WorldWideScience

Sample records for policy magnetic fusion

  1. Magnetic fusion

    International Nuclear Information System (INIS)

    2002-01-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project

  2. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  3. Fusion Policy Advisory Committee (FPAC)

    International Nuclear Information System (INIS)

    1990-09-01

    This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan

  4. Magnetic-fusion program

    International Nuclear Information System (INIS)

    1980-08-01

    In February 1980, the Director of Energy Research requested that the Energy Research Advisory Board (ERAB) review the Department of Energy (DOE) Magnetic Fusion Program. Of particular concern to the DOE was the judicious choice of the next major steps toward demonstration of economic power production from fusion. Of equal concern was the overall soundness of the DOE Magnetic Fusion Program: its pace, scope, and funding profiles. Their finding and recommendations are included

  5. Magnetic-confinement fusion

    Science.gov (United States)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  6. Magnetic fusion energy

    International Nuclear Information System (INIS)

    McNamara, B.

    1977-01-01

    A brief review of fusion research during the last 20 years is given. Some highlights of theoretical plasma physics are presented. The role that computational plasma physics is playing in analyzing and understanding the experiments of today is discussed. The magnetic mirror program is reviewed

  7. Fusion, magnetic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Berk, H.L.

    1992-08-06

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or {sup 3}He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied.

  8. Magnetic fusion; La fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project.

  9. International program activities in magnetic fusion energy

    International Nuclear Information System (INIS)

    1986-03-01

    The following areas of our international activities in magnetic fusion are briefly described: (1) policy; (2) background; (3) strategy; (4) strategic considerations and concerns; (5) domestic program inplications, and (6) implementation. The current US activities are reviewed. Some of our present program needs are outlined

  10. Magnetic fusion energy and computers

    International Nuclear Information System (INIS)

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups

  11. Physics of magnetic confinement fusion

    Science.gov (United States)

    Wagner, F.

    2013-06-01

    Fusion is the energy source of the universe. The local conditions in the core of the Sun allow the transfer of mass into energy, which is finally released in the form of radiation. Technical fusion melts deuterons and tritons to helium releasing large amounts of energy per fusion process. Because of the conditions for fusion, which will be deduced, the fusion fuel is in the plasma state. Here we report on the confinement of fusion plasmas by magnetic fields. Different confinement concepts — tokamaks and stellarators — will be introduced and described. The first fusion reactor, ITER, and the most modern stellarator, Wendelstein 7-X, are under construction. Their basic features and objectives will be presented.

  12. Physics of magnetic confinement fusion

    Directory of Open Access Journals (Sweden)

    Wagner F.

    2013-06-01

    Full Text Available Fusion is the energy source of the universe. The local conditions in the core of the Sun allow the transfer of mass into energy, which is finally released in the form of radiation. Technical fusion melts deuterons and tritons to helium releasing large amounts of energy per fusion process. Because of the conditions for fusion, which will be deduced, the fusion fuel is in the plasma state. Here we report on the confinement of fusion plasmas by magnetic fields. Different confinement concepts — tokamaks and stellarators — will be introduced and described. The first fusion reactor, ITER, and the most modern stellarator, Wendelstein 7-X, are under construction. Their basic features and objectives will be presented.

  13. Superconducting magnets for fusion reactors

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1978-01-01

    Superconducting magnets for fusion reactor applications are being developed in the U.S., Europe, Japan and the USSR. A substantial technological base already exists, but magnets for fusion face special problems and strong incentives for higher performance. In the U.S. high-field magnets for mirrors are being addressed by construction of the superconducting (NbTi) MFTF and by Nb 3 Sn conductor development. Large toroidal field magnets for tokamaks are being developed through the Large Coil Program, which involves design and construction of NbTi and Nb 3 Sn coils by six industrial teams, three in the U.S. and three in other countries

  14. Magnetic fusion reactor economics

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1995-01-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission → fusion. The present projections of the latter indicate that capital costs of the fusion ''burner'' far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ''implementation-by-default'' plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant

  15. Magnetic Fusion Program Plan

    International Nuclear Information System (INIS)

    1985-02-01

    This Plan reflects the present conditions of the energy situation and is consistent with national priorities for the support of basic and applied research. It is realistic in taking advantage of the technical position that the United States has already established in fusion research to make cost-effective progress toward the development of fusion power as a future energy option

  16. Japanese magnetic confinement fusion research

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Horton, C.W.; Rutherford, P.H.

