WorldWideScience

Sample records for policy-based autonomic control

  1. In search of synergies between policy-based systems management and economic models for autonomic computing

    OpenAIRE

    Anthony, Richard

    2011-01-01

    Policy-based systems management (PBM) and economics-based systems management (EBM) are two of the many techniques available for implementing autonomic systems, each having specific benefits and limitations, and thus different applicability; choosing the most appropriate technique is\\ud the first of many challenges faced by the developer. This talk begins with a critical discussion of the general design goals of autonomic systems and the main issues involved with their development and deployme...

  2. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator.

    Science.gov (United States)

    Ka, Hyun W; Chung, Cheng-Shiu; Ding, Dan; James, Khara; Cooper, Rory

    2018-02-01

    We developed a 3D vision-based semi-autonomous control interface for assistive robotic manipulators. It was implemented based on one of the most popular commercially available assistive robotic manipulator combined with a low-cost depth-sensing camera mounted on the robot base. To perform a manipulation task with the 3D vision-based semi-autonomous control interface, a user starts operating with a manual control method available to him/her. When detecting objects within a set range, the control interface automatically stops the robot, and provides the user with possible manipulation options through audible text output, based on the detected object characteristics. Then, the system waits until the user states a voice command. Once the user command is given, the control interface drives the robot autonomously until the given command is completed. In the empirical evaluations conducted with human subjects from two different groups, it was shown that the semi-autonomous control can be used as an alternative control method to enable individuals with impaired motor control to more efficiently operate the robot arms by facilitating their fine motion control. The advantage of semi-autonomous control was not so obvious for the simple tasks. But, for the relatively complex real-life tasks, the 3D vision-based semi-autonomous control showed significantly faster performance. Implications for Rehabilitation A 3D vision-based semi-autonomous control interface will improve clinical practice by providing an alternative control method that is less demanding physically as well cognitively. A 3D vision-based semi-autonomous control provides the user with task specific intelligent semiautonomous manipulation assistances. A 3D vision-based semi-autonomous control gives the user the feeling that he or she is still in control at any moment. A 3D vision-based semi-autonomous control is compatible with different types of new and existing manual control methods for ARMs.

  3. Hierarchical Controlled Grid-Connected Microgrid based on a Novel Autonomous Current Sharing Controller

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2015-01-01

    In this paper, a hierarchical control system based on a novel autonomous current sharing controller for grid-connected microgrids (MGs) is presented. A three-level hierarchical control system is implemented to guarantee the power sharing performance among voltage controlled parallel inverters......, while providing the required active and reactive power to the utility grid. A communication link is used to transmit the control signal from the tertiary and secondary control levels to the primary control. Simulation results from a MG based on two grid-connected parallel inverters are shown in order...

  4. Evolution of an artificial neural network based autonomous land vehicle controller.

    Science.gov (United States)

    Baluja, S

    1996-01-01

    This paper presents an evolutionary method for creating an artificial neural network based autonomous land vehicle controller. The evolved controllers perform better in unseen situations than those trained with an error backpropagation learning algorithm designed for this task. In this paper, an overview of the previous connectionist based approaches to this task is given, and the evolutionary algorithms used in this study are described in detail. Methods for reducing the high computational costs of training artificial neural networks with evolutionary algorithms are explored. Error metrics specific to the task of autonomous vehicle control are introduced; the evolutionary algorithms guided by these error metrics reveal improved performance over those guided by the standard sum-squared error metric. Finally, techniques for integrating evolutionary search and error backpropagation are presented. The evolved networks are designed to control Carnegie Mellon University's NAVLAB vehicles in road following tasks.

  5. An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes

    Science.gov (United States)

    Zhang, Guang-yu; Wang, Jian; Tang, Peng-yi; Jia, Ming-hao; Chen, Jie; Dong, Shu-cheng; Jiang, Fengxin; Wu, Wen-qing; Liu, Jia-jing; Zhang, Hong-fei

    2016-01-01

    For unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS-(Experimental Physics and Industrial Control System) and RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of open source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2, respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfil the function of astronomical observation and use EPICS to fulfil the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 directly. For the specification and requirement of control system of telescope in Antarctic, core components named Executor and Auto-focus for autonomous observation is designed and implemented with remote operation user interface based on browser-server mode. The whole system including the telescope is tested in Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous observation and control, including telescope control, camera control, dome control, weather information acquisition with the local and remote operation.

  6. Systems, methods and apparatus for modeling, specifying and deploying policies in autonomous and autonomic systems using agent-oriented software engineering

    Science.gov (United States)

    Hinchey, Michael G. (Inventor); Penn, Joaquin (Inventor); Sterritt, Roy (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which in some embodiments, an agent-oriented specification modeled with MaCMAS, is analyzed, flaws in the agent-oriented specification modeled with MaCMAS are corrected, and an implementation is derived from the corrected agent-oriented specification. Described herein are systems, method and apparatus that produce fully (mathematically) tractable development of agent-oriented specification(s) modeled with methodology fragment for analyzing complex multiagent systems (MaCMAS) and policies for autonomic systems from requirements through to code generation. The systems, method and apparatus described herein are illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming systems, method and apparatus described herein may provide faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.

  7. Longitudinal Control for Mengshi Autonomous Vehicle via Gauss Cloud Model

    Directory of Open Access Journals (Sweden)

    Hongbo Gao

    2017-12-01

    Full Text Available Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control technique of autonomous vehicle is basic theory and one key complex technique which must have the reliability and precision of vehicle controller. The longitudinal control technique is one of the foundations of the safety and stability of autonomous vehicle control. In our paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. The longitudinal control algorithm mainly uses cloud model generator to control the acceleration of the autonomous vehicle to achieve the goal that controls the speed of Mengshi autonomous vehicle. The proposed longitudinal control algorithm based on cloud model is verified by real experiments on Highway driving scene. The experiments results of the acceleration and speed show that the algorithm is validity and stability.

  8. Longitudinal Control for Mengshi Autonomous Vehicle via Cloud Model

    Science.gov (United States)

    Gao, H. B.; Zhang, X. Y.; Li, D. Y.; Liu, Y. C.

    2018-03-01

    Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control method of autonomous is a key technique which has drawn the attention of industry and academe. In this paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. An experiments is applied to test the implementation of the longitudinal control algorithm. Empirical results show that if the longitudinal control algorithm based Gauss cloud model are applied to calculate the acceleration, and the vehicles drive at different speeds, a stable longitudinal control effect is achieved.

  9. Advanced control architecture for autonomous vehicles

    Science.gov (United States)

    Maurer, Markus; Dickmanns, Ernst D.

    1997-06-01

    An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.

  10. A learning-based semi-autonomous controller for robotic exploration of unknown disaster scenes while searching for victims.

    Science.gov (United States)

    Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie

    2014-12-01

    Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.

  11. Tracked robot controllers for climbing obstacles autonomously

    Science.gov (United States)

    Vincent, Isabelle

    2009-05-01

    Research in mobile robot navigation has demonstrated some success in navigating flat indoor environments while avoiding obstacles. However, the challenge of analyzing complex environments to climb obstacles autonomously has had very little success due to the complexity of the task. Unmanned ground vehicles currently exhibit simple autonomous behaviours compared to the human ability to move in the world. This paper presents the control algorithms designed for a tracked mobile robot to autonomously climb obstacles by varying its tracks configuration. Two control algorithms are proposed to solve the autonomous locomotion problem for climbing obstacles. First, a reactive controller evaluates the appropriate geometric configuration based on terrain and vehicle geometric considerations. Then, a reinforcement learning algorithm finds alternative solutions when the reactive controller gets stuck while climbing an obstacle. The methodology combines reactivity to learning. The controllers have been demonstrated in box and stair climbing simulations. The experiments illustrate the effectiveness of the proposed approach for crossing obstacles.

  12. 3D Vision Based Landing Control of a Small Scale Autonomous Helicopter

    Directory of Open Access Journals (Sweden)

    Zhenyu Yu

    2007-03-01

    Full Text Available Autonomous landing is a challenging but important task for Unmanned Aerial Vehicles (UAV to achieve high level of autonomy. The fundamental requirement for landing is the knowledge of the height above the ground, and a properly designed controller to govern the process. This paper presents our research results in the study of landing an autonomous helicopter. The above-the-ground height sensing is based on a 3D vision system. We have designed a simple plane-fitting method for estimating the height over the ground. The method enables vibration free measurement with the camera rigidly attached on the helicopter without using complicated gimbal or active vision mechanism. The estimated height is used by the landing control loop. Considering the ground effect during landing, we have proposed a two-stage landing procedure. Two controllers are designed for the two landing stages respectively. The sensing approach and control strategy has been verified in field flight test and has demonstrated satisfactory performance.

  13. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  14. An autonomic security monitor for distributed operating systems

    OpenAIRE

    Arenas, A.; Aziz, Benjamin; Maj, S.; Matthews, B.

    2011-01-01

    This paper presents an autonomic system for the monitoring of security-relevant information in a Grid-based operating system. The system implements rule-based policies using Java Drools. Policies are capable of controlling the system environment based on changes in levels of CPU/memory usage, accesses to system resources, detection of abnormal behaviour such as DDos attacks.

  15. Router Agent Technology for Policy-Based Network Management

    Science.gov (United States)

    Chow, Edward T.; Sudhir, Gurusham; Chang, Hsin-Ping; James, Mark; Liu, Yih-Chiao J.; Chiang, Winston

    2011-01-01

    This innovation can be run as a standalone network application on any computer in a networked environment. This design can be configured to control one or more routers (one instance per router), and can also be configured to listen to a policy server over the network to receive new policies based on the policy- based network management technology. The Router Agent Technology transforms the received policies into suitable Access Control List syntax for the routers it is configured to control. It commits the newly generated access control lists to the routers and provides feedback regarding any errors that were faced. The innovation also automatically generates a time-stamped log file regarding all updates to the router it is configured to control. This technology, once installed on a local network computer and started, is autonomous because it has the capability to keep listening to new policies from the policy server, transforming those policies to router-compliant access lists, and committing those access lists to a specified interface on the specified router on the network with any error feedback regarding commitment process. The stand-alone application is named RouterAgent and is currently realized as a fully functional (version 1) implementation for the Windows operating system and for CISCO routers.

  16. An autonomous control framework for advanced reactors

    Directory of Open Access Journals (Sweden)

    Richard T. Wood

    2017-08-01

    Full Text Available Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

  17. An autonomous control framework for advanced reactors

    International Nuclear Information System (INIS)

    Wood, Richard T.; Upadhyaya, Belle R.; Floyd, Dan C.

    2017-01-01

    Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors

  18. An autonomous control framework for advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard T.; Upadhyaya, Belle R.; Floyd, Dan C. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

  19. Are Autonomous and Controlled Motivations School-Subjects-Specific?

    Science.gov (United States)

    Chanal, Julien; Guay, Frédéric

    2015-01-01

    This research sought to test whether autonomous and controlled motivations are specific to school subjects or more general to the school context. In two cross-sectional studies, 252 elementary school children (43.7% male; mean age = 10.7 years, SD = 1.3 years) and 334 junior high school children (49.7% male, mean age = 14.07 years, SD = 1.01 years) were administered a questionnaire assessing their motivation for various school subjects. Results based on structural equation modeling using the correlated trait-correlated method minus one model (CTCM-1) showed that autonomous and controlled motivations assessed at the school subject level are not equally school-subject-specific. We found larger specificity effects for autonomous (intrinsic and identified) than for controlled (introjected and external) motivation. In both studies, results of factor loadings and the correlations with self-concept and achievement demonstrated that more evidence of specificity was obtained for autonomous regulations than for controlled ones. These findings suggest a new understanding of the hierarchical and multidimensional academic structure of autonomous and controlled motivations and of the mechanisms involved in the development of types of regulations for school subjects. PMID:26247788

  20. Perancangan Autonomous Landing pada Quadcopter Menggunakan Behavior-Based Intelligent Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Chalidia Nurin Hamdani

    2013-09-01

    Full Text Available Quadcopter adalah salah satu platform unmanned aerial vehicle (UAV yang saat ini banyak diriset karena kemampuannya melakukan take-off dan landing secara vertikal. Karena menggunakan 4 motor brushless sebagai penggerak utama, quadcopter memiliki kompleksitas yang cukup tinggi baik dalam pemodelan maupun pengendalian. Landing merupakan salah satu mekanisme pada quadcopter yang membutuhkan kecepatan yang akurat dan aman dengan tetap mempertahankan keseimbangan. Pada penelitian ini, penulis menggunakan Behavior-Based Intelligent Fuzzy Control (BBIFC sebagai dasar kontrol untuk penerapan autonomous landing pada quadcopter. BBIFC adalah salah satu skema high-level control di mana desain kontrol terdiri dari beberapa layer. Ada 2 layer yang digunakan pada penelitian ini yaitu layer untuk pengendalian sudut pitch, roll, yaw dan layer untuk pengendalian ketinggian. Setiap layer memiliki mekanisme kontrol yang berbeda yang didesain menggunakan Intelligent Fuzzy Controller dan kontroler PID. Dengan metode ini dihasilkan algoritma untuk mekanisme safe autonomous landing dengan mengikuti sinyal eksponensial di mana quadcopter mencapai titik 0 (nol meter dalam waktu 15 detik dan Kontroler PID dapat mengendalikan keseimbangan quadcopter dalam waktu 7.97 detik untuk roll dan pitch serta 1.25 detik untuk yaw sejak gangguan sudut diberikan.

  1. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  2. Decentralized Control of Autonomous Vehicles

    Science.gov (United States)

    2003-01-01

    Autonomous Vehicles by John S. Baras, Xiaobo Tan, Pedram Hovareshti CSHCN TR 2003-8 (ISR TR 2003-14) Report Documentation Page Form ApprovedOMB No. 0704...AND SUBTITLE Decentralized Control of Autonomous Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Decentralized Control of Autonomous Vehicles ∗ John S. Baras, Xiaobo Tan, and Pedram

  3. Towards Autonomous Control of HVAC Systems

    DEFF Research Database (Denmark)

    Brath, P.

    autonomous control. Together with better tuned controllers and more dedicated control it would be possible to decrease the energy consumption, save money and increase the indoor air climate. A flexible HVAC test system was designed and implemented. Standard components and sensors were used in the design...... temperature controller, based on airflow control, was designed. Feedback linearisation is used together with an auto-tuning procedure, based on relay feedback. Design of a new CO2 controller was made to achieve a demand controlled ventilation system, in order to save energy. Feedback linearisation was used...

  4. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  5. Time dependent policy-based access control

    DEFF Research Database (Denmark)

    Vasilikos, Panagiotis; Nielson, Flemming; Nielson, Hanne Riis

    2017-01-01

    also on other attributes of the environment such as the time. In this paper, we use systems of Timed Automata to model distributed systems and we present a logic in which one can express time-dependent policies for access control. We show how a fragment of our logic can be reduced to a logic......Access control policies are essential to determine who is allowed to access data in a system without compromising the data's security. However, applications inside a distributed environment may require those policies to be dependent on the actual content of the data, the flow of information, while...... that current model checkers for Timed Automata such as UPPAAL can handle and we present a translator that performs this reduction. We then use our translator and UPPAAL to enforce time-dependent policy-based access control on an example application from the aerospace industry....

  6. Dynamics control of autonomous vehicle at driving limits and experiment on an autonomous formula racing car

    Science.gov (United States)

    Ni, Jun; Hu, Jibin

    2017-06-01

    In this paper, a novel dynamics controller for autonomous vehicle to simultaneously control it to the driving limits and follow the desired path is proposed. The dynamics controller consists of longitudinal and lateral controllers. In longitudinal controller, the G-G diagram is utilized to describe the driving and handling limits of the vehicle. The accurate G-G diagram is obtained based on phase plane approach and a nonlinear vehicle dynamic model with accurate tyre model. In lateral controller, the tyre cornering stiffness is estimated to improve the robustness of the controller. The stability analysis of the closed-looped error dynamics shows that the controller remains stable against parameters uncertainties in extreme condition such as tyre saturation. Finally, an electric autonomous Formula race car developed by the authors is used to validate the proposed controller. The autonomous driving experiment on an oval race track shows the efficiency and robustness of the proposed controller.

  7. Traffic Control Models Based on Cellular Automata for At-Grade Intersections in Autonomous Vehicle Environment

    OpenAIRE

    Wei Wu; Yang Liu; Yue Xu; Quanlun Wei; Yi Zhang

    2017-01-01

    Autonomous vehicle is able to facilitate road safety and traffic efficiency and has become a promising trend of future development. With a focus on highways, existing literatures studied the feasibility of autonomous vehicle in continuous traffic flows and the controllability of cooperative driving. However, rare efforts have been made to investigate the traffic control strategies in autonomous vehicle environment on urban roads, especially in urban intersections. In autonomous vehicle enviro...

  8. An Intelligent Control for the Distributed Flexible Network Photovoltaic System using Autonomous Control and Agent

    Science.gov (United States)

    Park, Sangsoo; Miura, Yushi; Ise, Toshifumi

    This paper proposes an intelligent control for the distributed flexible network photovoltaic system using autonomous control and agent. The distributed flexible network photovoltaic system is composed of a secondary battery bank and a number of subsystems which have a solar array, a dc/dc converter and a load. The control mode of dc/dc converter can be selected based on local information by autonomous control. However, if only autonomous control using local information is applied, there are some problems associated with several cases such as voltage drop on long power lines. To overcome these problems, the authors propose introducing agents to improve control characteristics. The autonomous control with agents is called as intelligent control in this paper. The intelligent control scheme that employs the communication between agents is applied for the model system and proved with simulation using PSCAD/EMTDC.

  9. Meaningful Human Control over Autonomous Systems: A Philosophical Account

    Directory of Open Access Journals (Sweden)

    Filippo Santoni de Sio

    2018-02-01

    Full Text Available Debates on lethal autonomous weapon systems have proliferated in the past 5 years. Ethical concerns have been voiced about a possible raise in the number of wrongs and crimes in military operations and about the creation of a “responsibility gap” for harms caused by these systems. To address these concerns, the principle of “meaningful human control” has been introduced in the legal–political debate; according to this principle, humans not computers and their algorithms should ultimately remain in control of, and thus morally responsible for, relevant decisions about (lethal military operations. However, policy-makers and technical designers lack a detailed theory of what “meaningful human control” exactly means. In this paper, we lay the foundation of a philosophical account of meaningful human control, based on the concept of “guidance control” as elaborated in the philosophical debate on free will and moral responsibility. Following the ideals of “Responsible Innovation” and “Value-sensitive Design,” our account of meaningful human control is cast in the form of design requirements. We identify two general necessary conditions to be satisfied for an autonomous system to remain under meaningful human control: first, a “tracking” condition, according to which the system should be able to respond to both the relevant moral reasons of the humans designing and deploying the system and the relevant facts in the environment in which the system operates; second, a “tracing” condition, according to which the system should be designed in such a way as to grant the possibility to always trace back the outcome of its operations to at least one human along the chain of design and operation. As we think that meaningful human control can be one of the central notions in ethics of robotics and AI, in the last part of the paper, we start exploring the implications of our account for the design and use of non

  10. Autonomous Micro-Air-Vehicle Control Based on Visual Sensing for Odor Source Localization

    Directory of Open Access Journals (Sweden)

    Kenzo Kurotsuchi

    2017-07-01

    Full Text Available In this paper, we propose a novel control method for autonomous-odor-source localization using visual and odor sensing by micro air vehicles (MAVs. Our method is based on biomimetics, which enable highly autonomous localization. Our method does not need any instruction signals, including even global positioning system (GPS signals. An experimenter simply blows a whistle, and the MAV will then start to hover, to seek an odor source, and to keep hovering near the source. The GPS-signal-free control based on visual sense enables indoor/underground use. Moreover, the MAV is light-weight (85 grams and does not cause harm to others even if it accidentally falls. Experiments conducted in the real world were successful in enabling odor source localization using the MAV with a bio-inspired searching method. The distance error of the localization was 63 cm, more accurate than the target distance of 120 cm for individual identification. Our odor source localization is the first step to a proof of concept for a danger warning system. These localization experiments were the first step to a proof of concept for a danger warning system to enable a safer and more secure society.

  11. Sensor-based control with digital maps association for global navigation: a real application for autonomous vehicles

    OpenAIRE

    Alves De Lima , Danilo; Corrêa Victorino , Alessandro

    2015-01-01

    International audience; This paper presents a sensor-based control strategy applied in the global navigation of autonomous vehicles in urban environments. Typically, sensor-based control performs local navigation tasks regarding some features perceived from the environment. However, when there is more than one possibility to go, like in road intersection, the vehicle control fails to accomplish its global navigation. In order to solve this problem, we propose the vehicle global navigation bas...

  12. Towards autonomous neuroprosthetic control using Hebbian reinforcement learning.

    Science.gov (United States)

    Mahmoudi, Babak; Pohlmeyer, Eric A; Prins, Noeline W; Geng, Shijia; Sanchez, Justin C

    2013-12-01

    Our goal was to design an adaptive neuroprosthetic controller that could learn the mapping from neural states to prosthetic actions and automatically adjust adaptation using only a binary evaluative feedback as a measure of desirability/undesirability of performance. Hebbian reinforcement learning (HRL) in a connectionist network was used for the design of the adaptive controller. The method combines the efficiency of supervised learning with the generality of reinforcement learning. The convergence properties of this approach were studied using both closed-loop control simulations and open-loop simulations that used primate neural data from robot-assisted reaching tasks. The HRL controller was able to perform classification and regression tasks using its episodic and sequential learning modes, respectively. In our experiments, the HRL controller quickly achieved convergence to an effective control policy, followed by robust performance. The controller also automatically stopped adapting the parameters after converging to a satisfactory control policy. Additionally, when the input neural vector was reorganized, the controller resumed adaptation to maintain performance. By estimating an evaluative feedback directly from the user, the HRL control algorithm may provide an efficient method for autonomous adaptation of neuroprosthetic systems. This method may enable the user to teach the controller the desired behavior using only a simple feedback signal.

  13. Developing Policy for Urban Autonomous Vehicles: Impact on Congestion

    Directory of Open Access Journals (Sweden)

    David Metz

    2018-04-01

    Full Text Available An important problem for surface transport is road traffic congestion, which is ubiquitous and difficult to mitigate. Accordingly, a question for policymakers is the possible impact on congestion of autonomous vehicles. It seems likely that the main impact of vehicle automation will not be seen until driverless vehicles are sufficiently safe for use amid general traffic on urban streets. Shared use driverless vehicles could reduce the cost of taxis and a wider range of public transport vehicles could be economic. Individually owned autonomous vehicles would have the ability to travel unoccupied and may need to be regulated where this might add to congestion. It is possible that autonomous vehicles could provide mobility services at lower cost and wider scope, such that private car use in urban areas could decline and congestion reduce. City authorities should be alert to these possibilities in developing transport policy.

  14. Design of a Control System for an Autonomous Vehicle Based on Adaptive-PID

    Directory of Open Access Journals (Sweden)

    Pan Zhao

    2012-07-01

    Full Text Available The autonomous vehicle is a mobile robot integrating multi-sensor navigation and positioning, intelligent decision making and control technology. This paper presents the control system architecture of the autonomous vehicle, called “Intelligent Pioneer”, and the path tracking and stability of motion to effectively navigate in unknown environments is discussed. In this approach, a two degree-of-freedom dynamic model is developed to formulate the path-tracking problem in state space format. For controlling the instantaneous path error, traditional controllers have difficulty in guaranteeing performance and stability over a wide range of parameter changes and disturbances. Therefore, a newly developed adaptive-PID controller will be used. By using this approach the flexibility of the vehicle control system will be increased and achieving great advantages. Throughout, we provide examples and results from Intelligent Pioneer and the autonomous vehicle using this approach competed in the 2010 and 2011 Future Challenge of China. Intelligent Pioneer finished all of the competition programmes and won first position in 2010 and third position in 2011.

  15. Autonomous Control of Space Reactor Systems

    International Nuclear Information System (INIS)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-01-01

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are available to perform intelligent control functions that are necessary for both normal and abnormal operational conditions

  16. Autonomous Control of Space Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  17. Autonomous execution of the Precision Immobilization Technique

    Science.gov (United States)

    Mascareñas, David D. L.; Stull, Christopher J.; Farrar, Charles R.

    2017-03-01

    Over the course of the last decade great advances have been made in autonomously driving cars. The technology has advanced to the point that driverless car technology is currently being tested on publicly accessed roadways. The introduction of these technologies onto publicly accessed roadways not only raises questions of safety, but also security. Autonomously driving cars are inherently cyber-physical systems and as such will have novel security vulnerabilities that couple both the cyber aspects of the vehicle including the on-board computing and any network data it makes use of, with the physical nature of the vehicle including its sensors, actuators, and the vehicle chassis. Widespread implementation of driverless car technology will require that both the cyber, as well as physical security concerns surrounding these vehicles are addressed. In this work, we specifically developed a control policy to autonomously execute the Precision Immobilization Technique, a.k.a. the PIT maneuver. The PIT maneuver was originally developed by law enforcement to end high-speed vehicular pursuits in a quasi-safe manner. However, there is still a risk of damage/roll-over to both the vehicle executing the PIT maneuver as well as to the vehicle subject to the PIT maneuver. In law enforcement applications, it would be preferable to execute the PIT maneuver using an autonomous vehicle, thus removing the danger to law-enforcement officers. Furthermore, it is entirely possible that unscrupulous individuals could inject code into an autonomously-driving car to use the PIT maneuver to immobilize other vehicles while maintaining anonymity. For these reasons it is useful to know how the PIT maneuver can be implemented on an autonomous car. In this work a simple control policy based on velocity pursuit was developed to autonomously execute the PIT maneuver using only a vision and range measurements that are both commonly collected by contemporary driverless cars. The ability of this

  18. Autonomous reinforcement learning with experience replay.

    Science.gov (United States)

    Wawrzyński, Paweł; Tanwani, Ajay Kumar

    2013-05-01

    This paper considers the issues of efficiency and autonomy that are required to make reinforcement learning suitable for real-life control tasks. A real-time reinforcement learning algorithm is presented that repeatedly adjusts the control policy with the use of previously collected samples, and autonomously estimates the appropriate step-sizes for the learning updates. The algorithm is based on the actor-critic with experience replay whose step-sizes are determined on-line by an enhanced fixed point algorithm for on-line neural network training. An experimental study with simulated octopus arm and half-cheetah demonstrates the feasibility of the proposed algorithm to solve difficult learning control problems in an autonomous way within reasonably short time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids

    International Nuclear Information System (INIS)

    Karavas, Christos-Spyridon; Kyriakarakos, George; Arvanitis, Konstantinos G.; Papadakis, George

    2015-01-01

    Highlights: • A decentralized energy management system based on multi agent systems theory. • A decentralized energy management system is technically feasible. • A decentralized approach utilizes the devices better than a centralized one. • A decentralized energy management system is economically competitive. - Abstract: The autonomous polygeneration microgrid topology has been developed in order to cover holistically needs in a remote area such as electrical energy, space heating and cooling, potable water through desalination and hydrogen as fuel for transportation. The existence of an advanced energy management system is essential for the operation of an autonomous polygeneration microgrid. So far, energy management systems based on a centralized management and control have been developed for the autonomous polygeneration microgrid topology based on computational intelligence approaches. A decentralized management and control energy management system can have important benefits, when taking into consideration the autonomous character of these microgrids. This paper presents the design and investigation of a decentralized energy management system for the autonomous polygeneration microgrid topology. The decentralized energy management system gives the possibility to control each unit of the microgrid independently. The most important advantage of using a decentralized architecture is that the managed microgrid has much higher chances of partial operation in cases when malfunctions occur at different parts of it, instead of a complete system breakdown. The designed system was based on a multi-agent system and employed Fuzzy Cognitive Maps for its implementation. It was then compared through a case study with an existing centralized energy management system. The technical performance of the decentralized solution performance is on par with the existing centralized one, presenting improvements in financial and operational terms for the implementation and

  20. Semi-autonomous unmanned ground vehicle control system

    Science.gov (United States)

    Anderson, Jonathan; Lee, Dah-Jye; Schoenberger, Robert; Wei, Zhaoyi; Archibald, James

    2006-05-01

    Unmanned Ground Vehicles (UGVs) have advantages over people in a number of different applications, ranging from sentry duty, scouting hazardous areas, convoying goods and supplies over long distances, and exploring caves and tunnels. Despite recent advances in electronics, vision, artificial intelligence, and control technologies, fully autonomous UGVs are still far from being a reality. Currently, most UGVs are fielded using tele-operation with a human in the control loop. Using tele-operations, a user controls the UGV from the relative safety and comfort of a control station and sends commands to the UGV remotely. It is difficult for the user to issue higher level commands such as patrol this corridor or move to this position while avoiding obstacles. As computer vision algorithms are implemented in hardware, the UGV can easily become partially autonomous. As Field Programmable Gate Arrays (FPGAs) become larger and more powerful, vision algorithms can run at frame rate. With the rapid development of CMOS imagers for consumer electronics, frame rate can reach as high as 200 frames per second with a small size of the region of interest. This increase in the speed of vision algorithm processing allows the UGVs to become more autonomous, as they are able to recognize and avoid obstacles in their path, track targets, or move to a recognized area. The user is able to focus on giving broad supervisory commands and goals to the UGVs, allowing the user to control multiple UGVs at once while still maintaining the convenience of working from a central base station. In this paper, we will describe a novel control system for the control of semi-autonomous UGVs. This control system combines a user interface similar to a simple tele-operation station along with a control package, including the FPGA and multiple cameras. The control package interfaces with the UGV and provides the necessary control to guide the UGV.

  1. Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles

    Science.gov (United States)

    2007-11-01

    Tolerant Overactuated Autonomous Vehicles Casavola, A.; Garone, E. (2007) Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous ...Adaptive Control Allocation for Fault Tolerant Overactuated Autonomous Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Tolerant Overactuated Autonomous Vehicles 3.2 - 2 RTO-MP-AVT-145 UNCLASSIFIED/UNLIMITED Control allocation problem (CAP) - Given a virtual input v(t

  2. Enabling autonomous control for space reactor power systems

    International Nuclear Information System (INIS)

    Wood, R. T.

    2006-01-01

    The application of nuclear reactors for space power and/or propulsion presents some unique challenges regarding the operations and control of the power system. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a space reactor power system (SRPS) employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. Thus, a SRPS control system must provide for operational autonomy. Oak Ridge National Laboratory (ORNL) has conducted an investigation of the state of the technology for autonomous control to determine the experience base in the nuclear power application domain, both for space and terrestrial use. It was found that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and basic control for a SRPS is clearly feasible under optimum circumstances. However, autonomous control is primarily intended to account for the non optimum circumstances when degradation, failure, and other off-normal events challenge the performance of the reactor and near-term human intervention is not possible. Thus, the development and demonstration of autonomous control capabilities for the specific domain of space nuclear power operations is needed. This paper will discuss the findings of the ORNL study and provide a description of the concept of autonomy, its key characteristics, and a prospective

  3. Sensing and control for autonomous vehicles applications to land, water and air vehicles

    CERN Document Server

    Pettersen, Kristin; Nijmeijer, Henk

    2017-01-01

    This edited volume includes thoroughly collected on sensing and control for autonomous vehicles. Guidance, navigation and motion control systems for autonomous vehicles are increasingly important in land-based, marine and aerial operations. Autonomous underwater vehicles may be used for pipeline inspection, light intervention work, underwater survey and collection of oceanographic/biological data. Autonomous unmanned aerial systems can be used in a large number of applications such as inspection, monitoring, data collection, surveillance, etc. At present, vehicles operate with limited autonomy and a minimum of intelligence. There is a growing interest for cooperative and coordinated multi-vehicle systems, real-time re-planning, robust autonomous navigation systems and robust autonomous control of vehicles. Unmanned vehicles with high levels of autonomy may be used for safe and efficient collection of environmental data, for assimilation of climate and environmental models and to complement global satellite sy...

  4. A design approach for small vision-based autonomous vehicles

    Science.gov (United States)

    Edwards, Barrett B.; Fife, Wade S.; Archibald, James K.; Lee, Dah-Jye; Wilde, Doran K.

    2006-10-01

    This paper describes the design of a small autonomous vehicle based on the Helios computing platform, a custom FPGA-based board capable of supporting on-board vision. Target applications for the Helios computing platform are those that require lightweight equipment and low power consumption. To demonstrate the capabilities of FPGAs in real-time control of autonomous vehicles, a 16 inch long R/C monster truck was outfitted with a Helios board. The platform provided by such a small vehicle is ideal for testing and development. The proof of concept application for this autonomous vehicle was a timed race through an environment with obstacles. Given the size restrictions of the vehicle and its operating environment, the only feasible on-board sensor is a small CMOS camera. The single video feed is therefore the only source of information from the surrounding environment. The image is then segmented and processed by custom logic in the FPGA that also controls direction and speed of the vehicle based on visual input.

  5. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    Science.gov (United States)

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  6. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    Science.gov (United States)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  7. Automated Search-Based Robustness Testing for Autonomous Vehicle Software

    Directory of Open Access Journals (Sweden)

    Kevin M. Betts

    2016-01-01

    Full Text Available Autonomous systems must successfully operate in complex time-varying spatial environments even when dealing with system faults that may occur during a mission. Consequently, evaluating the robustness, or ability to operate correctly under unexpected conditions, of autonomous vehicle control software is an increasingly important issue in software testing. New methods to automatically generate test cases for robustness testing of autonomous vehicle control software in closed-loop simulation are needed. Search-based testing techniques were used to automatically generate test cases, consisting of initial conditions and fault sequences, intended to challenge the control software more than test cases generated using current methods. Two different search-based testing methods, genetic algorithms and surrogate-based optimization, were used to generate test cases for a simulated unmanned aerial vehicle attempting to fly through an entryway. The effectiveness of the search-based methods in generating challenging test cases was compared to both a truth reference (full combinatorial testing and the method most commonly used today (Monte Carlo testing. The search-based testing techniques demonstrated better performance than Monte Carlo testing for both of the test case generation performance metrics: (1 finding the single most challenging test case and (2 finding the set of fifty test cases with the highest mean degree of challenge.

  8. Bilateral human-robot control for semi-autonomous UAV navigation

    NARCIS (Netherlands)

    Wopereis, Han Willem; Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella

    2015-01-01

    This paper proposes a semi-autonomous bilateral control architecture for unmanned aerial vehicles. During autonomous navigation, a human operator is allowed to assist the autonomous controller of the vehicle by actively changing its navigation parameters to assist it in critical situations, such as

  9. Control of autonomous robot using neural networks

    Science.gov (United States)

    Barton, Adam; Volna, Eva

    2017-07-01

    The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.

  10. Semantically Enriched Data Access Policies in eHealth.

    Science.gov (United States)

    Drozdowicz, Michał; Ganzha, Maria; Paprzycki, Marcin

    2016-11-01

    Internet of Things (IoT) requires novel solutions to facilitate autonomous, though controlled, resource access. Access policies have to facilitate interactions between heterogeneous entities (devices and humans). Here, we focus our attention on access control in eHealth. We propose an approach based on enriching policies, based on well-known and widely-used eXtensible Access Control Markup Language, with semantics. In the paper we describe an implementation of a Policy Information Point integrated with the HL7 Security and Privacy Ontology.

  11. School-based obesity policy, social capital, and gender differences in weight control behaviors.

    Science.gov (United States)

    Zhu, Ling; Thomas, Breanca

    2013-06-01

    We examined the associations among school-based obesity policies, social capital, and adolescents' self-reported weight control behaviors, focusing on how the collective roles of community and adopted policies affect gender groups differently. We estimated state-level ecologic models using 1-way random effects seemingly unrelated regressions derived from panel data for 43 states from 1991 to 2009, which we obtained from the Centers for Disease Control and Prevention's Youth Risk Behavior Surveillance System. We used multiplicative interaction terms to assess how social capital moderates the effects of school-based obesity policies. School-based obesity policies in active communities were mixed in improving weight control behaviors. They increased both healthy and unhealthy weight control behaviors among boys but did not increase healthy weight control behaviors among girls. Social capital is an important contextual factor that conditions policy effectiveness in large contexts. Heterogeneous behavioral responses are associated with both school-based obesity policies and social capital. Building social capital and developing policy programs to balance outcomes for both gender groups may be challenging in managing childhood obesity.

  12. A science-based executive for autonomous planetary vehicles

    Science.gov (United States)

    Peters, S.

    2001-01-01

    If requests for scientific observations, rather than specific plans, are uplinked to an autonomous execution system on the vehicle, it would be able to adjust its execution based upon actual performance. Such a science-based executive control system had been developed and demonstrated for the Rocky7 research rover.

  13. Integrated Guidance and Control Based Air-to-Air Autonomous Attack Occupation of UCAV

    Directory of Open Access Journals (Sweden)

    Chang Luo

    2016-01-01

    Full Text Available An approach of air-to-air autonomous attack occupation for Unmanned Combat Aerial Vehicles (UCAVs is proposed to improve attack precision and combat effectiveness. According to the shortage of UCAV in the task of attack occupation, kinematic and dynamic models of UCAV and missile loaded on it are formed. Then, attack zone and no-escape zone are calculated by pattern search algorithm, and the optimum attack position is indicated. To arrive at the optimum attack position accurately with restriction of gesture, a novel adaptive sliding mode control method is suggested to design the integrated guidance and control system of UCAV in the process of autonomous attack occupation. Key parameters of the control system are adaptively regulated, which further economize control energy at the same time. The simulation results show that compared with traditional methods our approach can guide the UCAV to the optimum attack position with stable gesture and economize nearly 25% control energy.

  14. A collision model for safety evaluation of autonomous intelligent cruise control.

    Science.gov (United States)

    Touran, A; Brackstone, M A; McDonald, M

    1999-09-01

    This paper describes a general framework for safety evaluation of autonomous intelligent cruise control in rear-end collisions. Using data and specifications from prototype devices, two collision models are developed. One model considers a train of four cars, one of which is equipped with autonomous intelligent cruise control. This model considers the car in front and two cars following the equipped car. In the second model, none of the cars is equipped with the device. Each model can predict the possibility of rear-end collision between cars under various conditions by calculating the remaining distance between cars after the front car brakes. Comparing the two collision models allows one to evaluate the effectiveness of autonomous intelligent cruise control in preventing collisions. The models are then subjected to Monte Carlo simulation to calculate the probability of collision. Based on crash probabilities, an expected value is calculated for the number of cars involved in any collision. It is found that given the model assumptions, while equipping a car with autonomous intelligent cruise control can significantly reduce the probability of the collision with the car ahead, it may adversely affect the situation for the following cars.

  15. A Multifunctional Smart Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  16. Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.

    Science.gov (United States)

    Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L

    2017-10-01

    The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.

  17. Cooperative Control of Distributed Autonomous Vehicles in Adversarial Environments

    Science.gov (United States)

    2006-08-14

    COOPERATIVE CONTROL OF DISTRIBUTED AUTONOMOUS VEHICLES IN ADVERSARIAL ENVIRONMENTS Grant #F49620–01–1–0361 Final Report Jeff Shamma Department of...CONTRACT NUMBER F49620-01-1-0361 5b. GRANT NUMBER 4. TITLE AND SUBTITLE COOPERATIVE CONTROL OF DISTRIBUTED AUTONOMOUS VEHICLES IN...single dominant language or a distribution of languages. A relation to multivehicle systems is understanding how highly autonomous vehicles on extended

  18. Alterations in cardiac autonomic control in spinal cord injury.

    Science.gov (United States)

    Biering-Sørensen, Fin; Biering-Sørensen, Tor; Liu, Nan; Malmqvist, Lasse; Wecht, Jill Maria; Krassioukov, Andrei

    2018-01-01

    A spinal cord injury (SCI) interferes with the autonomic nervous system (ANS). The effect on the cardiovascular system will depend on the extent of damage to the spinal/central component of ANS. The cardiac changes are caused by loss of supraspinal sympathetic control and relatively increased parasympathetic cardiac control. Decreases in sympathetic activity result in heart rate and the arterial blood pressure changes, and may cause arrhythmias, in particular bradycardia, with the risk of cardiac arrest in those with cervical or high thoracic injuries. The objective of this review is to give an update of the current knowledge related to the alterations in cardiac autonomic control following SCI. With this purpose the review includes the following subheadings: 2. Neuro-anatomical plasticity and cardiac control 2.1 Autonomic nervous system and the heart 2.2 Alteration in autonomic control of the heart following spinal cord injury 3. Spinal shock and neurogenic shock 3.1 Pathophysiology of spinal shock 3.2 Pathophysiology of neurogenic shock 4. Autonomic dysreflexia 4.1 Pathophysiology of autonomic dysreflexia 4.2 Diagnosis of autonomic dysreflexia 5. Heart rate/electrocardiography following spinal cord injury 5.1 Acute phase 5.2 Chronic phase 6. Heart rate variability 6.1 Time domain analysis 6.2 Frequency domain analysis 6.3 QT-variability index 6.4 Nonlinear (fractal) indexes 7. Echocardiography 7.1 Changes in cardiac structure following spinal cord injury 7.2 Changes in cardiac function following spinal cord injury 8. International spinal cord injury cardiovascular basic data set and international standards to document the remaining autonomic function in spinal cord injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles

    Science.gov (United States)

    2013-09-01

    Autonomous Vehicles Joseph DiVita, PhD Robert L. Morris Maria Olinda Rodas SSC Pacific Approved...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 09–2013 Final A Queueing Model for Supervisory Control of Unmanned Autonomous Vehicles Joseph...Mission Area: Command and Control, Queueing Model; Supervisory Control; Unmanned Autonomous Vehicles M. O. Rodas U U U U 38 (619)

  20. Autonomous Vehicle Systems Laboratory Research Capability Expansion Program

    Science.gov (United States)

    2017-12-03

    those of the author(s) and should not contrued as an official Department of the Army position, policy or decision , unless so designated by other...autonomous control, collaboration, and decision -making in unstructured, dynamic, and uncertain nonlinear environments for autonomous ground and air...demonstrate these techniques’ effectiveness using the equipment purchased by HBCU/MI funding in the areas of collaborative control, obstacle sense/avoid

  1. Tegotae-based decentralised control scheme for autonomous gait transition of snake-like robots.

    Science.gov (United States)

    Kano, Takeshi; Yoshizawa, Ryo; Ishiguro, Akio

    2017-08-04

    Snakes change their locomotion patterns in response to the environment. This ability is a motivation for developing snake-like robots with highly adaptive functionality. In this study, a decentralised control scheme of snake-like robots that exhibited autonomous gait transition (i.e. the transition between concertina locomotion in narrow aisles and scaffold-based locomotion on unstructured terrains) was developed. Additionally, the control scheme was validated via simulations. A key insight revealed is that these locomotion patterns were not preprogrammed but emerged by exploiting Tegotae, a concept that describes the extent to which a perceived reaction matches a generated action. Unlike local reflexive mechanisms proposed previously, the Tegotae-based feedback mechanism enabled the robot to 'selectively' exploit environments beneficial for propulsion, and generated reasonable locomotion patterns. It is expected that the results of this study can form the basis to design robots that can work under unpredictable and unstructured environments.

  2. Distributed formation control for autonomous robots

    NARCIS (Netherlands)

    Garcia de Marina Peinado, Hector Jesús

    2016-01-01

    This thesis addresses several theoretical and practical problems related to formation-control of autonomous robots. Formation-control aims to simultaneously accomplish the tasks of forming a desired shape by the robots and controlling their coordinated collective motion. This kind of robot

  3. Study of Model Predictive Control for Path-Following Autonomous Ground Vehicle Control under Crosswind Effect

    Directory of Open Access Journals (Sweden)

    Fitri Yakub

    2016-01-01

    Full Text Available We present a comparative study of model predictive control approaches of two-wheel steering, four-wheel steering, and a combination of two-wheel steering with direct yaw moment control manoeuvres for path-following control in autonomous car vehicle dynamics systems. Single-track mode, based on a linearized vehicle and tire model, is used. Based on a given trajectory, we drove the vehicle at low and high forward speeds and on low and high road friction surfaces for a double-lane change scenario in order to follow the desired trajectory as close as possible while rejecting the effects of wind gusts. We compared the controller based on both simple and complex bicycle models without and with the roll vehicle dynamics for different types of model predictive control manoeuvres. The simulation result showed that the model predictive control gave a better performance in terms of robustness for both forward speeds and road surface variation in autonomous path-following control. It also demonstrated that model predictive control is useful to maintain vehicle stability along the desired path and has an ability to eliminate the crosswind effect.

  4. Cooperative Control of Multiple Unmanned Autonomous Vehicles

    Science.gov (United States)

    2005-06-03

    I I Final Report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cooperative Control of Multiple Unmanned Autonomous Vehicles F49620-01-1-0337 6. AUTHOR(S... Autonomous Vehicles Final Report Kendall E. Nygard Department of Computer Science and Operations Research North Dakota State University Fargo, ND 58105-5164

  5. Structured control for autonomous robots

    International Nuclear Information System (INIS)

    Simmons, R.G.

    1994-01-01

    To operate in rich, dynamic environments, autonomous robots must be able to effectively utilize and coordinate their limited physical and occupational resources. As complexity increases, it becomes necessary to impose explicit constraints on the control of planning, perception, and action to ensure that unwanted interactions between behaviors do not occur. This paper advocates developing complex robot systems by layering reactive behaviors onto deliberative components. In this structured control approach, the deliberative components handle normal situations and the reactive behaviors, which are explicitly constrained as to when and how they are activated, handle exceptional situations. The Task Control Architecture (TCA) has been developed to support this approach. TCA provides an integrated set of control constructs useful for implementing deliberative and reactive behaviors. The control constructs facilitate modular and evolutionary system development: they are used to integrate and coordinate planning, perception, and execution, and to incrementally improve the efficiency and robustness of the robot systems. To date, TCA has been used in implementing a half-dozen mobile robot systems, including an autonomous six-legged rover and indoor mobile manipulator

  6. Containment control of networked autonomous underwater vehicles: A predictor-based neural DSC design.

    Science.gov (United States)

    Peng, Zhouhua; Wang, Dan; Wang, Wei; Liu, Lu

    2015-11-01

    This paper investigates the containment control problem of networked autonomous underwater vehicles in the presence of model uncertainty and unknown ocean disturbances. A predictor-based neural dynamic surface control design method is presented to develop the distributed adaptive containment controllers, under which the trajectories of follower vehicles nearly converge to the dynamic convex hull spanned by multiple reference trajectories over a directed network. Prediction errors, rather than tracking errors, are used to update the neural adaptation laws, which are independent of the tracking error dynamics, resulting in two time-scales to govern the entire system. The stability property of the closed-loop network is established via Lyapunov analysis, and transient property is quantified in terms of L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical neural dynamic surface control approach. Comparative studies are given to show the substantial improvements of the proposed new method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Nonlinear Feedforward Control for Wind Disturbance Rejection on Autonomous Helicopter

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; A. Danapalasingam, Kumeresan

    2010-01-01

    for the purpose. The model is inverted for the calculation of rotor collective and cyclic pitch angles given the wind disturbance. The control strategy is then applied on a small helicopter in a controlled wind environment and flight tests demonstrates the effectiveness and advantage of the feedforward controller.......This paper presents the design and verification of a model based nonlinear feedforward controller for wind disturbance rejection on autonomous helicopters. The feedforward control is based on a helicopter model that is derived using a number of carefully chosen simplifications to make it suitable...

  8. Decision support tool to evaluate alternative policies regulating wind integration into autonomous energy systems

    International Nuclear Information System (INIS)

    Zouros, N.; Contaxis, G.C.; Kabouris, J.

    2005-01-01

    Integration of wind power into autonomous electricity systems strongly depends on the specific technical characteristics of these systems; the regulations applied should take into account physical system constraints. Introduction of market rules makes the issue even more complicated since the interests of the market participants often conflict each other. In this paper, an integrated tool for the comparative assessment of alternative regulatory policies is presented along with a methodology for decision-making, based on alternative scenarios analysis. The social welfare concept is followed instead of the traditional Least Cost Planning

  9. Design and Implementation an Autonomous Humanoid Robot Based on Fuzzy Rule-Based Motion Controller

    Directory of Open Access Journals (Sweden)

    Mohsen Taheri

    2010-04-01

    Full Text Available Research on humanoid robotics in Mechatronics and Automation Laboratory, Electrical and Computer Engineering, Islamic Azad University Khorasgan branch (Isfahan of Iran was started at
    the beginning of this decade. Various research prototypes for humanoid robots have been designed and are going through evolution over these years. This paper describes the hardware and software design of the kid size humanoid robot systems of the PERSIA Team in 2009. The robot has 20 actuated degrees of freedom based on Hitec HSR898. In this paper we have tried to focus on areas such as mechanical structure, Image processing unit, robot controller, Robot AI and behavior
    learning. In 2009, our developments for the Kid size humanoid robot include: (1 the design and construction of our new humanoid robots (2 the design and construction of a new hardware and software controller to be used in our robots. The project is described in two main parts: Hardware and Software. The software is developed a robot application which consists walking controller, autonomous motion robot, self localization base on vision and Particle Filter, local AI, Trajectory Planning, Motion Controller and Network. The hardware consists of the mechanical structure and the driver circuit board. Each robot is able to walk, fast walk, pass, kick and dribble when it catches
    the ball. These humanoids have been successfully participating in various robotic soccer competitions. This project is still in progress and some new interesting methods are described in the current report.

  10. Environmentally Friendly Coating Technology for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael; hide

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.

  11. IMPACTS OF GROUP-BASED SIGNAL CONTROL POLICY ON DRIVER BEHAVIOR AND INTERSECTION SAFETY

    Directory of Open Access Journals (Sweden)

    Keshuang TANG

    2008-01-01

    Full Text Available Unlike the typical stage-based policy commonly applied in Japan, the group-based control (often called movement-based in the traffic control industry in Japan refers to such a control pattern that the controller is capable of separately allocating time to each signal group instead of stage based on traffic demand. In order to investigate its applicability at signalized intersections in Japan, an intersection located in Yokkaichi City of Mie Prefecture was selected as an experimental application site by the Japan Universal Traffic Management Society (UTMS. Based on the data collected at the intersection before and after implementing the group-based control policy respectively, this study evaluated the impacts of such a policy on driver behavior and intersection safety. To specify those impacts, a few models utilizing cycle-based data were first developed to interpret the occurrence probability and rate of red-light-running (RLR. Furthermore, analyses were performed on the yellow-entry time (Ye of the last cleared vehicle and post encroachment time (PET during the phase switching. Conclusions supported that the group-based control policy, along with certain other factors, directly or indirectly influenced the RLR behavior of through and right-turn traffics. Meanwhile, it has potential safety benefits as well, indicated by the declined Ye and increased PET values.

  12. Research methods of simulate digital compensators and autonomous control systems

    Directory of Open Access Journals (Sweden)

    V. S. Kudryashov

    2016-01-01

    Full Text Available The peculiarity of the present stage of development of the production is the need to control and regulate a large number of process parameters, the mutual influence on each other that when using single-circuit systems significantly reduces the quality of the transition process, resulting in significant costs of raw materials and energy, reduce the quality of the products. Using a stand-alone digital control system eliminates the correlation of technological parameters, to give the system the desired dynamic and static properties, improve the quality of regulation. However, the complexity of the configuration and implementation of procedures (modeling compensators autonomous systems of this type, associated with the need to perform a significant amount of complex analytic transformation significantly limit the scope of their application. In this regard, the approach based on the decompo sition proposed methods of calculation and simulation (realization, consisting in submitting elements autonomous control part digital control system in a series parallel connection. The above theoretical study carried out in a general way for any dimension systems. The results of computational experiments, obtained during the simulation of the four autonomous control systems, comparative analysis and conclusions on the effectiveness of the use of each of the methods. The results obtained can be used in the development of multi-dimensional process control systems.

  13. Autonomous Control Strategy of DC Microgrid for Islanding Mode Using Power Line Communication

    Directory of Open Access Journals (Sweden)

    Dong-Keun Jeong

    2018-04-01

    Full Text Available This paper proposes a DC-bus signaling (DBS method for autonomous power management in a DC microgrid, used to improve its reliability. Centralized power management systems require communication between the power sources and loads. However, the DBS method operates based on the common DC-bus voltage and does not require communication. Based on the DC-bus voltage band, the DC-bus voltage can be used to inform the status of the DC-bus in various scenarios. The DC microgrid operates independently to maintain the system stably in the DC-bus voltage band. The DC microgrid can be divided into a grid-connected mode and an islanding mode. This paper proposes a control strategy based on power management of various independent components in islanding mode. In addition, the autonomous control method for switching the converter’s operation between grid-connected mode and islanding mode is proposed. A DC microgrid test bed consisting of a grid-connected AC/DC converter, a bidirectional DC/DC converter, a renewable energy simulator, DC home appliances and a DC-bus protector is used to test the proposed control strategy. The proposed autonomous control strategy is experimentally verified using the DC microgrid test bed.

