cardiac autonomic regulation in maintaining effective cognitive control. Respiratory sinus arrhythmia (RSA) was recorded during variants of the Stroop color-word task. The Basic task involved "accepting" congruent items and "rejecting" words printed in incongruent colors (BLUE in red font); an added contingency involved rejecting a particular congruent word (e.g., RED in red font), or a congruent word repeated on an immediately subsequent trial. Motivation was increased by adding a financial incentive phase. Results indicate that pre-task RSA predicted accuracy best when response contingencies required the maintenance of a specific item in memory or on the Basic Stroop task when errors resulted in financial loss. Overall, RSA appeared to be most relevant to performance when the task encouraged a more proactive style of cognitive control, a control strategy thought to be more metabolically costly, and hence, more reliant on flexible cardiac autonomic regulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Motor-response learning at a process control panel by an autonomous robot

    Energy Technology Data Exchange (ETDEWEB)

    Spelt, P.F.; de Saussure, G.; Lyness, E.; Pin, F.G.; Weisbin, C.R.

    1988-01-01

    The Center for Engineering Systems Advanced Research (CESAR) was founded at Oak Ridge National Laboratory (ORNL) by the Department of Energy's Office of Energy Research/Division of Engineering and Geoscience (DOE-OER/DEG) to conduct basic research in the area of intelligent machines. Therefore, researchers at the CESAR Laboratory are engaged in a variety of research activities in the field of machine learning. In this paper, we describe our approach to a class of machine learning which involves motor response acquisition using feedback from trial-and-error learning. Our formulation is being experimentally validated using an autonomous robot, learning tasks of control panel monitoring and manipulation for effect process control. The CLIPS Expert System and the associated knowledge base used by the robot in the learning process, which reside in a hypercube computer aboard the robot, are described in detail. Benchmark testing of the learning process on a robot/control panel simulation system consisting of two intercommunicating computers is presented, along with results of sample problems used to train and test the expert system. These data illustrate machine learning and the resulting performance improvement in the robot for problems similar to, but not identical with, those on which the robot was trained. Conclusions are drawn concerning the learning problems, and implications for future work on machine learning for autonomous robots are discussed. 16 refs., 4 figs., 1 tab.

  4. Optimization of an Autonomous Car Controller Using a Self-Adaptive Evolutionary Strategy

    Directory of Open Access Journals (Sweden)

    Tae Seong Kim

    2012-09-01

    Full Text Available Autonomous cars control the steering wheel, acceleration and the brake pedal, the gears and the clutch using sensory information from multiple sources. Like a human driver, it understands the current situation on the roads from the live streaming of sensory values. The decision-making module often suffers from the limited range of sensors and complexity due to the large number of sensors and actuators. Because it is tedious and difficult to design the controller manually from trial-and-error, it is desirable to use intelligent optimization algorithms. In this work, we propose optimizing the parameters of an autonomous car controller using self-adaptive evolutionary strategies (SAESs which co-evolve solutions and mutation steps for each parameter. We also describe how the most generalized parameter set can be retrieved from the process of optimization. Open-source car racing simulation software (TORCS is used to test the goodness of the proposed methods on 6 different tracks. Experimental results show that the SAES is competitive with the manual design of authors and a simple ES.

  5. Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.

    Science.gov (United States)

    Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2008-01-01

    Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation.

  6. Command and Control Architectures for Autonomous Micro-Robotic Forces - FY-2000 Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Dudenhoeffer, Donald Dean

    2001-04-01

    Advances in Artificial Intelligence (AI) and micro-technologies will soon give rise to production of large-scale forces of autonomous micro-robots with systems of innate behaviors and with capabilities of self-organization and real world tasking. Such organizations have been compared to schools of fish, flocks of birds, herds of animals, swarms of insects, and military squadrons. While these systems are envisioned as maintaining a high degree of autonomy, it is important to understand the relationship of man with such machines. In moving from research studies to the practical deployment of large-scale numbers of robots, one of critical pieces that must be explored is the command and control architecture for humans to re-task and also inject global knowledge, experience, and intuition into the force. Tele-operation should not be the goal, but rather a level of adjustable autonomy and high-level control. If a herd of sheep is comparable to the collective of robots, then the human element is comparable to the shepherd pulling in strays and guiding the herd in the direction of greener pastures. This report addresses the issues and development of command and control for largescale numbers of autonomous robots deployed as a collective force.

  7. Cycling before and after Exhaustion Differently Affects Cardiac Autonomic Control during Heart Rate Matched Exercise

    Directory of Open Access Journals (Sweden)

    Matthias Weippert

    2017-11-01

    Full Text Available During cycling before (PRE and after exhaustion (POST different modes of autonomic cardiac control might occur due to different interoceptive input and altered influences from higher brain centers. We hypothesized that heart rate variability (HRV is significantly affected by an interaction of the experimental period (PRE vs. POST and exercise intensity (HIGH vs. LOW; HIGH = HR > HR at the lactate threshold (HRLT, LOW = HR ≤ HRLT despite identical average HR.Methods: Fifty healthy volunteers completed an incremental cycling test until exhaustion. Workload started with 30 W at a constant pedaling rate (60 revolutions · min−1 and was gradually increased by 30 W · 5 min−1. Five adjacent 60 s inter-beat (R-R interval segments from the immediate recovery period (POST 1–5 at 30 W and 60 rpm were each matched with their HR-corresponding 60 s-segments during the cycle test (PRE 1–5. An analysis of covariance was carried out with one repeated-measures factor (PRE vs. POST exhaustion, one between-subject factor (HIGH vs. LOW intensity and respiration rate as covariate to test for significant effects (p < 0.050 on the natural log-transformed root mean square of successive differences between adjacent R-R intervals (lnRMSSD60s.Results: LnRMSSD60s was significantly affected by the interaction of experimental period × intensity [F(1, 242 = 30.233, p < 0.001, ηp2 = 0.111]. LnRMSSD60s was higher during PRE compared to POST at LOW intensity (1.6 ± 0.6 vs. 1.4 ± 0.6 ms; p < 0.001. In contrast, at HIGH intensity lnRMSSD60s was lower during PRE compared to POST (1.0 ± 0.4 vs. 1.2 ± 0.4 ms; p < 0.001.Conclusion: Identical net HR during cycling can result from distinct autonomic modulation patterns. Results suggest a pronounced sympathetic-parasympathetic coactivation immediately after the cessation of peak workload compared to HR-matched cycling before exhaustion at HIGH intensity. On the opposite, at LOW intensity cycling, a stronger coactivational

  8. Act-and-wait time-delayed feedback control of autonomous systems

    Science.gov (United States)

    Pyragas, Viktoras; Pyragas, Kestutis

    2018-02-01

    Recently an act-and-wait modification of time-delayed feedback control has been proposed for the stabilization of unstable periodic orbits in nonautonomous dynamical systems (Pyragas and Pyragas, 2016 [30]). The modification implies a periodic switching of the feedback gain and makes the closed-loop system finite-dimensional. Here we extend this modification to autonomous systems. In order to keep constant the phase difference between the controlled orbit and the act-and-wait switching function an additional small-amplitude periodic perturbation is introduced. The algorithm can stabilize periodic orbits with an odd number of real unstable Floquet exponents using a simple single-input single-output constraint control.

  9. A Fusion of Sensors Information for Autonomous Driving Control of an Electric Vehicle (EV)

    International Nuclear Information System (INIS)

    Haris, Hasri; Wan, Khairunizam; Hazry, D; Razlan, Zuradzman M

    2013-01-01

    The study uses the environment of the road as input variables for the main system to control steering wheel, brake and acceleration pedals. A camera is installed on the roof of the Electric Vehicles (EV) and is used to obtain image information of the road. On the other hand, users or drivers do not have to directly contact with the main system because it will autonomously control the devices by using fuzzy information of the road conditions. A fuzzy information means in the preliminary experiments, reasoning of the various environments will be done by using fuzzy approach. At the end of the study, several existing algorithms for controlling motors and image processing technique could be combined into an algorithm that could be used to move EV without assist from human

  10. Autonomous SEIG in a small wind power plant with voltage and frequency control

    Directory of Open Access Journals (Sweden)

    Benlamoudi Azzeddine

    2012-01-01

    Full Text Available This paper deals with the application of an autonomous Self-Excited Induction Generator (SEIG in a small wind power conversion system (WPCS. Such conversion system has capability to supply power demand of the loads with constant voltage and frequency, for which a power managing method is proposed. Voltage Sourced Converter (VSC along with Battery Energy Storage System (BESS is used to handle power flow between the SEIG and loads. The proposed control scheme, using a single voltage closed-loop control, is found to be suitable to regulate both voltage and frequency. The WPCS is modelled in MATLAB/Simulink and Power System Block-set (PSB. Simulation results show that Voltage Frequency Controller (VFC has ability to keep the voltage and frequency constant in spite of perturbations.

  11. CamOn: A Real-Time Autonomous Camera Control System

    DEFF Research Database (Denmark)

    Burelli, Paolo; Jhala, Arnav Harish

    2009-01-01

    This demonstration presents CamOn, an autonomous cam- era control system for real-time 3D games. CamOn employs multiple Artificial Potential Fields (APFs), a robot motion planning technique, to control both the location and orienta- tion of the camera. Scene geometry from the 3D environment...... contributes to the potential field that is used to determine po- sition and movement of the camera. Composition constraints for the camera are modelled as potential fields for controlling the view target of the camera. CamOn combines the compositional benefits of constraint- based camera systems, and improves...... on real-time motion planning of the camera. Moreover, the recasting of camera constraints into potential fields is visually more accessible to game designers and has the potential to be implemented as a plug-in to 3D level design and editing tools currently avail- able with games. Introduction...

  12. Model-Unified Planning and Execution for Distributed Autonomous System Control

    Science.gov (United States)

    Aschwanden, Pascal; Baskaran, Vijay; Bernardini, Sara; Fry, Chuck; Moreno, Maria; Muscettola, Nicola; Plaunt, Chris; Rijsman, David; Tompkins, Paul

    2006-01-01

    The Intelligent Distributed Execution Architecture (IDEA) is a real-time architecture that exploits artificial intelligence planning as the core reasoning engine for interacting autonomous agents. Rather than enforcing separate deliberation and execution layers, IDEA unifies them under a single planning technology. Deliberative and reactive planners reason about and act according to a single representation of the past, present and future domain state. The domain state behaves the rules dictated by a declarative model of the subsystem to be controlled, internal processes of the IDEA controller, and interactions with other agents. We present IDEA concepts - modeling, the IDEA core architecture, the unification of deliberation and reaction under planning - and illustrate its use in a simple example. Finally, we present several real-world applications of IDEA, and compare IDEA to other high-level control approaches.

  13. Autonomous Micro-Air-Vehicle Control Based on Visual Sensing for Odor Source Localization

    Directory of Open Access Journals (Sweden)

    Kenzo Kurotsuchi

    2017-07-01

    Full Text Available In this paper, we propose a novel control method for autonomous-odor-source localization using visual and odor sensing by micro air vehicles (MAVs. Our method is based on biomimetics, which enable highly autonomous localization. Our method does not need any instruction signals, including even global positioning system (GPS signals. An experimenter simply blows a whistle, and the MAV will then start to hover, to seek an odor source, and to keep hovering near the source. The GPS-signal-free control based on visual sense enables indoor/underground use. Moreover, the MAV is light-weight (85 grams and does not cause harm to others even if it accidentally falls. Experiments conducted in the real world were successful in enabling odor source localization using the MAV with a bio-inspired searching method. The distance error of the localization was 63 cm, more accurate than the target distance of 120 cm for individual identification. Our odor source localization is the first step to a proof of concept for a danger warning system. These localization experiments were the first step to a proof of concept for a danger warning system to enable a safer and more secure society.

  14. Autonomous planning and control of soft untethered grippers in unstructured environments.

    Science.gov (United States)

    Ongaro, Federico; Scheggi, Stefano; Yoon, ChangKyu; den Brink, Frank van; Oh, Seung Hyun; Gracias, David H; Misra, Sarthak

    2017-01-01

    The use of small, maneuverable, untethered and reconfigurable robots could provide numerous advantages in various micromanipulation tasks. Examples include microassembly, pick-and-place of fragile micro-objects for lab-on-a-chip applications, assisted hatching for in-vitro fertilization and minimally invasive surgery. This study assesses the potential of soft untethered magnetic grippers as alternatives or complements to conventional tethered or rigid micromanipulators. We demonstrate closed-loop control of untethered grippers and automated pick-and-place of biological material on porcine tissue in an unstructured environment. We also demonstrate the ability of the soft grippers to recognize and sort non-biological micro-scale objects. The fully autonomous nature of the experiments is made possible by the integration of planning and decision-making algorithms, as well as by closed-loop temperature and electromagnetic motion control. The grippers are capable of completing pick-and-place tasks of biological material at an average velocity of 1.8 ±0.71 mm/s and a drop-off error of 0.62 ±0.22 mm. Color-sensitive sorting of three micro-scale objects is completed at a velocity of 1.21 ±0.68 mm/s and a drop-off error of 0.85 ±0.41 mm. Our findings suggest that improved autonomous untethered grippers could augment the capabilities of current soft-robotic instruments especially in advancedtasks involving manipulation.

  15. The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation.

    Science.gov (United States)

    Lu, Yongjun; Ma, Xiuying; Sabharwal, Rasna; Snitsarev, Vladislav; Morgan, Donald; Rahmouni, Kamal; Drummond, Heather A; Whiteis, Carol A; Costa, Vivian; Price, Margaret; Benson, Christopher; Welsh, Michael J; Chapleau, Mark W; Abboud, François M

    2009-12-24

    Arterial baroreceptors provide a neural sensory input that reflexly regulates the autonomic drive of circulation. Our goal was to test the hypothesis that a member of the acid-sensing ion channel (ASIC) subfamily of the DEG/ENaC superfamily is an important determinant of the arterial baroreceptor reflex. We found that aortic baroreceptor neurons in the nodose ganglia and their terminals express ASIC2. Conscious ASIC2 null mice developed hypertension, had exaggerated sympathetic and depressed parasympathetic control of the circulation, and a decreased gain of the baroreflex, all indicative of an impaired baroreceptor reflex. Multiple measures of baroreceptor activity each suggest that mechanosensitivity is diminished in ASIC2 null mice. The results define ASIC2 as an important determinant of autonomic circulatory control and of baroreceptor sensitivity. The genetic disruption of ASIC2 recapitulates the pathological dysautonomia seen in heart failure and hypertension and defines a molecular defect that may be relevant to its development. 2009 Elsevier Inc. All rights reserved.

  16. Formation Learning Control of Multiple Autonomous Underwater Vehicles With Heterogeneous Nonlinear Uncertain Dynamics.

    Science.gov (United States)

    Yuan, Chengzhi; Licht, Stephen; He, Haibo

    2017-09-26

    In this paper, a new concept of formation learning control is introduced to the field of formation control of multiple autonomous underwater vehicles (AUVs), which specifies a joint objective of distributed formation tracking control and learning/identification of nonlinear uncertain AUV dynamics. A novel two-layer distributed formation learning control scheme is proposed, which consists of an upper-layer distributed adaptive observer and a lower-layer decentralized deterministic learning controller. This new formation learning control scheme advances existing techniques in three important ways: 1) the multi-AUV system under consideration has heterogeneous nonlinear uncertain dynamics; 2) the formation learning control protocol can be designed and implemented by each local AUV agent in a fully distributed fashion without using any global information; and 3) in addition to the formation control performance, the distributed control protocol is also capable of accurately identifying the AUVs' heterogeneous nonlinear uncertain dynamics and utilizing experiences to improve formation control performance. Extensive simulations have been conducted to demonstrate the effectiveness of the proposed results.

  17. Second Order Sliding Mode Control Scheme for an Autonomous Underwater Vehicle with Dynamic Region Concept

    Directory of Open Access Journals (Sweden)

    Zool H. Ismail

    2015-01-01

    Full Text Available The main goal in developing closed loop control system for an Autonomous Underwater Vehicle (AUV is to make a robust vehicle from natural and exogenous perturbations such as wind, wave, and ocean currents. However a well-known robust control, for instance, Sliding Mode Controller (SMC, gives a chattering effect and it influences the stability of an AUV. Furthermore, some researchers combined other controls to get better result but it tends to present long computational time and causes large energy consumption. Thus, this paper proposed a Super Twisting Sliding Mode Controller (STSMC with dynamic region concept for an AUV. STSMC or a second order SMC is adopted as a robust controller which is free from chattering effect. Meanwhile, the implementation of dynamic region is useful to reduce the energy usage. As a result, the proposed controller obtains global asymptotic stability which is validated by using Lyapunov-like function. Moreover, some simulations present the efficiency of proposed controller. In conclusion, STSMC with region based control is effective to be applied for the robust tracking of an AUV. It contributes to give a fast response when handling the perturbations, short computational time, and low energy demand.

  18. Cortisol Levels and Autonomic Control of Heart Rate in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Santana Milana Drumond Ramos

    2017-08-01

    Full Text Available Introduction: There is an increase in level of stress in the general population because of the social, personal and professional demands. Currently, there are only simple tools that can safely measure this stress such as levels of cortisol and heart rate variability (HRV. Objective: To analyze the relationship between salivary cortisol and the cardiac autonomic modulation. Methods: A total of fifty-one male and female subjects between 18 and 40 years old were evaluated. Saliva collection was achieved for the salivary cortisol dosage. The collection was performed through the SalivetteR tube. After this collection, the median cortisol levels (0.24 ug/dl were analyzed and the volunteers were divided into two groups: i cortisol below the mediane ii cortisol above the median. After this division, each group consisted of 25 volunteers and then was verified the following information: age, gender, weight, height, body mass index (BMI, blood pressure. Shortly thereafter was assessment of cardiac autonomic modulation por meio da HRV. The Polar RS800cx heart rate receiver was placed on the chest of the volunteers, in the vicinity of the distal third of the sternum. The volunteers were instructed to remain in rest with spontaneous breathing in dorsal position for 20 minutes. HRV analysis included geometric, time and frequency domain indices. Results: There were no statistical differences for the two groups regarding systolic and diastolic blood pressure, heart rate, RR intervals or linear and frequency indices for the volunteers. In addition, also there was no correlation the cortisol with the analyzed variables (SAP, p=0.460; DAP, p = 0.270; HR, p = 0.360; RR, p = 0.380; SDNN, p = 0.510; rMSSD, p = 0.660; pNN50, p = 0.820; RRtri, p = 0.170; TINN, p = 0.470; SD1, p = 0.650; SD2, p = 0.500; LF [ms2], p = 0.880; LF [nu], p = 0.970; HF [ms2], p = 0.870; HF [nu], p = 0.960; LF/HF, p = 0.380 Conclusion: Heart rate variability autonomic control was unchanged in

  19. Intelligent controller for load-tracking performance of an autonomous power system

    Directory of Open Access Journals (Sweden)

    Abhik Banerjee

    2014-12-01

    Full Text Available The design and performance analysis of a Sugeno fuzzy logic (SFL controller for an autonomous power system model is presented in this paper. In gravitational search algorithm (GSA, the searcher agents are collection of masses and their interactions are based on Newtonian laws of gravity and motion. The problem of obtaining the optimal tunable parameters of the studied model is formulated as an optimization problem and the same is solved by a novel opposition based GSA (OGSA. The proposed OGSA of the present work employs opposition-based learning for population initialization and also for generation jumping. In OGSA, opposite numbers are utilized to improve the convergence rate of the basic GSA. GSA and genetic algorithm are taken for the sake of comparison. Time-domain simulation reveals that the developed OGSA-SFL based on-line, off-nominal controller parameters for the studied model give real-time on-line terminal voltage response.

  20. Autonomous Control of Interlinking Converter With Energy Storage in Hybrid AC–DC Microgrid

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Li, Ding; Chai, Yi Kang

    2013-01-01

    The coexistence of ac and dc subgrids in a hybrid microgrid is likely given that modern distributed sources can either be ac or dc. Linking these subgrids is a power converter, whose topology should preferably be not too unconventional. This is to avoid unnecessary compromises to reliability......, simplicity, and industry relevance of the converter. The desired operating features of the hybrid microgrid can then be added through this interlinking converter. To demonstrate, an appropriate control scheme is now developed for controlling the interlinking converter. The objective is to keep the hybrid...... microgrid in autonomous operation with active power proportionally shared among its distributed sources. Power sharing here should depend only on the source ratings and not their placements within the hybrid microgrid. The proposed scheme can also be extended to include energy storage within...

  1. Multi-UAVs Formation Autonomous Control Method Based on RQPSO-FSM-DMPC

    Directory of Open Access Journals (Sweden)

    Shao-lei Zhou

    2016-01-01

    Full Text Available For various threats in the enemy defense area, in order to achieve covert penetration and implement effective combat against enemy, the unmanned aerial vehicles formation needs to be reconfigured in the process of penetration; the mutual collision avoidance problems and communication constraint problems among the formation also need to be considered. By establishing the virtual-leader formation model, this paper puts forward distributed model predictive control and finite state machine formation manager. Combined with distributed cooperative strategy establishing the formation reconfiguration cost function, this paper proposes that adopting the revised quantum-behaved particle swarm algorithm solves the cost function, and it is compared with the result which is solved by particle swarm algorithm. Simulation result shows that this algorithm can control multiple UAVs formation autonomous reconfiguration effectively and achieve covert penetration safely.

  2. Tegotae-based decentralised control scheme for autonomous gait transition of snake-like robots.

    Science.gov (United States)

    Kano, Takeshi; Yoshizawa, Ryo; Ishiguro, Akio

    2017-08-04

    Snakes change their locomotion patterns in response to the environment. This ability is a motivation for developing snake-like robots with highly adaptive functionality. In this study, a decentralised control scheme of snake-like robots that exhibited autonomous gait transition (i.e. the transition between concertina locomotion in narrow aisles and scaffold-based locomotion on unstructured terrains) was developed. Additionally, the control scheme was validated via simulations. A key insight revealed is that these locomotion patterns were not preprogrammed but emerged by exploiting Tegotae, a concept that describes the extent to which a perceived reaction matches a generated action. Unlike local reflexive mechanisms proposed previously, the Tegotae-based feedback mechanism enabled the robot to 'selectively' exploit environments beneficial for propulsion, and generated reasonable locomotion patterns. It is expected that the results of this study can form the basis to design robots that can work under unpredictable and unstructured environments.

  3. Prospective randomized controlled intervention trial: Comprehensive Yogic Breathing Improves Cardiac autonomic functions and Quality of life in Diabetes

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2012-01-01

    Full Text Available Aims and Objectives: To assess the effect of Comprehensive Yogic Breathing Program on glycemic control, quality of life, and cardiac autonomic functions in diabetes. Material and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 120 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes (n = 56 and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program (n = 64. Standard therapy included advice on diet, walk, and oral antidiabetic drugs. Comprehensive yogic breathing program was an interactive session in which Sudarshan kriya yoga, a rhythmic cyclical breathing, preceded by Pranayam was taught under guidance of a certified teacher. Change in fasting, post prandial blood sugars, glycated hemoglobin, and quality of life were assessed. Cardiac autonomic function tests were done before and six months after intervention. Results: There was significant improvement in psychological (P = 0.006 and social domains (P = 0.04 and total quality of life (P = 0.02 in the group practicing comprehensive yogic breathing program as compared to the group following standard therapy alone. In the group following breathing program, the improvement in sympathetic cardiac autonomic functions was statistically significant (P = 0.01, while the change in the standard group was not significant (P = 0.17. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P = 0.07. In the standard therapy group, no change in cardiac autonomic functions was noted (P = 0.76. The parameters of glycemic control were comparable in both groups. Conclusion: There was significant improvement in quality of life and cardiac autonomic functions in the diabetes patients practicing comprehensive yogic breathing

  4. Exploring relationships for visceral and somatic pain with autonomic control and personality.

    Science.gov (United States)

    Paine, Peter; Kishor, Jessin; Worthen, Sian F; Gregory, Lloyd J; Aziz, Qasim

    2009-08-01

    The autonomic nervous system (ANS) integrates afferent and motor activity for homeostatic processes including pain. The aim of the study was to compare hitherto poorly characterised relations between brainstem autonomic control and personality in response to visceral and somatic pain. Eighteen healthy subjects (16 females, mean age 34) had recordings during rest and pain of heart rate (HR), cardiac vagal tone (CVT), cardiac sensitivity to baroreflex (CSB), skin conductance level (SC), cardiac sympathetic index (CSI) and mean blood pressure (MBP). Visceral pain was induced by balloon distension in proximal (PB) and distal (DB) oesophagus and somatic pain by nail-bed pressure (NBP). Eight painful stimuli were delivered at each site and unpleasantness and intensity measured. Personality was profiled with the Big Five inventory. (1) Oesophageal intubation evoked "fight-flight" responses: HR and sympathetic (CSI, SC, MBP) elevation with parasympathetic (CVT) withdrawal (pintrovert subjects had greater positive pain-related CVT slope change (neuroticism r 0.8, p<0.05; extroversion r -0.5, p<0.05). Pain-evoked heart rate increases were mediated by parasympathetic and sympathetic co-activation - a novel finding in humans but recently described in mammals too. Visceral pain-related parasympathetic change correlated with personality. ANS defence responses are nuanced and may relate to personality type for visceral pain. Clinical relevance of these findings warrants further exploration.

  5. Toward semi-autonomous control of mobile robots for constrained environments

    International Nuclear Information System (INIS)

    Mercier, O.; Cara, O.

    1991-01-01

    Drawing from long-time experience in nuclear maintenance robotics, FRAMATOME leads with several partners an important effort with the goal of developing the decision and operator assistance capabilities of mobile robots. Future robots shall be better adapted (in size and configuration) to the operational requirements of nuclear plants work than current demonstrators. Due regards shall be paid to safety aspects and qualification procedure shall be specified soon. Also, dosimetry gains (e.g. as evaluated by DOSIANA) shall be evaluated to establish further the advantages of robotic solutions. Current achievements and plans for the next two years are expected to provide the necessary know-how for semi-autonomous control of various mobile robots in actual missions in nuclear plant environment. These advances in many closely connected disciplines and technologies should put FRAMATOME in a leader position as systems integrator or as developer for future markets in autonomous mobile robotics, not only in the nuclear field but in other domains as well. (author)

  6. To delegate or not to delegate: A review of control frameworks for autonomous cars.

    Science.gov (United States)

    Richards, Dale; Stedmon, Alex

    2016-03-01

    There have been significant advances in technology and automated systems that will eventually see the use of autonomous cars as commonplace on our roads. Various systems are already available that provide the driver with different levels of decision support. This paper highlights the key human factors issues associated with the interaction between the user and an autonomous system, including assistive decision support and the delegation of authority to the automobile. The level of support offered to the driver can range from traditional automated assistance, to system generated guidance that offers advice for the driver to act upon, and even more direct action that is initiated by the system itself without driver intervention. In many of these instances the role of the driver is slowly moving towards a supervisory role within a complex system rather than one of direct control of the vehicle. Different paradigms of interaction are considered and focus is placed on the partnership that takes place between the driver and the vehicle. Drawing on the wealth of knowledge that exists within the aviation domain and research literature that examines technology partnerships within the cockpit, this paper considers important factors that will assist the automotive community to understand the underlying issues of the human and their interaction within complex systems. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  7. Autonomic Nervous System in the Control of Energy Balance and Body Weight: Personal Contributions

    Directory of Open Access Journals (Sweden)

    G. Messina

    2013-01-01

    Full Text Available The prevalence of obesity is increasing in the industrialized world, so that the World Health Organization considers obesity as a “pandemia” in rich populations. The autonomic nervous system plays a crucial role in the control of energy balance and body weight. This review summarizes our own data and perspectives, emphasizing the influence exerted by autonomic nervous system on energy expenditure and food intake, which are able to determine the body weight. Activation of the sympathetic discharge causes an increase in energy expenditure and a decrease in food intake, while reduction of food intake and body weight loss determines a reduction of the sympathetic activity. On the other hand, pathophysiological mechanisms of the obesity involve alterations of the sympathetic nervous system in accordance with the “Mona Lisa Hypothesis,” an acronym for “most obesities known are low in sympathetic activity.” Furthermore, the parasympathetic influences on the energy expenditure are analyzed in this review, showing that an increase in parasympathetic activity can induce a paradoxical enhancement of energy consumption.

  8. Oscillatory Adaptive Yaw-Plane Control of Biorobotic Autonomous Underwater Vehicles Using Pectoral-Like Fins

    Directory of Open Access Journals (Sweden)

    Mugdha S. Naik

    2007-01-01

    Full Text Available This article considers the control of a biorobotic autonomous underwater vehicle (BAUV in the yaw plane using biologically inspired oscillatory pectoral-like fins of marine animals. The fins are assumed to be oscillating harmonically with a combined linear (sway and angular (yaw motion producing unsteady forces, which are used for fish-like control of BAUVs. Manoeuvring of the BAUV in the yaw plane is accomplished by altering the bias (mean angle of the angular motion of the fin. For the derivation of the adaptive control system, it is assumed that the physical parameters, the hydrodynamic coefficients, and the fin force and moment are not known. A direct adaptive sampled-data control system for the trajectory control of the yaw-angle using only yaw-angle measurement is derived. The parameter adaptation law is based on the normalised gradient scheme. Simulation results for the set point control, sinusoidal trajectory tracking and turning manoeuvres are presented, which show that the control system accomplishes precise trajectory control in spite of the parameter uncertainties.

  9. Autonomous and controlled motivational regulations for multiple health-related behaviors: between- and within-participants analyses.

    Science.gov (United States)

    Hagger, M S; Hardcastle, S J; Chater, A; Mallett, C; Pal, S; Chatzisarantis, N L D

    2014-01-01

    Self-determination theory has been applied to the prediction of a number of health-related behaviors with self-determined or autonomous forms of motivation generally more effective in predicting health behavior than non-self-determined or controlled forms. Research has been confined to examining the motivational predictors in single health behaviors rather than comparing effects across multiple behaviors. The present study addressed this gap in the literature by testing the relative contribution of autonomous and controlling motivation to the prediction of a large number of health-related behaviors, and examining individual differences in self-determined motivation as a moderator of the effects of autonomous and controlling motivation on health behavior. Participants were undergraduate students ( N  = 140) who completed measures of autonomous and controlled motivational regulations and behavioral intention for 20 health-related behaviors at an initial occasion with follow-up behavioral measures taken four weeks later. Path analysis was used to test a process model for each behavior in which motivational regulations predicted behavior mediated by intentions. Some minor idiosyncratic findings aside, between-participants analyses revealed significant effects for autonomous motivational regulations on intentions and behavior across the 20 behaviors. Effects for controlled motivation on intentions and behavior were relatively modest by comparison. Intentions mediated the effect of autonomous motivation on behavior. Within-participants analyses were used to segregate the sample into individuals who based their intentions on autonomous motivation (autonomy-oriented) and controlled motivation (control-oriented). Replicating the between-participants path analyses for the process model in the autonomy- and control-oriented samples did not alter the relative effects of the motivational orientations on intention and behavior. Results provide evidence for consistent effects

  10. Advanced sensing and control techniques to facilitate semi-autonomous decommissioning. 1998 annual progress report

    International Nuclear Information System (INIS)

    Dawson, D.M.; Geist, R.M.; Schalkoff, R.J.

    1998-01-01

    'This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D and D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology. This report summarizes work after approximately 1.5 years of a 3-year project. The autonomous, non-contact creation of a virtual environment from an existing, real environment (virtualization) is an integral part of the workcell functionality. This requires that the virtual world be geometrically correct. To this end, the authors have encountered severe sensitivity in quadric estimation. As a result, alternative procedures for geometric rendering, iterative correction approaches, new calibration methods and associated hardware, and calibration quality examination software have been developed. Following geometric rendering, the authors have focused on improving the color and texture recognition components of the system. In particular, the authors have moved beyond first-order illumination modeling to include higher order diffuse effects. This allows us to combine the surface geometric information, obtained from the laser projection and surface recognition components of the system, with a stereo camera image. Low-level controllers for Puma 560 robotic arms were designed and implemented using QNX. The resulting QNX/PC based low-level robot control system is called QRobot. A high-level trajectory generator and application programming interface (API) as well as a new, flexible robot control API was required. Force/torque sensors and interface hardware have been identified and ordered. A simple 3-D OpenGL-based graphical Puma 560 robot simulator was developed and interfaced with ARCL and RCCL to assist in the development of robot motion programs.'

  11. Autonomous control of interlinking converters in hybrid AC-DC microgrids with energy storages

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Li, Ding; Blaabjerg, Frede

    2011-01-01

    Coexistence of both ac and dc sub-grids in a hybrid microgrid is likely given that modern distributed sources can either be ac or dc. Linking these sub-grids are power converters, whose topological configuration should preferably be not too unconventional to avoid unnecessary compromises...... the interlinking converters, so as to achieve autonomous control for the overall hybrid microgrid. Features achieved include proportional active power sharing among the distributed sources based on their ratings and not placements within the hybrid microgrid, and proper reactive power sharing within the ac sub......-grid. These findings are not previously achieved by other existing schemes, which almost always consider only an ac microgrid. The scheme can also be extended to include energy storages within the interlinking converters, as demonstrated through simulation and experiment....

  12. Distributed Data Logging and Intelligent Control Strategies for a Scaled Autonomous Vehicle

    Directory of Open Access Journals (Sweden)

    Tilman Happek

    2016-04-01

    Full Text Available In this paper we present an autonomous car with distributed data processing. The car is controlled by a multitude of independent sensors. For the lane detection, a camera is used, which detects the lane marks with a Hough transformation. Once the camera detects these, one of them is calculated to be followed by the car. This lane is verified by the other sensors of the car. These sensors check the route for obstructions or allow the car to scan a parking space and to park on the roadside if the gap is large enough. The car is built on a scale of 1:10 and shows excellent results on a test track.