    1990-01-01

    This report is the work of six US scientists who surveyed and assessed Japanese research and development in magnetic fusion. All of the panelists are very familiar with Japanese fusion research through their knowledge of the published scientific literature and through personal contacts with Japanese colleagues and with US colleagues who have visited Japanese research facilities. This report concentrates on the period from the early 1980s through June 1989. The technical accomplishments during this period are reviewed, and the Japanese capabilities and outlook for future contributions are assessed. Detailed evaluations are provided in the areas of basic and applied plasma physics, tokamak confinement, alternate confinement approaches, plasma technology, and fusion nuclear technology and materials. With a sustained national commitment, Japan will surpass US and West European capabilities in the early to middle 1990s in several important areas of fusion research and development. For example, it is expected that the planned upgrade of the Japanese JT-60 tokamak will surpass both the US Tokamak Fusion Test Reactor (TFTR) and the Joint European tours (JET) in the usual measures of plasma performance in the 1992 to 1993 timeframe, and will take a clear international lead in large-tokamak research by 1994 to 1995. The Japanese fusion program has the human and technological resources required to build and operate a fusion engineering test reactor without external participation. By the same measure, Japan would be a highly desirable partner in the bilateral undertaking of such a project

  17. Superconducting magnets for fusion applications

    International Nuclear Information System (INIS)

    Henning, C.D.

    1987-01-01

    Fusion magnet technology has made spectacular advances in the past decade; to wit, the Mirror Fusion Test Facility and the Large Coil Project. However, further advances are still required for advanced economical fusion reactors. Higher fields to 14 T and radiation-hardened superconductors and insulators will be necessary. Coupled with high rates of nuclear heating and pulsed losses, the next-generation magnets will need still higher current density, better stability and quench protection. Cable-in-conduit conductors coupled with polyimide insulations and better steels seem to be the appropriate path. Neutron fluences up to 10 19 neutrons/cm 2 in niobium tin are achievable. In the future, other amorphous superconductors could raise these limits further to extend reactor life or decrease the neutron shielding and corresponding reactor size

  18. Magnetic fusion 1985: what next

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T.K.

    1985-03-01

    Recent budget reductions for magnetic fusion have led to a re-examination of program schedules and objectives. Faced with delays and postponement of major facilities as previously planned, some have called for a near-term focus on science, others have stressed technology. This talk will suggest a different focus as the keynote for this conference, namely, the applications of fusion. There is no doubt that plasma science is by now mature and fusion technology is at the forefront. This has and will continue to benefit many fields of endeavor, both in actual new discoveries and techniques and in attracting and training scientists and engineers who move on to make significant contributions in science, defense and industry. Nonetheless, however superb the science or how challenging the technology, these are means, not ends. To maintain its support, the magnetic fusion program must also offer the promise of power reactors that could be competitive in the future. At this conference, several new reactor designs will be described that claim to be smaller and economically competitive with fission reactors while retaining the environmental and safety characteristics that are the hallmark of fusion. The American Nuclear Society is an appropriate forum in which to examine these new designs critically, and to stimulate better ideas and improvements. As a preview, this talk will include brief discussions of new tokamak, tandem mirror and reversed field pinch reactor designs to be presented in later sessions. Finally, as a preview of the session on fusion breeders, the talk will explore once again the economic implications of a new nuclear age, beginning with improved fission reactors fueled by fusion breeders, then ultimately evolving to reactors based solely on fusion.

  19. Magnetic fusion 1985: what next

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1985-03-01

    Recent budget reductions for magnetic fusion have led to a re-examination of program schedules and objectives. Faced with delays and postponement of major facilities as previously planned, some have called for a near-term focus on science, others have stressed technology. This talk will suggest a different focus as the keynote for this conference, namely, the applications of fusion. There is no doubt that plasma science is by now mature and fusion technology is at the forefront. This has and will continue to benefit many fields of endeavor, both in actual new discoveries and techniques and in attracting and training scientists and engineers who move on to make significant contributions in science, defense and industry. Nonetheless, however superb the science or how challenging the technology, these are means, not ends. To maintain its support, the magnetic fusion program must also offer the promise of power reactors that could be competitive in the future. At this conference, several new reactor designs will be described that claim to be smaller and economically competitive with fission reactors while retaining the environmental and safety characteristics that are the hallmark of fusion. The American Nuclear Society is an appropriate forum in which to examine these new designs critically, and to stimulate better ideas and improvements. As a preview, this talk will include brief discussions of new tokamak, tandem mirror and reversed field pinch reactor designs to be presented in later sessions. Finally, as a preview of the session on fusion breeders, the talk will explore once again the economic implications of a new nuclear age, beginning with improved fission reactors fueled by fusion breeders, then ultimately evolving to reactors based solely on fusion

  20. Magnetic fusion and project ITER

    International Nuclear Information System (INIS)

    Park, H.K.

    1992-01-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called ''International Thermonuclear Experimental Reactor (ITER)'' will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind

  1. Alternate concepts for magnetic fusion

    International Nuclear Information System (INIS)

    Nelson, D.B.

    Concepts for magnetic confinement are reviewed for desirability as fusion reactors. Physics and technology advantages, uncertainties, and problems are discussed. Alternate fuel cycles, including D-D, D-He 3 , and p-Li 6 , are considered for possible advantages over D-T. Concepts currently under investigation which offer potential improvement over tokamaks include tandem mirrors. Elmo Bumpy Torus, compact tori encompassing reversed field mirrors, reversed field theta pinches and spheromak, stellarators, multipoles, and reversed field Z pinches

  2. Magnetic systems for fusion devices

    International Nuclear Information System (INIS)

    Henning, C.D.