  14. Market-based autonomous resource and application management in private clouds

    KAUST Repository

    Costache, Stefania; Kortas, Samuel; Morin, Christine; Parlavantzas, Nikos

    2016-01-01

    High Performance Computing (HPC) clouds need to be efficiently shared between selfish tenants having applications with different resource requirements and Service Level Objectives (SLOs). The main difficulty relies on providing concurrent resource access to such tenants while maximizing the resource utilization. To overcome this challenge, we propose Merkat, a market-based SLO-driven cloud platform. Merkat relies on a market-based model specifically designed for on-demand fine-grain resource allocation to maximize resource utilization and it uses a combination of currency distribution and dynamic resource pricing to ensure proper resource distribution among tenants. To meet the tenant’s SLO, Merkat uses autonomous controllers, which apply adaptation policies that: (i) dynamically tune the application’s provisioned CPU and memory per virtual machine in contention periods, or (ii) dynamically change the number of virtual machines. Our evaluation with simulation and on the Grid’5000 testbed shows that Merkat provides flexible support for different application types and SLOs and good tenant satisfaction compared to existing centralized systems, while the infrastructure resource utilization is improved.

  15. Market-based autonomous resource and application management in private clouds

    KAUST Repository

    Costache, Stefania

    2016-10-12

    High Performance Computing (HPC) clouds need to be efficiently shared between selfish tenants having applications with different resource requirements and Service Level Objectives (SLOs). The main difficulty relies on providing concurrent resource access to such tenants while maximizing the resource utilization. To overcome this challenge, we propose Merkat, a market-based SLO-driven cloud platform. Merkat relies on a market-based model specifically designed for on-demand fine-grain resource allocation to maximize resource utilization and it uses a combination of currency distribution and dynamic resource pricing to ensure proper resource distribution among tenants. To meet the tenant’s SLO, Merkat uses autonomous controllers, which apply adaptation policies that: (i) dynamically tune the application’s provisioned CPU and memory per virtual machine in contention periods, or (ii) dynamically change the number of virtual machines. Our evaluation with simulation and on the Grid’5000 testbed shows that Merkat provides flexible support for different application types and SLOs and good tenant satisfaction compared to existing centralized systems, while the infrastructure resource utilization is improved.

  16. Control algorithms for autonomous robot navigation

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1985-01-01

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced

  17. Control of an Autonomous Vehicle for Registration of Weed and Crop in Precision Agriculture

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Andersen, Palle; Pedersen, Tom Søndergaard

    2002-01-01

    The paper describes the development of an autonomous electrical vehicle to be used for weed mapping in precision agriculture with special focus on the conceptual framework of the control system. The lowest layer of the control system is the propulsion and steering control, the second layer...... coordinates the movements of the wheel units, the third layer is path execution and perception and the upper layer performs planning and reasoning. The control system is implemented on an autonomous vehicle. The vehicle has been tested for path following and position accuracy. Based on the results a new...... vehicle is under construction....

  18. Ground Operations Autonomous Control and Integrated Health Management

    Science.gov (United States)

    Daniels, James

    2014-01-01

    The Ground Operations Autonomous Control and Integrated Health Management plays a key role for future ground operations at NASA. The software that is integrated into this system is called G2 2011 Gensym. The purpose of this report is to describe the Ground Operations Autonomous Control and Integrated Health Management with the use of the G2 Gensym software and the G2 NASA toolkit for Integrated System Health Management (ISHM) which is a Computer Software Configuration Item (CSCI). The decision rationale for the use of the G2 platform is to develop a modular capability for ISHM and AC. Toolkit modules include knowledge bases that are generic and can be applied in any application domain module. That way, there's a maximization of reusability, maintainability, and systematic evolution, portability, and scalability. Engine modules are generic, while application modules represent the domain model of a specific application. Furthermore, the NASA toolkit, developed since 2006 (a set of modules), makes it possible to create application domain models quickly, using pre-defined objects that include sensors and components libraries for typical fluid, electrical, and mechanical systems.

  19. SIMULASI INTERKONEKSI ANTARA AUTONOMOUS SYSTEM (AS MENGGUNAKAN BORDER GATEWAY PROTOCOL (BGP

    Directory of Open Access Journals (Sweden)

    Hari Antoni Musril

    2017-09-01

    Full Text Available An autonomous system (AS is the collection of networks having the same set of routing policies. Each AS has administrative control to its own inter-domain routing policy. Computer networks consisting of a bunch of AS's with different routing will not be able to interconnecttion one another. This is causes communication in the network to be inhibited. For that we need a protocol that can connect each different AS. Border Gateway Protocol (BGP is an inter-domain routing protocol i.e. between different AS  that is used to exchange routing information between them. In a typical inter-network (and in the Internet each autonomous system designates one or more routers that run BGP software. BGP routers in each AS are linked to those in one or more other AS. The ability to exchange table routing information between Autonomous System (AS is one of the advantages BGP. BGP implements routing policies based a set of attributes accompanying each route used to pick the “shortest” path across multiple ASs, along with one or more routing policies. BGP uses an algorithm which cannot be classified as a pure "Distance Vector", or pure "Link State". It is a path vector routing protocol as it defines a route as a collection of a number of AS that is passes through from source AS to destination AS. This paper discusses the implementation of the BGP routing protocol in the network that have different AS in order to interconnect. Its application using Packet Tracer 7.0 software for prototyping and simulating network. So that later can be applied to the actual network. Based on experiments that have been carried out, the BGP routing protocol can connect two routers that have different autonomous system.

  20. Low-cost autonomous orbit control about Mars: Initial simulation results

    Science.gov (United States)

    Dawson, S. D.; Early, L. W.; Potterveld, C. W.; Königsmann, H. J.

    1999-11-01

    Interest in studying the possibility of extraterrestrial life has led to the re-emergence of the Red Planet as a major target of planetary exploration. Currently proposed missions in the post-2000 period are routinely calling for rendezvous with ascent craft, long-term orbiting of, and sample-return from Mars. Such missions would benefit greatly from autonomous orbit control as a means to reduce operations costs and enable contact with Mars ground stations out of view of the Earth. This paper present results from initial simulations of autonomously controlled orbits around Mars, and points out possible uses of the technology and areas of routine Mars operations where such cost-conscious and robust autonomy could prove most effective. These simulations have validated the approach and control philosophies used in the development of this autonomous orbit controller. Future work will refine the controller, accounting for systematic and random errors in the navigation of the spacecraft from the sensor suite, and will produce prototype flight code for inclusion on future missions. A modified version of Microcosm's commercially available High Precision Orbit Propagator (HPOP) was used in the preparation of these results due to its high accuracy and speed of operation. Control laws were developed to allow an autonomously controlled spacecraft to continuously control to a pre-defined orbit about Mars with near-optimal propellant usage. The control laws were implemented as an adjunct to HPOP. The GSFC-produced 50 × 50 field model of the Martian gravitational potential was used in all simulations. The Martian atmospheric drag was modeled using an exponentially decaying atmosphere based on data from the Mars-GRAM NASA Ames model. It is hoped that the simple atmosphere model that was implemented can be significantly improved in the future so as to approach the fidelity of the Mars-GRAM model in its predictions of atmospheric density at orbital altitudes. Such additional work

  1. Autonomous and controlled motivational regulations for multiple health-related behaviors: between- and within-participants analyses

    Science.gov (United States)

    Hagger, M.S.; Hardcastle, S.J.; Chater, A.; Mallett, C.; Pal, S.; Chatzisarantis, N.L.D.

    2014-01-01

    Self-determination theory has been applied to the prediction of a number of health-related behaviors with self-determined or autonomous forms of motivation generally more effective in predicting health behavior than non-self-determined or controlled forms. Research has been confined to examining the motivational predictors in single health behaviors rather than comparing effects across multiple behaviors. The present study addressed this gap in the literature by testing the relative contribution of autonomous and controlling motivation to the prediction of a large number of health-related behaviors, and examining individual differences in self-determined motivation as a moderator of the effects of autonomous and controlling motivation on health behavior. Participants were undergraduate students (N = 140) who completed measures of autonomous and controlled motivational regulations and behavioral intention for 20 health-related behaviors at an initial occasion with follow-up behavioral measures taken four weeks later. Path analysis was used to test a process model for each behavior in which motivational regulations predicted behavior mediated by intentions. Some minor idiosyncratic findings aside, between-participants analyses revealed significant effects for autonomous motivational regulations on intentions and behavior across the 20 behaviors. Effects for controlled motivation on intentions and behavior were relatively modest by comparison. Intentions mediated the effect of autonomous motivation on behavior. Within-participants analyses were used to segregate the sample into individuals who based their intentions on autonomous motivation (autonomy-oriented) and controlled motivation (control-oriented). Replicating the between-participants path analyses for the process model in the autonomy- and control-oriented samples did not alter the relative effects of the motivational orientations on intention and behavior. Results provide evidence for consistent effects

  2. PointCom: semi-autonomous UGV control with intuitive interface

    Science.gov (United States)

    Rohde, Mitchell M.; Perlin, Victor E.; Iagnemma, Karl D.; Lupa, Robert M.; Rohde, Steven M.; Overholt, James; Fiorani, Graham

    2008-04-01

    Unmanned ground vehicles (UGVs) will play an important role in the nation's next-generation ground force. Advances in sensing, control, and computing have enabled a new generation of technologies that bridge the gap between manual UGV teleoperation and full autonomy. In this paper, we present current research on a unique command and control system for UGVs named PointCom (Point-and-Go Command). PointCom is a semi-autonomous command system for one or multiple UGVs. The system, when complete, will be easy to operate and will enable significant reduction in operator workload by utilizing an intuitive image-based control framework for UGV navigation and allowing a single operator to command multiple UGVs. The project leverages new image processing algorithms for monocular visual servoing and odometry to yield a unique, high-performance fused navigation system. Human Computer Interface (HCI) techniques from the entertainment software industry are being used to develop video-game style interfaces that require little training and build upon the navigation capabilities. By combining an advanced navigation system with an intuitive interface, a semi-autonomous control and navigation system is being created that is robust, user friendly, and less burdensome than many current generation systems. mand).

  3. Autonomous Control Capabilities for Space Reactor Power Systems

    International Nuclear Information System (INIS)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-01-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission

  4. Autonomous Landing on Moving Platforms

    KAUST Repository

    Mendoza Chavez, Gilberto

    2016-08-01

    This thesis investigates autonomous landing of a micro air vehicle (MAV) on a nonstationary ground platform. Unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs) are becoming every day more ubiquitous. Nonetheless, many applications still require specialized human pilots or supervisors. Current research is focusing on augmenting the scope of tasks that these vehicles are able to accomplish autonomously. Precise autonomous landing on moving platforms is essential for self-deployment and recovery of MAVs, but it remains a challenging task for both autonomous and piloted vehicles. Model Predictive Control (MPC) is a widely used and effective scheme to control constrained systems. One of its variants, output-feedback tube-based MPC, ensures robust stability for systems with bounded disturbances under system state reconstruction. This thesis proposes a MAV control strategy based on this variant of MPC to perform rapid and precise autonomous landing on moving targets whose nominal (uncommitted) trajectory and velocity are slowly varying. The proposed approach is demonstrated on an experimental setup.

  5. Control of Oscillating Foil for Propulsion of Biorobotic Autonomous Underwater Vehicle (AUV

    Directory of Open Access Journals (Sweden)

    S. N. Singh

    2005-01-01

    Full Text Available The paper treats the question of control of a laterally and rotationally oscillating hydrofoil for the propulsion of biologically inspired robotic (biorobotic autonomous underwater vehicles (BAUVs. Sinusoidal oscillations of foils produce maneuvering and propulsive forces. The design is based on the internal model principle. Two springs are used to transmit forces from the actuators to the foil. Oscillating fins produce periodic forces, which can be used for fish-like propulsion and control of autonomous underwater vehicles (AUVs. The equations of motion of the foil include hydrodynamic lift and moment based on linear, unsteady, aerodynamic theory. A control law is derived for the lateral and rotational sinusoidal oscillation of the foil. In the closed-loop system, the lateral displacement and the rotational angle of the foil asymptotically follow sinusoidal trajectories of distinct frequencies and amplitudes independently. Simulation results are presented to show the trajectory tracking performance of the foil for different freestream velocities and sinusoidal command trajectories.

  6. Comparison of three control methods for an autonomous vehicle

    Science.gov (United States)

    Deshpande, Anup; Mathur, Kovid; Hall, Ernest

    2010-01-01

    The desirability and challenge of developing a completely autonomous vehicle and the rising need for more efficient use of energy by automobiles motivate this research- a study for an optimum solution to computer control of energy efficient vehicles. The purpose of this paper is to compare three control methods - mechanical, hydraulic and electric that have been used to convert an experimental all terrain vehicle to drive by wire which would eventually act as a test bed for conducting research on various technologies for autonomous operation. Computer control of basic operations in a vehicle namely steering, braking and speed control have been implemented and will be described in this paper. The output from a 3 axis motion controller is used for this purpose. The motion controller is interfaced with a software program using WSDK (Windows Servo Design Kit) as an intermediate tuning layer for tuning and parameter settings in autonomous operation. The software program is developed in C++. The voltage signal sent to the motion controller can be varied through the control program for desired results in controlling the steering motor, activating the hydraulic brakes and varying the vehicle's speed. The vehicle has been tested for its basic functionality which includes testing of street legal operations and also a 1000 mile test while running in a hybrid mode. The vehicle has also been tested for control when it is interfaced with devices such as a keyboard, joystick and sensors under full autonomous operation. The vehicle is currently being tested in various safety studies and is being used as a test bed for experiments in control courses and research studies. The significance of this research is in providing a greater understanding of conventional driving controls and the possibility of improving automobile safety by removing human error in control of a motor vehicle.

  7. CamOn: A Real-Time Autonomous Camera Control System

    DEFF Research Database (Denmark)

    Burelli, Paolo; Jhala, Arnav Harish

    2009-01-01

    This demonstration presents CamOn, an autonomous cam- era control system for real-time 3D games. CamOn employs multiple Artificial Potential Fields (APFs), a robot motion planning technique, to control both the location and orienta- tion of the camera. Scene geometry from the 3D environment...... contributes to the potential field that is used to determine po- sition and movement of the camera. Composition constraints for the camera are modelled as potential fields for controlling the view target of the camera. CamOn combines the compositional benefits of constraint- based camera systems, and improves...

  8. Combining Correlation-Based and Reward-Based Learning in Neural Control for Policy Improvement

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Kolodziejski, Christoph; Wörgötter, Florentin

    2013-01-01

    Classical conditioning (conventionally modeled as correlation-based learning) and operant conditioning (conventionally modeled as reinforcement learning or reward-based learning) have been found in biological systems. Evidence shows that these two mechanisms strongly involve learning about...... associations. Based on these biological findings, we propose a new learning model to achieve successful control policies for artificial systems. This model combines correlation-based learning using input correlation learning (ICO learning) and reward-based learning using continuous actor–critic reinforcement...... learning (RL), thereby working as a dual learner system. The model performance is evaluated by simulations of a cart-pole system as a dynamic motion control problem and a mobile robot system as a goal-directed behavior control problem. Results show that the model can strongly improve pole balancing control...

  9. Cybersecurity for aerospace autonomous systems

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  10. Escape and evade control policies for ensuring the physical security of nonholonomic, ground-based, unattended mobile sensor nodes

    Science.gov (United States)

    Mascarenas, David; Stull, Christopher; Farrar, Charles

    2011-06-01

    In order to realize the wide-scale deployment of high-endurance, unattended mobile sensing technologies, it is vital to ensure the self-preservation of the sensing assets. Deployed mobile sensor nodes face a variety of physical security threats including theft, vandalism and physical damage. Unattended mobile sensor nodes must be able to respond to these threats with control policies that facilitate escape and evasion to a low-risk state. In this work the Precision Immobilization Technique (PIT) problem has been considered. The PIT maneuver is a technique that a pursuing, car-like vehicle can use to force a fleeing vehicle to abruptly turn ninety degrees to the direction of travel. The abrupt change in direction generally causes the fleeing driver to lose control and stop. The PIT maneuver was originally developed by law enforcement to end vehicular pursuits in a manner that minimizes damage to the persons and property involved. It is easy to imagine that unattended autonomous convoys could be targets of this type of action by adversarial agents. This effort focused on developing control policies unattended mobile sensor nodes could employ to escape, evade and recover from PIT-maneuver-like attacks. The development of these control policies involved both simulation as well as small-scale experimental testing. The goal of this work is to be a step toward ensuring the physical security of unattended sensor node assets.

  11. H∞ control for path tracking of autonomous underwater vehicle motion

    Directory of Open Access Journals (Sweden)

    Lin-Lin Wang

    2015-05-01

    Full Text Available In order to simplify the design of path tracking controller and solve the problem relating to nonlinear dynamic model of autonomous underwater vehicle motion planning, feedback linearization method is first adopted to transform the nonlinear dynamic model into an equivalent pseudo-linear dynamic model in horizontal coordinates. Then considering wave disturbance effect, mixed-sensitivity method of H∞ robust control is applied to design state-feedback controller for this equivalent dynamic model. Finally, control law of pseudo-linear dynamic model is transformed into state (surge velocity and yaw angular rate tracking control law of nonlinear dynamic model through inverse coordinate transformation. Simulation indicates that autonomous underwater vehicle path tracking is successfully implemented with this proposed method, and the influence of parameter variation in autonomous underwater vehicle dynamic model on its tracking performance is reduced by H∞ controller. All the results show that the method proposed in this article is effective and feasible.

  12. Autonomous aerial vehicles : guidance, control, signal and image processing platform

    International Nuclear Information System (INIS)

    Al-Jarrah, M.; Adiansyah, S.; Marji, Z. M.; Chowdhury, M. S.

    2011-01-01

    The use of unmanned systems is gaining momentum in civil applications after successful use by the armed forces around the globe. Autonomous aerial vehicles are important for providing assistance in monitoring highways, power grid lines, borders, and surveillance of critical infrastructures. It is envisioned that cargo shipping will be completely handled by UAVs by the 2025. Civil use of unmanned autonomous systems brings serious challenges. The need for cost effectiveness, reliability, operation simplicity, safety, and cooperation with human and with other agents are among these challenges. Aerial vehicles operating in the civilian aerospace is the ultimate goal which requires these systems to achieve the reliability of manned aircraft while maintaining their cost effectiveness. In this presentation the development of an autonomous fixed and rotary wing aerial vehicle will be discussed. The architecture of the system from the mission requirements to low level auto pilot control laws will be discussed. Trajectory tracking and path following guidance and control algorithms commonly used and their implementation using of the shelf low cost components will be presented. Autonomous takeo? landing is a key feature that was implemented onboard the vehicle to complete its degree of autonomy. This is implemented based on accurate air-data system designed and fused with sonar measurements, INS/GPS measurements, and vector field method guidance laws. The outcomes of the proposed research is that the AUS-UAV platform named MAZARI is capable of autonomous takeoff and landing based on a pre scheduled flight path using way point navigation and sensor fusion of the inertial navigation system (INS) and global positioning system (GPS). Several technologies need to be mastered when developing a UAV. The navigation task and the need to fuse sensory information to estimate the location of the vehicle is critical to successful autonomous vehicle. Currently extended Kalman filtering is

  13. Autonomous health management for PMSM rail vehicles through demagnetization monitoring and prognosis control.

    Science.gov (United States)

    Niu, Gang; Jiang, Junjie; Youn, Byeng D; Pecht, Michael

    2018-01-01

    Autonomous vehicles are playing an increasingly importance in support of a wide variety of critical events. This paper presents a novel autonomous health management scheme on rail vehicles driven by permanent magnet synchronous motors (PMSMs). Firstly, the PMSMs are modeled based on first principle to deduce the initial profile of pneumatic braking (p-braking) force, then which is utilized for real-time demagnetization monitoring and degradation prognosis through similarity-based theory and generate prognosis-enhanced p-braking force strategy for final optimal control. A case study is conducted to demonstrate the feasibility and benefit of using the real-time prognostics and health management (PHM) information in vehicle 'drive-brake' control automatically. The results show that accurate demagnetization monitoring, degradation prognosis, and real-time capability for control optimization can be obtained, which can effectively relieve brake shoe wear. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Modelling of a PMSG Wind Turbine with Autonomous Control

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2014-01-01

    Full Text Available The aim of this research is to model an autonomous control wind turbine driven permanent magnetic synchronous generator (PMSG which feeds alternating current (AC power to the utility grid. Furthermore, this research also demonstrates the effects and the efficiency of PMSG wind turbine which is integrated by autonomous controllers. In order for well autonomous control, two voltage source inverters are used to control wind turbine connecting with the grid. The generator-side inverter is used to adjust the synchronous generator as well as separating the generator from the grid when necessary. The grid-side inverter controls the power flow between the direct current (DC bus and the AC side. Both of them are oriented control by space vector pulse width modulation (PWM with back-to-back frequency inverter. Moreover, the proportional-integral (PI controller is enhanced to control both of the inverters and the pitch angle of the wind turbine. Maximum power point tracking (MPPT is integrated in generator-side inverter to track the maximum power, when wind speed changes. The simulation results in Matlab Simulink 2012b showing the model have good dynamic and static performance. The maximum power can be tracked and the generator wind turbine can be operated with high efficiency.

  15. Automatic tracking of laparoscopic instruments for autonomous control of a cameraman robot.

    Science.gov (United States)

    Khoiy, Keyvan Amini; Mirbagheri, Alireza; Farahmand, Farzam

    2016-01-01

    An automated instrument tracking procedure was designed and developed for autonomous control of a cameraman robot during laparoscopic surgery. The procedure was based on an innovative marker-free segmentation algorithm for detecting the tip of the surgical instruments in laparoscopic images. A compound measure of Saturation and Value components of HSV color space was incorporated that was enhanced further using the Hue component and some essential characteristics of the instrument segment, e.g., crossing the image boundaries. The procedure was then integrated into the controlling system of the RoboLens cameraman robot, within a triple-thread parallel processing scheme, such that the tip is always kept at the center of the image. Assessment of the performance of the system on prerecorded real surgery movies revealed an accuracy rate of 97% for high quality images and about 80% for those suffering from poor lighting and/or blood, water and smoke noises. A reasonably satisfying performance was also observed when employing the system for autonomous control of the robot in a laparoscopic surgery phantom, with a mean time delay of 200ms. It was concluded that with further developments, the proposed procedure can provide a practical solution for autonomous control of cameraman robots during laparoscopic surgery operations.

  16. Market-based autonomous resource and application management in the cloud

    International Nuclear Information System (INIS)

    Costache, Stefania Victoria

    2013-01-01

    Organizations owning HPC infrastructures are facing difficulties in managing their resources. These difficulties come from the need to provide concurrent resource access to different application types while considering that users might have different performance objectives for their applications. Cloud computing brings more flexibility and better resource control, promising to improve the user's satisfaction in terms of perceived Quality of Service. Nevertheless, current cloud solutions provide limited support for users to express or use various resource management policies and they don't provide any support for application performance objectives. In this thesis, we present an approach that addresses this challenge in an unique way. Our approach provides a fully decentralized resource control by allocating resources through a proportional-share market, while applications run in autonomous virtual environments capable of scaling the application demand according to user performance objectives. The combination of currency distribution and dynamic resource pricing ensures fair resource utilization. We evaluated our approach in simulation and on the Grid'5000 test bed. Our results show that our approach can enable the co-habitation of different resource usage policies on the infrastructure, improving resource utilisation. (author)

  17. External force/velocity control for an autonomous rehabilitation robot

    Science.gov (United States)

    Saekow, Peerayuth; Neranon, Paramin; Smithmaitrie, Pruittikorn

    2018-01-01

    Stroke is a primary cause of death and the leading cause of permanent disability in adults. There are many stroke survivors, who live with a variety of levels of disability and always need rehabilitation activities on daily basis. Several studies have reported that usage of rehabilitation robotic devices shows the better improvement outcomes in upper-limb stroke patients than the conventional therapy-nurses or therapists actively help patients with exercise-based rehabilitation. This research focuses on the development of an autonomous robotic trainer designed to guide a stroke patient through an upper-limb rehabilitation task. The robotic device was designed and developed to automate the reaching exercise as mentioned. The designed robotic system is made up of a four-wheel omni-directional mobile robot, an ATI Gamma multi-axis force/torque sensor used to measure contact force and a microcontroller real-time operating system. Proportional plus Integral control was adapted to control the overall performance and stability of the autonomous assistive robot. External force control was successfully implemented to establish the behavioral control strategy for the robot force and velocity control scheme. In summary, the experimental results indicated satisfactorily stable performance of the robot force and velocity control can be considered acceptable. The gain tuning for proportional integral (PI) velocity control algorithms was suitably estimated using the Ziegler-Nichols method in which the optimized proportional and integral gains are 0.45 and 0.11, respectively. Additionally, the PI external force control gains were experimentally tuned using the trial and error method based on a set of experiments which allow a human participant moves the robot along the constrained circular path whilst attempting to minimize the radial force. The performance was analyzed based on the root mean square error (E_RMS) of the radial forces, in which the lower the variation in radial

  18. Toward Effective Water Pipe Tobacco Control Policy in the United States: Synthesis of Federal, State, and Local Policy Texts.

    Science.gov (United States)

    Colditz, Jason B; Ton, Jessica N; James, A Everette; Primack, Brian A

    2017-07-01

    Water pipe tobacco smoking (WTS) is growing in popularity among U.S. young adults and is associated with health risks similar to those of cigarette smoking. The purpose of this study is to examine existing tobacco control policies (TCPs) in order to investigate how they engage WTS. A systematic synthesis of content and legal interactions among federal, state, and local TCP documents. Pennsylvania, which represents a politically and demographically diverse microcosm of the United States. No human subjects. Federal and state TCPs were retrieved via public legal repositories. Local policy searches were conducted via county/municipal Web sites, inclusive of 13 localities that had autonomous health departments or existing TCPs based on a National Cancer Institute report. Full-text TCPs were double coded within a grounded theory framework for health policy analysis. Emergent codes were used to compare and contrast policy texts and to examine legal interactions among TCPs. Examination of policy categories including youth access, use restrictions, and taxation revealed WTS as largely omitted from current TCPs. WTS was sometimes addressed as an "other" tobacco product under older TCPs, though ambiguities in language led to questionable enforceability. State preemptions have rolled back or prevented well-tailored reforms at the local level. Federal preemptions have likewise constrained state TCPs. Outdated, preempted, and unclear policies limit the extent to which TCPs engage WTS. Health advocates might target these aspects of TCP reform.

  19. A REMUS based crate controller for the autonomous processing of multichannel data streams

    International Nuclear Information System (INIS)

    Cittolin, S.; Loefstedt, B.

    1981-01-01

    This paper describes a device designed to perform the autonomous acquisition of considerable quantities of raw data, process them and present results in an easily digestible format for subsequent analysis. It has been primarily created for read-out of complex three dimensional drift chambers, but is of general interest. The unit is based on a dual processor system consisting of a Signetics 8 x 300 and a Motorola 68 B 00. The 8 x 300 section operates as a fast dedicated Data Processor and flow controller that reads the input modules, processes the data and constructs the output blocklets. The 68 B 00 supervises the activity of the 8 x 300 and is responsible for the holding and loading of appropriate routines. It also obtains samples of the final data for statistical purposes and executes periodic calibration and diagnostic functions. (orig.)

  20. A REMUS based crate controller for the autonomous processing of multichannel data streams

    CERN Document Server

    Cittolin, S

    1981-01-01

    This paper describes a device designed to perform the autonomous acquisition of considerable quantities of raw data, process them and present results in an easily digestible format for subsequent analysis. It has been primarily created for read-out of complex three dimensional drift chambers, but is of general interest. The unit is based on a dual processor system consisting of a Signetics 8X300 and a Motorola 68B00. The 8X300 section operates as a fast dedicated Data Processor and flow controller that reads the input modules, processes the data and constructs the output blocklets. The 68B00 supervises the activity of the 8X300 and is responsible for the holding and loading of appropriate routines. It also obtains samples of the final data for statistical purposes and executes periodic calibration and diagnostic functions.

  1. A REMUS based crate controller for the autonomous processing of multichannel data streams

    CERN Document Server

    Cittolin, Sergio

    1981-01-01

    Describes a device designed to perform the autonomous acquisition of considerable quantities of raw data, process them and present results in an easily digestible format for subsequent analysis. It has been primarily created for read-out of complex three dimensional drift chambers, but is of general interest. The unit is based on a dual processor system consisting of a Signetics 8X300 and a Motorola 68B00. The 8X300 section operates as a fast dedicated data processor and flow controller that reads the input modules processes the data and constructs the output blocklets. The 68B00 supervises the activity of the 8X300 and is responsible for the holding and loading of appropriate routines. It also obtains samples of the final data for statistical purposes and executes periodic calibration and diagnostic functions. (8 refs).

  2. Multi-UAVs Formation Autonomous Control Method Based on RQPSO-FSM-DMPC

    Directory of Open Access Journals (Sweden)

    Shao-lei Zhou

    2016-01-01

    Full Text Available For various threats in the enemy defense area, in order to achieve covert penetration and implement effective combat against enemy, the unmanned aerial vehicles formation needs to be reconfigured in the process of penetration; the mutual collision avoidance problems and communication constraint problems among the formation also need to be considered. By establishing the virtual-leader formation model, this paper puts forward distributed model predictive control and finite state machine formation manager. Combined with distributed cooperative strategy establishing the formation reconfiguration cost function, this paper proposes that adopting the revised quantum-behaved particle swarm algorithm solves the cost function, and it is compared with the result which is solved by particle swarm algorithm. Simulation result shows that this algorithm can control multiple UAVs formation autonomous reconfiguration effectively and achieve covert penetration safely.

  3. Autonomous Cryogenic Load Operations: Knowledge-Based Autonomous Test Engineer

    Science.gov (United States)

    Schrading, J. Nicolas

    2013-01-01

    The Knowledge-Based Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20 years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in the system. As part of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display of the entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledge base, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  4. Cooperative Control for Multiple Autonomous Vehicles Using Descriptor Functions

    Directory of Open Access Journals (Sweden)

    Marta Niccolini

    2014-01-01

    Full Text Available The paper presents a novel methodology for the control management of a swarm of autonomous vehicles. The vehicles, or agents, may have different skills, and be employed for different missions. The methodology is based on the definition of descriptor functions that model the capabilities of the single agent and each task or mission. The swarm motion is controlled by minimizing a suitable norm of the error between agents’ descriptor functions and other descriptor functions which models the entire mission. The validity of the proposed technique is tested via numerical simulation, using different task assignment scenarios.

  5. Autonomous Operations System: Development and Application

    Science.gov (United States)

    Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.

    2016-01-01

    Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.

  6. Autonomic and Apoptotic, Aeronautical and Aerospace Systems, and Controlling Scientific Data Generated Therefrom

    Science.gov (United States)

    Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)

    2015-01-01

    A self-managing system that uses autonomy and autonomicity is provided with the self-* property of autopoiesis (self-creation). In the event of an agent in the system self-destructing, autopoiesis auto-generates a replacement. A self-esteem reward scheme is also provided and can be used for autonomic agents, based on their performance and trust. Art agent with greater self-esteem may clone at a greater rate compared to the rate of an agent with lower self-esteem. A self-managing system is provided for a high volume of distributed autonomic/self-managing mobile agents, and autonomic adhesion is used to attract similar agents together or to repel dissimilar agents from an event horizon. An apoptotic system is also provided that accords an "expiry date" to data and digital objects, for example, that are available on the internet, which finds usefulness not only in general but also for controlling the loaning and use of space scientific data.

  7. Analysis and optimization of the battery energy storage systems for frequency control in autonomous microgrids, by means of hardware-in-the-loop simulations

    DEFF Research Database (Denmark)

    Serban, I.; Teodorescu, Remus; Marinescu, C.

    2012-01-01

    . The focus is on autonomous MGs that dynamically should perform similarly to the conventional power systems. During MG autonomous operation, the generators should accomplish the frequency control process, by means of their automatic generation control. However, RES-based generators have poor controllability...

  8. Autonomic symptoms in idiopathic REM behavior disorder: a multicentre case-control study.

    Science.gov (United States)

    Ferini-Strambi, Luigi; Oertel, Wolfgang; Dauvilliers, Yves; Postuma, Ronald B; Marelli, Sara; Iranzo, Alex; Arnulf, Isabelle; Högl, Birgit; Birgit, Högl; Manni, Raffaele; Miyamoto, Tomoyuki; Fantini, Maria-Livia; Puligheddu, Monica; Jennum, Poul; Sonka, Karel; Santamaria, Joan; Zucconi, Marco; Rancoita, Paola M V; Leu-Semenescu, Smeranda; Frauscher, Birgit; Terzaghi, Michele; Miyamoto, Masayuki; Unger, Marcus; Stiasny-Kolster, Karin; Desautels, Alex; Wolfson, Christina; Pelletier, Amélie; Montplaisir, Jacques

    2014-06-01

    Patients with idiopathic REM sleep behavior disorder (iRBD) are at very high risk of developing neurodegenerative synucleinopathies, which are disorders with prominent autonomic dysfunction. Several studies have documented autonomic dysfunction in iRBD, but large-scale assessment of autonomic symptoms has never been systematically performed. Patients with polysomnography-confirmed iRBD (318 cases) and controls (137 healthy volunteers and 181 sleep center controls with sleep diagnoses other than RBD) were recruited from 13 neurological centers in 10 countries from 2008 to 2011. A validated scale to study the disorders of the autonomic nervous system in Parkinson's disease (PD) patients, the SCOPA-AUT, was administered to all the patients and controls. The SCOPA-AUT consists of 25 items assessing the following domains: gastrointestinal, urinary, cardiovascular, thermoregulatory, pupillomotor, and sexual dysfunction. Our results show that compared to control subjects with a similar overall age and sex distribution, patients with iRBD experience significantly more problems with gastrointestinal, urinary, and cardiovascular functioning. The most prominent differences in severity of autonomic symptoms between our iRBD patients and controls emerged in the gastrointestinal domain. Interestingly, it has been reported that an altered gastrointestinal motility can predate the motor phase of PD. The cardiovascular domain SCOPA-AUT score in our study in iRBD patients was intermediate with respect to the scores reported in PD patients by other authors. Our findings underline the importance of collecting data on autonomic symptoms in iRBD. These data may be used in prospective studies for evaluating the risk of developing neurodegenerative disorders.

  9. Autonomous intelligent cruise control system

    Science.gov (United States)

    Baret, Marc; Bomer, Thierry T.; Calesse, C.; Dudych, L.; L'Hoist, P.

    1995-01-01

    Autonomous intelligent cruise control (AICC) systems are not only controlling vehicles' speed but acting on the throttle and eventually on the brakes they could automatically maintain the relative speed and distance between two vehicles in the same lane. And more than just for comfort it appears that these new systems should improve the safety on highways. By applying a technique issued from the space research carried out by MATRA, a sensor based on a charge coupled device (CCD) was designed to acquire the reflected light on standard-mounted car reflectors of pulsed laser diodes emission. The CCD is working in a unique mode called flash during transfer (FDT) which allows identification of target patterns in severe optical environments. It provides high accuracy for distance and angular position of targets. The absence of moving mechanical parts ensures high reliability for this sensor. The large field of view and the high measurement rate give a global situation assessment and a short reaction time. Then, tracking and filtering algorithms have been developed in order to select the target, on which the equipped vehicle determines its safety distance and speed, taking into account its maneuvering and the behaviors of other vehicles.

  10. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    National Research Council Canada - National Science Library

    McCamish, Shawn B

    2007-01-01

    This research contributes to multiple spacecraft control by developing an autonomous distributed control algorithm for close proximity operations of multiple spacecraft systems, including rendezvous...

  11. Autonomous Control, Climate and Environmental Changes Effects ...

    African Journals Online (AJOL)

    Autonomous Control, Climate and Environmental Changes Effects on Trypanosomiasis in Sub-Saharan Africa: A Review. ... African trypanosomiasis is a parasitic disease that causes serious economic losses in livestock due to anemia, loss of condition and emaciation. The disease when neglected is lethal and untreated ...

  12. Small-Signal Modeling, Analysis and Testing of Parallel Three-Phase-Inverters with A Novel Autonomous Current Sharing Controller

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2015-01-01

    A novel simple and effective autonomous currentsharing controller for parallel three-phase inverters is employed in this paper. The novel controller is able to endow to the system high speed response and precision in contrast to the conventional droop control as it does not require calculating any...... active or reactive power, instead it uses a virtual impedance loop and a SFR phase-locked loop. The small-signal model of the system was developed for the autonomous operation of inverter-based microgrid with the proposed controller. The developed model shows large stability margin and fast transient...

  13. Exact docking flight controller for autonomous aerial refueling with back-stepping based high order sliding mode

    Science.gov (United States)

    Su, Zikang; Wang, Honglun; Li, Na; Yu, Yue; Wu, Jianfa

    2018-02-01

    Autonomous aerial refueling (AAR) exact docking control has always been an intractable problem due to the strong nonlinearity, the tight coupling of the 6 DOF aircraft model and the complex disturbances of the multiple environment flows. In this paper, the strongly coupled nonlinear 6 DOF model of the receiver aircraft which considers the multiple flow disturbances is established in the affine nonlinear form to facilitate the nonlinear controller design. The items reflecting the influence of the unknown flow disturbances in the receiver dynamics are taken as the components of the "lumped disturbances" together with the items which have no linear correlation with the virtual control variables. These unmeasurable lumped disturbances are estimated and compensated by a specially designed high order sliding mode observer (HOSMO) with excellent estimation property. With the compensation of the estimated lumped disturbances, a back-stepping high order sliding mode based exact docking flight controller is proposed for AAR in the presence of multiple flow disturbances. Extensive simulation results demonstrate the feasibility and superiority of the proposed docking controller.

  14. Interactive animated displayed of man-controlled and autonomous robots

    International Nuclear Information System (INIS)

    Crane, C.D. III; Duffy, J.

    1986-01-01

    An interactive computer graphics program has been developed which allows an operator to more readily control robot motions in two distinct modes; viz., man-controlled and autonomous. In man-controlled mode, the robot is guided by a joystick or similar device. As the robot moves, actual joint angle information is measured and supplied to a graphics system which accurately duplicates the robot motion. Obstacles are placed in the actual and animated workspace and the operator is warned of imminent collisions by sight and sound via the graphics system. Operation of the system in man-controlled mode is shown. In autonomous mode, a collision-free path between specified points is obtained by previewing robot motions on the graphics system. Once a satisfactory path is selected, the path characteristics are transmitted to the actual robot and the motion is executed. The telepresence system developed at the University of Florida has been successful in demonstrating that the concept of controlling a robot manipulator with the aid of an interactive computer graphics system is feasible and practical. The clarity of images coupled with real-time interaction and real-time determination of imminent collision with obstacles has resulted in improved operator performance. Furthermore, the ability for an operator to preview and supervise autonomous operations is a significant attribute when operating in a hazardous environment

  15. Autonomous vehicles:challenges, opportunities, and future implications for transportation policies

    Institute of Scientific and Technical Information of China (English)

    Saeed Asadi Bagloee; Madjid Tavana; Mohsen Asadi; Tracey Oliver

    2016-01-01

    This study investigates the challenges and opportunities pertaining to transportation policies that may arise as a result of emerging autonomous vehicle (AV) technologies. AV technologies can decrease the trans-portation cost and increase accessibility to low-income households and persons with mobility issues. This emerg-ing technology also has far-reaching applications and implications beyond all current expectations. This paper provides a comprehensive review of the relevant literature and explores a broad spectrum of issues from safety to machine ethics. An indispensable part of a prospective AV development is communication over cars and infrastructure (connected vehicles). A major knowledge gap exists in AV technology with respect to routing behaviors. Connected-vehicle technology provides a great opportunity to imple-ment an efficient and intelligent routing system. To this end, we propose a conceptual navigation model based on a fleet of AVs that are centrally dispatched over a network seeking system optimization. This study contributes to the literature on two fronts: (i) it attempts to shed light on future opportunities as well as possible hurdles associated with AV technology;and (ii) it conceptualizes a navigation model for the AV which leads to highly efficient traffic circulations.

  16. Motor execution detection based on autonomic nervous system responses

    International Nuclear Information System (INIS)

    Marchal-Crespo, Laura; Riener, Robert; Zimmermann, Raphael; Lambercy, Olivier; Edelmann, Janis; Fluet, Marie-Christine; Gassert, Roger; Wolf, Martin

    2013-01-01

    Triggered assistance has been shown to be a successful robotic strategy for provoking motor plasticity, probably because it requires neurologic patients’ active participation to initiate a movement involving their impaired limb. Triggered assistance, however, requires sufficient residual motor control to activate the trigger and, thus, is not applicable to individuals with severe neurologic injuries. In these situations, brain and body–computer interfaces have emerged as promising solutions to control robotic devices. In this paper, we investigate the feasibility of a body–machine interface to detect motion execution only monitoring the autonomic nervous system (ANS) response. Four physiological signals were measured (blood pressure, breathing rate, skin conductance response and heart rate) during an isometric pinching task and used to train a classifier based on hidden Markov models. We performed an experiment with six healthy subjects to test the effectiveness of the classifier to detect rest and active pinching periods. The results showed that the movement execution can be accurately classified based only on peripheral autonomic signals, with an accuracy level of 84.5%, sensitivity of 83.8% and specificity of 85.2%. These results are encouraging to perform further research on the use of the ANS response in body–machine interfaces. (paper)

  17. A controlled community-based trial to promote smoke-free policy in rural communities.

    Science.gov (United States)

    Hahn, Ellen J; Rayens, Mary Kay; Adkins, Sarah; Begley, Kathy; York, Nancy

    2015-01-01

    Rural, tobacco-growing areas are disproportionately affected by tobacco use, secondhand smoke, and weak tobacco control policies. The purpose was to test the effects of a stage-specific, tailored policy-focused intervention on readiness for smoke-free policy, and policy outcomes in rural underserved communities. A controlled community-based trial including 37 rural counties. Data were collected annually with community advocates (n = 330) and elected officials (n = 158) in 19 intervention counties and 18 comparison counties over 5 years (average response rate = 68%). Intervention communities received policy development strategies from community advisors tailored to their stage of readiness and designed to build capacity, build demand, and translate and disseminate science. Policy outcomes were tracked over 5 years. Communities receiving the stage-specific, tailored intervention had higher overall community readiness scores and better policy outcomes than the comparison counties, controlling for county-level smoking rate, population size, and education. Nearly one-third of the intervention counties adopted smoke-free laws covering restaurants, bars, and all workplaces compared to none of the comparison counties. The stage-specific, tailored policy-focused intervention acted as a value-added resource to local smoke-free campaigns by promoting readiness for policy, as well as actual policy change in rural communities. Although actual policy change and percent covered by the policies were modest, these areas need additional resources and efforts to build capacity, build demand, and translate and disseminate science in order to accelerate smoke-free policy change and reduce the enormous toll from tobacco in these high-risk communities. © 2014 National Rural Health Association.

  18. Perancangan dan Implementasi Autonomous Landing Menggunakan Behavior-Based dan Fuzzy Controller pada Quadcopter

    Directory of Open Access Journals (Sweden)

    Fadjri Andika Permadi

    2012-09-01

    Full Text Available Perkembangan teknologi sistem kendali pesawat sayap berputar (copter semakin pesat salah satunya pada pesawat berbaling-baling empat (quadcopter. Landing merupakan bagian tersulit dalam penerbangan quadcopter. Ukuran quadcopter yang kecil mengakibatkan susahnya pengendalian kestabilan dan kecepatan turun.Cara mengatasi permasalahan ini adalah dengan autonomous landing yang menggunakan algoritma kendali behavior-based (berbasis perilaku. Tugas akhir ini merancang dan mengimplementasikan algoritma kendali behavior-based (berbasis perilaku pada proses autonomous landing quadcopter dan kontroler PD (Proporsional, Diferensial pada untuk  kestabilan sudut roll dan pitch, sedangkan untuk jarak landing menggunakan kontroler logika fuzzy. Pada Tugas Akhir ini, didapatkan nilai parameter kontroler PD roll dan kontroler PD pitch dari hasil tuning terstruktur pada simulasi Kp=500 dan Kd=30. Sedangkan kendali landing menggunakan kontroler logika fuzzy dengan parameter Ke=4 Kde=175 dan Ku=1 pada simulasi dapat melakukan proses landing selama 8 detik dari ketinggian 3 meter. Respon hasil implementasi pada quadcopter belum sesuai dengan hasil simulasi. Proses landing pada implementasi lebih cepat dengan waktu 3.5 detik dari ketinggian 2 meter, selain itu koreksi sudut roll dan sudut pitch masih terhadapat error +/-3º.

  19. Autonomous Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Jalilian, Alireza; Vasquez, Juan Carlos

    2013-01-01

    Recently, there is an increasing interest in using distributed generators (DGs) not only to inject power into the grid, but also to enhance the power quality. In this paper, a stationary-frame control method for voltage unbalance compensation in an islanded microgrid is proposed. This method...... is based on the proper control of DGs interface converters. The DGs are controlled to compensate voltage unbalance autonomously while share the compensation effort and also active and reactive power, properly. The control system of the DGs mainly consists of active and reactive power droop controllers......, virtual impedance loop, voltage and current controllers and unbalance compensator. The design approach of the control system is discussed in detail and simulation and experimental results are presented. The results demonstrate the effectiveness of the proposed method in compensation of voltage unbalance....

  20. Validating a UAV artificial intelligence control system using an autonomous test case generator

    Science.gov (United States)

    Straub, Jeremy; Huber, Justin

    2013-05-01

    The validation of safety-critical applications, such as autonomous UAV operations in an environment which may include human actors, is an ill posed problem. To confidence in the autonomous control technology, numerous scenarios must be considered. This paper expands upon previous work, related to autonomous testing of robotic control algorithms in a two dimensional plane, to evaluate the suitability of similar techniques for validating artificial intelligence control in three dimensions, where a minimum level of airspeed must be maintained. The results of human-conducted testing are compared to this automated testing, in terms of error detection, speed and testing cost.

  1. Design and Evaluation of Autonomous Hybrid Frequency-Voltage Sensitive Load Controller

    DEFF Research Database (Denmark)

    Douglass, Philip James; Garcia-Valle, Rodrigo; Sossan, Fabrizio

    2013-01-01

    The paper introduces an algorithm for control of autonomous loads without digital communication interfaces to provide both frequency regulation and voltage regulation services. This hybrid controller can be used to enhance frequency sensitive loads to mitigate line overload arising from reduced l...... load diversity. Numerical simulations of the hybrid controller in a representative distribution system show the peak system load was reduced by 12% compared to a purely frequency sensitive load controller.......The paper introduces an algorithm for control of autonomous loads without digital communication interfaces to provide both frequency regulation and voltage regulation services. This hybrid controller can be used to enhance frequency sensitive loads to mitigate line overload arising from reduced...

  2. QFD-based conceptual design of an autonomous underwater robot

    Directory of Open Access Journals (Sweden)

    Thip Pasawang

    2015-12-01

    Full Text Available Autonomous underwater robots in the past few years have been designed according to the individual concepts and experiences of the researchers. To design a robot, which meets all the requirements of potential users, is an advanced work. Hence, a systematic design method that could include users’ preferences and requirements is needed. This paper presents the quality function deployment (QFD technique to design an autonomous underwater robot focusing on the Thai Navy military mission. Important user requirements extracted from the QFD method are the ability to record videos, operating at depth up to 10 meters, the ability to operate remotely with cable and safety concerns related to water leakages. Less important user requirements include beauty, using renewable energy, operating remotely with radio and ability to work during night time. The important design parameters derived from the user requirements are a low cost-controller, an autonomous control algorithm, a compass sensor and vertical gyroscope, and a depth sensor. Of low-importance ranked design parameters include the module design, use clean energy, a low noise electric motor, remote surveillance design, a pressure hull, and a beautiful hull form design. The study results show the feasibility of using QFD techniques to systematically design the autonomous underwater robot to meet user requirements. Mapping between the design and expected parameters and a conceptual drafting design of an autonomous underwater robot are also presented.

  3. Contour Tracking Control for the REMUS Autonomous Underwater Vehicle

    National Research Council Canada - National Science Library

    Van Reet, Alan R

    2005-01-01

    In the interest of enhancing the capabilities of autonomous underwater vehicles used in US Naval Operations, controlling vehicle position to follow depth contours presents exciting potential for navigation...

  4. New control approach for a PV-diesel autonomous power system

    Energy Technology Data Exchange (ETDEWEB)

    Rashed, Mohamed; Elmitwally, A.; Kaddah, Sahar [Electrical Engineering Department, Mansoura University, Mansoura 35516 (Egypt)

    2008-06-15

    A new control scheme for the hybrid photovoltaic-diesel single-phase autonomous power system is proposed. The main advantage of this scheme is that the voltage control is accomplished by the interface inverter without need to the automatic voltage regulator of the diesel-driven generator. Unlike three-phase systems, frequency and voltage control in single-phase autonomous power systems imposes additional complexity. This is due to the pulsating nature of the single-phase loads instantaneous power at twice the rated frequency that may degrade the control efficacy. This obstacle is addressed in this paper and a new scheme is presented. The approach includes three control loops for maximum power tracking, voltage control and frequency control. The generator field current is held constant at its nominal value avoiding the saturation in the field circuit. A robust fuzzy logic controller is adopted for the speed control loop of the diesel engine. The dynamic performance of the system is investigated under different operating conditions. (author)

  5. Patients With Fibromyalgia Have Significant Autonomic Symptoms But Modest Autonomic Dysfunction.

    Science.gov (United States)

    Vincent, Ann; Whipple, Mary O; Low, Phillip A; Joyner, Michael; Hoskin, Tanya L

    2016-05-01

    Research suggests that disordered autonomic function may be one contributor to deconditioning reported in fibromyalgia; however, no study to date has assessed these variables simultaneously with comprehensive measures. To characterize physical fitness and autonomic function with the use of clinically validated measures and subjective questionnaires between patients with fibromyalgia and healthy controls. Cross-sectional, observational, controlled study. Community sample of patients with fibromyalgia and healthy controls. Thirty patients with fibromyalgia and 30 pain and fatigue-free controls. Participants completed a battery of self-report questionnaires and physiological measures, including clinically validated measures of physical fitness and autonomic function. Six-Minute Walk Test total distance, maximal oxygen consumption as assessed by cardiopulmonary exercise testing, total steps using activity monitor, Composite Autonomic Scoring Scale as assessed by Autonomic Reflex Screen, total metabolic equivalents per week using the International Physical Activity Questionnaire, and self-reported autonomic symptoms via the 31-item Composite Autonomic Symptom Score questionnaire. Autonomic function, as assessed by self-report, was significantly different between patients and controls (P physical activity was not significantly different between patients and controls (P = .99), but levels of moderate and vigorous physical activity as measured by actigraphy were significantly lower in patients (P = .012 and P = .047, respectively). Exercise capacity (6-Minute Walk) was poorer in patients (P = .0006), but there was no significant difference in maximal volume of oxygen consumption (P = .07). Patients with fibromyalgia report more severe symptoms across all domains, including physical activity and autonomic symptoms, compared with controls, but the objective assessments only showed modest differences. Our results suggest that patients with widespread subjective impairment of

  6. approximate controllability of a non-autonomous differential equation

    Indian Academy of Sciences (India)

    53

    for a non-autonomous functional differential equation using the theory of linear ... approximate controllability of various functional differential equations in abstract ...... the operator A(t) and into the requirement that x(t) ∈ D(A) for all t ≥ 0.

  7. A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles

    Science.gov (United States)

    1994-05-02

    AD-A282 787 " A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles Alonzo Kelly CMU-RI-TR-94-17 The Robotics...follow, or a direction to prefer, it cannot generate its own strategic goals. Therefore, it solves the local planning problem for autonomous vehicles . The... autonomous vehicles . It is intelligent because it uses range images that are generated from either a laser rangefinder or a stereo triangulation

  8. Robust H∞ output-feedback control for path following of autonomous ground vehicles

    Science.gov (United States)

    Hu, Chuan; Jing, Hui; Wang, Rongrong; Yan, Fengjun; Chadli, Mohammed

    2016-03-01

    This paper presents a robust H∞ output-feedback control strategy for the path following of autonomous ground vehicles (AGVs). Considering the vehicle lateral velocity is usually hard to measure with low cost sensor, a robust H∞ static output-feedback controller based on the mixed genetic algorithms (GA)/linear matrix inequality (LMI) approach is proposed to realize the path following without the information of the lateral velocity. The proposed controller is robust to the parametric uncertainties and external disturbances, with the parameters including the tire cornering stiffness, vehicle longitudinal velocity, yaw rate and road curvature. Simulation results based on CarSim-Simulink joint platform using a high-fidelity and full-car model have verified the effectiveness of the proposed control approach.

  9. A microgrid cluster structure and its autonomous coordination control strategy

    DEFF Research Database (Denmark)

    Zhou, Xiaoping; Zhou, Leming; Chen, Yandong

    2018-01-01

    This paper proposes a microgrid cluster structure and its autonomous coordination control strategy. Unlike existing microgrids that are purely AC or DC, the microgrid cluster studied here is an interconnected system with multiple AC and DC microgrids, which enables mutual power support among...... control method combining the normalized droop-based control and adaptive control is proposed for PEU, which can effectively realize mutual power support among microgrids and reduce the bus voltage or frequency deviation in microgrids. In addition, the adaptive control strategy of PEU can ensure...... that the bigger the normalized index of microgrid is, the larger the active power exchange coefficient is, which can make all of microgrids operate around the rated state as much as possible. Besides, EP is mainly used to balance the system power, and the hierarchical coordinated control method of EP is proposed...