  13. A REMUS based crate controller for the autonomous processing of multichannel data streams

    CERN Document Server

    Cittolin, S

    1981-01-01

    This paper describes a device designed to perform the autonomous acquisition of considerable quantities of raw data, process them and present results in an easily digestible format for subsequent analysis. It has been primarily created for read-out of complex three dimensional drift chambers, but is of general interest. The unit is based on a dual processor system consisting of a Signetics 8X300 and a Motorola 68B00. The 8X300 section operates as a fast dedicated Data Processor and flow controller that reads the input modules, processes the data and constructs the output blocklets. The 68B00 supervises the activity of the 8X300 and is responsible for the holding and loading of appropriate routines. It also obtains samples of the final data for statistical purposes and executes periodic calibration and diagnostic functions.

  14. A REMUS based crate controller for the autonomous processing of multichannel data streams

    CERN Document Server

    Cittolin, Sergio

    1981-01-01

    Describes a device designed to perform the autonomous acquisition of considerable quantities of raw data, process them and present results in an easily digestible format for subsequent analysis. It has been primarily created for read-out of complex three dimensional drift chambers, but is of general interest. The unit is based on a dual processor system consisting of a Signetics 8X300 and a Motorola 68B00. The 8X300 section operates as a fast dedicated data processor and flow controller that reads the input modules processes the data and constructs the output blocklets. The 68B00 supervises the activity of the 8X300 and is responsible for the holding and loading of appropriate routines. It also obtains samples of the final data for statistical purposes and executes periodic calibration and diagnostic functions. (8 refs).

  15. Effects of age and physical activity on the autonomic control of heart rate in healthy men

    Directory of Open Access Journals (Sweden)

    R.C. Melo

    2005-09-01

    Full Text Available The effects of the aging process and an active life-style on the autonomic control of heart rate (HR were investigated in nine young sedentary (YS, 23 ± 2.4 years, 16 young active (YA, 22 ± 2.1 years, 8 older sedentary (OS, 63 ± 2.4 years and 8 older active (OA, 61 ± 1.1 years healthy men. Electrocardiogram was continuously recorded for 15 min at rest and for 4 min in the deep breathing test, with a breath rate of 5 to 6 cycles/min in the supine position. Resting HR and RR intervals were analyzed by time (RMSSD index and frequency domain methods. The power spectral components are reported in normalized units (nu at low (LF and high (HF frequency, and as the LF/HF ratio. The deep breathing test was analyzed by the respiratory sinus arrhythmia indices: expiration/inspiration ratio (E/I and inspiration-expiration difference (deltaIE. The active groups had lower HR and higher RMSSD index than the sedentary groups (life-style condition: sedentary vs active, P < 0.05. The older groups showed lower HFnu, higher LFnu and higher LF/HF ratio than the young groups (aging effect: young vs older, P < 0.05. The OS group had a lower E/I ratio (1.16 and deltaIE (9.7 bpm than the other groups studied (YS: 1.38, 22.4 bpm; YA: 1.40, 21.3 bpm; OA: 1.38, 18.5 bpm. The interaction between aging and life-style effects had a P < 0.05. These results suggest that aging reduces HR variability. However, regular physical activity positively affects vagal activity on the heart and consequently attenuates the effects of aging in the autonomic control of HR.

  16. Muscular Contraction Mode Differently Affects Autonomic Control During Heart Rate Matched Exercise

    Directory of Open Access Journals (Sweden)

    Matthias eWeippert

    2015-05-01

    Full Text Available The precise contributions of afferent feedback to cardiovascular and respiratory responses to exercise are still unclear. Aim of this crossover study was to assess whether and how autonomic cardiovascular and respiratory control differed in response to dynamic (DYN and isometric contractions (ISO at a similar, low heart rate (HR level. Therefore, 22 healthy males (26.7 ± 3.6 yrs performed two kinds of voluntary exercises at similar HR: ISO and DYN of the right quadriceps femoris muscle. Although HR was eqivalent (82 ± 8 bpm for DYN and ISO, respectively, rating of exertion, blood pressures, and rate pressure product were higher, whereas breathing frequency, minute ventilation, oxygen uptake and carbon dioxide output were significantly lower during ISO. Tidal volume, end-tidal partial pressures of O2 and CO2, respiratory exchange ratio and capillary blood lactate concentration were comparable between both contraction modes. Heart rate variability (HRV indicators, SDNN, HF-Power and LF-Power, representing both vagal and sympathetic influences, were significantly higher during ISO. Sample entropy, a nonlinear measure of HRV was also significantly affected by contraction mode. It can be concluded that, despite the same net effect on HR, the quality of cardiovascular control during low intensity exercise is significantly different between DYN and ISO. HRV analysis indicated a sympatho-vagal coactivation during ISO. Whether mechanoreceptor feedback alone, a change in central command, or the interaction of both mechanisms is the main contributor of the distinct autonomic responses to the different exercise modes remains to be elucidated.

  17. DISTRIBUTED CONTROL ARCHITECTURE OF AN OMNI-DIRECTIONAL AUTONOMOUS GUIDED VEHICLE

    Directory of Open Access Journals (Sweden)

    N.S. Tlale

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Omni-directionality is the ability of a mobile robot to move instantaneously in any direction. This paper describes the wheel and controller designs of a Mecanumwheeled, autonomous guided vehicle (AGV for reconfigurable manufacturing systems. Mecanum wheels use slip developed between rollers and surface, surface and ground, to achieve omni-directionality. An advantage of omni-directional robotic platforms is that they are capable of performing tasks in congested environments such as those found in factory workshops, narrow aisles, warehouses, etc. Controller Area Network (CAN is implemented as a distributed controller to control motion and navigation tasks of the developed robot. The design of the distributed controller is described and its performance analyzed. This increases the reliability and functionality of the mobile robot.

    AFRIKAANSE OPSOMMING: Die artikel beskryf wiel - en beheerontwerpe van ‘n veelrigting mobiele robot. Die robot is ‘n selfstandigbeheerde voertuig vir gebruik by vervaardigingstelsels met veranderbare konfigurasie. Die ontwerp van die robot en bypassende beheerstelsel word beskryf en ontleed teen die agterground van bewegings – en navigeertake. Die betroubaarheid en funksionering van die sisteem word beoordeel.

  18. Vineyard management in virtual reality: autonomous control of a transformable drone

    Science.gov (United States)

    Griffiths, H.; Shen, H.; Li, N.; Rojas, S.; Perkins, N.; Liu, M.

    2017-05-01

    Grape vines are susceptible to many diseases. Routine scouting is critically important to keep vineyards in healthy condition. Currently, scouting relies on experienced farm workers to inspect acres of land while arduously filling out reports to document crop health conditions. This process is both labor and time consuming. Using drones to assist farm workers in scouting has great potential to improve the efficiency of vineyard management. Due to the complexity in grape farm disease detection, the drones are normally used to detect suspicious areas to help farm workers to prioritize scouting activities. Operations still rely heavily on humans for further inspection to be certain about the health conditions of the vines. This paper introduces an autonomous transition flight control method for a transformable drone, which is suitable for the future virtual presence of humans in further inspecting suspicious areas. The transformable drone adopts a tilt-rotor mechanism to automatically switch between hover and horizontal flight modes, following commands from virtual reality devices held in the ground control station. The conceptual design and transformation dynamics of the drone will be first discussed, followed by a model predictive control system developed to automatically control the transition flight. Simulation is also provided to show the effectiveness of the proposed control system.

  19. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control.

    Science.gov (United States)

    Kember, Guy; Ardell, Jeffrey L; Shivkumar, Kalyanam; Armour, J Andrew

    2017-01-01

    The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as 'free-floating' in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease.

  20. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control.

    Directory of Open Access Journals (Sweden)

    Guy Kember

    Full Text Available The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as 'free-floating' in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease.

  1. Design and Implementation an Autonomous Humanoid Robot Based on Fuzzy Rule-Based Motion Controller

    Directory of Open Access Journals (Sweden)

    Mohsen Taheri

    2010-04-01

    Full Text Available Research on humanoid robotics in Mechatronics and Automation Laboratory, Electrical and Computer Engineering, Islamic Azad University Khorasgan branch (Isfahan of Iran was started at
    the beginning of this decade. Various research prototypes for humanoid robots have been designed and are going through evolution over these years. This paper describes the hardware and software design of the kid size humanoid robot systems of the PERSIA Team in 2009. The robot has 20 actuated degrees of freedom based on Hitec HSR898. In this paper we have tried to focus on areas such as mechanical structure, Image processing unit, robot controller, Robot AI and behavior
    learning. In 2009, our developments for the Kid size humanoid robot include: (1 the design and construction of our new humanoid robots (2 the design and construction of a new hardware and software controller to be used in our robots. The project is described in two main parts: Hardware and Software. The software is developed a robot application which consists walking controller, autonomous motion robot, self localization base on vision and Particle Filter, local AI, Trajectory Planning, Motion Controller and Network. The hardware consists of the mechanical structure and the driver circuit board. Each robot is able to walk, fast walk, pass, kick and dribble when it catches
    the ball. These humanoids have been successfully participating in various robotic soccer competitions. This project is still in progress and some new interesting methods are described in the current report.

  2. Small-Signal Modeling, Analysis and Testing of Parallel Three-Phase-Inverters with A Novel Autonomous Current Sharing Controller

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2015-01-01

    active or reactive power, instead it uses a virtual impedance loop and a SFR phase-locked loop. The small-signal model of the system was developed for the autonomous operation of inverter-based microgrid with the proposed controller. The developed model shows large stability margin and fast transient...... response of the system. This model can help identifying the origin of each of the modes and possible feedback signals for design of controllers to improve the system stability. Experimental results from two parallel 2.2 kVA inverters verify the effectiveness of the novel control approach.......A novel simple and effective autonomous currentsharing controller for parallel three-phase inverters is employed in this paper. The novel controller is able to endow to the system high speed response and precision in contrast to the conventional droop control as it does not require calculating any...

  3. Cancer Pain Control for Advanced Cancer Patients by Using Autonomic Nerve Pharmacopuncture

    Directory of Open Access Journals (Sweden)

    Hwi-joong Kang

    2014-09-01

    Full Text Available Objectives: The purpose of this study is to report a case series of advanced cancer patients whose cancer pain was relieved by using autonomic nerve pharmacopuncture (ANP treatment. ANP is a subcutaneous injection therapy of mountain ginseng pharmacopuncture (MGP along the acupoints on the spine (Hua-Tuo-Jia-Ji-Xue; 0.5 cun lateral to the lower border of the spinous processes of vertebrae to enhance the immune system and to balance autonomic nerve function. Methods: Patients with three different types of cancer (gastric cancer, lung cancer, colon cancer with distant metastases with cancer pain were treated with ANP. 1 mL of MGP was injected into the bilateral Hua-Tuo-Jia-Ji-Xue on the T1-L5 sites (total 12 ─ 20 mL injection of each patient’s dorsum by using the principle of symptom differentiation. During ANP treatment, the visual analogue scale (VAS for pain was used to assess their levels of cancer pain; also, the dosage and the frequency of analgesic use were measured. Results: The cancer pain levels of all three patients improved with treatment using ANP. The VAS scores of the three patients decreased as the treatment progressed. The dosage and the frequency of analgesics also gradually decreased during the treatment period. Significantly, no related adverse events were found. Conclusion: ANP has shown benefit in controlling cancer pain for the three different types of cancer investigated in this study and in reducing the dosage and the frequency of analgesics. ANP is expected to be beneficial for reducing cancer pain and, thus, to be a promising new treatment for cancer pain.

  4. Autonomous execution of the Precision Immobilization Technique

    Science.gov (United States)

    Mascareñas, David D. L.; Stull, Christopher J.; Farrar, Charles R.

    2017-03-01

    Over the course of the last decade great advances have been made in autonomously driving cars. The technology has advanced to the point that driverless car technology is currently being tested on publicly accessed roadways. The introduction of these technologies onto publicly accessed roadways not only raises questions of safety, but also security. Autonomously driving cars are inherently cyber-physical systems and as such will have novel security vulnerabilities that couple both the cyber aspects of the vehicle including the on-board computing and any network data it makes use of, with the physical nature of the vehicle including its sensors, actuators, and the vehicle chassis. Widespread implementation of driverless car technology will require that both the cyber, as well as physical security concerns surrounding these vehicles are addressed. In this work, we specifically developed a control policy to autonomously execute the Precision Immobilization Technique, a.k.a. the PIT maneuver. The PIT maneuver was originally developed by law enforcement to end high-speed vehicular pursuits in a quasi-safe manner. However, there is still a risk of damage/roll-over to both the vehicle executing the PIT maneuver as well as to the vehicle subject to the PIT maneuver. In law enforcement applications, it would be preferable to execute the PIT maneuver using an autonomous vehicle, thus removing the danger to law-enforcement officers. Furthermore, it is entirely possible that unscrupulous individuals could inject code into an autonomously-driving car to use the PIT maneuver to immobilize other vehicles while maintaining anonymity. For these reasons it is useful to know how the PIT maneuver can be implemented on an autonomous car. In this work a simple control policy based on velocity pursuit was developed to autonomously execute the PIT maneuver using only a vision and range measurements that are both commonly collected by contemporary driverless cars. The ability of this

  5. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice.

    Science.gov (United States)

    Baggio, Laurie L; Ussher, John R; McLean, Brent A; Cao, Xiemin; Kabir, M Golam; Mulvihill, Erin E; Mighiu, Alexandra S; Zhang, Hangjun; Ludwig, Andreas; Seeley, Randy J; Heximer, Scott P; Drucker, Daniel J

    2017-11-01

    Glucagon-like peptide-1 (GLP-1) is secreted from enteroendocrine cells and exerts a broad number of metabolic actions through activation of a single GLP-1 receptor (GLP-1R). The cardiovascular actions of GLP-1 have garnered increasing attention as GLP-1R agonists are used to treat human subjects with diabetes and obesity that may be at increased risk for development of heart disease. Here we studied mechanisms linking GLP-1R activation to control of heart rate (HR) in mice. The actions of GLP-1R agonists were examined on the control of HR in wild type mice (WT) and in mice with cardiomyocyte-selective disruption of the GLP-1R (Glp1r CM-/- ). Complimentary studies examined the effects of GLP-1R agonists in mice co-administered propranolol or atropine. The direct effects of GLP-1R agonism on HR and ventricular developed pressure were examined in isolated perfused mouse hearts ex vivo, and atrial depolarization was quantified in mouse hearts following direct application of liraglutide to perfused atrial preparations ex vivo. Doses of liraglutide and lixisenatide that were equipotent for acute glucose control rapidly increased HR in WT and Glp1r CM-/- mice in vivo. The actions of liraglutide to increase HR were more sustained relative to lixisenatide, and diminished in Glp1r CM-/- mice. The acute chronotropic actions of GLP-1R agonists were attenuated by propranolol but not atropine. Neither native GLP-1 nor lixisenatide increased HR or developed pressure in perfused hearts ex vivo. Moreover, liraglutide had no direct effect on sinoatrial node firing rate in mouse atrial preparations ex vivo. Despite co-localization of HCN4 and GLP-1R in primate hearts, HCN4-directed Cre expression did not attenuate levels of Glp1r mRNA transcripts, but did reduce atrial Gcgr expression in the mouse heart. GLP-1R agonists increase HR through multiple mechanisms, including regulation of autonomic nervous system function, and activation of the atrial GLP-1R. Surprisingly, the

  6. Sliding mode control of an autonomous parallel fuel cell-super capacitor power source

    Energy Technology Data Exchange (ETDEWEB)

    More, Jeronimo J. [Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires (Argentina). Facultad de Ingenieria. Lab. de Electronica Industrial, Control e Instrumentacion], Email: jmore@ing.unlp.edu.ar; Puleston, Paul F. [Consejo de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Kunusch, Cristian; Colomer, Jordi Riera I. [Universitat Politecnica de Catalunya, Barcelona (Spain). Inst. de Robotica i Informatica Industrial (IRII)

    2010-07-01

    Nowadays, hydrogen fuel cell (FC) based systems emerge as one promising renewable alternative to fossil fuel systems in automotive and residential applications. However, their output dynamic response is relatively slow, mostly due to water and reactant gases dynamics. To overcome this limitation, FC-super capacitors (SCs) topologies can be used. The latter is capable of managing very fast power variations, presenting in addition high power density, long life cycle and good charge/discharge efficiency. In this work, a FC-SCs-based autonomous hybrid system for residential applications is considered. The FC and SCs are connected in parallel, through two separate DC/DC converters, to a DC bus. Under steady state conditions, the FC must deliver the load power requirement, while maintaining the SCs voltage regulated to the desired value. Under sudden load variations, the FC current rate must be limited to assure a safe transition to the new point of operation. During this current rate limitation mode, the SCs must deliver or absorb the power difference. To this end, a sliding mode strategy is proposed to satisfy to control objectives. The main one is the robust regulation of the DC bus voltage, even in the presence of system uncertainties and disturbances, such as load changes and FC voltage variations. Additionally, a second control objective is attained, namely to guarantee the adequate level of charge in the SCs, once the FC reaches the new steady state operation point. In this way, the system can meet the load power demand, even under sudden changes, and it can also satisfy a power demand higher than the nominal FC power, during short periods. The proposed control strategy is evaluated exhaustively by computer simulation considering fast load variations. The results presented in this work, corresponds to the first stage of a R and D collaboration project for the design and development of a novel FC-SCs-based autonomous hybrid system. In the next phase, the proposed

  7. Omnidirectional configuration and control approach on mini heavy loaded forklift autonomous guided vehicle

    Directory of Open Access Journals (Sweden)

    Adam Norsharimie

    2017-01-01

    Full Text Available This paper presents the omnidirectional configuration and control approach on Mini Heavy Loaded Forklift Autonomous Guided Vehicle (MHeLFAGV for flexibility maneuverability in confine and narrow area. The issue in turning motion for nonholonomic vehicle in confine area becoming a motivation in MHeLFAGV design to provide holonomic vehicle with flexible movement. Therefore an omni-wheeled named Mecanum wheel has been configured in this vehicle design as well as omnidirectional control algorithm. MHeLFAGV system is developed with collaboration and inspired from Vacuumshmelze (M Sdn. Bhd. Pekan, Pahang in order to have a customized mini forklift that able to work in a very confined warehouse (170cm × 270cm square with heavy payload in a range of 20-200kg. In electronics control design, two stages of controller boards are developed namely as Board 1 and 2 that specifically for movement controller board and monitoring controller board respectively. In addition separate module of left, right, forward, backward, diagonal and zigzagging movement is developed as embedded modules for MHeLFAGV system’s control architecture. A few experiments are done to verify the algorithm for each omnidirectional movement of MHeLFAGV system in the wide area. The waypoint of MHeLFAGV movement is plotted using Global Positioning System (GPS as well as a digital compass by mapping the longitude and latitude of the vehicle. There are slightly different between the targeted movements with recorded data since Mecanum wheeled affected by the uneven surface of the landscape. The experiment is also further on moving in confine are on the actual targeted warehouse.

  8. Autonomous real-time interventional scan plane control with a 3-D shape-sensing needle.

    Science.gov (United States)

    Elayaperumal, Santhi; Plata, Juan Camilo; Holbrook, Andrew B; Park, Yong-Lae; Pauly, Kim Butts; Daniel, Bruce L; Cutkosky, Mark R

    2014-11-01

    This study demonstrates real-time scan plane control dependent on three-dimensional needle bending, as measured from magnetic resonance imaging (MRI)-compatible optical strain sensors. A biopsy needle with embedded fiber Bragg grating (FBG) sensors to measure surface strains is used to estimate its full 3-D shape and control the imaging plane of an MR scanner in real-time, based on the needle's estimated profile. The needle and scanner coordinate frames are registered to each other via miniature radio-frequency (RF) tracking coils, and the scan planes autonomously track the needle as it is deflected, keeping its tip in view. A 3-D needle annotation is superimposed over MR-images presented in a 3-D environment with the scanner's frame of reference. Scan planes calculated based on the FBG sensors successfully follow the tip of the needle. Experiments using the FBG sensors and RF coils to track the needle shape and location in real-time had an average root mean square error of 4.2 mm when comparing the estimated shape to the needle profile as seen in high resolution MR images. This positional variance is less than the image artifact caused by the needle in high resolution SPGR (spoiled gradient recalled) images. Optical fiber strain sensors can estimate a needle's profile in real-time and be used for MRI scan plane control to potentially enable faster and more accurate physician response.

  9. Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings

    Science.gov (United States)

    Chen, Po-Chang; Huang, An-Chyau

    2005-04-01

    An adaptive sliding controller is proposed in this paper for controlling a non-autonomous quarter-car suspension system with time-varying loadings. The bound of the car-body loading is assumed to be available. Then, the reference coordinate is placed at the static position under the nominal loading so that the system dynamic equation is derived. Due to spring nonlinearities, the system property becomes asymmetric after coordinate transformation. Besides, in practical cases, system parameters are not easy to be obtained precisely for controller design. Therefore, in this paper, system uncertainties are lumped into two unknown time-varying functions. Since the variation bound of one of the unknown functions is not available, conventional adaptive schemes and robust designs are not applicable. To deal with this problem, the function approximation technique is employed to represent the unknown function as a finite combination of basis functions. The Lyapunov direct method can thus be used to find adaptive laws for updating coefficients in the approximating series and to prove stability of the closed-loop system. Since the position and velocity measurements of the unsprung mass are lumped into the unknown function, there is no need to install sensors on the axle and wheel assembly in the actual implementation. Simulation results are presented to show the performance of the proposed strategy.

  10. Blood pressure variability and cardiovascular autonomic control during hemodialysis in peripheral vascular disease patients

    International Nuclear Information System (INIS)

    Titapiccolo, Jasmine Ion; Cerutti, Sergio; Signorini, Maria Gabriella; Ferrario, Manuela; Garzotto, Francesco; Cruz, Dinna; Ronco, Claudio; Moissl, Ulrich; Tetta, Ciro

    2012-01-01

    Hemodialysis (HD) patients with peripheral vascular disease (PVD) are at higher risk of mortality. The main objectives of this work were to investigate the hypothesis of an association between the PVD and an altered control system on peripheral resistance in response to volume depletion induced by HD treatment; and to investigate whether HD induced increase of pulse pressure (PP) is associated with PVD. Continuous blood pressure (BP) was recorded during HD treatment at the beginning and at the end of HD. The overhydration condition was evaluated by means of whole body bioimpedance spectroscopy, measured before each HD treatment. BP variability, heart rate variability and baroreflex sensitivity were then analyzed. Patients affected by PVD reported a prevalence of peripheral local control as shown by higher values of very low frequency in diastolic blood pressure (DBP) variability and a reduced cardiac baroreflex with respect to patients not affected by this pathology. HD treatment induced a significant increase of PP and LF% in DBP series in PVD patients only. Our results suggested that differences in BP variability and PP changes could be related not only to an underlying vascular disease, but also to an alteration in autonomic control. (paper)

  11. Policy-Based Management Natural Language Parser

    Science.gov (United States)

    James, Mark

    2009-01-01

    The Policy-Based Management Natural Language Parser (PBEM) is a rules-based approach to enterprise management that can be used to automate certain management tasks. This parser simplifies the management of a given endeavor by establishing policies to deal with situations that are likely to occur. Policies are operating rules that can be referred to as a means of maintaining order, security, consistency, or other ways of successfully furthering a goal or mission. PBEM provides a way of managing configuration of network elements, applications, and processes via a set of high-level rules or business policies rather than managing individual elements, thus switching the control to a higher level. This software allows unique management rules (or commands) to be specified and applied to a cross-section of the Global Information Grid (GIG). This software embodies a parser that is capable of recognizing and understanding conversational English. Because all possible dialect variants cannot be anticipated, a unique capability was developed that parses passed on conversation intent rather than the exact way the words are used. This software can increase productivity by enabling a user to converse with the system in conversational English to define network policies. PBEM can be used in both manned and unmanned science-gathering programs. Because policy statements can be domain-independent, this software can be applied equally to a wide variety of applications.

  12. UPM: unified policy-based network management

    Science.gov (United States)

    Law, Eddie; Saxena, Achint

    2001-07-01

    Besides providing network management to the Internet, it has become essential to offer different Quality of Service (QoS) to users. Policy-based management provides control on network routers to achieve this goal. The Internet Engineering Task Force (IETF) has proposed a two-tier architecture whose implementation is based on the Common Open Policy Service (COPS) protocol and Lightweight Directory Access Protocol (LDAP). However, there are several limitations to this design such as scalability and cross-vendor hardware compatibility. To address these issues, we present a functionally enhanced multi-tier policy management architecture design in this paper. Several extensions are introduced thereby adding flexibility and scalability. In particular, an intermediate entity between the policy server and policy rule database called the Policy Enforcement Agent (PEA) is introduced. By keeping internal data in a common format, using a standard protocol, and by interpreting and translating request and decision messages from multi-vendor hardware, this agent allows a dynamic Unified Information Model throughout the architecture. We have tailor-made this unique information system to save policy rules in the directory server and allow executions of policy rules with dynamic addition of new equipment during run-time.

  13. The transcription factor Foxg1 regulates telencephalic progenitor proliferation cell autonomously, in part by controlling Pax6 expression levels

    Directory of Open Access Journals (Sweden)

    Quinn Jane C

    2011-03-01

    Full Text Available Abstract Background The transcription factor Foxg1 is an important regulator of telencephalic cell cycles. Its inactivation causes premature lengthening of telencephalic progenitor cell cycles and increased neurogenic divisions, leading to severe hypoplasia of the telencephalon. These proliferation defects could be a secondary consequence of the loss of Foxg1 caused by the abnormal expression of several morphogens (Fibroblast growth factor 8, bone morphogenetic proteins in the telencephalon of Foxg1 null mutants. Here we investigated whether Foxg1 has a cell autonomous role in the regulation of telencephalic progenitor proliferation. We analysed Foxg1+/+↔Foxg1-/- chimeras, in which mutant telencephalic cells have the potential to interact with, and to have any cell non-autonomous defects rescued by, normal wild-type cells. Results Our analysis showed that the Foxg1-/- cells are under-represented in the chimeric telencephalon and the proportion of them in S-phase is significantly smaller than that of their wild-type neighbours, indicating that their under-representation is caused by a cell autonomous reduction in their proliferation. We then analysed the expression of the cell-cycle regulator Pax6 and found that it is cell-autonomously downregulated in Foxg1-/- dorsal telencephalic cells. We went on to show that the introduction into Foxg1-/- embryos of a transgene designed to reverse Pax6 expression defects resulted in a partial rescue of the telencephalic progenitor proliferation defects. Conclusions We conclude that Foxg1 exerts control over telencephalic progenitor proliferation by cell autonomous mechanisms that include the regulation of Pax6, which itself is known to regulate proliferation cell autonomously in a regional manner.

  14. On the use of peripheral autonomic signals for binary control of body–machine interfaces

    International Nuclear Information System (INIS)

    Falk, Tiago H; Guirgis, Mirna; Power, Sarah; Blain, Stefanie; Chau, Tom

    2010-01-01

    In this work, the potential of using peripheral autonomic (PA) responses as control signals for body–machine interfaces that require no physical movement was investigated. Electrodermal activity, skin temperature, heart rate and respiration rate were collected from six participants and hidden Markov models (HMMs) were used to automatically detect when a subject was performing music imagery as opposed to being at rest. Experiments were performed under controlled silent conditions as well as in the presence of continuous and startle (e.g. door slamming) ambient noise. By developing subject-specific HMMs, music imagery was detected under silent conditions with the average sensitivity and specificity of 94.2% and 93.3%, respectively. In the presence of startle noise stimuli, the system sensitivity and specificity levels of 78.8% and 80.2% were attained, respectively. In environments corrupted by continuous ambient and startle noise, the system specificity further decreased to 75.9%. To improve the system robustness against environmental noise, a startle noise detection and compensation strategy were proposed. Once in place, performance levels were shown to be comparable to those observed in silence. The obtained results suggest that PA signals, combined with HMMs, can be useful tools for the development of body–machine interfaces that allow individuals with severe motor impairments to communicate and/or to interact with their environment

  15. Optimizing Industrial Consumer Demand Response Through Disaggregation, Hour-Ahead Pricing, and Momentary Autonomous Control

    Science.gov (United States)

    Abdulaal, Ahmed

    The work in this study addresses the current limitations of the price-driven demand response (DR) approach. Mainly, the dependability on consumers to respond in an energy aware conduct, the response timeliness, the difficulty of applying DR in a busy industrial environment, and the problem of load synchronization are of utmost concern. In order to conduct a simulation study, realistic price simulation model and consumers' building load models are created using real data. DR action is optimized using an autonomous control method, which eliminates the dependency on frequent consumer engagement. Since load scheduling and long-term planning approaches are infeasible in the industrial environment, the proposed method utilizes instantaneous DR in response to hour-ahead price signals (RTP-HA). Preliminary simulation results concluded savings at the consumer-side at the cost of increased supplier-side burden due to the aggregate effect of the universal DR policies. Therefore, a consumer disaggregation strategy is briefly discussed. Finally, a refined discrete-continuous control system is presented, which utilizes multi-objective Pareto optimization, evolutionary programming, utility functions, and bidirectional loads. Demonstrated through a virtual testbed fit with real data, the new system achieves momentary optimized DR in real-time while maximizing the consumer's wellbeing.

  16. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning of Hazardous Sites - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schalkoff, R.J.

    2000-12-01

    This report summarizes work after 4 years of a 3-year project (no-cost extension of the above-referenced project for a period of 12 months granted). The fourth generation of a vision sensing head for geometric and photometric scene sensing has been built and tested. Estimation algorithms for automatic sensor calibration updating under robot motion have been developed and tested. We have modified the geometry extraction component of the rendering pipeline. Laser scanning now produces highly accurate points on segmented curves. These point-curves are input to a NURBS (non-uniform rational B-spline) skinning procedure to produce interpolating surface segments. The NURBS formulation includes quadrics as a sub-class, thus this formulation allows much greater flexibility without the attendant instability of generating an entire quadric surface. We have also implemented correction for diffuse lighting and specular effects. The QRobot joint level control was extended to a complete semi-autonomous robot control system for D and D operations. The imaging and VR subsystems have been integrated and tested.

  17. Sensor fusion: lane marking detection and autonomous intelligent cruise control system

    Science.gov (United States)

    Baret, Marc; Baillarin, S.; Calesse, C.; Martin, Lionel

    1995-12-01

    In the past few years MATRA and RENAULT have developed an Autonomous Intelligent Cruise Control (AICC) system based on a LIDAR sensor. This sensor incorporating a charge coupled device was designed to acquire pulsed laser diode emission reflected by standard car reflectors. The absence of moving mechanical parts, the large field of view, the high measurement rate and the very good accuracy for distance range and angular position of targets make this sensor very interesting. It provides the equipped car with the distance and the relative speed of other vehicles enabling the safety distance to be controlled by acting on the throttle and the automatic gear box. Experiments in various real traffic situations have shown the limitations of this kind of system especially on bends. All AICC sensors are unable to distinguish between a bend and a change of lane. This is easily understood if we consider a road without lane markings. This fact has led MATRA to improve its AICC system by providing the lane marking information. Also in the scope of the EUREKA PROMETHEUS project, MATRA and RENAULT have developed a lane keeping system in order to warn of the drivers lack of vigilance. Thus, MATRA have spread this system to far field lane marking detection and have coupled it with the AICC system. Experiments will be carried out on roads to estimate the gain in performance and comfort due to this fusion.

  18. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning of Hazardous Sites - Final Report

    International Nuclear Information System (INIS)

    Schalkoff, R.J.

    2000-01-01

    This report summarizes work after 4 years of a 3-year project (no-cost extension of the above-referenced project for a period of 12 months granted). The fourth generation of a vision sensing head for geometric and photometric scene sensing has been built and tested. Estimation algorithms for automatic sensor calibration updating under robot motion have been developed and tested. We have modified the geometry extraction component of the rendering pipeline. Laser scanning now produces highly accurate points on segmented curves. These point-curves are input to a NURBS (non-uniform rational B-spline) skinning procedure to produce interpolating surface segments. The NURBS formulation includes quadrics as a sub-class, thus this formulation allows much greater flexibility without the attendant instability of generating an entire quadric surface. We have also implemented correction for diffuse lighting and specular effects. The QRobot joint level control was extended to a complete semi-autonomous robot control system for D and D operations. The imaging and VR subsystems have been integrated and tested

  19. Effects of the Fourth Ventricle Compression in the Regulation of the Autonomic Nervous System: A Randomized Control Trial

    Directory of Open Access Journals (Sweden)

    Ana Paula Cardoso-de-Mello-e-Mello-Ribeiro

    2015-01-01

    Full Text Available Introduction. Dysfunction of the autonomic nervous system is an important factor in the development of chronic pain. Fourth ventricle compression (CV-4 has been shown to influence autonomic activity. Nevertheless, the physiological mechanisms behind these effects remain unclear. Objectives. This study is aimed at evaluating the effects of fourth ventricle compression on the autonomic nervous system. Methods. Forty healthy adults were randomly assigned to an intervention group, on whom CV-4 was performed, or to a control group, who received a placebo intervention (nontherapeutic touch on the occipital bone. In both groups, plasmatic catecholamine levels, blood pressure, and heart rate were measured before and immediately after the intervention. Results. No effects related to the intervention were found. Although a reduction of norepinephrine, systolic blood pressure, and heart rate was found after the intervention, it was not exclusive to the intervention group. In fact, only the control group showed an increment of dopamine levels after intervention. Conclusion. Fourth ventricle compression seems not to have any effect in plasmatic catecholamine levels, blood pressure, or heart rate. Further studies are needed to clarify the CV-4 physiologic mechanisms and clinical efficacy in autonomic regulation and pain treatment.