  10. Fault Tolerant Autonomous Lateral Control for Heavy Vehicles

    OpenAIRE

    Talbot, Craig Matthew; Papadimitriou, Iakovos; Tomizuka, Masayoshi

    2004-01-01

    This report summarizes the research results of TO4233, "Fault Tolerant Autonomous Lateral Control for Heavy Vehicles". This project represents a continuing effort of PATH's research on Automated Highway Systems (AHS) and more specifically in the area of heavy vehicles. Research on the lateral control of heavy vehicles for AHS has been going on at PATH since 1993. MOU129, "Steering and Braking Control of Heavy Duty Vehicles" was the first project and it was followed by MOU242, "Lateral Control...

  11. Study on large scale knowledge base with real time operation for autonomous nuclear power plant. 1. Basic concept and expecting performance

    International Nuclear Information System (INIS)

    Ozaki, Yoshihiko; Suda, Kazunori; Yoshikawa, Shinji; Ozawa, Kenji

    1996-04-01

    Since it is desired to enhance availability and safety of nuclear power plants operation and maintenance by removing human factor, there are many researches and developments for intelligent operation or diagnosis using artificial intelligence (AI) technique. We have been developing an autonomous operation and maintenance system for nuclear power plants by substituting AI's and intelligent robots. It is indispensable to use various and large scale knowledge relative to plant design, operation, and maintenance, that is, whole life cycle data of the plant for the autonomous nuclear power plant. These knowledge must be given to AI system or intelligent robots adequately and opportunely. Moreover, it is necessary to insure real time operation using the large scale knowledge base for plant control and diagnosis performance. We have been studying on the large scale and real time knowledge base system for autonomous plant. In the report, we would like to present the basic concept and expecting performance of the knowledge base for autonomous plant, especially, autonomous control and diagnosis system. (author)

  12. Emulation of MS DOS Operational System on the Autonomous Crate-Controller with I8086 microprocessor

    International Nuclear Information System (INIS)

    Hons, Z.; Cizek, P.; Streit, V.

    1988-01-01

    KM-DOS operating system for CAMAC autonomous crate-controller based on Intel 8086/8087 microprocessor connected with Pravec-16 IBM PC is described. The KM-DOS system fully emulates the MS DOS environment on the CAMAC controller. Thus ASSEMBLER, FORTRAN, C and PASCAL programs compiled and linked on IBM PC and compatible can be run on the CAMAC controller and parall work of both computers is enabled

  13. Autonomous Vehicles: A Policy Roadmap for Law Enforcement

    Science.gov (United States)

    2015-09-01

    autonomous vehicle , vehicles , self - driving car , automated...the fault of the autonomous vehicle .6 In other words, human error was the fault in all of the collisions and the self - driving car has NEVER caused a...32 David Shamah, “As Google Dreams of Driverless Cars , IDF Deploys Them: Self Driving Vehicles Are not New for the Israeli Army, and a

  14. Autonomous and controlled motivation and interpersonal therapy for depression: moderating role of recurrent depression.

    Science.gov (United States)

    McBride, Carolina; Zuroff, David C; Ravitz, Paula; Koestner, Richard; Moskowitz, Debbie S; Quilty, Lena; Bagby, R Michael

    2010-11-01

    We examined the moderating role of depression recurrence on the relation between autonomous and controlled motivation and interpersonal therapy (IPT) treatment outcome. The investigation was conducted in an out-patient mood disorders clinic of a large university-affiliated psychiatric hospital. The sample represents a subset of a larger naturalistic database of patients seen in the clinic. We examined 74 depressed out-patients who received 16 sessions of IPT. The Beck Depression Inventory-II, administered at pre-treatment and post-treatment, served as a measure of depressive severity. Measures of motivation and therapeutic alliance were collected at the third session. In the entire sample, both the therapeutic alliance and autonomous motivation predicted higher probability of achieving remission; however, the relation differed for those with highly recurrent depression compared to those with less recurrent depression. For those with highly recurrent depression, the therapeutic alliance predicted remission whereas autonomous motivation had no effect on remission. For those with less recurrent depression, both autonomous motivation and the therapeutic alliance predicted better achieving remission. Controlled motivation emerged as a significant negative predictor of remission across both groups. Taken together, these results highlight the possible use of motivation theory to inform and enrich therapeutic conceptualizations and interventions in clinical practice, but also point to the importance of modifying interventions based on the chronicity of a client's depression.

  15. Towards an Autonomous Vision-Based Unmanned Aerial System against Wildlife Poachers

    Science.gov (United States)

    Olivares-Mendez, Miguel A.; Fu, Changhong; Ludivig, Philippe; Bissyandé, Tegawendé F.; Kannan, Somasundar; Zurad, Maciej; Annaiyan, Arun; Voos, Holger; Campoy, Pascual

    2015-01-01

    Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources amounts to nearly $213 billion every year, which is even helping to fund armed conflicts. Poaching activities around the world are further pushing many animal species on the brink of extinction. Unfortunately, the traditional methods to fight against poachers are not enough, hence the new demands for more efficient approaches. In this context, the use of new technologies on sensors and algorithms, as well as aerial platforms is crucial to face the high increase of poaching activities in the last few years. Our work is focused on the use of vision sensors on UAVs for the detection and tracking of animals and poachers, as well as the use of such sensors to control quadrotors during autonomous vehicle following and autonomous landing. PMID:26703597

  16. Towards an Autonomous Vision-Based Unmanned Aerial System against Wildlife Poachers

    Directory of Open Access Journals (Sweden)

    Miguel A. Olivares-Mendez

    2015-12-01

    Full Text Available Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources amounts to nearly $ 213 billion every year, which is even helping to fund armed conflicts. Poaching activities around the world are further pushing many animal species on the brink of extinction. Unfortunately, the traditional methods to fight against poachers are not enough, hence the new demands for more efficient approaches. In this context, the use of new technologies on sensors and algorithms, as well as aerial platforms is crucial to face the high increase of poaching activities in the last few years. Our work is focused on the use of vision sensors on UAVs for the detection and tracking of animals and poachers, as well as the use of such sensors to control quadrotors during autonomous vehicle following and autonomous landing.

  17. Different Control Algorithms for a Platoon of Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Zoran Gacovski

    2014-05-01

    Full Text Available This paper presents a concept of platoon movement of autonomous vehicles (smart cars. These vehicles have Adaptive or Advanced cruise control (ACC system also called Intelligent cruise control (ICC or Adaptive Intelligent cruise control (AICC system. The vehicles are suitable to follow other vehicles on desired distance and to be organized in platoons. To perform a research on the control and stability of an AGV (Automated Guided Vehicles string, we have developed a car-following model. To do this, first a single vehicle is modeled and since all cars in the platoon have the same dynamics, the single vehicle model is copied ten times to form model of platoon (string with ten vehicles. To control this string, we have applied equal PID controllers to all vehicles, except the leading vehicle. These controllers try to keep the headway distance as constant as possible and the velocity error between subsequent vehicles - small. For control of vehicle with nonlinear dynamics combi­nation of feedforward control and feedback control approach is used. Feedforward control is based on the inverse model of nominal dynamics of the vehicle, and feedback PID control is designed based on the linearized model of the vehicle. For simulation and analysis of vehicle and platoon of vehicles – we have developed Matlab/Simulink models. Simulation results, discussions and conclusions are given at the end of the paper.

  18. School-Based Obesity-Prevention Policies and Practices and Weight-Control Behaviors among Adolescents.

    Science.gov (United States)

    Larson, Nicole; Davey, Cynthia S; Caspi, Caitlin E; Kubik, Martha Y; Nanney, Marilyn S

    2017-02-01

    The promotion of healthy eating and physical activity within school settings is an important component of population-based strategies to prevent obesity; however, adolescents may be vulnerable to weight-related messages, as rapid development during this life stage often leads to preoccupation with body size and shape. This study examines secular trends in secondary school curricula topics relevant to the prevention of unhealthy weight-control behaviors; describes cross-sectional associations between weight-related curricula content and students' use of weight-control behaviors; and assesses whether implementation of school-based obesity-prevention policies/practices is longitudinally related to students' weight-control behaviors. The Minnesota School Health Profiles and Minnesota Student Survey (grades 9 and 12) data were used along with National Center for Education Statistics data to examine secular trends, cross-sectional associations (n=141 schools), and longitudinal associations (n=42 schools). Students self-reported their height and weight along with past-year use of healthy (eg, exercise), unhealthy (eg, fasting), and extreme (eg, use laxatives) weight-control behaviors. Descriptive statistics, generalized estimating equations, and generalized linear regression models accounting for school-level demographics. There was no observable pattern during the years 2008 to 2014 in the mean number of curricula topics addressing unhealthy weight-control behaviors, despite an increase in the prevalence of curricula addressing acceptance of body-size differences. Including three vs fewer weight-control topics and specifically including the topic of eating disorders in the curricula was related to a lower school-level percent of students using any extreme weight-control behaviors. In contrast, an overall measure of implementing school-based obesity-prevention policies/practices (eg, prohibited advertising) was unrelated to use of unhealthy or extreme behaviors

  19. Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    Science.gov (United States)

    Ivancic, William D.; Paulsen, Phillip E.; Miller, Eric M.; Sage, Steen P.

    2013-01-01

    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data.

  20. The Power of Collective Identity Narration: Greenland’s Way to a More Autonomous Foreign Policy

    DEFF Research Database (Denmark)

    Jacobsen, Marc

    2015-01-01

    and, on the other hand, the notion of a common cultural core formed in the past. The three main elements of this core are the Greenlandic language, hunting traditions, and a particular relationship to nature. While the status of the three elements is often disputed in specific domestic policy debates......This paper demonstrates how different Greenlandic governments have exploited a narrative of a unique Greenlandic identity to shape and strengthen a foreign policy autonomous from Denmark. Central to this narrative is, on the one hand, the widespread anticipation of more independence in the future......, such as the commissions exploring future Greenlandic constitution and reconciliation with Denmark, on the international policy level there is a remarkable agreement about the narrative. Here the three elements are understood as a matter of societal security. They need to be protected from external threats in order...

  1. Improving the Lane Reference Detection for Autonomous Road Vehicle Control

    Directory of Open Access Journals (Sweden)

    Felipe Jiménez

    2016-01-01

    Full Text Available Autonomous road vehicles are increasingly becoming more important and there are several techniques and sensors that are being applied for vehicle control. This paper presents an alternative system for maintaining the position of autonomous vehicles without adding additional elements to the standard sensor architecture, by using a 3D laser scanner for continuously detecting a reference element in situations in which the GNSS receiver fails or provides accuracy below the required level. Considering that the guidance variables are more accurately estimated when dealing with reference points in front of and behind the vehicle, an algorithm based on vehicle dynamics mathematical model is proposed to extend the detected points in cases where the sensor is placed at the front of the vehicle. The algorithm has been tested when driving along a lane delimited by New Jersey barriers at both sides and the results show a correct behaviour. The system is capable of estimating the reference element behind the vehicle with sufficient accuracy when the laser scanner is placed at the front of it, so the robustness of the control input variables (lateral and angular errors estimation is improved making it unnecessary to place the sensor on the vehicle roof or to introduce additional sensors.

  2. Vehicle following controller design for autonomous intelligent vehicles

    Science.gov (United States)

    Chien, C. C.; Lai, M. C.; Mayr, R.

    1994-01-01

    A new vehicle following controller is proposed for autonomous intelligent vehicles. The proposed vehicle following controller not only provides smooth transient maneuvers for unavoidable nonzero initial conditions but also guarantees the asymptotic platoon stability without the availability of feedforward information. Furthermore, the achieved asymptotic platoon stability is shown to be robust to sensor delays and an upper bound for the allowable sensor delays is also provided in this paper.

  3. A Hierarchical Reliability Control Method for a Space Manipulator Based on the Strategy of Autonomous Decision-Making

    Directory of Open Access Journals (Sweden)

    Xin Gao

    2016-01-01

    Full Text Available In order to maintain and enhance the operational reliability of a robotic manipulator deployed in space, an operational reliability system control method is presented in this paper. First, a method to divide factors affecting the operational reliability is proposed, which divides the operational reliability factors into task-related factors and cost-related factors. Then the models describing the relationships between the two kinds of factors and control variables are established. Based on this, a multivariable and multiconstraint optimization model is constructed. Second, a hierarchical system control model which incorporates the operational reliability factors is constructed. The control process of the space manipulator is divided into three layers: task planning, path planning, and motion control. Operational reliability related performance parameters are measured and used as the system’s feedback. Taking the factors affecting the operational reliability into consideration, the system can autonomously decide which control layer of the system should be optimized and how to optimize it using a control level adjustment decision module. The operational reliability factors affect these three control levels in the form of control variable constraints. Simulation results demonstrate that the proposed method can achieve a greater probability of meeting the task accuracy requirements, while extending the expected lifetime of the space manipulator.

  4. Coordinated Formation Control of Multiple Autonomous Underwater Vehicles for Pipeline Inspection

    Directory of Open Access Journals (Sweden)

    Xianbo Xiang

    2010-02-01

    Full Text Available This paper addresses the control problem of inspecting underwater pipeline on the seabed, with coordinated multiple autonomous underwater vehicles in a formation. Based on the leader-follower strategy, the dedicated nonlinear path following controller is rigorously built on Lyapunov-based design, driving a fleet of vehicles onto assigned parallel paths elevated and offset from the underwater pipeline, while keeping a triangle formation to capture complete 3D images for inspection. Due to the spatial-temporal decoupling characteristics of individual path following controller, the velocities of the followers can be adapted in the coordinated control level, only relying on the information of generalized along-path length from the leader, in order to build the desired formation. Thus, the communication variable broadcast from the leader is kept to a minimum, which is feasible under the severely constraints of acoustic communication bandwidth. Simulation results illustrate the efficiency of coordinated formation controller proposed for underwater pipeline inspection.

  5. Autonomic Wireless Sensor Networks: A Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Jesús M. T. Portocarrero

    2014-01-01

    Full Text Available Autonomic computing (AC is a promising approach to meet basic requirements in the design of wireless sensor networks (WSNs, and its principles can be applied to efficiently manage nodes operation and optimize network resources. Middleware for WSNs supports the implementation and basic operation of such networks. In this systematic literature review (SLR we aim to provide an overview of existing WSN middleware systems that address autonomic properties. The main goal is to identify which development approaches of AC are used for designing WSN middleware system, which allow the self-management of WSN. Another goal is finding out which interactions and behavior can be automated in WSN components. We drew the following main conclusions from the SLR results: (i the selected studies address WSN concerns according to the self-* properties of AC, namely, self-configuration, self-healing, self-optimization, and self-protection; (ii the selected studies use different approaches for managing the dynamic behavior of middleware systems for WSN, such as policy-based reasoning, context-based reasoning, feedback control loops, mobile agents, model transformations, and code generation. Finally, we identified a lack of comprehensive system architecture designs that support the autonomy of sensor networking.

  6. Decentralized Receding Horizon Control and Coordination of Autonomous Vehicle Formations

    NARCIS (Netherlands)

    Keviczky, T.; Borelli, F.; Fregene, K.; Godbole, D.; Bals, G.J.

    2008-01-01

    This paper describes the application of a novel methodology for high-level control and coordination of autonomous vehicle teams and its demonstration on high-fidelity models of the organic air vehicle developed at Honeywell Laboratories. The scheme employs decentralized receding horizon controllers

  7. High-frequency autonomic modulation: a new model for analysis of autonomic cardiac control.

    Science.gov (United States)

    Champéroux, Pascal; Fesler, Pierre; Judé, Sebastien; Richard, Serge; Le Guennec, Jean-Yves; Thireau, Jérôme

    2018-05-03

    Increase in high-frequency beat-to-beat heart rate oscillations by torsadogenic hERG blockers appears to be associated with signs of parasympathetic and sympathetic co-activation which cannot be assessed directly using classic methods of heart rate variability analysis. The present work aimed to find a translational model that would allow this particular state of the autonomic control of heart rate to be assessed. High-frequency heart rate and heart period oscillations were analysed within discrete 10 s intervals in a cohort of 200 healthy human subjects. Results were compared to data collected in non-human primates and beagle dogs during pharmacological challenges and torsadogenic hERG blockers exposure, in 127 genotyped LQT1 patients on/off β-blocker treatment and in subgroups of smoking and non-smoking subjects. Three states of autonomic modulation, S1 (parasympathetic predominance) to S3 (reciprocal parasympathetic withdrawal/sympathetic activation), were differentiated to build a new model of heart rate variability referred to as high-frequency autonomic modulation. The S2 state corresponded to a specific state during which both parasympathetic and sympathetic systems were coexisting or co-activated. S2 oscillations were proportionally increased by torsadogenic hERG-blocking drugs, whereas smoking caused an increase in S3 oscillations. The combined analysis of the magnitude of high-frequency heart rate and high-frequency heart period oscillations allows a refined assessment of heart rate autonomic modulation applicable to long-term ECG recordings and offers new approaches to assessment of the risk of sudden death both in terms of underlying mechanisms and sensitivity. © 2018 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  8. Enriching the hierarchical model of achievement motivation: autonomous and controlling reasons underlying achievement goals.

    Science.gov (United States)

    Michou, Aikaterini; Vansteenkiste, Maarten; Mouratidis, Athanasios; Lens, Willy

    2014-12-01

    The hierarchical model of achievement motivation presumes that achievement goals channel the achievement motives of need for achievement and fear of failure towards motivational outcomes. Yet, less is known whether autonomous and controlling reasons underlying the pursuit of achievement goals can serve as additional pathways between achievement motives and outcomes. We tested whether mastery approach, performance approach, and performance avoidance goals and their underlying autonomous and controlling reasons would jointly explain the relation between achievement motives (i.e., fear of failure and need for achievement) and learning strategies (Study 1). Additionally, we examined whether the autonomous and controlling reasons underlying learners' dominant achievement goal would account for the link between achievement motives and the educational outcomes of learning strategies and cheating (Study 2). Six hundred and six Greek adolescent students (Mage = 15.05, SD = 1.43) and 435 university students (Mage M = 20.51, SD = 2.80) participated in studies 1 and 2, respectively. In both studies, a correlational design was used and the hypotheses were tested via path modelling. Autonomous and controlling reasons underlying the pursuit of achievement goals mediated, respectively, the relation of need for achievement and fear of failure to aspects of learning outcomes. Autonomous and controlling reasons underlying achievement goals could further explain learners' functioning in achievement settings. © 2014 The British Psychological Society.

  9. Autonomous collision avoidance system by combined control of steering and braking using geometrically optimised vehicular trajectory

    Science.gov (United States)

    Hayashi, Ryuzo; Isogai, Juzo; Raksincharoensak, Pongsathorn; Nagai, Masao

    2012-01-01

    This study proposes an autonomous obstacle avoidance system not only by braking but also by steering, as one of the active safety technologies to prevent traffic accidents. The proposed system prevents the vehicle from colliding with a moving obstacle like a pedestrian jumping out from the roadside. In the proposed system, to avoid the predicted colliding position based on constant-velocity obstacle motion assumption, the avoidance trajectory is derived as connected two identical arcs. The system then controls the vehicle autonomously by the combined control of the braking and steering systems. In this paper, the proposed system is examined by real car experiments and its effectiveness is shown from the results of the experiments.

  10. A Fully-Distributed Heuristic Algorithm for Control of Autonomous Vehicle Movements at Isolated Intersections

    OpenAIRE

    Abdallah A. Hassan; Hesham A. Rakha

    2014-01-01

    Optimizing autonomous vehicle movements through roadway intersections is a challenging problem. It has been demonstrated in the literature that traditional traffic control, such as traffic signal and stop sign control are not optimal especially for heavy traffic demand levels. Alternatively, centralized autonomous vehicle control strategies are costly and not scalable given that the ability of a central controller to track and schedule the movement of hundreds of vehicles in real-time is ques...

  11. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    Science.gov (United States)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  12. Autonomous Congestion Control in Delay-Tolerant Networks

    Science.gov (United States)

    Burleigh, Scott; Jennings, Esther; Schoolcraft, Joshua

    2006-01-01

    This presentation highlights communication congestion control in delay-tolerant networks (DTNs). Large-scale future space exploration will offer complex communication challenges that may be best addressed by establishing a network infrastructure. However, current internet techniques for congestion control are not well suited for operation of a network over interplanetary distances. An alternative, delay-tolerant technique for congestion control in a delay-tolerant network is presented. A simple DTN was constructed and an experimental congestion control mechanism was applied. The mechanism appeared to be effective and each router was able to make its bundle acceptance decisions autonomously. Future research will examine more complex topologies and alternative bundle acceptance rules that might enhance performance.

  13. Simvastatin-induced cardiac autonomic control improvement in fructose-fed female rats

    Directory of Open Access Journals (Sweden)

    Renata Juliana da Silva

    2011-01-01

    Full Text Available OBJECTIVE: Because autonomic dysfunction has been found to lead to cardiometabolic disorders and because studies have reported that simvastatin treatment has neuroprotective effects, the objective of the present study was to investigate the effects of simvastatin treatment on cardiovascular and autonomic changes in fructose-fed female rats. METHODS: Female Wistar rats were divided into three groups: controls (n=8, fructose (n=8, and fructose+ simvastatin (n=8. Fructose overload was induced by supplementing the drinking water with fructose (100 mg/L, 18 wks. Simvastatin treatment (5 mg/kg/day for 2 wks was performed by gavage. The arterial pressure was recorded using a data acquisition system. Autonomic control was evaluated by pharmacological blockade. RESULTS: Fructose overload induced an increase in the fasting blood glucose and triglyceride levels and insulin resistance. The constant rate of glucose disappearance during the insulin intolerance test was reduced in the fructose group (3.4+ 0.32%/min relative to that in the control group (4.4+ 0.29%/min. Fructose+simvastatin rats exhibited increased insulin sensitivity (5.4+0.66%/min. The fructose and fructose+simvastatin groups demonstrated an increase in the mean arterial pressure compared with controls rats (fructose: 124+2 mmHg and fructose+simvastatin: 126 + 3 mmHg vs. controls: 112 + 2 mmHg. The sympathetic effect was enhanced in the fructose group (73 + 7 bpm compared with that in the control (48 + 7 bpm and fructose+simvastatin groups (31+8 bpm. The vagal effect was increased in fructose+simvastatin animals (84 + 7 bpm compared with that in control (49 + 9 bpm and fructose animals (46+5 bpm. CONCLUSION: Simvastatin treatment improved insulin sensitivity and cardiac autonomic control in an experimental model of metabolic syndrome in female rats. These effects were independent of the improvements in the classical plasma lipid profile and of reductions in arterial pressure. These results

  14. Improving Energy Efficiency of an Autonomous Bicycle with Adaptive Controller Design

    Directory of Open Access Journals (Sweden)

    David Rodriguez-Rosa

    2017-05-01

    Full Text Available A method is proposed to achieve lateral stability of an autonomous bicycle with only the rotation of the front wheel. This can be achieved with a classic controller. However, if the energy consumption of the bicycle also has to be minimized, this solution is not valid. To solve this problem, an adaptive controller has been designed, which modifies its gains according to the bicycle’s forward velocity, adapting its response with minimum energy consumption and satisfying the design specifications. The study demonstrates the efficiency of the proposed control, achieving an energy saving of 73 . 8 % in trajectory tracking with respect to a conventional proportional-integral ( P I controller. These results show the importance of designing energy-efficient controllers, not only for autonomous vehicles but also for any automatic system where the energy consumption can be minimized.

  15. Adaptive Control for Autonomous Navigation of Mobile Robots Considering Time Delay and Uncertainty

    Science.gov (United States)

    Armah, Stephen Kofi

    Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always be improved. The fundamental issues affecting the stability of the control systems include the undesired nonlinear effects introduced by actuator saturation, time delay in the controlled system, and uncertainty in the model. This research work develops robustly stabilizing control systems by investigating and addressing such nonlinear effects through analytical, simulations, and experiments. The control systems are designed to meet specified transient and steady-state specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot AR.Drone 2.0) mobile robots. Firstly, an effective autonomous navigation control system is developed for X80SV using logic control by combining 'go-to-goal', 'avoid-obstacle', and 'follow-wall' controllers. A MATLAB robot simulator is developed to implement this control algorithm and experiments are conducted in a typical office environment. The next stage of the research develops an autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-feedback control is used to achieve stabilization. The quadrotor's nonlinear dynamics and kinematics are implemented using MATLAB S-function to generate the state output. Secondly, the white-box and black-box approaches are used to obtain a linearized

  16. Autonomous vision-based navigation for proximity operations around binary asteroids

    Science.gov (United States)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-06-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  17. Gaussian Processes for Data-Efficient Learning in Robotics and Control.

    Science.gov (United States)

    Deisenroth, Marc Peter; Fox, Dieter; Rasmussen, Carl Edward

    2015-02-01

    Autonomous learning has been a promising direction in control and robotics for more than a decade since data-driven learning allows to reduce the amount of engineering knowledge, which is otherwise required. However, autonomous reinforcement learning (RL) approaches typically require many interactions with the system to learn controllers, which is a practical limitation in real systems, such as robots, where many interactions can be impractical and time consuming. To address this problem, current learning approaches typically require task-specific knowledge in form of expert demonstrations, realistic simulators, pre-shaped policies, or specific knowledge about the underlying dynamics. In this paper, we follow a different approach and speed up learning by extracting more information from data. In particular, we learn a probabilistic, non-parametric Gaussian process transition model of the system. By explicitly incorporating model uncertainty into long-term planning and controller learning our approach reduces the effects of model errors, a key problem in model-based learning. Compared to state-of-the art RL our model-based policy search method achieves an unprecedented speed of learning. We demonstrate its applicability to autonomous learning in real robot and control tasks.

  18. Experiments in teleoperator and autonomous control of space robotic vehicles

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  19. What Factors Are Associated with Autonomous and Controlled Motivation for Hearing Help-Seekers?

    Science.gov (United States)

    Ridgway, Jason; Hickson, Louise; Lind, Christopher

    Hearing impairment is prevalent in older adults. Motivation is important in people's choice to seek help for their hearing and whether to adopt or not adopt hearing aids. To investigate associations between sociodemographic and audiometric characteristics and autonomous and controlled motivation among a sample of hearing help-seekers. A quantitative approach was taken for this cross-sectional cohort study. A total of 253 adult first-time hearing help-seekers were recruited to the study. Participants provided sociodemographic information and completed questionnaires adapted from self-determination theory that measured autonomous motivation (motivation that originates from within the self and is aligned with personal values and beliefs) and controlled motivation (motivation that stems from external pressures such as rewards or punishment, or conflicted inner feelings such as guilt or shame). Participants with higher autonomous motivation scores were younger, wanted hearing aids more, and reported greater hearing difficulty in everyday life than those with lower scores. Participants with higher controlled motivation scores were more often referred to the service by others and wanted hearing aids more than those with lower controlled motivation scores. Controlled motivation scores were not associated with perceptions of hearing difficulty in everyday life. Relationships among motivation and sociodemographic factors highlight the importance of characterizing autonomous and controlled motivation in first-time hearing help-seekers. Attention to personal characteristics in order to understand motivational processes involved in rehabilitation decisions such as hearing aid adoption may aid in consultations. American Academy of Audiology

  20. Autonomía Adolescente y Apoyo y Control Parental en Familias Indígenas Mexicanas

    OpenAIRE

    Rosario Esteinou

    2015-01-01

    (analítico): Con base en una encuesta, en este artículo presento un análisis descriptivo de las percepciones de adolescentes indígenas de México, sobre su autonomía y los comportamientos de sus padres y madres en términos del apoyo y control que ellos y ellas ejercen. En particular, analizo si la autonomía alcanzada puede ser asociada a un proceso de separación/desconexión o de separación/conexión con los padres y madres. Este proceso está ligado a los rasgos que guardan los comportamientos d...

  1. Quad-Rotor Helicopter Autonomous Navigation Based on Vanishing Point Algorithm

    Directory of Open Access Journals (Sweden)

    Jialiang Wang

    2014-01-01

    Full Text Available Quad-rotor helicopter is becoming popular increasingly as they can well implement many flight missions in more challenging environments, with lower risk of damaging itself and its surroundings. They are employed in many applications, from military operations to civilian tasks. Quad-rotor helicopter autonomous navigation based on the vanishing point fast estimation (VPFE algorithm using clustering principle is implemented in this paper. For images collected by the camera of quad-rotor helicopter, the system executes the process of preprocessing of image, deleting noise interference, edge extracting using Canny operator, and extracting straight lines by randomized hough transformation (RHT method. Then system obtains the position of vanishing point and regards it as destination point and finally controls the autonomous navigation of the quad-rotor helicopter by continuous modification according to the calculated navigation error. The experimental results show that the quad-rotor helicopter can implement the destination navigation well in the indoor environment.

  2. Security-Enhanced Autonomous Network Management

    Science.gov (United States)

    Zeng, Hui

    2015-01-01

    Ensuring reliable communication in next-generation space networks requires a novel network management system to support greater levels of autonomy and greater awareness of the environment and assets. Intelligent Automation, Inc., has developed a security-enhanced autonomous network management (SEANM) approach for space networks through cross-layer negotiation and network monitoring, analysis, and adaptation. The underlying technology is bundle-based delay/disruption-tolerant networking (DTN). The SEANM scheme allows a system to adaptively reconfigure its network elements based on awareness of network conditions, policies, and mission requirements. Although SEANM is generically applicable to any radio network, for validation purposes it has been prototyped and evaluated on two specific networks: a commercial off-the-shelf hardware test-bed using Institute of Electrical Engineers (IEEE) 802.11 Wi-Fi devices and a military hardware test-bed using AN/PRC-154 Rifleman Radio platforms. Testing has demonstrated that SEANM provides autonomous network management resulting in reliable communications in delay/disruptive-prone environments.

  3. Intelligent controller for load-tracking performance of an autonomous power system

    Directory of Open Access Journals (Sweden)

    Abhik Banerjee

    2014-12-01

    Full Text Available The design and performance analysis of a Sugeno fuzzy logic (SFL controller for an autonomous power system model is presented in this paper. In gravitational search algorithm (GSA, the searcher agents are collection of masses and their interactions are based on Newtonian laws of gravity and motion. The problem of obtaining the optimal tunable parameters of the studied model is formulated as an optimization problem and the same is solved by a novel opposition based GSA (OGSA. The proposed OGSA of the present work employs opposition-based learning for population initialization and also for generation jumping. In OGSA, opposite numbers are utilized to improve the convergence rate of the basic GSA. GSA and genetic algorithm are taken for the sake of comparison. Time-domain simulation reveals that the developed OGSA-SFL based on-line, off-nominal controller parameters for the studied model give real-time on-line terminal voltage response.

  4. Complex Formation Control of Large-Scale Intelligent Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Lei

    2012-01-01

    Full Text Available A new formation framework of large-scale intelligent autonomous vehicles is developed, which can realize complex formations while reducing data exchange. Using the proposed hierarchy formation method and the automatic dividing algorithm, vehicles are automatically divided into leaders and followers by exchanging information via wireless network at initial time. Then, leaders form formation geometric shape by global formation information and followers track their own virtual leaders to form line formation by local information. The formation control laws of leaders and followers are designed based on consensus algorithms. Moreover, collision-avoiding problems are considered and solved using artificial potential functions. Finally, a simulation example that consists of 25 vehicles shows the effectiveness of theory.

  5. Autonomous Landing on Moving Platforms

    KAUST Repository

    Mendoza Chavez, Gilberto

    2016-01-01

    -deployment and recovery of MAVs, but it remains a challenging task for both autonomous and piloted vehicles. Model Predictive Control (MPC) is a widely used and effective scheme to control constrained systems. One of its variants, output-feedback tube-based MPC, ensures

  6. Autonomic neuropathy in diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Alberto eVerrotti

    2014-12-01

    Full Text Available Diabetic autonomic neuropathy (DAN is a serious and common complication of diabetes, often overlooked and misdiagnosed. It is a systemic-wide disorder that may be asymptomatic in the early stages. The most studied and clinically important form of DAN is cardiovascular autonomic neuropathy (CAN defined as the impairment of autonomic control of the cardiovascular system in patients with diabetes after exclusion of other causes. The reported prevalence of DAN varies widely depending on inconsistent definition, different diagnostic method, different patient cohorts studied. The pathogenesis is still unclear and probably multifactorial. Once DAN becomes clinically evident, no form of therapy has been identified which can effectively stop or reverse it. Prevention strategies are based on strict glycemic control with intensive insulin treatment, multifactorial intervention and lifestyle modification including control of hypertension, dyslipidemia, stop smoking, weight loss and adequate physical exercise. The present review summarizes the latest knowledge regarding clinical presentation, epidemiology, pathogenesis and management of DAN, with some mention to childhood and adolescent population.

  7. Influence of government controls over the currency exchange rate in the evolution of Hurst's exponent: An autonomous agent-based model

    Science.gov (United States)

    Chávez Muñoz, Pablo; Fernandes da Silva, Marcus; Vivas Miranda, José; Claro, Francisco; Gomez Diniz, Raimundo

    2007-12-01

    We have studied the performance of the Hurst's index associated with the currency exchange rate in Brazil and Chile. It is shown that this index maps the degree of government control in the exchange rate. A model of supply and demand based in an autonomous agent is proposed, that simulates a virtual market of sale and purchase, where buyer or seller are forced to negotiate through an intermediary. According to this model, the average of the price of daily transactions correspond to the theoretical balance proposed by the law of supply and demand. The influence of an added tendency factor is also analyzed.

  8. Knowledge based support for multiagent control and automation

    DEFF Research Database (Denmark)

    Saleem, Arshad; Lind, Morten

    2011-01-01

    This paper presents a mechanism for developing knowledge based support in multiagent based control and diagnosis. In particular it presents a way for autonomous agents to utilize a qualitative means-ends based model for reasoning about control situations. The proposed mechanism have been used...

  9. Vision Based Autonomous Robot Navigation Algorithms and Implementations

    CERN Document Server

    Chatterjee, Amitava; Nirmal Singh, N

    2013-01-01

    This book is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book descri...

  10. Structural Discrimination and Autonomous Vehicles

    DEFF Research Database (Denmark)

    Liu, Hin-Yan

    2016-01-01

    This paper examines the potential for structural discrimination to be woven into the fabric of autonomous vehicle developments, which remain underexplored and undiscussed. The prospect for structural discrimination arises as a result of the coordinated modes of autonomous vehicle behaviour...... individual identity, and potentially relative worth, to autonomous vehicles engaging in a crash damage calculus. At the risk of introducing these ideas into the development of autonomous vehicles, this paper hopes to spark a debate to foreclose these eventualities....... that is prescribed by its code. This leads to the potential for individuated outcomes to be networked and thereby multiplied consistently to any number of vehicles implementing such a code. The aggregated effects of such algorithmic policy preferences will thus cumulate in the reallocation of benefits and burdens...

  11. Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft

    Science.gov (United States)

    Bevilacqua, R.; Lehmann, T.; Romano, M.

    2011-04-01

    This work introduces a novel control algorithm for close proximity multiple spacecraft autonomous maneuvers, based on hybrid linear quadratic regulator/artificial potential function (LQR/APF), for applications including autonomous docking, on-orbit assembly and spacecraft servicing. Both theoretical developments and experimental validation of the proposed approach are presented. Fuel consumption is sub-optimized in real-time through re-computation of the LQR at each sample time, while performing collision avoidance through the APF and a high level decisional logic. The underlying LQR/APF controller is integrated with a customized wall-following technique and a decisional logic, overcoming problems such as local minima. The algorithm is experimentally tested on a four spacecraft simulators test bed at the Spacecraft Robotics Laboratory of the Naval Postgraduate School. The metrics to evaluate the control algorithm are: autonomy of the system in making decisions, successful completion of the maneuver, required time, and propellant consumption.

  12. A model predictive speed tracking control approach for autonomous ground vehicles

    Science.gov (United States)

    Zhu, Min; Chen, Huiyan; Xiong, Guangming

    2017-03-01

    This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.

  13. Research Institute for Autonomous Precision Guided Systems

    National Research Council Canada - National Science Library

    Rogacki, John R

    2007-01-01

    ... actuators, development of a visualization lab for modeling vision based guidance algorithms, concept development of a rapid prototyping and aero characterization lab, vision based control of autonomous...

  14. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    Science.gov (United States)

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-09-18

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.

  15. Perception, Planning, Control, and Coordination for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Scott Drew Pendleton

    2017-02-01

    Full Text Available Autonomous vehicles are expected to play a key role in the future of urban transportation systems, as they offer potential for additional safety, increased productivity, greater accessibility, better road efficiency, and positive impact on the environment. Research in autonomous systems has seen dramatic advances in recent years, due to the increases in available computing power and reduced cost in sensing and computing technologies, resulting in maturing technological readiness level of fully autonomous vehicles. The objective of this paper is to provide a general overview of the recent developments in the realm of autonomous vehicle software systems. Fundamental components of autonomous vehicle software are reviewed, and recent developments in each area are discussed.

  16. Autonomous Navigation for Autonomous Underwater Vehicles Based on Information Filters and Active Sensing

    Directory of Open Access Journals (Sweden)

    Tianhong Yan

    2011-11-01

    Full Text Available This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM, and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China. Weak links in the information matrix in an extended information filter (EIF can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM. All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM.

  17. Autonomous navigation for autonomous underwater vehicles based on information filters and active sensing.

    Science.gov (United States)

    He, Bo; Zhang, Hongjin; Li, Chao; Zhang, Shujing; Liang, Yan; Yan, Tianhong

    2011-01-01

    This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM.

  18. Fuzzy Logic Based Autonomous Traffic Control System

    Directory of Open Access Journals (Sweden)

    Muhammad ABBAS

    2012-01-01

    Full Text Available The aim of this paper is to design and implement fuzzy logic based traffic light Control system to solve the traffic congestion issues. In this system four input parameters: Arrival, Queue, Pedestrian and Emergency Vehicle and two output parameters: Extension in Green and Pedestrian Signals are used. Using Fuzzy Rule Base, the system extends or terminates the Green Signal according to the Traffic situation at the junction. On the presence of emergency vehicle, the system decides which signal(s should be red and how much an extension should be given to Green Signal for Emergency Vehicle. The system also monitors the density of people and makes decisions accordingly. In order to verify the proposed design algorithm MATLAB simulation is adopted and results obtained show concurrency to the calculated values according to the Mamdani Model of the Fuzzy Control System.

  19. Using the centre of percussion to design a steering controller for an autonomous race car

    Science.gov (United States)

    Kritayakirana, Krisada; Gerdes, J. Christian

    2012-01-01

    Understanding how a race car driver controls a vehicle at its friction limits can provide insights into the development of vehicle safety systems. In this paper, a race car driver's behaviour inspires the design of an autonomous racing controller. The resulting controller uses the vehicle's centre of percussion (COP) to design feedforward and feedback steering. At the COP, the effects of rotation and translation from the rear tire force cancel each other out; consequently, the feedforward steering command is robust to the disturbances from the rear tire force. Using the COP also simplifies the equations of motion, as the vehicle's lateral motion is decoupled from the vehicle's yaw motion and highlights the challenge of controlling a vehicle when the rear tires are highly saturated. The resulting dynamics can be controlled with a linear state feedback based on a lane-keeping system with additional yaw damping. Utilising Lyapunov theory, the closed-loop system is shown to remain stable even when the rear tires are highly saturated. The experimental results demonstrate that an autonomous vehicle can operate at its limits while maintaining a minimal lateral error.

  20. The autonomous house: a bio-hydrogen based energy self-sufficient approach.

    Science.gov (United States)

    Chen, Shang-Yuan; Chu, Chen-Yeon; Cheng, Ming-Jen; Lin, Chiu-Yue

    2009-04-01

    In the wake of the greenhouse effect and global energy crisis, finding sources of clean, alternative energy and developing everyday life applications have become urgent tasks. This study proposes the development of an "autonomous house" emphasizing the use of modern green energy technology to reduce environmental load, achieve energy autonomy and use energy intelligently in order to create a sustainable, comfortable living environment. The houses' two attributes are: (1) a self-sufficient energy cycle and (2) autonomous energy control to maintain environmental comfort. The autonomous house thus combines energy-conserving, carbon emission-reducing passive design with active elements needed to maintain a comfortable environment.

  1. The Autonomous House: A Bio-Hydrogen Based Energy Self-Sufficient Approach

    Science.gov (United States)

    Chen, Shang-Yuan; Chu, Chen-Yeon; Cheng, Ming-jen; Lin, Chiu-Yue

    2009-01-01

    In the wake of the greenhouse effect and global energy crisis, finding sources of clean, alternative energy and developing everyday life applications have become urgent tasks. This study proposes the development of an “autonomous house” emphasizing the use of modern green energy technology to reduce environmental load, achieve energy autonomy and use energy intelligently in order to create a sustainable, comfortable living environment. The houses’ two attributes are: (1) a self-sufficient energy cycle and (2) autonomous energy control to maintain environmental comfort. The autonomous house thus combines energy-conserving, carbon emission-reducing passive design with active elements needed to maintain a comfortable environment. PMID:19440531

  2. User evaluation of a GUI for controlling an autonomous persistent surveillance team

    Science.gov (United States)

    Scerri, Paul; Owens, Sean; Sycara, Katia; Lewis, Michael

    2010-04-01

    In future military missions, there will be many sensor assets collecting much important information about the environment. User control over surveillance assets is important to ensure that the specific data collected is appropriate for the current mission. Unfortunately, previous work has shown that individual users cannot effectively control more than about four assets, even if the assets have significant autonomy. In the ACCAST project, we hypothesized that by including autonomous teamwork between the assets and allowing users to interact by describing what the team as a whole and specific sub-teams should do, we could dramatically scale up the number of assets an individual user could effectively control. In this paper, we present the results of an experiment where users controlled up to 30 autonomous assets performing a complex mission. The assets autonomously worked together using sophisticated teamwork and the user could tell sub-teams to execute team oriented plans which described the steps required to achieve a team objective without describing exactly which asset performed which role and without having to specify how the team should handle routine information sharing, communications and failure circumstances. The users, soldiers from Fort Benning, were surprisingly good at managing the assets and were all able to complete the complex mission with extremely low friendly and civilian casualties.

  3. Knowledge-based and integrated monitoring and diagnosis in autonomous power systems

    Science.gov (United States)

    Momoh, J. A.; Zhang, Z. Z.

    1990-01-01

    A new technique of knowledge-based and integrated monitoring and diagnosis (KBIMD) to deal with abnormalities and incipient or potential failures in autonomous power systems is presented. The KBIMD conception is discussed as a new function of autonomous power system automation. Available diagnostic modelling, system structure, principles and strategies are suggested. In order to verify the feasibility of the KBIMD, a preliminary prototype expert system is designed to simulate the KBIMD function in a main electric network of the autonomous power system.

  4. Development and Control of the Naval Postgraduate School Planar Autonomous Docking Simulator (NPADS)

    Science.gov (United States)

    Porter, Robert D.

    2002-09-01

    The objective of this thesis was to design, construct and develop the initial autonomous control algorithm for the NPS Planar Autonomous Docking Simulator (NPADS) The effort included hardware design, fabrication, installation and integration; mass property determination; and the development and testing of control laws utilizing MATLAB and Simulink for modeling and LabView for NPADS control, The NPADS vehicle uses air pads and a granite table to simulate a 2-D, drag-free, zero-g space environment, It is a completely self-contained vehicle equipped with eight cold-gas, bang-bang type thrusters and a reaction wheel for motion control, A 'star sensor' CCD camera locates the vehicle on the table while a color CCD docking camera and two robotic arms will locate and dock with a target vehicle, The on-board computer system leverages PXI technology and a single source, simplifying systems integration, The vehicle is powered by two lead-acid batteries for completely autonomous operation, A graphical user interface and wireless Ethernet enable the user to command and monitor the vehicle from a remote command and data acquisition computer. Two control algorithms were developed and allow the user to either control the thrusters and reaction wheel manually or simply specify a desired location and rotation angle,

  5. Autonomous Information Unit for Fine-Grain Data Access Control and Information Protection in a Net-Centric System

    Science.gov (United States)

    Chow, Edward T.; Woo, Simon S.; James, Mark; Paloulian, George K.

    2012-01-01

    As communication and networking technologies advance, networks will become highly complex and heterogeneous, interconnecting different network domains. There is a need to provide user authentication and data protection in order to further facilitate critical mission operations, especially in the tactical and mission-critical net-centric networking environment. The Autonomous Information Unit (AIU) technology was designed to provide the fine-grain data access and user control in a net-centric system-testing environment to meet these objectives. The AIU is a fundamental capability designed to enable fine-grain data access and user control in the cross-domain networking environments, where an AIU is composed of the mission data, metadata, and policy. An AIU provides a mechanism to establish trust among deployed AIUs based on recombining shared secrets, authentication and verify users with a username, X.509 certificate, enclave information, and classification level. AIU achieves data protection through (1) splitting data into multiple information pieces using the Shamir's secret sharing algorithm, (2) encrypting each individual information piece using military-grade AES-256 encryption, and (3) randomizing the position of the encrypted data based on the unbiased and memory efficient in-place Fisher-Yates shuffle method. Therefore, it becomes virtually impossible for attackers to compromise data since attackers need to obtain all distributed information as well as the encryption key and the random seeds to properly arrange the data. In addition, since policy can be associated with data in the AIU, different user access and data control strategies can be included. The AIU technology can greatly enhance information assurance and security management in the bandwidth-limited and ad hoc net-centric environments. In addition, AIU technology can be applicable to general complex network domains and applications where distributed user authentication and data protection are

  6. Efforts toward an autonomous wheelchair - biomed 2011.

    Science.gov (United States)

    Barrett, Steven; Streeter, Robert

    2011-01-01

    An autonomous wheelchair is in development to provide mobility to those with significant physical challenges. The overall goal of the project is to develop a wheelchair that is fully autonomous with the ability to navigate about an environment and negotiate obstacles. As a starting point for the project, we have reversed engineered the joystick control system of an off-the-shelf commercially available wheelchair. The joystick control has been replaced with a microcontroller based system. The microcontroller has the capability to interface with a number of subsystems currently under development including wheel odometers, obstacle avoidance sensors, and ultrasonic-based wall sensors. This paper will discuss the microcontroller based system and provide a detailed system description. Results of this study may be adapted to commercial or military robot control.

  7. Demonstration of a Concurrently Programmed Tactical Level Control Software for Autonomous Vehicles and the Interface to the Execution Level Code

    National Research Council Canada - National Science Library

    Carroll, William

    2000-01-01

    .... One of the greatest challenges to the successful development of truly autonomous vehicles is the ability to link logically based high-level mission planning with low-level vehicle control software...

  8. Grid administration: towards an autonomic approach

    CERN Document Server

    Ubeda Garcia, M; Tsaregorodtsev, A; Charpentier, P; Bernardof, V

    2012-01-01

    Within the DIRAC framework in the LHCb collaboration, we deployed an autonomous policy system acting as a central status information point for grid elements. Experts working as grid administrators have a broad and very deep knowledge about the underlying system which makes them very precious. We have attempted to formalize this knowledge in an autonomous system able to aggregate information, draw conclusions, validate them, and take actions accordingly. The DIRAC Resource Status System (RSS) is a monitoring and generic policy system that enforces managerial and operational actions automatically. As an example, the status of a grid entity can be evaluated using a number of policies, each making assessments relative to specific monitoring information. Individual results of these policies can be combined to evaluate and propose a global status for the resource. This evaluation goes through a validation step driven by a state machine and an external validation system. Once validated, actions can be triggered acco...

  9. AN AUTONOMOUS GPS-DENIED UNMANNED VEHICLE PLATFORM BASED ON BINOCULAR VISION FOR PLANETARY EXPLORATION

    Directory of Open Access Journals (Sweden)

    M. Qin

    2018-04-01

    Full Text Available Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching based VO (Visual Odometry software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  10. An Autonomous Gps-Denied Unmanned Vehicle Platform Based on Binocular Vision for Planetary Exploration

    Science.gov (United States)

    Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.

    2018-04-01

    Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  11. Wavefront Propagation and Fuzzy Based Autonomous Navigation

    Directory of Open Access Journals (Sweden)

    Adel Al-Jumaily

    2005-06-01

    Full Text Available Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments.

  12. Advanced Autonomous Systems for Space Operations

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  13. Decentralized Traffic Management: A Synchronization-Based Intersection Control --- Extended Version

    OpenAIRE

    Tlig , Mohamed; Buffet , Olivier; Simonin , Olivier

    2014-01-01

    Controlling the vehicle traffic in large networks remains an important challenge in urban environments and transportation systems. Autonomous vehicles are today considered as a promising approach to deal with traffic control. In this paper, we propose a synchronization-based intersection control mechanism to allow the autonomous vehicle-agents to cross without stopping, i.e., in order to avoid congestions (delays) and energy loss. We decentralize the problem by managing the traffic of each in...

  14. Adaptive Control System for Autonomous Helicopter Slung Load Operations

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon

    2010-01-01

    system on the helicopter that measures the position of the slung load. The controller is a combined feedforward and feedback scheme for simultaneous avoidance of swing excitation and active swing damping. Simulations and laboratory flight tests show the effectiveness of the combined control system......This paper presents design and verification of an estimation and control system for a helicopter slung load system. The estimator provides position and velocity estimates of the slung load and is designed to augment existing navigation in autonomous helicopters. Sensor input is provided by a vision......, yielding significant load swing reduction compared to the baseline controller....

  15. Autonomous path planning solution for industrial robot manipulator using backpropagation algorithm

    Directory of Open Access Journals (Sweden)

    PeiJiang Yuan

    2015-12-01

    Full Text Available Here, we propose an autonomous path planning solution using backpropagation algorithm. The mechanism of movement used by humans in controlling their arms is analyzed and then applied to control a robot manipulator. Autonomous path planning solution is a numerical method. The model of industrial robot manipulator used in this article is a KUKA KR 210 R2700 EXTRA robot. In order to show the performance of the autonomous path planning solution, an experiment validation of path tracking is provided. Experiment validation consists of implementation of the autonomous path planning solution and the control of physical robot. The process of converging to target solution is provided. The mean absolute error of position for tool center point is also analyzed. Comparison between autonomous path planning solution and the numerical methods based on Newton–Raphson algorithm is provided to demonstrate the efficiency and accuracy of the autonomous path planning solution.

  16. Design of a Path-Tracking Steering Controller for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Chuanyang Sun

    2018-06-01

    Full Text Available This paper presents a linearization method for the vehicle and tire models under the model predictive control (MPC scheme, and proposes a linear model-based MPC path-tracking steering controller for autonomous vehicles. The steering controller is designed to minimize lateral path-tracking deviation at high speeds. The vehicle model is linearized by a sequence of supposed steering angles, which are obtained by assuming the vehicle can reach the desired path at the end of the MPC prediction horizon and stay in a steady-state condition. The lateral force of the front tire is directly used as the control input of the model, and the rear tire’s lateral force is linearized by an equivalent cornering stiffness. The course-direction deviation, which is the angle between the velocity vector and the path heading, is chosen as a control reference state. The linearization model is validated through the simulation, and the results show high prediction accuracy even in regions of large steering angle. This steering controller is tested through simulations on the CarSim-Simulink platform (R2013b, MathWorks, Natick, MA, USA, showing the improved performance of the present controller at high speeds.

  17. Evaluating employee assistance policy in an HMO-based alcoholism project.

    Science.gov (United States)

    Putnam, S L; Stout, R L

    1985-01-01

    One aspect of successful employee assistance program (EAP) implementation is the adoption of a formal, written policy, reflecting company commitment to EAP guidelines and goals. This study of criteria predictive of such policy adoption was conducted at the occupational alcoholism project of a New England health maintenance organization (HMO). Data on nearly 400 organizations contacted by occupational program consultants (OPCs) over a 20-month period were collected by questionnaire and interview. One third of these organizations adopted employee assistance policies and set about establishing formal programs. Stepwise multiple regression is the principal method used to pinpoint the correlates of policy adoption. Two of the most important of these are the attitudes of contact persons within the organization toward alcoholism and employee assistance programs, particularly their admission of alcohol problems within their social networks; and the consultants' persistence and marketing skills. The adopting organizations also had reputations for being progressive, and actively concerned about employee welfare; they tended to be large, their executives autonomous, and their union membership rates high. Inhibiting policy acceptance were fears that a written policy would jeopardize the reputation and image of the organization, and that an employee assistance program would remove internal control of personal procedures. The adequacy of the evaluative data and methods are discussed, and recommendations are offered in the interests of streamlining the efforts of OPCs and of achieving greater penetration of targeted organizations.

  18. The Human Element and Autonomous Ships

    Directory of Open Access Journals (Sweden)

    Sauli Ahvenjärvi

    2016-09-01

    Full Text Available The autonomous ship technology has become a “hot” topic in the discussion about more efficient, environmentally friendly and safer sea transportation solutions. The time is becoming mature for the introduction of commercially sensible solutions for unmanned and fully autonomous cargo and passenger ships. Safety will be the most interesting and important aspect in this development. The utilization of the autonomous ship technology will have many effects on the safety, both positive and negative. It has been announced that the goal is to make the safety of an unmanned ship better that the safety of a manned ship. However, it must be understood that the human element will still be present when fully unmanned ships are being used. The shore-based control of a ship contains new safety aspects and an interesting question will be the interaction of manned and unmanned ships in the same traffic area. The autonomous ship technology should therefore be taken into account on the training of seafarers. Also it should not be forgotten that every single control algorithm and rule of the internal decision making logic of the autonomously navigating ship has been designed and coded by a human software engineer. Thus the human element is present also in this point of the lifetime navigation system of the autonomous ship.

  19. Flocking algorithm for autonomous flying robots.

    Science.gov (United States)

    Virágh, Csaba; Vásárhelyi, Gábor; Tarcai, Norbert; Szörényi, Tamás; Somorjai, Gergő; Nepusz, Tamás; Vicsek, Tamás

    2014-06-01

    Animal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour requires thorough and realistic modeling of the robot and also the environment. In this paper, we first present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results on the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters. In our case, bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour as a group. On the other hand, by using a realistic simulation framework and studying the group behaviour of autonomous robots we can learn about the major factors influencing the flight of bird flocks.

  20. Model Reference Sliding Mode Control of Small Helicopter X.R.B based on Vision

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2008-09-01

    Full Text Available This paper presents autonomous control for indoor small helicopter X.R.B. In case of natural disaster like earthquake, a MAV (Micro Air Vehicle which can fly autonomously will be very effective for surveying the site and environment in dangerous area or narrow space, where human cannot access safely. In addition, it will be helpful to prevent secondary disaster. This paper describes vision based autonomous hovering control, guidance control for X.R.B by model reference sliding mode control.

  1. An Expressive, Lightweight and Secure Construction of Key Policy Attribute-Based Cloud Data Sharing Access Control

    Science.gov (United States)

    Lin, Guofen; Hong, Hanshu; Xia, Yunhao; Sun, Zhixin

    2017-10-01

    Attribute-based encryption (ABE) is an interesting cryptographic technique for flexible cloud data sharing access control. However, some open challenges hinder its practical application. In previous schemes, all attributes are considered as in the same status while they are not in most of practical scenarios. Meanwhile, the size of access policy increases dramatically with the raise of its expressiveness complexity. In addition, current research hardly notices that mobile front-end devices, such as smartphones, are poor in computational performance while too much bilinear pairing computation is needed for ABE. In this paper, we propose a key-policy weighted attribute-based encryption without bilinear pairing computation (KP-WABE-WB) for secure cloud data sharing access control. A simple weighted mechanism is presented to describe different importance of each attribute. We introduce a novel construction of ABE without executing any bilinear pairing computation. Compared to previous schemes, our scheme has a better performance in expressiveness of access policy and computational efficiency.

  2. A Framework for Autonomous Trajectory-Based Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed is a framework for autonomous Traffic Flow Management (TFM) under Trajectory Based Operations (TBO) for Unmanned Aerial Systems (UAS). The...

  3. Off-policy reinforcement learning for H∞ control design.

    Science.gov (United States)

    Luo, Biao; Wu, Huai-Ning; Huang, Tingwen

    2015-01-01

    The H∞ control design problem is considered for nonlinear systems with unknown internal system model. It is known that the nonlinear H∞ control problem can be transformed into solving the so-called Hamilton-Jacobi-Isaacs (HJI) equation, which is a nonlinear partial differential equation that is generally impossible to be solved analytically. Even worse, model-based approaches cannot be used for approximately solving HJI equation, when the accurate system model is unavailable or costly to obtain in practice. To overcome these difficulties, an off-policy reinforcement leaning (RL) method is introduced to learn the solution of HJI equation from real system data instead of mathematical system model, and its convergence is proved. In the off-policy RL method, the system data can be generated with arbitrary policies rather than the evaluating policy, which is extremely important and promising for practical systems. For implementation purpose, a neural network (NN)-based actor-critic structure is employed and a least-square NN weight update algorithm is derived based on the method of weighted residuals. Finally, the developed NN-based off-policy RL method is tested on a linear F16 aircraft plant, and further applied to a rotational/translational actuator system.

  4. An examination of the role of autonomous versus controlled motivation in predicting inpatient treatment outcome for anorexia nervosa.

    Science.gov (United States)

    Thaler, Lea; Israel, Mimi; Antunes, Juliana Mazanek; Sarin, Sabina; Zuroff, David C; Steiger, Howard

    2016-06-01

    We explored the effect of autonomous and controlled motivation on outcomes for patients undergoing inpatient treatment for Anorexia Nervosa (AN). Data on 80 patients with AN were available for the start of treatment, and for 49 at end of treatment. Patients completed measures of autonomous and controlled motivation, eating disorder symptoms and attitudes, and comorbid psychopathology at the start and end of treatment. Patients showed significant improvements on eating symptoms and comorbid psychopathology over the course of treatment. Autonomous motivation was a significant predictor of change in severity of eating symptoms and attitudes such that patients with higher pre-treatment levels of autonomous motivation showed larger post-treatment reductions on these indices. No such effects were associated with controlled motivation. This study highlights a relationship between autonomous motivation and outcome in an inpatient setting. © 2016 Wiley Periodicals, Inc. (Int J Eat Disord 2016; 49:626-629). © 2016 Wiley Periodicals, Inc.

  5. Autonomous target tracking of UAVs based on low-power neural network hardware

    Science.gov (United States)

    Yang, Wei; Jin, Zhanpeng; Thiem, Clare; Wysocki, Bryant; Shen, Dan; Chen, Genshe

    2014-05-01

    Detecting and identifying targets in unmanned aerial vehicle (UAV) images and videos have been challenging problems due to various types of image distortion. Moreover, the significantly high processing overhead of existing image/video processing techniques and the limited computing resources available on UAVs force most of the processing tasks to be performed by the ground control station (GCS) in an off-line manner. In order to achieve fast and autonomous target identification on UAVs, it is thus imperative to investigate novel processing paradigms that can fulfill the real-time processing requirements, while fitting the size, weight, and power (SWaP) constrained environment. In this paper, we present a new autonomous target identification approach on UAVs, leveraging the emerging neuromorphic hardware which is capable of massively parallel pattern recognition processing and demands only a limited level of power consumption. A proof-of-concept prototype was developed based on a micro-UAV platform (Parrot AR Drone) and the CogniMemTMneural network chip, for processing the video data acquired from a UAV camera on the y. The aim of this study was to demonstrate the feasibility and potential of incorporating emerging neuromorphic hardware into next-generation UAVs and their superior performance and power advantages towards the real-time, autonomous target tracking.

  6. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  7. DualTrust: A Trust Management Model for Swarm-Based Autonomic Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maiden, Wendy M. [Washington State Univ., Pullman, WA (United States)

    2010-05-01

    Trust management techniques must be adapted to the unique needs of the application architectures and problem domains to which they are applied. For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, certain characteristics of the mobile agent ant swarm -- their lightweight, ephemeral nature and indirect communication -- make this adaptation especially challenging. This thesis looks at the trust issues and opportunities in swarm-based autonomic computing systems and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. After analyzing the applicability of trust management research as it has been applied to architectures with similar characteristics, this thesis specifies the required characteristics for trust management mechanisms used to monitor the trustworthiness of entities in a swarm-based autonomic computing system and describes a trust model that meets these requirements.

  8. Development of autonomous controller system of high speed UAV from simulation to ready to fly condition

    Science.gov (United States)

    Yudhi Irwanto, Herma

    2018-02-01

    The development of autonomous controller system that is specially used in our high speed UAV, it’s call RKX-200EDF/TJ controlled vehicle needs to be continued as a step to mastery and to developt control system of LAPAN’s satellite launching rocket. The weakness of the existing control system in this high speed UAV needs to be repaired and replaced using the autonomous controller system. Conversion steps for ready-to-fly system involved controlling X tail fin, adjusting auto take off procedure by adding X axis sensor, procedure of way points reading and process of measuring distance and heading to the nearest way point, developing user-friendly ground station, and adding tools for safety landing. The development of this autonomous controller system also covered a real flying test in Pandanwangi, Lumajang in November 2016. Unfortunately, the flying test was not successful because the booster rocket was blown right after burning. However, the system could record the event and demonstrated that the controller system had worked according to plan.

  9. Policy administration in tag-based authorization

    NARCIS (Netherlands)

    Etalle, Sandro; Hinrichs, Timothy L.; Lee, Adam J.; Trivellato, Daniel; Zannone, Nicola

    2013-01-01

    Tag-Based Authorization (TBA) is a hybrid access control model that combines the ease of use of extensional access control models with the expressivity of logic-based formalisms. The main limitation of TBA is that it lacks support for policy administration. More precisely, it does not allow

  10. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control.

    Science.gov (United States)

    Kember, Guy; Ardell, Jeffrey L; Shivkumar, Kalyanam; Armour, J Andrew

    2017-01-01

    The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as 'free-floating' in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease.

  11. Autonomic control of the heart in the Asian swamp eel (Monopterus albus)

    DEFF Research Database (Denmark)

    Iversen, Nina Kerting; Huong, Do Thi Thanh; Bayley, Mark

    2011-01-01

    The Asian swamp eel (Monopterus albus) is an air-breathing teleost with very reduced gills that uses the buccal cavity for air-breathing. Here we characterise the cardiovascular changes associated with the intermittent breathing pattern in M. albus and we study the autonomic control of the heart.......3 cm H2O). The autonomic control of the heart during water- and air-breathing was revealed by infusion of the β-adrenergic antagonist propranolol and muscarinic antagonist atropine (3 mg kg− 1) in eels instrumented with an arterial catheter. Inhibition of the sympathetic and parasympathetic...... innervations of the heart revealed a strong vagal tone on the heart of water-breathing eels and that the tachycardia during air-breathing is primarily mediated by withdrawal of cholinergic tone....

  12. Simulation Modeling of Intelligent Control Algorithms for Constructing Autonomous Power Supply Systems with Improved Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Gimazov Ruslan

    2018-01-01

    Full Text Available The paper considers the issue of supplying autonomous robots by solar batteries. Low efficiency of modern solar batteries is a critical issue for the whole industry of renewable energy. The urgency of solving the problem of improved energy efficiency of solar batteries for supplying the robotic system is linked with the task of maximizing autonomous operation time. Several methods to improve the energy efficiency of solar batteries exist. The use of MPPT charge controller is one these methods. MPPT technology allows increasing the power generated by the solar battery by 15 – 30%. The most common MPPT algorithm is the perturbation and observation algorithm. This algorithm has several disadvantages, such as power fluctuation and the fixed time of the maximum power point tracking. These problems can be solved by using a sufficiently accurate predictive and adaptive algorithm. In order to improve the efficiency of solar batteries, autonomous power supply system was developed, which included an intelligent MPPT charge controller with the fuzzy logic-based perturbation and observation algorithm. To study the implementation of the fuzzy logic apparatus in the MPPT algorithm, in Matlab/Simulink environment, we developed a simulation model of the system, including solar battery, MPPT controller, accumulator and load. Results of the simulation modeling established that the use of MPPT technology had increased energy production by 23%; introduction of the fuzzy logic algorithm to MPPT controller had greatly increased the speed of the maximum power point tracking and neutralized the voltage fluctuations, which in turn reduced the power underproduction by 2%.

  13. SOLON: An autonomous vehicle mission planner

    Science.gov (United States)

    Dudziak, M. J.

    1987-01-01

    The State-Operator Logic Machine (SOLON) Planner provides an architecture for effective real-time planning and replanning for an autonomous vehicle. The highlights of the system, which distinguish it from other AI-based planners that have been designed previously, are its hybrid application of state-driven control architecture and the use of both schematic representations and logic programming for the management of its knowledge base. SOLON is designed to provide multiple levels of planning for a single autonomous vehicle which is supplied with a skeletal, partially-specified mission plan at the outset of the vehicle's operations. This mission plan consists of a set of objectives, each of which will be decomposable by the planner into tasks. These tasks are themselves comparatively complex sets of actions which are executable by a conventional real-time control system which does not perform planning but which is capable of making adjustments or modifications to the provided tasks according to constraints and tolerances provided by the Planner. The current implementation of the SOLON is in the form of a real-time simulation of the Planner module of an Intelligent Vehicle Controller (IVC) on-board an autonomous underwater vehicle (AUV). The simulation is embedded within a larger simulator environment known as ICDS (Intelligent Controller Development System) operating on a Symbolics 3645/75 computer.

  14. LHCb: Grid administration,towards an autonomic approach

    CERN Multimedia

    Ubeda Garcia, Mario

    2012-01-01

    Within the DIRAC framework in the LHCb collaboration, we deployed an autonomous policy system acting as a central status information point for grid elements. Experts working as grid administrators have a broad and very deep knowledge about the underlying system which makes them very precious. We have attempted to formalize this knowledge in an autonomous system able to aggregate information, draw conclusions, validate them, and take actions accordingly. The DIRAC Resource Status System is a monitoring and generic policy system that enforces managerial and operational actions automatically. As an example, the status of a grid entity can be evaluated using a number of policies, each making assessments relative to specific monitoring information. Individual results of these policies can be combined to evaluate and propose a global status for the resource. This evaluation goes through a validation step driven by a state machine and an external validation system. Once validated, actions can be triggered accordingl...

  15. Vision-based autonomous grasping of unknown piled objects

    International Nuclear Information System (INIS)

    Johnson, R.K.

    1994-01-01

    Computer vision techniques have been used to develop a vision-based grasping capability for autonomously picking and placing unknown piled objects. This work is currently being applied to the problem of hazardous waste sorting in support of the Department of Energy's Mixed Waste Operations Program

  16. Diagnosis of Fault Modes Masked by Control Loops with an Application to Autonomous Hovercraft Systems

    Directory of Open Access Journals (Sweden)

    Ioannis A. Raptis

    2013-01-01

    Full Text Available This paper introduces a methodology for the design, testing and assessment of incipient failure detection techniques for failing components/systems of an autonomous vehicle masked or hidden by feedback control loops. It is recognized that the optimum operation of critical assets (aircraft, autonomous systems, etc. may be compromised by feedback control loops by masking severe fault modes while compensating for typical disturbances. Detrimental consequences of such occurrences include the inability to detect expeditiously and accurately incipient failures, loss of control and inefficient operation of assets in the form of fuel overconsumption and adverse environmental impact. We pursue a systems engineering process to design, construct and test an autonomous hovercraft instrumented appropriately for improved autonomy. Hidden fault modes are detected with performance guarantees by invoking a Bayesian estimation approach called particle filtering. Simulation and experimental studies are employed to demonstrate the efficacy of the proposed methods.

  17. Autonomous star tracker based on active pixel sensors (APS)

    Science.gov (United States)

    Schmidt, U.

    2017-11-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  18. Autonomous, Controlled, and Amotivated Types of Academic Motivation: A Person-Oriented Analysis

    Science.gov (United States)

    Ratelle, Catherine F.; Guay, Frederic; Vallerand, Robert J.; Larose, Simon; Senecal, Caroline

    2007-01-01

    The authors investigated students' profiles regarding autonomous, controlled, and amotivated regulation and tested whether profile groups differed on some academic adjustment outcomes. Studies 1 and 2 performed on high school students revealed 3 profiles: (a) students with high levels of both controlled motivation and amotivation but low levels of…

  19. [The relationship between autonomous motivation and academic adjustment in junior high school students].

    Science.gov (United States)

    Nishimura, Takuma; Sakurai, Shigeo

    2013-10-01

    This study investigated the relationship between autonomous motivation and academic adjustment based on the perspective of self-determination theory. It also examined motivational profiles to reveal individual differences and the characteristic of these profiles for groups with varying levels of autonomous and controlled regulation (autonomous, controlled, high motivation, and low motivation). Data were collected from 442 junior high school students for academic motivation, academic performance, academic competence, meta-cognitive strategy, academic anxiety, apathy, and stress experience. Correlation analyses generally supported the basic hypothesis of self-determination theory that a more autonomous regulation style was strongly related to academic adjustment. The results also showed that persons with a high autonomous regulation and a low controlled regulation style were the most adaptive.

  20. Autonomous Agents on Expedition: Humans and Progenitor Ants and Planetary Exploration

    Science.gov (United States)

    Rilee, M. L.; Clark, P. E.; Curtis, S. A.; Truszkowski, W. F.

    2002-01-01

    The Autonomous Nano-Technology Swarm (ANTS) is an advanced mission architecture based on a social insect analog of many specialized spacecraft working together to achieve mission goals. The principal mission concept driving the ANTS architecture is a Main Belt Asteroid Survey in the 2020s that will involve a thousand or more nano-technology enabled, artificially intelligent, autonomous pico-spacecraft (architecture. High level, mission-oriented behaviors are to be managed by a control / communications layer of the swarm, whereas common low level functions required of all spacecraft, e.g. attitude control and guidance and navigation, are handled autonomically on each spacecraft. At the higher levels of mission planning and social interaction deliberative techniques are to be used. For the asteroid survey, ANTS acts as a large community of cooperative agents while for precursor missions there arises the intriguing possibility of Progenitor ANTS and humans acting together as agents. For optimal efficiency and responsiveness for individual spacecraft at the lowest levels of control we have been studying control methods based on nonlinear dynamical systems. We describe the critically important autonomous control architecture of the ANTS mission concept and a sequence of partial implementations that feature increasingly autonomous behaviors. The scientific and engineering roles that these Progenitor ANTS could play in human missions or remote missions with near real time human interactions, particularly to the Moon and Mars, will be discussed.

  1. Cardiac autonomic control in adolescents with primary hypertension

    Directory of Open Access Journals (Sweden)

    Havlíceková Z

    2009-12-01

    Full Text Available Abstract Background Impairment in cardiovascular autonomic regulation participates in the onset and maintenance of primary hypertension. Objective The aim of the present study was to evaluate cardiac autonomic control using long-term heart rate variability (HRV analysis in adolescents with primary hypertension. Subjects and methods Twenty two adolescent patients with primary hypertension (5 girls/17 boys aged 14-19 years and 22 healthy subjects matched for age and gender were enrolled. Two periods from 24-hour ECG recording were evaluated by HRV analysis: awake state and sleep. HRV analysis included spectral power in low frequency band (LF, in high frequency band (HF, and LF/HF ratio. Results In awake state, adolescents with primary hypertension had lower HF and higher LF and LF/HF ratio. During sleep, HF was lower and LF/HF ratio was higher in patients with primary hypertension. Conclusions A combination of sympathetic predominance and reduced vagal activity might represent a potential link between psychosocial factors and primary hypertension, associated with increased cardiovascular morbidity.

  2. A study on model fidelity for model predictive control-based obstacle avoidance in high-speed autonomous ground vehicles

    Science.gov (United States)

    Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga

    2016-11-01

    This paper investigates the level of model fidelity needed in order for a model predictive control (MPC)-based obstacle avoidance algorithm to be able to safely and quickly avoid obstacles even when the vehicle is close to its dynamic limits. The context of this work is large autonomous ground vehicles that manoeuvre at high speed within unknown, unstructured, flat environments and have significant vehicle dynamics-related constraints. Five different representations of vehicle dynamics models are considered: four variations of the two degrees-of-freedom (DoF) representation as lower fidelity models and a fourteen DoF representation with combined-slip Magic Formula tyre model as a higher fidelity model. It is concluded that the two DoF representation that accounts for tyre nonlinearities and longitudinal load transfer is necessary for the MPC-based obstacle avoidance algorithm in order to operate the vehicle at its limits within an environment that includes large obstacles. For less challenging environments, however, the two DoF representation with linear tyre model and constant axle loads is sufficient.

  3. Adaptive Sampling in Autonomous Marine Sensor Networks

    National Research Council Canada - National Science Library

    Eickstedt, Donald P

    2006-01-01

    ... oceanographic network scenario. This architecture has three major components, an intelligent, logical sensor that provides high-level environmental state information to a behavior-based autonomous vehicle control system, a new...

  4. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control

    Science.gov (United States)

    Ardell, Jeffrey L.; Shivkumar, Kalyanam; Armour, J. Andrew

    2017-01-01

    The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as ‘free-floating’ in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease. PMID:28692680

  5. Recurrent myocardial infarction: Mechanisms of free-floating adaptation and autonomic derangement in networked cardiac neural control.

    Directory of Open Access Journals (Sweden)

    Guy Kember

    Full Text Available The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as 'free-floating' in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease.

  6. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    Science.gov (United States)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  7. Toward autonomous spacecraft

    Science.gov (United States)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  8. An Autonomous Sensor System Architecture for Active Flow and Noise Control Feedback

    Science.gov (United States)

    Humphreys, William M, Jr.; Culliton, William G.

    2008-01-01

    Multi-channel sensor fusion represents a powerful technique to simply and efficiently extract information from complex phenomena. While the technique has traditionally been used for military target tracking and situational awareness, a study has been successfully completed that demonstrates that sensor fusion can be applied equally well to aerodynamic applications. A prototype autonomous hardware processor was successfully designed and used to detect in real-time the two-dimensional flow reattachment location generated by a simple separated-flow wind tunnel model. The success of this demonstration illustrates the feasibility of using autonomous sensor processing architectures to enhance flow control feedback signal generation.

  9. Requirement analysis for autonomous systems and intelligent ...

    African Journals Online (AJOL)

    First we review innovative control architectures in electric power systems such as Microgrids, Virtual power plants and Cell based systems. We evaluate application of autonomous systems and intelligent agents in each of these control architectures particularly in the context of Denmark's strategic energy plans. The second ...

  10. Cooperative Target Tracking in a Distributed Autonomous Sensor Network

    National Research Council Canada - National Science Library

    Eickstedt, Donald P; Benjamin, Michael R

    2006-01-01

    ... network. This framework has two major components, an intelligent sensor that provides highlevel state information to a behavior-based autonomous vehicle control system and a new approach to behavior-based...

  11. Distance-Based Behaviors for Low-Complexity Control in Multiagent Robotics

    Science.gov (United States)

    Pierpaoli, Pietro

    Several biological examples show that living organisms cooperate to collectively accomplish tasks impossible for single individuals. More importantly, this coordination is often achieved with a very limited set of information. Inspired by these observations, research on autonomous systems has focused on the development of distributed control techniques for control and guidance of groups of autonomous mobile agents, or robots. From an engineering perspective, when coordination and cooperation is sought in large ensembles of robotic vehicles, a reduction in hardware and algorithms' complexity becomes mandatory from the very early stages of the project design. The research for solutions capable of lowering power consumption, cost and increasing reliability are thus worth investigating. In this work, we studied low-complexity techniques to achieve cohesion and control on swarms of autonomous robots. Starting from an inspiring example with two-agents, we introduced effects of neighbors' relative positions on control of an autonomous agent. The extension of this intuition addressed the control of large ensembles of autonomous vehicles, and was applied in the form of a herding-like technique. To this end, a low-complexity distance-based aggregation protocol was defined. We first showed that our protocol produced a cohesion aggregation among the agent while avoiding inter-agent collisions. Then, a feedback leader-follower architecture was introduced for the control of the swarm. We also described how proximity measures and probability of collisions with neighbors can also be used as source of information in highly populated environments.

  12. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    Science.gov (United States)

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  13. MULTIAGENT PLANNING OF INTERSECTION PASSAGE BY AUTONOMOUS VEHICLES

    Directory of Open Access Journals (Sweden)

    I. A. Zikratov

    2016-09-01

    Full Text Available We propose a traffic management system for autonomous vehicles that are agents at the intersection. In contrast to the known solutions based on the usage of semiautonomous control systems in assembly with the control unit, this algorithm is based on the principles of decentralized multiagent control. The best travel plan for intersection passage is produced by means of optimization methods jointly by all agents belonging to a dynamic collaboration of autonomous vehicles. The order of road intersection optimal for a given criterion is determined by the agents in the process of information exchange about themselves and environment. Our experiments show that this protocol can reduce significantly the traffic density as compared to the traditional systems of traffic management. Moreover, the effectiveness of the proposed algorithm increases with increasing density of road traffic. In addition, the absence of the critical object, that is the control unit, in the control system, reduces significantly the effectiveness of possible failures and hacker attacks on the intersection control system.

  14. An Expert System for Autonomous Spacecraft Control

    Science.gov (United States)

    Sherwood, Rob; Chien, Steve; Tran, Daniel; Cichy, Benjamin; Castano, Rebecca; Davies, Ashley; Rabideau, Gregg

    2005-01-01

    The Autonomous Sciencecraft Experiment (ASE), part of the New Millennium Space Technology 6 Project, is flying onboard the Earth Orbiter 1 (EO-1) mission. The ASE software enables EO-1 to autonomously detect and respond to science events such as: volcanic activity, flooding, and water freeze/thaw. ASE uses classification algorithms to analyze imagery onboard to detect chang-e and science events. Detection of these events is then used to trigger follow-up imagery. Onboard mission planning software then develops a response plan that accounts for target visibility and operations constraints. This plan is then executed using a task execution system that can deal with run-time anomalies. In this paper we describe the autonomy flight software and how it enables a new paradigm of autonomous science and mission operations. We will also describe the current experiment status and future plans.

  15. Optimal and Autonomous Control Using Reinforcement Learning: A Survey.

    Science.gov (United States)

    Kiumarsi, Bahare; Vamvoudakis, Kyriakos G; Modares, Hamidreza; Lewis, Frank L

    2018-06-01

    This paper reviews the current state of the art on reinforcement learning (RL)-based feedback control solutions to optimal regulation and tracking of single and multiagent systems. Existing RL solutions to both optimal and control problems, as well as graphical games, will be reviewed. RL methods learn the solution to optimal control and game problems online and using measured data along the system trajectories. We discuss Q-learning and the integral RL algorithm as core algorithms for discrete-time (DT) and continuous-time (CT) systems, respectively. Moreover, we discuss a new direction of off-policy RL for both CT and DT systems. Finally, we review several applications.

  16. Autonomic Modulation in Duchenne Muscular Dystrophy during a Computer Task: A Prospective Control Trial.

    Directory of Open Access Journals (Sweden)

    Mayra Priscila Boscolo Alvarez

    Full Text Available Duchenne Muscular Dystrophy (DMD is characterized by progressive muscle weakness that can lead to disability. Owing to functional difficulties faced by individuals with DMD, the use of assistive technology is essential to provide or facilitate functional abilities. In DMD, cardiac autonomic dysfunction has been reported in addition to musculoskeletal impairment. Consequently, the objective was to investigate acute cardiac autonomic responses, by Heart Rate Variability (HRV, during computer tasks in subjects with DMD.HRV was assessed by linear and nonlinear methods, using the heart rate monitor Polar RS800CX chest strap Electrocardiographic measuring device. Then, 45 subjects were included in the group with DMD and 45 in the healthy Typical Development (TD control group. They were assessed for twenty minutes at rest sitting, and five minutes after undergoing a task on the computer.Individuals with DMD had a statistically significant lower parasympathetic cardiac modulation at rest when compared to the control group, which further declined when undergoing the tasks on the computer.DMD patients presented decreased HRV and exhibited greater intensity of cardiac autonomic responses during computer tasks characterized by vagal withdrawal when compared to the healthy TD control subjects.

  17. Heterogeneous Teams of Autonomous Vehicles: Advanced Sensing & Control

    Science.gov (United States)

    2009-03-01

    Final Technical 3. DATES COVERED (From To) 7/1/05-12/31708 4. TITLE AND SUBTITLE Heterogeneous Teams of Autonomous Vehicles Advanced Sensing...assimilating data from underwater and surface autonomous vehicles in addition to the usual sources of Eulerian and Lagrangian systems into a small scale

  18. Inter-Vehicle Communication System Utilizing Autonomous Distributed Transmit Power Control

    Science.gov (United States)

    Hamada, Yuji; Sawa, Yoshitsugu; Goto, Yukio; Kumazawa, Hiroyuki

    In ad-hoc network such as inter-vehicle communication (IVC) system, safety applications that vehicles broadcast the information such as car velocity, position and so on periodically are considered. In these applications, if there are many vehicles broadcast data in a communication area, congestion incurs a problem decreasing communication reliability. We propose autonomous distributed transmit power control method to keep high communication reliability. In this method, each vehicle controls its transmit power using feed back control. Furthermore, we design a communication protocol to realize the proposed method, and we evaluate the effectiveness of proposed method using computer simulation.

  19. Efficient Multivariable Generalized Predictive Control for Autonomous Underwater Vehicle in Vertical Plane

    OpenAIRE

    Yao, Xuliang; Yang, Guangyi

    2016-01-01

    This paper presents the design and simulation validation of a multivariable GPC (generalized predictive control) for AUV (autonomous underwater vehicle) in vertical plane. This control approach has been designed in the case of AUV navigating with low speed near water surface, in order to restrain wave disturbance effectively and improve pitch and heave motion stability. The proposed controller guarantees compliance with rudder manipulation, AUV output constraints, and driving energy consumpti...

  20. Control of autonomous ground vehicles: a brief technical review

    Science.gov (United States)

    Babak, Shahian-Jahromi; Hussain, Syed A.; Karakas, Burak; Cetin, Sabri

    2017-07-01

    This paper presents a brief review of the developments achieved in autonomous vehicle systems technology. A concise history of autonomous driver assistance systems is presented, followed by a review of current state of the art sensor technology used in autonomous vehicles. Standard sensor fusion method that has been recently explored is discussed. Finally, advances in embedded software methodologies that define the logic between sensory information and actuation decisions are reviewed.

  1. A Path Tracking Algorithm Using Future Prediction Control with Spike Detection for an Autonomous Vehicle Robot

    Directory of Open Access Journals (Sweden)

    Muhammad Aizzat Zakaria

    2013-08-01

    Full Text Available Trajectory tracking is an important aspect of autonomous vehicles. The idea behind trajectory tracking is the ability of the vehicle to follow a predefined path with zero steady state error. The difficulty arises due to the nonlinearity of vehicle dynamics. Therefore, this paper proposes a stable tracking control for an autonomous vehicle. An approach that consists of steering wheel control and lateral control is introduced. This control algorithm is used for a non-holonomic navigation problem, namely tracking a reference trajectory in a closed loop form. A proposed future prediction point control algorithm is used to calculate the vehicle's lateral error in order to improve the performance of the trajectory tracking. A feedback sensor signal from the steering wheel angle and yaw rate sensor is used as feedback information for the controller. The controller consists of a relationship between the future point lateral error, the linear velocity, the heading error and the reference yaw rate. This paper also introduces a spike detection algorithm to track the spike error that occurs during GPS reading. The proposed idea is to take the advantage of the derivative of the steering rate. This paper aims to tackle the lateral error problem by applying the steering control law to the vehicle, and proposes a new path tracking control method by considering the future coordinate of the vehicle and the future estimated lateral error. The effectiveness of the proposed controller is demonstrated by a simulation and a GPS experiment with noisy data. The approach used in this paper is not limited to autonomous vehicles alone since the concept of autonomous vehicle tracking can be used in mobile robot platforms, as the kinematic model of these two platforms is similar.

  2. Urban stormwater source control policies: why and how?

    Directory of Open Access Journals (Sweden)

    G. Petrucci

    2014-09-01

    Full Text Available Stormwater source control is becoming a common strategy for urban stormwater management in many countries. It relies on regulations or other policy instruments compelling or inciting implementation, for each new urban development, of small-scale facilities to locally store and manage stormwater. Local authorities that pioneered source control since the 1980s have already observed that small-scale facilities systematically implemented over a catchment are able to influence its hydrological behaviour. This capability is the main strength of source control, as it allows compensation for the negative effects of urbanization. Yet, it also represents its main risk: if initial decision-making is not sufficiently accurate, source control can produce long-term negative effects. Because of its current spreading, source control will acquire an increasing role as a driver of hydrological changes in urban catchments, and the directions of these changes depend on current policy-making practices. This paper presents an analysis and a critical discussion of the main objectives that policy-makers attribute to stormwater source control. The investigation is based on a sample of French case studies, completed by a literature review for international comparison. It identifies four main objectives, some typical of urban stormwater management and some more innovative: flood reduction, receiving waters protection, sustainable development, costs reduction. The discussion focuses on how current policy-making practices are able to translate these objectives in concrete policy instruments, and on which knowledge and tools could improve this process. It is shown that for some objectives, basic knowledge is available, but the creation of policy instruments which are effective at the catchment scale and adapted to local conditions is still problematic. For other objectives, substantial lacks of knowledge exist, casting doubts on long-term effectiveness of current policy

  3. A Sampling Based Approach to Spacecraft Autonomous Maneuvering with Safety Specifications

    Science.gov (United States)

    Starek, Joseph A.; Barbee, Brent W.; Pavone, Marco

    2015-01-01

    This paper presents a methods for safe spacecraft autonomous maneuvering that leverages robotic motion-planning techniques to spacecraft control. Specifically the scenario we consider is an in-plan rendezvous of a chaser spacecraft in proximity to a target spacecraft at the origin of the Clohessy Wiltshire Hill frame. The trajectory for the chaser spacecraft is generated in a receding horizon fashion by executing a sampling based robotic motion planning algorithm name Fast Marching Trees (FMT) which efficiently grows a tree of trajectories over a set of probabillistically drawn samples in the state space. To enforce safety the tree is only grown over actively safe samples for which there exists a one-burn collision avoidance maneuver that circularizes the spacecraft orbit along a collision-free coasting arc and that can be executed under potential thrusters failures. The overall approach establishes a provably correct framework for the systematic encoding of safety specifications into the spacecraft trajectory generations process and appears amenable to real time implementation on orbit. Simulation results are presented for a two-fault tolerant spacecraft during autonomous approach to a single client in Low Earth Orbit.

  4. Coordinated path-following and direct yaw-moment control of autonomous electric vehicles with sideslip angle estimation

    Science.gov (United States)

    Guo, Jinghua; Luo, Yugong; Li, Keqiang; Dai, Yifan

    2018-05-01

    This paper presents a novel coordinated path following system (PFS) and direct yaw-moment control (DYC) of autonomous electric vehicles via hierarchical control technique. In the high-level control law design, a new fuzzy factor is introduced based on the magnitude of longitudinal velocity of vehicle, a linear time varying (LTV)-based model predictive controller (MPC) is proposed to acquire the wheel steering angle and external yaw moment. Then, a pseudo inverse (PI) low-level control allocation law is designed to realize the tracking of desired external moment torque and management of the redundant tire actuators. Furthermore, the vehicle sideslip angle is estimated by the data fusion of low-cost GPS and INS, which can be obtained by the integral of modified INS signals with GPS signals as initial value. Finally, the effectiveness of the proposed control system is validated by the simulation and experimental tests.

  5. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    International Nuclear Information System (INIS)

    Pucyk, P.

    2005-09-01

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. Ths paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (orig.)

  6. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    International Nuclear Information System (INIS)

    Pucyk, P.D.

    2006-03-01

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. This paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (Orig.)

  7. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  8. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice

    Directory of Open Access Journals (Sweden)

    Laurie L. Baggio

    2017-11-01

    Conclusions: GLP-1R agonists increase HR through multiple mechanisms, including regulation of autonomic nervous system function, and activation of the atrial GLP-1R. Surprisingly, the isolated atrial GLP-1R does not transduce a direct chronotropic effect following exposure to GLP-1R agonists in the intact heart, or isolated atrium, ex vivo. Hence, cardiac GLP-1R circuits controlling HR require neural inputs and do not function in a heart-autonomous manner.

  9. Optimal strategies for the control of autonomous vehicles in data assimilation

    Science.gov (United States)

    McDougall, D.; Moore, R. O.

    2017-08-01

    We propose a method to compute optimal control paths for autonomous vehicles deployed for the purpose of inferring a velocity field. In addition to being advected by the flow, the vehicles are able to effect a fixed relative speed with arbitrary control over direction. It is this direction that is used as the basis for the locally optimal control algorithm presented here, with objective formed from the variance trace of the expected posterior distribution. We present results for linear flows near hyperbolic fixed points.

  10. Advancing Autonomous Operations for Deep Space Vehicles

    Science.gov (United States)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  11. Insect-Based Vision for Autonomous Vehicles: A Feasibility Study

    Science.gov (United States)

    Srinivasan, Mandyam V.

    1999-01-01

    The aims of the project were to use a high-speed digital video camera to pursue two questions: (1) To explore the influence of temporal imaging constraints on the performance of vision systems for autonomous mobile robots; (2) To study the fine structure of insect flight trajectories in order to better understand the characteristics of flight control, orientation and navigation.

  12. Optimal Design and Real Time Implementation of Autonomous Microgrid Including Active Load

    OpenAIRE

    Mohamed A. Hassan; Muhammed Y. Worku; Mohamed A. Abido

    2018-01-01

    Controller gains and power-sharing parameters are the main parameters affect the dynamic performance of the microgrid. Considering an active load to the autonomous microgrid, the stability problem will be more involved. In this paper, the active load effect on microgrid dynamic stability is explored. An autonomous microgrid including three inverter-based distributed generations (DGs) with an active load is modeled and the associated controllers are designed. Controller gains of the inverters ...

  13. Multi-state autonomous drilling for lunar exploration

    Directory of Open Access Journals (Sweden)

    Chen Chongbin

    2016-10-01

    Full Text Available Due to the lack of information of subsurface lunar regolith stratification which varies along depth, the drilling device may encounter lunar soil and lunar rock randomly in the drilling process. To meet the load safety requirements of unmanned sampling mission under limited orbital resources, the control strategy of autonomous drilling should adapt to the indeterminable lunar environments. Based on the analysis of two types of typical drilling media (i.e., lunar soil and lunar rock, this paper proposes a multi-state control strategy for autonomous lunar drilling. To represent the working circumstances in the lunar subsurface and reduce the complexity of the control algorithm, lunar drilling process was categorized into three drilling states: the interface detection, initiation of drilling parameters for recognition and drilling medium recognition. Support vector machine (SVM and continuous wavelet transform were employed for the online recognition of drilling media and interface, respectively. Finite state machine was utilized to control the transition among different drilling states. To verify the effectiveness of the multi-state control strategy, drilling experiments were implemented with multi-layered drilling media constructed by lunar soil simulant and lunar rock simulant. The results reveal that the multi-state control method is capable of detecting drilling state variation and adjusting drilling parameters timely under vibration interferences. The multi-state control method provides a feasible reference for the control of extraterrestrial autonomous drilling.

  14. Biology-Inspired Autonomous Control

    Science.gov (United States)

    2011-08-31

    insect brain, allow these animals to fly with damaged wings, order of body mass payloads (e.g., foraging bees with a load of pollen , blood satiated...The research focus addressed two broad, complementary research areas : autonomous systems concepts inspired by the behavior and neurobiology...UL 46 19b. TELEPHONE NUMBER (include area code) 850 883-1887 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 iii Table of

  15. Optimization of an Autonomous Car Controller Using a Self-Adaptive Evolutionary Strategy

    Directory of Open Access Journals (Sweden)

    Tae Seong Kim

    2012-09-01

    Full Text Available Autonomous cars control the steering wheel, acceleration and the brake pedal, the gears and the clutch using sensory information from multiple sources. Like a human driver, it understands the current situation on the roads from the live streaming of sensory values. The decision-making module often suffers from the limited range of sensors and complexity due to the large number of sensors and actuators. Because it is tedious and difficult to design the controller manually from trial-and-error, it is desirable to use intelligent optimization algorithms. In this work, we propose optimizing the parameters of an autonomous car controller using self-adaptive evolutionary strategies (SAESs which co-evolve solutions and mutation steps for each parameter. We also describe how the most generalized parameter set can be retrieved from the process of optimization. Open-source car racing simulation software (TORCS is used to test the goodness of the proposed methods on 6 different tracks. Experimental results show that the SAES is competitive with the manual design of authors and a simple ES.

  16. Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.

    Science.gov (United States)

    Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2008-01-01

    Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation.

  17. The OPL Access Control Policy Language

    Science.gov (United States)

    Alm, Christopher; Wolf, Ruben; Posegga, Joachim

    Existing policy languages suffer from a limited ability of directly and elegantly expressing high-level access control principles such as history-based separation of duty [22], binding of duty [26], context constraints [24], Chinese wall properties [10], and obligations [20]. It is often difficult to extend a language in order to retrofit these features once required or it is necessary to use complicated and complex language constructs to express such concepts. The latter, however, is cumbersome and error-prone for humans dealing with policy administration.

  18. Autonomous Control of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  19. Autonomous Control of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Basher, H.

    2003-01-01

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors

  20. Instance-based Policy Learning by Real-coded Genetic Algorithms and Its Application to Control of Nonholonomic Systems

    Science.gov (United States)

    Miyamae, Atsushi; Sakuma, Jun; Ono, Isao; Kobayashi, Shigenobu

    The stabilization control of nonholonomic systems have been extensively studied because it is essential for nonholonomic robot control problems. The difficulty in this problem is that the theoretical derivation of control policy is not necessarily guaranteed achievable. In this paper, we present a reinforcement learning (RL) method with instance-based policy (IBP) representation, in which control policies for this class are optimized with respect to user-defined cost functions. Direct policy search (DPS) is an approach for RL; the policy is represented by parametric models and the model parameters are directly searched by optimization techniques including genetic algorithms (GAs). In IBP representation an instance consists of a state and an action pair; a policy consists of a set of instances. Several DPSs with IBP have been previously proposed. In these methods, sometimes fail to obtain optimal control policies when state-action variables are continuous. In this paper, we present a real-coded GA for DPSs with IBP. Our method is specifically designed for continuous domains. Optimization of IBP has three difficulties; high-dimensionality, epistasis, and multi-modality. Our solution is designed for overcoming these difficulties. The policy search with IBP representation appears to be high-dimensional optimization; however, instances which can improve the fitness are often limited to active instances (instances used for the evaluation). In fact, the number of active instances is small. Therefore, we treat the search problem as a low dimensional problem by restricting search variables only to active instances. It has been commonly known that functions with epistasis can be efficiently optimized with crossovers which satisfy the inheritance of statistics. For efficient search of IBP, we propose extended crossover-like mutation (extended XLM) which generates a new instance around an instance with satisfying the inheritance of statistics. For overcoming multi-modality, we

  1. Simulation Framework for Rebalancing of Autonomous Mobility on Demand Systems

    Directory of Open Access Journals (Sweden)

    Marczuk Katarzyna A.

    2016-01-01

    This study is built upon our previous work on Autonomous Mobility on Demand (AMOD systems. Our methodology is simulation-based and we make use of SimMobility, an agent-based microscopic simulation platform. In the current work we focus on the framework for testing different rebalancing policies for the AMOD systems. We compare three different rebalancing methods: (i no rebalancing, (ii offline rebalancing, and (iii online rebalancing. Simulation results indicate that rebalancing reduces the required fleet size and shortens the customers’ wait time.

  2. Particle swarm optimization based fuzzy logic controller for autonomous green power energy system with hydrogen storage

    International Nuclear Information System (INIS)

    Safari, S.; Ardehali, M.M.; Sirizi, M.J.

    2013-01-01

    Highlights: ► Optimized fuzzy logic controller for a hybrid green power system is developed. ► PSO algorithm is used to optimize membership functions of controller. ► Optimized fuzzy logic controller results in lower O and M costs and LPSP. ► Optimization results in less variation of battery state of charge. - Abstract: The objective of this study is to develop an optimized fuzzy logic controller (FLC) for operating an autonomous hybrid green power system (HGPS) based on the particle swarm optimization (PSO) algorithm. An electrolyzer produces hydrogen from surplus energy generated by the wind turbine and photovoltaic array of HGPS for later use by a fuel cell. The PSO algorithm is used to optimize membership functions of the FLC. The FLC inputs are (a) net power flow and (b) batteries state of charge (SOC) and FLC output determines the time for hydrogen production or consumption. Actual data for weekly residential load, wind speed, ambient temperature, and solar irradiation are used for performance simulation and analysis of the HGPS examined. The weekly operation and maintenance (O and M) costs and the loss of power supply probability (LPSP) are considered in the optimization procedure. It is determined that FLC optimization results in (a) reduced fluctuations in batteries SOC which translates into longer life for batteries and the average SOC is increased by 6.18% and (b) less working hours for fuel cell, when the load is met by wind and PV. It is found that the optimized FLC results in lower O and M costs and LPSP by 57% and 33%, respectively, as compared to its un-optimized counterpart. In addition, a reduction of 18% in investment cost is achievable by optimal sizing and reducing the capacity of HGPS equipment.

  3. Autonomous control of distributed storages in microgrids

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    Operation of distributed generators in microgrids has widely been discussed, but would not be fully autonomous, if distributed storages are not considered. Storages in general are important, since they provide energy buffering to load changes, energy leveling to source variations and ride......-through enhancement to the overall microgrids. Recognizing their importance, this paper presents a scheme for sharing power among multiple distributed storages, in coordination with the distributed sources and loads. The scheme prompts the storages to autonomously sense for system conditions, requesting for maximum...

  4. Autonomous and controlled motivation for eating disorders treatment: baseline predictors and relationship to treatment outcome.

    Science.gov (United States)

    Carter, Jacqueline C; Kelly, Allison C

    2015-03-01

    This study aimed to identify baseline predictors of autonomous and controlled motivation for treatment (ACMT) in a transdiagnostic eating disorder sample, and to examine whether ACMT at baseline predicted change in eating disorder psychopathology during treatment. Participants were 97 individuals who met DSM-IV-TR criteria for an eating disorder and were admitted to a specialized intensive treatment programme. Self-report measures of eating disorder psychopathology, ACMT, and various psychosocial variables were completed at the start of treatment. A subset of these measures was completed again after 3, 6, 9, and 12 weeks of treatment. Multiple regression analyses showed that baseline autonomous motivation was higher among patients who reported more self-compassion and more received social support, whereas the only baseline predictor of controlled motivation was shame. Multilevel modelling revealed that higher baseline autonomous motivation predicted faster decreases in global eating disorder psychopathology, whereas the level of controlled motivation at baseline did not. The current findings suggest that developing interventions designed to foster autonomous motivation specifically and employing autonomy supportive strategies may be important to improving eating disorders treatment outcome. The findings of this study suggest that developing motivational interventions that focus specifically on enhancing autonomous motivation for change may be important for promoting eating disorder recovery. Our results lend support for the use of autonomy supportive strategies to strengthen personally meaningful reasons to achieve freely chosen change goals in order to enhance treatment for eating disorders. One study limitation is that there were no follow-up assessments beyond the 12-week study and we therefore do not know whether the relationships that we observed persisted after treatment. Another limitation is that this was a correlational study and it is therefore important

  5. Why do adolescents gather information or stick to parental norms? Examining autonomous and controlled motives behind adolescents' identity style.

    Science.gov (United States)

    Smits, Ilse; Soenens, Bart; Vansteenkiste, Maarten; Luyckx, Koen; Goossens, Luc

    2010-11-01

    Self-determination theory (SDT) distinguishes between autonomous and controlled reasons for people's behavior and essentially states that beneficial effects for individuals' psychosocial adjustment will accrue when behavior is guided by autonomous (rather than controlled) motives. The present study tested this assumption in the area of adolescents' identity styles. In a sample of mid-adolescents (N = 247; 53% female), it was found that the motives for using an information-oriented or a normative identity style explained additional variance beyond the identity styles as such in two of the adjustment outcomes examined. Specifically, autonomous motives underlying these two identity styles were positively related to commitment and personal well-being, whereas controlled motives were negatively related to these same adjustment outcomes. Perceived autonomy-supportive parenting was examined as a possible antecedent of the motives behind identity styles. Consistent with hypotheses, it was found that autonomy-supportive parenting was positively related to autonomous motives and negatively to controlled motives underlying identity styles. Implications for future research on the motivational dynamics behind identity development are discussed.

  6. Cardiovascular autonomic control during short-term thermoneutral and cool head-out immersion.

    Science.gov (United States)

    Mourot, Laurent; Bouhaddi, Malika; Gandelin, Emmanuel; Cappelle, Sylvie; Dumoulin, Gilles; Wolf, Jean-Pierre; Rouillon, Jean Denis; Regnard, Jacques

    2008-01-01

    Moderately cold head-out water immersion stimulates both baro- and cold-receptors, and triggers complex and contradictory effects on the cardiovascular system and its autonomic nervous control. To assess the effects of water immersion and cold on cardiovascular status and related autonomic nervous activity. Hemodynamic variables and indexes of autonomic nervous activity (analysis of heart rate and blood pressure variability) were evaluated in 12 healthy subjects during 3 exposures of 20 min each in the upright position, i.e., in air (AIR, 24-25 degrees C), and during head-out water immersion at 35-36 degrees C (WIn) and 26-27 degrees C (WIc). Plasma noradrenaline, systolic and diastolic blood pressure, and total peripheral resistances were reduced during WIn compared to AIR (263.9 +/- 39.4 vs. 492.5 +/- 35.7 pg x ml(-1), 116.5 +/- 3.7 and 65.4 +/- 1.7 mmHg vs. 140.8 +/- 4.7 and 89.8 +/- 2.8 mmHg, 14.1 +/- 1.0 vs. 16.3 +/- 0.9 mmHg x L(-1) x min, respectively) while they were increased during WIc (530.8 +/- 84.7 pg ml(-1), 148.0 +/- 7.0 mmHg, 80.8 +/- 3.0 mmHg, and 25.8 +/- 1.9 mmHg x L(-1) x min, respectively). The blood pressure variability was reduced to the same extent during WIc and Win compared to AIR. Heart rate decreased during WIn (67.8 +/- 2.7 vs. 81.2 +/- 2.7 bpm during AIR), in parallel with an increased cardiac parasympathetic activity. This pattern was strengthened during WIc (55.3 +/- 2.2 bpm). Thermoneutral WI lowered sympathetic activity and arterial tone, while moderate whole-body skin cooling triggered vascular sympathetic activation. Conversely, both WI and cold triggered cardiac parasympathetic activation, highlighting a complex autonomic control of the cardiovascular system.

  7. Autonomous vehicle motion control, approximate maps, and fuzzy logic

    Science.gov (United States)

    Ruspini, Enrique H.

    1993-01-01

    Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.

  8. White rice consumption and risk of esophageal cancer in Xinjiang Uyghur Autonomous Region, northwest China: a case-control study

    OpenAIRE

    Tang, Li; Xu, Fenglian; Zhang, Taotao; Lei, Jun; Binns, Colin W.; Lee, Andy H.

    2015-01-01

    This study investigated the association between white rice consumption and the risk of esophageal cancer in remote northwest China, where the cancer incidence is known to be high. A case-control study was conducted during 2008?2009 in Urumqi and Shihezi, Xinjiang Uyghur Autonomous Region of China. Participants were 359 incident esophageal cancer patients and 380 hospital-based controls. Information on habitual white rice consumption was obtained by personal interview using a validated semi-qu...

  9. Coordinated Voltage Control of a Wind Farm based on Model Predictive Control

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Guo, Qinglai

    2016-01-01

    This paper presents an autonomous wind farm voltage controller based on Model Predictive Control (MPC). The reactive power compensation and voltage regulation devices of the wind farm include Static Var Compensators (SVCs), Static Var Generators (SVGs), Wind Turbine Generators (WTGs) and On...... are calculated based on an analytical method to improve the computation efficiency and overcome the convergence problem. Two control modes are designed for both voltage violated and normal operation conditions. A wind farm with 20 wind turbines was used to conduct case studies to verify the proposed coordinated...

  10. The evolution of HIV policy in Vietnam: from punitive control measures to a more rights-based approach.

    Science.gov (United States)

    Nguyen Ha, Pham; Pharris, Anastasia; Huong, Nguyen Thanh; Chuc, Nguyen Thi Kim; Brugha, Ruairi; Thorson, Anna

    2010-08-28

    Policymaking in Vietnam has traditionally been the preserve of the political elite, not open to the scrutiny of those outside the Communist Party. This paper aims to analyse Vietnam's HIV policy development in order to describe and understand the policy content, policy-making processes, actors and obstacles to policy implementation. Nine policy documents on HIV were analysed and 17 key informant interviews were conducted in Hanoi and Quang Ninh Province, based on a predesigned interview guide. Framework analysis, a type of qualitative content analysis, was applied for data analysis. Our main finding was that during the last two decades, developments in HIV policy in Vietnam were driven in a top-down way by the state organs, with support and resources coming from international agencies. Four major themes were identified: HIV policy content, the policy-making processes, the actors involved and human resources for policy implementation. Vietnam's HIV policy has evolved from one focused on punitive control measures to a more rights-based approach, encompassing harm reduction and payment of health insurance for medical costs of patients with HIV-related illness. Low salaries and staff reluctance to work with patients, many of whom are drug users and female sex workers, were described as the main barriers to low health staff motivation. Health policy analysis approaches can be applied in a traditional one party state and can demonstrate how similar policy changes take place, as those found in pluralistic societies, but through more top-down and somewhat hidden processes. Enhanced participation of other actors, like civil society in the policy process, is likely to contribute to policy formulation and implementation that meets the diverse needs and concerns of its population.