  20. Low Cost Autonomous Navigation and Control of a Mechanically Balanced Bicycle with Dual Locomotion Mode

    OpenAIRE

    Pandey, Ayush; Mahajan, Subhamoy; Kosta, Adarsh; Yadav, Dhananjay; Pandey, Vikas; Sahay, Saurav; Jha, Siddharth; Agarwal, Shubh; Bhise, Aashay; Kumar, Raushan; Bhushan, Aniket; Parikh, Vraj; Lohani, Ankit; Dash, Saurabh; Choudhary, Himanshu

    2016-01-01

    On the lines of the huge and varied efforts in the field of automation with respect to technology development and innovation of vehicles to make them run autonomously, this paper presents an innovation to a bicycle. A normal daily use bicycle was modified at low cost such that it runs autonomously, while maintaining its original form i.e. the manual drive. Hence, a bicycle which could be normally driven by any human and with a press of switch could run autonomously according to the needs of t...

  1. White rice consumption and risk of esophageal cancer in Xinjiang Uyghur Autonomous Region, northwest China: a case-control study

    OpenAIRE

    Tang, Li; Xu, Fenglian; Zhang, Taotao; Lei, Jun; Binns, Colin W.; Lee, Andy H.

    2015-01-01

    This study investigated the association between white rice consumption and the risk of esophageal cancer in remote northwest China, where the cancer incidence is known to be high. A case-control study was conducted during 2008?2009 in Urumqi and Shihezi, Xinjiang Uyghur Autonomous Region of China. Participants were 359 incident esophageal cancer patients and 380 hospital-based controls. Information on habitual white rice consumption was obtained by personal interview using a validated semi-qu...

  2. Aerobic physical training has little effect on cardiovascular autonomic control in aging rats subjected to early menopause.

    Science.gov (United States)

    Tezini, Geisa C S V; Dias, Daniel P M; Souza, Hugo C D

    2013-02-01

    We investigated and compared the effects of physiological menopause (PM) and early menopause (EM) and the adaptations promoted by physical training on the cardiovascular autonomic control of aged rats. Female Wistar rats (N=72) were assigned to 3 groups: control (22 weeks old rats, undergoing sham surgery in the 10th week of life), PM (82 weeks old rats, undergoing sham surgery in the 10th week of life) and EM (82 weeks old rats, undergoing ovariectomy in the 10th week of life). In each group, half of the rats were subjected to swimming training over a period of 10 weeks. Sedentary PM and EM groups had higher basal mean arterial pressure (MAP) and heart rate (HR) and lower intrinsic HR compared to the sedentary control group. Physical training reduced MAP in PM group. All trained groups had lower basal HR; however, only control and PM-trained groups showed decreased intrinsic HR. The assessment of cardiac autonomic balance showed that PM and EM sedentary groups exhibited sympathetic predominance compared to control group. After physical training, only EM group presented sympathetic predominance. HR variability (pulse interval) was similar among all sedentary groups. However, control and PM-trained groups showed lower power in low frequency band (LF; 0.2-0.75 Hz) and higher power in high frequency band (HF; 0.75-3.0 Hz). The analysis of systolic arterial pressure variability revealed that PM and EM sedentary groups had higher LF power. However, PM group showed lower LF power following physical training. Finally, PM and EM groups had a reduction in spontaneous baroreflex sensitivity, that was attenuated by physical training. The overall results suggest that PM or EM promotes similar negative effects on MAP, HR and cardiovascular autonomic control. However, unlike the PM group, physical training was not able to mitigate all negative effects of EM on cardiovascular autonomic control. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Development of an Experimental Platform for Testing Autonomous UAV Guidance and Control Algorithms

    National Research Council Canada - National Science Library

    Rufa, Justin R

    2007-01-01

    With the United States? push towards using unmanned aerial vehicles (UAVs) for more military missions, wide area search theory is being researched to determine the viability of multiple vehicle autonomous searches over the battle area...

  4. Flight Control Design for an Autonomous Rotorcraft Using Pseudo-Sliding Mode Control and Waypoint Navigation

    Science.gov (United States)

    Mallory, Nicolas Joseph

    The design of robust automated flight control systems for aircraft of varying size and complexity is a topic of continuing interest for both military and civilian industries. By merging the benefits of robustness from sliding mode control (SMC) with the familiarity and transparency of design tradeoff offered by frequency domain approaches, this thesis presents pseudo-sliding mode control as a viable option for designing automated flight control systems for complex six degree-of-freedom aircraft. The infinite frequency control switching of SMC is replaced, by necessity, with control inputs that are continuous in nature. An introduction to SMC theory is presented, followed by a detailed design of a pseudo-sliding mode control and automated flight control system for a six degree-of-freedom model of a Hughes OH6 helicopter. This model is then controlled through three different waypoint missions that demonstrate the stability of the system and the aircraft's ability to follow certain maneuvers despite time delays, large changes in model parameters and vehicle dynamics, actuator dynamics, sensor noise, and atmospheric disturbances.

  5. Prosocial and antisocial behavior in sport: the role of coaching style, autonomous vs. controlled motivation, and moral disengagement.

    Science.gov (United States)

    Hodge, Ken; Lonsdale, Chris

    2011-08-01

    The purpose of this study was to examine whether the relationships between contextual factors (i.e., autonomy-supportive vs. controlling coaching style) and person factors (i.e., autonomous vs. controlled motivation) outlined in self-determination theory (SDT) were related to prosocial and antisocial behaviors in sport. We also investigated moral disengagement as a mediator of these relationships. Athletes' (n = 292, M = 19.53 years) responses largely supported our SDT-derived hypotheses. Results indicated that an autonomy-supportive coaching style was associated with prosocial behavior toward teammates; this relationship was mediated by autonomous motivation. Controlled motivation was associated with antisocial behavior toward teammates and antisocial behavior toward opponents, and these two relationships were mediated by moral disengagement. The results provide support for research investigating the effect of autonomy-supportive coaching interventions on athletes' prosocial and antisocial behavior.

  6. Autonomous Mower vs. Rotary Mower: Effects on Turf Quality and Weed Control in Tall Fescue Lawn

    Directory of Open Access Journals (Sweden)

    Michel Pirchio

    2018-02-01

    Full Text Available Autonomous mowers are battery-powered machines designed for lawn mowing that require very low human labour. Autonomous mowers can increase turf quality and reduce local noise and pollution compared with gasoline-powered rotary mowers. However, very little is known about the effects of autonomous mowing on encroaching weeds. The aim of this research was to compare the effects of an autonomous mower and an ordinary gasoline-powered mower on weed development in an artificially infested tall fescue (Festuca arundinacea Schreb. turf with different nitrogen (N rates. A three-way factor experimental design with three replications was adopted. Factor A consisted of three N rates (0, 75, and 150 kg ha−1, factor B consisted of two mowing systems (autonomous mower vs. walk-behind gasoline rotary mower equipped for mulching, and factor C which consisted of four different transplanted weed species: (a Bellis perennis L., (b Trifolium repens L.; (c Trifolium subterraneum L.; and (d Lotus corniculatus L. Of these, B. perennis is a rosette-type plant, while the other three species are creeping-type plants. The interaction between mowing system and transplanted weed species showed that the four transplanted weed species were larger when mowed by the autonomous mower than by the rotary mower. The autonomous mower yielded larger weeds probably because the constant mowing height caused the creeping weed species to grow sideways, since the turfgrass offered no competition for light. N fertilization increased turf quality and mowing quality, and also reduced spontaneous weed infestation. Autonomous mowing increased turf quality, mowing quality, but also the percentage of spontaneous weed cover.

  7. JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism.

    Science.gov (United States)

    Hassan, Hala; Scheres, Ben; Blilou, Ikram

    2010-05-01

    In Arabidopsis, specification of the hair and non-hair epidermal cell types is position dependent, in that hair cells arise over clefts in the underlying cortical cell layer. Epidermal patterning is determined by a network of transcriptional regulators that respond to an as yet unknown cue from underlying tissues. Previously, we showed that JACKDAW (JKD), a zinc finger protein, localizes in the quiescent centre and the ground tissue, and regulates tissue boundaries and asymmetric cell division by delimiting SHORT-ROOT movement. Here, we provide evidence that JKD controls position-dependent signals that regulate epidermal-cell-type patterning. JKD is required for appropriately patterned expression of the epidermal cell fate regulators GLABRA2, CAPRICE and WEREWOLF. Genetic interaction studies indicate that JKD operates upstream of the epidermal patterning network in a SCRAMBLED (SCM)-dependent fashion after embryogenesis, but acts independent of SCM in embryogenesis. Tissue-specific induction experiments indicate non-cell-autonomous action of JKD from the underlying cortex cell layer to specify epidermal cell fate. Our findings are consistent with a model where JKD induces a signal in every cortex cell that is more abundant in the hair cell position owing to the larger surface contact of cells located over a cleft.

  8. Investigating power control in autonomous power systems with increasing wind power penetration

    Energy Technology Data Exchange (ETDEWEB)

    Margaris, Ioannis D. [National Technical Univ. of Athens (Greece). Electric Energy Systems Lab.; Hansen, Anca D.; Sorensen, Poul [Risoe National Laboratory, Roskilde (Denmark). Wind Energy Dept.; Hatziargyriou, Nikos D. [National Technical Univ. of Athens (Greece). Electric Energy Systems Lab.; Public Power Corporation S.A., Athens (Greece)

    2009-07-01

    Increasing levels of wind penetration in autonomous power systems has set intensively high standards with respect to wind turbine technology during the last years. Special features of non-interconnected power systems make security issues rather critical, as the operation of large wind farms like conventional power plants is becoming a necessity. This paper includes the study case of Rhodos island, in Greece, where rapidly increasing wind penetration has started to impose serious security issues for the immediate future. The scenarios studied here correspond to reference year of study 2012 and include wind farms with three different wind turbine technologies - namely Doubly Fed Induction Generator (DFIG), Permanent Magnet Synchronous Generator (PMSG) and Active Stall Induction Generator (ASIG) based wind turbines. Aggregated models of the wind farms are being used and results for different load cases are being analyzed and discussed. The ability of wind farms to assist in some of the power system control services traditionally carried out by conventional synchronous generation is being investigated and discussed. The power grid of the island, including speed governors and automatic voltage regulators, is simulated in the dedicated power system simulation program Power Factory from DIgSILENT. (orig.)

  9. Autonomous proximity operations using machine vision for trajectory control and pose estimation

    Science.gov (United States)

    Cleghorn, Timothy F.; Sternberg, Stanley R.

    1991-01-01

    A machine vision algorithm was developed which permits guidance control to be maintained during autonomous proximity operations. At present this algorithm exists as a simulation, running upon an 80386 based personal computer, using a ModelMATE CAD package to render the target vehicle. However, the algorithm is sufficiently simple, so that following off-line training on a known target vehicle, it should run in real time with existing vision hardware. The basis of the algorithm is a sequence of single camera images of the target vehicle, upon which radial transforms were performed. Selected points of the resulting radial signatures are fed through a decision tree, to determine whether the signature matches that of the known reference signatures for a particular view of the target. Based upon recognized scenes, the position of the maneuvering vehicle with respect to the target vehicles can be calculated, and adjustments made in the former's trajectory. In addition, the pose and spin rates of the target satellite can be estimated using this method.

  10. An integrated movement capture and control platform applied towards autonomous movements of surgical robots.

    Science.gov (United States)

    Daluja, Sachin; Golenberg, Lavie; Cao, Alex; Pandya, Abhilash K; Auner, Gregory W; Klein, Michael D

    2009-01-01

    Robotic surgery has gradually gained acceptance due to its numerous advantages such as tremor filtration, increased dexterity and motion scaling. There remains, however, a significant scope for improvement, especially in the areas of surgeon-robot interface and autonomous procedures. Previous studies have attempted to identify factors affecting a surgeon's performance in a master-slave robotic system by tracking hand movements. These studies relied on conventional optical or magnetic tracking systems, making their use impracticable in the operating room. This study concentrated on building an intrinsic movement capture platform using microcontroller based hardware wired to a surgical robot. Software was developed to enable tracking and analysis of hand movements while surgical tasks were performed. Movement capture was applied towards automated movements of the robotic instruments. By emulating control signals, recorded surgical movements were replayed by the robot's end-effectors. Though this work uses a surgical robot as the platform, the ideas and concepts put forward are applicable to telerobotic systems in general.

  11. Effect of "Touch Rugby" Training on the Cardiovascular Autonomic Control In Sedentary Subjects.

    Science.gov (United States)

    Filliau, C; Younes, M; Blanchard, A-L; Piscione, J; Van de Louw, A; Seguret, C; Israel, J; Cottin, F

    2015-06-01

    This study aimed to explore the effects of "touch-rugby" training on the cardiovascular autonomic control in sedentary subjects. 22 adults (30-64 years old) were included in this study. Before (pre-test) and after (post-test) the period of training, cardio-respiratory recordings were achieved at rest and during a graded maximal exercise on a treadmill. The Smoothed-Pseudo-Wigner-Ville Distribution provided instantaneous time frequency components of RR intervals and systolic blood pressure variability in low- and high-frequency bands. The baroreflex sensitivity was assessed in low-frequency and high-frequency bands. Between pre-test and post-test, resting heart rate (74±10 vs. 69±12 beats.min(-1), pbaroreflex sensitivity increased (13.4±10.1 vs. 26.0±20.9 ms.mmHg(-1), ptraining appears to be beneficial to cardiac health. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Autonomic control of body temperature and blood pressure: influences of female sex hormones.

    Science.gov (United States)

    Charkoudian, Nisha; Hart, Emma C J; Barnes, Jill N; Joyner, Michael J

    2017-06-01

    Female reproductive hormones exert important non-reproductive influences on autonomic regulation of body temperature and blood pressure. Estradiol and progesterone influence thermoregulation both centrally and peripherally, where estradiol tends to promote heat dissipation, and progesterone tends to promote heat conservation and higher body temperatures. Changes in thermoregulation over the course of the menstrual cycle and with hot flashes at menopause are mediated by hormonal influences on neural control of skin blood flow and sweating. The influence of estradiol is to promote vasodilation, which, in the skin, results in greater heat dissipation. In the context of blood pressure regulation, both central and peripheral hormonal influences are important as well. Peripherally, the vasodilator influence of estradiol contributes to the lower blood pressures and smaller risk of hypertension seen in young women compared to young men. This is in part due to a mechanism by which estradiol augments beta-adrenergic receptor mediated vasodilation, offsetting alpha-adrenergic vasoconstriction, and resulting in a weak relationship between muscle sympathetic nerve activity and total peripheral resistance, and between muscle sympathetic nerve activity and blood pressure. After menopause, with the loss of reproductive hormones, sympathetic nerve activity, peripheral resistance and blood pressure become more strongly related, and sympathetic nerve activity (which increases with age) becomes a more important contributor to the prevailing level of blood pressure. Continuing to increase our understanding of sex hormone influences on body temperature and blood pressure regulation will provide important insight for optimization of individualized health care for future generations of women.

  13. Autonomous real-time adaptive management of soil salinity using a receding horizon control algorithm: a pilot-scale demonstration.

    Science.gov (United States)

    Park, Yeonjeong; Harmon, Thomas C

    2011-10-01

    Soil salinization is a potentially negative side effect of irrigation with reclaimed water. While optimization schemes have been applied to soil salinity control, these have typically failed to take advantage of real-time sensor feedback. This study incorporates current soil observation technologies into the optimal feedback-control scheme known as Receding Horizon Control (RHC) to enable successful autonomous control of soil salinization. RHC uses real-time sensor measurements, physically-based state prediction models, and optimization algorithms to drive field conditions to a desired environmental state by manipulating application rate or irrigation duration/frequency. A simulation model including the Richards equation coupled to energy and solute transport equations is employed as a state estimator. Vertical multi-sensor arrays installed in the soil provide initial conditions and continuous feedback to the control scheme. An optimization algorithm determines the optimal irrigation rate or frequency subject to imposed constraints protective of soil salinization. A small-scale field test demonstrates that the RHC scheme is capable of autonomously maintaining specified salt levels at a prescribed soil depth. This finding suggests that, given an adequately structured and trained simulation model, sensor networks, and optimization algorithms can be integrated using RHC to autonomously achieve water reuse and agricultural objectives while managing soil salinization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. The effects of autonomous and controlled regulation of performance-approach goals on well-being: a process model.

    Science.gov (United States)

    Gillet, Nicolas; Lafrenière, Marc-André K; Vallerand, Robert J; Huart, Isabelle; Fouquereau, Evelyne

    2014-03-01

    The main purpose of the present research was to propose and test a motivational model linking achievement goal approach and self-determination theory. First, the effects of performance-approach goals and the autonomous and controlling reasons underlying their pursuit on well-being were investigated. Second, the mediating variables (i.e., effort, goal attainment, need satisfaction, and thwarting) at play in these relationships were examined based on the self-concordance model (Sheldon & Elliot, 1999). The model was tested in two studies in educational and work settings using cross sectional (Study 1) and prospective designs (Study 2). The present results revealed that considering autonomous and controlled regulations underlying performance-approach goals predicted well-being above and beyond the strength of performance-approach goals. Moreover, the mediational sequence based on the self-concordance model was supported in both studies. Theoretical implications and directions for future research are discussed. © 2012 The British Psychological Society.

  15. A new control strategy with saturation effect compensation for an autonomous induction generator driven by wide speed range turbines

    International Nuclear Information System (INIS)

    Margato, Elmano; Faria, Jose; Resende, M.J.; Palma, Joao

    2011-01-01

    Research highlights: → A novel control strategy for autonomous induction generators with variable rotor speed. → Generator excitation achieved using a current controlled voltage source inverter. → Machine optimized use with stability and saturation effect compensation. → Both saturation and cross-saturation effects discussed upon generator modeling. → Efficient excitation and continuous load voltage control in a wide rotor speed range. -- Abstract: This paper presents a variable speed autonomous squirrel cage generator excited by a current-controlled voltage source inverter to be used in stand-alone micro-hydro power plants. The paper proposes a system control strategy aiming to properly excite the machine as well as to achieve the load voltage control. A feed-forward control sets the appropriate generator flux by taking into account the actual speed and the desired load voltage. A load voltage control loop is used to adjust the generated active power in order to sustain the load voltage at a reference value. The control system is based on a rotor flux oriented vector control technique which takes into account the machine saturation effect. The proposed control strategy and the adopted system models were validated both by numerical simulation and by experimental results obtained from a laboratory prototype. Results covering the prototype start-up, as well as its steady-state and dynamical behavior are presented.

  16. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    Science.gov (United States)

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  17. Autonomous and Controlling Reasons Underlying Achievement Goals during Task Engagement: Their Relation to Intrinsic Motivation and Cheating

    Science.gov (United States)

    Ozdemir Oz, Ayse; Lane, Jennie F.; Michou, Aikaterini

    2016-01-01

    The aim of this study was to investigate the relation of autonomous and controlling reasons underlying an endorsed achievement goal to intrinsic motivation and cheating. The endorsement of the achievement goal was ensured by involving 212 (M(subscript age) = 19.24, SD = 0.97) freshman students in a spatial task and asking them to report their most…

  18. Cardiovascular control, autonomic function, and elite endurance performance in spinal cord injury.

    Science.gov (United States)

    West, C R; Gee, C M; Voss, C; Hubli, M; Currie, K D; Schmid, J; Krassioukov, A V

    2015-08-01

    We aimed to determine the relationship between level of injury, completeness of injury, resting as well as exercise hemodynamics, and endurance performance in athletes with spinal cord injury (SCI). Twenty-three elite male paracycling athletes (C3-T8) were assessed for neurological level/completeness of injury, autonomic completeness of injury, resting cardiovascular function, and time to complete a 17.3-km World Championship time-trial test. A subset were also fitted with heart rate (HR) monitors and their cycles were fitted with a global positioning systems device (n = 15). Thoracic SCI exhibited higher seated systolic blood pressure along with superior time-trial performance compared with cervical SCI (all P athletes with cervical autonomic incomplete SCI exhibited a faster time-trial time and a higher average speed compared with cervical autonomic complete SCI (all P speed between thoracic autonomic complete vs incomplete SCI. In conclusion, autonomic completeness of injury and the consequent ability of the cardiovascular system to respond to exercise appear to be a critical determinant of endurance performance in elite athletes with cervical SCI. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Implementation of Directional Control System for Autonomous Robot Based on Voice Command Controller

    OpenAIRE

    Han Nilar Htay; Hla Myo Tun

    2014-01-01

    The main idea of this research is to process analog voice signal. The paper is implemented for controlling the robot by voice command. The implemented system involves voice recognition unit, digital data processing unit with DC switching section. The proposed system consists of a microcontroller and a voice recognition processor that can recognize a limited number of voice patterns. This is voice based guidance system, which uses the special voice recognition IC HM2007 for speech enhancement....

  20. Autonomic control of vasomotion in the porcine coronary circulation during treadmill exercise: evidence for feed-forward beta-adrenergic control

    NARCIS (Netherlands)

    D.J.G.M. Duncker (Dirk); R. Stubenitsky (René); P.D. Verdouw (Pieter)

    1998-01-01

    textabstractTo date, no studies have investigated coronary vasomotor control of myocardial O2 delivery (MDO2) and its modulation by the autonomic nervous system in the porcine heart during treadmill exercise. We studied 8 chronically instrumented swine under resting

  1. Adaptive estimation and control with application to vision-based autonomous formation flight

    Science.gov (United States)

    Sattigeri, Ramachandra

    2007-05-01

    Modern Unmanned Aerial Vehicles (UAVs) are equipped with vision sensors because of their light-weight, low-cost characteristics and also their ability to provide a rich variety of information of the environment in which the UAVs are navigating in. The problem of vision based autonomous flight is very difficult and challenging since it requires bringing together concepts from image processing and computer vision, target tracking and state estimation, and flight guidance and control. This thesis focuses on the adaptive state estimation, guidance and control problems involved in vision-based formation flight. Specifically, the thesis presents a composite adaptation approach to the partial state estimation of a class of nonlinear systems with unmodeled dynamics. In this approach, a linear time-varying Kalman filter is the nominal state estimator which is augmented by the output of an adaptive neural network (NN) that is trained with two error signals. The benefit of the proposed approach is in its faster and more accurate adaptation to the modeling errors over a conventional approach. The thesis also presents two approaches to the design of adaptive guidance and control (G&C) laws for line-of-sight formation flight. In the first approach, the guidance and autopilot systems are designed separately and then combined together by assuming time-scale separation. The second approach is based on integrating the guidance and autopilot design process. The developed G&C laws using both approaches are adaptive to unmodeled leader aircraft acceleration and to own aircraft aerodynamic uncertainties. The thesis also presents theoretical justification based on Lyapunov-like stability analysis for integrating the adaptive state estimation and adaptive G&C designs. All the developed designs are validated in nonlinear, 6DOF fixed-wing aircraft simulations. Finally, the thesis presents a decentralized coordination strategy for vision-based multiple-aircraft formation control. In this

  2. Broadband vehicle-to-vehicle communication using an extended autonomous cruise control sensor

    Science.gov (United States)

    Heddebaut, M.; Rioult, J.; Ghys, J. P.; Gransart, Ch; Ambellouis, S.

    2005-06-01

    For several years road vehicle autonomous cruise control (ACC) systems as well as anti-collision radar have been developed. Several manufacturers currently sell this equipment. The current generation of ACC sensors only track the first preceding vehicle to deduce its speed and position. These data are then used to compute, manage and optimize a safety distance between vehicles, thus providing some assistance to car drivers. However, in real conditions, to elaborate and update a real time driving solution, car drivers use information about speed and position of preceding and following vehicles. This information is essentially perceived using the driver's eyes, binocular stereoscopic vision performed through the windscreens and rear-view mirrors. Furthermore, within a line of vehicles, the frontal road perception of the first vehicle is very particular and highly significant. Currently, all these available data remain strictly on-board the vehicle that has captured the perception information and performed these measurements. To get the maximum effectiveness of all these approaches, we propose that this information be shared in real time with the following vehicles, within the convoy. On the basis of these considerations, this paper technically explores a cost-effective solution to extend the basic ACC sensor function in order to simultaneously provide a vehicle-to-vehicle radio link. This millimetre wave radio link transmits relevant broadband perception data (video, localization...) to following vehicles, along the line of vehicles. The propagation path between the vehicles uses essentially grazing angles of incidence of signals over the road surface including millimetre wave paths beneath the cars.

  3. Autonomía Adolescente y Apoyo y Control Parental en Familias Indígenas Mexicanas

    Directory of Open Access Journals (Sweden)

    Rosario Esteinou, México.

    2015-07-01

    Full Text Available (analítico: Con base en una encuesta, en este artículo presento un análisis descriptivo de las percepciones de adolescentes indígenas de México, sobre su autonomía y los comportamientos de sus padres y madres en términos del apoyo y control que ellos y ellas ejercen. En particular, analizo si la autonomía alcanzada puede ser asociada a un proceso de separación/desconexión o de separación/conexión con los padres y madres. Este proceso está ligado a los rasgos que guardan los comportamientos de apoyo y de control por parte de los padres y madres. El resultado más importante es que el estilo de parentalidad más frecuentemente aplicado por los padres y madres es el autoritario, y este parece estar relacionado con el desarrollo de un tipo de autonomía desconectada.

  4. Autonomía Adolescente y Apoyo y Control Parental en Familias Indígenas Mexicanas

    OpenAIRE

    Rosario Esteinou

    2015-01-01

    (analítico): Con base en una encuesta, en este artículo presento un análisis descriptivo de las percepciones de adolescentes indígenas de México, sobre su autonomía y los comportamientos de sus padres y madres en términos del apoyo y control que ellos y ellas ejercen. En particular, analizo si la autonomía alcanzada puede ser asociada a un proceso de separación/desconexión o de separación/conexión con los padres y madres. Este proceso está ligado a los rasgos que guardan los comportamientos d...

  5. Design and Integration of a Three Degrees-of-Freedom Robotic Vehicle with Control Moment Gyro for the Autonomous Multi-Agent Physically Interacting Spacecraft (AMPHIS) Testbed

    National Research Council Canada - National Science Library

    Hall, Jason S

    2006-01-01

    ...) Spacecraft Simulator. This simulator will be used in the Proximity Operations Simulator Facility, as part of the Naval Postgraduate School's Spacecraft Robotics Laboratory, to simulate autonomous guidance, navigation and control (GNC...

  6. SPARC fast reactor design : Design of two passively safe metal-fuelled sodium-cooled pool-type small modular fast reactors with Autonomous Reactivity Control

    OpenAIRE

    Lindström, Tobias

    2015-01-01

    In this master thesis a small modular sodium-cooled metal-fuelled pool-type fast reactor design, called SPARC - Safe and Passive with Autonomous Reactivity control, has been designed. The long term reactivity changes in the SPARC are managed by implementation of the the Autonomous Reactivity Control (ARC) system, which is the novelty of the design. The overall design is mainly based on the Integral Fast Reactor project (IFR), which experimentally demonstrated the passive safety characteristic...

  7. Self-Identification Algorithm for the Autonomous Control of Lateral Vibration in Flexible Rotors

    Directory of Open Access Journals (Sweden)

    Thiago Malta Buttini

    2012-01-01

    the shaft. For that, frequency response functions of the system are automatically identified experimentally by the algorithm. It is demonstrated that regions of stable gains can be easily plotted, and the most suitable gains can be found to minimize the resonant peak of the system in an autonomous way, without human intervention.

  8. Wireless Communication Networks Between Distributed Autonomous Systems Using Self-Tuning Extremum Control

    Science.gov (United States)

    2009-04-01

    SchoolCenter for Autonomous Vehicle Research Piccolo Plus Autopilots 2-Stroke Gas Engine Rascal 110 UAV (ARF Airframe) Engine Mount Avionics bay of... Rascal UAV O b d PC104 & P l d S k Mobile GCS n oar ay oa tac Rapid Flight Test Design Keys Reduce development time Upgrade is flexible Convenience

  9. Cardiovascular response to coughing: its value in the assessment of autonomic nervous control

    NARCIS (Netherlands)

    van Lieshout, E. J.; van Lieshout, J. J.; ten Harkel, A. D.; Wieling, W.

    1989-01-01

    1. The relationship between blood pressure and heart rate responses to coughing was investigated in 10 healthy subjects in three body positions and compared with the circulatory responses to commonly used autonomic function tests: forced breathing, standing up and the Valsalva manoeuvre. 2. We

  10. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning

    International Nuclear Information System (INIS)

    Schalkoff, Robert J.

    1999-01-01

    This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D and D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology

  11. Maintenance of Blood-Brain Barrier Integrity in Hypertension: A Novel Benefit of Exercise Training for Autonomic Control

    Directory of Open Access Journals (Sweden)

    Leila Buttler

    2017-12-01

    Full Text Available The blood-brain barrier (BBB is a complex multicellular structure acting as selective barrier controlling the transport of substances between these compartments. Accumulating evidence has shown that chronic hypertension is accompanied by BBB dysfunction, deficient local perfusion and plasma angiotensin II (Ang II access into the parenchyma of brain areas related to autonomic circulatory control. Knowing that spontaneously hypertensive rats (SHR exhibit deficient autonomic control and brain Ang II hyperactivity and that exercise training is highly effective in correcting both, we hypothesized that training, by reducing Ang II content, could improve BBB function within autonomic brain areas of the SHR. After confirming the absence of BBB lesion in the pre-hypertensive SHR, but marked fluorescein isothiocyanate dextran (FITC, 10 kD leakage into the brain parenchyma of the hypothalamic paraventricular nucleus (PVN, nucleus of the solitary tract, and rostral ventrolateral medulla during the established phase of hypertension, adult SHR, and age-matched WKY were submitted to a treadmill training (T or kept sedentary (S for 8 weeks. The robust FITC leakage within autonomic areas of the SHR-S was largely reduced and almost normalized since the 2nd week of training (T2. BBB leakage reduction occurred simultaneously and showed strong correlations with both decreased LF/HF ratio to the heart and reduced vasomotor sympathetic activity (power spectral analysis, these effects preceding the appearance of resting bradycardia (T4 and partial pressure fall (T8. In other groups of SHR-T simultaneously infused with icv Ang II or saline (osmotic mini-pumps connected to a lateral ventricle cannula we proved that decreased local availability of this peptide and reduced microglia activation (IBA1 staining are crucial mechanisms conditioning the restoration of BBB integrity. Our data also revealed that Ang II-induced BBB lesion was faster within the PVN (T2, suggesting

  12. Autonomous exercise game use improves metabolic control and quality of life in type 2 diabetes patients - a randomized controlled trial.

    Science.gov (United States)

    Kempf, Kerstin; Martin, Stephan

    2013-12-10

    Lifestyle intervention in type 2 diabetes mellitus (T2DM) is effective but needs a special local setting and is costly. Therefore, in a randomized-controlled trial we tested the hypothesis that the autonomous use of the interactive exercise game Wii Fit Plus over a period of 12 weeks improves metabolic control, with HbA1c reduction as the primary outcome, and weight loss, reduction of cardiometabolic risk factors, physical activity and quality of life (secondary outcomes) in T2DM patients. Participants (n = 220) were randomized into an intervention and a control group. The intervention group was provided with a Wii console, a balance board and the exercise game Wii Fit Plus for 12 weeks. The control group remained under routine care and received the items 12 weeks later. At baseline and after 12 weeks (and for the control group additionally after 12 weeks of intervention) the participants' health parameters, medication, physical activity and validated questionnaires for quality of life (PAID, SF12, WHO-5, CES-D) were requested and compared in a complete case analysis using the Mann-Whitney test and the Wilcoxon signed rank test. 80% of participants completed the 12-week study. Patients in the intervention group significantly improved HbA1c (from 7.1 ± 1.3% to 6.8 ± 0.9%; -0.3 ± 1.1%; p = 0.0002) in comparison to the control group (from 6.8 ± 0.9% to 6.7 ± 0.7%; -0.1 ± 0.5%) and also significantly reduced fasting blood glucose (from 135.8 ± 38.9 mg/dl to 126.6 ± 36.6 mg/dl; p = 0.04), weight (from 97.6 ± 19.2 kg to 96.3 ± 18.7 kg; p game intervention. In this trial a low-threshold intervention with the interactive exercise game Wii Fit Plus was able to motivate T2DM patients to improve physical activity, glucometabolic control and quality of life. ClinicalTrials.gov NCT01735643.

  13. Quantity and Quality of Carbohydrate Intake during Pregnancy, Newborn Body Fatness and Cardiac Autonomic Control: Conferred Cardiovascular Risk?

    Directory of Open Access Journals (Sweden)

    Kirsty M. Mckenzie

    2017-12-01

    Full Text Available The fetal environment has an important influence on health and disease over the life course. Maternal nutritional status during pregnancy is potentially a powerful contributor to the intrauterine environment, and may alter offspring physiology and later life cardio-metabolic risk. Putative early life markers of cardio-metabolic risk include newborn body fatness and cardiac autonomic control. We sought to determine whether maternal dietary carbohydrate quantity and/or quality during pregnancy are associated with newborn body composition and cardiac autonomic function. Maternal diet during pregnancy was assessed in 142 mother-infant pairs using a validated food frequency questionnaire. Infant adiposity and body composition were assessed at birth using air-displacement plethysmography. Cardiac autonomic function was assessed as heart rate variability. The quantity of carbohydrates consumed during pregnancy, as a percentage of total energy intake, was not associated with meaningful differences in offspring birth weight, adiposity or heart rate variability (p > 0.05. There was some evidence that maternal carbohydrate quality, specifically higher fibre and lower glycemic index, is associated with higher heart rate variability in the newborn offspring (p = 0.06. This suggests that poor maternal carbohydrate quality may be an important population-level inter-generational risk factor for later cardiac and hemodynamic risk of their offspring.

  14. Design, Development and Testing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) Guidance, Navigation and Control System

    Science.gov (United States)

    Wagenknecht, J.; Fredrickson, S.; Manning, T.; Jones, B.