  11. Sliding mode control of an autonomous parallel fuel cell-super capacitor power source

    Energy Technology Data Exchange (ETDEWEB)

    More, Jeronimo J. [Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires (Argentina). Facultad de Ingenieria. Lab. de Electronica Industrial, Control e Instrumentacion], Email: jmore@ing.unlp.edu.ar; Puleston, Paul F [Consejo de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Kunusch, Cristian; Colomer, Jordi Riera I [Universitat Politecnica de Catalunya, Barcelona (Spain). Inst. de Robotica i Informatica Industrial (IRII)

    2010-07-01

    Nowadays, hydrogen fuel cell (FC) based systems emerge as one promising renewable alternative to fossil fuel systems in automotive and residential applications. However, their output dynamic response is relatively slow, mostly due to water and reactant gases dynamics. To overcome this limitation, FC-super capacitors (SCs) topologies can be used. The latter is capable of managing very fast power variations, presenting in addition high power density, long life cycle and good charge/discharge efficiency. In this work, a FC-SCs-based autonomous hybrid system for residential applications is considered. The FC and SCs are connected in parallel, through two separate DC/DC converters, to a DC bus. Under steady state conditions, the FC must deliver the load power requirement, while maintaining the SCs voltage regulated to the desired value. Under sudden load variations, the FC current rate must be limited to assure a safe transition to the new point of operation. During this current rate limitation mode, the SCs must deliver or absorb the power difference. To this end, a sliding mode strategy is proposed to satisfy to control objectives. The main one is the robust regulation of the DC bus voltage, even in the presence of system uncertainties and disturbances, such as load changes and FC voltage variations. Additionally, a second control objective is attained, namely to guarantee the adequate level of charge in the SCs, once the FC reaches the new steady state operation point. In this way, the system can meet the load power demand, even under sudden changes, and it can also satisfy a power demand higher than the nominal FC power, during short periods. The proposed control strategy is evaluated exhaustively by computer simulation considering fast load variations. The results presented in this work, corresponds to the first stage of a R and D collaboration project for the design and development of a novel FC-SCs-based autonomous hybrid system. In the next phase, the proposed

  12. Sliding mode control of an autonomous parallel fuel cell-super capacitor power source

    Energy Technology Data Exchange (ETDEWEB)

    More, Jeronimo J. [Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires (Argentina). Facultad de Ingenieria. Lab. de Electronica Industrial, Control e Instrumentacion], Email: jmore@ing.unlp.edu.ar; Puleston, Paul F. [Consejo de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Kunusch, Cristian; Colomer, Jordi Riera I. [Universitat Politecnica de Catalunya, Barcelona (Spain). Inst. de Robotica i Informatica Industrial (IRII)

    2010-07-01

    Nowadays, hydrogen fuel cell (FC) based systems emerge as one promising renewable alternative to fossil fuel systems in automotive and residential applications. However, their output dynamic response is relatively slow, mostly due to water and reactant gases dynamics. To overcome this limitation, FC-super capacitors (SCs) topologies can be used. The latter is capable of managing very fast power variations, presenting in addition high power density, long life cycle and good charge/discharge efficiency. In this work, a FC-SCs-based autonomous hybrid system for residential applications is considered. The FC and SCs are connected in parallel, through two separate DC/DC converters, to a DC bus. Under steady state conditions, the FC must deliver the load power requirement, while maintaining the SCs voltage regulated to the desired value. Under sudden load variations, the FC current rate must be limited to assure a safe transition to the new point of operation. During this current rate limitation mode, the SCs must deliver or absorb the power difference. To this end, a sliding mode strategy is proposed to satisfy to control objectives. The main one is the robust regulation of the DC bus voltage, even in the presence of system uncertainties and disturbances, such as load changes and FC voltage variations. Additionally, a second control objective is attained, namely to guarantee the adequate level of charge in the SCs, once the FC reaches the new steady state operation point. In this way, the system can meet the load power demand, even under sudden changes, and it can also satisfy a power demand higher than the nominal FC power, during short periods. The proposed control strategy is evaluated exhaustively by computer simulation considering fast load variations. The results presented in this work, corresponds to the first stage of a R and D collaboration project for the design and development of a novel FC-SCs-based autonomous hybrid system. In the next phase, the proposed

  13. Brain Circuitry Supporting Multi-Organ Autonomic Outflow in Response to Nausea.

    Science.gov (United States)

    Sclocco, Roberta; Kim, Jieun; Garcia, Ronald G; Sheehan, James D; Beissner, Florian; Bianchi, Anna M; Cerutti, Sergio; Kuo, Braden; Barbieri, Riccardo; Napadow, Vitaly

    2016-02-01

    While autonomic outflow is an important co-factor of nausea physiology, central control of this outflow is poorly understood. We evaluated sympathetic (skin conductance level) and cardiovagal (high-frequency heart rate variability) modulation, collected synchronously with functional MRI (fMRI) data during nauseogenic visual stimulation aimed to induce vection in susceptible individuals. Autonomic data guided analysis of neuroimaging data, using a stimulus-based (analysis windows set by visual stimulation protocol) and percept-based (windows set by subjects' ratings) approach. Increased sympathetic and decreased parasympathetic modulation was associated with robust and anti-correlated brain activity in response to nausea. Specifically, greater autonomic response was associated with reduced fMRI signal in brain regions such as the insula, suggesting an inhibitory relationship with premotor brainstem nuclei. Interestingly, some sympathetic/parasympathetic specificity was noted. Activity in default mode network and visual motion areas was anti-correlated with parasympathetic outflow at peak nausea. In contrast, lateral prefrontal cortical activity was anti-correlated with sympathetic outflow during recovery, soon after cessation of nauseogenic stimulation. These results suggest divergent central autonomic control for sympathetic and parasympathetic response to nausea. Autonomic outflow and the central autonomic network underlying ANS response to nausea may be an important determinant of overall nausea intensity and, ultimately, a potential therapeutic target. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. vSLAM: vision-based SLAM for autonomous vehicle navigation

    Science.gov (United States)

    Goncalves, Luis; Karlsson, Niklas; Ostrowski, Jim; Di Bernardo, Enrico; Pirjanian, Paolo

    2004-09-01

    Among the numerous challenges of building autonomous/unmanned vehicles is that of reliable and autonomous localization in an unknown environment. In this paper we present a system that can efficiently and autonomously solve the robotics 'SLAM' problem, where a robot placed in an unknown environment, simultaneously must localize itself and make a map of the environment. The system is vision-based, and makes use of Evolution Robotic's powerful object recognition technology. As the robot explores the environment, it is continuously performing four tasks, using information from acquired images and the drive system odometry. The robot: (1) recognizes previously created 3-D visual landmarks; (2) builds new 3-D visual landmarks; (3) updates the current estimate of its location, using the map; (4) updates the landmark map. In indoor environments, the system can build a map of a 5m by 5m area in approximately 20 minutes, and can localize itself with an accuracy of approximately 15 cm in position and 3 degrees in orientation relative to the global reference frame of the landmark map. The same system can be adapted for outdoor, vehicular use.

  15. Autonomous Spacecraft Communication Interface for Load Planning

    Science.gov (United States)

    Dever, Timothy P.; May, Ryan D.; Morris, Paul H.

    2014-01-01

    Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.

  16. Prospective randomized controlled intervention trial: Comprehensive Yogic Breathing Improves Cardiac autonomic functions and Quality of life in Diabetes

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2012-01-01

    Full Text Available Aims and Objectives: To assess the effect of Comprehensive Yogic Breathing Program on glycemic control, quality of life, and cardiac autonomic functions in diabetes. Material and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 120 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes (n = 56 and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program (n = 64. Standard therapy included advice on diet, walk, and oral antidiabetic drugs. Comprehensive yogic breathing program was an interactive session in which Sudarshan kriya yoga, a rhythmic cyclical breathing, preceded by Pranayam was taught under guidance of a certified teacher. Change in fasting, post prandial blood sugars, glycated hemoglobin, and quality of life were assessed. Cardiac autonomic function tests were done before and six months after intervention. Results: There was significant improvement in psychological (P = 0.006 and social domains (P = 0.04 and total quality of life (P = 0.02 in the group practicing comprehensive yogic breathing program as compared to the group following standard therapy alone. In the group following breathing program, the improvement in sympathetic cardiac autonomic functions was statistically significant (P = 0.01, while the change in the standard group was not significant (P = 0.17. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P = 0.07. In the standard therapy group, no change in cardiac autonomic functions was noted (P = 0.76. The parameters of glycemic control were comparable in both groups. Conclusion: There was significant improvement in quality of life and cardiac autonomic functions in the diabetes patients practicing comprehensive yogic breathing

  17. An Intelligent Propulsion Control Architecture to Enable More Autonomous Vehicle Operation

    Science.gov (United States)

    Litt, Jonathan S.; Sowers, T. Shane; Simon, Donald L.; Owen, A. Karl; Rinehart, Aidan W.; Chicatelli, Amy K.; Acheson, Michael J.; Hueschen, Richard M.; Spiers, Christopher W.

    2018-01-01

    This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety.

  18. Toward semi-autonomous control of mobile robots for constrained environments

    International Nuclear Information System (INIS)

    Mercier, O.; Cara, O.

    1991-01-01

    Drawing from long-time experience in nuclear maintenance robotics, FRAMATOME leads with several partners an important effort with the goal of developing the decision and operator assistance capabilities of mobile robots. Future robots shall be better adapted (in size and configuration) to the operational requirements of nuclear plants work than current demonstrators. Due regards shall be paid to safety aspects and qualification procedure shall be specified soon. Also, dosimetry gains (e.g. as evaluated by DOSIANA) shall be evaluated to establish further the advantages of robotic solutions. Current achievements and plans for the next two years are expected to provide the necessary know-how for semi-autonomous control of various mobile robots in actual missions in nuclear plant environment. These advances in many closely connected disciplines and technologies should put FRAMATOME in a leader position as systems integrator or as developer for future markets in autonomous mobile robotics, not only in the nuclear field but in other domains as well. (author)

  19. Autonomous control of a locomotion vehicle

    International Nuclear Information System (INIS)

    Ichikawa, Yoshiaki; Senoh, Makoto; Miyata, Kenji

    1984-01-01

    A path planner and an execution system are proposed for autonomous vehicle control. The planner creates a near shortest path avoiding obstacles that are represented by combinations of circles and line segments on a two dimensional map. For realizing real time execution, path search procedures employ a heuristic pruning strategies in selecting a node to expand and in generating successor nodes. Nodes are selected for expansion in order, according to a cost assigned to each node. The cost is mainly evaluated by approximating a path length from the initial node to the goal node. In order to expand a node and to generate successor nodes, a specific search procedure is activated that finds positions avoiding obstacles in the direction of the goal, and creates successor nodes corresponding to the positions. The execution system, utilizing an ultrasonic range finder equipped to the vehicle performs a plan repair against unknown obstacles when echoes from the obstacles are observed. The plan repair is conducted by a map edition and replanning in such a way that new circles representing the echoes are added to the map. Obstacle avoidance tests with a vehicle controlled by microprocessors demonstrate the utility of heuristics just outlined. (author)

  20. Policy-based secure communication with automatic key management for industrial control and automation systems

    Science.gov (United States)

    Chernoguzov, Alexander; Markham, Thomas R.; Haridas, Harshal S.

    2016-11-22

    A method includes generating at least one access vector associated with a specified device in an industrial process control and automation system. The specified device has one of multiple device roles. The at least one access vector is generated based on one or more communication policies defining communications between one or more pairs of devices roles in the industrial process control and automation system, where each pair of device roles includes the device role of the specified device. The method also includes providing the at least one access vector to at least one of the specified device and one or more other devices in the industrial process control and automation system in order to control communications to or from the specified device.

  1. Dynamic market behaviour of autonomous network based power systems

    NARCIS (Netherlands)

    Jokic, A.; Wittebol, E.H.M.; Bosch, van den P.P.J.

    2006-01-01

    Dynamic models of real-time markets are important since they lead to additional insights of the behavior and stability of power system markets. The main topic of this paper is the analysis of real-time market dynamics in a novel power system structure that is based on the concept of autonomous

  2. Autonomic control of the heart is altered in Sprague-Dawley rats with spontaneous hydronephrosis

    Science.gov (United States)

    Arnold, Amy C.; Shaltout, Hossam A.; Gilliam-Davis, Shea; Kock, Nancy D.

    2011-01-01

    The renal medulla plays an important role in cardiovascular regulation, through interactions with the autonomic nervous system. Hydronephrosis is characterized by substantial loss of renal medullary tissue. However, whether alterations in autonomic control of the heart are observed in this condition is unknown. Thus we assessed resting hemodynamics and baroreflex sensitivity (BRS) for control of heart rate in urethane/chloralose-anesthetized Sprague-Dawley rats with normal or hydronephrotic kidneys. While resting arterial pressure was similar, heart rate was higher in rats with hydronephrosis (290 ± 12 normal vs. 344 ± 11 mild/moderate vs. 355 ± 13 beats/min severe; P hydronephrosis, with no differences in measures of indirect sympathetic activity among conditions. As a secondary aim, we investigated whether autonomic dysfunction in hydronephrosis is associated with activation of the renin-angiotensin system (RAS). There were no differences in circulating angiotensin peptides among conditions, suggesting that the impaired autonomic function in hydronephrosis is independent of peripheral RAS activation. A possible site for angiotensin II-mediated BRS impairment is the solitary tract nucleus (NTS). In normal and mild/moderate hydronephrotic rats, NTS administration of the angiotensin II type 1 receptor antagonist candesartan significantly improved the BRS, suggesting that angiotensin II provides tonic suppression to the baroreflex. In contrast, angiotensin II blockade produced no significant effect in severe hydronephrosis, indicating that at least within the NTS baroreflex suppression in these animals is independent of angiotensin II. PMID:21460193

  3. Reinforcement Learning with Autonomous Small Unmanned Aerial Vehicles in Cluttered Environments

    Science.gov (United States)

    Tran, Loc; Cross, Charles; Montague, Gilbert; Motter, Mark; Neilan, James; Qualls, Garry; Rothhaar, Paul; Trujillo, Anna; Allen, B. Danette

    2015-01-01

    We present ongoing work in the Autonomy Incubator at NASA Langley Research Center (LaRC) exploring the efficacy of a data set aggregation approach to reinforcement learning for small unmanned aerial vehicle (sUAV) flight in dense and cluttered environments with reactive obstacle avoidance. The goal is to learn an autonomous flight model using training experiences from a human piloting a sUAV around static obstacles. The training approach uses video data from a forward-facing camera that records the human pilot's flight. Various computer vision based features are extracted from the video relating to edge and gradient information. The recorded human-controlled inputs are used to train an autonomous control model that correlates the extracted feature vector to a yaw command. As part of the reinforcement learning approach, the autonomous control model is iteratively updated with feedback from a human agent who corrects undesired model output. This data driven approach to autonomous obstacle avoidance is explored for simulated forest environments furthering autonomous flight under the tree canopy research. This enables flight in previously inaccessible environments which are of interest to NASA researchers in Earth and Atmospheric sciences.

  4. The evolution of HIV policy in Vietnam: from punitive control measures to a more rights-based approach

    Directory of Open Access Journals (Sweden)

    Pham Nguyen Ha

    2010-08-01

    Full Text Available Aim: Policymaking in Vietnam has traditionally been the preserve of the political elite, not open to the scrutiny of those outside the Communist Party. This paper aims to analyse Vietnam's HIV policy development in order to describe and understand the policy content, policy-making processes, actors and obstacles to policy implementation. Methods: Nine policy documents on HIV were analysed and 17 key informant interviews were conducted in Hanoi and Quang Ninh Province, based on a predesigned interview guide. Framework analysis, a type of qualitative content analysis, was applied for data analysis. Results: Our main finding was that during the last two decades, developments in HIV policy in Vietnam were driven in a top-down way by the state organs, with support and resources coming from international agencies. Four major themes were identified: HIV policy content, the policy-making processes, the actors involved and human resources for policy implementation. Vietnam's HIV policy has evolved from one focused on punitive control measures to a more rights-based approach, encompassing harm reduction and payment of health insurance for medical costs of patients with HIV-related illness. Low salaries and staff reluctance to work with patients, many of whom are drug users and female sex workers, were described as the main barriers to low health staff motivation. Conclusion: Health policy analysis approaches can be applied in a traditional one party state and can demonstrate how similar policy changes take place, as those found in pluralistic societies, but through more top-down and somewhat hidden processes. Enhanced participation of other actors, like civil society in the policy process, is likely to contribute to policy formulation and implementation that meets the diverse needs and concerns of its population.

  5. Autonomous Vehicles: Disengagements, Accidents and Reaction Times.

    Directory of Open Access Journals (Sweden)

    Vinayak V Dixit

    Full Text Available Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems.

  6. Autonomous Vehicles: Disengagements, Accidents and Reaction Times.

    Science.gov (United States)

    Dixit, Vinayak V; Chand, Sai; Nair, Divya J

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems.

  7. Autonomous Vehicles: Disengagements, Accidents and Reaction Times

    Science.gov (United States)

    Dixit, Vinayak V.; Chand, Sai; Nair, Divya J.

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems. PMID:27997566

  8. Advanced sensing and control techniques to facilitate semi-autonomous decommissioning. 1998 annual progress report

    International Nuclear Information System (INIS)

    Dawson, D.M.; Geist, R.M.; Schalkoff, R.J.

    1998-01-01

    'This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D and D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology. This report summarizes work after approximately 1.5 years of a 3-year project. The autonomous, non-contact creation of a virtual environment from an existing, real environment (virtualization) is an integral part of the workcell functionality. This requires that the virtual world be geometrically correct. To this end, the authors have encountered severe sensitivity in quadric estimation. As a result, alternative procedures for geometric rendering, iterative correction approaches, new calibration methods and associated hardware, and calibration quality examination software have been developed. Following geometric rendering, the authors have focused on improving the color and texture recognition components of the system. In particular, the authors have moved beyond first-order illumination modeling to include higher order diffuse effects. This allows us to combine the surface geometric information, obtained from the laser projection and surface recognition components of the system, with a stereo camera image. Low-level controllers for Puma 560 robotic arms were designed and implemented using QNX. The resulting QNX/PC based low-level robot control system is called QRobot. A high-level trajectory generator and application programming interface (API) as well as a new, flexible robot control API was required. Force/torque sensors and interface hardware have been identified and ordered. A simple 3-D OpenGL-based graphical Puma 560 robot simulator was developed and interfaced with ARCL and RCCL to assist in the development of robot motion programs.'

  9. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation through the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The applications of several different types of AI techniques for flight are explored during this research effort. The research concentration is directed to the application of different AI methods within the UAV arena. By evaluating AI and biological system approaches. which include Expert Systems, Neural Networks. Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI and CAS techniques applied to achieving true autonomous operation of these systems. Although flight systems were explored, the benefits should apply to many Unmanned Vehicles such as: Rovers. Ocean Explorers, Robots, and autonomous operation systems. A portion of the flight system is broken down into control agents that represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework for applying an intelligent agent is presented. The initial results from simulation of a security agent for communication are presented.

  10. Obstacle avoidance test using a sensor-based autonomous robotic system

    International Nuclear Information System (INIS)

    Fujii, Yoshio; Suzuki, Katsuo

    1998-12-01

    From a viewpoint of reducing personnel radiation exposure of plant staffs working in the high radiation area of nuclear facilities, it is often said to be necessary to develop remote robotic systems, which have great potential of performing various tasks in nuclear facilities. Hence, we developed an advanced remote robotic system, consisting of redundant manipulator and environment-sensing systems, which can be applied to complicated handling tasks under unstructured environment. In the robotic system, various types of sensors for environment-sensing are mounted on the redundant manipulator and sensor-based autonomous capabilities are incorporated. This report describes the results of autonomous obstacle avoidance test which was carried out as follows: manipulating valves at the rear-side of wall, through a narrow window of the wall, with the redundant manipulator mounted on an x-axis driving mechanism. From this test, it is confirmed that the developed robotic system can autonomously achieve handling tasks in limited space as avoiding obstacles, which is supposed to be difficult by a non-redundant manipulator. (author)

  11. Oscillatory Adaptive Yaw-Plane Control of Biorobotic Autonomous Underwater Vehicles Using Pectoral-Like Fins

    Directory of Open Access Journals (Sweden)

    Mugdha S. Naik

    2007-01-01

    Full Text Available This article considers the control of a biorobotic autonomous underwater vehicle (BAUV in the yaw plane using biologically inspired oscillatory pectoral-like fins of marine animals. The fins are assumed to be oscillating harmonically with a combined linear (sway and angular (yaw motion producing unsteady forces, which are used for fish-like control of BAUVs. Manoeuvring of the BAUV in the yaw plane is accomplished by altering the bias (mean angle of the angular motion of the fin. For the derivation of the adaptive control system, it is assumed that the physical parameters, the hydrodynamic coefficients, and the fin force and moment are not known. A direct adaptive sampled-data control system for the trajectory control of the yaw-angle using only yaw-angle measurement is derived. The parameter adaptation law is based on the normalised gradient scheme. Simulation results for the set point control, sinusoidal trajectory tracking and turning manoeuvres are presented, which show that the control system accomplishes precise trajectory control in spite of the parameter uncertainties.

  12. Advances in Autonomous Systems for Missions of Space Exploration

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  13. Contribution à la coordination de flottille de véhicules sous-marins autonomes

    OpenAIRE

    Spiewak , Jean-Mathias

    2007-01-01

    Our researches are related to coordination of torpedo-shaped autonomous underwater vehicles flotilla. The cooperation of such vehicles can generate a gain of time, energy, data and exploring area. Indeed, we study the modelling and the control, based on classic sliding mode, of a torpedo-shaped autonomous underwater vehicle. We also present a new high order sliding mode control law in order to limit chattering phenomenon acting on actuators. Finally, we propose a new control strategy to coord...

  14. Cohesive Motion Control Algorithm for Formation of Multiple Autonomous Agents

    Directory of Open Access Journals (Sweden)

    Debabrata Atta

    2010-01-01

    Full Text Available This paper presents a motion control strategy for a rigid and constraint consistent formation that can be modeled by a directed graph whose each vertex represents individual agent kinematics and each of directed edges represents distance constraints maintained by an agent, called follower, to its neighbouring agent. A rigid and constraint consistent graph is called persistent graph. A persistent graph is minimally persistent if it is persistent, and no edge can be removed without losing its persistence. An acyclic (free of cycles in its sensing pattern minimally persistent graph of Leader-Follower structure has been considered here which can be constructed from an initial Leader-Follower seed (initial graph with two vertices, one is Leader and another one is First Follower and one edge in between them is directed towards Leader by Henneberg sequence (a procedure of growing a graph containing only vertex additions. A set of nonlinear optimization-based decentralized control laws for mobile autonomous point agents in two dimensional plane have been proposed. An infinitesimal deviation in formation shape created continuous motion of Leader is compensated by corresponding continuous motion of other agents fulfilling the shortest path criteria.

  15. Evidence-based policy: implications for nursing and policy involvement.

    Science.gov (United States)

    Hewison, Alistair

    2008-11-01

    Evidence-based policy making is espoused as a central feature of government in the United Kingdom. However, an expectation that this will improve the quality of policy produced and provide a path to increased involvement of nurses in the policy process is misplaced. The purpose of this article is to demonstrate that the emphasis on evidence-based policy is problematic and cannot be regarded as a "new model" of policy making. Also, it could deflect attention from more practical approaches to policy involvement on the part of nurses. Policy development activities, acquisition of skills in policy analysis, and other forms of involvement are needed if nurses are to move along the continuum from policy literacy, through policy acumen, to policy competence. This involves taking a critical stance on the notion of evidence-based policy.

  16. High–Level Control System for Biomimetic Autonomous Under-water Vehicle

    Directory of Open Access Journals (Sweden)

    Praczyk Tomasz

    2017-01-01

    Full Text Available Usually, a rough software architecture designed for a robot can be can be shortly presented in the form of layers. The lowest layer is responsible for direct control of the hardware, i.e. engines, energy system, sensors, navigation devices, etc. A next layer is a low–level control which knows how to use the hardware in order to achieve a desired state of the robot, e.g. to stay on a desired course. And the last layer, the layer which is the nearest to the human–operator, is a high–level control which decides how to use the low–level control and sometimes also individual pieces of the hardware to achieve predefined objectives. The paper describes architecture, tasks and operation of the high–level control system (HLCS designed for Biomimetic Autonomous Underwater Vehicle (BAUV.

  17. Critical element study on autonomous position control of articulated-arm type manipulator

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Kakudate, Satoshi; Nakahira, Masataka

    1994-10-01

    An articulated-arm type manipulator can be operated effectively in a restricted space due to its flexibility and it can be attractive for a wide range of in-vessel maintenance such as viewing, inspection and limiter handling in fusion experimental reactors. In case of the in-vessel maintenance using a flexible manipulator, it is quite essential to develop an autonomous control method for compensating a deflection of manipulator so as to minimize the maintenance time with high precision. For this purpose, a new position control method using a combination of neural network predictor with a rigid inverse kinematics is being developed. The key features of this method are to simplify a kinematics modeling of flexible manipulator, to enable quick position compensation in stead of ordinary large matrix compensation, and to be applicable to a wide variety of manipulator characteristics. A sub-scaled model of flexible manipulator with 4 joints has been fabricated for a benchmark experiments of the autonomous position control. Comparing analytical simulation with experiments using the flexible manipulator, it has been demonstrated that the new position control method gives significant improvement in control performance with high precision in order of a figure. In addition, further optimization can be possible by adding other non-linear predictors such as radial basis function and fuzzy modeling. This paper describes the details of a sub-scaled flexible manipulator and a neural network position control system as well as results of analytical simulation and benchmark experiments. (author)

  18. The association between depressive disorder and cardiac autonomic control in adults 60 years and older.

    Science.gov (United States)

    Licht, Carmilla M M; Naarding, Paul; Penninx, Brenda W J H; van der Mast, Roos C; de Geus, Eco J C; Comijs, Hannie

    2015-04-01

    Altered cardiac autonomic control has often been reported in depressed persons and might play an important role in the increased risk for cardiovascular disease (CVD). A negative association between cardiac autonomic control and depression might become specifically clinically relevant in persons 60 years or older as CVD risk increases with age. This study included data of 321 persons with a depressive disorder and 115 controls participating in the Netherlands Study of Depression in Older Persons (mean age = 70.3 years, 65.7% female). Respiratory sinus arrhythmia (RSA), heart rate (HR), and preejection period (PEP) were measured and compared between depressed persons and controls. In addition, the role of antidepressants and clinical characteristics (e.g., age of depression onset and comorbid anxiety) was examined. Compared with controls, depressed persons had lower RSA (mean [standard error of the mean] = 23.5 [1.2] milliseconds versus 18.6 [0.7] milliseconds, p = .001, d = 0.373) and marginally higher HR (73.1 [1.1] beats/min versus 75.6 [0.6] beats/min, p = .065, d = 0.212), but comparable PEP (113.9 [2.1] milliseconds versus 112.0 [1.2] milliseconds, p = .45, d = 0.087), fully adjusted. Antidepressants strongly attenuated the associations between depression and HR and RSA. Antidepressant-naïve depressed persons had similar HR and RSA to controls, whereas users of antidepressants showed significantly lower RSA. In addition, tricyclic antidepressant users had higher HR (p 768) and shorter PEP (p = .014, d = 0.395) than did controls. Depression was not associated with cardiac autonomic control, but antidepressants were in this sample. All antidepressants were associated with low cardiac parasympathetic control and specifically tricyclic antidepressants with high cardiac sympathetic control.

  19. Autonomic Neuropathy in Diabetes Mellitus

    OpenAIRE

    Verrotti, Alberto; Prezioso, Giovanni; Scattoni, Raffaella; Chiarelli, Francesco

    2014-01-01

    Diabetic autonomic neuropathy (DAN) is a serious and common complication of diabetes, often overlooked and misdiagnosed. It is a systemic-wide disorder that may be asymptomatic in the early stages. The most studied and clinically important form of DAN is cardiovascular autonomic neuropathy defined as the impairment of autonomic control of the cardiovascular system in patients with diabetes after exclusion of other causes. The reported prevalence of DAN varies widely depending on inconsistent ...

  20. Data analysis-based autonomic bandwidth adjustment in software defined multi-vendor optical transport networks.

    Science.gov (United States)

    Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Jing, Ruiquan

    2017-11-27

    Network operators generally provide dedicated lightpaths for customers to meet the demand for high-quality transmission. Considering the variation of traffic load, customers usually rent peak bandwidth that exceeds the practical average traffic requirement. In this case, bandwidth provisioning is unmetered and customers have to pay according to peak bandwidth. Supposing that network operators could keep track of traffic load and allocate bandwidth dynamically, bandwidth can be provided as a metered service and customers would pay for the bandwidth that they actually use. To achieve cost-effective bandwidth provisioning, this paper proposes an autonomic bandwidth adjustment scheme based on data analysis of traffic load. The scheme is implemented in a software defined networking (SDN) controller and is demonstrated in the field trial of multi-vendor optical transport networks. The field trial shows that the proposed scheme can track traffic load and realize autonomic bandwidth adjustment. In addition, a simulation experiment is conducted to evaluate the performance of the proposed scheme. We also investigate the impact of different parameters on autonomic bandwidth adjustment. Simulation results show that the step size and adjustment period have significant influences on bandwidth savings and packet loss. A small value of step size and adjustment period can bring more benefits by tracking traffic variation with high accuracy. For network operators, the scheme can serve as technical support of realizing bandwidth as metered service in the future.

  1. Understanding tobacco control policy at the national level: bridging the gap between public policy and tobacco control advocacy

    Directory of Open Access Journals (Sweden)

    Marc C. Willemsen

    2018-03-01

    Full Text Available Background While some countries have advanced tobacco control policies, other countries struggle to adopt and implement FCTC's measures. This presentation uncovers the main factors that explain such variations, taking insights from public policy and political science as a starting point for a case study. Methods A case study of tobacco control policy making in the Netherlands, covering the period from the 1960s until the present. The study consisted of a systematic search and analysis of documents and proceedings of parliamentary debates on tobacco policy, supplemented with 22 interviews with key informants from the government, health organisations, politicians, and the tobacco industry. In addition, documents from the Truth Tobacco Industry Documents database, pertaining to the influence of the tobacco industry on Dutch policy making, were analysed. Results The Dutch government started relatively late to regulate tobacco. The choices in tobacco control policy making at the national level and the tempo in which they are made are explained by the interaction of the five main elements of the tobacco control policy making process: Relatively stable context factors (constitutional structures, 'rules of the policy making game', national cultural values Relatively dynamic context factors (regime changes, EU regulation and FCTC guidelines, changing social norms, public support Transfer of ideas (availability and interpretation of scientific evidence Pro and anti-tobacco control networks and coalitions (their organisational and lobby strength Agenda-setting (changes in problem definition, issue framing, media advocacy Conclusions Despite worldwide convergence of tobacco control policies, accelerated by the ratification of the FCTC treaty by most nations, governments develop approaches to tobacco control in line with cultural values, ideological preferences and specific national institutional arrangements. There is no one-size-fits-all approach. The

  2. Students' profile as autonomous learners in an Internet-based EAP course

    Directory of Open Access Journals (Sweden)

    Antonia Soler Cervera

    2005-04-01

    Full Text Available This study aims to find out to what extent university students are able to develop learner autonomy through an EAP course delivered through the Internet. The course, oriented to the use of Internet resources for language learning, was designed specifically to foster learner autonomy. Based on a previous exploratory study (Arnó et al. 2003, this research seeks to refine the profile of the autonomous learner initially developed and to discover which specific actions and attitudes related to learner autonomy are found in students’ behaviour. Thus, combining qualitative and quantitative methods, we carried out an analysis of the autonomous behaviour displayed by students when using different Internet resources through activities designed to foster learner autonomy. This study has allowed us to outline the profile of autonomous learners in a virtual classroom, with students who are able to take the initiative and make decisions on the organization and management of their learning process. Focusing on the connection between making the most of the Internet and developing students’ autonomy, our ultimate aim is to point to ways in which students may be encouraged to become more autonomous and explore the role that the Internet may play in helping us attain this objective.

  3. Evaluation of cardiac autonomic function in overweight males: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Debasish Das

    2017-01-01

    Full Text Available Background and Aim: Cardiovascular autonomic function tests (CAFTs are non-invasive tests that can assess both sympathetic and parasympathetic autonomic functions. Autonomic dysfunction may be considered as a risk factor for obesity and vice versa. For measurement of obesity, body mass index (BMI is a simple, valid and inexpensive method. Hence, this study was designed to evaluate the effect of obesity based on BMI criteria on autonomic nervous system based on CAFT in young adult males. Methods: A cross-sectional study was carried out on 43 young adult males in the age group of 18–25 years with an age-matched control (n = 43 group. After initial screening, anthropometric measurements were recorded. CAFTs were performed and recorded by the Cardiac Autonomic Neuropathy Analysis System (CANWin. Unpaired t- test was done to compare the parameters of study and control groups in Microsoft Excel® 2010. Results: Parasympathetic test parameters of study and control groups when expressed in mean ± standard deviation were not found statistically significant (P > 0.05. The fall in systolic blood pressure (BP in orthostatic test of study group (12.19 ± 4.8 mmHg was significantly (P = 0.0001 higher than that of control group (7.33 ± 5.16 mmHg. Increase in diastolic BP in isometric handgrip exercise test of study group (11.84 ± 5.39 mmHg was significantly less (P = 0.004 than that of control group (16.39 ± 8.71 mmHg. Conclusion: Overweight young males have altered sympathetic activity but parasympathetic activity did not show any significant difference when compared to normal weight males.

  4. Hidden policy ciphertext-policy attribute-based encryption with keyword search against keyword guessing attack

    Institute of Scientific and Technical Information of China (English)

    Shuo; QIU; Jiqiang; LIU; Yanfeng; SHI; Rui; ZHANG

    2017-01-01

    Attribute-based encryption with keyword search(ABKS) enables data owners to grant their search capabilities to other users by enforcing an access control policy over the outsourced encrypted data. However,existing ABKS schemes cannot guarantee the privacy of the access structures, which may contain some sensitive private information. Furthermore, resulting from the exposure of the access structures, ABKS schemes are susceptible to an off-line keyword guessing attack if the keyword space has a polynomial size. To solve these problems, we propose a novel primitive named hidden policy ciphertext-policy attribute-based encryption with keyword search(HP-CPABKS). With our primitive, the data user is unable to search on encrypted data and learn any information about the access structure if his/her attribute credentials cannot satisfy the access control policy specified by the data owner. We present a rigorous selective security analysis of the proposed HP-CPABKS scheme, which simultaneously keeps the indistinguishability of the keywords and the access structures. Finally,the performance evaluation verifies that our proposed scheme is efficient and practical.

  5. Approach for Autonomous Control of Unmanned Aerial Vehicle Using Intelligent Agents for Knowledge Creation

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation thru the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The application of many different types of AI techniques for flight will be explored during this research effort. The research concentration will be directed to the application of different AI methods within the UAV arena. By evaluating AI approaches, which will include Expert Systems, Neural Networks, Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI techniques applied to achieving true autonomous operation of these systems thus providing new intellectual merit to this research field. The major area of discussion will be limited to the UAV. The systems of interest include small aircraft, insects, and miniature aircraft. Although flight systems will be explored, the benefits should apply to many Unmanned Vehicles such as: Rovers, Ocean Explorers, Robots, and autonomous operation systems. The flight system will be broken down into control agents that will represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework of applying a Security Overseer will be added in an attempt to address errors, emergencies, failures, damage, or over dynamic environment. The chosen control problem was the landing phase of UAV operation. The initial results from simulation in FlightGear are presented.

  6. Autonomic control of vasomotion in the porcine coronary circulation during treadmill exercise: evidence for feed-forward beta-adrenergic control

    NARCIS (Netherlands)

    D.J.G.M. Duncker (Dirk); R. Stubenitsky (René); P.D. Verdouw (Pieter)

    1998-01-01

    textabstractTo date, no studies have investigated coronary vasomotor control of myocardial O2 delivery (MDO2) and its modulation by the autonomic nervous system in the porcine heart during treadmill exercise. We studied 8 chronically instrumented swine under resting

  7. Bangladesh policy on prevention and control of non-communicable diseases: a policy analysis.

    Science.gov (United States)

    Biswas, Tuhin; Pervin, Sonia; Tanim, Md Imtiaz Alam; Niessen, Louis; Islam, Anwar

    2017-06-19

    This paper is aimed at critically assessing the extent to which Non-Communicable Disease NCD-related policies introduced in Bangladesh align with the World Health Organization's (WHO) 2013-2020 Action Plan for the Global Strategy for the Prevention and Control of NCDs. The authors reviewed all relevant policy documents introduced by the Government of Bangladesh since its independence in 1971. The literature review targeted scientific and grey literature documents involving internet-based search, and expert consultation and snowballing to identify relevant policy documents. Information was extracted from the documents using a specific matrix, mapping each document against the six objectives of the WHO 2013-2020 Action Plan for the Global Strategy for the Prevention and Control of NCDs. A total of 51 documents were identified. Seven (14%) were research and/or surveys, nine were on established policies (17%), while seventeen (33%) were on action programmes. Five (10%) were related to guidelines and thirteen (25%) were strategic planning documents from government and non-government agencies/institutes. The study covered documents produced by the Government of Bangladesh as well as those by quasi-government and non-government organizations irrespective of the extent to which the intended policies were implemented. The policy analysis findings suggest that although the government has initiated many NCD-related policies or programs, they lacked proper planning, implementation and monitoring. Consequently, Bangladesh over the years had little success in effectively addressing the growing burden of non-communicable diseases. It is imperative that future research critically assess the effectiveness of national NCD policies by monitoring their implementation and level of population coverage.

  8. Terpsichore. ENEA's autonomous robotics project; Progetto Tersycore, la robotica autonoma

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S; Zanela, S; Santini, A; Nanni, V [ENEA, Centro Ricerche Casaccia, Rome (Italy). Div. Robotica e Informatica Avanzata

    1999-10-01

    The article presents some of the Terpsichore project's results aimed to developed and test algorithms and applications for autonomous robotics. Four applications are described: dynamic mapping of a building's interior through the use of ultrasonic sensors; visual drive of an autonomous robot via a neural network controller; a neural network-based stereo vision system that steers a robot through unknown indoor environments; and the evolution of intelligent behaviours via the genetic algorithm approach.

  9. Issues and approaches in control for autonomous reactor operation

    International Nuclear Information System (INIS)

    Vilim, R. B.; Khalil, H. S.; Wei, T. Y. C.

    2000-01-01

    A capability for autonomous and passively safe operation is one of the goals of the NERI funded development of Generation IV nuclear plants. An approach is described for evaluating the effect of increasing autonomy on safety margins and load behavior and for examining issues that arise with increasing autonomy and their potential impact on performance. The method provides a formal approach to the process of exploiting the innate self-regulating property of a reactor to make it less dependent on operator action and less vulnerable to automatic control system fault and/or operator error. Some preliminary results are given

  10. Autonomous Mission Operations for Sensor Webs

    Science.gov (United States)

    Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.

    2008-12-01

    We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC

  11. Modelling and Analysing Access Control Policies in XACML 3.0

    DEFF Research Database (Denmark)

    Ramli, Carroline Dewi Puspa Kencana

    (c.f. GM03,Mos05,Ris13) and manual analysis of the overall effect and consequences of a large XACML policy set is a very daunting and time-consuming task. In this thesis we address the problem of understanding the semantics of access control policy language XACML, in particular XACML version 3.0....... The main focus of this thesis is modelling and analysing access control policies in XACML 3.0. There are two main contributions in this thesis. First, we study and formalise XACML 3.0, in particular the Policy Decision Point (PDP). The concrete syntax of XACML is based on the XML format, while its standard...... semantics is described normatively using natural language. The use of English text in standardisation leads to the risk of misinterpretation and ambiguity. In order to avoid this drawback, we define an abstract syntax of XACML 3.0 and a formal XACML semantics. Second, we propose a logic-based XACML analysis...

  12. Autonomous navigation and control of a Mars rover

    Science.gov (United States)

    Miller, D. P.; Atkinson, D. J.; Wilcox, B. H.; Mishkin, A. H.

    1990-01-01

    A Mars rover will need to be able to navigate autonomously kilometers at a time. This paper outlines the sensing, perception, planning, and execution monitoring systems that are currently being designed for the rover. The sensing is based around stereo vision. The interpretation of the images use a registration of the depth map with a global height map provided by an orbiting spacecraft. Safe, low energy paths are then planned through the map, and expectations of what the rover's articulation sensors should sense are generated. These expectations are then used to ensure that the planned path is correctly being executed.

  13. Introduction to autonomous manipulation case study with an underwater robot, SAUVIM

    CERN Document Server

    Marani, Giacomo

    2014-01-01

    Autonomous manipulation” is a challenge in robotic technologies. It refers to the capability of a mobile robot system with one or more manipulators that performs intervention tasks requiring physical contacts in unstructured environments and without continuous human supervision. Achieving autonomous manipulation capability is a quantum leap in robotic technologies as it is currently beyond the state of the art in robotics. This book addresses issues with the complexity of the problems encountered in autonomous manipulation including representation and modeling of robotic structures, kinematic and dynamic robotic control, kinematic and algorithmic singularity avoidance, dynamic task priority, workspace optimization and environment perception. Further development in autonomous manipulation should be able to provide robust improvements of the solutions for all of the above issues. The book provides an extensive tract on sensory-based autonomous manipulation for intervention tasks in unstructured environment...

  14. Autonomous Reconfiguration Procedures for EJB-based Enterprise Applications

    OpenAIRE

    Vogel, Thomas; Bruhn, Jens; Wirtz, Guido

    2018-01-01

    Enterprise Applications (EA) are complex software systems for supporting the business of companies. Evolution of an EA should not affect its availability, e.g., because of a temporal shutdown, business operations may be affected. One possibility to address this problem is the seamless reconfiguration of the affected EA, i.e., applying the relevant changes while the system is running. Our approach to seamless reconfiguration focuses on component-oriented EAs. It is based on the Autonomic Compu...

  15. Human Supervision of Multiple Autonomous Vehicles

    Science.gov (United States)

    2013-03-22

    AFRL-RH-WP-TR-2013-0143 HUMAN SUPERVISION OF MULTIPLE AUTONOMOUS VEHICLES Heath A. Ruff Ball...REPORT TYPE Interim 3. DATES COVERED (From – To) 09-16-08 – 03-22-13 4. TITLE AND SUBTITLE HUMAN SUPERVISION OF MULTIPLE AUTONOMOUS VEHICLES 5a...Supervision of Multiple Autonomous Vehicles To support the vision of a system that enables a single operator to control multiple next-generation

  16. CF-Pursuit: A Pursuit Method with a Clothoid Fitting and a Fuzzy Controller for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Yunxiao Shan

    2015-09-01

    Full Text Available Simple and efficient geometric controllers, like Pure-Pursuit, have been widely used in various types of autonomous vehicles to solve tracking problems. In this paper, we have developed a new pursuit method, named CF-Pursuit, which has been based on Pure-Pursuit but with certain differences. In CF-Pursuit, in order to reduce fitting errors, we used a clothoid C1 curve to replace the circle employed in Pure-Pursuit. This improvement to the fitting method helps the Pursuit method to decrease tracking errors. As regards the selection of look-ahead distance, we employed a fuzzy system to directly consider the path's curvature. There are three input variables in this fuzzy system, 6mcurvature, 9mcurvature and 12mcurvature, calculated from the clothoid fit with the current position and the goal position on the defined path. A Sugeno fuzzy model was adapted to output a reasonable look-ahead distance using the experiences of human drivers as well as our own tests. Compared with some other geometric controllers, CF-Pursuit performs better in robustness, cross track errors and stability. The results from field tests have proven the CF-Pursuit is a practical and efficient geometric method for the path tracking problems of autonomous vehicles.

  17. A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots.

    Science.gov (United States)

    Sherwin, Tyrone; Easte, Mikala; Chen, Andrew Tzer-Yeu; Wang, Kevin I-Kai; Dai, Wenbin

    2018-02-14

    Location-aware services are one of the key elements of modern intelligent applications. Numerous real-world applications such as factory automation, indoor delivery, and even search and rescue scenarios require autonomous robots to have the ability to navigate in an unknown environment and reach mobile targets with minimal or no prior infrastructure deployment. This research investigates and proposes a novel approach of dynamic target localisation using a single RF emitter, which will be used as the basis of allowing autonomous robots to navigate towards and reach a target. Through the use of multiple directional antennae, Received Signal Strength (RSS) is compared to determine the most probable direction of the targeted emitter, which is combined with the distance estimates to improve the localisation performance. The accuracy of the position estimate is further improved using a particle filter to mitigate the fluctuating nature of real-time RSS data. Based on the direction information, a motion control algorithm is proposed, using Simultaneous Localisation and Mapping (SLAM) and A* path planning to enable navigation through unknown complex environments. A number of navigation scenarios were developed in the context of factory automation applications to demonstrate and evaluate the functionality and performance of the proposed system.

  18. A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots

    Directory of Open Access Journals (Sweden)

    Tyrone Sherwin

    2018-02-01

    Full Text Available Location-aware services are one of the key elements of modern intelligent applications. Numerous real-world applications such as factory automation, indoor delivery, and even search and rescue scenarios require autonomous robots to have the ability to navigate in an unknown environment and reach mobile targets with minimal or no prior infrastructure deployment. This research investigates and proposes a novel approach of dynamic target localisation using a single RF emitter, which will be used as the basis of allowing autonomous robots to navigate towards and reach a target. Through the use of multiple directional antennae, Received Signal Strength (RSS is compared to determine the most probable direction of the targeted emitter, which is combined with the distance estimates to improve the localisation performance. The accuracy of the position estimate is further improved using a particle filter to mitigate the fluctuating nature of real-time RSS data. Based on the direction information, a motion control algorithm is proposed, using Simultaneous Localisation and Mapping (SLAM and A* path planning to enable navigation through unknown complex environments. A number of navigation scenarios were developed in the context of factory automation applications to demonstrate and evaluate the functionality and performance of the proposed system.

  19. Development of an autonomous vertical profiler for oceanographic studies

    Digital Repository Service at National Institute of Oceanography (India)

    Dabholkar, N.; Desa, E.; Afzulpurkar, S.; Madhan, R.; Mascarenhas, A.A.M.Q.; Navelkar, G.; Maurya, P.K.; Prabhudesai, S.; Nagvekar, S.; Martins, H.; Sawkar, G.; Fernandes, P.; Manoj, K.K.

    groups. This paper is based on a concept patent on a thruster driven Autonomous Vertical profiler [AVP], and describes the developmental steps being taken on the integration of sensors, control electronics, communications and a Graphical User interface...

  20. Realizing IoT service's policy privacy over publish/subscribe-based middleware.

    Science.gov (United States)

    Duan, Li; Zhang, Yang; Chen, Shiping; Wang, Shiyao; Cheng, Bo; Chen, Junliang

    2016-01-01

    The publish/subscribe paradigm makes IoT service collaborations more scalable and flexible, due to the space, time and control decoupling of event producers and consumers. Thus, the paradigm can be used to establish large-scale IoT service communication infrastructures such as Supervisory Control and Data Acquisition systems. However, preserving IoT service's policy privacy is difficult in this paradigm, because a classical publisher has little control of its own event after being published; and a subscriber has to accept all the events from the subscribed event type with no choice. Few existing publish/subscribe middleware have built-in mechanisms to address the above issues. In this paper, we present a novel access control framework, which is capable of preserving IoT service's policy privacy. In particular, we adopt the publish/subscribe paradigm as the IoT service communication infrastructure to facilitate the protection of IoT services policy privacy. The key idea in our policy-privacy solution is using a two-layer cooperating method to match bi-directional privacy control requirements: (a) data layer for protecting IoT events; and (b) application layer for preserving the privacy of service policy. Furthermore, the anonymous-set-based principle is adopted to realize the functionalities of the framework, including policy embedding and policy encoding as well as policy matching. Our security analysis shows that the policy privacy framework is Chosen-Plaintext Attack secure. We extend the open source Apache ActiveMQ broker by building into a policy-based authorization mechanism to enforce the privacy policy. The performance evaluation results indicate that our approach is scalable with reasonable overheads.

  1. Current challenges in autonomous vehicle development

    Science.gov (United States)

    Connelly, J.; Hong, W. S.; Mahoney, R. B., Jr.; Sparrow, D. A.

    2006-05-01

    The field of autonomous vehicles is a rapidly growing one, with significant interest from both government and industry sectors. Autonomous vehicles represent the intersection of artificial intelligence (AI) and robotics, combining decision-making with real-time control. Autonomous vehicles are desired for use in search and rescue, urban reconnaissance, mine detonation, supply convoys, and more. The general adage is to use robots for anything dull, dirty, dangerous or dumb. While a great deal of research has been done on autonomous systems, there are only a handful of fielded examples incorporating machine autonomy beyond the level of teleoperation, especially in outdoor/complex environments. In an attempt to assess and understand the current state of the art in autonomous vehicle development, a few areas where unsolved problems remain became clear. This paper outlines those areas and provides suggestions for the focus of science and technology research. The first step in evaluating the current state of autonomous vehicle development was to develop a definition of autonomy. A number of autonomy level classification systems were reviewed. The resulting working definitions and classification schemes used by the authors are summarized in the opening sections of the paper. The remainder of the report discusses current approaches and challenges in decision-making and real-time control for autonomous vehicles. Suggested research focus areas for near-, mid-, and long-term development are also presented.

  2. Development of evidence-based health policy documents in developing countries: a case of Iran.

    Science.gov (United States)

    Imani-Nasab, Mohammad Hasan; Seyedin, Hesam; Majdzadeh, Reza; Yazdizadeh, Bahareh; Salehi, Masoud

    2014-02-07

    Evidence-based policy documents that are well developed by senior civil servants and are timely available can reduce the barriers to evidence utilization by health policy makers. This study examined the barriers and facilitators in developing evidence-based health policy documents from the perspective of their producers in a developing country. In a qualitative study with a framework analysis approach, we conducted semi-structured interviews using purposive and snowball sampling. A qualitative analysis software (MAXQDA-10) was used to apply the codes and manage the data. This study was theory-based and the results were compared to exploratory studies about the factors influencing evidence-based health policy-making. 18 codes and three main themes of behavioral, normative, and control beliefs were identified. Factors that influence the development of evidence-based policy documents were identified by the participants: behavioral beliefs included quality of policy documents, use of resources, knowledge and innovation, being time-consuming and contextualization; normative beliefs included policy authorities, policymakers, policy administrators, and co-workers; and control beliefs included recruitment policy, performance management, empowerment, management stability, physical environment, access to evidence, policy making process, and effect of other factors. Most of the cited barriers to the development of evidence-based policy were related to control beliefs, i.e. barriers at the organizational and health system levels. This study identified the factors that influence the development of evidence-based policy documents based on the components of the theory of planned behavior. But in exploratory studies on evidence utilization by health policymakers, the identified factors were only related to control behaviors. This suggests that the theoretical approach may be preferable to the exploratory approach in identifying the barriers and facilitators of a behavior.

  3. Examining the Roles of Work Autonomous and Controlled Motivations on Satisfaction and Anxiety as a Function of Role Ambiguity.

    Science.gov (United States)

    Gillet, Nicolas; Fouquereau, Evelyne; Lafrenière, Marc-André K; Huyghebaert, Tiphaine

    2016-07-03

    Past research in the self-determination theory has shown that autonomous motivation is associated with positive outcomes (e.g., work satisfaction), whereas controlled motivation is related to negative outcomes (e.g., anxiety). The purpose of the present research was to examine the moderating function of role ambiguity on the relationships between work autonomous and controlled motivations on the one hand, and work satisfaction and anxiety on the other. Six hundred and ninety-eight workers (449 men and 249 women) participated in this study. Results revealed that autonomous motivation was most strongly related to satisfaction when ambiguity was low. In addition, controlled motivation was most strongly related to anxiety when ambiguity was high. In other words, the present findings suggest that the outcomes associated with each form of motivation may vary as a function of role ambiguity. The present study thus offers meaningful insights for organizations, managers, and employees.

  4. On nonlinear control design for autonomous chaotic systems of integer and fractional orders

    International Nuclear Information System (INIS)

    Ahmad, Wajdi M.; Harb, Ahmad M.

    2003-01-01

    In this paper, we address the problem of chaos control for autonomous nonlinear chaotic systems. We use the recursive 'backstepping' method of nonlinear control design to derive the nonlinear controllers. The controller effect is to stabilize the output chaotic trajectory by driving it to the nearest equilibrium point in the basin of attraction. We study two nonlinear chaotic systems: an electronic chaotic oscillator model, and a mechanical chaotic 'jerk' model. We demonstrate the robustness of the derived controllers against system order reduction arising from the use of fractional integrators in the system models. Our results are validated via numerical simulations

  5. Autonomic symptoms in idiopathic REM behavior disorder

    DEFF Research Database (Denmark)

    Ferini-Strambi, Luigi; Oertel, Wolfgang; Dauvilliers, Yves

    2014-01-01

    Patients with idiopathic REM sleep behavior disorder (iRBD) are at very high risk of developing neurodegenerative synucleinopathies, which are disorders with prominent autonomic dysfunction. Several studies have documented autonomic dysfunction in iRBD, but large-scale assessment of autonomic...... symptoms has never been systematically performed. Patients with polysomnography-confirmed iRBD (318 cases) and controls (137 healthy volunteers and 181 sleep center controls with sleep diagnoses other than RBD) were recruited from 13 neurological centers in 10 countries from 2008 to 2011. A validated scale...

  6. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    Science.gov (United States)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  7. Electric Drive Discrete Control System with Automatic Switching-On Reserve for Autonomous Settlement

    Directory of Open Access Journals (Sweden)

    Tsytovich L.I.

    2015-08-01

    Full Text Available The paper aims at developing of control the water supply system’s electric drives for autonomous settlement. The system provides automatic switching to a reserve control channel at refusal of any of the functional elements of the working regulation channel. Usually, such systems have a test signal generator and analyzer to system response to their impact. This result to an increase in the structural redundancy of the system, increase its cost and increase the requirements for the staff qualification. A specific feature of the system is its ability to self-diagnosis of catastrophic malfunctions of scheme’s components and an automatic switching-on the reserve control channels, without applying any test signals to the whole complex of electrical equipment. Multi-zone integrating regulator with frequency-pulse-width modulation realizes this technical solution. Control system structure and signals timing diagrams are presented. The construction principle of adaptive interval-code synchronization device with improved noise stability to control the voltage regulators serving for smooth start-up of asynchronous motors of water pumps is considered as well. Such solution allowing increase noise stability and reliability work of the system in conditions of limited power electrical networks, which is characteristic for the autonomous settlements. The article may be of interest to specialists in the field of power electronics and information electronics, electric drives and process automation.

  8. The role of the autonomic nervous liver innervation in the control of energy metabolism

    NARCIS (Netherlands)

    Yi, Chun-Xia; la Fleur, Susanne E.; Fliers, Eric; Kalsbeek, Andries

    2010-01-01

    Despite a longstanding research interest ever since the early work by Claude Bernard, the functional significance of autonomic liver innervation, either sympathetic or parasympathetic, is still ill defined. This scarcity of information not only holds for the brain control of hepatic metabolism, but

  9. Autonomous quantum Maxwell's demon based on two exchange-coupled quantum dots

    Science.gov (United States)

    Ptaszyński, Krzysztof

    2018-01-01

    I study an autonomous quantum Maxwell's demon based on two exchange-coupled quantum dots attached to the spin-polarized leads. The principle of operation of the demon is based on the coherent oscillations between the spin states of the system which act as a quantum iSWAP gate. Due to the operation of the iSWAP gate, one of the dots acts as a feedback controller which blocks the transport with the bias in the other dot, thus inducing the electron pumping against the bias; this leads to the locally negative entropy production. Operation of the demon is associated with the information transfer between the dots, which is studied quantitatively by mapping the analyzed setup onto the thermodynamically equivalent auxiliary system. The calculated entropy production in a single subsystem and information flow between the subsystems are shown to obey a local form of the second law of thermodynamics, similar to the one previously derived for classical bipartite systems.

  10. Energy-autonomous wireless vibration sensor for condition-based maintenance of machinery

    NARCIS (Netherlands)

    Wang, Z.; Bouwens, F.; Vullers, R.; Petré, F.; Devos, S.

    2011-01-01

    This paper addresses the development of an energy-autonomous wireless vibration sensor for condition-based monitoring of machinery. Such technology plays an increasingly important role in modern manufacturing industry. In this work, energy harvesting is realized by resorting to a custom designed

  11. Development of an autonomous power system testbed

    International Nuclear Information System (INIS)

    Barton, J.R.; Adams, T.; Liffring, M.E.

    1985-01-01

    A power system testbed has been assembled to advance the development of large autonomous electrical power systems required for the space station, spacecraft, and aircraft. The power system for this effort was designed to simulate single- or dual-bus autonomous power systems, or autonomous systems that reconfigure from a single bus to a dual bus following a severe fault. The approach taken was to provide a flexible power system design with two computer systems for control and management. One computer operates as the control system and performs basic control functions, data and command processing, charge control, and provides status to the second computer. The second computer contains expert system software for mission planning, load management, fault identification and recovery, and sends load and configuration commands to the control system

  12. Factors influencing the role of cardiac autonomic regulation in the service of cognitive control.

    Science.gov (United States)

    Capuana, Lesley J; Dywan, Jane; Tays, William J; Elmers, Jamie L; Witherspoon, Richelle; Segalowitz, Sidney J

    2014-10-01

    Working from a model of neurovisceral integration, we examined whether adding response contingencies and motivational involvement would increase the need for cardiac autonomic regulation in maintaining effective cognitive control. Respiratory sinus arrhythmia (RSA) was recorded during variants of the Stroop color-word task. The Basic task involved "accepting" congruent items and "rejecting" words printed in incongruent colors (BLUE in red font); an added contingency involved rejecting a particular congruent word (e.g., RED in red font), or a congruent word repeated on an immediately subsequent trial. Motivation was increased by adding a financial incentive phase. Results indicate that pre-task RSA predicted accuracy best when response contingencies required the maintenance of a specific item in memory or on the Basic Stroop task when errors resulted in financial loss. Overall, RSA appeared to be most relevant to performance when the task encouraged a more proactive style of cognitive control, a control strategy thought to be more metabolically costly, and hence, more reliant on flexible cardiac autonomic regulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Development of Evidence-Based Health Policy Documents in Developing Countries: A Case of Iran

    Science.gov (United States)

    Imani-Nasab, Mohammad Hasan; Seyedin, Hesam; Majdzadeh, Reza; Yazdizadeh, Bahareh; Salehi, Masoud

    2014-01-01

    Background: Evidence-based policy documents that are well developed by senior civil servants and are timely available can reduce the barriers to evidence utilization by health policy makers. This study examined the barriers and facilitators in developing evidence-based health policy documents from the perspective of their producers in a developing country. Methods: In a qualitative study with a framework analysis approach, we conducted semi-structured interviews using purposive and snowball sampling. A qualitative analysis software (MAXQDA-10) was used to apply the codes and manage the data. This study was theory-based and the results were compared to exploratory studies about the factors influencing evidence-based health policymaking. Results: 18 codes and three main themes of behavioral, normative, and control beliefs were identified. Factors that influence the development of evidence-based policy documents were identified by the participants: behavioral beliefs included quality of policy documents, use of resources, knowledge and innovation, being time-consuming and contextualization; normative beliefs included policy authorities, policymakers, policy administrators, and co-workers; and control beliefs included recruitment policy, performance management, empowerment, management stability, physical environment, access to evidence, policy making process, and effect of other factors. Conclusion: Most of the cited barriers to the development of evidence-based policy were related to control beliefs, i.e. barriers at the organizational and health system levels. This study identified the factors that influence the development of evidence-based policy documents based on the components of the theory of planned behavior. But in exploratory studies on evidence utilization by health policymakers, the identified factors were only related to control behaviors. This suggests that the theoretical approach may be preferable to the exploratory approach in identifying the barriers

  14. Policy-Based Management Natural Language Parser

    Science.gov (United States)

    James, Mark

    2009-01-01

    The Policy-Based Management Natural Language Parser (PBEM) is a rules-based approach to enterprise management that can be used to automate certain management tasks. This parser simplifies the management of a given endeavor by establishing policies to deal with situations that are likely to occur. Policies are operating rules that can be referred to as a means of maintaining order, security, consistency, or other ways of successfully furthering a goal or mission. PBEM provides a way of managing configuration of network elements, applications, and processes via a set of high-level rules or business policies rather than managing individual elements, thus switching the control to a higher level. This software allows unique management rules (or commands) to be specified and applied to a cross-section of the Global Information Grid (GIG). This software embodies a parser that is capable of recognizing and understanding conversational English. Because all possible dialect variants cannot be anticipated, a unique capability was developed that parses passed on conversation intent rather than the exact way the words are used. This software can increase productivity by enabling a user to converse with the system in conversational English to define network policies. PBEM can be used in both manned and unmanned science-gathering programs. Because policy statements can be domain-independent, this software can be applied equally to a wide variety of applications.

  15. Effects of the Fourth Ventricle Compression in the Regulation of the Autonomic Nervous System: A Randomized Control Trial

    Directory of Open Access Journals (Sweden)

    Ana Paula Cardoso-de-Mello-e-Mello-Ribeiro

    2015-01-01

    Full Text Available Introduction. Dysfunction of the autonomic nervous system is an important factor in the development of chronic pain. Fourth ventricle compression (CV-4 has been shown to influence autonomic activity. Nevertheless, the physiological mechanisms behind these effects remain unclear. Objectives. This study is aimed at evaluating the effects of fourth ventricle compression on the autonomic nervous system. Methods. Forty healthy adults were randomly assigned to an intervention group, on whom CV-4 was performed, or to a control group, who received a placebo intervention (nontherapeutic touch on the occipital bone. In both groups, plasmatic catecholamine levels, blood pressure, and heart rate were measured before and immediately after the intervention. Results. No effects related to the intervention were found. Although a reduction of norepinephrine, systolic blood pressure, and heart rate was found after the intervention, it was not exclusive to the intervention group. In fact, only the control group showed an increment of dopamine levels after intervention. Conclusion. Fourth ventricle compression seems not to have any effect in plasmatic catecholamine levels, blood pressure, or heart rate. Further studies are needed to clarify the CV-4 physiologic mechanisms and clinical efficacy in autonomic regulation and pain treatment.

  16. Autonomous Power Management in LVDC Microgrids based on a Superimposed Frequency Droop

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Blaabjerg, Frede

    2018-01-01

    In this paper a novel droop approach for autonomous power management in low voltage dc microgrids based on a master-slave concept is presented. Conventional voltage-based droop approaches suffer from poor power sharing due to line resistance effects on a virtual resistance, which is solved a by i...

  17. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.

  18. Amplifying human ability through autonomics and machine learning in IMPACT

    Science.gov (United States)

    Dzieciuch, Iryna; Reeder, John; Gutzwiller, Robert; Gustafson, Eric; Coronado, Braulio; Martinez, Luis; Croft, Bryan; Lange, Douglas S.

    2017-05-01

    Amplifying human ability for controlling complex environments featuring autonomous units can be aided by learned models of human and system performance. In developing a command and control system that allows a small number of people to control a large number of autonomous teams, we employ an autonomics framework to manage the networks that represent mission plans and the networks that are composed of human controllers and their autonomous assistants. Machine learning allows us to build models of human and system performance useful for monitoring plans and managing human attention and task loads. Machine learning also aids in the development of tactics that human supervisors can successfully monitor through the command and control system.

  19. Autonomous controller (JCAM 10) for CAMAC crate with 8080 (INTEL) microprocessor

    International Nuclear Information System (INIS)

    Gallice, P.; Mathis, M.

    1975-01-01

    The CAMAC crate autonomous controller JCAM-10 is designed around an INTEL 8080 microprocessor in association with a 5K RAM and 4K REPROM memory. The concept of the module is described, in which data transfers between CAMAC modules and the memory are optimised from software point of view as well as from execution time. In fact, the JCAM-10 is a microcomputer with a set of 1000 peripheral units represented by the CAMAC modules commercially available

  20. Development of a Control Systems Platform for an Autonomous Soft-Car

    OpenAIRE

    Ray, Pratish

    2015-01-01

    Balloon Cars (Soft Cars) used for active-system testing are presently statically following one specific path. Autonomous GPS driven balloon cars can be extremely useful if made to be accurate.Volvo group’s long term plan involves usage of such cars to improve active-safety systems. Thisreport presents comprehensive details about the development of the control system of the soft-car.Software development was preceded by purchase of parts. Detailed descriptions of the ballooncar hardware compone...

  1. RoBlock: a prototype autonomous manufacturing cell

    Science.gov (United States)

    Baekdal, Lars K.; Balslev, Ivar; Eriksen, Rene D.; Jensen, Soren P.; Jorgensen, Bo N.; Kirstein, Brian; Kristensen, Bent B.; Olsen, Martin M.; Perram, John W.; Petersen, Henrik G.; Petersen, Morten L.; Ruhoff, Peter T.; Skjolstrup, Carl E.; Sorensen, Anders S.; Wagenaar, Jeroen M.

    2000-10-01

    RoBlock is the first phase of an internally financed project at the Institute aimed at building a system in which two industrial robots suspended from a gantry, as shown below, cooperate to perform a task specified by an external user, in this case, assembling an unstructured collection of colored wooden blocks into a specified 3D pattern. The blocks are identified and localized using computer vision and grasped with a suction cup mechanism. Future phases of the project will involve other processes such as grasping and lifting, as well as other types of robot such as autonomous vehicles or variable geometry trusses. Innovative features of the control software system include: The use of an advanced trajectory planning system which ensures collision avoidance based on a generalization of the method of artificial potential fields, the use of a generic model-based controller which learns the values of parameters, including static and kinetic friction, of a detailed mechanical model of itself by comparing actual with planned movements, the use of fast, flexible, and robust pattern recognition and 3D-interpretation strategies, integration of trajectory planning and control with the sensor systems in a distributed Java application running on a network of PC's attached to the individual physical components. In designing this first stage, the aim was to build in the minimum complexity necessary to make the system non-trivially autonomous and to minimize the technological risks. The aims of this project, which is planned to be operational during 2000, are as follows: To provide a platform for carrying out experimental research in multi-agent systems and autonomous manufacturing systems, to test the interdisciplinary cooperation architecture of the Maersk Institute, in which researchers in the fields of applied mathematics (modeling the physical world), software engineering (modeling the system) and sensor/actuator technology (relating the virtual and real worlds) could

  2. Concurrent Learning of Control in Multi agent Sequential Decision Tasks

    Science.gov (United States)

    2018-04-17

    Concurrent Learning of Control in Multi-agent Sequential Decision Tasks The overall objective of this project was to develop multi-agent reinforcement... learning (MARL) approaches for intelligent agents to autonomously learn distributed control policies in decentral- ized partially observable... learning of policies in Dec-POMDPs, established performance bounds, evaluated these algorithms both theoretically and empirically, The views

  3. Autonomous celestial navigation based on Earth ultraviolet radiance and fast gradient statistic feature extraction

    Science.gov (United States)

    Lu, Shan; Zhang, Hanmo

    2016-01-01

    To meet the requirement of autonomous orbit determination, this paper proposes a fast curve fitting method based on earth ultraviolet features to obtain accurate earth vector direction, in order to achieve the high precision autonomous navigation. Firstly, combining the stable characters of earth ultraviolet radiance and the use of transmission model software of atmospheric radiation, the paper simulates earth ultraviolet radiation model on different time and chooses the proper observation band. Then the fast improved edge extracting method combined Sobel operator and local binary pattern (LBP) is utilized, which can both eliminate noises efficiently and extract earth ultraviolet limb features accurately. And earth's centroid locations on simulated images are estimated via the least square fitting method using part of the limb edges. Taken advantage of the estimated earth vector direction and earth distance, Extended Kalman Filter (EKF) is applied to realize the autonomous navigation finally. Experiment results indicate the proposed method can achieve a sub-pixel earth centroid location estimation and extremely enhance autonomous celestial navigation precision.

  4. Can We Study Autonomous Driving Comfort in Moving-Base Driving Simulators? A Validation Study.

    Science.gov (United States)

    Bellem, Hanna; Klüver, Malte; Schrauf, Michael; Schöner, Hans-Peter; Hecht, Heiko; Krems, Josef F

    2017-05-01

    To lay the basis of studying autonomous driving comfort using driving simulators, we assessed the behavioral validity of two moving-base simulator configurations by contrasting them with a test-track setting. With increasing level of automation, driving comfort becomes increasingly important. Simulators provide a safe environment to study perceived comfort in autonomous driving. To date, however, no studies were conducted in relation to comfort in autonomous driving to determine the extent to which results from simulator studies can be transferred to on-road driving conditions. Participants ( N = 72) experienced six differently parameterized lane-change and deceleration maneuvers and subsequently rated the comfort of each scenario. One group of participants experienced the maneuvers on a test-track setting, whereas two other groups experienced them in one of two moving-base simulator configurations. We could demonstrate relative and absolute validity for one of the two simulator configurations. Subsequent analyses revealed that the validity of the simulator highly depends on the parameterization of the motion system. Moving-base simulation can be a useful research tool to study driving comfort in autonomous vehicles. However, our results point at a preference for subunity scaling factors for both lateral and longitudinal motion cues, which might be explained by an underestimation of speed in virtual environments. In line with previous studies, we recommend lateral- and longitudinal-motion scaling factors of approximately 50% to 60% in order to obtain valid results for both active and passive driving tasks.

  5. Air Pollution Control Policies in China: A Retrospective and Prospects

    OpenAIRE

    Jin, Yana; Andersson, Henrik; Zhang, Shiqiu

    2016-01-01

    With China’s significant role on pollution emissions and related health damage, deep and up-to-date understanding of China’s air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) Duri...

  6. Cross-Layer Admission Control Policy for CDMA Beamforming Systems

    Directory of Open Access Journals (Sweden)

    Sheng Wei

    2007-01-01

    Full Text Available A novel admission control (AC policy is proposed for the uplink of a cellular CDMA beamforming system. An approximated power control feasibility condition (PCFC, required by a cross-layer AC policy, is derived. This approximation, however, increases outage probability in the physical layer. A truncated automatic retransmission request (ARQ scheme is then employed to mitigate the outage problem. In this paper, we investigate the joint design of an AC policy and an ARQ-based outage mitigation algorithm in a cross-layer context. This paper provides a framework for joint AC design among physical, data-link, and network layers. This enables multiple quality-of-service (QoS requirements to be more flexibly used to optimize system performance. Numerical examples show that by appropriately choosing ARQ parameters, the proposed AC policy can achieve a significant performance gain in terms of reduced outage probability and increased system throughput, while simultaneously guaranteeing all the QoS requirements.

  7. Machine Visual Guidance For An Autonomous Undersea Submersible

    Science.gov (United States)

    Nguyen, Hoa G.; Kaomea, Peter K.; Heckman, Paul J.

    1988-12-01

    Optical imaging is the preferred sensory modality for underwater robotic activities requiring high resolution at close range, such as station keeping, docking, control of manipulator, and object retrieval. Machine vision will play a vital part in the design of next generation autonomous underwater submersibles. This paper describes an effort to demonstrate that real-time vision-based guidance and control of autonomous underwater submersibles is possible with compact, low-power, and vehicle-imbeddable hardware. The Naval Ocean Systems Center's EAVE-WEST (Experimental Autonomous Vehicle-West) submersible is being used as the testbed. The vision hardware consists of a PC-bus video frame grabber and an IBM-PC/AT compatible single-board computer, both residing in the artificial intelligence/vision electronics bottle of the submersible. The specific application chosen involves the tracking of underwater buoy cables. Image recognition is performed in two steps. Feature points are identified in the underwater video images using a technique which detects one-dimensional local brightness minima and maxima. Hough transformation is then used to detect the straight line among these feature points. A hierarchical coarse-to-fine processing method is employed which terminates when enough feature points have been identified to allow a reliable fit. The location of the cable identified is then reported to the vehicle controller computer for automatic steering control. The process currently operates successfully with a throughput of approximately 2 frames per second.

  8. Simulating autonomous driving styles: Accelerations for three road profiles

    Directory of Open Access Journals (Sweden)

    Karjanto Juffrizal

    2017-01-01

    Full Text Available This paper presents a new experimental approach to simulate projected autonomous driving styles based on the accelerations at three road profiles. This study was focused on the determination of ranges of accelerations in triaxial direction to simulate the autonomous driving experience. A special device, known as the Automatic Acceleration and Data controller (AUTOAccD, has been developed to guide the designated driver to accomplish the selected accelerations based on the road profiles and the intended driving styles namely assertive, defensive and light rail transit (LRT. Experimental investigations have been carried out at three different road profiles (junction, speed hump, and corner with two designated drivers with five trials on each condition. A driving style with the accelerations of LRT has also been included in this study as it is significant to the present methodology because the autonomous car is predicted to accelerate like an LRT, in such a way that it enables the users to conduct activities such as working on a laptop, using personal devices or eating and drinking while travelling. The results demonstrated that 92 out of 110 trials of the intended accelerations for autonomous driving styles could be achieved and simulated on the real road by the designated drivers. The differences between the two designated drivers were negligible, and the rates of succeeding in realizing the intended accelerations were high. The present approach in simulating autonomous driving styles focusing on accelerations can be used as a tool for experimental setup involving autonomous driving experience and acceptance.

  9. Venous and autonomic function in formerly pre-eclamptic women and BMI-matched controls.

    Science.gov (United States)

    Heidema, Wieteke M; van Drongelen, Joris; Spaanderman, Marc E A; Scholten, Ralph R

    2018-03-25

    Pre-pregnancy reduced plasma volume increases the risk on subsequent pre-eclamptic pregnancy. Reduced plasma volume is thought to reflect venous reserve capacity, especially when venous vasculature is constricted and sympathetic tone is elevated. As obesity might affect these variables and also relates to pre-eclampsia, increased body weight may underlie these observations. We hypothesized that the relationship between reduced venous reserve and preeclampsia is independent of body mass index (BMI). We compared the non-pregnant venous reserve capacity in 30 formerly pre-eclamptic women, equally divided in 3 BMI-classes (BMI 19.5-24.9, BMI 25-29.9, BMI ≥30) to 30 controls. Cases and controls were matched for BMI, age and parity. The venous reserve capacity was quantified by assessing plasma volume and venous compliance. The autonomic nervous system regulating the venous capacitance was evaluated with heart rate variability analysis in resting supine position and during positive head-up tilt (HUT). Formerly pre-eclamptic women had in supine position lower plasma volume than controls (1339 ± 79 vs 1547 ± 139 ml/m 2 (pBMI-matched controls, reduced venous reserve capacity. This is reflected by lower plasma volume and venous compliance, the autonomic balance is shifted towards sympathetic dominance and lower baroreceptor sensitivity. This suggests that not BMI, but underlying reduced venous reserve relates to pre-eclampsia. This article is protected by copyright. All rights reserved.

  10. Autonomic Dysfunction in Patients with Mild to Moderate Alzheimer's Disease

    DEFF Research Database (Denmark)

    Jensen-Dahm, Christina; Waldemar, Gunhild; Staehelin Jensen, Troels

    2015-01-01

    BACKGROUND: Autonomic function has received little attention in Alzheimer's disease (AD). AD pathology has an impact on brain regions which are important for central autonomic control, but it is unclear if AD is associated with disturbance of autonomic function. OBJECTIVE: To investigate autonomic...

  11. F-18-FDG-PET in autonomous goiter

    International Nuclear Information System (INIS)

    Boerner, A.R.; Voth, E.; Schicha, H.

    1999-01-01

    Aim: Gain-of-function mutations of the thyrotropin receptor (TSHR) gene have been invoked as one of the major causes of toxic thyroid adenomas. This study evaluates F-18-FDG-PET in these patients. Methods: Twenty patients with focal autonomous nodules and ten with disseminated autonomy were investigated the day before radioiodine therapy. Twenty patients with cancer of the head or neck and normal thyroid function served as controls. Results: F-18-FDG-Uptake was higher in patients than in controls. Focal autonomous nodules were associated with focally enhanced glucose metabolism. Disseminated autonomous goiters showed various patterns of focal or global hypermetabolism. Conclusion: Autonomous thyroid tissue caused by constitutive mutations of the TSH receptor is characterised by simultaneous increases in glucose and iodine metabolism which are correlated. (orig.) [de

  12. Second Order Sliding Mode Control Scheme for an Autonomous Underwater Vehicle with Dynamic Region Concept

    Directory of Open Access Journals (Sweden)

    Zool H. Ismail

    2015-01-01

    Full Text Available The main goal in developing closed loop control system for an Autonomous Underwater Vehicle (AUV is to make a robust vehicle from natural and exogenous perturbations such as wind, wave, and ocean currents. However a well-known robust control, for instance, Sliding Mode Controller (SMC, gives a chattering effect and it influences the stability of an AUV. Furthermore, some researchers combined other controls to get better result but it tends to present long computational time and causes large energy consumption. Thus, this paper proposed a Super Twisting Sliding Mode Controller (STSMC with dynamic region concept for an AUV. STSMC or a second order SMC is adopted as a robust controller which is free from chattering effect. Meanwhile, the implementation of dynamic region is useful to reduce the energy usage. As a result, the proposed controller obtains global asymptotic stability which is validated by using Lyapunov-like function. Moreover, some simulations present the efficiency of proposed controller. In conclusion, STSMC with region based control is effective to be applied for the robust tracking of an AUV. It contributes to give a fast response when handling the perturbations, short computational time, and low energy demand.

  13. Search and Classification Using Multiple Autonomous Vehicles Decision-Making and Sensor Management

    CERN Document Server

    Wang, Yue

    2012-01-01

    Search and Classification Using Multiple Autonomous Vehicles provides a comprehensive study of decision-making strategies for domain search and object classification using multiple autonomous vehicles (MAV) under both deterministic and probabilistic frameworks. It serves as a first discussion of the problem of effective resource allocation using MAV with sensing limitations, i.e., for search and classification missions over large-scale domains, or when there are far more objects to be found and classified than there are autonomous vehicles available. Under such scenarios, search and classification compete for limited sensing resources. This is because search requires vehicle mobility while classification restricts the vehicles to the vicinity of any objects found. The authors develop decision-making strategies to choose between these competing tasks and vehicle-motion-control laws to achieve the proposed management scheme. Deterministic Lyapunov-based, probabilistic Bayesian-based, and risk-based decision-mak...

  14. Owner-Based Role-Based Access Control OB-RBAC

    NARCIS (Netherlands)

    Saffarian, M.; Sadighi, Babak

    Administration of an access control model deals with the question of who is authorized to update policies defined on the basis of that model. One of the models whose administration has absorbed relatively large research is the Role-Based Access Control (RBAC) model. All the existing role-based

  15. Command and Control Architectures for Autonomous Micro-Robotic Forces - FY-2000 Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Dudenhoeffer, Donald Dean

    2001-04-01

    Advances in Artificial Intelligence (AI) and micro-technologies will soon give rise to production of large-scale forces of autonomous micro-robots with systems of innate behaviors and with capabilities of self-organization and real world tasking. Such organizations have been compared to schools of fish, flocks of birds, herds of animals, swarms of insects, and military squadrons. While these systems are envisioned as maintaining a high degree of autonomy, it is important to understand the relationship of man with such machines. In moving from research studies to the practical deployment of large-scale numbers of robots, one of critical pieces that must be explored is the command and control architecture for humans to re-task and also inject global knowledge, experience, and intuition into the force. Tele-operation should not be the goal, but rather a level of adjustable autonomy and high-level control. If a herd of sheep is comparable to the collective of robots, then the human element is comparable to the shepherd pulling in strays and guiding the herd in the direction of greener pastures. This report addresses the issues and development of command and control for largescale numbers of autonomous robots deployed as a collective force.

  16. MAS Based Event-Triggered Hybrid Control for Smart Microgrids

    DEFF Research Database (Denmark)

    Dou, Chunxia; Liu, Bin; Guerrero, Josep M.

    2013-01-01

    This paper is focused on an advanced control for autonomous microgrids. In order to improve the performance regarding security and stability, a hierarchical decentralized coordinated control scheme is proposed based on multi-agents structure. Moreover, corresponding to the multi-mode and the hybrid...... haracteristics of microgrids, an event-triggered hybrid control, including three kinds of switching controls, is designed to intelligently reconstruct operation mode when the security stability assessment indexes or the constraint conditions are violated. The validity of proposed control scheme is demonstrated...

  17. Policy challenges of increasing automation in driving

    Directory of Open Access Journals (Sweden)

    Ata M. Khan

    2012-03-01

    Full Text Available The convergence of information and communication technologies (ICT with automotive technologies has already resulted in automation features in road vehicles and this trend is expected to continue in the future owing to consumer demand, dropping costs of components, and improved reliability. While the automation features that have taken place so far are mainly in the form of information and driver warning technologies (classified as level I pre-2010, future developments in the medium term (level II 2010–2025 are expected to exhibit connected cognitive vehicle features and encompass increasing degree of automation in the form of advanced driver assistance systems. Although autonomous vehicles have been developed for research purposes and are being tested in controlled driving missions, the autonomous driving case is only a long term (level III 2025+ scenario. This paper contributes knowledge on technological forecasts regarding automation, policy challenges for each level of technology development and application context, and the essential instrument of cost-effectiveness for policy analysis which enables policy decisions on the automation systems to be assessed in a consistent and balanced manner. The cost of a system per vehicle is viewed against its effectiveness in meeting policy objectives of improving safety, efficiency, mobility, convenience and reducing environmental effects. Example applications are provided that illustrate the contribution of the methodology in providing information for supporting policy decisions. Given the uncertainties in system costs as well as effectiveness, the tool for assessing policies for future generation features probabilistic and utility-theoretic analysis capability. The policy issues defined and the assessment framework enable the resolution of policy challenges while allowing worthy innovative automation in driving to enhance future road transportation.

  18. Maintenance of Blood-Brain Barrier Integrity in Hypertension: A Novel Benefit of Exercise Training for Autonomic Control

    Directory of Open Access Journals (Sweden)

    Leila Buttler

    2017-12-01

    Full Text Available The blood-brain barrier (BBB is a complex multicellular structure acting as selective barrier controlling the transport of substances between these compartments. Accumulating evidence has shown that chronic hypertension is accompanied by BBB dysfunction, deficient local perfusion and plasma angiotensin II (Ang II access into the parenchyma of brain areas related to autonomic circulatory control. Knowing that spontaneously hypertensive rats (SHR exhibit deficient autonomic control and brain Ang II hyperactivity and that exercise training is highly effective in correcting both, we hypothesized that training, by reducing Ang II content, could improve BBB function within autonomic brain areas of the SHR. After confirming the absence of BBB lesion in the pre-hypertensive SHR, but marked fluorescein isothiocyanate dextran (FITC, 10 kD leakage into the brain parenchyma of the hypothalamic paraventricular nucleus (PVN, nucleus of the solitary tract, and rostral ventrolateral medulla during the established phase of hypertension, adult SHR, and age-matched WKY were submitted to a treadmill training (T or kept sedentary (S for 8 weeks. The robust FITC leakage within autonomic areas of the SHR-S was largely reduced and almost normalized since the 2nd week of training (T2. BBB leakage reduction occurred simultaneously and showed strong correlations with both decreased LF/HF ratio to the heart and reduced vasomotor sympathetic activity (power spectral analysis, these effects preceding the appearance of resting bradycardia (T4 and partial pressure fall (T8. In other groups of SHR-T simultaneously infused with icv Ang II or saline (osmotic mini-pumps connected to a lateral ventricle cannula we proved that decreased local availability of this peptide and reduced microglia activation (IBA1 staining are crucial mechanisms conditioning the restoration of BBB integrity. Our data also revealed that Ang II-induced BBB lesion was faster within the PVN (T2, suggesting

  19. Nuclear power hazard control policy

    Energy Technology Data Exchange (ETDEWEB)

    Chicken, J C

    1982-01-01

    This study presents an analysis of the factors that appear to have influenced the formation and form of nuclear power hazard control policy in Britain. A simple account is given of the technical nature of nuclear hazards and of the legal and administrative framework that has been constructed to control them. The subsequent analysis concentrates primarily on the influence exerted by social and political factors. Particular attention is directed to those political groups which have developed a special interest in the problems of nuclear power, and to the interplay between organised groupings and public opinion generally. The metamorphosis of these groupings is traced from the origins of the nuclear industry in the Second World War to their prominent role during the Windscale Inquiry. Attention is given to the policy constraint imposed by increased expectations in the form of demands for higher standards of living, and improvements in the quality of the environment. The study is concerned with both policy-making and with policy implementation; with interest articulation as well as with the functioning of formal institutions. The evolution of policy takes place in an atmosphere of keen economic debate and conflicting moral perceptions. A model of the policy-making system is postulated.

  20. Nuclear power hazard control policy

    International Nuclear Information System (INIS)

    Chicken, J.C.

    1982-01-01

    This study presents an analysis of the factors that appear to have influenced the formation and form of nuclear power hazard control policy in Britain. A simple account is given of the technical nature of nuclear hazards and of the legal and administrative framework that has been constructed to control them. The subsequent analysis concentrates primarily on the influence exerted by social and political factors. Particular attention is directed to those political groups which have developed a special interest in the problems of nuclear power, and to the interplay between organised groupings and public opinion generally. The metamorphosis of these groupings is traced from the origins of the nuclear industry in the Second World War to their prominent role during the Windscale Inquiry. Attention is given to the policy constraint imposed by increased expectations in the form of demands for higher standards of living, and improvements in the quality of the environment. The study is concerned with both policy-making and with policy implementation; with interest articulation as well as with the functioning of formal institutions. The evolution of policy takes place in an atmosphere of keen economic debate and conflicting moral perceptions. A model of the policy-making system is postulated. (author)

  1. Off-policy integral reinforcement learning optimal tracking control for continuous-time chaotic systems

    International Nuclear Information System (INIS)

    Wei Qing-Lai; Song Rui-Zhuo; Xiao Wen-Dong; Sun Qiu-Ye

    2015-01-01

    This paper estimates an off-policy integral reinforcement learning (IRL) algorithm to obtain the optimal tracking control of unknown chaotic systems. Off-policy IRL can learn the solution of the HJB equation from the system data generated by an arbitrary control. Moreover, off-policy IRL can be regarded as a direct learning method, which avoids the identification of system dynamics. In this paper, the performance index function is first given based on the system tracking error and control error. For solving the Hamilton–Jacobi–Bellman (HJB) equation, an off-policy IRL algorithm is proposed. It is proven that the iterative control makes the tracking error system asymptotically stable, and the iterative performance index function is convergent. Simulation study demonstrates the effectiveness of the developed tracking control method. (paper)

  2. Autonomous Learning through Task-Based Instruction in Fully Online Language Courses

    Science.gov (United States)

    Lee, Lina

    2016-01-01

    This study investigated the affordances for autonomous learning in a fully online learning environment involving the implementation of task-based instruction in conjunction with Web 2.0 technologies. To that end, four-skill-integrated tasks and digital tools were incorporated into the coursework. Data were collected using midterm reflections,…

  3. Tobacco control, global health policy and development: towards policy coherence in global governance

    Science.gov (United States)

    Collin, Jeff

    2015-01-01

    The WHO Framework Convention on Tobacco Control (FCTC) demonstrates the international political will invested in combating the tobacco pandemic and a newfound prominence for tobacco control within the global health agenda. However, major difficulties exist in managing conflicts with foreign and trade policy priorities, and significant obstacles confront efforts to create synergies with development policy and avoid tensions with other health priorities. This paper uses the concept of policy coherence to explore congruence and inconsistencies in objectives, policy, and practice between tobacco control and trade, development and global health priorities. Following the inability of the FCTC negotiations to satisfactorily address the relationship between trade and health, several disputes highlight the challenges posed to tobacco control policies by multilateral and bilateral agreements. While the work of the World Bank has demonstrated the potential contribution of tobacco control to development, the absence of non-communicable diseases from the Millennium Development Goals has limited scope to offer developing countries support for FCTC implementation. Even within international health, tobacco control priorities may be hard to reconcile with other agendas. The paper concludes by discussing the extent to which tobacco control has been pursued via a model of governance very deliberately different from those used in other health issues, in what can be termed ‘tobacco exceptionalism’. The analysis developed here suggests that non-communicable disease (NCD) policies, global health, development and tobacco control would have much to gain from re-examining this presumption of difference. PMID:22345267

  4. Environmental advertisement: An alternative policy to control consumption pollution

    OpenAIRE

    Sartzetakis, Eftichios Sophocles; Xepapadeas, Anastasios P.

    1998-01-01

    This paper examines the efficiency enhancing potential of supplementing existing policies of controlling consumption pollution with environmental advertisement. Our definition of environmental advertisement includes both information dissemination and persuasion. While incentive-based regulations that are based on coercion are effective immediately, environmental advertisement that is based on inducing voluntary action requires time. We formalise this argument by assuming that the shift of con...

  5. Databases as policy instruments. About extending networks as evidence-based policy

    Directory of Open Access Journals (Sweden)

    Stoevelaar Herman

    2007-12-01

    Full Text Available Abstract Background This article seeks to identify the role of databases in health policy. Access to information and communication technologies has changed traditional relationships between the state and professionals, creating new systems of surveillance and control. As a result, databases may have a profound effect on controlling clinical practice. Methods We conducted three case studies to reconstruct the development and use of databases as policy instruments. Each database was intended to be employed to control the use of one particular pharmaceutical in the Netherlands (growth hormone, antiretroviral drugs for HIV and Taxol, respectively. We studied the archives of the Dutch Health Insurance Board, conducted in-depth interviews with key informants and organized two focus groups, all focused on the use of databases both in policy circles and in clinical practice. Results Our results demonstrate that policy makers hardly used the databases, neither for cost control nor for quality assurance. Further analysis revealed that these databases facilitated self-regulation and quality assurance by (national bodies of professionals, resulting in restrictive prescription behavior amongst physicians. Conclusion The databases fulfill control functions that were formerly located within the policy realm. The databases facilitate collaboration between policy makers and physicians, since they enable quality assurance by professionals. Delegating regulatory authority downwards into a network of physicians who control the use of pharmaceuticals seems to be a good alternative for centralized control on the basis of monitoring data.

  6. Comparison of three filters in asteroid-based autonomous navigation

    International Nuclear Information System (INIS)

    Cui Wen; Zhu Kai-Jian

    2014-01-01

    At present, optical autonomous navigation has become a key technology in deep space exploration programs. Recent studies focus on the problem of orbit determination using autonomous navigation, and the choice of filter is one of the main issues. To prepare for a possible exploration mission to Mars, the primary emphasis of this paper is to evaluate the capability of three filters, the extended Kalman filter (EKF), unscented Kalman filter (UKF) and weighted least-squares (WLS) algorithm, which have different initial states during the cruise phase. One initial state is assumed to have high accuracy with the support of ground tracking when autonomous navigation is operating; for the other state, errors are set to be large without this support. In addition, the method of selecting asteroids that can be used for navigation from known lists of asteroids to form a sequence is also presented in this study. The simulation results show that WLS and UKF should be the first choice for optical autonomous navigation during the cruise phase to Mars

  7. Autonomy support for autonomous motivation in medical education.

    Science.gov (United States)

    Kusurkar, Rashmi A; Croiset, Gerda

    2015-01-01

    Medical students often study only to fare well in their examinations or pursue a specific specialty, or study only those topics that they perceive to be useful in medical practice. The motivation for study in these cases comes from external or internal pressures or from the desire to obtain rewards. Self-determination theory (SDT) classifies this type of motivation as controlled motivation and the type of motivation that comes from genuine interest or personal value as autonomous motivation. Autonomous motivation, in comparison with controlled motivation, has been associated with better learning, academic success, and less exhaustion. SDT endorses autonomous motivation and suggests that autonomy support is important for autonomous motivation. The meaning of autonomy is misinterpreted by many. This article tries to focus on how to be autonomy-supportive in medical education. Autonomy support refers to the perception of choice in learning. Some of the ways of supporting autonomy in medical education are small group teaching, problem-based learning, and gradual increase in responsibility of patients. Autonomy-supportive teaching behavior is not a trait and can be learned. Autonomy support in medical education is not limited to bringing in changes in the medical curriculum for students; it is about an overall change in the way of thinking and working in medical schools that foster autonomy among those involved in education. Research into autonomy in medical education is limited. Some topics that need to be investigated are the ideas and perceptions of students and teachers about autonomy in learning. Autonomy support in medical education can enhance autonomous motivation of students for medical study and practice and make them autonomy-supportive in their future medical practice and teaching.

  8. A General Attribute and Rule Based Role-Based Access Control Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Growing numbers of users and many access control policies which involve many different resource attributes in service-oriented environments bring various problems in protecting resource. This paper analyzes the relationships of resource attributes to user attributes in all policies, and propose a general attribute and rule based role-based access control(GAR-RBAC) model to meet the security needs. The model can dynamically assign users to roles via rules to meet the need of growing numbers of users. These rules use different attribute expression and permission as a part of authorization constraints, and are defined by analyzing relations of resource attributes to user attributes in many access policies that are defined by the enterprise. The model is a general access control model, and can support many access control policies, and also can be used to wider application for service. The paper also describes how to use the GAR-RBAC model in Web service environments.

  9. Estimation and Control for Autonomous Coring from a Rover Manipulator

    Science.gov (United States)

    Hudson, Nicolas; Backes, Paul; DiCicco, Matt; Bajracharya, Max

    2010-01-01

    A system consisting of a set of estimators and autonomous behaviors has been developed which allows robust coring from a low-mass rover platform, while accommodating for moderate rover slip. A redundant set of sensors, including a force-torque sensor, visual odometry, and accelerometers are used to monitor discrete critical and operational modes, as well as to estimate continuous drill parameters during the coring process. A set of critical failure modes pertinent to shallow coring from a mobile platform is defined, and autonomous behaviors associated with each critical mode are used to maintain nominal coring conditions. Autonomous shallow coring is demonstrated from a low-mass rover using a rotary-percussive coring tool mounted on a 5 degree-of-freedom (DOF) arm. A new architecture of using an arm-stabilized, rotary percussive tool with the robotic arm used to provide the drill z-axis linear feed is validated. Particular attention to hole start using this architecture is addressed. An end-to-end coring sequence is demonstrated, where the rover autonomously detects and then recovers from a series of slip events that exceeded 9 cm total displacement.

  10. Generic FMS Platform for Evaluation of Autonomous Trajectory-Based Operation Concepts, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II work is to develop a generic, advanced Flight Management System (FMS) for the evaluation of autonomous 4D-trajectory based operations...

  11. Artificial Intelligence in Autonomous Telescopes

    Science.gov (United States)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  12. Zebrafish heart as a model to study the integrative autonomic control of pacemaker function

    Science.gov (United States)

    Stoyek, Matthew R.; Quinn, T. Alexander; Croll, Roger P.

    2016-01-01

    The cardiac pacemaker sets the heart's primary rate, with pacemaker discharge controlled by the autonomic nervous system through intracardiac ganglia. A fundamental issue in understanding the relationship between neural activity and cardiac chronotropy is the identification of neuronal populations that control pacemaker cells. To date, most studies of neurocardiac control have been done in mammalian species, where neurons are embedded in and distributed throughout the heart, so they are largely inaccessible for whole-organ, integrative studies. Here, we establish the isolated, innervated zebrafish heart as a novel alternative model for studies of autonomic control of heart rate. Stimulation of individual cardiac vagosympathetic nerve trunks evoked bradycardia (parasympathetic activation) and tachycardia (sympathetic activation). Simultaneous stimulation of both vagosympathetic nerve trunks evoked a summative effect. Effects of nerve stimulation were mimicked by direct application of cholinergic and adrenergic agents. Optical mapping of electrical activity confirmed the sinoatrial region as the site of origin of normal pacemaker activity and identified a secondary pacemaker in the atrioventricular region. Strong vagosympathetic nerve stimulation resulted in a shift in the origin of initial excitation from the sinoatrial pacemaker to the atrioventricular pacemaker. Putative pacemaker cells in the sinoatrial and atrioventricular regions expressed adrenergic β2 and cholinergic muscarinic type 2 receptors. Collectively, we have demonstrated that the zebrafish heart contains the accepted hallmarks of vertebrate cardiac control, establishing this preparation as a viable model for studies of integrative physiological control of cardiac function by intracardiac neurons. PMID:27342878

  13. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chelaru, Teodor-Viorel, E-mail: teodor.chelaru@upb.ro [University POLITEHNICA of Bucharest - Research Center for Aeronautics and Space, Str. Gheorghe Polizu, no. 1, PC 011061, Sector 1, Bucharest (Romania); Chelaru, Adrian, E-mail: achelaru@incas.ro [INCAS -National Institute for Aerospace Research Elie Carafoli, B-dul Iuliu Maniu 220, 061126, Sector 6, Bucharest (Romania)

    2014-12-10

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.

  14. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    International Nuclear Information System (INIS)

    Chelaru, Teodor-Viorel; Chelaru, Adrian

    2014-01-01

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed

  15. Vision based speed breaker detection for autonomous vehicle

    Science.gov (United States)

    C. S., Arvind; Mishra, Ritesh; Vishal, Kumar; Gundimeda, Venugopal

    2018-04-01

    In this paper, we are presenting a robust and real-time, vision-based approach to detect speed breaker in urban environments for autonomous vehicle. Our method is designed to detect the speed breaker using visual inputs obtained from a camera mounted on top of a vehicle. The method performs inverse perspective mapping to generate top view of the road and segment out region of interest based on difference of Gaussian and median filter images. Furthermore, the algorithm performs RANSAC line fitting to identify the possible speed breaker candidate region. This initial guessed region via RANSAC, is validated using support vector machine. Our algorithm can detect different categories of speed breakers on cement, asphalt and interlock roads at various conditions and have achieved a recall of 0.98.

  16. Behavioral and biological effects of autonomous versus scheduled mission management in simulated space-dwelling groups

    Science.gov (United States)

    Roma, Peter G.; Hursh, Steven R.; Hienz, Robert D.; Emurian, Henry H.; Gasior, Eric D.; Brinson, Zabecca S.; Brady, Joseph V.

    2011-05-01

    Logistical constraints during long-duration space expeditions will limit the ability of Earth-based mission control personnel to manage their astronaut crews and will thus increase the prevalence of autonomous operations. Despite this inevitability, little research exists regarding crew performance and psychosocial adaptation under such autonomous conditions. To this end, a newly-initiated study on crew management systems was conducted to assess crew performance effectiveness under rigid schedule-based management of crew activities by Mission Control versus more flexible, autonomous management of activities by the crews themselves. Nine volunteers formed three long-term crews and were extensively trained in a simulated planetary geological exploration task over the course of several months. Each crew then embarked on two separate 3-4 h missions in a counterbalanced sequence: Scheduled, in which the crews were directed by Mission Control according to a strict topographic and temporal region-searching sequence, and Autonomous, in which the well-trained crews received equivalent baseline support from Mission Control but were free to explore the planetary surface as they saw fit. Under the autonomous missions, performance in all three crews improved (more high-valued geologic samples were retrieved), subjective self-reports of negative emotional states decreased, unstructured debriefing logs contained fewer references to negative emotions and greater use of socially-referent language, and salivary cortisol output across the missions was attenuated. The present study provides evidence that crew autonomy may improve performance and help sustain if not enhance psychosocial adaptation and biobehavioral health. These controlled experimental data contribute to an emerging empirical database on crew autonomy which the international astronautics community may build upon for future research and ultimately draw upon when designing and managing missions.

  17. Fabrication and magnetic control of alginate-based rolling microrobots

    Directory of Open Access Journals (Sweden)

    Jamel Ali

    2016-12-01

    Full Text Available Advances in microrobotics for biological applications are often limited due to their complex manufacturing processes, which often utilize cytotoxic materials, as well as limitations in the ability to manipulate these small devices wirelessly. In an effort to overcome these challenges, we investigated a facile method for generating biocompatible hydrogel based robots that are capable of being manipulated using an externally generated magnetic field. Here, we experimentally demonstrate the fabrication and autonomous control of loaded-alginate microspheres, which we term artificial cells. In order to generate these microparticles, we employed a centrifuge-based method in which microspheres were rapidly ejected from a nozzle tip. Specifically, we used two mixtures of sodium alginate; one containing iron oxide nanoparticles and the other containing mammalian cells. This mixture was loaded into a needle that was fixed on top of a microtube containing calcium chloride, and then briefly centrifuged to generate hundreds of Janus microspheres. The fabricated microparticles were then magnetically actuated with a rotating magnetic field, generated using electromagnetic coils, prompting the particles to roll across a glass substrate. Also, using vision-based feedback control, a single artificial cell was manipulated to autonomously move in a programmed pattern.

  18. Autonomous control systems: applications to remote sensing and image processing

    Science.gov (United States)

    Jamshidi, Mohammad

    2001-11-01

    One of the main challenges of any control (or image processing) paradigm is being able to handle complex systems under unforeseen uncertainties. A system may be called complex here if its dimension (order) is too high and its model (if available) is nonlinear, interconnected, and information on the system is uncertain such that classical techniques cannot easily handle the problem. Examples of complex systems are power networks, space robotic colonies, national air traffic control system, and integrated manufacturing plant, the Hubble Telescope, the International Space Station, etc. Soft computing, a consortia of methodologies such as fuzzy logic, neuro-computing, genetic algorithms and genetic programming, has proven to be powerful tools for adding autonomy and semi-autonomy to many complex systems. For such systems the size of soft computing control architecture will be nearly infinite. In this paper new paradigms using soft computing approaches are utilized to design autonomous controllers and image enhancers for a number of application areas. These applications are satellite array formations for synthetic aperture radar interferometry (InSAR) and enhancement of analog and digital images.

  19. Design of a Prototype Autonomous Amphibious WHEGS(Trademark) Robot for Surf-Zone Operations

    National Research Council Canada - National Science Library

    Ward, Jason L

    2005-01-01

    .... This platform, in conjunction with a commercial-off- the-shelf (COTS) control architecture, is capable of autonomous, land based waypoint navigation, self orientation, and rudimentary obstacle avoidance...

  20. A Secure, Scalable and Elastic Autonomic Computing Systems Paradigm: Supporting Dynamic Adaptation of Self-* Services from an Autonomic Cloud

    Directory of Open Access Journals (Sweden)

    Abdul Jaleel

    2018-05-01

    Full Text Available Autonomic computing embeds self-management features in software systems using external feedback control loops, i.e., autonomic managers. In existing models of autonomic computing, adaptive behaviors are defined at the design time, autonomic managers are statically configured, and the running system has a fixed set of self-* capabilities. An autonomic computing design should accommodate autonomic capability growth by allowing the dynamic configuration of self-* services, but this causes security and integrity issues. A secure, scalable and elastic autonomic computing system (SSE-ACS paradigm is proposed to address the runtime inclusion of autonomic managers, ensuring secure communication between autonomic managers and managed resources. Applying the SSE-ACS concept, a layered approach for the dynamic adaptation of self-* services is presented with an online ‘Autonomic_Cloud’ working as the middleware between Autonomic Managers (offering the self-* services and Autonomic Computing System (requiring the self-* services. A stock trading and forecasting system is used for simulation purposes. The security impact of the SSE-ACS paradigm is verified by testing possible attack cases over the autonomic computing system with single and multiple autonomic managers running on the same and different machines. The common vulnerability scoring system (CVSS metric shows a decrease in the vulnerability severity score from high (8.8 for existing ACS to low (3.9 for SSE-ACS. Autonomic managers are introduced into the system at runtime from the Autonomic_Cloud to test the scalability and elasticity. With elastic AMs, the system optimizes the Central Processing Unit (CPU share resulting in an improved execution time for business logic. For computing systems requiring the continuous support of self-management services, the proposed system achieves a significant improvement in security, scalability, elasticity, autonomic efficiency, and issue resolving time

  1. Sudarshan Kriya Yoga improves cardiac autonomic control in patients with anxiety-depression disorders.

    Science.gov (United States)

    Toschi-Dias, Edgar; Tobaldini, Eleonora; Solbiati, Monica; Costantino, Giorgio; Sanlorenzo, Roberto; Doria, Stefania; Irtelli, Floriana; Mencacci, Claudio; Montano, Nicola

    2017-05-01

    Several studies have demonstrated that adjuvant therapies as exercise and breathing training are effective in improving cardiac autonomic control (CAC) in patients with affective spectrum disorders. However, the effects of Sudarshan Kriya Yoga (SKY) on autonomic function in this population is unknown. Our objective was to test the hypothesis that SKY training improves CAC and cardiorespiratory coupling in patients with anxiety and/or depression disorders. Forty-six patients with a diagnosis of anxiety and/or depression disorders (DSM-IV) were consecutively enrolled and divided in two groups: 1) conventional therapy (Control) and 2) conventional therapy associated with SKY (Treatment) for 15 days. Anxiety and depression levels were determined using quantitative questionnaires. For the assessment of CAC and cardiorespiratory coupling, cardiorespiratory traces were analyzed using monovariate and bivariate autoregressive spectral analysis, respectively. After 15-days, we observed a reduction of anxiety and depression levels only in Treatment group. Moreover, sympathetic modulation and CAC were significantly lower while parasympathetic modulation and cardiorespiratory coupling were significantly higher in the Treatment compared to Control group. Intensive breathing training using SKY approach improves anxiety and/or depressive disorders as well as CAC and cardiorespiratory coupling. These finding suggest that the SKY training may be a useful non-pharmacological intervention to improve symptoms and reduce cardiovascular risk in patients with anxiety/depression disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Colour-based Object Detection and Tracking for Autonomous Quadrotor UAV

    International Nuclear Information System (INIS)

    Kadouf, Hani Hunud A; Mustafah, Yasir Mohd

    2013-01-01

    With robotics becoming a fundamental aspect of modern society, further research and consequent application is ever increasing. Aerial robotics, in particular, covers applications such as surveillance in hostile military zones or search and rescue operations in disaster stricken areas, where ground navigation is impossible. The increased visual capacity of UAV's (Unmanned Air Vehicles) is also applicable in the support of ground vehicles to provide supplies for emergency assistance, for scouting purposes or to extend communication beyond insurmountable land or water barriers. The Quadrotor, which is a small UAV has its lift generated by four rotors and can be controlled by altering the speeds of its motors relative to each other. The four rotors allow for a higher payload than single or dual rotor UAVs, which makes it safer and more suitable to carry camera and transmitter equipment. An onboard camera is used to capture and transmit images of the Quadrotor's First Person View (FPV) while in flight, in real time, wirelessly to a base station. The aim of this research is to develop an autonomous quadrotor platform capable of transmitting real time video signals to a base station for processing. The result from the image analysis will be used as a feedback in the quadrotor positioning control. To validate the system, the algorithm should have the capacity to make the quadrotor identify, track or hover above stationary or moving objects

  3. Regulation of Voltage and Frequency in Solid Oxide Fuel Cell-Based Autonomous Microgrids Using the Whales Optimisation Algorithm

    Directory of Open Access Journals (Sweden)

    Sajid Hussain Qazi

    2018-05-01

    Full Text Available This study explores the Whales Optimization Algorithm (WOA-based PI controller for regulating the voltage and frequency of an inverter-based autonomous microgrid (MG. The MG comprises two 50 kW DGs (solid oxide fuel cells, SOFCs interfaced using a power electronics-based voltage source inverter (VSI with a 120-kV conventional grid. Four PI controller schemes for the MG are implemented: (i stationary PI controller with fixed gain values (Kp and Ki, (ii PSO tuned PI controller, (iii GWO tuned PI controller, and (iv WOA tuned PI controller. The performance of these controllers is evaluated by monitoring the system voltage and frequency during the transition of MG operation mode and changes in the load. The MATLAB/SIMULINK tool is utilised to design the proposed model of grid-tied MG alongside the MATLAB m-file to apply an optimisation technique. The simulation results show that the WOA-based PI controller which optimises the control parameters, achieve 62.7% and 59% better results for voltage and frequency regulation, respectively. The eigenvalue analysis is also provided to check the stability of the proposed controller. Furthermore, the proposed system also satisfies the limits specified in IEEE-1547-2003 for voltage and frequency.