    2003-01-01

    Engineers at NASA Johnson Space Center have designed, developed, and tested a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spaceflight activities. The technology demonstration system, known as the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam), has been integrated into the approximate form and function of a flight system. The primary focus has been to develop a system capable of providing external views of the International Space Station. The Mini AERCam system is spherical-shaped and less than eight inches in diameter. It has a full suite of guidance, navigation, and control hardware and software, and is equipped with two digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations. Tests have been performed in both a six degree-of-freedom closed-loop orbital simulation and on an air-bearing table. The Mini AERCam system can also be used as a test platform for evaluating algorithms and relative navigation for autonomous proximity operations and docking around the Space Shuttle Orbiter or the ISS.

  15. Autonomic control of heart rate during orthostasis and the importance of orthostatic-tachycardia in the snake Python molurus.

    Science.gov (United States)

    Armelin, Vinicius Araújo; da Silva Braga, Victor Hugo; Abe, Augusto Shinya; Rantin, Francisco Tadeu; Florindo, Luiz Henrique

    2014-10-01

    Orthostasis dramatically influences the hemodynamics of terrestrial vertebrates, especially large and elongated animals such as snakes. When these animals assume a vertical orientation, gravity tends to reduce venous return, cardiac filling, cardiac output and blood pressure to the anterior regions of the body. The hypotension triggers physiological responses, which generally include vasomotor adjustments and tachycardia to normalize blood pressure. While some studies have focused on understanding the regulation of these vasomotor adjustments in ectothermic vertebrates, little is known about regulation and the importance of heart rate in these animals during orthostasis. We acquired heart rate and carotid pulse pressure (P PC) in pythons in their horizontal position, and during 30 and 60° inclinations while the animals were either untreated (control) or upon muscarinic cholinoceptor blockade and a double autonomic blockade. Double autonomic blockade completely eradicated the orthostatic-tachycardia, and without this adjustment, the P PC reduction caused by the tilts became higher than that which was observed in untreated animals. On the other hand, post-inclinatory vasomotor adjustments appeared to be of negligible importance in counterbalancing the hemodynamic effects of gravity. Finally, calculations of cardiac autonomic tones at each position revealed that the orthostatic-tachycardia is almost completely elicited by a withdrawal of vagal drive.

  16. Directory Enabled Policy Based Networking; TOPICAL

    International Nuclear Information System (INIS)

    KELIIAA, CURTIS M.

    2001-01-01

    This report presents a discussion of directory-enabled policy-based networking with an emphasis on its role as the foundation for securely scalable enterprise networks. A directory service provides the object-oriented logical environment for interactive cyber-policy implementation. Cyber-policy implementation includes security, network management, operational process and quality of service policies. The leading network-technology vendors have invested in these technologies for secure universal connectivity that transverses Internet, extranet and intranet boundaries. Industry standards are established that provide the fundamental guidelines for directory deployment scalable to global networks. The integration of policy-based networking with directory-service technologies provides for intelligent management of the enterprise network environment as an end-to-end system of related clients, services and resources. This architecture allows logical policies to protect data, manage security and provision critical network services permitting a proactive defense-in-depth cyber-security posture. Enterprise networking imposes the consideration of supporting multiple computing platforms, sites and business-operation models. An industry-standards based approach combined with principled systems engineering in the deployment of these technologies allows these issues to be successfully addressed. This discussion is focused on a directory-based policy architecture for the heterogeneous enterprise network-computing environment and does not propose specific vendor solutions. This document is written to present practical design methodology and provide an understanding of the risks, complexities and most important, the benefits of directory-enabled policy-based networking

  17. Coordinated path-following and direct yaw-moment control of autonomous electric vehicles with sideslip angle estimation

    Science.gov (United States)

    Guo, Jinghua; Luo, Yugong; Li, Keqiang; Dai, Yifan

    2018-05-01

    This paper presents a novel coordinated path following system (PFS) and direct yaw-moment control (DYC) of autonomous electric vehicles via hierarchical control technique. In the high-level control law design, a new fuzzy factor is introduced based on the magnitude of longitudinal velocity of vehicle, a linear time varying (LTV)-based model predictive controller (MPC) is proposed to acquire the wheel steering angle and external yaw moment. Then, a pseudo inverse (PI) low-level control allocation law is designed to realize the tracking of desired external moment torque and management of the redundant tire actuators. Furthermore, the vehicle sideslip angle is estimated by the data fusion of low-cost GPS and INS, which can be obtained by the integral of modified INS signals with GPS signals as initial value. Finally, the effectiveness of the proposed control system is validated by the simulation and experimental tests.

  18. An Autonomous Autopilot Control System Design for Small-Scale UAVs

    Science.gov (United States)

    Ippolito, Corey; Pai, Ganeshmadhav J.; Denney, Ewen W.

    2012-01-01

    This paper describes the design and implementation of a fully autonomous and programmable autopilot system for small scale autonomous unmanned aerial vehicle (UAV) aircraft. This system was implemented in Reflection and has flown on the Exploration Aerial Vehicle (EAV) platform at NASA Ames Research Center, currently only as a safety backup for an experimental autopilot. The EAV and ground station are built on a component-based architecture called the Reflection Architecture. The Reflection Architecture is a prototype for a real-time embedded plug-and-play avionics system architecture which provides a transport layer for real-time communications between hardware and software components, allowing each component to focus solely on its implementation. The autopilot module described here, although developed in Reflection, contains no design elements dependent on this architecture.

  19. Stabilization Control of an Autonomous Bicycle: Modeled as an Acrobot with Angular Limitation

    OpenAIRE

    Nilsen, Jørgen Herje

    2014-01-01

    With an inverted pendulum mounted on the bicycle frame, the system is corresponding to a bicyclist who applies balancing torque from the hip. This thesis present a mathematical system model of the autonomous bicycle, modeled as an inverted double pendulum with actuation at the joint connecting the two system links, better known as an Acrobot. The Acrobot is a well-known underactuated robot manipulator, which implies that only the mounted inverted pendulum can obtain instantaneous acceleration...

  20. Integrated Guidance and Control Based Air-to-Air Autonomous Attack Occupation of UCAV

    OpenAIRE

    Luo, Chang; Wang, Jie; Huang, Hanqiao; Wang, Pengfei

    2016-01-01

    An approach of air-to-air autonomous attack occupation for Unmanned Combat Aerial Vehicles (UCAVs) is proposed to improve attack precision and combat effectiveness. According to the shortage of UCAV in the task of attack occupation, kinematic and dynamic models of UCAV and missile loaded on it are formed. Then, attack zone and no-escape zone are calculated by pattern search algorithm, and the optimum attack position is indicated. To arrive at the optimum attack position accurately with restri...

  1. A Control Strategy for an Autonomous Robotic Vacuum Cleaner for Solar Panels

    OpenAIRE

    Aravind, G; Gautham, Vasan; Kumar, T. S. B Gowtham; Naresh, Balaji

    2014-01-01

    Accumulation of dust on the surface of solar panels reduces the amount of radiation reaching it. This leads to loss in generated electric power and formation of hotspots which would permanently damage the solar panel. This project aims at developing an autonomous vacuum cleaning method which can be used on a regular basis to maximize the lifetime and efficiency of a solar panel. This system is implemented using two subsystems namely a Robotic Vacuum Cleaner and a Docking Station. The Robotic ...

  2. Issues Regarding the Future Application of Autonomous Systems to Command and Control (C2)

    Science.gov (United States)

    2015-06-01

    discuss the advantages and disadvantages of taking this path. He argues that the moment for action is now as once research programs are put it place or...Division Defence Science and Technology Organisation DSTO–TR–3112 ABSTRACT This broad review provides some insights into the vast field of Autonomous...DSTO Defence Science and Technology Organisation Fairbairn Business Park, Department of Defence, Canberra, ACT 2600, Australia Telephone: (02) 6128

  3. Autonomous Propellant Loading Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Autonomous Propellant Loading (APL) project consists of three activities. The first is to develop software that will automatically control loading of...

  4. Vision based control of unmanned aerial vehicles with applications to an autonomous four-rotor helicopter, quadrotor

    Science.gov (United States)

    Altug, Erdinc

    Our work proposes a vision-based stabilization and output tracking control method for a model helicopter. This is a part of our effort to produce a rotorcraft based autonomous Unmanned Aerial Vehicle (UAV). Due to the desired maneuvering ability, a four-rotor helicopter has been chosen as the testbed. On previous research on flying vehicles, vision is usually used as a secondary sensor. Unlike previous research, our goal is to use visual feedback as the main sensor, which is not only responsible for detecting where the ground objects are but also for helicopter localization. A novel two-camera method has been introduced for estimating the full six degrees of freedom (DOF) pose of the helicopter. This two-camera system consists of a pan-tilt ground camera and an onboard camera. The pose estimation algorithm is compared through simulation to other methods, such as four-point, and stereo method and is shown to be less sensitive to feature detection errors. Helicopters are highly unstable flying vehicles; although this is good for agility, it makes the control harder. To build an autonomous helicopter, two methods of control are studied---one using a series of mode-based, feedback linearizing controllers and the other using a back-stepping control law. Various simulations with 2D and 3D models demonstrate the implementation of these controllers. We also show global convergence of the 3D quadrotor controller even with large calibration errors or presence of large errors on the image plane. Finally, we present initial flight experiments where the proposed pose estimation algorithm and non-linear control techniques have been implemented on a remote-controlled helicopter. The helicopter was restricted with a tether to vertical, yaw motions and limited x and y translations.

  5. Autonomic neuropathies

    Science.gov (United States)

    Low, P. A.

    1998-01-01

    A limited autonomic neuropathy may underlie some unusual clinical syndromes, including the postural tachycardia syndrome, pseudo-obstruction syndrome, heat intolerance, and perhaps chronic fatigue syndrome. Antibodies to autonomic structures are common in diabetes, but their specificity is unknown. The presence of autonomic failure worsens prognosis in the diabetic state. Some autonomic neuropathies are treatable. Familial amyloid polyneuropathy may respond to liver transplantation. There are anecdotal reports of acute panautonomic neuropathy responding to intravenous gamma globulin. Orthostatic hypotension may respond to erythropoietin or midodrine.

  6. Control Algorithms and Simulated Environment Developed and Tested for Multiagent Robotics for Autonomous Inspection of Propulsion Systems

    Science.gov (United States)

    Wong, Edmond

    2005-01-01

    The NASA Glenn Research Center and academic partners are developing advanced multiagent robotic control algorithms that will enable the autonomous inspection and repair of future propulsion systems. In this application, on-wing engine inspections will be performed autonomously by large groups of cooperative miniature robots that will traverse the surfaces of engine components to search for damage. The eventual goal is to replace manual engine inspections that require expensive and time-consuming full engine teardowns and allow the early detection of problems that would otherwise result in catastrophic component failures. As a preliminary step toward the long-term realization of a practical working system, researchers are developing the technology to implement a proof-of-concept testbed demonstration. In a multiagent system, the individual agents are generally programmed with relatively simple controllers that define a limited set of behaviors. However, these behaviors are designed in such a way that, through the localized interaction among individual agents and between the agents and the environment, they result in self-organized, emergent group behavior that can solve a given complex problem, such as cooperative inspection. One advantage to the multiagent approach is that it allows for robustness and fault tolerance through redundancy in task handling. In addition, the relatively simple agent controllers demand minimal computational capability, which in turn allows for greater miniaturization of the robotic agents.

  7. Autonomous houses. Autonomous house

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S. (Tokai University, Tokyo (Japan). Faculty of Engineering)

    1991-09-30

    Self-sufficiency type houses are outlined. On condition that people gain a certain amount of income in relation with the society, they self-suffice under the given environment, allowing themselves to accept a minimum of industrial products with small environmental load. Ordinary supply from outside of fossil energy and materials which depend on it is minimized. Types are classified into three: energy, energy materials and perfect self-sufficiency. A study project for environment symbiotic houses is progressing which is planned by the Ministry of Construction and Institute of Building Energy Conservation and is invested by a private company. Its target is making a house for halving an environmental load by CO{sub 2}, for the purpose of creating the environment symbiotic house which is nice to and in harmony with the global environment and human beings. As a part of the studies on energy-saving and resource conservation on houses, introduced is a plan of an autonomous house at Izu-Atagawa. The passive method and high thermal-insulation are used for air conditioning, and hot spring water for hot water supply. Electric power is generated by hydroelectric power generation using mountain streams and by solar cells. Staple food is purchased, while subsidiary food is sufficed. 17 refs., 4 figs., 1 tab.

  8. Analysis and optimization of the battery energy storage systems for frequency control in autonomous microgrids, by means of hardware-in-the-loop simulations

    DEFF Research Database (Denmark)

    Serban, I.; Teodorescu, Remus; Marinescu, C.

    2012-01-01

    This paper presents an original hardware-in-the-loop (HIL) solution for real-time testing and optimization of the frequency control mechanism in autonomous microgrids (MG), when battery energy storage systems (BESS) are integrated along classical and RES-based generators to stabilize the frequency....... The focus is on autonomous MGs that dynamically should perform similarly to the conventional power systems. During MG autonomous operation, the generators should accomplish the frequency control process, by means of their automatic generation control. However, RES-based generators have poor controllability...... of the involved mechanisms in the MG dynamics. An experimental test bench including a real-time digital simulator with BESS controller in the HIL structure is used for assessing the proposed system performances....

  9. Cardiac autonomic control during simulated driving with a concurrent verbal working memory task.

    Science.gov (United States)

    Lenneman, John K; Backs, Richard W

    2009-06-01

    The objective of the study was to illustrate sensitivity and diagnosticity differences between cardiac measures and lane-keeping measures of driving performance. Previous research suggests that physiological measures can be sensitive to the effects of driving and side task performance and diagnostic of the source of the attentional demands. We hypothesized that increases in side task difficulty would elicit physiological change without reduction of driving task performance and that the side task demands would elicit patterns ofautonomic activity that map to specific attentional processing resources. Separately and concurrently, thirty-two participants performed a simulated driving task and verbal working memory task (with two levels of difficulty, 0 back and 3 back) separately and concurrently. Attentional demands were assessed through physiological and performance measures. Cardiac measures reflected changes in attentional demand from single- to dual-task driving with an n-back task, whereas lane-keeping measures did not. Furthermore, patterns of autonomic activity elicited by driving, n-back task, and dual-task driving with a 3-back task were consistent with our predictions about autonomic activity. Changes in cardiac measures without changes in lane-keeping measures provide evidence that cardiac measures can be sensitive to hidden costs in attention that do not manifest in coarse measures of driving performance. Furthermore, correct predictions regarding the patterns of autonomic activity elicited suggests that cardiac measures can serve as diagnostic tools for attention assessment. Because of the demonstrated differences in sensitivity and diagnosticity, researchers should consider the use of cardiac measures in addition to driving performance measures when studying attention in a driving simulator environment.

  10. CLOCK 3111T/C genetic variant influences the daily rhythm of autonomic nervous function: relevance to body weight control.

    Science.gov (United States)

    Lo, M-T; Bandin, C; Yang, H-W; Scheer, F A J L; Hu, K; Garaulet, M

    2018-02-01

    Humans carrying the genetic risk variant C at the circadian CLOCK (Circadian Locomotor Output Cycles Kaput) 3111T/C have been shown to have more difficulties to achieve desired weight loss than TT carriers. We tested the hypothesis that the daily rhythm of autonomic nervous function differs in CLOCK 3111C carriers, leading to reduced effectiveness in weight control. We recruited 40 overweight/obese Caucasian women (body mass index>25), 20 carrying CLOCK 3111C (CC and TC) and 20 non-carriers with matched age and body mass index who participated in a dietary obesity treatment program of up to 30 weeks. Following the treatment, ambulatory electrocardiography was continuously monitored for up to 3.5 days when subjects underwent their normal daily activities. To assess autonomic function, heart rate variability analysis (HRV) was performed hourly to obtain mean inter-beat interval between two consecutive R waves (mean RR) and s.d. of normal-to-normal heartbeat intervals (SDNN), and two parasympathetic measures, namely, proportion of differences between adjacent NN intervals that are >50 ms (pNN50), and high-frequency (HF: 0.15-0.4 Hz) power. In the TT carriers, all tested HRV indices showed significant daily rhythms (all P-values CLOCK variation on body weight control.

  11. Autonomía Adolescente y Apoyo y Control Parental en Familias Indígenas Mexicanas

    Directory of Open Access Journals (Sweden)

    Rosario Esteinou

    2015-01-01

    Full Text Available Con base en una encuesta, en este artículo presento un análisisdescriptivo de las percepciones de adolescentes indígenas de México, sobre su autonomía y loscomportamientos de sus padres y madres en términos del apoyo y control que ellos y ellas ejercen.En particular, analizo si la autonomía alcanzada puede ser asociada a un proceso de separación/desconexión o de separación/conexión con los padres y madres. Este proceso está ligado a losrasgos que guardan los comportamientos de apoyo y de control por parte de los padres y madres.El resultado más importante es que el estilo de parentalidad más frecuentemente aplicado por lospadres y madres es el autoritario, y este parece estar relacionado con el desarrollo de un tipo deautonomía desconectada.

  12. Perancangan dan Implementasi Autonomous Landing Menggunakan Behavior-Based dan Fuzzy Controller pada Quadcopter

    Directory of Open Access Journals (Sweden)

    Fadjri Andika Permadi

    2012-09-01

    Full Text Available Perkembangan teknologi sistem kendali pesawat sayap berputar (copter semakin pesat salah satunya pada pesawat berbaling-baling empat (quadcopter. Landing merupakan bagian tersulit dalam penerbangan quadcopter. Ukuran quadcopter yang kecil mengakibatkan susahnya pengendalian kestabilan dan kecepatan turun.Cara mengatasi permasalahan ini adalah dengan autonomous landing yang menggunakan algoritma kendali behavior-based (berbasis perilaku. Tugas akhir ini merancang dan mengimplementasikan algoritma kendali behavior-based (berbasis perilaku pada proses autonomous landing quadcopter dan kontroler PD (Proporsional, Diferensial pada untuk  kestabilan sudut roll dan pitch, sedangkan untuk jarak landing menggunakan kontroler logika fuzzy. Pada Tugas Akhir ini, didapatkan nilai parameter kontroler PD roll dan kontroler PD pitch dari hasil tuning terstruktur pada simulasi Kp=500 dan Kd=30. Sedangkan kendali landing menggunakan kontroler logika fuzzy dengan parameter Ke=4 Kde=175 dan Ku=1 pada simulasi dapat melakukan proses landing selama 8 detik dari ketinggian 3 meter. Respon hasil implementasi pada quadcopter belum sesuai dengan hasil simulasi. Proses landing pada implementasi lebih cepat dengan waktu 3.5 detik dari ketinggian 2 meter, selain itu koreksi sudut roll dan sudut pitch masih terhadapat error +/-3º.

  13. Transcranial direct current stimulation improves the QT variability index and autonomic cardiac control in healthy subjects older than 60 years

    Directory of Open Access Journals (Sweden)

    Piccirillo G

    2016-11-01

    Full Text Available Gianfranco Piccirillo,1 Cristina Ottaviani,2 Claudia Fiorucci,1 Nicola Petrocchi,2 Federica Moscucci,1 Claudia Di Iorio,1 Fabiola Mastropietri,1 Ilaria Parrotta,1 Matteo Pascucci,1 Damiano Magrì3 1Department of Cardiovascular, Respiratory, Nephrological, Anestesiological and Geriatric Sciences, “Sapienza” University, 2Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, 3Department of Clinical and Molecular Medicine, University of Rome “Sapienza”, Rome, Italy Background: Noninvasive brain stimulation technique is an interesting tool to investigate the causal relation between cortical functioning and autonomic nervous system (ANS responses. Objective: The objective of this report is to evaluate whether anodal transcranial direct current stimulation (tDCS over the temporal cortex influences short-period temporal ventricular repolarization dispersion and cardiovascular ANS control in elderly subjects. Subjects and methods: In 50 healthy subjects (29 subjects younger than 60 years and 21 subjects older than 60 years matched for gender, short-period RR and systolic blood pressure spectral variability, QT variability index (QTVI, and noninvasive hemodynamic data were obtained during anodal tDCS or sham stimulation. Results: In the older group, the QTVI, low-frequency (LF power expressed in normalized units, the ratio between LF and high-frequency (HF power, and systemic peripheral resistances decreased, whereas HF power expressed in normalized units and α HF power increased during the active compared to the sham condition (P<0.05. Conclusion: In healthy subjects older than 60 years, tDCS elicits cardiovascular and autonomic changes. Particularly, it improves temporal ventricular repolarization dispersion, reduces sinus sympathetic activity and systemic peripheral resistance, and increases vagal sinus activity and baroreflex sensitivity. Keywords: transcranial direct current stimulation, QT variability, heart rate variability

  14. Toll-like receptor 9 plays a key role in the autonomic cardiac and baroreflex control of arterial pressure.

    Science.gov (United States)

    Rodrigues, Fernanda Luciano; Silva, Luiz Eduardo V; Hott, Sara Cristina; Bomfim, Gisele F; da Silva, Carlos Alberto Aguiar; Fazan, Rubens; Resstel, Leonardo B M; Tostes, Rita C; Carneiro, Fernando S

    2015-04-15

    The crosstalk between the immune and the autonomic nervous system may impact the cardiovascular function. Toll-like receptors are components of the innate immune system and play developmental and physiological roles. Toll-like receptor 9 (TLR9) is involved in the pathogenesis of cardiovascular diseases, such as hypertension and heart failure. Since such diseases are commonly accompanied by autonomic imbalance and lower baroreflex sensitivity, we hypothesized that TLR9 modulates cardiac autonomic and baroreflex control of arterial pressure (AP). Toll-like receptor 9 knockout (TLR9 KO) and wild-type (WT) mice were implanted with catheters into carotid artery and jugular vein and allowed to recover for 3 days. After basal recording of AP, mice received methyl-atropine or propranolol. AP and pulse interval (PI) variability were evaluated in the time and frequency domain (spectral analysis), as well as by multiscale entropy. Spontaneous baroreflex was studied by sequence technique. Behavioral and cardiovascular responses to fear-conditioning stress were also evaluated. AP was similar between groups, but TLR9 KO mice exhibited lower basal heart rate (HR). AP variability was not different, but PI variability was increased in TLR9 KO mice. The total entropy was higher in TLR9 KO mice. Moreover, baroreflex function was found higher in TLR9 KO mice. Atropine-induced tachycardia was increased in TLR9 KO mice, whereas the propranolol-induced bradycardia was similar to WT mice. TLR9 KO mice exhibit increased behavioral and decreased tachycardia responses to fear-conditioning stress. In conclusion, our findings suggest that TLR9 may negatively modulate cardiac vagal tone and baroreflex in mice. Copyright © 2015 the American Physiological Society.

  15. Vision-Based Autonomous Underwater Vehicle Navigation in Poor Visibility Conditions Using a Model-Free Robust Control

    Directory of Open Access Journals (Sweden)

    Ricardo Pérez-Alcocer

    2016-01-01

    Full Text Available This paper presents a vision-based navigation system for an autonomous underwater vehicle in semistructured environments with poor visibility. In terrestrial and aerial applications, the use of visual systems mounted in robotic platforms as a control sensor feedback is commonplace. However, robotic vision-based tasks for underwater applications are still not widely considered as the images captured in this type of environments tend to be blurred and/or color depleted. To tackle this problem, we have adapted the lαβ color space to identify features of interest in underwater images even in extreme visibility conditions. To guarantee the stability of the vehicle at all times, a model-free robust control is used. We have validated the performance of our visual navigation system in real environments showing the feasibility of our approach.

  16. Double-Quadrant State-of-Charge-Based Droop Control Method for Distributed Energy Storage Systems in Autonomous DC Microgrids

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.

    2015-01-01

    In this paper, a double-quadrant state-of-charge (SoC) based droop control method for distributed energy storage system (DESS) is proposed to reach the proper power distribution in autonomous DC microgrids. Since DESS is commonly used in DC microgrids, it is necessary to achieve the rational power...... sharing in both charging and discharging process. In order to prolong the lifetime of the energy storage units (ESUs) and avoid the overuse of a certain unit, the SoC of each unit should be balanced and the injected/output power should be gradually equalized. Droop control as a decentralized approach...... is used as the basis of the power sharing method for distributed energy storage units (DESUs). In the charging process, the droop coefficient is set to be proportional to the nth order of SoC, while in the discharging process, the droop coefficient is set to be inversely proportional to the nth order...

  17. Adaptive Control Design for Autonomous Operation of Multiple Energy Storage Systems in Power Smoothing Applications

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.

    2018-01-01

    -pass-filter (HPF) structure. It generates the power reference according to the fluctuating power and provides a stabilization effect. The power and energy supplied by ESS are majorly configured by the cut-off frequency and gain of the HPF. Considering the operational limits on ESS state-of-charge (SoC), this paper...... proposes an adaptive cut-off frequency design method to realize communication-less and autonomous operation of a system with multiple distributed ESS. The experimental results demonstrate that the SoCs of all ESS units are kept within safe margins, while the SoC level and power of the paralleled units...... converge to the final state, providing a natural plug-and-play function....

  18. Resistance or aerobic training decreases blood pressure and improves cardiovascular autonomic control and oxidative stress in hypertensive menopausal rats.

    Science.gov (United States)

    da Palma, Renata K; Moraes-Silva, Ivana C; da Silva Dias, Danielle; Shimojo, Guilherme L; Conti, Filipe F; Bernardes, Nathalia; Barboza, Catarina A; Sanches, Iris C; da Rosa Araújo, Alex Sander; Irigoyen, Maria-Cláudia; De Angelis, Kátia

    2016-10-01

    We investigated whether resistance training (RT) vs. aerobic training (AT) differentially impacts on arterial pressure and related mechanisms in ovariectomized spontaneously hypertensive rats (SHRs). Female SHRs were ovariectomized and assigned to one of the following groups: sedentary, AT, or RT; sham sedentary SHR were used as control group. AT was performed on a treadmill, whereas RT was performed on a vertical ladder. Both exercise protocols were performed for 8 wk, 5 days/wk. Arterial pressure, baroreflex sensitivity, autonomic modulation, and cardiac oxidative stress parameters (lipid peroxidation, protein oxidation, redox balance, NADPH oxidase, and antioxidant enzymes activities) were analyzed. Ovariectomy increased mean arterial pressure (∼9 mmHg), sympathetic modulation (∼40%), and oxidative stress in sedentary rats. Both RT and AT reduced mean arterial pressure (∼20 and ∼8 mmHg, respectively) and improved baroreflex sensitivity compared with sedentary ovariectomized rats. However, RT-induced arterial pressure decrease was significantly less pronounced than AT. Lipid peroxidation and protein oxidation were decreased while antioxidant enzymes were increased in both trained groups vs. sedentaries. The reduced gluthatione was higher after AT vs. other groups, whereas oxidized gluthatione was lower after RT vs. AT. Moreover, sympathetic and parasympathetic modulations were highly correlated with cardiac oxidative stress parameters. In conclusion, both RT and AT can decrease arterial pressure in a model of hypertension and menopause; although, at different magnitudes this decrease was related to attenuated autonomic dysfunction in association with cardiac oxidative stress improvement in both exercise protocols. Copyright © 2016 the American Physiological Society.

  19. The teaching of profesional and academic English under European directives. The autonomous control of competencies’ acquisition

    Directory of Open Access Journals (Sweden)

    Pilar DURÁN Escribano

    2017-06-01

    Full Text Available After ten years of immersion in the European Higher Education convergence process, this article deals with the application of European directives to the teaching, learning and assessment of English for Academic and Professional Purposes (eapp to different groups of engineering students at Universidad Politécnica de Madrid (upm enrolled in eapp subjects. It focuses on the Common European Framework of Reference for languages (cefr and the European Language Portfolio (elp. Although these language-learning directives had been previously implemented in other contexts, with various results, their total adaptation to engineering education was pending. The paper starts by highlighting the coincidence in the principles underlying the European Credit Transfer System (ects, and the cefr and elp directives centred on the students’ work to attain certain competencies, and on their autonomous and reflective learning. Next, it discusses the research and innovation projects aimed at improving teaching practices and learning skills after the application of European directives to eapp subjects. The main projects dealt with the development and application of language competence descriptors tailored to the specific context. The paper concludes by showing the advantages of their implementation to the improvement of teaching objectives, programme design, teaching methodology and students’ evaluation, with respect to other procedures before the cefr, based on the results of a survey obtained from the teachers and students participating in the study. Although the complete use of the elp is not feasible, it may be considered as a useful instrument. Both the lists of adapted reference level competence descriptors and the Dossier have proven to be very valuable for the university students’ autonomous and reflective learning with the acquisition of competences in mind, and for their self-assessment abilities, according to the results obtained.

  20. Home orthostatic training in vasovagal syncope modifies autonomic tone: results of a randomized, placebo-controlled pilot study.

    Science.gov (United States)

    Tan, Maw Pin; Newton, Julia L; Chadwick, Tom J; Gray, Janine C; Nath, Samiran; Parry, Steve W

    2010-02-01

    To detect possible autonomic changes due to home orthostatic training (HOT) and to assess the feasibility of a larger, placebo-controlled study of HOT in vasovagal syncope (VVS). Twenty-two consecutive patients, aged 18-85, diagnosed with VVS following a positive head-up tilt-table test were randomized to 40 min of HOT (n = 12) or 10 min of sham training (n = 10) daily for 6 months. Baroreflex sensitivity (BRS) and heart rate variability (HRV) were measured at weeks 0, 1, 4, and 24. Symptom response was assessed by event diaries. Home orthostatic training resulted in increases in up and down slope BRS at week 4 (e(log difference) = 1.59, 95% CI = 0.84-3.03 and 1.79, 95% CI = 1.00-3.22) and week 24 (e(log difference) = 1.75, 95% CI = 1.01-3.06 and 1.53, 95% CI = 0.66-2.68) compared with placebo. Relative improvements in low- and high-frequency HRV were also observed in the HOT group compared with placebo at week 4 (e(log difference) = 3.22, 95% CI = 1.06-9.86 and 3.19, 95% CI = 1.03-10.59) and week 24 (e(log difference) = 2.11, 95% CI = 0.72-6.17 and 2.13, 95% CI = 0.52-8.79). Fifty percentage of HOT subjects and 20% of control subjects were syncope-free at 6 months. This was the first placebo-controlled study in orthostatic training which has demonstrated that such a study is indeed feasible. An enhancement in overall autonomic tone is observed with HOT in tandem with a non-significant trend in symptom improvement. A larger, adequately powered, randomized controlled trial of tilt-training is now needed.

  1. Autonomous search

    CERN Document Server

    Hamadi, Youssef; Saubion, Frédéric

    2012-01-01

    Autonomous combinatorial search (AS) represents a new field in combinatorial problem solving. Its major standpoint and originality is that it considers that problem solvers must be capable of self-improvement operations. This is the first book dedicated to AS.

  2. Droop-Control-Based State-of-Charge Balancing Method for Charging and Discharging Process in Autonomous DC Microgrids

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.

    2014-01-01

    In this paper, a droop control based state-of-charge (SoC) balancing method in autonomous DC microgrids is proposed. Both charging and discharging process have been considered. In particular, in the charging process, the droop coefficient is set to be proportional to SoCn, and in the discharging...... in the discharging process. Meanwhile, the ESU with lower SoC absorbs more power in the charging process and delivers less power in the discharging process. Eventually, the SoC and injected/output power in each ESU are equalized. The exponent n for SoC is employed to regulate the balancing speed of the So......C and injected/output power. It is demonstrated that with higher exponent n, the balancing speed is higher. Simulation model comprised of three ESUs is implemented by using MATLAB/Simulink. The proposed method is verified by the simulation results....

  3. Time Optimal Hybrid Sliding Mode-PI Control for an Autonomous Underwater Robot

    Directory of Open Access Journals (Sweden)

    Theerayuth Chatchanayuenyong

    2008-03-01

    Full Text Available This paper presents an underwater robot control system using combination principle among sliding mode control (SMC, Pontryagin maximum principle and linear PI control. The SMC switches according to the Pontryagin's time optimal control principle, in which the solution is obtained by using neural network approach to yield a time optimal response at its reaching phase. PI control is used in place of the SMC at the switching phase to avoid high undesired control activity. Performance of the proposed controller is compared with various classical SMCs and conventional linear control systems. Such comparisons ensure the implementation success and prove it as a real time-optimal controller. The results show the controller's good abilities to deal with plant nonlinearity and parameter uncertainties. The controller yields a time optimal control response without high control chattering.

  4. Time Optimal Hybrid Sliding Mode-PI Control for an Autonomous Underwater Robot

    Directory of Open Access Journals (Sweden)

    Theerayuth Chatchanayuenyong

    2008-11-01

    Full Text Available This paper presents an underwater robot control system using combination principle among sliding mode control (SMC, Pontryagin maximum principle and linear PI control. The SMC switches according to the Pontryagin's time optimal control principle, in which the solution is obtained by using neural network approach to yield a time optimal response at its reaching phase. PI control is used in place of the SMC at the switching phase to avoid high undesired control activity. Performance of the proposed controller is compared with various classical SMCs and conventional linear control systems. Such comparisons ensure the implementation success and prove it as a real time-optimal controller. The results show the controller's good abilities to deal with plant nonlinearity and parameter uncertainties. The controller yields a time optimal control response without high control chattering.

  5. Robotic-Controlled, Autonomous Friction Stir Welding Processes for In-Situ Fabrication, Maintenance, and Repair

    Science.gov (United States)

    Zhou, W.