  4. Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments.

    Science.gov (United States)

    Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph

    2017-09-26

    Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.

  5. Autonomous Formations of Multi-Agent Systems

    Science.gov (United States)

    Dhali, Sanjana; Joshi, Suresh M.

    2013-01-01

    Autonomous formation control of multi-agent dynamic systems has a number of applications that include ground-based and aerial robots and satellite formations. For air vehicles, formation flight ("flocking") has the potential to significantly increase airspace utilization as well as fuel efficiency. This presentation addresses two main problems in multi-agent formations: optimal role assignment to minimize the total cost (e.g., combined distance traveled by all agents); and maintaining formation geometry during flock motion. The Kuhn-Munkres ("Hungarian") algorithm is used for optimal assignment, and consensus-based leader-follower type control architecture is used to maintain formation shape despite the leader s independent movements. The methods are demonstrated by animated simulations.

  6. Terpsichore. ENEA's autonomous robotics project; Progetto Tersycore, la robotica autonoma

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, S.; Zanela, S.; Santini, A.; Nanni, V. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Div. Robotica e Informatica Avanzata

    1999-10-01

    The article presents some of the Terpsichore project's results aimed to developed and test algorithms and applications for autonomous robotics. Four applications are described: dynamic mapping of a building's interior through the use of ultrasonic sensors; visual drive of an autonomous robot via a neural network controller; a neural network-based stereo vision system that steers a robot through unknown indoor environments; and the evolution of intelligent behaviours via the genetic algorithm approach.

  7. Autonomous Propellant Loading Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Autonomous Propellant Loading (APL) project consists of three activities. The first is to develop software that will automatically control loading of...

  8. Air Pollution Control Policies in China: A Retrospective and Prospects.

    Science.gov (United States)

    Jin, Yana; Andersson, Henrik; Zhang, Shiqiu

    2016-12-09

    With China's significant role on pollution emissions and related health damage, deep and up-to-date understanding of China's air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) During 2006-2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO₂) emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM 2.5 ) and ground level ozone (O₃) emerged and worsened; (3) After the winter-long PM 2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions.

  9. Audit, Control and Monitoring Design Patterns (ACMDP for Autonomous Robust Systems (ARS

    Directory of Open Access Journals (Sweden)

    C. Trad

    2008-11-01

    Full Text Available This paper proposes the Audit, Control and Monitoring Design Patterns (ACMDP for building Autonomous and Robust Systems (ARS such as Mobile Robot Systems (MRS. These patterns are also applicable to other Mission Critical and Complex Systems (MCCS. This paper presents a proposal which will help ARS project managers and engineers design, build and estimate the probability that an ARS will succeed or fail. Furthermore, this proposal offers the possibility to ARS problems with the help of audit, monitoring and controlling components, adjust the project management pathways, and define the problem sources as well as their possible solutions, in order to deliver an ARS or an MRS.

  10. Laser rangefinders for autonomous intelligent cruise control systems

    Science.gov (United States)

    Journet, Bernard A.; Bazin, Gaelle

    1998-01-01

    THe purpose of this paper is to show to what kind of application laser range-finders can be used inside Autonomous Intelligent Cruise Control systems. Even if laser systems present good performances the safety and technical considerations are very restrictive. As the system is used in the outside, the emitted average output power must respect the rather low level of 1A class. Obstacle detection or collision avoidance require a 200 meters range. Moreover bad weather conditions, like rain or fog, ar disastrous. We have conducted measurements on laser rangefinder using different targets and at different distances. We can infer that except for cooperative targets low power laser rangefinder are not powerful enough for long distance measurement. Radars, like 77 GHz systems, are better adapted to such cases. But in case of short distances measurement, range around 10 meters, with a minimum distance around twenty centimeters, laser rangefinders are really useful with good resolution and rather low cost. Applications can have the following of white lines on the road, the target being easily cooperative, detection of vehicles in the vicinity, that means car convoy traffic control or parking assistance, the target surface being indifferent at short distances.

  11. Vision Based Navigation for Autonomous Cooperative Docking of CubeSats

    Science.gov (United States)

    Pirat, Camille; Ankersen, Finn; Walker, Roger; Gass, Volker

    2018-05-01

    A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the docking of two CubeSats would require a lateral control performance of the order of 1 cm. Line of sight constraints and multipath effects affecting Global Navigation Satellite System (GNSS) measurements in close proximity prevent the use of this sensor for the final approach. This consideration and the high control accuracy requirement led to the use of vision sensors for the final 10 m of the rendezvous and docking sequence. A single monocular camera on the chaser satellite and various sets of Light-Emitting Diodes (LEDs) on the target vehicle ensure the observability of the system throughout the approach trajectory. The simple and novel formulation of the measurement equations allows differentiating unambiguously rotations from translations between the target and chaser docking port and allows a navigation performance better than 1 mm at docking. Furthermore, the non-linear measurement equations can be solved in order to provide an analytic navigation solution. This solution can be used to monitor the navigation filter solution and ensure its stability, adding an extra layer of robustness for autonomous rendezvous and docking. The navigation filter initialization is addressed in detail. The proposed method is able to differentiate LEDs signals from Sun reflections as demonstrated by experimental data. The navigation filter uses a comprehensive linearised coupled rotation/translation dynamics, describing the chaser to target docking port motion. The handover, between GNSS and vision sensor measurements, is assessed. The performances of the navigation function along the approach trajectory is discussed.

  12. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    Science.gov (United States)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  13. Autonomous System Design for Moessbauer Spectra Acquisition

    International Nuclear Information System (INIS)

    Morales, A. L.; Zuluaga, J.; Cely, A.; Tobon, J.

    2001-01-01

    An autonomous system for Moessbauer spectroscopy based in a microcontroller has been designed. A timer of the microcontroller was used to generate the control signal for the Moessbauer linear motor, and a counter for the spectra acquisition. Additionally, the system has its own memory for data storage and a serial port to transmit the data to a computer for its later processing and display

  14. DISTRIBUTED CONTROL ARCHITECTURE OF AN OMNI-DIRECTIONAL AUTONOMOUS GUIDED VEHICLE

    Directory of Open Access Journals (Sweden)

    N.S. Tlale

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Omni-directionality is the ability of a mobile robot to move instantaneously in any direction. This paper describes the wheel and controller designs of a Mecanumwheeled, autonomous guided vehicle (AGV for reconfigurable manufacturing systems. Mecanum wheels use slip developed between rollers and surface, surface and ground, to achieve omni-directionality. An advantage of omni-directional robotic platforms is that they are capable of performing tasks in congested environments such as those found in factory workshops, narrow aisles, warehouses, etc. Controller Area Network (CAN is implemented as a distributed controller to control motion and navigation tasks of the developed robot. The design of the distributed controller is described and its performance analyzed. This increases the reliability and functionality of the mobile robot.

    AFRIKAANSE OPSOMMING: Die artikel beskryf wiel - en beheerontwerpe van ‘n veelrigting mobiele robot. Die robot is ‘n selfstandigbeheerde voertuig vir gebruik by vervaardigingstelsels met veranderbare konfigurasie. Die ontwerp van die robot en bypassende beheerstelsel word beskryf en ontleed teen die agterground van bewegings – en navigeertake. Die betroubaarheid en funksionering van die sisteem word beoordeel.

  15. Base stock policies with degraded service to larger orders

    DEFF Research Database (Denmark)

    Du, Bisheng; Larsen, Christian

    We study an inventory system controlled by a base stock policy assuming a compound renewal demand process. We extend the base stock policy by incorporating rules for degrading the service of larger orders. Two specific rules are considered, denoted Postpone(q,t) and Split(q), respectively. The aim...... of using these rules is to achieve a given order fill rate of the regular orders (those of size less than or equal to the parameter q) having less inventory. We develop mathematical expressions for the performance measures order fill rate (of the regular orders) and average on-hand inventory level. Based...

  16. A Fully-Distributed Heuristic Algorithm for Control of Autonomous Vehicle Movements at Isolated Intersections

    Directory of Open Access Journals (Sweden)

    Abdallah A. Hassan

    2014-12-01

    Full Text Available Optimizing autonomous vehicle movements through roadway intersections is a challenging problem. It has been demonstrated in the literature that traditional traffic control, such as traffic signal and stop sign control are not optimal especially for heavy traffic demand levels. Alternatively, centralized autonomous vehicle control strategies are costly and not scalable given that the ability of a central controller to track and schedule the movement of hundreds of vehicles in real-time is questionable. Consequently, in this paper a fully distributed algorithm is proposed where vehicles in the vicinity of an intersection continuously cooperate with each other to develop a schedule that allows them to safely proceed through the intersection while incurring minimum delay. Unlike other distributed approaches described in the literature, the wireless communication constraints are considered in the design of the control algorithm. Specifically, the proposed algorithm requires vehicles heading to an intersection to communicate only with neighboring vehicles, while the lead vehicles on each approach lane share information to develop a complete intersection utilization schedule. The scheduling rotates between vehicles to identify higher traffic volumes and favor vehicles coming from heavier lanes to minimize the overall intersection delay. The simulated experiments show significant reductions in the average delay using the proposed approach compared to other methods reported in the literature and reduction in the maximum delay experienced by a vehicle especially in cases of heavy traffic demand levels.

  17. Autonomous and controlled motivation for interpersonal therapy for depression: Between-therapists and within-therapist effects.

    Science.gov (United States)

    Zuroff, David C; McBride, Carolina; Ravitz, Paula; Koestner, Richard; Moskowitz, D S; Bagby, R Michael

    2017-10-01

    Differences between therapists in the average outcomes their patients achieve are well documented, and researchers have begun to try to explain such differences (Baldwin & Imel, 2013). Guided by Self-Determination Theory (Deci & Ryan, 2000), we examined the effects on outcome of differences between therapists in their patients' average levels of autonomous and controlled motivation for treatment, as well as the effects of differences among the patients within each therapist's caseload. Between and within-therapist differences in the SDT construct of perceived relational support were explored as predictors of patients' motivation. Nineteen therapists treated 63 patients in an outpatient clinic providing manualized interpersonal therapy (IPT) for depression. Patients completed the BDI-II at pretreatment, posttreatment, and each treatment session. The Impact Message Inventory was administered at the third session and scored for perceived therapist friendliness, a core element of relational support. We created between-therapists (therapist-level) scores by averaging over the patients in each therapist's caseload; within-therapist (patient-level) scores were computed by centering within each therapist's caseload. As expected, better outcome was predicted by higher levels of therapist-level and patient-level autonomous motivation and by lower levels of therapist-level and patient-level controlled motivation. In turn, autonomous motivation was predicted by therapist-level and patient-level relational support (friendliness). Controlled motivation was predicted solely by patient self-critical perfectionism. The results extend past work by demonstrating that both between-therapists and within-therapist differences in motivation predict outcome. As well, the results suggest that therapists should monitor their interpersonal impact so as to provide relational support. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Exploring the User Experience of Autonomous Driving: Workshop at AutomotiveUI 2013

    OpenAIRE

    Tscheligi, Manfred; Wilfinger, David; Meschtscherjakov, Alexander; Montesinos, Carlos; McCall, Roderick; Szostak, Dalila; RatanMich; Muir, Alexander

    2008-01-01

    Although cars are not flying yet, self-driving cars are definitively closer than some may think. Numerous research organizations and major companies have developed working prototype autonomous vehicles. Three U.S. states have passed laws permitting autonomous cars on public roads and the UK is currently working on making similar policy changes. Technical challenges are of great importance to fully transition to these vehicles, but legislation, infrastructure and human factors elements are of ...

  19. A feature matching and fusion-based positive obstacle detection algorithm for field autonomous land vehicles

    Directory of Open Access Journals (Sweden)

    Tao Wu

    2017-03-01

    Full Text Available Positive obstacles will cause damage to field robotics during traveling in field. Field autonomous land vehicle is a typical field robotic. This article presents a feature matching and fusion-based algorithm to detect obstacles using LiDARs for field autonomous land vehicles. There are three main contributions: (1 A novel setup method of compact LiDAR is introduced. This method improved the LiDAR data density and reduced the blind region of the LiDAR sensor. (2 A mathematical model is deduced under this new setup method. The ideal scan line is generated by using the deduced mathematical model. (3 Based on the proposed mathematical model, a feature matching and fusion (FMAF-based algorithm is presented in this article, which is employed to detect obstacles. Experimental results show that the performance of the proposed algorithm is robust and stable, and the computing time is reduced by an order of two magnitudes by comparing with other exited algorithms. This algorithm has been perfectly applied to our autonomous land vehicle, which has won the champion in the challenge of Chinese “Overcome Danger 2014” ground unmanned vehicle.

  20. Autonomy support for autonomous motivation in medical education

    Directory of Open Access Journals (Sweden)

    Rashmi A. Kusurkar

    2015-05-01

    Full Text Available Background: Medical students often study only to fare well in their examinations or pursue a specific specialty, or study only those topics that they perceive to be useful in medical practice. The motivation for study in these cases comes from external or internal pressures or from the desire to obtain rewards. Self-determination theory (SDT classifies this type of motivation as controlled motivation and the type of motivation that comes from genuine interest or personal value as autonomous motivation. Autonomous motivation, in comparison with controlled motivation, has been associated with better learning, academic success, and less exhaustion. SDT endorses autonomous motivation and suggests that autonomy support is important for autonomous motivation. The meaning of autonomy is misinterpreted by many. This article tries to focus on how to be autonomy-supportive in medical education. Discussion: Autonomy support refers to the perception of choice in learning. Some of the ways of supporting autonomy in medical education are small group teaching, problem-based learning, and gradual increase in responsibility of patients. Autonomy-supportive teaching behavior is not a trait and can be learned. Autonomy support in medical education is not limited to bringing in changes in the medical curriculum for students; it is about an overall change in the way of thinking and working in medical schools that foster autonomy among those involved in education. Research into autonomy in medical education is limited. Some topics that need to be investigated are the ideas and perceptions of students and teachers about autonomy in learning. Conclusion: Autonomy support in medical education can enhance autonomous motivation of students for medical study and practice and make them autonomy-supportive in their future medical practice and teaching.

  1. Optimal Control via Reinforcement Learning with Symbolic Policy Approximation

    NARCIS (Netherlands)

    Kubalìk, Jiřì; Alibekov, Eduard; Babuska, R.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    2017-01-01

    Model-based reinforcement learning (RL) algorithms can be used to derive optimal control laws for nonlinear dynamic systems. With continuous-valued state and input variables, RL algorithms have to rely on function approximators to represent the value function and policy mappings. This paper

  2. An Optimized, Data Distribution Service-Based Solution for Reliable Data Exchange Among Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Jesús Rodríguez-Molina

    2017-08-01

    Full Text Available Major challenges are presented when managing a large number of heterogeneous vehicles that have to communicate underwater in order to complete a global mission in a cooperative manner. In this kind of application domain, sending data through the environment presents issues that surpass the ones found in other overwater, distributed, cyber-physical systems (i.e., low bandwidth, unreliable transport medium, data representation and hardware high heterogeneity. This manuscript presents a Publish/Subscribe-based semantic middleware solution for unreliable scenarios and vehicle interoperability across cooperative and heterogeneous autonomous vehicles. The middleware relies on different iterations of the Data Distribution Service (DDS software standard and their combined work between autonomous maritime vehicles and a control entity. It also uses several components with different functionalities deemed as mandatory for a semantic middleware architecture oriented to maritime operations (device and service registration, context awareness, access to the application layer where other technologies are also interweaved with middleware (wireless communications, acoustic networks. Implementation details and test results, both in a laboratory and a deployment scenario, have been provided as a way to assess the quality of the system and its satisfactory performance.

  3. An Optimized, Data Distribution Service-Based Solution for Reliable Data Exchange Among Autonomous Underwater Vehicles.

    Science.gov (United States)

    Rodríguez-Molina, Jesús; Bilbao, Sonia; Martínez, Belén; Frasheri, Mirgita; Cürüklü, Baran

    2017-08-05

    Major challenges are presented when managing a large number of heterogeneous vehicles that have to communicate underwater in order to complete a global mission in a cooperative manner. In this kind of application domain, sending data through the environment presents issues that surpass the ones found in other overwater, distributed, cyber-physical systems (i.e., low bandwidth, unreliable transport medium, data representation and hardware high heterogeneity). This manuscript presents a Publish/Subscribe-based semantic middleware solution for unreliable scenarios and vehicle interoperability across cooperative and heterogeneous autonomous vehicles. The middleware relies on different iterations of the Data Distribution Service (DDS) software standard and their combined work between autonomous maritime vehicles and a control entity. It also uses several components with different functionalities deemed as mandatory for a semantic middleware architecture oriented to maritime operations (device and service registration, context awareness, access to the application layer) where other technologies are also interweaved with middleware (wireless communications, acoustic networks). Implementation details and test results, both in a laboratory and a deployment scenario, have been provided as a way to assess the quality of the system and its satisfactory performance.

  4. Environmental Pollution Control Policy-Making: An Analysis of Elite Perceptions and Preferences

    Science.gov (United States)

    Althoff, Phillip; Greig, William H.

    1974-01-01

    This article is based on an analysis of the perceptions and preferences of elite groups concerning environmental pollution control policy making. Results showed that although the groups agreed that present methods were inadequate, they were, nevertheless, unable to agree upon the nature of a future policy-making system. (MA)

  5. Sweden: Autonomous Reactivity Control (ARC) Systems

    International Nuclear Information System (INIS)

    Qvist, Staffan A.

    2015-01-01

    The next generation of nuclear energy systems must be licensed, constructed, and operated in a manner that will provide a competitively priced supply of energy, keeping in consideration an optimum use of natural resources, while addressing nuclear safety, waste, and proliferation resistance, and the public perception concerns of the countries in which those systems are deployed. These issues are tightly interconnected, and the implementation of passive and inherent safety features is a high priority in all modern reactor designs since it helps to tackle many of the issues at once. To this end, the Autonomous Reactivity Control (ARC) system was developed to ensure excellent inherent safety performance of Generation-IV reactors while having a minimal impact on core performance and economic viability. This paper covers the principles for ARC system design and analysis, the problem of ensuring ARC system response stability and gives examples of the impact of installing ARC systems in well-known fast reactor core systems. It is shown that even with a relatively modest ARC installation, having a near-negligible impact on core performance during standard operation, cores such as the European Sodium Fast Reactor (ESFR) can be made to survive any postulated unprotected transient without coolant boiling or fuel melting

  6. A Conceptual Framework for Design of Embedded Systems and Data Communication for Autonomous Vehicles

    DEFF Research Database (Denmark)

    Nielsen, Jens Frederik Dalsgaard; Bendtsen, Jan Dimon; Nielsen, Kirsten Mølgaard

    2005-01-01

    systems in a set of time rings each demanding actions equal in time magnitude. The safety analysis can in an equal way structure the system in safety rings, each demanding fault and failure handling at the same level. The concept deals with the widely differing time demands at different control levels on......This paper describes a conceptual framework for the development of a hierarchal control architecture for an autonomous vehicle. The concept is based on time/frequency and safety analysis on board the vehicle. The time/frequency analysis is used to structure the guidance, navigation and control......-board the vehicle, the integration of sensors and actuators using different communication protocols, integration of wireless communication to a base and payload data handling as well as control, reliability and safety issues. The system is implemented on an autonomous platform mapping spatial density of weed...

  7. The passage of tobacco control law 174 in Lebanon: reflections on the problem, policies and politics.

    Science.gov (United States)

    Nakkash, R T; Torossian, L; El Hajj, T; Khalil, J; Afifi, R A

    2018-06-01

    Progress in tobacco control policy making has occurred worldwide through advocacy campaigns involving multiple players- civil society groups, activists, academics, media and policymakers. The Framework Convention on Tobacco Control (FCTC)-the first ever global health treaty-outlines evidence-based tobacco control policies. Lebanon ratified the FCTC in 2005, but until 2011, tobacco control policies remained rudimentary and not evidence-based. Beginning in 2009, a concerted advocacy campaign was undertaken by a variety of stakeholders with the aim of accelerating the process of adopting a strong tobacco control policy. The campaign was successful, and Law 174 passed the Lebanese Parliament in August 2011. In this article, we analyse the policy making process that led to the adoption of Law 174 using Kingdon's model. The analysis relies on primary and secondary data sources including historical records of key governmental decisions, documentation of the activities of the concerted advocacy campaign and in-depth interviews with key stakeholders. We describe the opening of a window of opportunity as a result of the alignment of the problem, policy and politics streams. Furthermore, findings revealed that despite the challenge of persistent tobacco industry interference and established power relations between the industry, its allies and policymakers; policy entrepreneurs succeeded in supporting the alignment of the streams, and influencing the passage of the law. Kingdon's multiple stream approach was useful in explaining how tobacco control became an emerging policy issue at the front of the policy agenda in Lebanon.

  8. Prosocial and antisocial behavior in sport: the role of coaching style, autonomous vs. controlled motivation, and moral disengagement.

    Science.gov (United States)

    Hodge, Ken; Lonsdale, Chris

    2011-08-01

    The purpose of this study was to examine whether the relationships between contextual factors (i.e., autonomy-supportive vs. controlling coaching style) and person factors (i.e., autonomous vs. controlled motivation) outlined in self-determination theory (SDT) were related to prosocial and antisocial behaviors in sport. We also investigated moral disengagement as a mediator of these relationships. Athletes' (n = 292, M = 19.53 years) responses largely supported our SDT-derived hypotheses. Results indicated that an autonomy-supportive coaching style was associated with prosocial behavior toward teammates; this relationship was mediated by autonomous motivation. Controlled motivation was associated with antisocial behavior toward teammates and antisocial behavior toward opponents, and these two relationships were mediated by moral disengagement. The results provide support for research investigating the effect of autonomy-supportive coaching interventions on athletes' prosocial and antisocial behavior.

  9. Implementation of Obstacle-Avoidance Control for an Autonomous Omni-Directional Mobile Robot Based on Extension Theory

    Directory of Open Access Journals (Sweden)

    Yi-Chung Lai

    2012-10-01

    Full Text Available The paper demonstrates a following robot with omni-directional wheels, which is able to take action to avoid obstacles. The robot design is based on both fuzzy and extension theory. Fuzzy theory was applied to tune the PMW signal of the motor revolution, and correct path deviation issues encountered when the robot is moving. Extension theory was used to build a robot obstacle-avoidance model. Various mobile models were developed to handle different types of obstacles. The ultrasonic distance sensors mounted on the robot were used to estimate the distance to obstacles. If an obstacle is encountered, the correlation function is evaluated and the robot avoids the obstacle autonomously using the most appropriate mode. The effectiveness of the proposed approach was verified through several tracking experiments, which demonstrates the feasibility of a fuzzy path tracker as well as the extensible collision avoidance system.

  10. Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering

    Science.gov (United States)

    Panomruttanarug, Benjamas; Higuchi, Kohji

    This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.

  11. Phase and gain control policies for robust active vibration control of flexible structures

    International Nuclear Information System (INIS)

    Zhang, K; Ichchou, M N; Scorletti, G; Mieyeville, F

    2013-01-01

    The interest of this paper is to develop a general and systematic robust control methodology for active vibration control of flexible structures. For this purpose, first phase and gain control policies are proposed to impose qualitative frequency-dependent requirements on the controller to consider a complete set of control objectives. Then the proposed control methodology is developed by employing phase and gain control policies in the dynamic output feedback H ∞  control: according to the set of control objectives, phase and gain control policies incorporate necessary weighting functions and determine them in a rational and systematic way; on the other hand, with the appropriate weighting functions efficient H ∞  control algorithms can automatically realize phase and gain control policies and generate a satisfactory H ∞  controller. The proposed control methodology can be used for both SISO and MIMO systems with collocated or non-collocated sensors and actuators. In this paper, it is validated on a non-collocated piezoelectric cantilever beam. Both numerical simulations and experimental results demonstrate the effectiveness of the proposed control methodology. (paper)

  12. Autonomic and Vascular Control in Prehypertensive Subjects with a Family History of Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Josária Ferraz Amaral

    2018-02-01

    Full Text Available Abstract Background: Individuals with a family history of systemic arterial hypertension (FHSAH and / or prehypertension have a higher risk of developing this pathology. Objective: To evaluate the autonomic and vascular functions of prehypertensive patients with FHSAH. Methods: Twenty-five young volunteers with FHSAH, 14 normotensive and 11 prehypertensive subjects were submitted to vascular function evaluation by forearm vascular conductance(VC during resting and reactive hyperemia (Hokanson® and cardiac and peripheral autonomic modulation, quantified, respectively, by spectral analysis of heart rate (ECG and systolic blood pressure (SBP (FinometerPRO®. The transfer function analysis was used to measure the gain and response time of baroreflex. The statistical significance adopted was p ≤ 0.05. Results: Pre-hypertensive individuals, in relation to normotensive individuals, have higher VC both at rest (3.48 ± 1.26 vs. 2.67 ± 0.72 units, p = 0.05 and peak reactive hyperemia (25, 02 ± 8.18 vs. 18.66 ± 6.07 units, p = 0.04. The indices of cardiac autonomic modulation were similar between the groups. However, in the peripheral autonomic modulation, greater variability was observed in prehypertensive patients compared to normotensive individuals (9.4 [4.9-12.7] vs. 18.3 [14.8-26.7] mmHg2; p < 0.01 and higher spectral components of very low (6.9 [2.0-11.1] vs. 13.5 [10.7-22.4] mmHg2, p = 0.01 and low frequencies (1.7 [1.0-3.0] vs. 3.0 [2.0-4.0] mmHg2, p = 0.04 of SBP. Additionally, we observed a lower gain of baroreflex control in prehypertensive patients compared to normotensive patients (12.16 ± 4.18 vs. 18.23 ± 7.11 ms/mmHg, p = 0.03, but similar delay time (-1.55 ± 0.66 vs. -1.58 ± 0.72 s, p = 0.90. Conclusion: Prehypertensive patients with FHSAH have autonomic dysfunction and increased vascular conductance when compared to normotensive patients with the same risk factor.

  13. Recent Developments on Microencapsulation for Autonomous Corrosion Protection

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Fitzpatrick, Lilliana; Jolley, Scott T.; Surma, Jan M.; Pearman, Benjamin P.; Zhang, Xuejun

    2014-01-01

    This work concerns recent progress in the development of a multifunctional smart coating based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of desired corrosion control functionalities, such as early corrosion detection and inhibition through corrosion controlled release of corrosion indicators and inhibitors, as well as self-healing agent release when mechanical damage occurs.While proof-of-concept results have been reported previously, more recent efforts have been concentrated in technical developments to improve coating compatibility, synthesis procedure scalability, as well as fine tuning the release property of encapsulated active agents.

  14. Integration of autonomous systems for remote control of data acquisition and diagnostics in the TJ-II device

    International Nuclear Information System (INIS)

    Vega, J.; Mollinedo, A.; Lopez, A.; Pacios, L.; Dormido, S.

    1997-01-01

    The data acquisition system for TJ-II will consist of a central computer, containing the data base of the device, and a set of independent systems (personal computers, embedded ones, workstations, minicomputers, PLCs, and microprocessor systems among others), controlling data collection, and automated diagnostics. Each autonomous system can be used to isolate and manage specific problems in the most efficient manner. These problems are related to data acquisition, hard (μs endash ms) real time requirements, soft (ms endash s) real time requirements, remote control of diagnostics, etc. In the operation of TJ-II, the programming of systems will be carried out from the central computer. Coordination and synchronization will be performed by linking systems to local area networks. Several Ethernet segments and FDDI rings will be used for these purposes. Programmable logic controller devices (PLCs) used for diagnostic low level control will be linked among them through a fast serial link, the RS485 Profibus standard. One VME crate, running on the OS-9 real time operating system, will be assigned as a gateway, so as to connect the PLCs based systems with an Ethernet segment. copyright 1997 American Institute of Physics

  15. Evidence-based policy versus morality policy: the case of syringe access programs.

    Science.gov (United States)

    de Saxe Zerden, Lisa; O'Quinn, Erin; Davis, Corey

    2015-01-01

    Evidence-based practice (EBP) combines proven interventions with clinical experience, ethics, and client preferences to inform treatment and services. Although EBP is integrated into most aspects of social work and public health, at times EBP is at odds with social policy. In this article the authors explore the paradox of evidence-based policy using syringe access programs (SAP) as a case example, and review methods of bridging the gap between the emphasis on EBP and lack of evidence informing SAP policy. Analysis includes the overuse of morality policy and examines historical and current theories why this paradox exists. Action steps are highlighted for creating effective policy and opportunities for public health change. Strategies on reframing the problem and shifting target population focus to garner support for evidence-based policy change are included. This interdisciplinary understanding of the way in which these factors converge is a critical first step in moving beyond morality-based policy toward evidence-based policy.

  16. Autonomous control of inverter-interfaced Distributed Generation units for harmonic current filtering and resonance damping in an islanded microgrid

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2012-01-01

    Harmonic current filtering and resonance damping have become important concerns on the control of an islanded microgrids. To address these challenges, this paper proposes a control method of inverter-interfaced Distributed Generation (DG) units, which can autonomously share harmonic currents and ...

  17. Effect of Sleep/Wake Cycle on Autonomic Regulation

    International Nuclear Information System (INIS)

    Jabeen, S.

    2015-01-01

    Objective: To evaluate the association between irregular sleep/wake cycle in shift workers and autonomic regulation. Study Design: Cross-sectional, analytical study. Place and Duration of Study: Dow University Hospital, Karachi, from August to November 2013. Methodology: All health care providers working in rotating shifts making a total (n=104) were included. Instrument was an integrated questionnaire applied to assess autonomic regulation, taken from Kroz et al. on scoring criteria, ranging from 18 - 54, where higher rating signifies strong autonomic regulation, indicating a stable Autonomic Nervous System (ANS) and vice versa. Participants were interviewed and their response was recorded by the investigator. Influence of sleep misalignment was measured quantitatively to extract index of autonomic activity. Results: There was a reduced trend in autonomic strength amongst shift workers. The mean score obtained on the Autonomic Scale was 37.8 ± 5.9. Conclusion: Circadian misalignment has an injurious influence on ANS which might be valuable in controlling autonomic dysfunction that leads to fatal triggers in rotating shift workers. (author)

  18. Autonomous Power Control MAC Protocol for Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Battery energy limitation has become a performance bottleneck for mobile ad hoc networks. IEEE 802.11 has been adopted as the current standard MAC protocol for ad hoc networks. However, it was developed without considering energy efficiency. To solve this problem, many modifications on IEEE 802.11 to incorporate power control have been proposed in the literature. The main idea of these power control schemes is to use a maximum possible power level for transmitting RTS/CTS and the lowest acceptable power for sending DATA/ACK. However, these schemes may degrade network throughput and reduce the overall energy efficiency of the network. This paper proposes autonomous power control MAC protocol (APCMP, which allows mobile nodes dynamically adjusting power level for transmitting DATA/ACK according to the distances between the transmitter and its neighbors. In addition, the power level for transmitting RTS/CTS is also adjustable according to the power level for DATA/ACK packets. In this paper, the performance of APCMP protocol is evaluated by simulation and is compared with that of other protocols.

  19. An autonomic approach to configure HEP (High Energy Physics) experiments, applied to LHCb (Large Hadron Collider beauty)

    CERN Document Server

    Abadie, L; Charpentier, P

    2006-01-01

    Properly configuring an HEP (High Energy Phys ics) experiment becomes a more and more complex task as the number of electronics modules grows and technologies evolve quickly. Anticipating a fault in the software or in the hardware during the configuration or the data taking requires an adaptive and modular control system. The introduction of autonomic tools and data bases in the HEP world is quite recent and contributes to implement a more reliable system . The LHCb control system innovates as it has been built using autonomic tools. The main contribution of this PhD is the implementation of an autonomic 3-Tier architectur e to configure the LHCb experiment which is a huge network of devices of different types, and its integrat ion in the control system. This new type of autonomics architecture consists of: • A database layer. A relational Oracle databa se implemented using the Oracle technology contains the information...

  20. Air Pollution Control Policies in China: A Retrospective and Prospects

    Science.gov (United States)

    Jin, Yana; Andersson, Henrik; Zhang, Shiqiu

    2016-01-01

    With China’s significant role on pollution emissions and related health damage, deep and up-to-date understanding of China’s air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) During 2006–2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO2) emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM2.5) and ground level ozone (O3) emerged and worsened; (3) After the winter-long PM2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions. PMID:27941665

  1. Air Pollution Control Policies in China: A Retrospective and Prospects

    Directory of Open Access Journals (Sweden)

    Yana Jin

    2016-12-01

    Full Text Available With China’s significant role on pollution emissions and related health damage, deep and up-to-date understanding of China’s air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1 The early policies, until 2005, were ineffective at reducing emissions; (2 During 2006–2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO2 emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM2.5 and ground level ozone (O3 emerged and worsened; (3 After the winter-long PM2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions.

  2. Application of Autonomous Spacecraft Power Control Technology to Terrestrial Microgrids

    Science.gov (United States)

    Dever, Timothy P.; Trase, Larry M.; Soeder, James F.

    2014-01-01

    This paper describes the potential of the power campus located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio for microgrid development. First, the benefits provided by microgrids to the terrestrial power grid are described, and an overview of Technology Needs for microgrid development is presented. Next, GRC's work on development of autonomous control for manned deep space vehicles, which are essentially islanded microgrids, is covered, and contribution of each of these developments to the microgrid Technology Needs is detailed. Finally, a description is provided of GRC's existing physical assets which can be applied to microgrid technology development, and a phased plan for development of a microgrid test facility is presented.

  3. Planning of Autonomous Multi-agent Intersection

    Directory of Open Access Journals (Sweden)

    Viksnin Ilya I.

    2016-01-01

    Full Text Available In this paper, we propose a traffic management system with agents acting on behalf autonomous vehicle at the crossroads. Alternatively to existing solutions based on usage of semiautonomous control systems with the control unit, proposed in this paper algorithm apply the principles of decentralized multi-agent control. Agents during their collaboration generate intersection plan and determinate the optimal order of road intersection for a given criterion based on the exchange of information about them and their environment. The paper contains optimization criteria for possible routes selection and experiments that perform in order to estimate the proposed model. Experiment results show that this model can significantly reduce traffic density compared to the traditional traffic management systems. Moreover, the proposed algorithm efficiency increases with road traffic density. Furthermore, the availability of control unit in the system significantly reduces the negative impact of possible failures and hacker attacks.

  4. Control of cancer growth using single input autonomous fuzzy Nano-particles

    Directory of Open Access Journals (Sweden)

    Fahimeh Razmi

    2015-04-01

    Full Text Available In this paper a single input fuzzy controller is applied on autonomous drug-encapsulated nanoparticles (ADENPs to restrict the cancer growth. The proposed ADENPs, swarmly release the drug in local cancerous tissue and effectively decreases the destruction of normal tissue. The amount of released drug is defined considering to feed backed values of tumor growth rate and the used drug. Some significant characteristics of Nano particles compared to Nano-robots is their ability to recognize the cancerous tissue from the normal one and their simple structure. Nano particles became an attractive topic in Nano science and many efforts have been done to manufacture these particles. Simulation results show that the proposed controlling method not only decreases the cancerous tissue effectively but also reduces the side effects of drug impressively.

  5. Not Deep Learning but Autonomous Learning of Open Innovation for Sustainable Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    JinHyo Joseph Yun

    2016-08-01

    Full Text Available What do we need for sustainable artificial intelligence that is not harmful but beneficial human life? This paper builds up the interaction model between direct and autonomous learning from the human’s cognitive learning process and firms’ open innovation process. It conceptually establishes a direct and autonomous learning interaction model. The key factor of this model is that the process to respond to entries from external environments through interactions between autonomous learning and direct learning as well as to rearrange internal knowledge is incessant. When autonomous learning happens, the units of knowledge determinations that arise from indirect learning are separated. They induce not only broad autonomous learning made through the horizontal combinations that surpass the combinations that occurred in direct learning but also in-depth autonomous learning made through vertical combinations that appear so that new knowledge is added. The core of the interaction model between direct and autonomous learning is the variability of the boundary between proven knowledge and hypothetical knowledge, limitations in knowledge accumulation, as well as complementarity and conflict between direct and autonomous learning. Therefore, these should be considered when introducing the interaction model between direct and autonomous learning into navigations, cleaning robots, search engines, etc. In addition, we should consider the relationship between direct learning and autonomous learning when building up open innovation strategies and policies.

  6. Autonomic and subjective responsivity to emotional images in people with dissociative seizures.

    Science.gov (United States)

    Pick, Susannah; Mellers, John D C; Goldstein, Laura H

    2018-06-01

    People with dissociative seizures (DS) report a range of difficulties in emotional functioning and exhibit altered responding to emotional facial expressions in experimental tasks. We extended this research by investigating subjective and autonomic reactivity (ratings of emotional valence, arousal and skin conductance responses [SCRs]) to general emotional images in 39 people with DS relative to 42 healthy control participants, whilst controlling for anxiety, depression, cognitive functioning and, where relevant, medication use. It was predicted that greater subjective negativity and arousal and increased SCRs in response to the affective pictures would be observed in the DS group. The DS group as a whole did not differ from controls in their subjective responses of valence and arousal. However, SCR amplitudes were greater in 'autonomic responders' with DS relative to 'autonomic responders' in the control group. A positive correlation was also observed between SCRs for highly arousing negative pictures and self-reported ictal autonomic arousal, in DS 'autonomic responders'. In the DS subgroup of autonomic 'non-responders', differences in subjective responses were observed for some conditions, compared to control 'non-responders'. The findings indicate unaffected subjective responses to emotional images in people with DS overall. However, within the group of people with DS, there may be subgroups characterized by differences in emotional responding. One subgroup (i.e., 'autonomic responders') exhibit heightened autonomic responses but intact subjective emotional experience, whilst another subgroup (i.e., 'autonomic non-responders') seem to experience greater subjective negativity and arousal for some emotional stimuli, despite less frequent autonomic reactions. The current results suggest that therapeutic interventions targeting awareness and regulation of physiological arousal and subjective emotional experience could be of value in some people with this disorder

  7. Autonomic regulation in fetuses with congenital heart disease.

    Science.gov (United States)

    Siddiqui, Saira; Wilpers, Abigail; Myers, Michael; Nugent, J David; Fifer, William P; Williams, Ismée A

    2015-03-01

    Exposure to antenatal stressors affects autonomic regulation in fetuses. Whether the presence of congenital heart disease (CHD) alters the developmental trajectory of autonomic regulation is not known. This prospective observational cohort study aimed to further characterize autonomic regulation in fetuses with CHD; specifically hypoplastic left heart syndrome (HLHS), transposition of the great arteries (TGA), and tetralogy of Fallot (TOF). From 11/2010 to 11/2012, 92 fetuses were enrolled: 41 controls and 51 with CHD consisting of 19 with HLHS, 12 with TGA, and 20 with TOF. Maternal abdominal fetal electrocardiogram (ECG) recordings were obtained at 3 gestational ages: 19-27 weeks (F1), 28-33 weeks (F2), and 34-38 weeks (F3). Fetal ECG was analyzed for mean heart rate along with 3 measures of autonomic variability of the fetal heart rate: interquartile range, standard deviation, and root mean square of the standard deviation of the heart rate (RMSSD), a measure of parasympathetic activity. During F1 and F2 periods, HLHS fetuses demonstrated significantly lower mean HR than controls (pHeart rate variability at F3, as measured by standard deviation, interquartile range, and RMSSD was lower in HLHS than controls (p<0.05). Other CHD subgroups showed a similar, though non-significant trend towards lower variability. Autonomic regulation in CHD fetuses differs from controls, with HLHS fetuses most markedly affected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Operator Informational Needs for Multiple Autonomous Small Vehicles

    Science.gov (United States)

    Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal

    2015-01-01

    With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.

  9. Method to measure autonomic control of cardiac function using time interval parameters from impedance cardiography

    International Nuclear Information System (INIS)

    Meijer, Jan H; Boesveldt, Sanne; Elbertse, Eskeline; Berendse, H W

    2008-01-01

    The time difference between the electrocardiogram and impedance cardiogram can be considered as a measure for the time delay between the electrical and mechanical activities of the heart. This time interval, characterized by the pre-ejection period (PEP), is related to the sympathetic autonomous nervous control of cardiac activity. PEP, however, is difficult to measure in practice. Therefore, a novel parameter, the initial systolic time interval (ISTI), is introduced to provide a more practical measure. The use of ISTI instead of PEP was evaluated in three groups: young healthy subjects, patients with Parkinson's disease, and a group of elderly, healthy subjects of comparable age. PEP and ISTI were studied under two conditions: at rest and after an exercise stimulus. Under both conditions, PEP and ISTI behaved largely similarly in the three groups and were significantly correlated. It is concluded that ISTI can be used as a substitute for PEP and, therefore, to evaluate autonomic neuropathy both in clinical and extramural settings. Measurement of ISTI can also be used to non-invasively monitor the electromechanical cardiac time interval, and the associated autonomic activity, under physiological circumstances

  10. Hierarchical Control of Thermostatically Controller Loads for Primary Frequency Control

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Huang, Shaojun

    2016-01-01

    reserve references. At the middle level, distribution substations estimate the available power of TCLs based on the aggregated bin model, and dispatch control signals to individual TCLs. At the local level, a supplementary frequency control loop is implemented at the local controller, which makes TCLs...... respond to the frequency event autonomously. Case studies show that the proposed controller can efficiently respond to frequency events and fulfill the requirement specified by the system operator. The users’ comforts are not compromised and the short cycling of TCLs is largely reduced. Due...... to the autonomous control, the communication requirement is minimized....

  11. A learning-based autonomous driver: emulate human driver's intelligence in low-speed car following

    Science.gov (United States)

    Wei, Junqing; Dolan, John M.; Litkouhi, Bakhtiar

    2010-04-01

    In this paper, an offline learning mechanism based on the genetic algorithm is proposed for autonomous vehicles to emulate human driver behaviors. The autonomous driving ability is implemented based on a Prediction- and Cost function-Based algorithm (PCB). PCB is designed to emulate a human driver's decision process, which is modeled as traffic scenario prediction and evaluation. This paper focuses on using a learning algorithm to optimize PCB with very limited training data, so that PCB can have the ability to predict and evaluate traffic scenarios similarly to human drivers. 80 seconds of human driving data was collected in low-speed (car-following scenarios. In the low-speed car-following tests, PCB was able to perform more human-like carfollowing after learning. A more general 120 kilometer-long simulation showed that PCB performs robustly even in scenarios that are not part of the training set.

  12. Autonomic Semantic-Based Context-Aware Platform for Mobile Applications in Pervasive Environments

    Directory of Open Access Journals (Sweden)

    Adel Alti

    2016-09-01

    Full Text Available Currently, the field of smart-* (home, city, health, tourism, etc. is naturally heterogeneous and multimedia oriented. In such a domain, there is an increasing usage of heterogeneous mobile devices, as well as captors transmitting data (IoT. They are highly connected and can be used for many different services, such as to monitor, to analyze and to display information to users. In this context, data management and adaptation in real time are becoming a challenging task. More precisely, at one time, it is necessary to handle in a dynamic, intelligent and transparent framework various data provided by multiple devices with several modalities. This paper presents a Kali-Smart platform, which is an autonomic semantic-based context-aware platform. It is based on semantic web technologies and a middleware providing autonomy and reasoning facilities. Moreover, Kali-Smart is generic and, as a consequence, offers to users a flexible infrastructure where they can easily control various interaction modalities of their own situations. An experimental study has been made to evaluate the performance and feasibility of the proposed platform.

  13. Formation Learning Control of Multiple Autonomous Underwater Vehicles With Heterogeneous Nonlinear Uncertain Dynamics.

    Science.gov (United States)

    Yuan, Chengzhi; Licht, Stephen; He, Haibo

    2017-09-26

    In this paper, a new concept of formation learning control is introduced to the field of formation control of multiple autonomous underwater vehicles (AUVs), which specifies a joint objective of distributed formation tracking control and learning/identification of nonlinear uncertain AUV dynamics. A novel two-layer distributed formation learning control scheme is proposed, which consists of an upper-layer distributed adaptive observer and a lower-layer decentralized deterministic learning controller. This new formation learning control scheme advances existing techniques in three important ways: 1) the multi-AUV system under consideration has heterogeneous nonlinear uncertain dynamics; 2) the formation learning control protocol can be designed and implemented by each local AUV agent in a fully distributed fashion without using any global information; and 3) in addition to the formation control performance, the distributed control protocol is also capable of accurately identifying the AUVs' heterogeneous nonlinear uncertain dynamics and utilizing experiences to improve formation control performance. Extensive simulations have been conducted to demonstrate the effectiveness of the proposed results.

  14. Redundant manipulator techniques for partially decentralized path planning and control of a platoon of autonomous vehicles.

    Science.gov (United States)

    Stilwell, Daniel J; Bishop, Bradley E; Sylvester, Caleb A

    2005-08-01

    An approach to real-time trajectory generation for platoons of autonomous vehicles is developed from well-known control techniques for redundant robotic manipulators. The partially decentralized structure of this approach permits each vehicle to independently compute its trajectory in real-time using only locally generated information and low-bandwidth feedback generated by a system exogenous to the platoon. Our work is motivated by applications for which communications bandwidth is severely limited, such for platoons of autonomous underwater vehicles. The communication requirements for our trajectory generation approach are independent of the number of vehicles in the platoon, enabling platoons composed of a large number of vehicles to be coordinated despite limited communication bandwidth.

  15. ATON (Autonomous Terrain-based Optical Navigation) for exploration missions: recent flight test results

    Science.gov (United States)

    Theil, S.; Ammann, N.; Andert, F.; Franz, T.; Krüger, H.; Lehner, H.; Lingenauber, M.; Lüdtke, D.; Maass, B.; Paproth, C.; Wohlfeil, J.

    2018-03-01

    Since 2010 the German Aerospace Center is working on the project Autonomous Terrain-based Optical Navigation (ATON). Its objective is the development of technologies which allow autonomous navigation of spacecraft in orbit around and during landing on celestial bodies like the Moon, planets, asteroids and comets. The project developed different image processing techniques and optical navigation methods as well as sensor data fusion. The setup—which is applicable to many exploration missions—consists of an inertial measurement unit, a laser altimeter, a star tracker and one or multiple navigation cameras. In the past years, several milestones have been achieved. It started with the setup of a simulation environment including the detailed simulation of camera images. This was continued by hardware-in-the-loop tests in the Testbed for Robotic Optical Navigation (TRON) where images were generated by real cameras in a simulated downscaled lunar landing scene. Data were recorded in helicopter flight tests and post-processed in real-time to increase maturity of the algorithms and to optimize the software. Recently, two more milestones have been achieved. In late 2016, the whole navigation system setup was flying on an unmanned helicopter while processing all sensor information onboard in real time. For the latest milestone the navigation system was tested in closed-loop on the unmanned helicopter. For that purpose the ATON navigation system provided the navigation state for the guidance and control of the unmanned helicopter replacing the GPS-based standard navigation system. The paper will give an introduction to the ATON project and its concept. The methods and algorithms of ATON are briefly described. The flight test results of the latest two milestones are presented and discussed.

  16. Comparative study of short-term cardiovascular autonomic control in cardiac surgery patients who underwent coronary artery bypass grafting or correction of valvular heart disease.

    Science.gov (United States)

    Shvartz, Vladimir A; Kiselev, Anton R; Karavaev, Anatoly S; Vulf, Kristina A; Borovkova, Ekaterina I; Prokhorov, Mikhail D; Petrosyan, Andrey D; Bockeria, Olga L

    2018-01-01

    Introduction: Our aim was to perform a comparative study of short-term cardiovascular autonomic control in cardiac surgery patients who underwent coronary artery bypass grafting (CABG) or surgical correction of valvular heart disease (SCVHD ). Methods: The synchronous 15 minutes records of heart rate variability (HRV) and finger's photoplethysmographic waveform variability (PPGV) were performed in 42 cardiac surgery patients (12 women) aged 61.8 ± 8.6 years (mean ± standard deviation), who underwent CABG, and 36 patients (16 women) aged 54.2 ± 14.9 years, who underwent SCVHD , before surgery and in 5-7 days after surgery. Conventional time and frequency domain measures of HRV and index S of synchronization between the slow oscillations in PPGV and HRV were analyzed. We also calculated personal dynamics of these indices after surgery. Results: We found no differences ( Р > 0.05) in all studied autonomic indices (preoperative and post-surgery) between studied patients' groups, except for the preoperative heart rate, which was higher in patients who underwent SCVHD ( P = 0.013). We have shown a pronounced preoperative and post-surgery variability (magnitude of inter-quartile ranges) of all autonomic indices in studied patients. In the cluster analysis based on cardiovascular autonomic indices (preoperative and post-surgery), we divided all patients into two clusters (38 and 40 subjects) which did not differ in all clinical characteristics (except for the preoperative hematocrit, P = 0.038), index S, and all post-surgery HRV indices. First cluster (38 patients) had higher preoperative values of the HR, TP, HF, and HF%, and lower preoperative values of the LF% and LF/HF. Conclusion: The variability of cardiovascular autonomic indices in on-pump cardiac surgery patients (two characteristic clusters were identified based on preoperative indices) was not associated with their clinical characteristics and features of surgical procedure (including cardioplegia).

  17. Digital acquisition and wavelength control of seed laser for space-based Lidar applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposes to establish the feasibility of using a space qualifiable Field Programmable Gate Array (FPGA) based digital controller to autonomously...

  18. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    Science.gov (United States)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  19. Base Stock Policy in a Join-Type Production Line with Advanced Demand Information

    Science.gov (United States)

    Hiraiwa, Mikihiko; Tsubouchi, Satoshi; Nakade, Koichi

    Production control such as the base stock policy, the kanban policy and the constant work-in-process policy in a serial production line has been studied by many researchers. Production lines, however, usually have fork-type, join-type or network-type figures. In addition, in most previous studies on production control, a finished product is required at the same time as arrival of demand at the system. Demand information is, however, informed before due date in practice. In this paper a join-type (assembly) production line under base stock control with advanced demand information in discrete time is analyzed. The recursive equations for the work-in-process are derived. The heuristic algorithm for finding appropriate base stock levels of all machines at short time is proposed and the effect of advanced demand information is examined by simulation with the proposed algorithm. It is shown that the inventory cost can decreases with little backlogs by using the appropriate amount of demand information and setting appropriate base stock levels.

  20. Autonomous Vehicles Navigation with Visual Target Tracking: Technical Approaches

    Directory of Open Access Journals (Sweden)

    Zhen Jia

    2008-12-01

    Full Text Available This paper surveys the developments of last 10 years in the area of vision based target tracking for autonomous vehicles navigation. First, the motivations and applications of using vision based target tracking for autonomous vehicles navigation are presented in the introduction section. It can be concluded that it is very necessary to develop robust visual target tracking based navigation algorithms for the broad applications of autonomous vehicles. Then this paper reviews the recent techniques in three different categories: vision based target tracking for the applications of land, underwater and aerial vehicles navigation. Next, the increasing trends of using data fusion for visual target tracking based autonomous vehicles navigation are discussed. Through data fusion the tracking performance is improved and becomes more robust. Based on the review, the remaining research challenges are summarized and future research directions are investigated.