    NASA s new vision of human and robotic missions to the Moon Mars and beyond will demand large and permanent infrastructures on the Moon and other planets including power plants communication towers human and biomass habitats launch and landing facilities fabrication and repair workshops and research facilities so that material utilization and product development can be carried out and subsisted in-situ The conventional approach of transporting pre-constructed fabricated structures from earth to the Moon planets will no longer be feasible due to limited lifting capacity and extremely high transportation costs associated with long duration space travel To minimize transport of pre-made large structures between earth and the Moon planets minimize crew time for the fabrication and assembly of infrastructures on the Moon planets and to assure crew safety and maintain quality during the operation there is a strong need for robotic capabilities for in-situ fabrication maintenance and repair Clearly development of innovative autonomous in-situ fabrication maintenance and repair technologies is crucial to the success of both NASA s unmanned preparation missions and manned exploration missions In-space material joining is not new to NASA Many lessons were learned from NASA s International Space Welding Experiment which employed the Electron Beam Welding process for space welding experiments Significant safety concerns related to high-energy beams arcing spatter elecromagnetic fields and molten particles were

  6. Autonomic Neuropathy in Diabetes Mellitus

    OpenAIRE

    Verrotti, Alberto; Prezioso, Giovanni; Scattoni, Raffaella; Chiarelli, Francesco

    2014-01-01

    Diabetic autonomic neuropathy (DAN) is a serious and common complication of diabetes, often overlooked and misdiagnosed. It is a systemic-wide disorder that may be asymptomatic in the early stages. The most studied and clinically important form of DAN is cardiovascular autonomic neuropathy defined as the impairment of autonomic control of the cardiovascular system in patients with diabetes after exclusion of other causes. The reported prevalence of DAN varies widely depending on inconsistent ...

  7. A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids

    International Nuclear Information System (INIS)

    Karavas, Christos-Spyridon; Kyriakarakos, George; Arvanitis, Konstantinos G.; Papadakis, George

    2015-01-01

    Highlights: • A decentralized energy management system based on multi agent systems theory. • A decentralized energy management system is technically feasible. • A decentralized approach utilizes the devices better than a centralized one. • A decentralized energy management system is economically competitive. - Abstract: The autonomous polygeneration microgrid topology has been developed in order to cover holistically needs in a remote area such as electrical energy, space heating and cooling, potable water through desalination and hydrogen as fuel for transportation. The existence of an advanced energy management system is essential for the operation of an autonomous polygeneration microgrid. So far, energy management systems based on a centralized management and control have been developed for the autonomous polygeneration microgrid topology based on computational intelligence approaches. A decentralized management and control energy management system can have important benefits, when taking into consideration the autonomous character of these microgrids. This paper presents the design and investigation of a decentralized energy management system for the autonomous polygeneration microgrid topology. The decentralized energy management system gives the possibility to control each unit of the microgrid independently. The most important advantage of using a decentralized architecture is that the managed microgrid has much higher chances of partial operation in cases when malfunctions occur at different parts of it, instead of a complete system breakdown. The designed system was based on a multi-agent system and employed Fuzzy Cognitive Maps for its implementation. It was then compared through a case study with an existing centralized energy management system. The technical performance of the decentralized solution performance is on par with the existing centralized one, presenting improvements in financial and operational terms for the implementation and

  8. Tonic and reflex cardiovascular autonomic control in trained-female rats

    Directory of Open Access Journals (Sweden)

    I.C. Sanches

    2009-10-01

    Full Text Available The effects of exercise training on cardiovascular and autonomic functions were investigated in female rats. After an aerobic exercise training period (treadmill: 5 days/week for 8 weeks, conscious female Wistar (2 to 3 months sedentary (S, N = 7 or trained rats (T, N = 7 were cannulated for direct arterial pressure (AP recording in the non-ovulatory phases. Vagal (VT and sympathetic tonus (ST were evaluated by vagal (atropine and sympathetic (propranolol blockade. Baroreflex sensitivity was evaluated by the heart rate responses induced by AP changes. Cardiopulmonary reflex was measured by the bradycardic and hypotensive responses to serotonin. Resting bradycardia was observed in T (332 ± 7 bpm compared with S animals (357 ± 10 bpm, whereas AP did not differ between groups. T animals exhibited depressed VT and ST (32 ± 7 and 15 ± 4 bpm compared to S animals (55 ± 5 and 39 ± 10 bpm. The baroreflex and cardiopulmonary bradycardic responses were lower in T (-1.01 ± 0.27 bpm/mmHg and -17 ± 6 bpm than in the S group (-1.47 ± 0.3 bpm/mmHg and -41 ± 9 bpm. Significant correlations were observed between VT and baroreflex (r = -0.72 and cardiopulmonary (r = -0.76 bradycardic responses. These data show that exercise training in healthy female rats induced resting bradycardia that was probably due to a reduced cardiac ST. Additionally, trained female rats presented attenuated bradycardic responses to baro- and cardiopulmonary receptor stimulation that were associated, at least in part, with exercise training-induced cardiac vagal reduction.

  9. No effect of Pindolol on postural hypotension in type 1 (insulin-dependent) diabetic patients with autonomic neuropathy. A randomised double-blind controlled study

    DEFF Research Database (Denmark)

    Dejgård, A; Hilsted, J

    1988-01-01

    of this therapy we performed a double-blind placebo controlled cross-over study with Pindolol (15 mg/day). Eight Type 1 (insulin-dependent) diabetic patients with autonomic neuropathy and signs and symptoms of orthostatic hypotension (systolic blood pressure decrease greater than 30 mm Hg when standing......Orthostatic hypotension is one of the most troublesome symptoms in diabetic autonomic neuropathy. Some reports have suggested Pindolol - a beta-adrenoceptor antagonist with intrinsic sympathomimetic activity - to be effective in the treatment of this condition. In order to elucidate the value...

  10. Fuzzy Secondary Controller for Autonomous Stand-alone and Grid-connected AC Microgrid

    DEFF Research Database (Denmark)

    Neves, Rodolpho V. A.; Machado, Ricardo Q.; Oliveira, Vilma A.

    2016-01-01

    The present paper adresses the AC microgrid control issue using the hierarchical control structure and droop controllers for load sharing. Once the droop controllers impose an operation with frequency and voltage deviations, depending on the load and droop parameters, a hierarchical control...... structure must be added to change the droop controller operating points. The hierarchical controllers operate with local measurements and shared signals from communication links among the distributed generation systems connected to the microgrid. Depending on the geographical size of the microgrid......, the communication links can be economically unviable. This paper thus proposes a fuzzy secondary controller for AC microgrids to reduce the link communication dependency by using only local measurements. The simulation results show that the deviations as happened with the conventional secondary controllers can...

  11. Verification and Validation Challenges for Adaptive Flight Control of Complex Autonomous Systems

    Science.gov (United States)

    Nguyen, Nhan T.

    2018-01-01

    Autonomy of aerospace systems requires the ability for flight control systems to be able to adapt to complex uncertain dynamic environment. In spite of the five decades of research in adaptive control, the fact still remains that currently no adaptive control system has ever been deployed on any safety-critical or human-rated production systems such as passenger transport aircraft. The problem lies in the difficulty with the certification of adaptive control systems since existing certification methods cannot readily be used for nonlinear adaptive control systems. Research to address the notion of metrics for adaptive control began to appear in the recent years. These metrics, if accepted, could pave a path towards certification that would potentially lead to the adoption of adaptive control as a future control technology for safety-critical and human-rated production systems. Development of certifiable adaptive control systems represents a major challenge to overcome. Adaptive control systems with learning algorithms will never become part of the future unless it can be proven that they are highly safe and reliable. Rigorous methods for adaptive control software verification and validation must therefore be developed to ensure that adaptive control system software failures will not occur, to verify that the adaptive control system functions as required, to eliminate unintended functionality, and to demonstrate that certification requirements imposed by regulatory bodies such as the Federal Aviation Administration (FAA) can be satisfied. This presentation will discuss some of the technical issues with adaptive flight control and related V&V challenges.

  12. Autonomous Attitude Determination and Control System for the Ørsted Satellite

    DEFF Research Database (Denmark)

    Bak, Thomas; Wisniewski, Rafal; Blanke, M.

    1996-01-01

    The Ørsted Satellite mission imposes comparatively high requirements on autonomy of the attitude control system.......The Ørsted Satellite mission imposes comparatively high requirements on autonomy of the attitude control system....

  13. Development and Control of the Naval Postgraduate School Planar Autonomous Docking Simulator (NPADS)

    National Research Council Canada - National Science Library

    Porter, Robert

    2002-01-01

    ...; and the development and testing of control laws utilizing MATLAB and Simulink for modeling and LabView for NPADS control, The NPADS vehicle uses air pads and a granite table to simulate a 2-D, drag...

  14. Autonomic symptom burden in the hypermobility type of Ehlers-Danlos syndrome: a comparative study with two other EDS types, fibromyalgia, and healthy controls.

    Science.gov (United States)

    De Wandele, Inge; Calders, Patrick; Peersman, Wim; Rimbaut, Steven; De Backer, Tine; Malfait, Fransiska; De Paepe, Anne; Rombaut, Lies

    2014-12-01

    This study provides insight into the profile and importance of autonomic symptoms in the hypermobility type (HT) of Ehlers-Danlos syndrome (EDS). The impact of these symptoms is put into perspective by comparing with fibromyalgia (FM) and two other EDS types. Overall, 80 patients with EDS-HT participated, as well as 11 with classical EDS (cEDS), seven with vascular EDS (vEDS), 38 with FM, and 43 healthy controls. All participants filled out the autonomic symptom profile (ASP). Furthermore, they were inquired about quality of life (QOL, SF-36) and factors contributing to the EDS disease burden, e.g., hypermobility (5-point questionnaire, GHQ), fatigue (checklist individual strength, CIS), pain (pain detect questionnaire, PDQ), affective distress (hospital anxiety and depression scale, HADS), and physical activity (Baecke). The total autonomic symptom burden was higher in EDS-HT (57.9 ± 21.57) than in controls (11.3 ± 19.22), cEDS (32.3 ± 19.47), and vEDS (29.1 ± 19.18), but comparable to FM (53.8 ± 19.85). Especially orthostatic and gastrointestinal complaints were prevalent. The importance of autonomic symptoms in EDS-HT was emphasized by the correlation with lowered QOL (r = -0.402), fatigue (r = 0.304), and pain severity (r = 0.370). Although affective distress and decreased physical activity are often suggested as possible causes for dysautonomia, the ASP did not correlate with the HADS and Baecke score. By contrast, the correlation of the GHQ (r = 0.298) and PDQ (r = 0.413) with the ASP supports the hypothesis that joint hypermobility and neuropathy may play a role in the development of autonomic symptoms. Autonomic symptoms, especially orthostatic and gastrointestinal complaints, are frequent extraarticular manifestations of EDS-HT and contribute to the disease burden. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States

    Science.gov (United States)

    2017-04-15

    controller the trajectory tracking algorithm is realized in an inner-outer loop scheme, where multiple PID gains need to be selected in an optimal sense...out the optimal parameters. As has been revealed in the theory part of DI controller , the PID gains governs the error dynamics of output variable...1) where is the output of PID compensator used in the DI controller , the gains should be designed in such a way

  16. Indoor Autonomous Control of a Two-Wheeled Inverted Pendulum Vehicle Using Ultra Wide Band Technology.

    Science.gov (United States)

    Xia, Dunzhu; Yao, Yanhong; Cheng, Limei

    2017-06-15

    In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP's position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice.

  17. Design of Autonomous Navigation Controllers for Unmanned Aerial Vehicles Using Multi-Objective Genetic Programming

    National Research Council Canada - National Science Library

    Barlow, Gregory J

    2004-01-01

    Unmanned aerial vehicles (UAVs) have become increasingly popular for many applications, including search and rescue, surveillance, and electronic warfare, but almost all UAVs are controlled remotely by humans...

  18. Guidance of Autonomous Aerospace Vehicles for Vertical Soft Landing using Nonlinear Control Theory

    Science.gov (United States)

    2015-08-11

    and Bieniaswski Whitehead and Bieniawski [2010] have demonstrated MRAC controller for step command in altitude tracking under actuator degradation...Keystone, CO, volume 63, page 64, 2006. Brian T Whitehead and Stefan R Bieniawski . Model reference adaptive control of a quadrotor uav. In AIAA Guidance

  19. Stability Control of Propeller Autonomous Underwater Vehicle Based on Combined Sections Method

    Directory of Open Access Journals (Sweden)

    Qi Duo

    2015-09-01

    Full Text Available Learning from the motion principle of quadrotor, a symmetric propeller AUV, which has small size and low velocity is designed. Compared with the AUV equipped with rudders, it has better maneuverability and manipulation at low velocity. According to the Newton-Euler method, the 6 DOF kinematic model and dynamic model of the propeller AUV are established. A stability controller that consists of 3 different PID controllers is designed. It makes the depth and attitude angle as trigger conditions, and the relevant controller is chosen in different moving process. The simulation experiments simulate ideal motion state and disturbed motion state, and experiments results show that the stability controller based on combined sections method can make the best of mature technology of PID, and meet the control requirements in different stages. It has a higher respond speed and accuracy, improving the stability of the propeller AUV under the disturbance of complex ocean currents.

  20. Huntingtin acts non cell-autonomously on hippocampal neurogenesis and controls anxiety-related behaviors in adult mouse.

    Directory of Open Access Journals (Sweden)

    Patrick Pla

    Full Text Available Huntington's disease (HD is a fatal neurodegenerative disease, characterized by motor defects and psychiatric symptoms, including mood disorders such as anxiety and depression. HD is caused by an abnormal polyglutamine (polyQ expansion in the huntingtin (HTT protein. The development and analysis of various mouse models that express pathogenic polyQ-HTT revealed a link between mutant HTT and the development of anxio-depressive behaviors and various hippocampal neurogenesis defects. However, it is unclear whether such phenotype is linked to alteration of HTT wild-type function in adults. Here, we report the analysis of a new mouse model in which HTT is inducibly deleted from adult mature cortical and hippocampal neurons using the CreER(T2/Lox system. These mice present defects in both the survival and the dendritic arborization of hippocampal newborn neurons. Our data suggest that these non-cell autonomous effects are linked to defects in both BDNF transport and release upon HTT silencing in hippocampal neurons, and in BDNF/TrkB signaling. The controlled deletion of HTT also had anxiogenic-like effects. Our results implicate endogenous wild-type HTT in adult hippocampal neurogenesis and in the control of mood disorders.

  1. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.

    Science.gov (United States)

    Bing, Zhenshan; Cheng, Long; Chen, Guang; Röhrbein, Florian; Huang, Kai; Knoll, Alois

    2017-04-04

    Snake-like robots with 3D locomotion ability have significant advantages of adaptive travelling in diverse complex terrain over traditional legged or wheeled mobile robots. Despite numerous developed gaits, these snake-like robots suffer from unsmooth gait transitions by changing the locomotion speed, direction, and body shape, which would potentially cause undesired movement and abnormal torque. Hence, there exists a knowledge gap for snake-like robots to achieve autonomous locomotion. To address this problem, this paper presents the smooth slithering gait transition control based on a lightweight central pattern generator (CPG) model for snake-like robots. First, based on the convergence behavior of the gradient system, a lightweight CPG model with fast computing time was designed and compared with other widely adopted CPG models. Then, by reshaping the body into a more stable geometry, the slithering gait was modified, and studied based on the proposed CPG model, including the gait transition of locomotion speed, moving direction, and body shape. In contrast to sinusoid-based method, extensive simulations and prototype experiments finally demonstrated that smooth slithering gait transition can be effectively achieved using the proposed CPG-based control method without generating undesired locomotion and abnormal torque.

  2. Autonomous watersheds: Reducing flooding and stream erosion through real-time control

    Science.gov (United States)

    Kerkez, B.; Wong, B. P.

    2017-12-01

    We introduce an analytical toolchain, based on dynamical system theory and feedback control, to determine how many control points (valves, gates, pumps, etc.) are needed to transform urban watersheds from static to adaptive. Advances and distributed sensing and control stand to fundamentally change how we manage urban watersheds. In lieu of new and costly infrastructure, the real-time control of stormwater systems will reduce flooding, mitigate stream erosion, and improve the treatment of polluted runoff. We discuss the how open source technologies, in the form of wireless sensor nodes and remotely-controllable valves (open-storm.org), have been deployed to build "smart" stormwater systems in the Midwestern US. Unlike "static" infrastructure, which cannot readily adapt to changing inputs and land uses, these distributed control assets allow entire watersheds to be reconfigured on a storm-by-storm basis. Our results show how the control of even just a few valves within urban catchments (1-10km^2) allows for the real-time "shaping" of hydrographs, which reduces downstream erosion and flooding. We also introduce an equivalence framework that can be used by decision-makers to objectively compare investments into "smart" system to more traditional solutions, such as gray and green stormwater infrastructure.

  3. Modeling and Control of Industrial ROV's for Semi-Autonomous Subsea Maintenance Services

    DEFF Research Database (Denmark)

    Mai, Christian; Pedersen, Simon; Hansen, Leif

    2017-01-01

    Remotely Operated Vechicles (ROV's) takes a big part in the installation, maintenance and inspection of offshore subsea energy activities, such as inspections of Oil Gas and wind energy pipelines and cables. By improving the ROV automation the operational cost can be significantly decreased as well...... an acceptable physical design but that the automation could potentially be improved by adding a MIMO control scheme such as the proposed LQR controller. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved....

  4. Optimal Sensor Threshold Control and the Weapon Operating Characteristic for Autonomous Search and Attack Munitions

    National Research Council Canada - National Science Library

    Rosario, Roland A

    2007-01-01

    .... This work formulates and solves the optimal control problem for deriving the optimal sensor threshold schedule in order to maximize the probability of attacking the target during the battlespace...

  5. Robust multi-model control of an autonomous wind power system

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, Nicolas Antonio; Hansen, Anca Daniela; Soerensen, Poul [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Ceanga, Emil [' Dunarea de Jos' Univ., Faculty of Electrical Engineering, Galati (Romania)

    2006-07-01

    This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. (Author)

  6. A Novel Relative Navigation Control Strategy Based on Relation Space Method for Autonomous Underground Articulated Vehicles

    Directory of Open Access Journals (Sweden)

    Fengqian Dou

    2016-01-01

    Full Text Available This paper proposes a novel relative navigation control strategy based on the relation space method (RSM for articulated underground trackless vehicles. In the RSM, a self-organizing, competitive neural network is used to identify the space around the vehicle, and the spatial geometric relationships of the identified space are used to determine the vehicle’s optimal driving direction. For driving control, the trajectories of the articulated vehicles are analyzed, and data-based steering and speed control modules are developed to reduce modeling complexity. Simulation shows that the proposed RSM can choose the correct directions for articulated vehicles in different tunnels. The effectiveness and feasibility of the resulting novel relative navigation control strategy are validated through experiments.

  7. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller.

    Science.gov (United States)

    Lopez-Franco, Carlos; Gomez-Avila, Javier; Alanis, Alma Y; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-08-12

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results.

  8. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller

    Science.gov (United States)

    Lopez-Franco, Carlos; Alanis, Alma Y.; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-01-01

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results. PMID:28805689

  9. Virtual Simulator for Autonomous Mobile Robots Navigation System Using Concepts of Control Rapid Prototyping

    Directory of Open Access Journals (Sweden)

    Leonimer Flavio de Melo

    2013-09-01

    Full Text Available This work presents the proposal of virtual environment implementation for project simulation and conception of supervision and control systems for mobile robots, that are capable to operate and adapting in different environments and conditions. This virtual system has as purpose to facilitate the development of embedded architecture systems, emphasizing the implementation of tools that allow the simulation of the kinematic conditions, dynamic and control, with real time monitoring of all important system points. For this, open control architecture is proposal, integrating the two main techniques of robotic control implementation in the hardware level: systems microprocessors and reconfigurable hardware devices. The implemented simulator system is composed of a trajectory generating module, a kinematic and dynamic simulator module and of a analysis module of results and errors. The kinematic and dynamic simulator module makes all simulation of the mobile robot following the pre-determined trajectory of the trajectory generator. All the kinematic and dynamic results shown during the simulation can be evaluated and visualized in graphs and tables formats, in the results analysis module, allowing an improvement in the system, minimizing the errors with the necessary adjustments optimization. For controller implementation in the embedded system, it uses the rapid prototyping, which is the technology that allows, in set with the virtual simulation environment, the development of a controller project for mobile robots. The validation and tests had been accomplishing with nonholonomics mobile robots models with differential transmission.

  10. Feasibility of Decentralized Linear-Quadratic-Gaussian Control of Autonomous Distributed Spacecraft

    Science.gov (United States)

    Carpenter, J. Russell

    1999-01-01

    A distributed satellite formation, modeled as an arbitrary number of fully connected nodes in a network, could be controlled using a decentralized controller framework that distributes operations in parallel over the network. For such problems, a solution that minimizes data transmission requirements, in the context of linear-quadratic-Gaussian (LQG) control theory, was given by Speyer. This approach is advantageous because it is non-hierarchical, detected failures gracefully degrade system performance, fewer local computations are required than for a centralized controller, and it is optimal with respect to the standard LQG cost function. Disadvantages of the approach are the need for a fully connected communications network, the total operations performed over all the nodes are greater than for a centralized controller, and the approach is formulated for linear time-invariant systems. To investigate the feasibility of the decentralized approach to satellite formation flying, a simple centralized LQG design for a spacecraft orbit control problem is adapted to the decentralized framework. The simple design uses a fixed reference trajectory (an equatorial, Keplerian, circular orbit), and by appropriate choice of coordinates and measurements is formulated as a linear time-invariant system.

  11. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple...

  12. Optimal tracking controller for an autonomous wheeled mobile robot using fuzzy genetic algorithm

    Science.gov (United States)

    Kim, Sangwon; Park, Chongkug

    2005-12-01

    This paper deals with development of a kinematics model, a trajectory tracking, and a controller of fuzzy-genetics algorithm for 2-DOF Wheeled Mobile Robot (WMR). The global inputs to the WMR are a reference position, P r= (x r,y r,θ r) t and a reference velocity q r=(v r,ω r) t, which are time variables. The global output of WMR is a current posture P c= (x c,y c,θ c) t. The position of WMR is estimated by dead-reckoning algorithm. Dead-reckoning algorithm can determine present position of WMR in real time by adding up the increased position data to the previous one in sampling period. The tracking controller makes position error to be converged 0. In order to reduce position error, a compensation velocities q=(v,ω) t on the track of trajectory is necessary. Therefore, a controller using fuzzy-genetic algorithm is proposed to give velocity compensation in this system. Input variables of two fuzzy logic controllers (FLCs) are position errors in every sampling time. The output values of FLCs are compensation velocities. Genetic algorithms (GAs) are implemented to adjust the output gain of fuzzy logic. The computer simulation is performed to get the result of trajectory tracking and to prove efficiency of proposed controller.

  13. A fine-tuned Metal-Organic Framework for Autonomous Indoor Moisture Control .

    KAUST Repository

    Abdul Halim, Racha Ghassan

    2017-06-29

    Conventional adsorbents, namely zeolites and silica gel, are often used to control humidity by adsorbing water; however, adsorbents capable of dual functionality of humidification and dehumidification, offering the desired control of the moisture level at room temperature, has yet to be explored. Here we report Y-shp-MOF-5, a hybrid microporous highly-connected Rare-Earth based metal-organic framework (MOF), with dual functionality for moisture control within the recommended range of relative humidity (45% to 65% RH) set by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). Y-shp-MOF-5 exhibits exceptional structural integrity, robustness and unique humidity-control performance as confirmed by the large number (thousand) of conducted water vapor adsorption-desorption cycles. The retained structural integrity and the mechanism of water sorption were corroborated using in situ single crystal X-ray diffraction (SCXRD) studies. The resultant working water uptake of 0.45 g.g-1 is solely regulated by a simple adjustment of the relative humidity, positioning this hydrolytically stable MOF as a prospective adsorbent for humidity control in confined spaces such as space shuttles, aircraft cabins and air-conditioned buildings.

  14. Optimal Force Control of Vibro-Impact Systems for Autonomous Drilling Applications

    Science.gov (United States)

    Aldrich, Jack B.; Okon, Avi B.

    2012-01-01

    The need to maintain optimal energy efficiency is critical during the drilling operations performed on future and current planetary rover missions (see figure). Specifically, this innovation seeks to solve the following problem. Given a spring-loaded percussive drill driven by a voice-coil motor, one needs to determine the optimal input voltage waveform (periodic function) and the optimal hammering period that minimizes the dissipated energy, while ensuring that the hammer-to-rock impacts are made with sufficient (user-defined) impact velocity (or impact energy). To solve this problem, it was first observed that when voice-coil-actuated percussive drills are driven at high power, it is of paramount importance to ensure that the electrical current of the device remains in phase with the velocity of the hammer. Otherwise, negative work is performed and the drill experiences a loss of performance (i.e., reduced impact energy) and an increase in Joule heating (i.e., reduction in energy efficiency). This observation has motivated many drilling products to incorporate the standard bang-bang control approach for driving their percussive drills. However, the bang-bang control approach is significantly less efficient than the optimal energy-efficient control approach solved herein. To obtain this solution, the standard tools of classical optimal control theory were applied. It is worth noting that these tools inherently require the solution of a two-point boundary value problem (TPBVP), i.e., a system of differential equations where half the equations have unknown boundary conditions. Typically, the TPBVP is impossible to solve analytically for high-dimensional dynamic systems. However, for the case of the spring-loaded vibro-impactor, this approach yields the exact optimal control solution as the sum of four analytic functions whose coefficients are determined using a simple, easy-to-implement algorithm. Once the optimal control waveform is determined, it can be used

  15. Frequency Control in Autonomous Power Systems With High Wind Power Penetration

    DEFF Research Database (Denmark)

    Margaris, Ioannis D.; Papathanassiou, Stavros A.; Hatziargyriou, Nikos D.

    2012-01-01

    This paper presents an investigation on wind turbine (WT) contribution to the frequency control of noninterconnected island systems. The capability of WTs to participate in the primary frequency control and offer primary reserve is discussed. The investigation includes both transient frequency su...... of Rhodes Island has been selected as a study case, which includes different types of conventional generation and the three basic WT types, based on Active-Stall Induction Generator (ASIG), Doubly Fed Induction Generator (DFIG), and Permanent Magnet Synchronous Generator (PMSG)....

  16. Nonlinear adaptive formation control for a class of autonomous holonomic planetary exploration rovers

    Science.gov (United States)

    Ganji, Farid

    This dissertation presents novel nonlinear adaptive formation controllers for a heterogeneous group of holonomic planetary exploration rovers navigating over flat terrains with unknown soil types and surface conditions. A leader-follower formation control architecture is employed. In the first part, using a point-mass model for robots and a Coulomb-viscous friction model for terrain resistance, direct adaptive control laws and a formation speed-adaptation strategy are developed for formation navigation over unknown and changing terrain in the presence of actuator saturation. On-line estimates of terrain frictional parameters compensate for unknown terrain resistance and its variations. In saturation events over difficult terrain, the formation speed is reduced based on the speed of the slowest saturated robot, using internal fleet communication and a speed-adaptation strategy, so that the formation error stays bounded and small. A formal proof for asymptotic stability of the formation system in non-saturated conditions is given. The performance of robot controllers are verified using a modular 3-robot formation simulator. Simulations show that the formation errors reduce to zero asymptotically under non-saturated conditions as is guaranteed by the theoretical proof. In the second part, the proposed adaptive control methodology is extended for formation control of a class of omnidirectional rovers with three independently-driven universal holonomic rigid wheels, where the rovers' rigid-body dynamics, drive-system electromechanical characteristics, and wheel-ground interaction mechanics are incorporated. Holonomic rovers have the ability to move simultaneously and independently in translation and rotation, rendering great maneuverability and agility, which makes them suitable for formation navigation. Novel nonlinear adaptive control laws are designed for the input voltages of the three wheel-drive motors. The motion resistance, which is due to the sinkage of rover

  17. Integrating autonomous distributed control into a human-centric C4ISR environment

    Science.gov (United States)

    Straub, Jeremy

    2017-05-01

    This paper considers incorporating autonomy into human-centric Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) environments. Specifically, it focuses on identifying ways that current autonomy technologies can augment human control and the challenges presented by additive autonomy. Three approaches to this challenge are considered, stemming from prior work in two converging areas. In the first, the problem is approached as augmenting what humans currently do with automation. In the alternate approach, the problem is approached as treating humans as actors within a cyber-physical system-of-systems (stemming from robotic distributed computing). A third approach, combines elements of both of the aforementioned.

  18. Autonomous Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Jalilian, Alireza; Vasquez, Juan Carlos

    2013-01-01

    Recently, there is an increasing interest in using distributed generators (DGs) not only to inject power into the grid, but also to enhance the power quality. In this paper, a stationary-frame control method for voltage unbalance compensation in an islanded microgrid is proposed. This method...

  19. A control strategy for steering an autonomous surface sailing vehicle in a tacking maneuver

    DEFF Research Database (Denmark)

    Jouffroy, Jerome

    2009-01-01

    Sailing vessels such as sailboats but also landyachts are vehicles representing a real challenge for automation. However, the control aspects of such vehicles were hitherto very little studied. This paper presents a simplied dynamic model of a so-called landyacht allowing to capture the main...

  20. Autonomic control of heart rate by metabolically sensitive skeletal muscle afferents in humans

    DEFF Research Database (Denmark)

    Fisher, James P; Seifert, Thomas; Hartwich, Doreen

    2010-01-01

    moderate (PEI-M) and high (PEI-H) intensity isometric handgrip performed at 25% and 40% maximum voluntary contraction, under control (no drug), parasympathetic blockade (glycopyrrolate) and beta-adrenergic blockade (metoprolol or propranalol) conditions, while beat-to-beat HR and BP were continuously...

  1. A Lunchtime Walk in Nature Enhances Restoration of Autonomic Control during Night-Time Sleep: Results from a Preliminary Study

    Directory of Open Access Journals (Sweden)

    Valerie F. Gladwell

    2016-03-01

    Full Text Available Walking within nature (Green Exercise has been shown to immediately enhance mental well-being but less is known about the impact on physiology and longer lasting effects. Heart rate variability (HRV gives an indication of autonomic control of the heart, in particular vagal activity, with reduced HRV identified as a risk factor for cardiovascular disease. Night-time HRV allows vagal activity to be assessed whilst minimizing confounding influences of physical and mental activity. The aim of this study was to investigate whether a lunchtime walk in nature increases night-time HRV. Participants (n = 13 attended on two occasions to walk a 1.8 km route through a built or a natural environment. Pace was similar between the two walks. HRV was measured during sleep using a RR interval sensor (eMotion sensor and was assessed at 1–2 h after participants noted that they had fallen asleep. Markers for vagal activity were significantly greater after the walk in nature compared to the built walk. Lunchtime walks in nature-based environments may provide a greater restorative effect as shown by vagal activity than equivalent built walks. Nature walks may improve essential recovery during night-time sleep, potentially enhancing physiological health.

  2. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    Science.gov (United States)

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure.

  3. A Lunchtime Walk in Nature Enhances Restoration of Autonomic Control during Night-Time Sleep: Results from a Preliminary Study.

    Science.gov (United States)

    Gladwell, Valerie F; Kuoppa, Pekka; Tarvainen, Mika P; Rogerson, Mike

    2016-03-03

    Walking within nature (Green Exercise) has been shown to immediately enhance mental well-being but less is known about the impact on physiology and longer lasting effects. Heart rate variability (HRV) gives an indication of autonomic control of the heart, in particular vagal activity, with reduced HRV identified as a risk factor for cardiovascular disease. Night-time HRV allows vagal activity to be assessed whilst minimizing confounding influences of physical and mental activity. The aim of this study was to investigate whether a lunchtime walk in nature increases night-time HRV. Participants (n = 13) attended on two occasions to walk a 1.8 km route through a built or a natural environment. Pace was similar between the two walks. HRV was measured during sleep using a RR interval sensor (eMotion sensor) and was assessed at 1-2 h after participants noted that they had fallen asleep. Markers for vagal activity were significantly greater after the walk in nature compared to the built walk. Lunchtime walks in nature-based environments may provide a greater restorative effect as shown by vagal activity than equivalent built walks. Nature walks may improve essential recovery during night-time sleep, potentially enhancing physiological health.

  4. Comparison of 24-hour cardiovascular and autonomic function in paraplegia, tetraplegia, and control groups: implications for cardiovascular risk.

    Science.gov (United States)

    Rosado-Rivera, Dwindally; Radulovic, M; Handrakis, John P; Cirnigliaro, Christopher M; Jensen, A Marley; Kirshblum, Steve; Bauman, William A; Wecht, Jill Maria

    2011-01-01

    Fluctuations in 24-hour cardiovascular hemodynamics, specifically heart rate (HR) and blood pressure (BP), are thought to reflect autonomic nervous system (ANS) activity. Persons with spinal cord injury (SCI) represent a model of ANS dysfunction, which may affect 24-hour hemodynamics and predispose these individuals to increased cardiovascular disease risk. To determine 24-hour cardiovascular and ANS function among individuals with tetraplegia (n=20; TETRA: C4-C8), high paraplegia (n=10; HP: T2-T5), low paraplegia (n=9; LP: T7-T12), and non-SCI controls (n=10). Twenty-four-hour ANS function was assessed by time domain parameters of heart rate variability (HRV); the standard deviation of the 5-minute average R-R intervals (SDANN; milliseconds/ms), and the root-mean square of the standard deviation of the R-R intervals (rMSSD; ms). Subjects wore 24-hour ambulatory monitors to record HR, HRV, and BP. Mixed analysis of variance (ANOVA) revealed significantly lower 24-hour BP in the tetraplegic group; however, BP did not differ between the HP, LP, and control groups. Mixed ANOVA suggested significantly elevated 24-hour HR in the HP and LP groups compared to the TETRA and control groups (Pcontrol groups (Pcontrol groups (P<0.01). Twenty-four-hour SDANN was significantly increased in the HP group compared to the LP and TETRA groups (P<0.05) and rMSSD was significantly lower in the LP compared to the other three groups (P<0.05). Elevated 24-hour HR in persons with paraplegia, in concert with altered HRV dynamics, may impart significant adverse cardiovascular consequences, which are currently unappreciated.