  1. Autonomous Vision-Based Tethered-Assisted Rover Docking

    Science.gov (United States)

    Tsai, Dorian; Nesnas, Issa A.D.; Zarzhitsky, Dimitri

    2013-01-01

    Many intriguing science discoveries on planetary surfaces, such as the seasonal flows on crater walls and skylight entrances to lava tubes, are at sites that are currently inaccessible to state-of-the-art rovers. The in situ exploration of such sites is likely to require a tethered platform both for mechanical support and for providing power and communication. Mother/daughter architectures have been investigated where a mother deploys a tethered daughter into extreme terrains. Deploying and retracting a tethered daughter requires undocking and re-docking of the daughter to the mother, with the latter being the challenging part. In this paper, we describe a vision-based tether-assisted algorithm for the autonomous re-docking of a daughter to its mother following an extreme terrain excursion. The algorithm uses fiducials mounted on the mother to improve the reliability and accuracy of estimating the pose of the mother relative to the daughter. The tether that is anchored by the mother helps the docking process and increases the system's tolerance to pose uncertainties by mechanically aligning the mating parts in the final docking phase. A preliminary version of the algorithm was developed and field-tested on the Axel rover in the JPL Mars Yard. The algorithm achieved an 80% success rate in 40 experiments in both firm and loose soils and starting from up to 6 m away at up to 40 deg radial angle and 20 deg relative heading. The algorithm does not rely on an initial estimate of the relative pose. The preliminary results are promising and help retire the risk associated with the autonomous docking process enabling consideration in future martian and lunar missions.

  2. Cardiovascular Autonomic Neuropathy in Systemic Lupus Erythematosus.

    Science.gov (United States)

    Alam, Md Mahboob; Das, Pinaki; Ghosh, Parasar; Zaman, Md Salim Uz; Boro, Madhusmita; Sadhu, Manika; Mazumdar, Ardhendu

    2015-01-01

    Objective is to evaluate cardiovascular autonomic function in SLE by simple non-invasive tests. A case control study was carried out involving 18-50 yrs old previously diagnosed SLE patients and same number of age and sex-matched controls. Parasympathetic function was assessed by heart rate (HR) response to Valsalva maneuver, deep breathing and standing. Sympathetic function was evaluated by blood pressure response to standing and sustained hand-grip test (HGT). There were 50 female SLE patients. They had significantly higher minimum resting HR and diastolic blood pressure (DBP). HR variation with deep breathing, expiratory inspiratory ratio, 30:15 ratio and DBP change in response to HGT were significantly lower inpatients compared to controls. Thirty patients (60%) had at least one abnormal or two borderline test results indicating autonomic impairment of which 27 had parasympathetic dysfunction and 7 had sympathetic dysfunction. Autonomic dysfunction is common in SLE with higher prevalence of parasympathetic impairment.

  3. Projecting the effects of tobacco control policies in the USA through microsimulation: a study protocol

    Science.gov (United States)

    Levy, David T; Jeon, Jihyoun; Clarke, John; Gilkeson, Scott; Hall, Tim; Holford, Theodore R; Meza, Rafael

    2018-01-01

    Introduction Smoking remains the leading cause of preventable death in the USA but can be reduced through policy interventions. Computational models of smoking can provide estimates of the projected impact of tobacco control policies and can be used to inform public health decision making. We outline a protocol for simulating the effects of tobacco policies on population health outcomes. Methods and analysis We extend the Smoking History Generator (SHG), a microsimulation model based on data from the National Health Interview Surveys, to evaluate the effects of tobacco control policies on projections of smoking prevalence and mortality in the USA. The SHG simulates individual life trajectories including smoking initiation, cessation and mortality. We illustrate the application of the SHG policy module for four types of tobacco control policies at the national and state levels: smoke-free air laws, cigarette taxes, increasing tobacco control programme expenditures and raising the minimum age of legal access to tobacco. Smoking initiation and cessation rates are modified by age, birth cohort, gender and years since policy implementation. Initiation and cessation rate modifiers are adjusted for differences across age groups and the level of existing policy coverage. Smoking prevalence, the number of population deaths avoided, and life-years gained are calculated for each policy scenario at the national and state levels. The model only considers direct individual benefits through reduced smoking and does not consider benefits through reduced exposure to secondhand smoke. Ethics and dissemination A web-based interface is being developed to integrate the results of the simulations into a format that allows the user to explore the projected effects of tobacco control policies in the USA. Usability testing is being conducted in which experts provide feedback on the interface. Development of this tool is under way, and a publicly accessible website is available at http

  4. Distributed Data Logging and Intelligent Control Strategies for a Scaled Autonomous Vehicle

    OpenAIRE

    Tilman Happek; Uwe Lang; Torben Bockmeier; Dimitrji Neubauer; Alexander Kuznietsov

    2016-01-01

    In this paper we present an autonomous car with distributed data processing. The car is controlled by a multitude of independent sensors. For the lane detection, a camera is used, which detects the lane marks with a Hough transformation. Once the camera detects these, one of them is calculated to be followed by the car. This lane is verified by the other sensors of the car. These sensors check the route for obstructions or allow the car to scan a parking space and to park on the roadside if t...

  5. Modulation of autonomic activity in neurological conditions: Epilepsy and Tourette syndrome

    Directory of Open Access Journals (Sweden)

    Yoko eNagai

    2015-09-01

    Full Text Available This manuscript considers the central but neglected role of the autonomic nervous system in the expression and control of seizures in Epilepsy and tics in Tourette Syndrome (TS. In epilepsy, consideration of autonomic involvement is typically confined to differential diagnoses (e.g. syncope, or in relation to Sudden Unexpected Death in Epilepsy (SUDEP. Investigation is more limited in Tourette Syndrome. The role of the autonomic nervous system in the generation and prevention of epileptic seizures is largely overlooked. Emotional stimuli such as anxiety and stress are potent causes of seizures and tic activity in TS, respectively. This manuscript will describe a possible neural mechanism by which afferent autonomic projections linked to cognition and behaviour influence central nervous system thalamo-cortical regulation, which appears to be an important means for controlling both seizure and tic activity. It also summarizes the link between the integrity of the default mode network and autonomic regulation in patients with epilepsy as well as the link between impaired motor control and autonomic regulation in patients with TS. Two neurological conditions; epilepsy and TS were chosen, as seizures and tics represent parameters that can be easily measured to investigate influences of autonomic functions. The EDA biofeedback approach is anticipated

  6. Modifications of Control Loop to Improve the Depth Response of Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Sheng-Ping Hsu

    2014-01-01

    Full Text Available During a constant depth maneuver of an autonomous underwater vehicle (AUV, its pitch attitude and stern plane deflections create forces and moments to achieve equilibrium in the vertical plane. If an AUV has a proportional controller only in its depth control loop, then different weights or centers of gravity will cause different steady-state depth errors at trimmed conditions. In general, a steady-state depth error can be eliminated by adding an integral controller in the depth control loop. However, an improper integrator may lead to a bad transient response, even though the steady-state depth error can finally be eliminated. To remove the steady-state depth error, this study proposes methods that adjust the depth command and add a switching integral controller in the depth control loop. Simulation results demonstrate that the steady-state depth error can be eliminated and the transient response can be improved.

  7. Autonomous Dome for a Robotic Telescope

    Science.gov (United States)

    Kumar, A.; Sengupta, A.; Ganesh, S.

    2016-12-01

    The Physical Research Laboratory operates a 50 cm robotic observatory at Mount Abu (Rajsthan, India). This Automated Telescope for Variability Studies (ATVS) makes use of the Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5 m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  8. Experimental Autonomous Road Vehicle with Logical Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Sergey Sergeevich Shadrin

    2017-01-01

    Full Text Available This article describes some technical issues regarding the adaptation of a production car to a platform for the development and testing of autonomous driving technologies. A universal approach to performing the reverse engineering of electric power steering (EPS for the purpose of external control is also presented. The primary objective of the related study was to solve the problem associated with the precise prediction of the dynamic trajectory of an autonomous vehicle. This was accomplished by deriving a new equation for determining the lateral tire forces and adjusting some of the vehicle parameters under road test conductions. A Mivar expert system was also integrated into the control system of the experimental autonomous vehicle. The expert system was made more flexible and effective for the present application by the introduction of hybrid artificial intelligence with logical reasoning. The innovation offers a solution to the major problem of liability in the event of an autonomous transport vehicle being involved in a collision.

  9. Distributed Control for Autonomous Operation of a Three-Port AC/DC/DS Hybrid Microgrid

    DEFF Research Database (Denmark)

    Wang, Peng; Jin, Chi; Zhu, Dexuan

    2015-01-01

    This paper presents a distributed control scheme for reliable autonomous operation of a hybrid three-port ac/dc/distributed storage (ds) microgrid by means of power sharing in individual network, power exchange between ac and dc networks, and power management among three networks. The proposed...... distributed control scheme includes: 1) a fully decentralized control, which is achieved by local power sharing (LPS) in individual ac or dc network, global power sharing (GPS) throughout ac/dc networks, and storage power sharing (SPS) among distributed storages. Upon fully decentralized control, each power...... module can operate independently without communication links. This would benefit for riding through communication malfunction in multilayer supervision control system; 2) a multilevel power exchange control for scheduling LPS, GPS, and SPS has been developed to reduce unnecessary power exchange between...

  10. Job autonomy in relation to work engagement and workaholism: Mediation of autonomous and controlled work motivation.

    Science.gov (United States)

    Malinowska, Diana; Tokarz, Aleksandra; Wardzichowska, Anna

    2018-02-07

    This study integrates the Self Determination Theory and the Job Demands-Resource model in explaining motivational antecedents of 2 forms of excessive work: work engagement and workaholism. It specifically examines the relationship between job autonomy, situational work motivation, work engagement, and workaholism. The sample comprised 318 full-time employees of an international outsourcing company located in Poland. The mediation analysis was used for testing hypotheses about the mediation of autonomous and controlled motivation in the relationship between job autonomy, work engagement, and workaholism. The results have confirmed that autonomous motivation mediates the relationship between job autonomy and work engagement. The assumption about the mediation role of controlled motivation in the relationship between job autonomy and workaholism has not been confirmed; however, external regulation (i.e., controlled motivation) is a significant predictor of workaholism. Giving employees more job autonomy might increase their intrinsic and identified regulation and may therefore lead to more energetic, enthusiastic, and dedicated engagement with their jobs. Workaholism may be predicted by external regulation, and work characteristics other than job autonomy may play an important role in enhancing this controlled type of motivation. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  11. Flexible Decision Control in an Autonomous Trading Agent

    NARCIS (Netherlands)

    J. Collins (John); W. Ketter (Wolfgang); M. Gini (Maria)

    2007-01-01

    textabstractAn autonomous trading agent is a complex piece of software that must operate in a competitive economic environment and support a research agenda. We describe the structure of decision processes in the MinneTAC trading agent, focusing on the use of evaluators – configurable, composable

  12. Manifold traversing as a model for learning control of autonomous robots

    Science.gov (United States)

    Szakaly, Zoltan F.; Schenker, Paul S.

    1992-01-01

    This paper describes a recipe for the construction of control systems that support complex machines such as multi-limbed/multi-fingered robots. The robot has to execute a task under varying environmental conditions and it has to react reasonably when previously unknown conditions are encountered. Its behavior should be learned and/or trained as opposed to being programmed. The paper describes one possible method for organizing the data that the robot has learned by various means. This framework can accept useful operator input even if it does not fully specify what to do, and can combine knowledge from autonomous, operator assisted and programmed experiences.

  13. The ERS role on Tobacco Control Policy in Europe

    Directory of Open Access Journals (Sweden)

    Christina Gratziou

    2016-03-01

    Full Text Available The European Respiratory Society is an international medical organisation that brings together physicians, healthcare professionals, scientists and other experts working in respiratory medicine. Its aim is to alleviate suffering from respiratory diseases and promote lung health globally through science, education and advocacy. ERS has since its founding in 1990 demonstrated strong commitment to tobacco control. Through scientific assemblies, education courses, various alliances and collaboration (Framework Convention Alliance, European Chronic Disease Alliance, World Health Organisation etc. As well as a Tobacco Control Committee (TCC dedicated to advocacy, ERS constantly strives to promote strong and evidence-based policies to reduce the burden of tobacco related diseases. One of the main outcome of the TCC is the creation of Smokehaz, a website aimed at providing policy-makers with scientific information on the Health hazards associated with smoking. Recently, ERS created the Latin-America Working Group which aims at strengthening tobacco control activities in Spain, Portugal and Latin-American countries.

  14. Ex-post assessment of China's industrial energy efficiency policies during the 11th Five-Year Plan

    International Nuclear Information System (INIS)

    Yu, Yuqing; Wang, Xiao; Li, Huimin; Qi, Ye; Tamura, Kentaro

    2015-01-01

    China implemented a package of policies during the 11th Five-Year Plan (2006–2010) to improve industrial energy efficiency. This assessment provides a methodology that establishes a causal relationship between policy implementation and energy conservation effects. To enhance the confidence in the research findings, this assessment applies two distinctive and independent approaches: one top-down and the other bottom-up. This assessment finds that industrial energy efficiency policies collectively achieved energy savings of 322 Mtce (9.4 EJ) against the baseline scenario. This accounted for 59% of the sector's total energy savings from 2006 to 2010. The remaining energy savings were realised through autonomous technology improvement (33%) and sector-level structural shift (8%). Correspondingly, cumulative avoided CO 2 emissions realised through energy efficiency policies amounted to 760 million tons. This assessment concludes that industrial energy efficiency policies were effective in realising energy conservation targets, but energy conservation effects were not achieved in a cost-effective way. Command and control measures were dominantly implemented, with economic incentives and informational measures taking a complementary role; while market based instruments did not play an important role. As China is planning on implementing a nationwide emissions trading scheme, special attention needs to be paid to policy interaction and coordination. - Highlights: • EE policies applied in the industry sector achieved energy savings of 322 Mtce. • Energy saving realized through EE policies accounted for 59% of the sector's total. • Avoided CO 2 emissions realized by EE policies amounted to 760 million tons. • Autonomous technology improvement accounted for 33% of the sector's total energy savings. • Sector-level structural shift accounted for the remaining 8% energy savings

  15. Shape-Controlled Fabrication of the Polymer-Based Micromotor Based on the Polydimethylsiloxane Template.

    Science.gov (United States)

    Su, Miaoda; Liu, Mei; Liu, Limei; Sun, Yunyu; Li, Mingtong; Wang, Dalei; Zhang, Hui; Dong, Bin

    2015-11-03

    We report the utilization of the polydimethylsiloxane template to construct polymer-based autonomous micromotors with various structures. Solid or hollow micromotors, which consist of polycaprolactone and platinum nanoparticles, can be obtained with controllable sizes and shapes. The resulting micromotor can not only be self-propelled in solution based on the bubble propulsion mechanism in the presence of the hydrogen peroxide fuel, but also exhibit structure-dependent motion behavior. In addition, the micromotors can exhibit various functions, ranging from fluorescence, magnetic control to cargo transportation. Since the current method can be extended to a variety of organic and inorganic materials, we thus believe it may have great potential in the fabrication of different functional micromotors for diverse applications.

  16. Commande et planification de trajectoires pour la navigation de véhicules autonomes

    OpenAIRE

    Tagne Fokam , Gilles

    2014-01-01

    My research focuses on trajectory planning and control of autonomous vehicles. This work is a part of an extremely ambitious project launched by the Heudiasyc laboratory about autonomous driving at high speed (longitudinal speed greater to 5m/s ~= 18 km/h). With regard to the control of autonomous vehicles at high speed, a lateral controler using higher-order sliding mode control is proposed. Given the implicit similarity between the sliding mode and the principle of immersion and invariance,...

  17. A Framework for Evidence-Based Licensure of Adaptive Autonomous Systems: Technical Areas

    Science.gov (United States)

    2016-03-01

    autonomous tractor-trailer, the natural next evolution of the self - driving cars under development today. The tractor-trailer must be able to drive safely...letting other teens drive the vehicle , etc.) In this example, gradual permission for additional licensure and extended autonomous driving privileges under...to achieve a quasi-structured goal such as landing an airplane or driving a vehicle . This kind of autonomous system begins with core

  18. Relationship between autonomic cardiovascular control, case definition, clinical symptoms, and functional disability in adolescent chronic fatigue syndrome: an exploratory study.

    Science.gov (United States)

    Wyller, Vegard B; Helland, Ingrid B

    2013-02-07

    Chronic Fatigue Syndrome (CFS) is characterized by severe impairment and multiple symptoms. Autonomic dysregulation has been demonstrated in several studies. We aimed at exploring the relationship between indices of autonomic cardiovascular control, the case definition from Centers for Disease Control and Prevention (CDC criteria), important clinical symptoms, and disability in adolescent chronic fatigue syndrome. 38 CFS patients aged 12-18 years were recruited according to a wide case definition (ie. not requiring accompanying symptoms) and subjected to head-up tilt test (HUT) and a questionnaire. The relationships between variables were explored with multiple linear regression analyses. In the final models, disability was positively associated with symptoms of cognitive impairments (p<0.001), hypersensitivity (p<0.001), fatigue (p=0.003) and age (p=0.007). Symptoms of cognitive impairments were associated with age (p=0.002), heart rate (HR) at baseline (p=0.01), and HR response during HUT (p=0.02). Hypersensitivity was associated with HR response during HUT (p=0.001), high-frequency variability of heart rate (HF-RRI) at baseline (p=0.05), and adherence to the CDC criteria (p=0.005). Fatigue was associated with gender (p=0.007) and adherence to the CDC criteria (p=0.04). In conclusion, a) The disability of CFS patients is not only related to fatigue but to other symptoms as well; b) Altered cardiovascular autonomic control is associated with certain symptoms; c) The CDC criteria are poorly associated with disability, symptoms, and indices of altered autonomic nervous activity.

  19. Cardiovascular autonomic dysfunction due to diabetes mellitus: An ...

    African Journals Online (AJOL)

    Cardiovascular autonomic neuropathy (CAN) is a common form of diabetes autonomic neuropathy, causes abnormalities in heart rate control as well as central and peripheral vascular dynamics, and may carry an increased risk of mortality. The aim of this article was to review the importance of identifying CAN and ...

  20. A System for Fast Navigation of Autonomous Vehicles

    Science.gov (United States)

    1991-09-01

    AD-A243 523 4, jj A System for Fast Navigation of Autonomous Vehicles Sanjiv Singh, Dai Feng, Paul Keller, Gary Shaffer, Wen Fan Shi, Dong Hun Shin...FUNDING NUMBERS A System for Fast Navigation of Autonomous Vehicles 6. AUTHOR(S) S. Singh, D. Feng, P. Keller, G. Shaffer, W.F. Shi, D.H. Shin, J. West...common in the control of autonomous vehicles to establish the necessary kinematic models but to ignore an explicit representation of the vehicle dynamics

  1. A hybrid online scheduling mechanism with revision and progressive techniques for autonomous Earth observation satellite

    Science.gov (United States)

    Li, Guoliang; Xing, Lining; Chen, Yingwu

    2017-11-01

    The autonomicity of self-scheduling on Earth observation satellite and the increasing scale of satellite network attract much attention from researchers in the last decades. In reality, the limited onboard computational resource presents challenge for the online scheduling algorithm. This study considered online scheduling problem for a single autonomous Earth observation satellite within satellite network environment. It especially addressed that the urgent tasks arrive stochastically during the scheduling horizon. We described the problem and proposed a hybrid online scheduling mechanism with revision and progressive techniques to solve this problem. The mechanism includes two decision policies, a when-to-schedule policy combining periodic scheduling and critical cumulative number-based event-driven rescheduling, and a how-to-schedule policy combining progressive and revision approaches to accommodate two categories of task: normal tasks and urgent tasks. Thus, we developed two heuristic (re)scheduling algorithms and compared them with other generally used techniques. Computational experiments indicated that the into-scheduling percentage of urgent tasks in the proposed mechanism is much higher than that in periodic scheduling mechanism, and the specific performance is highly dependent on some mechanism-relevant and task-relevant factors. For the online scheduling, the modified weighted shortest imaging time first and dynamic profit system benefit heuristics outperformed the others on total profit and the percentage of successfully scheduled urgent tasks.

  2. Influence of recent tobacco control policies and campaigns on Quitline call volume in Korea

    Directory of Open Access Journals (Sweden)

    Jin-Ju Park

    2018-03-01

    It appears that the continuous efforts to add up of tobacco control policies in the context of a nationwide anti-tobacco mass media campaign that includes the Quitline number is the most effective approach to maintaining the upward trend in smoking cessation intentions. Based on the Korean experience, Quitline data may be useful for measuring the impact of tobacco control policies and campaigns in Asian Pacific countries.

  3. Autonomous Docking Based on Infrared System for Electric Vehicle Charging in Urban Areas

    Science.gov (United States)

    Pérez, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline

    2013-01-01

    Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris. PMID:23429581

  4. Autonomous docking based on infrared system for electric vehicle charging in urban areas.

    Science.gov (United States)

    Pérez, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline

    2013-02-21

    Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris.

  5. Autonomous power management for interlinked AC-DC microgrids

    DEFF Research Database (Denmark)

    Nutkani, Inam Ullah; Meegahapola, Lasantha; Andrew, Loh Poh Chiang

    2018-01-01

    of the DC micro-grid before importing power from the interlinked AC microgrid. This strategy enables voltage regulation in the DC microgrid, and also reduces the number of converters in operation. The proposed scheme is fully autonomous while it retains the plug-n-play features for generators and tie......The existing power management schemes for inter-linked AC-DC microgrids have several operational drawbacks. Some of the existing control schemes are designed with the main objective of sharing power among the interlinked microgrids based on their loading conditions, while other schemes regulate...... the voltage of the interlinked microgrids without considering the specific loading conditions. However, the existing schemes cannot achieve both objectives efficiently. To address these issues, an autonomous power management scheme is proposed, which explicitly considers the specific loading condition...

  6. Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"

    Science.gov (United States)

    Young, Larry A.

    2007-01-01

    A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a

  7. Political economy of tobacco control policy on public health in Japan.

    Science.gov (United States)

    Desapriya, E B R; Iwase, Nobutada; Shimizu, Shinji

    2003-02-01

    Tobacco use, particularly smoking, remains the number one cause of preventable disease and mortality in Japan. This review of the tobacco control policy and public health is the first to offer a composite review of the subject within Japan. This review attempts to evaluate the most important aspects of the current political economy of the tobacco control policy, and concludes that more effective control policies must be employed to minimize the impact of smoking on the public's health in Japan. Further the article attempts to place the approaches in the larger context of tobacco control, providing a vision for the future of tobacco prevention and control based on current knowledge. Tobacco use will remain the leading cause of preventable illness and death in Japan, until tobacco prevention and control efforts are commensurate with the harm caused by tobacco. Taken together, the results of various studies have clearly shown that control measures can influence tobacco smoking patterns, and in turn, the rate of tobacco-related problems. Government tobacco taxes have not kept pace with inflation for years. Availability of tobacco is virtually unlimited with easy access and the prices being very low due to the strong currency of Japan. Thus Japan must be one of the most tobacco accessible countries. It is important to ensure that people are not conditioned to smoke tobacco by an unduly favourable economic and commercial environment. For that reason, prevention advocates have called for substantial regulation of tobacco products and appeal for both tobacco tax increases and tobacco taxes to be indexed to inflation. In this review, present tobacco related public health policies in Japan are discussed with implication for prevention of tobacco related problems. Continued research in this area will be necessary to determine the most effective policies of reducing tobacco related problems in Japan.

  8. The relationship of motion sickness susceptibility to learned autonomic control for symptom suppression

    Science.gov (United States)

    Cowings, P. S.; Toscano, W. B.

    1982-01-01

    Twenty-four men were randomly assigned to four equal groups matched in terms of their Coriolis Sickness Susceptibility Index (CSSI). Two groups of subjects were highly susceptible to motion sickness, and two groups were moderately susceptible. All subjects were given six C551 tests at 5-d intervals. Treatment Groups I (highly susceptible) and II (moderately susceptible) were taught to control their autonomic responses, using a training method called autogenic-feedback training (AFT) before the third, fourth, and fifth CSSI tests. Control groups III (highly susceptible) and IV (moderately susceptible) received no treatment. Results showed that both treatment groups significantly improved performance on CSSI tests after training; neither of the control groups changed significantly. Highly and moderately susceptible subjects in the two treatment groups improved at comparable rates. Highly susceptible control group subjects did not habituate across tests as readily as the moderately susceptible controls.

  9. Autonomous acquisition systems for TJ-II: controlling instrumentation with a fourth generation language

    International Nuclear Information System (INIS)

    Sanchez, E.; Portas, A.B.; Vega, J.; Agudo, J.M.; McCarthy, K.J.; Ruiz, M.; Barrera, E.; Lopez, S.

    2004-01-01

    Recently, 536 new acquisition channels, made-up of three different channel types, have been incorporated into the TJ-II data acquisition system (DAQ). Dedicated software has also been developed to permit experimentalists to program and control the data acquisition in these systems. The software has been developed using LabView and runs under the Windows 2000 operating system in both personal computer (PC) and PXI controllers. In addition, LabView software has been developed to control TJ-II VXI channels from a PC using a MXI connection. This new software environment will also aid future integration of acquisition channels into the TJ-II remote participation system. All of these acquisition devices work autonomously and are connected to the TJ-II central server via a local area network. In addition, they can be remotely controlled from the TJ-II control-room using Virtual Network Computing (VNC) software

  10. Neural network based online simultaneous policy update algorithm for solving the HJI equation in nonlinear H∞ control.

    Science.gov (United States)

    Wu, Huai-Ning; Luo, Biao

    2012-12-01

    It is well known that the nonlinear H∞ state feedback control problem relies on the solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which is a nonlinear partial differential equation that has proven to be impossible to solve analytically. In this paper, a neural network (NN)-based online simultaneous policy update algorithm (SPUA) is developed to solve the HJI equation, in which knowledge of internal system dynamics is not required. First, we propose an online SPUA which can be viewed as a reinforcement learning technique for two players to learn their optimal actions in an unknown environment. The proposed online SPUA updates control and disturbance policies simultaneously; thus, only one iterative loop is needed. Second, the convergence of the online SPUA is established by proving that it is mathematically equivalent to Newton's method for finding a fixed point in a Banach space. Third, we develop an actor-critic structure for the implementation of the online SPUA, in which only one critic NN is needed for approximating the cost function, and a least-square method is given for estimating the NN weight parameters. Finally, simulation studies are provided to demonstrate the effectiveness of the proposed algorithm.

  11. A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System.

    Science.gov (United States)

    Mouapi, Alex; Hakem, Nadir

    2018-01-05

    when each round lasts 10 min . The result shows that the range of the autonomous WSN increases when the controlled physical phenomenon varies very slowly. Having taken into account all the dissipation sources coexisting in a sensor node and using actual measurements of an REHS, this work provides the guidelines for the design of autonomous nodes based on REHS.

  12. A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Alex Mouapi

    2018-01-01

    300 m 2 and when each round lasts 10 min . The result shows that the range of the autonomous WSN increases when the controlled physical phenomenon varies very slowly. Having taken into account all the dissipation sources coexisting in a sensor node and using actual measurements of an REHS, this work provides the guidelines for the design of autonomous nodes based on REHS.

  13. Quantifying Effects of Pharmacological Blockers of Cardiac Autonomous Control Using Variability Parameters.

    Science.gov (United States)

    Miyabara, Renata; Berg, Karsten; Kraemer, Jan F; Baltatu, Ovidiu C; Wessel, Niels; Campos, Luciana A

    2017-01-01

    Objective: The aim of this study was to identify the most sensitive heart rate and blood pressure variability (HRV and BPV) parameters from a given set of well-known methods for the quantification of cardiovascular autonomic function after several autonomic blockades. Methods: Cardiovascular sympathetic and parasympathetic functions were studied in freely moving rats following peripheral muscarinic (methylatropine), β1-adrenergic (metoprolol), muscarinic + β1-adrenergic, α1-adrenergic (prazosin), and ganglionic (hexamethonium) blockades. Time domain, frequency domain and symbolic dynamics measures for each of HRV and BPV were classified through paired Wilcoxon test for all autonomic drugs separately. In order to select those variables that have a high relevance to, and stable influence on our target measurements (HRV, BPV) we used Fisher's Method to combine the p -value of multiple tests. Results: This analysis led to the following best set of cardiovascular variability parameters: The mean normal beat-to-beat-interval/value (HRV/BPV: meanNN), the coefficient of variation (cvNN = standard deviation over meanNN) and the root mean square differences of successive (RMSSD) of the time domain analysis. In frequency domain analysis the very-low-frequency (VLF) component was selected. From symbolic dynamics Shannon entropy of the word distribution (FWSHANNON) as well as POLVAR3, the non-linear parameter to detect intermittently decreased variability, showed the best ability to discriminate between the different autonomic blockades. Conclusion: Throughout a complex comparative analysis of HRV and BPV measures altered by a set of autonomic drugs, we identified the most sensitive set of informative cardiovascular variability indexes able to pick up the modifications imposed by the autonomic challenges. These indexes may help to increase our understanding of cardiovascular sympathetic and parasympathetic functions in translational studies of experimental diseases.

  14. Mobile Autonomous Reconfigurable System

    Directory of Open Access Journals (Sweden)

    Pavliuk N.A.

    2018-04-01

    Full Text Available The object of this study is a multifunctional modular robot able to assemble independently in a given configuration and responsively change it in the process of operation depending on the current task. In this work we aim at developing and examining unified modules for a modular robot, which can both perform autonomous movement and form a complex structure by connecting to other modules. The existing solutions in the field of modular robotics were reviewed and classified by power supply, the ways of interconnection, the ways of movement and the possibility of independent movement of separate modules. Basing on the analysis of the shortcomings of existing analogues, we have developed a module of mobile autonomous reconfigurable system, including a base unit, a set of magneto-mechanical connectors and two motor wheels. The basic kinematic scheme of the modular robot, the features of a single module, as well as the modular structure formed by an array of similar modules were described. Two schemes for placing sets of magneto-mechanical connectors in the basic module have been proposed. We described the principle of operation of a magneto-mechanical connector based on redirection of the magnetic flux of a permanent magnet. This solution simplifies the system for controlling a mechanism of connection with other modules, increases energy efficiency and a battery life of the module. Since the energy is required only at the moment of switching the operating modes of the connector, there is no need to power constantly the connector mechanism to maintain the coupling mode.

  15. Autonomic dysfunction in different subtypes of multiple system atrophy.

    Science.gov (United States)

    Schmidt, Claudia; Herting, Birgit; Prieur, Silke; Junghanns, Susann; Schweitzer, Katherine; Globas, Christoph; Schöls, Ludger; Reichmann, Heinz; Berg, Daniela; Ziemssen, Tjalf

    2008-09-15

    Multiple system atrophy (MSA) can clinically be divided into the cerebellar (MSA-C) and the parkinsonian (MSA-P) variant. However, till now, it is unknown whether autonomic dysfunction in these two entities differs regarding severity and profile. We compared the pattern of autonomic dysfunction in 12 patients with MSA-C and 26 with MSA-P in comparison with 27 age- and sex-matched healthy controls using a standard battery of autonomic function tests and a structured anamnesis of the autonomic nervous system. MSA-P patients complained significantly more often about the symptoms of autonomic dysfunctions than MSA-C patients, especially regarding vasomotor, secretomotor, and gastrointestinal subsystems. However, regarding cardiovascular, sudomotor pupil, urogenital, and sleep subsystems, there were no significant quantitative or qualitative differences as analyzed by autonomic anamnesis and testing. Our results suggest that there are only minor differences in the pattern of autonomic dysfunction between the two clinical MSA phenotypes. (c) 2007 Movement Disorder Society.

  16. Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies.

    Science.gov (United States)

    Palma, Jose-Alberto; Kaufmann, Horacio

    2018-03-01

    Dysfunction of the autonomic nervous system afflicts most patients with Parkinson disease and other synucleinopathies such as dementia with Lewy bodies, multiple system atrophy, and pure autonomic failure, reducing quality of life and increasing mortality. For example, gastrointestinal dysfunction can lead to impaired drug pharmacodynamics causing a worsening in motor symptoms, and neurogenic orthostatic hypotension can cause syncope, falls, and fractures. When recognized, autonomic problems can be treated, sometimes successfully. Discontinuation of potentially causative/aggravating drugs, patient education, and nonpharmacological approaches are useful and should be tried first. Pathophysiology-based pharmacological treatments that have shown efficacy in controlled trials of patients with synucleinopathies have been approved in many countries and are key to an effective management. Here, we review the treatment of autonomic dysfunction in patients with Parkinson disease and other synucleinopathies, summarize the nonpharmacological and current pharmacological therapeutic strategies including recently approved drugs, and provide practical advice and management algorithms for clinicians, with focus on neurogenic orthostatic hypotension, supine hypertension, dysphagia, sialorrhea, gastroparesis, constipation, neurogenic overactive bladder, underactive bladder, and sexual dysfunction. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  17. Autonomous Robot Navigation based on Visual Landmarks

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    The use of landmarks for robot navigation is a popular alternative to having a geometrical model of the environment through which to navigate and monitor self-localization. If the landmarks are defined as special visual structures already in the environment then we have the possibility of fully a...... automatically learn and store visual landmarks, and later recognize these landmarks from arbitrary positions and thus estimate robot position and heading.......The use of landmarks for robot navigation is a popular alternative to having a geometrical model of the environment through which to navigate and monitor self-localization. If the landmarks are defined as special visual structures already in the environment then we have the possibility of fully...... autonomous navigation and self-localization using automatically selected landmarks. The thesis investigates autonomous robot navigation and proposes a new method which benefits from the potential of the visual sensor to provide accuracy and reliability to the navigation process while relying on naturally...

  18. Situation Analysis of Alcohol Control Policy in Five African Countries ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Alcohol use is a major risk factor for premature deaths and disabilities in low and middle-income countries. This research will evaluate alcohol control policy and legislation in five African countries to provide evidence-based research to policymakers, researchers, and lobby groups working to reduce alcohol use.

  19. Sensor fusion: lane marking detection and autonomous intelligent cruise control system

    Science.gov (United States)

    Baret, Marc; Baillarin, S.; Calesse, C.; Martin, Lionel

    1995-12-01

    In the past few years MATRA and RENAULT have developed an Autonomous Intelligent Cruise Control (AICC) system based on a LIDAR sensor. This sensor incorporating a charge coupled device was designed to acquire pulsed laser diode emission reflected by standard car reflectors. The absence of moving mechanical parts, the large field of view, the high measurement rate and the very good accuracy for distance range and angular position of targets make this sensor very interesting. It provides the equipped car with the distance and the relative speed of other vehicles enabling the safety distance to be controlled by acting on the throttle and the automatic gear box. Experiments in various real traffic situations have shown the limitations of this kind of system especially on bends. All AICC sensors are unable to distinguish between a bend and a change of lane. This is easily understood if we consider a road without lane markings. This fact has led MATRA to improve its AICC system by providing the lane marking information. Also in the scope of the EUREKA PROMETHEUS project, MATRA and RENAULT have developed a lane keeping system in order to warn of the drivers lack of vigilance. Thus, MATRA have spread this system to far field lane marking detection and have coupled it with the AICC system. Experiments will be carried out on roads to estimate the gain in performance and comfort due to this fusion.

  20. Human-Interaction Challenges in UAV-Based Autonomous Surveillance

    Science.gov (United States)

    Freed, Michael; Harris, Robert; Shafto, Michael G.

    2004-01-01

    Autonomous UAVs provide a platform for intelligent surveillance in application domains ranging from security and military operations to scientific information gathering and land management. Surveillance tasks are often long duration, requiring that any approach be adaptive to changes in the environment or user needs. We describe a decision- theoretic model of surveillance, appropriate for use on our autonomous helicopter, that provides a basis for optimizing the value of information returned by the UAV. From this approach arise a range of challenges in making this framework practical for use by human operators lacking specialized knowledge of autonomy and mathematics. This paper describes our platform and approach, then describes human-interaction challenges arising from this approach that we have identified and begun to address.

  1. Muscular Contraction Mode Differently Affects Autonomic Control During Heart Rate Matched Exercise

    Directory of Open Access Journals (Sweden)

    Matthias eWeippert

    2015-05-01

    Full Text Available The precise contributions of afferent feedback to cardiovascular and respiratory responses to exercise are still unclear. Aim of this crossover study was to assess whether and how autonomic cardiovascular and respiratory control differed in response to dynamic (DYN and isometric contractions (ISO at a similar, low heart rate (HR level. Therefore, 22 healthy males (26.7 ± 3.6 yrs performed two kinds of voluntary exercises at similar HR: ISO and DYN of the right quadriceps femoris muscle. Although HR was eqivalent (82 ± 8 bpm for DYN and ISO, respectively, rating of exertion, blood pressures, and rate pressure product were higher, whereas breathing frequency, minute ventilation, oxygen uptake and carbon dioxide output were significantly lower during ISO. Tidal volume, end-tidal partial pressures of O2 and CO2, respiratory exchange ratio and capillary blood lactate concentration were comparable between both contraction modes. Heart rate variability (HRV indicators, SDNN, HF-Power and LF-Power, representing both vagal and sympathetic influences, were significantly higher during ISO. Sample entropy, a nonlinear measure of HRV was also significantly affected by contraction mode. It can be concluded that, despite the same net effect on HR, the quality of cardiovascular control during low intensity exercise is significantly different between DYN and ISO. HRV analysis indicated a sympatho-vagal coactivation during ISO. Whether mechanoreceptor feedback alone, a change in central command, or the interaction of both mechanisms is the main contributor of the distinct autonomic responses to the different exercise modes remains to be elucidated.

  2. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple...

  3. ADRES : autonomous decentralized regenerative energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, G.; Einfalt, A.; Leitinger, C.; Tiefgraber, D. [Vienna Univ. of Technology (Austria)

    2007-07-01

    The autonomous decentralized regenerative energy systems (ADRES) research project demonstrates that decentralized network independent microgrids are the target power systems of the future. This paper presented a typical structure of a microgrid, demonstrating that all types of generation available can be integrated, from wind and small hydro to photovoltaic, fuel cell, biomass or biogas operated stirling motors and micro turbines. In grid connected operation the balancing energy and reactive power for voltage control will come from the public grid. If there is no interconnection to a superior grid, it will form an autonomous micro grid. In order to reduce peak power demand and base energy, autonomous microgrid technology requires highly efficient appliances. Otherwise large collector design, high storage and balancing generation capacities would be necessary, which would increase costs. End-use energy efficiency was discussed with reference to demand side management (DSM) strategies that match energy demand with actual supply in order to minimize the storage size needed. This paper also discussed network controls that comprise active and reactive power. Decentralized robust algorithms were investigated with reference to black-start ability and congestion management features. It was concluded that the trend to develop small decentralized grids in parallel to existing large systems will improve security of supply and reduce greenhouse gas emissions. Decentralized grids will also increase energy efficiency because regenerative energy will be used where it is collected in the form of electricity and heat, thus avoiding transport and the extension of transmission lines. Decentralized energy technology is now becoming more economic by efficient and economic mass production of components. Although decentralized energy technology requires energy automation, computer intelligence is becoming increasingly cost efficient. 2 refs., 4 figs.

  4. Decision-making in the Dark? - Autonomous EU Sanctions and National Classification

    NARCIS (Netherlands)

    Eckes, C.

    2012-01-01

    In the past decade, the European Union (EU) has taken an active role in counter-terrorism. Amongst the EU’s counter-terrorist policies, sanctions (asset freezing) remain the cornerstone. The EU runs two different regimes of counter-terrorist sanctions: autonomous EU sanctions and EU sanctions

  5. Autonomic headache with autonomic seizures: a case report.

    Science.gov (United States)

    Ozge, Aynur; Kaleagasi, Hakan; Yalçin Tasmertek, Fazilet

    2006-10-01

    The aim of the report is to present a case of an autonomic headache associated with autonomic seizures. A 19-year-old male who had had complex partial seizures for 15 years was admitted with autonomic complaints and left hemicranial headache, independent from seizures, that he had had for 2 years and were provoked by watching television. Brain magnetic resonance imaging showed right hippocampal sclerosis and electroencephalography revealed epileptic activity in right hemispheric areas. Treatment with valproic acid decreased the complaints. The headache did not fulfil the criteria for the diagnosis of trigeminal autonomic cephalalgias, and was different from epileptic headache, which was defined as a pressing type pain felt over the forehead for several minutes to a few hours. Although epileptic headache responds to anti-epileptics and the complaints of the present case decreased with antiepileptics, it has been suggested that the headache could be a non-trigeminal autonomic headache instead of an epileptic headache.

  6. Gauge subsystems, separability and robustness in autonomous quantum memories

    International Nuclear Information System (INIS)

    Sarma, Gopal; Mabuchi, Hideo

    2013-01-01

    Quantum error correction provides a fertile context for exploring the interplay of feedback control, microscopic physics and non-commutative probability. In this paper we deepen our understanding of this nexus through high-level analysis of a class of quantum memory models that we have previously proposed, which implement continuous-time versions of well-known stabilizer codes in autonomous nanophotonic circuits that require no external clocking or control. We demonstrate that the presence of the gauge subsystem in the nine-qubit Bacon–Shor code allows for a loss-tolerant layout of the corresponding nanophotonic circuit that substantially ameliorates the effects of optical propagation losses, argue that code separability allows for simplified restoration feedback protocols, and propose a modified fidelity metric for quantifying the performance of realistic quantum memories. Our treatment of these topics exploits the homogeneous modeling framework of autonomous nanophotonic circuits, but the key ideas translate to the traditional setting of discrete time, measurement-based quantum error correction. (paper)

  7. Optimal Design and Real Time Implementation of Autonomous Microgrid Including Active Load

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hassan

    2018-05-01

    Full Text Available Controller gains and power-sharing parameters are the main parameters affect the dynamic performance of the microgrid. Considering an active load to the autonomous microgrid, the stability problem will be more involved. In this paper, the active load effect on microgrid dynamic stability is explored. An autonomous microgrid including three inverter-based distributed generations (DGs with an active load is modeled and the associated controllers are designed. Controller gains of the inverters and active load as well as Phase Locked Loop (PLL parameters are optimally tuned to guarantee overall system stability. A weighted objective function is proposed to minimize the error in both measured active power and DC voltage based on time-domain simulations. Different AC and DC disturbances are applied to verify and assess the effectiveness of the proposed control strategy. The results demonstrate the potential of the proposed controller to enhance the microgrid stability and to provide efficient damping characteristics. Additionally, the proposed controller is compared with the literature to demonstrate its superiority. Finally, the microgrid considered has been established and implemented on real time digital simulator (RTDS. The experimental results validate the simulation results and approve the effectiveness of the proposed controllers to enrich the stability of the considered microgrid.

  8. Directory Enabled Policy Based Networking; TOPICAL

    International Nuclear Information System (INIS)

    KELIIAA, CURTIS M.

    2001-01-01

    This report presents a discussion of directory-enabled policy-based networking with an emphasis on its role as the foundation for securely scalable enterprise networks. A directory service provides the object-oriented logical environment for interactive cyber-policy implementation. Cyber-policy implementation includes security, network management, operational process and quality of service policies. The leading network-technology vendors have invested in these technologies for secure universal connectivity that transverses Internet, extranet and intranet boundaries. Industry standards are established that provide the fundamental guidelines for directory deployment scalable to global networks. The integration of policy-based networking with directory-service technologies provides for intelligent management of the enterprise network environment as an end-to-end system of related clients, services and resources. This architecture allows logical policies to protect data, manage security and provision critical network services permitting a proactive defense-in-depth cyber-security posture. Enterprise networking imposes the consideration of supporting multiple computing platforms, sites and business-operation models. An industry-standards based approach combined with principled systems engineering in the deployment of these technologies allows these issues to be successfully addressed. This discussion is focused on a directory-based policy architecture for the heterogeneous enterprise network-computing environment and does not propose specific vendor solutions. This document is written to present practical design methodology and provide an understanding of the risks, complexities and most important, the benefits of directory-enabled policy-based networking

  9. Autonomous generator based on Ni-Mn-Ga microactuator as a frequency selective element

    Directory of Open Access Journals (Sweden)

    Barandiaran J.M.

    2013-01-01

    Full Text Available In this work, we suggest the temperature-induced resistivity change at the martensitic transformation in the Ni-Mn-Ga ferromagnetic shape memory alloy as a driving mechanism enabling periodic signal generation. We demonstrated its practical importance by a design of the prototype of a low-frequency autonomous generator. A prominent feature of this new generator is a control of its frequency by the external magnetic field.

  10. Blunted autonomic response in cluster headache patients

    DEFF Research Database (Denmark)

    Barloese, Mads; Brinth, Louise; Mehlsen, Jesper

    2015-01-01

    BACKGROUND: Cluster headache (CH) is a disabling headache disorder with chronobiological features. The posterior hypothalamus is involved in CH pathophysiology and is a hub for autonomic control. We studied autonomic response to the head-up tilt table test (HUT) including heart rate variability...... (HRV) in CH patients and compared results to healthy controls. METHODS AND MATERIALS: Twenty-seven episodic and chronic CH patients and an equal number of age-, sex- and BMI-matched controls were included. We analyzed responses to HUT in the time and frequency domain and by non-linear analysis. RESULTS......: CH patients have normal cardiovascular responses compared to controls but increased blood pressure. In the frequency analysis CH patients had a smaller change in the normalized low- (LF) (2.89 vs. 13.38, p 

  11. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller.

    Science.gov (United States)

    Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan

    2008-12-01

    Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.

  12. Morphologic Changes in Autonomic Nerves in Diabetic Autonomic Neuropathy

    Directory of Open Access Journals (Sweden)

    Heung Yong Jin

    2015-12-01

    Full Text Available Diabetic neuropathy is one of the major complications of diabetes, and it increases morbidity and mortality in patients with both type 1 diabetes mellitus (T1DM and type 2 diabetes mellitus (T2DM. Because the autonomic nervous system, for example, parasympathetic axons, has a diffuse and wide distribution, we do not know the morphological changes that occur in autonomic neural control and their exact mechanisms in diabetic patients with diabetic autonomic neuropathy (DAN. Although the prevalence of sympathetic and parasympathetic neuropathy is similar in T1DM versus T2DM patients, sympathetic nerve function correlates with parasympathetic neuropathy only in T1DM patients. The explanation for these discrepancies might be that parasympathetic nerve function was more severely affected among T2DM patients. As parasympathetic nerve damage seems to be more advanced than sympathetic nerve damage, it might be that parasympathetic neuropathy precedes sympathetic neuropathy in T2DM, which was Ewing's concept. This could be explained by the intrinsic morphologic difference. Therefore, the morphological changes in the sympathetic and parasympathetic nerves of involved organs in T1DM and T2DM patients who have DAN should be evaluated. In this review, evaluation methods for morphological changes in the epidermal nerves of skin, and the intrinsic nerves of the stomach will be discussed.

  13. An Optimized Autonomous Space In-situ Sensorweb (OASIS) for Volcano Monitoring

    Science.gov (United States)

    Song, W.; Shirazi, B.; Lahusen, R.; Chien, S.; Kedar, S.; Webb, F.

    2006-12-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, we are developing a prototype real-time Optimized Autonomous Space In-situ Sensorweb. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been in continuous eruption since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO- 1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real- time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be integrated such that each element is capable of triggering the other. Sensor-web data acquisition and dissemination will be accomplished through the use of SensorML language standards for geospatial information. The three-year project will demonstrate end-to-end system performance with the in-situ test-bed at Mount St. Helens and NASA's EO-1 platform.

  14. Advisory and autonomous cooperative driving systems

    NARCIS (Netherlands)

    Broek, T.H.A. van den; Ploeg, J.; Netten, B.D.

    2011-01-01

    In this paper, the traffic efficiency of an advisory cooperative driving system, Advisory Acceleration Control is examined and compared to the efficiency of an autonomous cooperative driving system, Cooperative Adaptive Cruise Control. The algorithms and implementation thereof are explained. The

  15. Computational Models Used to Assess US Tobacco Control Policies.

    Science.gov (United States)

    Feirman, Shari P; Glasser, Allison M; Rose, Shyanika; Niaura, Ray; Abrams, David B; Teplitskaya, Lyubov; Villanti, Andrea C

    2017-11-01

    Simulation models can be used to evaluate existing and potential tobacco control interventions, including policies. The purpose of this systematic review was to synthesize evidence from computational models used to project population-level effects of tobacco control interventions. We provide recommendations to strengthen simulation models that evaluate tobacco control interventions. Studies were eligible for review if they employed a computational model to predict the expected effects of a non-clinical US-based tobacco control intervention. We searched five electronic databases on July 1, 2013 with no date restrictions and synthesized studies qualitatively. Six primary non-clinical intervention types were examined across the 40 studies: taxation, youth prevention, smoke-free policies, mass media campaigns, marketing/advertising restrictions, and product regulation. Simulation models demonstrated the independent and combined effects of these interventions on decreasing projected future smoking prevalence. Taxation effects were the most robust, as studies examining other interventions exhibited substantial heterogeneity with regard to the outcomes and specific policies examined across models. Models should project the impact of interventions on overall tobacco use, including nicotine delivery product use, to estimate preventable health and cost-saving outcomes. Model validation, transparency, more sophisticated models, and modeling policy interactions are also needed to inform policymakers to make decisions that will minimize harm and maximize health. In this systematic review, evidence from multiple studies demonstrated the independent effect of taxation on decreasing future smoking prevalence, and models for other tobacco control interventions showed that these strategies are expected to decrease smoking, benefit population health, and are reasonable to implement from a cost perspective. Our recommendations aim to help policymakers and researchers minimize harm and

  16. Early Seizure Detection Based on Cardiac Autonomic Regulation Dynamics

    Directory of Open Access Journals (Sweden)

    Jonatas Pavei

    2017-10-01

    Full Text Available Epilepsy is a neurological disorder that causes changes in the autonomic nervous system. Heart rate variability (HRV reflects the regulation of cardiac activity and autonomic nervous system tone. The early detection of epileptic seizures could foster the use of new treatment approaches. This study presents a new methodology for the prediction of epileptic seizures using HRV signals. Eigendecomposition of HRV parameter covariance matrices was used to create an input for a support vector machine (SVM-based classifier. We analyzed clinical data from 12 patients (9 female; 3 male; age 34.5 ± 7.5 years, involving 34 seizures and a total of 55.2 h of interictal electrocardiogram (ECG recordings. Data from 123.6 h of ECG recordings from healthy subjects were used to test false positive rate per hour (FP/h in a completely independent data set. Our methodological approach allowed the detection of impending seizures from 5 min to just before the onset of a clinical/electrical seizure with a sensitivity of 94.1%. The FP rate was 0.49 h−1 in the recordings from patients with epilepsy and 0.19 h−1 in the recordings from healthy subjects. Our results suggest that it is feasible to use the dynamics of HRV parameters for the early detection and, potentially, the prediction of epileptic seizures.

  17. Fibonacci-based hardware post-processing for non-autonomous signum hyperchaotic system

    KAUST Repository

    Mansingka, Abhinav S.; Barakat, Mohamed L.; Zidan, Mohammed A.; Radwan, Ahmed Gomaa; Salama, Khaled N.

    2013-01-01

    This paper presents a hardware implementation of a robust non-autonomous hyperchaotic-based PRNG driven by a 256-bit LFSR. The original chaotic output is post-processed using a novel technique based on the Fibonacci series, bitwise XOR, rotation, and feedback. The proposed post-processing technique preserves the throughput of the system and enhances the randomness in the output which is verified by successfully passing all NIST SP. 800-22 tests. The system is realized on a Xilinx Virtex 4 FPGA achieving throughput up to 13.165 Gbits/s for 16-bit bus-width surpassing previously reported CB-PRNGs. © 2013 IEEE.

  18. Fibonacci-based hardware post-processing for non-autonomous signum hyperchaotic system

    KAUST Repository

    Mansingka, Abhinav S.

    2013-12-01

    This paper presents a hardware implementation of a robust non-autonomous hyperchaotic-based PRNG driven by a 256-bit LFSR. The original chaotic output is post-processed using a novel technique based on the Fibonacci series, bitwise XOR, rotation, and feedback. The proposed post-processing technique preserves the throughput of the system and enhances the randomness in the output which is verified by successfully passing all NIST SP. 800-22 tests. The system is realized on a Xilinx Virtex 4 FPGA achieving throughput up to 13.165 Gbits/s for 16-bit bus-width surpassing previously reported CB-PRNGs. © 2013 IEEE.

  19. Acidification policy - control of acidifying emissions in Germany

    International Nuclear Information System (INIS)

    Schaerer, B.

    1992-01-01

    Since the mid-eighties total annual acidifying emissions have started to decline in West Germany. There was considerable impact on this positive trend in air pollution by the control of SO 2 and NO x emissions from large boilers, which were reduced by more than 80%. Corresponding control programmes have been established for other groups of sources as well as other pollutants and - with unification - for East Germany. The driving force behind this development was and still is first of all the legal principle of anticipatory action or precaution which means in practical terms 'emission minimization'. This cornerstone of German clean air legislation is the most powerful components of Germany's 'acidification policy', as it requires policy-makers to draw up new or review existing regulations for emission reduction based on requirements according to the state of the art and forces operators to apply the most modern ways and means of operation. This paper describes the system used in Germany to deal with air pollution, the emission minimization strategy, and the actions against acidifying emissions based thereon. In addition, an outlook on what might be necessary to cope with the challenges of a sustainable development concerning acidification is given. 1 ref., 1 fig., 2 tabs

  20. Autonomous calibration of single spin qubit operations

    Science.gov (United States)

    Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor

    2017-12-01

    Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.