  5. Autonomous tracked robots in planar off-road conditions modelling, localization, and motion control

    CERN Document Server

    González, Ramón; Guzmán, José Luis

    2014-01-01

    This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques.   Keywords: longitudinal slip, visual odometry, slip...

  6. High-accuracy drilling with an image guided light weight robot: autonomous versus intuitive feed control.

    Science.gov (United States)

    Tauscher, Sebastian; Fuchs, Alexander; Baier, Fabian; Kahrs, Lüder A; Ortmaier, Tobias

    2017-10-01

    Assistance of robotic systems in the operating room promises higher accuracy and, hence, demanding surgical interventions become realisable (e.g. the direct cochlear access). Additionally, an intuitive user interface is crucial for the use of robots in surgery. Torque sensors in the joints can be employed for intuitive interaction concepts. Regarding the accuracy, they lead to a lower structural stiffness and, thus, to an additional error source. The aim of this contribution is to examine, if an accuracy needed for demanding interventions can be achieved by such a system or not. Feasible accuracy results of the robot-assisted process depend on each work-flow step. This work focuses on the determination of the tool coordinate frame. A method for drill axis definition is implemented and analysed. Furthermore, a concept of admittance feed control is developed. This allows the user to control feeding along the planned path by applying a force to the robots structure. The accuracy is researched by drilling experiments with a PMMA phantom and artificial bone blocks. The described drill axis estimation process results in a high angular repeatability ([Formula: see text]). In the first set of drilling results, an accuracy of [Formula: see text] at entrance and [Formula: see text] at target point excluding imaging was achieved. With admittance feed control an accuracy of [Formula: see text] at target point was realised. In a third set twelve holes were drilled in artificial temporal bone phantoms including imaging. In this set-up an error of [Formula: see text] and [Formula: see text] was achieved. The results of conducted experiments show that accuracy requirements for demanding procedures such as the direct cochlear access can be fulfilled with compliant systems. Furthermore, it was shown that with the presented admittance feed control an accuracy of less then [Formula: see text] is achievable.

  7. Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States

    Science.gov (United States)

    2016-08-12

    the analysis used for this research. A linearized SIMULINK model of the 46 state aircraft dynamics, the actuators, and the DI control laws was used to...Minor Components Analysis was developed and integrated with landing path generation algorithms. Path optimization studies developed feasible methods for...that has been thoroughly tested for a variety of wind -over- deck (WOD) conditions. The current operational paths may not be an optimal, and operations

  8. Guidance and Control of an Autonomous Soaring Vehicle with Flight Test Results

    Science.gov (United States)

    Allen, Michael J.

    2007-01-01

    A guidance and control method was developed to detect and exploit thermals for energy gain. Latency in energy rate estimation degraded performance. The concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology. Many UAVs have similar mission constraints to birds and sailplanes. a) Surveillance; b) Point to point flight with minimal energy; and c) Increased ground speed.

  9. A Nonlinear Model Predictive Control Algorithm for Obstacle Avoidance in Autonomous Ground Vehicles within Unknown Environments

    Science.gov (United States)

    2015-04-24

    achieved by formulating the obstacle avoidance problem into an optimal control problem (OCP), which is then converted into a nonlinear programming ( NLP ...time OCP is transcribed into to a nonlinear programming ( NLP ) problem using a direct method called hp-pseudospectral method [29], [30], [31]. Second...the resulting NLP problem is solved using the interior point method [32]. The hp-pseudospectral method discretizes a continuous-time OCP into an NLP

  10. The Role of Autonomic Function in Exercise-induced Endogenous Analgesia: A Case-control Study in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Healthy People.

    Science.gov (United States)

    Oosterwijck, Jessica Van; Marusic, Uros; De Wandele, Inge; Paul, Lorna; Meeus, Mira; Moorkens, Greta; Lambrecht, Luc; Danneels, Lieven; Nijs, Jo

    2017-03-01

    Patients with myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) are unable to activate brain-orchestrated endogenous analgesia (or descending inhibition) in response to exercise. This physiological impairment is currently regarded as one factor explaining post-exertional malaise in these patients. Autonomic dysfunction is also a feature of ME/CFS. This study aims to examine the role of the autonomic nervous system in exercise-induced analgesia in healthy people and those with ME/CFS, by studying the recovery of autonomic parameters following aerobic exercise and the relation to changes in self-reported pain intensity. A controlled experimental study. The study was conducted at the Human Physiology lab of a University. Twenty women with ME/CFS- and 20 healthy, sedentary controls performed a submaximal bicycle exercise test known as the Aerobic Power Index with continuous cardiorespiratory monitoring. Before and after the exercise, measures of autonomic function (i.e., heart rate variability, blood pressure, and respiration rate) were performed continuously for 10 minutes and self-reported pain levels were registered. The relation between autonomous parameters and self-reported pain parameters was examined using correlation analysis. Some relationships of moderate strength between autonomic and pain measures were found. The change (post-exercise minus pre-exercise score) in pain severity was correlated (r = .580, P = .007) with the change in diastolic blood pressure in the healthy group. In the ME/CFS group, positive correlations between the changes in pain severity and low frequency (r = .552, P = .014), and between the changes in bodily pain and diastolic blood pressure (r = .472, P = .036), were seen. In addition, in ME/CHFS the change in headache severity was inversely correlated (r = -.480, P = .038) with the change in high frequency heart rate variability. Based on the cross-sectional design of the study, no firm conclusions can be drawn on the

  11. The Formulation and Solution of the Multi-objective Optimization Problem for an Autonomous Electrohydraulic Servo Actuator with Combined Control

    Directory of Open Access Journals (Sweden)

    O. S. Nozhnin

    2017-01-01

    Full Text Available The rapid development of electrical engineering industries for aviation has resulted in a gradual transition to the autonomous electrohydraulic drives, among which an electro-hydrostatic drive is currently considered to be the most advanced. However, high requirements for dynamic parameters of modern unstable and low-stability aircrafts put restriction on implementation of electro-hydrostatic drives in the industry.A combined control hydraulic drive arisen from the electro-hydrostatic drive development solves the problem of low dynamic parameters. High dynamics for combined control is achieved through the use of double (throttle and electric power control with each of them being predominant depending on the input signal value.Due to small knowledge of the drive with combined control, the article proposes to use a multi-criterion optimization method in order to obtain optimal results in its development. This will allows an adequate estimate of drive performance for its comparison with analogues and a justification of the feasibility of further research as well.The article describes all the stages of multi-criteria optimization of the combined control drive using the LP-search method. Optimization is carried out taking into account the requirements for modern aircrafts. As criteria, were taken three values , which, in the authors' opinion, provide the most complete description of the entire drive quality (a drive power consumption in the "neutral", an efficiency of the hydraulic part of the drive in the mode of electric power control, a value of ITAE when driving with a small signal. As a result of optimization, the Pareto front was obtained in three coordinates, corresponding to effective solutions, after which a compromise between the criteria was found, and the optimal solution was chosen.The design solution of the combined control drive, obtained after optimization, meets all the requirements for modern aircrafts and has both the high power

  12. Autonomous Satellite Command and Control Through the World Wide Web. Phase 3

    Science.gov (United States)

    Cantwell, Brian; Twiggs, Robert

    1998-01-01

    The Automated Space System Experimental Testbed (ASSET) system is a simple yet comprehensive real-world operations network being developed. Phase 3 of the ASSET Project was January-December 1997 and is the subject of this report. This phase permitted SSDL and its project partners to expand the ASSET system in a variety of ways. These added capabilities included the advancement of ground station capabilities, the adaptation of spacecraft on-board software, and the expansion of capabilities of the ASSET management algorithms. Specific goals of Phase 3 were: (1) Extend Web-based goal-level commanding for both the payload PI and the spacecraft engineer. (2) Support prioritized handling of multiple (PIs) Principle Investigators as well as associated payload experimenters. (3) Expand the number and types of experiments supported by the ASSET system and its associated spacecraft. (4) Implement more advanced resource management, modeling and fault management capabilities that integrate the space and ground segments of the space system hardware. (5) Implement a beacon monitoring test. (6) Implement an experimental blackboard controller for space system management. (7) Further define typical ground station developments required for Internet-based remote control and for full system automation of the PI-to-spacecraft link. Each of those goals are examined. Significant sections of this report were also published as a conference paper. Several publications produced in support of this grant are included as attachments. Titles include: 1) Experimental Initiatives in Space System Operations; 2) The ASSET Client Interface: Balancing High Level Specification with Low Level Control; 3) Specifying Spacecraft Operations At The Product/Service Level; 4) The Design of a Highly Configurable, Reusable Operating System for Testbed Satellites; 5) Automated Health Operations For The Sapphire Spacecraft; 6) Engineering Data Summaries for Space Missions; and 7) Experiments In Automated Health

  13. Cross Body Thruster Control and Modeling of a Body of Revolution Autonomous Underwater Vehicle

    Science.gov (United States)

    2011-03-01

    Controller SVT – Stern Vertical Thruster xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii ACKNOWLEDGMENTS Foremost, this work would not have been...7 2 4 3 3.350 10 - 2.352 10 1.923 10 - 3.106 10 4.480 10 SVT n n n n − − − − − Τ = ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ (133) Again, these equations are only...thruster was varied to achieve a commanded pitch of 0[ ]deg . Table 11 presents the results: 67 FVT [RPM] SVT [RPM] Thruster Differential [RPM

  14. Autonomous docking control of visual-servo type underwater vehicle system aiming at underwater automatic charging

    International Nuclear Information System (INIS)

    Yanou, Akira; Ohnishi, Shota; Ishiyama, Shintaro; Minami, Mamoru

    2015-01-01

    A visual-servo type remotely operated vehicle (ROV) system with binocular wide-angle lens was developed to survey submarine resources, decontaminate radiation from mud in dam lake and so on. This paper explores the experiments on regulator performance and underwater docking of the robot system utilizing Genetic Algorithm (GA) for real-time recognition of the robot's relative position and posture through 3D marker. The visual servoing performances have been verified as follows; (1) The stability performances of the proposed regulator system have been evaluated by exerting abrupt distrubane force while the ROV is controlled by visual servoing. (2) The proposed system can track time-variant desired target position in x-axis (front-back direction of the robot). (3) The underwater docking can be completed by switching visual servoing and docking modes based on the error threshold, and by giving time-varying desired target position and orientation to the controller as a desired pose. (author)

  15. Control Strategies for Improving Energy Efficiency and Reliability in Autonomous Microgrids with Communication Constraints

    Directory of Open Access Journals (Sweden)

    Francisco Martins Portelinha Júnior

    2017-09-01

    Full Text Available Microgrids are a feasible path to deploy smart grids, an intelligent and highly automated power system. Their operation demands a dedicated communication infrastructure to manage, control and monitor the intermittent sources of energy and loads. Therefore, smart devices will be connected to support the growth of grid smartness increasing the dependency on communication networks, which consumes a high amount of power. In an energy-limited scenario, one of the main issues is to enhance the power supply time. Therefore, this paper proposes a hybrid methodology for microgrid energy management, integrated with a communication infrastructure to improve and to optimize islanded microgrid operation at maximum energy efficiency. The hybrid methodology applies some control management rules, such as intentional load shedding, priority load management, and communication energy saving. These energy saving rules establish a trade-off between increasing microgrid energy availability and communication system reliability. To achieve a compromised solution, a continuous time Markov chain model describes the impact of energy saving policies into system reliability. The proposed methodology is simulated and tested with the help of the modified IEEE 34 node test-system.

  16. Automatic learning rate adjustment for self-supervising autonomous robot control

    Science.gov (United States)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    Described is an application in which an Artificial Neural Network (ANN) controls the positioning of a robot arm with five degrees of freedom by using visual feedback provided by two cameras. This application and the specific ANN model, local liner maps, are based on the work of Ritter, Martinetz, and Schulten. We extended their approach by generating a filtered, average positioning error from the continuous camera feedback and by coupling the learning rate to this error. When the network learns to position the arm, the positioning error decreases and so does the learning rate until the system stabilizes at a minimum error and learning rate. This abolishes the need for a predetermined cooling schedule. The automatic cooling procedure results in a closed loop control with no distinction between a learning phase and a production phase. If the positioning error suddenly starts to increase due to an internal failure such as a broken joint, or an environmental change such as a camera moving, the learning rate increases accordingly. Thus, learning is automatically activated and the network adapts to the new condition after which the error decreases again and learning is 'shut off'. The automatic cooling is therefore a prerequisite for the autonomy and the fault tolerance of the system.

  17. Cybersecurity for aerospace autonomous systems

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  18. Operator-centered control of a semi-autonomous industrial robot

    Energy Technology Data Exchange (ETDEWEB)

    Spelt, P.F. [Oak Ridge National Lab., TN (United States); Jones, S.L. [REMOTEC, Inc., Oak Ridge, TN (United States)

    1994-12-31

    This paper presents work done by Oak Ridge National Laboratory and Remotec, Inc., to develop a new operator-centered control system for Remotec`s Andros telerobot. Andros robots are presently used by numerous electric utilities, the armed forces, and numerous law enforcement agencies to perform tasks which are hazardous for human operators. This project has automated task components and enhanced the video graphics display of the robot`s position in the environment to significantly reduce operator workload. The procedure of automating a telerobot requires the addition of computer power to the robot, along with a variety of sensors and encoders to provide information about the robots performance in and relationship to its environment The resulting vehicle serves as a platform for research on strategies to integrate automated tasks with those performed by a human operator. The addition of these capabilities will greatly enhance the safety and efficiency of performance in hazardous environments.

  19. Operator-centered control of a semi-autonomous industrial robot

    International Nuclear Information System (INIS)

    Spelt, P.F.; Jones, S.L.

    1994-01-01

    This paper presents work done by Oak Ridge National Laboratory and Remotec, Inc., to develop a new operator-centered control system for Remotec's Andros telerobot. Andros robots are presently used by numerous electric utilities, the armed forces, and numerous law enforcement agencies to perform tasks which are hazardous for human operators. This project has automated task components and enhanced the video graphics display of the robot's position in the environment to significantly reduce operator workload. The procedure of automating a telerobot requires the addition of computer power to the robot, along with a variety of sensors and encoders to provide information about the robots performance in and relationship to its environment The resulting vehicle serves as a platform for research on strategies to integrate automated tasks with those performed by a human operator. The addition of these capabilities will greatly enhance the safety and efficiency of performance in hazardous environments

  20. Autonomous Space Object Catalogue Construction and Upkeep Using Sensor Control Theory

    Science.gov (United States)

    Moretti, N.; Rutten, M.; Bessell, T.; Morreale, B.

    The capability to track objects in space is critical to safeguard domestic and international space assets. Infrequent measurement opportunities, complex dynamics and partial observability of orbital state makes the tracking of resident space objects nontrivial. It is not uncommon for human operators to intervene with space tracking systems, particularly in scheduling sensors. This paper details the development of a system that maintains a catalogue of geostationary objects through dynamically tasking sensors in real time by managing the uncertainty of object states. As the number of objects in space grows the potential for collision grows exponentially. Being able to provide accurate assessment to operators regarding costly collision avoidance manoeuvres is paramount; the accuracy of which is highly dependent on how object states are estimated. The system represents object state and uncertainty using particles and utilises a particle filter for state estimation. Particle filters capture the model and measurement uncertainty accurately, allowing for a more comprehensive representation of the state’s probability density function. Additionally, the number of objects in space is growing disproportionally to the number of sensors used to track them. Maintaining precise positions for all objects places large loads on sensors, limiting the time available to search for new objects or track high priority objects. Rather than precisely track all objects our system manages the uncertainty in orbital state for each object independently. The uncertainty is allowed to grow and sensor data is only requested when the uncertainty must be reduced. For example when object uncertainties overlap leading to data association issues or if the uncertainty grows to beyond a field of view. These control laws are formulated into a cost function, which is optimised in real time to task sensors. By controlling an optical telescope the system has been able to construct and maintain a catalogue

  1. Autonomous Satellite Command and Control through the World Wide Web: Phase 3

    Science.gov (United States)

    Cantwell, Brian; Twiggs, Robert

    1998-01-01

    management, modeling and fault management capabilities that integrate the space and ground segments of the space system hardware; (5) Implement a beacon monitoring test; (6) Implement an experimental blackboard controller for space system management; (7) Further define typical ground station developments required for Internet-based remote control and for full system automation of the PI-to-spacecraft link. Each of those goals is examined in the next section. Significant sections of this report were also published as a conference paper.

  2. Autonomous Co-operation and Control in Complex Adaptive Logistic Systems - Contributions and Limitations for the Innovation Capability of International Supply Networks

    Science.gov (United States)

    Hülsmann, Michael; Cordes, Philip

    This paper aims to analyze the potential contributions of the organization principle autonomous co-operation and control to the innovation capabilities of logistics systems and their sub-systems like single organizations. Therefore, the concept of Complex Adaptive Logistics Systems (CALS) will be introduced and the essentiality of the heterogeneity of the elements within logistics systems for their innovation capabilities will be emphasized. One possible driver for homogeneity is the so-called dominant logic.

  3. Comparison of 24-hour cardiovascular and autonomic function in paraplegia, tetraplegia, and control groups: Implications for cardiovascular risk

    Science.gov (United States)

    Rosado-Rivera, Dwindally; Radulovic, M.; Handrakis, John P.; Cirnigliaro, Christopher M.; Jensen, A. Marley; Kirshblum, Steve; Bauman, William A.; Wecht, Jill Maria

    2011-01-01

    Background Fluctuations in 24-hour cardiovascular hemodynamics, specifically heart rate (HR) and blood pressure (BP), are thought to reflect autonomic nervous system (ANS) activity. Persons with spinal cord injury (SCI) represent a model of ANS dysfunction, which may affect 24-hour hemodynamics and predispose these individuals to increased cardiovascular disease risk. Objective To determine 24-hour cardiovascular and ANS function among individuals with tetraplegia (n = 20; TETRA: C4–C8), high paraplegia (n = 10; HP: T2–T5), low paraplegia (n = 9; LP: T7–T12), and non-SCI controls (n = 10). Twenty-four-hour ANS function was assessed by time domain parameters of heart rate variability (HRV); the standard deviation of the 5-minute average R–R intervals (SDANN; milliseconds/ms), and the root-mean square of the standard deviation of the R–R intervals (rMSSD; ms). Subjects wore 24-hour ambulatory monitors to record HR, HRV, and BP. Mixed analysis of variance (ANOVA) revealed significantly lower 24-hour BP in the tetraplegic group; however, BP did not differ between the HP, LP, and control groups. Mixed ANOVA suggested significantly elevated 24-hour HR in the HP and LP groups compared to the TETRA and control groups (P < 0.05); daytime HR was higher in both paraplegic groups compared to the TETRA and control groups (P < 0.01) and nighttime HR was significantly elevated in the LP group compared to the TETRA and control groups (P < 0.01). Twenty-four-hour SDANN was significantly increased in the HP group compared to the LP and TETRA groups (P < 0.05) and rMSSD was significantly lower in the LP compared to the other three groups (P < 0.05). Elevated 24-hour HR in persons with paraplegia, in concert with altered HRV dynamics, may impart significant adverse cardiovascular consequences, which are currently unappreciated. PMID:21903013

  4. Zero-power autonomous buoyancy system controlled by microbial gas production

    Science.gov (United States)

    Wu, Peter K.; Fitzgerald, Lisa A.; Biffinger, Justin C.; Spargo, Barry J.; Houston, Brian H.; Bucaro, Joseph A.; Ringeisen, Bradley R.

    2011-05-01

    A zero-power ballast control system that could be used to float and submerge a device solely using a gas source was built and tested. This system could be used to convey sensors, data loggers, and communication devices necessary for water quality monitoring and other applications by periodically maneuvering up and down a water column. Operational parameters for the system such as duration of the submerged and buoyant states can be varied according to its design. The gas source can be of any origin, e.g., compressed air, underwater gas vent, gas produced by microbes, etc. The zero-power ballast system was initially tested using a gas pump and further tested using gas produced by Clostridium acetobutylicum. Using microbial gas production as the only source of gas and no electrical power during operation, the system successfully floated and submerged periodically with a period of 30 min for at least 24 h. Together with microbial fuel cells, this system opens up possibilities for underwater monitoring systems that could function indefinitely.

  5. A Unified Point Process Probabilistic Framework to Assess Heartbeat Dynamics and Autonomic Cardiovascular Control

    Directory of Open Access Journals (Sweden)

    Zhe eChen

    2012-02-01

    Full Text Available In recent years, time-varying inhomogeneous point process models have been introduced for assessment of instantaneous heartbeat dynamics as well as specific cardiovascular control mechanisms and hemodynamics. Assessment of the model's statistics is established through the Wiener-Volterra theory and a multivariate autoregressive (AR structure. A variety of instantaneous cardiovascular metrics, such as heart rate (HR, heart rate variability (HRV, respiratory sinus arrhythmia (RSA, and baroreceptor-cardiac reflex (baroreflex sensitivity (BRS, are derived within a parametric framework and instantaneously updated with adaptive and local maximum likelihood estimation algorithms. Inclusion of second order nonlinearities, with subsequent bispectral quantification in the frequency domain, further allows for definition of instantaneous metrics of nonlinearity. We here organize a comprehensive review of the devised methods as applied to experimental recordings from healthy subjects during propofol anesthesia. Collective results reveal interesting dynamic trends across the different pharmacological interventions operated within each anesthesia session, confirming the ability of the algorithm to track important changes in cardiorespiratory elicited interactions, and pointing at our mathematical approach as a promising monitoring tool for an accurate, noninvasive assessment in clinical practice.

  6. EXERCISE-INDUCED NEURONAL PLASTICITY IN CENTRAL AUTONOMIC NETWORKS: ROLE IN CARDIOVASCULAR CONTROL

    Science.gov (United States)

    Michelini, Lisete C.; Stern, Javier E.

    2010-01-01

    It is now well established that brain plasticity is an inherent property not only of the developing, but also of the adult brain. Numerous beneficial effects of exercise, including improved memory, cognitive function and neuroprotection, have been shown to involve an important neuroplastic component. However, whether major adaptive cardiovascular adjustments during exercise, needed to ensure proper blood perfusion of peripheral tissues, also require brain neuroplasticity, is presently unknown. This review will critically evaluate current knowledge on proposed mechanisms that likely underlie the continuous resetting of baroreflex control of heart rate during/after exercise and following exercise training. Accumulating evidence indicates that not only somatosensory afferents (conveyed by skeletal muscle receptors, baroreceptors and/or cardiopulmonary receptors), but also projections arising from central command neurons (in particular peptidergic hypothalamic preautonomic neurons) converge into the nucleus tractus solitarii (NTS) in the dorsal brainstem, to coordinate complex cardiovascular adaptations during dynamic exercise. This review focuses in particular on a reciprocally interconnected network between the NTS and the hypothalamic paraventricular nucleus (PVN), which is proposed to act as a pivotal anatomical and functional substrate underlying integrative feed-forward and feed-back cardiovascular adjustments during exercise. Recent findings supporting neuroplastic adaptive changes within the NTS-PVN reciprocal network (e.g., remodeling of afferent inputs, structural and functional neuronal plasticity, and changes in neurotransmitter content), will be discussed within the context of their role as important underlying cellular mechanisms supporting the tonic activation and improved efficacy of these central pathways in response to circulatory demand at rest and during exercise, both in sedentary and trained individuals. We hope this review will stimulate more

  7. Aging alters muscle reflex control of autonomic cardiovascular responses to rhythmic contractions in humans.

    Science.gov (United States)

    Sidhu, Simranjit K; Weavil, Joshua C; Venturelli, Massimo; Rossman, Matthew J; Gmelch, Benjamin S; Bledsoe, Amber D; Richardson, Russell S; Amann, Markus

    2015-11-01

    We investigated the influence of aging on the group III/IV muscle afferents in the exercise pressor reflex-mediated cardiovascular response to rhythmic exercise. Nine old (OLD; 68 ± 2 yr) and nine young (YNG; 24 ± 2 yr) males performed single-leg knee extensor exercise (15 W, 30 W, 80% max) under control conditions and with lumbar intrathecal fentanyl impairing feedback from group III/IV leg muscle afferents. Mean arterial pressure (MAP), cardiac output, leg blood flow (QL), systemic (SVC) and leg vascular conductance (LVC) were continuously determined. With no hemodynamic effect at rest, fentanyl blockade during exercise attenuated both cardiac output and QL ∼17% in YNG, while the decrease in cardiac output in OLD (∼5%) was significantly smaller with no impact on QL (P = 0.8). Therefore, in the face of similar significant ∼7% reduction in MAP during exercise with fentanyl blockade in both groups, LVC significantly increased ∼11% in OLD, but decreased ∼8% in YNG. The opposing direction of change was reflected in SVC with a significant ∼5% increase in OLD and a ∼12% decrease in YNG. Thus while cardiac output seems to account for the majority of group III/IV-mediated MAP responses in YNG, the impact of neural feedback on the heart may decrease with age and alterations in SVC become more prominent in mediating the similar exercise pressor reflex in OLD. Interestingly, in terms of peripheral hemodynamics, while group III/IV-mediated feedback plays a clear role in increasing LVC during exercise in the YNG, these afferents seem to actually reduce LVC in OLD. These peripheral findings may help explain the limited exercise-induced peripheral vasodilation often associated with aging. Copyright © 2015 the American Physiological Society.

  8. Control of an Autonomous Radio-Controlled Helicopter in a Modified Simulation Environment Using Proportional Integral Derivative Algorithms

    National Research Council Canada - National Science Library

    Brown, Ainsmar X; Garcia, Richard D

    2008-01-01

    .... A proportional integral derivative control algorithm was modeled in MathWorks Simulink and communicates to a flight simulator modeling a physical radio-controlled helicopter. Waypoint navigation and flight-envelope testing were then systematically evaluated to the final goal of a feasible autopilot design.

  9. Autonomous Information Unit for Fine-Grain Data Access Control and Information Protection in a Net-Centric System

    Science.gov (United States)

    Chow, Edward T.; Woo, Simon S.; James, Mark; Paloulian, George K.

    2012-01-01

    As communication and networking technologies advance, networks will become highly complex and heterogeneous, interconnecting different network domains. There is a need to provide user authentication and data protection in order to further facilitate critical mission operations, especially in the tactical and mission-critical net-centric networking environment. The Autonomous Information Unit (AIU) technology was designed to provide the fine-grain data access and user control in a net-centric system-testing environment to meet these objectives. The AIU is a fundamental capability designed to enable fine-grain data access and user control in the cross-domain networking environments, where an AIU is composed of the mission data, metadata, and policy. An AIU provides a mechanism to establish trust among deployed AIUs based on recombining shared secrets, authentication and verify users with a username, X.509 certificate, enclave information, and classification level. AIU achieves data protection through (1) splitting data into multiple information pieces using the Shamir's secret sharing algorithm, (2) encrypting each individual information piece using military-grade AES-256 encryption, and (3) randomizing the position of the encrypted data based on the unbiased and memory efficient in-place Fisher-Yates shuffle method. Therefore, it becomes virtually impossible for attackers to compromise data since attackers need to obtain all distributed information as well as the encryption key and the random seeds to properly arrange the data. In addition, since policy can be associated with data in the AIU, different user access and data control strategies can be included. The AIU technology can greatly enhance information assurance and security management in the bandwidth-limited and ad hoc net-centric environments. In addition, AIU technology can be applicable to general complex network domains and applications where distributed user authentication and data protection are

  10. Development of a new multiple sampling trawl with autonomous opening/closing net control system for sampling juvenile pelagic fish

    Science.gov (United States)

    Oozeki, Yoshioki; Hu, Fuxiang; Tomatsu, Chiaki; Kubota, Hiroshi

    2012-03-01

    A new multiple layer sampling trawl with an autonomous net opening/closing control system was developed to sample pelagic juvenile fish quantitatively. The new trawl system, based on the Matsuda-Oozeki-Hu Trawl (MOHT), has a rigid-frame 3.3 m high and 2.35 m wide and five nets of 11.0 m length with a rectangular mouth of 2.22 m×1.81 m (4 m2 mouth area; large-scale prototype). A cambered V-shape depressor is hung below the frame and two bridles are attached at the midpoint of the side frames. A net-release controller is used, which not only controls the net release mechanism but also records the net depth, temperature and flow rate during net towing. The controller sends stored command signals to the net release mechanism as depth settings and/or time settings and does not require any commands from the surface through a conducting cable or by acoustic signals. Two other models were constructed before the construction of the large-scale prototype, which are a small-scale prototype (2 m2 mouth area) for testing the net release mechanism and a 1/4-scale model of the large-scale prototype for flume tank tests. Flume tank tests with the 1/4-scale model showed that the frame leaned forward at a tilt angle from 5 to 15 degrees at towing speeds from 0.8 to 1.4 m s-1. Opened nets closed smoothly and sequentially nets were completely opened when the trigger was released by the command. Net depth rarely changed even during changes in towing speed. Sea trials both by the small-scale and the large-scale prototype demonstrated the same towing characteristics expected from the flume tank tests. The newly developed multiple layer opening/closing MOHT (MOC-MOHT) is considered to be suitable for quantitative layer sampling of juvenile fish.

  11. Can coefficient of variation of time-domain analysis be valuable for detecting cardiovascular autonomic neuropathy in young patients with type 1 diabetes: a case control study.

    Science.gov (United States)

    Razanskaite-Virbickiene, Dovile; Danyte, Evalda; Mockeviciene, Giedre; Dobrovolskiene, Rimante; Verkauskiene, Rasa; Zalinkevicius, Rimantas

    2017-01-19

    Cardiovascular autonomic neuropathy (CAN) increases morbidity and mortality in diabetes through association with a high risk of cardiac arrhythmias and sudden death, possibly related to silent myocardial ischemia. During the sub-clinical stage, CAN can be detected through reduction in heart rate variability (HRV). The aim of our study was to estimate if the time and frequency-domain analysis can be valuable for detecting CAN in young patients with type 1 diabetes mellitus (T1DM). For this case control study of evaluation of cardiovascular autonomic function the 15-25 years age group of patients with duration of T1DM more than 9 years (n = 208, 89 males and 119 females) were selected. 67 patients with confirmed CAN were assigned to the "case group" and 141 patients without CAN served as a control group, the duration of T1DM was similar (15.07 ± 4.89 years vs.13.66 ± 4.02 years; p = 0.06) in both groups. Cardiovascular autonomic reflex tests and time and frequency domains analysis of HRV were performed for all subjects. Time domain measures were significantly lower in CAN group compared with control (p patients with CAN. Receivers operating characteristic (ROC) curves were constructed to compare the accuracies of the parameters of time-domain analysis for diagnosing CAN. We estimated a more reliable cut-off value of parameters of time-domain. The CV values in supine position cardiovascular autonomic function, providing more information about sympathetic and parasympathetic activity. The coefficient of variation (time-domain analysis) especially during deep breathing could be valuable for detecting CAN.

  12. Autonomous Control of Current and Voltage Controlled DG Interface Inverters for Reactive Power Sharing and Harmonics Compensation in Islanded Microgrids

    DEFF Research Database (Denmark)

    Mousazadeh, Seyyed Yousef; Jalilain, Alireza; Savaghebi, Mehdi

    2018-01-01

    In microgrids, Voltage Source Inverters (VSIs) interfacing Distributed Generation (DG) units can be operated in Voltage or Current Controlled Modes (VCM/CCM). In this paper, a coordinated control of CCM and VCM units for reactive power sharing and voltage harmonics compensation is proposed....... This decentralized control scheme is based on the local measurement of signals. In this way, the need for communication links is removed which results in a simpler and more reliable structure compared to the communication based control structures. To be more exact, the VCM units contribute to harmonics compensation....... Experimental and simulation studies show that the harmonics compensation is achieved by using only local measurements in presence of virtual admittance/impedance schemes of CCM/VCM units. Furthermore, it is demonstrated that the reactive power sharing among the CCM and VCM units is obtained based...

  13. Effects of Tibetan Music on Neuroendocrine and Autonomic Functions in Patients Waiting for Surgery: A Randomized, Controlled Study

    Directory of Open Access Journals (Sweden)

    Antonella Cotoia

    2018-01-01

    Full Text Available Background. The aim of this study was to investigate the effects of listening to Tibetan music on anxiety and endocrine, autonomic, cognitive responses in patients waiting for urologic surgery. Methods. Sixty patients waiting for surgery were enrolled to the study. They were randomized in music (M and control (C groups. The M group listened to a low-frequency Tibetan music for 30 min (T0–T30 through headphones, and the C group wore headphones with no sound. The State Trait Anxiety Inventory Questionnaire (STAI Y-1 was administered at T0 and T30. Normalized low (LFnu and high frequencies (HFnu of heart rate variability, LF/HF ratio, and galvanic skin response (GRS data were analyzed at T0, T10, T20, T30, and T35. The salivary α-amylase (sAA samples were collected at T0, T35, and T45. Results. In the M group, the STAI Y-1 score decreased at T30 versus baseline p<0.001, sAA levels decreased at T35 versus T0p=0.004, and GSR remained unchanged. In the C group, the STAI Y-1 score remained unchanged, sAA level increased at T35 versus T0p<0.001, and GSR slightly increased at T35 versus baseline p=0.359. LFnu was lower, and HFnu was significantly higher (T10–T30 in M versus C group. Mean LF/HF ratio slightly reduced in the M group. Conclusions. Our results suggest that preoperative listening to relaxing Tibetan music might be a useful strategy to manage preoperative anxiety.

  14. [Analysis of imported malaria epidemic situation and implication for prevention and control strategy in Guangxi Zhuang Autonomous Region in 2014].

    Science.gov (United States)

    Kang-Ming, Lin; Jun, Li; Yi-Chao, Yang; Shu-Jiao, Wei; Wei-Wei, Zhang; Xiang-Yang, Feng; Hai-Yan, Wei; Ya-Ming, Huang

    2016-10-26

    To analyze the epidemic characteristics of the imported malaria cases in Guangxi Zhuang Autonomous Region in 2014, so as to assess the transmission risk and explore the prevention and control strategy. The data of the malaria epidemic situation in the network direct report system of Guangxi in 2014 and the annual report of malaria epidemic situation in 14 cities were collected. The epidemiological information of the imported malaria cases was analyzed. A total of 184 malaria patients were reported in Guangxi in 2014, with a descent rate of 85.29% when compared to that in 2013 (1 251 cases), and the incidence rate was 0.35/100 000. All the cases were imported from abroad, and four species of Plasmodium were found in their blood samples. The number of falciparum malaria cases was the most (49.46%), followed by the ovale malaria cases (32.07%). All the cases were distributed in 32 counties (districts) of 11 cities, and 65.76% of them were distributed in Shanglin County. Most of the cases were male (98.37%), and those aged in 20-49 years accounted for 87.50%. The imported cases came from 14 countries of Africa (86.41%) and 2 countries of Southeast Asia (13.59%), in which, 48.37% of the cases were imported from Garner. The main occupation of the cases in abroad was gold mining work (86.96%). The cases were reported all the year around, with no obvious seasonality. The interval time of back home to attack of the patients with tertian malaria and ovale malaria was longer. Africa and Southeast Asia is the main source of imported malaria cases in Guangxi, and the migrant workers returning home may have the risk of malaria recurrence, which should be paid enough attention to.

  15. Autonomic Dysfunction in Patients with Mild to Moderate Alzheimer's Disease

    DEFF Research Database (Denmark)

    Jensen-Dahm, Christina; Waldemar, Gunhild; Staehelin Jensen, Troels

    2015-01-01

    BACKGROUND: Autonomic function has received little attention in Alzheimer's disease (AD). AD pathology has an impact on brain regions which are important for central autonomic control, but it is unclear if AD is associated with disturbance of autonomic function. OBJECTIVE: To investigate autonomic...

  16. No effect of Pindolol on postural hypotension in type 1 (insulin-dependent) diabetic patients with autonomic neuropathy. A randomised double-blind controlled study

    DEFF Research Database (Denmark)

    Dejgård, A; Hilsted, J

    1988-01-01

    of this therapy we performed a double-blind placebo controlled cross-over study with Pindolol (15 mg/day). Eight Type 1 (insulin-dependent) diabetic patients with autonomic neuropathy and signs and symptoms of orthostatic hypotension (systolic blood pressure decrease greater than 30 mm Hg when standing......) participated in the study. Patients were treated for 10 weeks. Clinical examinations were performed every fortnight and patients registered postural symptoms twice daily on a visual analog scale. No significant changes were seen in blood pressure recordings, heart-rate or visual analog scale registration...... during treatment with Pindolol compared to placebo. Our study does not support the suggestion that Pindolol is a valuable drug for treatment of diabetic patients with autonomic neuropathy and postural giddiness....

  17. A Model-Driven Architecture Approach for Modeling, Specifying and Deploying Policies in Autonomous and Autonomic Systems

    Science.gov (United States)

    Pena, Joaquin; Hinchey, Michael G.; Sterritt, Roy; Ruiz-Cortes, Antonio; Resinas, Manuel

    2006-01-01

    Autonomic Computing (AC), self-management based on high level guidance from humans, is increasingly gaining momentum as the way forward in designing reliable systems that hide complexity and conquer IT management costs. Effectively, AC may be viewed as Policy-Based Self-Management. The Model Driven Architecture (MDA) approach focuses on building models that can be transformed into code in an automatic manner. In this paper, we look at ways to implement Policy-Based Self-Management by means of models that can be converted to code using transformations that follow the MDA philosophy. We propose a set of UML-based models to specify autonomic and autonomous features along with the necessary procedures, based on modification and composition of models, to deploy a policy as an executing system.

  18. Autonomic Wireless Sensor Networks: A Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Jesús M. T. Portocarrero

    2014-01-01

    Full Text Available Autonomic computing (AC is a promising approach to meet basic requirements in the design of wireless sensor networks (WSNs, and its principles can be applied to efficiently manage nodes operation and optimize network resources. Middleware for WSNs supports the implementation and basic operation of such networks. In this systematic literature review (SLR we aim to provide an overview of existing WSN middleware systems that address autonomic properties. The main goal is to identify which development approaches of AC are used for designing WSN middleware system, which allow the self-management of WSN. Another goal is finding out which interactions and behavior can be automated in WSN components. We drew the following main conclusions from the SLR results: (i the selected studies address WSN concerns according to the self-* properties of AC, namely, self-configuration, self-healing, self-optimization, and self-protection; (ii the selected studies use different approaches for managing the dynamic behavior of middleware systems for WSN, such as policy-based reasoning, context-based reasoning, feedback control loops, mobile agents, model transformations, and code generation. Finally, we identified a lack of comprehensive system architecture designs that support the autonomy of sensor networking.

  19. Autonomous Robot Retrieval System

    OpenAIRE

    Ahern, S.

    2015-01-01

    Mobile robots are increasingly being deployed in environments hazardous to humans. However, many of these robots require remote control operation or are tethered, requiring the human operator to remain within a potentially hazardous radius of the area of operation. To resolve this issue an Autonomous Robot Retrieval System (ARRS) utilising Open RatSLAM based on the Lego NXT 2.0 robotics platform is proposed but could not be implemented due to memory limitations of the hardware. An occupancy g...

  20. Construction and experimental verification of a novel flexible thermal control system configuration for the autonomous on-orbit services of space missions

    International Nuclear Information System (INIS)

    Guo, Wei; Li, Yunhua; Li, Yun-Ze; Wang, Sheng-Nan; Zhong, Ming-Liang; Wang, Ji-Xiang; Zhang, Jia-Xun

    2017-01-01

    Highlights: • A novel flexible thermal control system (F-TCS) for spacecraft on-orbit services is proposed. • Systemic construction and reconfiguration operating mechanism are highlighted. • Thermal-hydraulic performances of the F-TCS are investigated both numerically and experimentally. • The F-TCS has the vast potential for spacecrafts autonomous thermal management. - Abstract: This paper proposed a novel flexible thermal control system (F-TCS) configuration for realizing thermal management for spacecrafts autonomous on-orbit service (A-OOS) demands. With a dual-ring topology which composes of a heat collecting bus, a heat dissipating bus, connection brunches and inter-platform service interfaces, the F-TCS may realize not only self-reconfiguration operations but also providing heat dissipation resources for other spacecrafts or cabins. The F-TCS hydraulic and thermal dynamics were modeled, a verification testbed was also established to validate the F-TCS thermal control performance. Focused on investigating the self-reconfiguration and thermal control cooperative operations, several typical A-OOS cases were imposed on the F-TCS, numerical simulations and experimental validations were respectively implemented. Both results demonstrated that the meticulously designed F-TCS is capable of offering self-topological reconfiguration with fast time response and robust temperature control performances, high systemic heat transfer efficiency is also recommended from the point of view of energy saving. The F-TCS is suggested as a promising solution for A-OOS owing to its higher reliability and promising autonomous maintenance potential which is suitable for future spacecrafts thermal management requirements.

  1. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress

    Science.gov (United States)

    Machi, Jacqueline Freire; Dias, Danielle da Silva; Freitas, Sarah Cristina; de Moraes, Oscar Albuquerque; da Silva, Maikon Barbosa; Cruz, Paula Lázara; Mostarda, Cristiano; Salemi, Vera M C; Morris, Mariana; De Angelis, Kátia; Irigoyen, Maria-Cláudia

    2016-01-01

    Objective The aim of this study was to evaluate the effects of aging on metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters after ovarian hormone deprivation (OVX). Methods Female Wistar rats (3 or 22 months old) were divided into: young controls, young ovariectomized, old controls, and old ovariectomized (bilateral ovaries removal). After a 9-week follow-up, physical capacity, metabolic parameters, and morphometric and cardiac functions were assessed. Subsequently, arterial pressure was recorded and cardiac autonomic control was evaluated. Oxidative stress was measured on the cardiac tissue, while inflammatory profile was assessed in the plasma. Results Aging or OVX caused an increase in body and fat weight and triglyceride concentration and a decrease in both insulin sensitivity and aerobic exercise capacity. Left ventricular diastolic dysfunction and increased cardiac overload (myocardial performance index) were reported in old groups when compared with young groups. Aging and OVX led to an increased sympathetic tonus, and vagal tonus was lower only for the old groups. Tumor necrosis factor-α and interleukin-6 were increased in old groups when compared with young groups. Glutathione redox balance (GSH/GSSG) was reduced in young ovariectomized, old controls, and old ovariectomized groups when compared with young controls, indicating an increased oxidative stress. A negative correlation was found between GSH/GSSG and tumor necrosis factor-α (r=−0.6, P<0.003). Correlations were found between interleukin-6 with adipose tissue (r=0.5, P<0.009) and vagal tonus (r=−0.7, P<0.0002); and among myocardial performance index with interleukin-6 (r=0.65, P<0.0002), sympathetic tonus (r=0.55, P<0.006), and physical capacity (r=−0.55, P<0.003). The findings in this trial showed that ovariectomy aggravated the impairment of cardiac and functional effects of aging in female rats, probably associated with exacerbated autonomic dysfunction

  2. Integrating policy-based management and SLA performance monitoring

    Science.gov (United States)

    Liu, Tzong-Jye; Lin, Chin-Yi; Chang, Shu-Hsin; Yen, Meng-Tzu

    2001-10-01

    Policy-based management system provides the configuration capability for the system administrators to focus on the requirements of customers. The service level agreement performance monitoring mechanism helps system administrators to verify the correctness of policies. However, it is difficult for a device to process the policies directly because the policies are the management concept. This paper proposes a mechanism to decompose a policy into rules that can be efficiently processed by a device. Thus, the device may process the rule and collect the performance statistics information efficiently; and the policy-based management system may collect these performance statistics information and report the service-level agreement performance monitoring information to the system administrator. The proposed policy-based management system achieves both the policy configuration and service-level agreement performance monitoring requirements. A policy consists of a condition part and an action part. The condition part is a Boolean expression of a source host IP group, a destination host IP group, etc. The action part is the parameters of services. We say that an address group is compact if it only consists of a range of IP address that can be denoted by a pair of IP address and corresponding IP mask. If the condition part of a policy only consists of the compact address group, we say that the policy is a rule. Since a device can efficiently process a compact address and a system administrator prefers to define a range of IP address, the policy-based management system has to translate policy into rules and supplements the gaps between policy and rules. The proposed policy-based management system builds the relationships between VPN and policies, policy and rules. Since the system administrator wants to monitor the system performance information of VPNs and policies, the proposed policy-based management system downloads the relationships among VPNs, policies and rules to the

  3. The design of a prototype system which controls the flow of milk in the collector’s column of an autonomous milking apparatus

    Directory of Open Access Journals (Sweden)

    Lis Stanisław

    2018-01-01

    Full Text Available The research paper presents a prototype system controlling the flow of milk in the collection column of an autonomous milking apparatus. In the Matlab®-Simulink program, the simulation model of such a system was created. Its essential operation is illustrated in the block diagrams. The logic verification of the model’s operational accuracy (off-line simulation did not reveal errors. Therefore a laboratory stand for hardware verification – (on-line simulation was developed. Within it a virtual feedback loop of the control system (stored in computer memory, with elements of real object control incorporated – in this way a prototype of the device was created. During the hardware verification of the proposed technical solution, operation errors were not observed. In response to certain signals from the measuring elements, the controller correctly calculated control signals for the actuators.

  4. Autonomous power system: Integrated scheduling

    Science.gov (United States)

    Ringer, Mark J.

    1992-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control and scheduling techniques to space power distribution hardware. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis, isolation, and recovery (FDIR), the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space-based power system. Faults can be introduced into the Brassboard and in turn, be diagnosed and corrected by APEX and AIPS. The Autonomous Intelligent Power Scheduler controls the execution of loads attached to the Brassboard. Each load must be executed in a manner that efficiently utilizes available power and satisfies all load, resource, and temporal constraints. In the case of a fault situation on the Brassboard, AIPS dynamically modifies the existing schedule in order to resume efficient operation conditions. A database is kept of the power demand, temporal modifiers, priority of each load, and the power level of each source. AIPS uses a set of heuristic rules to assign start times and resources to each load based on load and resource constraints. A simple improvement engine based upon these heuristics is also available to improve the schedule efficiency. This paper describes the operation of the Autonomous Intelligent Power Scheduler as a single entity, as well as its integration with APEX and the Brassboard. Future plans are discussed for the growth of the Autonomous Intelligent Power Scheduler.

  5. The anti-malarial drug Mefloquine disrupts central autonomic and respiratory control in the working heart brainstem preparation of the rat

    Directory of Open Access Journals (Sweden)

    Lall Varinder K

    2012-12-01

    Full Text Available Abstract Background Mefloquine is an anti-malarial drug that can have neurological side effects. This study examines how mefloquine (MF influences central nervous control of autonomic and respiratory systems using the arterially perfused working heart brainstem preparation (WHBP of the rat. Recordings of nerve activity were made from the thoracic sympathetic chain and phrenic nerve, while heart rate (HR and perfusion pressure were also monitored in the arterially perfused, decerebrate, rat WHBP. MF was added to the perfusate at 1 μM to examine its effects on baseline parameters as well as baroreceptor and chemoreceptor reflexes. Results MF caused a significant, atropine resistant, bradycardia and increased phrenic nerve discharge frequency. Chemoreceptor mediated sympathoexcitation (elicited by addition of 0.1 ml of 0.03% sodium cyanide to the aortic cannula was significantly attenuated by the application of MF to the perfusate. Furthermore MF significantly decreased rate of return to resting HR following chemoreceptor induced bradycardia. An increase in respiratory frequency and attenuated respiratory-related sympathetic nerve discharge during chemoreceptor stimulation was also elicited with MF compared to control. However, MF did not significantly alter baroreceptor reflex sensitivity. Conclusions These studies indicate that in the WHBP, MF causes profound alterations in autonomic and respiratory control. The possibility that these effects may be mediated through actions on connexin 36 containing gap junctions in central neurones controlling sympathetic nervous outflow is discussed.

  6. Influence of government controls over the currency exchange rate in the evolution of Hurst's exponent: An autonomous agent-based model

    Science.gov (United States)

    Chávez Muñoz, Pablo; Fernandes da Silva, Marcus; Vivas Miranda, José; Claro, Francisco; Gomez Diniz, Raimundo

    2007-12-01

    We have studied the performance of the Hurst's index associated with the currency exchange rate in Brazil and Chile. It is shown that this index maps the degree of government control in the exchange rate. A model of supply and demand based in an autonomous agent is proposed, that simulates a virtual market of sale and purchase, where buyer or seller are forced to negotiate through an intermediary. According to this model, the average of the price of daily transactions correspond to the theoretical balance proposed by the law of supply and demand. The influence of an added tendency factor is also analyzed.

  7. Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems

    International Nuclear Information System (INIS)

    Aghababa Mohammad Pourmahmood

    2012-01-01

    The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers. (general)

  8. Towards the Development of Autonomous Ferries

    OpenAIRE

    Bitar, Glenn Ivan

    2017-01-01

    Autonomous ships is at the moment a heavily researched topic in the maritime industry. Development to introduce autonomous ferries in the Norwegian fjords is under way. This thesis is a study of technical and formal challenges related to autonomous ferries. The thesis goes into topics such as industrial control systems for ships, path planning and collision avoidance algorithms, as well as automatic docking. Additionally, information and statistics regarding ferry activities in Norway are pre...

  9. Glucose Control and Autonomic Response during Acute Stress in Youth with Type 1 Diabetes: A Pilot Study.

    Science.gov (United States)

    Guan, Ling; Metzger, Daniel L; Lavoie, Pascal M; Collet, Jean-Paul

    2018-04-14

    Type 1 diabetes (T1D) is a chronic source of metabolic and neuropsychological stress, which may eventually lead to autonomic neuropathy and other complications related to micro- and macro-vasculopathies. We aimed to investigate the relationship between T1D chronic stress and ANS response to acute stress testing that was expected being affected by chronic stress. Twenty youths with confirmed diagnosis of T1D were assessed. Chronic stress assessment included HbA1c ≥7.5%, psychological stress assessed by perceived stress scale (PSS), hypoglycemic events, and pro-inflammatory cytokines. The acute stress testing used standardized stress video games. Autonomic response to acute stress was assessed by the amplitude and direction of changes in heart rate variability (HRV). Analyses determined correlations between changes in PNS during stress testing and chronic diabetes stressors. A strong correlation was found between the amplitude of High Frequency (HF) changes and HbA1c values (ρ=0.74, p <0.001). Youths with HbA1c ≥7.5% showed a larger amplitude of HF changes during acute stress (49% vs. 16%, p<0.001) and a higher PSS score (22.5 vs. 19.0, p=0.003), compared to those with HbA1c <7.5%. Additionally, among youths with HbA1c ≥7.5%, those with positive changes in HF had a lower level of IL-8 than those with negative changes (5.40 vs. 7.85 pg/mL, p=0.009). Study findings support the need for better understanding the health effects of stress-related autonomic dysfunction in youth with T1D. This article is protected by copyright. All rights reserved.

  10. Stimulating autonomous motivation in the classroom: The role of interpersonal teacher agency and communion

    NARCIS (Netherlands)

    Wijsman, Lindy; Mainhard, Tim; Brekelmans, Mieke

    2014-01-01

    Self Determination Theory (SDT) distinguishes the quality of motivation from its quantity or intensity (Vansteenkiste, Sierens, Soetens, Luyckx, & Lens, 2009). A sequence from controlled to autonomous motivation is adopted; autonomous motivation is seen as the best quality type. Being autonomously

  11. Epileptic Seizures are Reduced by Autonomic Biofeedback Therapy Through Enhancement of Fronto-limbic Connectivity: A Controlled Trial and Neuroimaging Study.

    Science.gov (United States)

    Nagai, Yoko; Aram, Julia; Koepp, Matthias; Lemieux, Louis; Mula, Marco; Critchley, Hugo; Sisodiya, Sanjay; Cercignani, Mara

    2018-01-01

    Thirty-percent of patients with epilepsy are drug-resistant, and might benefit from effective noninvasive therapeutic interventions. Evidence is accumulating on the efficacy of autonomic biofeedback therapy using galvanic skin response (GSR; an index of sympathetic arousal) in treating epileptic seizures. This study aimed to extend previous controlled clinical trials of autonomic biofeedback therapy with a larger homogeneous sample of patients with temporal lobe epilepsy. In addition, we used neuroimaging to characterize neural mechanisms of change in seizure frequency following the therapy. Forty patients with drug-resistant temporal lobe epilepsy (TLE) (age: 18 to 70years old), on stable doses of anti-epileptic medication, were recruited into a controlled and parallel-group trial from three screening centers in the UK. Patients were allocated to either an active intervention group, who received therapy with GSR biofeedback, or a control group, who received treatment as usual. Allocation to the group was informed, in part, by whether patients could travel to attend repeated therapy sessions (non-randomized). Measurement of outcomes was undertaken by an assessor blinded to the patients' group membership. Resting-state functional and structural MRI data were acquired before and after one month of therapy in the therapy group, and before and after a one-month interval in the control group. The percentage change of seizure frequency was the primary outcome measure. The analysis employed an intention-to-treat principle. The secondary outcome was the change in default mode network (DMN) and limbic network functional connectivity tested for effects of therapy. The trial was registered with the National Institute for Health Research (NIHR) portfolio (ID 15967). Data were acquired between May 2014 and October 2016. Twenty participants were assigned to each group. Two patients in the control group dropped out before the second scan, leaving 18 control participants. There

  12. Impact of cancer and chemotherapy on autonomic nervous system function and cardiovascular reactivity in young adults with cancer: a case-controlled feasibility study.

    Science.gov (United States)

    Adams, Scott C; Schondorf, Ronald; Benoit, Julie; Kilgour, Robert D

    2015-05-18

    Preliminary evidence suggests cancer- and chemotherapy-related autonomic nervous system (ANS) dysfunction may contribute to the increased cardiovascular (CV) morbidity- and mortality-risks in cancer survivors. However, the reliability of these findings may have been jeopardized by inconsistent participant screening and assessment methods. Therefore, good laboratory practices must be established before the presence and nature of cancer-related autonomic dysfunction can be characterized. The purpose of this study was to assess the feasibility of conducting concurrent ANS and cardiovascular evaluations in young adult cancer patients, according to the following criteria: i) identifying methodological pitfalls and proposing good laboratory practice criteria for ANS testing in cancer, and ii) providing initial physiologic evidence of autonomic perturbations in cancer patients using the composite autonomic scoring scale (CASS). Thirteen patients (mixed diagnoses) were assessed immediately before and after 4 cycles of chemotherapy. Their results were compared to 12 sex- and age-matched controls. ANS function was assessed using standardized tests of resting CV (tilt-table, respiratory sinus arrhythmia and Valsalva maneuver) and sudomotor (quantitative sudomotor axon reflex test) reactivity. Cardiovascular reactivity during exercise was assessed using a modified Astrand-Ryhming cycle ergometer protocol. Our feasibility criteria addressed: i) recruitment potential, ii) retention rates, iii) pre-chemotherapy assessment potential, iv) test performance/tolerability, and v) identification and minimizing the influence of potentially confounding medication. T-tests and repeated measures ANOVAs were used to assess between- and within-group differences at baseline and follow-up. The overall success rate in achieving our feasibility criteria was 98.4 %. According to the CASS, there was evidence of ANS impairment at baseline in 30.8 % of patients, which persisted in 18.2 % of patients

  13. Impact of cancer and chemotherapy on autonomic nervous system function and cardiovascular reactivity in young adults with cancer: a case-controlled feasibility study

    International Nuclear Information System (INIS)

    Adams, Scott C.; Schondorf, Ronald; Benoit, Julie; Kilgour, Robert D.

    2015-01-01

    Preliminary evidence suggests cancer- and chemotherapy-related autonomic nervous system (ANS) dysfunction may contribute to the increased cardiovascular (CV) morbidity- and mortality-risks in cancer survivors. However, the reliability of these findings may have been jeopardized by inconsistent participant screening and assessment methods. Therefore, good laboratory practices must be established before the presence and nature of cancer-related autonomic dysfunction can be characterized. The purpose of this study was to assess the feasibility of conducting concurrent ANS and cardiovascular evaluations in young adult cancer patients, according to the following criteria: i) identifying methodological pitfalls and proposing good laboratory practice criteria for ANS testing in cancer, and ii) providing initial physiologic evidence of autonomic perturbations in cancer patients using the composite autonomic scoring scale (CASS). Thirteen patients (mixed diagnoses) were assessed immediately before and after 4 cycles of chemotherapy. Their results were compared to 12 sex- and age-matched controls. ANS function was assessed using standardized tests of resting CV (tilt-table, respiratory sinus arrhythmia and Valsalva maneuver) and sudomotor (quantitative sudomotor axon reflex test) reactivity. Cardiovascular reactivity during exercise was assessed using a modified Astrand-Ryhming cycle ergometer protocol. Our feasibility criteria addressed: i) recruitment potential, ii) retention rates, iii) pre-chemotherapy assessment potential, iv) test performance/tolerability, and v) identification and minimizing the influence of potentially confounding medication. T-tests and repeated measures ANOVAs were used to assess between- and within-group differences at baseline and follow-up. The overall success rate in achieving our feasibility criteria was 98.4 %. According to the CASS, there was evidence of ANS impairment at baseline in 30.8 % of patients, which persisted in 18.2 % of patients

  14. Computing architecture for autonomous microgrids

    Science.gov (United States)

    Goldsmith, Steven Y.

    2015-09-29

    A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the .

  15. Autonomous Landing on Moving Platforms

    KAUST Repository

    Mendoza Chavez, Gilberto

    2016-08-01

    This thesis investigates autonomous landing of a micro air vehicle (MAV) on a nonstationary ground platform. Unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs) are becoming every day more ubiquitous. Nonetheless, many applications still require specialized human pilots or supervisors. Current research is focusing on augmenting the scope of tasks that these vehicles are able to accomplish autonomously. Precise autonomous landing on moving platforms is essential for self-deployment and recovery of MAVs, but it remains a challenging task for both autonomous and piloted vehicles. Model Predictive Control (MPC) is a widely used and effective scheme to control constrained systems. One of its variants, output-feedback tube-based MPC, ensures robust stability for systems with bounded disturbances under system state reconstruction. This thesis proposes a MAV control strategy based on this variant of MPC to perform rapid and precise autonomous landing on moving targets whose nominal (uncommitted) trajectory and velocity are slowly varying. The proposed approach is demonstrated on an experimental setup.

  16. Reduced capacity of autonomic and baroreflex control associated with sleep pattern in spontaneously hypertensive rats with a nondipping profile.

    Science.gov (United States)

    Chen, Chieh-Wen; Kuo, Terry B J; Chen, Chun-Yu; Yang, Cheryl C H

    2017-03-01

    Ambulatory blood pressure (BP) monitoring with a lack of nocturnal BP fall (BP nondipping) has been reported to be more prevalent among hypertensive populations and is a risk factor for cardiovascular disease than in patients with dipping pattern. However, its underlying mechanism is not fully understood. This study hypothesized that spontaneously hypertensive rats (SHRs) with a nondipping profile have an exaggerated disruption of both autonomic functioning and sleep compared with Wistar-Kyoto rats (WKYs) with a nondipping profile. Continuous power spectral analysis of electroencephalogram, electromyogram, and cardiovascular variability was performed in WKYs and SHRs over 24 h. BP dipping was assessed as the percentage decline in SBP from dark active waking to light quiet sleep (lQS). According to the human definition of BP dipping (10%), we divided WKYs and SHRs into dipper and nondipper groups individually. Of the four groups, both parasympathetic activity and baroreflex sensitivity in sleep were the lowest in the SHR nondippers. Compared with the WKY nondippers, the SHR nondippers spent more time awake and less time asleep during the light period and the opposite during the dark period. Moreover, they showed more interruptions and a lower delta power percentage of lQS. Correlation analysis revealed that baroreflex sensitivity during lQS was correlated with the BP dipping percentage in SHRs. SHR nondippers exhibit poor sleep quality and impaired autonomic functioning to a greater degree than do SHR dippers and WKY nondippers, which may account for a higher cardiovascular risk in this population.

  17. The Use of Autonomic Modulation Device to Control Training Performance after High-Intensity Interval Training Program.

    Science.gov (United States)

    Clemente-Suárez, Vicente Javier; Arroyo-Toledo, Juan Jaime

    2018-01-25

    The aim of the present research was to analyze the autonomic response in a group of trained swimmers before and after conducting a 4-week period of high-intensity interval training (HIT). Heart rate variability was analyzed in 14 swimmers (16.2 ± 2.6 years, 169.1 ± 10.2 cm and 61.3 ± 9.9 kg) in basal condition and during a HIT session before and after completing a training period. The HIT session that was evaluated consisted of: 16 × 25 m maximum speed, resting 30 s between sets. Participants combined aerobic training with tethered swimming and HIT sessions three times per week in a period of 4 weeks. Results showed a significantly decrease (p intervals (SDNN), the standard deviation of differences between adjacent NN intervals (SDSD), the number of successive difference of intervals which differ by more than 50 ms (NN50), after the training period. Results showed a higher parasympathetic activation besides improvements in autonomic adaptation after HIT training period.

  18. Oceanids command and control (C2) data system - Marine autonomous systems data for vehicle piloting, scientific data users, operational data assimilation, and big data

    Science.gov (United States)

    Buck, J. J. H.; Phillips, A.; Lorenzo, A.; Kokkinaki, A.; Hearn, M.; Gardner, T.; Thorne, K.

    2017-12-01

    The National Oceanography Centre (NOC) operate a fleet of approximately 36 autonomous marine platforms including submarine gliders, autonomous underwater vehicles, and autonomous surface vehicles. Each platform effectivity has the capability to observe the ocean and collect data akin to a small research vessel. This is creating a growth in data volumes and complexity while the amount of resource available to manage data remains static. The OceanIds Command and Control (C2) project aims to solve these issues by fully automating the data archival, processing and dissemination. The data architecture being implemented jointly by NOC and the Scottish Association for Marine Science (SAMS) includes a single Application Programming Interface (API) gateway to handle authentication, forwarding and delivery of both metadata and data. Technicians and principle investigators will enter expedition data prior to deployment of vehicles enabling automated data processing when vehicles are deployed. The system will support automated metadata acquisition from platforms as this technology moves towards operational implementation. The metadata exposure to the web builds on a prototype developed by the European Commission supported SenseOCEAN project and is via open standards including World Wide Web Consortium (W3C) RDF/XML and the use of the Semantic Sensor Network ontology and Open Geospatial Consortium (OGC) SensorML standard. Data will be delivered in the marine domain Everyone's Glider Observatory (EGO) format and OGC Observations and Measurements. Additional formats will be served by implementation of endpoints such as the NOAA ERDDAP tool. This standardised data delivery via the API gateway enables timely near-real-time data to be served to Oceanids users, BODC users, operational users and big data systems. The use of open standards will also enable web interfaces to be rapidly built on the API gateway and delivery to European research infrastructures that include aligned

  19. Autonomic dysfunction in mild cognitive impairment: evidence from power spectral analysis of heart rate variability in a cross-sectional case-control study.

    Directory of Open Access Journals (Sweden)

    Paola Nicolini

    Full Text Available Mild cognitive impairment (MCI is set to become a major health problem with the exponential ageing of the world's population. The association between MCI and autonomic dysfunction, supported by indirect evidence and rich with clinical implications in terms of progression to dementia and increased risk of mortality and falls, has never been specifically demonstrated.To conduct a comprehensive assessment of autonomic function in subjects with MCI by means of power spectral analysis (PSA of heart rate variability (HRV at rest and during provocative manoeuvres.This cross-sectional study involved 80 older outpatients (aged ≥ 65 consecutively referred to a geriatric unit and diagnosed with MCI or normal cognition (controls based on neuropsychological testing. PSA was performed on 5-minute electrocardiographic recordings under three conditions--supine rest with free breathing (baseline, supine rest with paced breathing at 12 breaths/minute (parasympathetic stimulation, and active standing (orthosympathetic stimulation--with particular focus on the changes from baseline to stimulation of indices of sympathovagal balance: normalized low frequency (LFn and high frequency (HFn powers and the LF/HF ratio. Blood pressure (BP was measured at baseline and during standing. Given its exploratory nature in a clinical population the study included subjects on medications with a potential to affect HRV.There were no significant differences in HRV indices between the two groups at baseline. MCI subjects exhibited smaller physiological changes in all three HRV indices during active standing, consistently with a dysfunction of the orthosympathetic system. Systolic BP after 10 minutes of standing was lower in MCI subjects, suggesting dysautonomia-related orthostatic BP dysregulation.Our study is novel in providing evidence of autonomic dysfunction in MCI. This is associated with orthostatic BP dysregulation and the ongoing follow-up of the study population will

  20. Climate policy decisions require policy-based lifecycle analysis.

    Science.gov (United States)

    Bento, Antonio M; Klotz, Richard

    2014-05-20

    Lifecycle analysis (LCA) metrics of greenhouse gas emissions are increasingly being used to select technologies supported by climate policy. However, LCAs typically evaluate the emissions associated with a technology or product, not the impacts of policies. Here, we show that policies supporting the same technology can lead to dramatically different emissions impacts per unit of technology added, due to multimarket responses to the policy. Using a policy-based consequential LCA, we find that the lifecycle emissions impacts of four US biofuel policies range from a reduction of 16.1 gCO2e to an increase of 24.0 gCO2e per MJ corn ethanol added by the policy. The differences between these results and representative technology-based LCA measures, which do not account for the policy instrument driving the expansion in the technology, illustrate the need for policy-based LCA measures when informing policy decision making.

  1. Advisory and autonomous cooperative driving systems

    NARCIS (Netherlands)

    Broek, T.H.A. van den; Ploeg, J.; Netten, B.D.

    2011-01-01

    In this paper, the traffic efficiency of an advisory cooperative driving system, Advisory Acceleration Control is examined and compared to the efficiency of an autonomous cooperative driving system, Cooperative Adaptive Cruise Control. The algorithms and implementation thereof are explained. The

  2. Implementation of Obstacle-Avoidance Control for an Autonomous Omni-Directional Mobile Robot Based on Extension Theory

    Directory of Open Access Journals (Sweden)

    Yi-Chung Lai

    2012-10-01

    Full Text Available The paper demonstrates a following robot with omni-directional wheels, which is able to take action to avoid obstacles. The robot design is based on both fuzzy and extension theory. Fuzzy theory was applied to tune the PMW signal of the motor revolution, and correct path deviation issues encountered when the robot is moving. Extension theory was used to build a robot obstacle-avoidance model. Various mobile models were developed to handle different types of obstacles. The ultrasonic distance sensors mounted on the robot were used to estimate the distance to obstacles. If an obstacle is encountered, the correlation function is evaluated and the robot avoids the obstacle autonomously using the most appropriate mode. The effectiveness of the proposed approach was verified through several tracking experiments, which demonstrates the feasibility of a fuzzy path tracker as well as the extensible collision avoidance system.

  3. Blunted autonomic response in cluster headache patients

    DEFF Research Database (Denmark)

    Barloese, Mads; Brinth, Louise; Mehlsen, Jesper

    2015-01-01

    BACKGROUND: Cluster headache (CH) is a disabling headache disorder with chronobiological features. The posterior hypothalamus is involved in CH pathophysiology and is a hub for autonomic control. We studied autonomic response to the head-up tilt table test (HUT) including heart rate variability...

  4. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress

    Directory of Open Access Journals (Sweden)

    Machi JF

    2016-03-01

    Full Text Available Jacqueline Freire Machi,1,2 Danielle da Silva Dias,3 Sarah Cristina Freitas,3 Oscar Albuquerque de Moraes,1 Maikon Barbosa da Silva,1 Paula Lázara Cruz,1 Cristiano Mostarda,4 Vera M C Salemi,1 Mariana Morris,2 Kátia De Angelis,3 Maria-Cláudia Irigoyen1 1Hypertension Unit, Heart Institute (InCor, School of Medicine, University of Sao Paulo, São Paulo, Brazil; 2Institute of Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA; 3Laboratory of Translational Physiology, Universidade Nove de Julho (UNINOVE, São Paulo, 4Health Adult and Child, Federal University of Maranhao (UFMA, São Luiz, Maranhão, Brazil Objective: The aim of this study was to evaluate the effects of aging on metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters after ovarian hormone deprivation (OVX. Methods: Female Wistar rats (3 or 22 months old were divided into: young controls, young ovariectomized, old controls, and old ovariectomized (bilateral ovaries removal. After a 9-week follow-up, physical capacity, metabolic parameters, and morphometric and cardiac functions were assessed. Subsequently, arterial pressure was recorded and cardiac autonomic control was evaluated. Oxidative stress was measured on the cardiac tissue, while inflammatory profile was assessed in the plasma. Results: Aging or OVX caused an increase in body and fat weight and triglyceride concentration and a decrease in both insulin sensitivity and aerobic exercise capacity. Left ventricular diastolic dysfunction and increased cardiac overload (myocardial performance index were reported in old groups when compared with young groups. Aging and OVX led to an increased sympathetic tonus, and vagal tonus was lower only for the old groups. Tumor necrosis factor-α and interleukin-6 were increased in old groups when compared with young groups. Glutathione redox balance (GSH/GSSG was reduced in young ovariectomized, old controls, and old ovariectomized

  5. Autonomous Operations System: Development and Application

    Science.gov (United States)

    Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.

    2016-01-01

    Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.

  6. Walking training at the heart rate of pain threshold improves cardiovascular function and autonomic regulation in intermittent claudication: A randomized controlled trial.

    Science.gov (United States)

    Chehuen, Marcel; Cucato, Gabriel G; Carvalho, Celso Ricardo F; Ritti-Dias, Raphael M; Wolosker, Nelson; Leicht, Anthony S; Forjaz, Cláudia Lúcia M

    2017-10-01

    This study investigated the effects of walking training (WT) on cardiovascular function and autonomic regulation in patents with intermittent claudication (IC). Randomized controlled trial. Forty-two male patients with IC (≥50years) were randomly allocated into two groups: control (CG, n=20, 30min of stretching exercises) and WT (WTG, n=22, 15 bouts of 2min of walking interpolated by 2min of upright rest-walking intensity was set at the heart rate of pain threshold). Both interventions were performed twice/week for 12 weeks. Walking capacity (maximal treadmill test), blood pressure (auscultatory), cardiac output (CO 2 rebreathing), heart rate (ECG), stroke volume, systemic vascular resistance, forearm and calf vascular resistance (plethysmography), and low (LF) and high frequency (HF) components of heart rate variability and spontaneous baroreflex sensitivity were measured at baseline and after 12 weeks of the study. WT increased total walking distance (+302±85m, p=0.001) and spontaneous baroreflex sensitivity (+2.13±1.07ms/mmHg, p=0.02). Additionally, at rest, WT decreased systolic and mean blood pressures (-10±3 and -5±2mmHg, p=0.001 and p=0.01, respectively), cardiac output (-0.37±0.24l/min, p=0.03), heart rate (-4±2bpm, p=0.001), forearm vascular resistance (-8.5±2.8U, p=0.02) and LF/HF (-1.24±0.99, p=0.001). No change was observed in the CG. In addition to increasing walking capacity, WT improved cardiovascular function and autonomic regulation in patients with IC. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  7. A multidirectional non-cell autonomous control and a genetic interaction restricting tobacco etch virus susceptibility in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Suresh Gopalan

    2007-10-01

    Full Text Available Viruses constitute a major class of pathogens that infect a variety of hosts. Understanding the intricacies of signaling during host-virus interactions should aid in designing disease prevention strategies and in understanding mechanistic aspects of host and pathogen signaling machinery.An Arabidopsis mutant, B149, impaired in susceptibility to Tobacco etch virus (TEV, a positive strand RNA virus of picoRNA family, was identified using a high-throughput genetic screen and a counterselection scheme. The defects include initiation of infection foci, rate of cell-to-cell movement and long distance movement.The defect in infectivity is conferred by a recessive locus. Molecular genetic analysis and complementation analysis with three alleles of a previously published mutant lsp1 (loss of susceptibility to potyviruses indicate a genetic interaction conferring haploinsufficiency between the B149 locus and certain alleles of lsp1 resulting in impaired host susceptibility. The pattern of restriction of TEV foci on leaves at or near the boundaries of certain cell types and leaf boundaries suggest dysregulation of a multidirectional non-cell autonomous regulatory mechanism. Understanding the nature of this multidirectional signal and the molecular genetic mechanism conferring it should potentially reveal a novel arsenal in the cellular machinery.

  8. Baseline autonomic nervous system arousal and physical and relational aggression in preschool: the moderating role of effortful control.

    Science.gov (United States)

    Gower, Amy L; Crick, Nicki R

    2011-09-01

    The current study investigates whether established associations between physical aggression and low autonomic nervous system arousal, as indexed by heart rate and blood pressure, also apply to the study of the development of relational aggression. Baseline heart rate and blood pressure were collected in two samples of preschoolers, and teachers reported on classroom physical and relational aggression. In Study 1, lower systolic and diastolic blood pressure were related to increased engagement in relational aggression among older preschoolers. In Study 2, lower heart rate and blood pressure predicted increased engagement in classroom physical and relational aggression concurrently and across a preschool year in some cases. Low baseline arousal-aggression associations were strongest for children with poorer self-regulation abilities, whereas high self-regulation appeared to protect children with low heart rate and blood pressure from engagement in aggressive classroom behavior. These findings suggest the utility of examining baseline physiological measures in the study of relational aggression as well as physical aggression. Implications for interventions targeted to physical and relational aggression in early childhood are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Policy-Based Negotiation Engine for Cross-Domain Interoperability

    Science.gov (United States)

    Vatan, Farrokh; Chow, Edward T.

    2012-01-01

    A successful policy negotiation scheme for Policy-Based Management (PBM) has been implemented. Policy negotiation is the process of determining the "best" communication policy that all of the parties involved can agree on. Specifically, the problem is how to reconcile the various (and possibly conflicting) communication protocols used by different divisions. The solution must use protocols available to all parties involved, and should attempt to do so in the best way possible. Which protocols are commonly available, and what the definition of "best" is will be dependent on the parties involved and their individual communications priorities.

  10. Effects of Music Therapy on the Cardiovascular and Autonomic Nervous System in Stress-Induced University Students: A Randomized Controlled Trial.

    Science.gov (United States)

    Lee, Kyoung Soon; Jeong, Hyeon Cheol; Yim, Jong Eun; Jeon, Mi Yang

    2016-01-01

    Stress is caused when a particular relationship between the individual and the environment emerges. Specifically, stress occurs when an individual's abilities are challenged or when one's well-being is threatened by excessive environmental demands. The aim of this study was to measure the effects of music therapy on stress in university students. Randomized controlled trial. Sixty-four students were randomly assigned to the experimental group (n = 33) or the control group (n = 31). Music therapy. Initial measurement included cardiovascular indicators (blood pressure and pulse), autonomic nervous activity (standard deviation of the normal-to-normal intervals [SDNN], normalized low frequency, normalized high frequency, low/high frequency), and subjective stress. After the first measurement, participants in both groups were exposed to a series of stressful tasks, and then a second measurement was conducted. The experimental group then listened to music for 20 minutes and the control group rested for 20 minutes. A third and final measurement was then taken. There were no significant differences between the two groups in the first or second measurement. However, after music therapy, the experimental group and the control group showed significant differences in all variables, including systolic blood pressure (p = .026), diastolic blood pressure (p = .037), pulse (p stress (p = .026). Classical music tends to relax the body and may stimulate the parasympathetic nervous system. These results suggest music therapy as an intervention for stress reduction.

  11. Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic.

    Science.gov (United States)

    McMullen, David P; Hotson, Guy; Katyal, Kapil D; Wester, Brock A; Fifer, Matthew S; McGee, Timothy G; Harris, Andrew; Johannes, Matthew S; Vogelstein, R Jacob; Ravitz, Alan D; Anderson, William S; Thakor, Nitish V; Crone, Nathan E

    2014-07-01

    To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p < 0.05). After BMI-based initiation, the MPL completed the entire task 100% (one object) and 70% (three objects) of the time. The MPL took approximately 12.2 s for task completion after system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs.

  12. Anesthesia Management in Diabetic Cardiovascular Autonomic Neuropathy

    Directory of Open Access Journals (Sweden)

    Feride Karacaer

    2016-06-01

    Full Text Available Cardiovascular autonomic neuropathy is frequently observed in patients with diabetes mellitus and encompasses damage to the autonomic nerve fibers, resulting in abnormalities in heart rate control and vascular dynamics. There is an increased mortality and morbidity rate among these patients. A series of cardiovascular reflex tests known as Ewing's battery tests are used for diagnosis cardiac autonomic neuropathy and provide valuable information to the clinical assessment of these patients. As anesthesia has a major influence on perioperative autonomic function, the interplay between cardiovascular autonomic neuropathy and anesthesia may result in unexpected haemodynamic instability during surgery and postoperative recovery. A comprehensive preoperative assessment and perioperative cautious monitoring are necessary for successful anesthesia management. [Archives Medical Review Journal 2016; 25(2.000: 140-151

  13. Computer vision for an autonomous mobile robot

    CSIR Research Space (South Africa)

    Withey, Daniel J

    2015-10-01

    Full Text Available Computer vision systems are essential for practical, autonomous, mobile robots – machines that employ artificial intelligence and control their own motion within an environment. As with biological systems, computer vision systems include the vision...

  14. Adaptive Sampling in Autonomous Marine Sensor Networks

    National Research Council Canada - National Science Library

    Eickstedt, Donald P

    2006-01-01

    ... oceanographic network scenario. This architecture has three major components, an intelligent, logical sensor that provides high-level environmental state information to a behavior-based autonomous vehicle control system, a new...

  15. [Control of anticoagulation in patients with non-valvular atrial fibrillation in a primary care clinical practice setting in the different autonomous communities. PAULA study].

    Science.gov (United States)

    Polo García, J; Barrios Alonso, V; Escobar Cervantes, C; Prieto Valiente, L; Lobos Bejarano, J M; Vargas Ortega, D; Prieto Díaz, M Á; Alonso Moreno, F J; Barquilla García, A

    2017-04-01

    To determine the differences between regions in the level of control of patients with non-valvular atrial fibrillation treated with vitamin K antagonists, included in the PAULA study. Observational, and coss-sectional/retrospective study, including 139 Primary Care physicians from 99 Health Care centres in all autonomous communities (except La Rioja). Anticoagulation control was defined as the time in therapeutic range assessed by either the direct method (poor control <60%), or the Rosendaal method (poor control <65%). A total of 1,524 patients were included. Small differences in baseline characteristics of the patients were observed. Differences in the percentage of time in therapeutic range were observed, according to the Rosendaal method (mean 69.0±17.7%), from 78.1%±16.6 (Basque Country) to 61.5±14% (Balearic Islands), by the direct method (mean 63.2±17.9%) from 73.6%±16.6 (Basque Country) to 57.5±15.7% (Extremadura). When comparing regions, in those where the Primary Care physicians assumed full control without restrictions on prescription, the percentage of time in therapeutic range by the direct method was 63.89 vs. 60.95% in those with restrictions (p=.006), by Rosendaal method, 69.39% compared with 67.68% (p=.1036). There are significant differences in the level of control between some regions are still inadequate. Regions in which the Primary Care physicians assumed the management of anticoagulation and without restrictions, time in therapeutic range was somewhat higher, and showed a favourable trend for better control. These findings may have clinical implications, and deserve consideration and specific analysis. Copyright © 2016 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot

    Science.gov (United States)

    Amador-Angulo, Leticia; Mendoza, Olivia; Castro, Juan R.; Rodríguez-Díaz, Antonio; Melin, Patricia; Castillo, Oscar

    2016-01-01

    A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm. PMID:27618062

  17. Autonomous Martian flying rover

    Science.gov (United States)

    1990-01-01

    A remotely programmable, autonomous flying rover is proposed to extensively survey the Martian surface environment. A Mach .3, solar powered, modified flying wing could cover roughly a 2000 mile range during Martian daylight hours. Multiple craft launched from an orbiting mother ship could provide near-global coverage. Each craft is envisioned to fly at about 1 km above the surface and measure atmospheric composition, pressure and temperature, map surface topography, and remotely penetrate the near subsurface looking for water (ice) and perhaps evidence of life. Data collected are relayed to Earth via the orbiting mother ship. Near surface guidance and control capability is an adaptation of current cruise missile technology. A solar powered aircraft designed to fly in the low temperature, low density, carbon dioxide Martian atmosphere near the surface appears feasible.

  18. Amplifying human ability through autonomics and machine learning in IMPACT

    Science.gov (United States)

    Dzieciuch, Iryna; Reeder, John; Gutzwiller, Robert; Gustafson, Eric; Coronado, Braulio; Martinez, Luis; Croft, Bryan; Lange, Douglas S.

    2017-05-01

    Amplifying human ability for controlling complex environments featuring autonomous units can be aided by learned models of human and system performance. In developing a command and control system that allows a small number of people to control a large number of autonomous teams, we employ an autonomics framework to manage the networks that represent mission plans and the networks that are composed of human controllers and their autonomous assistants. Machine learning allows us to build models of human and system performance useful for monitoring plans and managing human attention and task loads. Machine learning also aids in the development of tactics that human supervisors can successfully monitor through the command and control system.

  19. Adolescents demonstrate improvement in obesity risk behaviors after completion of choice, control & change, a curriculum addressing personal agency and autonomous motivation.

    Science.gov (United States)

    Contento, Isobel R; Koch, Pamela A; Lee, Heewon; Calabrese-Barton, Angela

    2010-12-01

    The rapid increase of obesity and diabetes risk beginning in youth, particularly those from disadvantaged communities, calls for prevention efforts. To examine the impact of a curriculum intervention, Choice, Control & Change, on the adoption of the energy balance-related behaviors of decreasing sweetened drinks, packaged snacks, fast food, and leisure screen time, and increasing water, fruits and vegetables, and physical activity, and on potential psychosocial mediators of the behaviors. Ten middle schools were randomly assigned within matched pairs to either intervention or comparison/delayed control conditions during the 2006-2007 school year. Students were from low-income New York City neighborhoods; 562 were in the intervention condition, and 574 in the comparison condition. Students received the 24 Choice, Control & Change lessons that used science inquiry investigations to enhance motivation for action, and social cognitive and self-determination theories to increase personal agency and autonomous motivation to take action. Self-report instruments to measure energy balance-related behaviors targeted by the curriculum and potential psychosocial mediators of the behaviors. Analysis of covariance with group (intervention/control) as a fixed factor and pretest as covariate. Students in intervention schools compared to the delayed intervention controls reported consumption of considerably fewer sweetened drinks and packaged snacks, smaller sizes of fast food, increased intentional walking for exercise, and decreased leisure screen time, but showed no increases in their intakes of water, fruits, and vegetables. They showed substantial increases in positive outcome expectations about the behaviors, self-efficacy, goal intentions, competence, and autonomy. The Choice, Control & Change curriculum was effective in improving many of the specifically targeted behaviors related to reducing obesity risk, indicating that combining inquiry-based science education and

  20. A Simple Autonomous Current-Sharing Control Strategy for Fast Dynamic Response of Parallel Inverters in Islanded Microgrids

    DEFF Research Database (Denmark)

    Guan, Yajuan; Vasquez, Juan Carlos; Guerrero, Josep M.

    2014-01-01

    This paper proposed a novel control strategy based on a virtual resistance and a phase locked loop for parallel three-phase inverters. The proposed controller can overcome the drawbacks of the conventional droop control such as slow transient response, complex design, and limited stability margins....... The load sharing capability can be also obtained under asymmetrical output impedances in which the conventional droop controller was not properly working. The proposed approach has been verified by means of simulations and experimental results in a laboratory-scale prototype....

  1. Autonomic symptoms in idiopathic REM behavior disorder

    DEFF Research Database (Denmark)

    Ferini-Strambi, Luigi; Oertel, Wolfgang; Dauvilliers, Yves

    2014-01-01

    to study the disorders of the autonomic nervous system in Parkinson's disease (PD) patients, the SCOPA-AUT, was administered to all the patients and controls. The SCOPA-AUT consists of 25 items assessing the following domains: gastrointestinal, urinary, cardiovascular, thermoregulatory, pupillomotor......Patients with idiopathic REM sleep behavior disorder (iRBD) are at very high risk of developing neurodegenerative synucleinopathies, which are disorders with prominent autonomic dysfunction. Several studies have documented autonomic dysfunction in iRBD, but large-scale assessment of autonomic...... symptoms has never been systematically performed. Patients with polysomnography-confirmed iRBD (318 cases) and controls (137 healthy volunteers and 181 sleep center controls with sleep diagnoses other than RBD) were recruited from 13 neurological centers in 10 countries from 2008 to 2011. A validated scale...

  2. Autonomous Mission Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Autonomous Mission Operations project will develop understanding of the impacts of increasing communication time delays on mission operations and develop...

  3. Age replacement policy based on imperfect repair with random probability

    International Nuclear Information System (INIS)

    Lim, J.H.; Qu, Jian; Zuo, Ming J.

    2016-01-01

    In most of literatures of age replacement policy, failures before planned replacement age can be either minimally repaired or perfectly repaired based on the types of failures, cost for repairs and so on. In this paper, we propose age replacement policy based on imperfect repair with random probability. The proposed policy incorporates the case that such intermittent failure can be either minimally repaired or perfectly repaired with random probabilities. The mathematical formulas of the expected cost rate per unit time are derived for both the infinite-horizon case and the one-replacement-cycle case. For each case, we show that the optimal replacement age exists and is finite. - Highlights: • We propose a new age replacement policy with random probability of perfect repair. • We develop the expected cost per unit time. • We discuss the optimal age for replacement minimizing the expected cost rate.

  4. INVESTIGATION OF FISCAL AND BUDGETARY POLICIES BASED ON ECONOMIC THEORIES

    Directory of Open Access Journals (Sweden)

    EMILIA CAMPEANU

    2011-04-01

    Full Text Available Empirical analysis of fiscal and budgetary policies cannot be achieved without first knowing how they are viewed in the economic theories. This approach is important to indicate the position and implications of fiscal and budgetary policy tools in the economic theory considering their major differences. Therefore, the paper aims is to investigate the fiscal and budgetary policies based on economic theories such as neoclassical, Keynesian and neo-Keynesian theory in order to indicate their divergent points. Once known these approaches at the economic theory level is easier to establish the appropriate measures taking into consideration the framing of a country economy in a certain pattern. This work was supported from the European Social Fund through Sectoral Operational Programme Human Resources Development 2007-2013, project number POSDRU/89/1.5/S/59184 „Performance and excellence in postdoctoral research in Romanian economics science domain” (contract no. 0501/01.11.2010.

  5. Current challenges in autonomous vehicle development

    Science.gov (United States)

    Connelly, J.; Hong, W. S.; Mahoney, R. B., Jr.; Sparrow, D. A.

    2006-05-01

    The field of autonomous vehicles is a rapidly growing one, with significant interest from both government and industry sectors. Autonomous vehicles represent the intersection of artificial intelligence (AI) and robotics, combining decision-making with real-time control. Autonomous vehicles are desired for use in search and rescue, urban reconnaissance, mine detonation, supply convoys, and more. The general adage is to use robots for anything dull, dirty, dangerous or dumb. While a great deal of research has been done on autonomous systems, there are only a handful of fielded examples incorporating machine autonomy beyond the level of teleoperation, especially in outdoor/complex environments. In an attempt to assess and understand the current state of the art in autonomous vehicle development, a few areas where unsolved problems remain became clear. This paper outlines those areas and provides suggestions for the focus of science and technology research. The first step in evaluating the current state of autonomous vehicle development was to develop a definition of autonomy. A number of autonomy level classification systems were reviewed. The resulting working definitions and classification schemes used by the authors are summarized in the opening sections of the paper. The remainder of the report discusses current approaches and challenges in decision-making and real-time control for autonomous vehicles. Suggested research focus areas for near-, mid-, and long-term development are also presented.

  6. Short-term complexity of cardiac autonomic control during sleep: REM as a potential risk factor for cardiovascular system in aging.

    Science.gov (United States)

    Viola, Antoine U; Tobaldini, Eleonora; Chellappa, Sarah L; Casali, Karina Rabello; Porta, Alberto; Montano, Nicola

    2011-04-22

    Sleep is a complex phenomenon characterized by important modifications throughout life and by changes of autonomic cardiovascular control. Aging is associated with a reduction of the overall heart rate variability (HRV) and a decrease of complexity of autonomic cardiac regulation. The aim of our study was to evaluate the HRV complexity using two entropy-derived measures, Shannon Entropy (SE) and Corrected Conditional Entropy (CCE), during sleep in young and older subjects. A polysomnographic study was performed in 12 healthy young (21.1±0.8 years) and 12 healthy older subjects (64.9±1.9 years). After the sleep scoring, heart period time series were divided into wake (W), Stage 1-2 (S1-2), Stage 3-4 (S3-4) and REM. Two complexity indexes were assessed: SE(3) measuring the complexity of a distribution of 3-beat patterns (SE(3) is higher when all the patterns are identically distributed and it is lower when some patterns are more likely) and CCE(min) measuring the minimum amount of information that cannot be derived from the knowledge of previous values. Across the different sleep stages, young subjects had similar RR interval, total variance, SE(3) and CCE(min). In the older group, SE(3) and CCE(min) were reduced during REM sleep compared to S1-2, S3-4 and W. Compared to young subjects, during W and sleep the older subjects showed a lower RR interval and reduced total variance as well as a significant reduction of SE(3) and CCE(min). This decrease of entropy measures was more evident during REM sleep. Our study indicates that aging is characterized by a reduction of entropy indices of cardiovascular variability during wake/sleep cycle, more evident during REM sleep. We conclude that during aging REM sleep is associated with a simplification of cardiac control mechanisms that could lead to an impaired ability of the cardiovascular system to react to cardiovascular adverse events.

  7. Post-buckled precompressed (PBP) elements : A new class of flight control actuators enhancing high-speed autonomous VTOL MAVs

    NARCIS (Netherlands)

    Barrett, R.; McMurtry, R.; Vos, R.; Tiso, P.; De Breuker, R.

    2005-01-01

    This paper describes a new class of flight control actuators using Post-Buckled Precompressed (PBP) piezoelectric elements. These actuators are designed to produce significantly higher deflection and force levels than conventional piezoelectric actuator elements. Classical laminate plate theory

  8. A Hierarchical Reliability Control Method for a Space Manipulator Based on the Strategy of Autonomous Decision-Making

    OpenAIRE

    Gao, Xin; Wang, Yifan; Sun, Hanxu; Jia, Qingxuan; Chen, Gang; Du, Mingtao; Yang, Yukun

    2016-01-01

    In order to maintain and enhance the operational reliability of a robotic manipulator deployed in space, an operational reliability system control method is presented in this paper. First, a method to divide factors affecting the operational reliability is proposed, which divides the operational reliability factors into task-related factors and cost-related factors. Then the models describing the relationships between the two kinds of factors and control variables are established. Based on th...

  9. Autonomous Energy Grids: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bernstein, Andrey [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    With much higher levels of distributed energy resources - variable generation, energy storage, and controllable loads just to mention a few - being deployed into power systems, the data deluge from pervasive metering of energy grids, and the shaping of multi-level ancillary-service markets, current frameworks to monitoring, controlling, and optimizing large-scale energy systems are becoming increasingly inadequate. This position paper outlines the concept of 'Autonomous Energy Grids' (AEGs) - systems that are supported by a scalable, reconfigurable, and self-organizing information and control infrastructure, can be extremely secure and resilient (self-healing), and self-optimize themselves in real-time for economic and reliable performance while systematically integrating energy in all forms. AEGs rely on scalable, self-configuring cellular building blocks that ensure that each 'cell' can self-optimize when isolated from a larger grid as well as partaking in the optimal operation of a larger grid when interconnected. To realize this vision, this paper describes the concepts and key research directions in the broad domains of optimization theory, control theory, big-data analytics, and complex system modeling that will be necessary to realize the AEG vision.

  10. Impact of Regionally Distinct Agroecosystem Communities on the Potential for Autonomous Control of the Coffee Leaf Rust.

    Science.gov (United States)

    Hajian-Forooshani, Zachary; Rivera Salinas, Iris Saraeny; Jiménez-Soto, Estelí; Perfecto, Ivette; Vandermeer, John

    2016-12-01

    Recent theoretical work suggests that two ineffective control agents can provide effective biological control when coupled together. We explore the implications of this work with the system of coffee leaf rust (CLR), caused by the fungal agent Hemileiae vastatrix, and two of its natural enemies, a fungal pathogen (Lecanicillium lecanii) and a spore predator (Mycodiplosis hemileiae). Here we report on comparative surveys of the CLR and its two natural enemies in Mexico, where the CLR has been at epidemic status since 2012, and Puerto Rico, where the CLR is present but has not reached epidemic densities. We found that the densities of the two control agents per CLR lesion is higher in Puerto Rico than in Mexico, and we hypothesize that their joint presence at higher densities is contributing to the suppression of the CLR in Puerto Rico but not in Mexico. Furthermore, we found that the presence of Azteca sericeasur, a keystone ant species that occurs in Mexico but not Puerto Rico, significantly reduces the prevalence of M. hemileiae on coffee plants. Our work provides data that allows us to hypothesize that the joint presence of these two control agents may potentially provide control of the CLR and also highlights the importance of regionally specific communities within agroecosystems, and how variation in community composition may lead to varying outcomes for biological control. Additionally, this is the first report of the presence of a potentially important biological control agent, M. hemileiae, in Latin America and the Caribbean. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Hepatitis E virus seroprevalence among farmers, veterinarians and control subjects in Jilin province, Shandong province and Inner Mongolia Autonomous Region, China.

    Science.gov (United States)

    Kang, Yuan-Huan; Cong, Wei; Zhang, Xiang-Yan; Wang, Chun-Feng; Shan, Xiao-Feng; Qian, Ai-Dong

    2017-05-01

    China is commonly considered to be a HEV-endemic region but limited epidemiological data for HEV among farmers and veterinarians are available. Thus, a case-control study was carried out to detect the seroprevalence and assess potential risk factors associated with the acquisition of HEV infection by farmers and veterinarians in China from July 2013 to May 2015. Three hundred veterinarians and 600 farmers recruited from Jilin province, Shandong province, and Inner Mongolia Autonomous Region and 600 control subjects matched by gender, age, and residence were detected for the presence of anti-HEV IgG and IgM antibodies using enzyme immunoassays. The seroprevalences of HEV infection in farmers, veterinarians, and control subjects were 34.8%, 26.7%, and 20.2%, respectively. Farmers (P veterinarians (P = 0.027) have significantly higher seroprevalence than control subjects. The highest seroprevalence of HEV infection was detected in swine farmers (49.1%) and the lowest seroprevalence was found in cattle farmers (26.5%). In veterinarians, farm animal veterinarians have a higher seroprevalence than pet veterinarians, but the difference was not significant (P > 0.05). Residence area, contact with swine and exposure with soil were significantly associated with HEV infection in the study farmers; contact with swine and source of drinking water were significantly associated with HEV infection in the study veterinarians. These results implied the high prevalence of HEV and the considerable potential for the dissemination of HEV infection in farmers and veterinarians in China. J. Med. Virol. 89:872-877, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Adolescents demonstrate improvement in obesity risk behaviors following completion of Choice, Control, and Change, a curriculum addressing personal agency and autonomous motivation

    Science.gov (United States)

    Koch, Pamela A.; Lee, Heewon; Calabrese-Barton, A

    2010-01-01

    Background The rapid increase of obesity and diabetes risk beginning in youth, particularly those from disadvantaged communities, calls for prevention efforts. Objective To examine the impact of a curriculum intervention, Choice, Control, and Change (C3), on the adoption of the energy balance related behaviors of decreasing sweetened drinks, packaged snacks, fast food, and leisure screen time, and increasing water, fruits and vegetables, and physical activity, and on potential psychosocial mediators of the behaviors. Design Ten middle schools in low-income New York City neighborhoods were randomly assigned within matched pairs to either intervention or comparison/ delayed control conditions during the 2007–2008 school year. Participants 562 inner city seventh grade students in the intervention condition, and 574 in the comparison condition. Intervention Students received the 24 C3 lessons that used science inquiry-based investigations to enhance motivation for action, and social cognitive and self-determination theories to increase personal agency and autonomous motivation to take action. Main outcome measures Self-report instruments to measure energy balance related behaviors targeted by the curriculum, and potential psychosocial mediators of the behaviors. Analyses ANCOVA with group (intervention/control) as a fixed factor and pre-test as covariate. Results Students in intervention schools compared to the delayed intervention controls reported consumption of significantly fewer sweetened drinks and packaged snacks, smaller sizes of fast food, increased intentional walking for exercise, and decreased leisure screen-time, but showed no increases in their intakes of water, fruits, and vegetables. They showed significant increases in positive outcome expectations about the behaviors, self-efficacy, goal intentions, competence, and autonomy. Conclusions The C3 curriculum was effective in improving many of the specifically targeted behaviors related to reducing

  13. Dynamic Fuzzy Logic Parameter Tuning for ACO and Its Application in the Fuzzy Logic Control of an Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Oscar Castillo

    2013-01-01

    Full Text Available Ant Colony Optimization (ACO is a population-based constructive meta-heuristic that exploits a form of past performance memory inspired by the foraging behaviour of real ants. The behaviour of the ACO algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired algorithms. The present paper explores a new approach to diversity control in ACO. The central idea is to avoid or slow down full convergence through the dynamic variation of certain parameters. The performance of different variants of the ACO algorithm was observed to choose one as the basis for the proposed approach. A convergence fuzzy logic controller with the objective of maintaining diversity at some level to avoid premature convergence was created. Encouraging results have been obtained on its application to the design of fuzzy controllers. In particular, the optimization of membership functions for a unicycle mobile robot trajectory control is presented with the proposed method.

  14. Autonomous Agents as Artistic Collaborators

    DEFF Research Database (Denmark)

    Kadish, David

    In this paper, I ask whether it is possible to exert creative direction on the emergence of large scale patterns from the actions of autonomous or semi-autonomous actors. As an artist and an engineer, I undertake installations and projects with an intent to create, to make art or innovative...... structures. At the same time, one of my artistic interests is in ceding a great deal of creative control to a cluster of robotic actors, in the process interrogating the lack of control that we, as a species, exert over the world. Here, I explore this idea in the context of an ongoing project called...... which innovations at large (galactic systems) and small (DNA) scales emerged were happy accidents of physics and chemistry. This raises the fundamental questions that my work explores, interrogating the relationship between the creativity of emergent processes on the micro- and macro- scales...

  15. Semi-Autonomous Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — VisionThe Semi-Autonomous Systems Lab focuses on developing a comprehensive framework for semi-autonomous coordination of networked robotic systems. Semi-autonomous...

  16. Testing for autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J

    1984-01-01

    of the disease, and may be nonspecific. A number of recently developed quantifiable and reproducible autonomic nerve function tests are reviewed, with emphasis on the physiological basis of the tests and on practical applicability. Finally, diagnostic criteria, based on autonomic nerve function tests...

  17. Epileptic Seizures are Reduced by Autonomic Biofeedback Therapy Through Enhancement of Fronto-limbic Connectivity: A Controlled Trial and Neuroimaging Study

    Directory of Open Access Journals (Sweden)

    Yoko Nagai

    2018-01-01

    Interpretation: Our clinical study provides evidence for autonomic biofeedback therapy as an effective and potent behavioral intervention for patients with drug-resistant epilepsy. This approach is non-pharmacological, non-invasive and seemingly side-effect free.

  18. A Distributed Control Strategy for Coordination of an Autonomous LVDC Microgrid Based on Power-Line Signalling

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Guerrero, Josep M.; Vasquez, Juan Carlos

    2014-01-01

    In a MG, an energy management control is essential in order to handle the variety of prime movers which may include different types of renewable energy sources (RES) and energy storage systems (ESS). Specifically, the recharging process of secondary battery, the most prominent ESS, should be done...

  19. Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered E. coli

    DEFF Research Database (Denmark)

    Kim, Eun-Mi; Min Woo, Han; Tian, Tian

    2017-01-01

    I-luxR genes, and four variants of the Response plasmid, which carry bisabolene producing pathway genes under the control of the PluxI promoter, were designed for optimization of bisabolene production. Furthermore, a chromosome-integrated QS strain was engineered with the best combination of Sensor...

  20. Acupuncture Effect and Central Autonomic Regulation

    OpenAIRE

    Qian-Qian Li; Guang-Xia Shi; Qian Xu; Jing Wang; Cun-Zhi Liu; Lin-Peng Wang

    2013-01-01

    Acupuncture is a therapeutic technique and part of traditional Chinese medicine (TCM). Acupuncture has clinical efficacy on various autonomic nerve-related disorders, such as cardiovascular diseases, epilepsy, anxiety and nervousness, circadian rhythm disorders, polycystic ovary syndrome (PCOS) and subfertility. An increasing number of studies have demonstrated that acupuncture can control autonomic nerve system (ANS) functions including blood pressure, pupil size, skin conductance, skin temp...