    1985-02-01

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLNL and IMP at ORNL. More recently, the MFTF-B yin-yang coil was successfully tested and the entire tandem configuration is nearing completion. Tokamak magnets have also enjoyed recent success with the large coil project tests at ORNL, preceded by single coil tests in Japan and Germany. In the USSR, the T-7 Tokamak has been operational for many years and the T-15 Tokamak is under construction, with the TF coils nearing completion. Also the Tore Supra is being built in France

  3. Controlled thermonuclear fusion: research on magnetic fusion

    International Nuclear Information System (INIS)

    Paris, P.J.

    1988-12-01

    Recent progress in thermonuclear fusion research indicates that the scientists' schedule for the demonstration of the scientific feasibility will be kept and that break-even will be attained in the course of the next decade. To see the implementation of ignition, however, the generation of future experiments must be awaited. These projects are currently under study. With technological research going on in parallel, they should at the same time contribute to the design of a reactor. Fusion reactors will be quite different from the fission nuclear reactors we know, and the waste of the plants will also be of a different nature. It is still too early to define the precise design of a fusion reactor. On the basis of a toric machine concept like that of the tokamak, we can, however, envisage that the problems with which we are confronted will be solved one after the other. As we have just seen, these will be the objectives of the future experimental installations where ignition will be possible and where the flux of fast neutrons will be so strong that they will allow the study of low-activation materials which will be used in the structure of the reactor. But this is also a task in which from now onwards numerous laboratories in Europe and in the world participate. The works are in fact punctiform, and often the mutual incidences can only be determined by an approach simulated by numerical codes. (author) 19 figs., 6 tabs., 8 refs

  4. Neutral beams for magnetic fusion

    International Nuclear Information System (INIS)

    Hooper, B.

    1977-01-01

    Significant advances in forming energetic beams of neutral hydrogen and deuterium atoms have led to a breakthrough in magnetic fusion: neutral beams are now heating plasmas to thermonuclear temperatures, here at LLL and at other laboratories. For example, in our 2XIIB experiment we have injected a 500-A-equivalent current of neutral deuterium atoms at an average energy of 18 keV, producing a dense plasma (10 14 particles/cm 3 ) at thermonuclear energy (14 keV or 160 million kelvins). Currently, LLL and LBL are developing beam energies in the 80- to 120-keV range for our upcoming MFTF experiment, for the TFTR tokamak experiment at Princeton, and for the Doublet III tokamak experiment at General Atomic. These results increase our long-range prospects of producing high-intensity beams of energies in the hundreds or even thousands of kilo-electron-volts, providing us with optimistic extrapolations for realizing power-producing fusion reactors

  5. Ion Rings for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation

  6. Magnetic fusion: Environmental Readiness Document

    International Nuclear Information System (INIS)

    1981-03-01

    Environmental Readiness Documents are prepared periodically to review and evaluate the environmental status of an energy technology during the several phases of development of that technology. Through these documents, the Office of Environment within the Department of Energy provides an independent and objective assessment of the environmental risks and potential impacts associated with the progression of the technology to the next stage of development and with future extensive use of the technology. This Environmental Readiness Document was prepared to assist the Department of Energy in evaluating the readiness of magnetic fusion technology with respect to environmental issues. An effort has been made to identify potential environmental problems that may be encountered based upon current knowledge, proposed and possible new environmental regulations, and the uncertainties inherent in planned environmental research

  7. Generic magnetic fusion reactor cost assessment

    International Nuclear Information System (INIS)

    Sheffield, J.

    1985-01-01

    The Fusion Energy Division of the Oak Ridge National Laboratory discusses ''generic'' magnetic fusion reactors. The author comments on DT burning magnetic fusion reactor models being possibly operational in the 21st century. Representative parameters from D-T reactor studies are given, as well as a shematic diagram of a generic fusion reactor. Values are given for winding pack current density for existing and future superconducting coils. Topics included are the variation of the cost of electricity (COE), the dependence of the COE on the net electric power of the reactor, and COE formula definitions

  8. West European magnetic confinement fusion research

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Hogan, J.T.; Porkolab, M.; Thomassen, K.I.

    1990-01-01

    This report presents a technical assessment and review of the West European program in magnetic confinement fusion by a panel of US scientists and engineers active in fusion research. Findings are based on the scientific and technical literature, on laboratory reports and preprints, and on the personal experiences and collaborations of the panel members. Concerned primarily with developments during the past 10 years, from 1979 to 1989, the report assesses West European fusion research in seven technical areas: tokamak experiments; magnetic confinement technology and engineering; fusion nuclear technology; alternate concepts; theory; fusion computations; and program organization. The main conclusion emerging from the analysis is that West European fusion research has attained a position of leadership in the international fusion program. This distinction reflects in large measure the remarkable achievements of the Joint European Torus (JET). However, West European fusion prominence extends beyond tokamak experimental physics: the program has demonstrated a breadth of skill in fusion science and technology that is not excelled in the international effort. It is expected that the West European primacy in central areas of confinement physics will be maintained or even increased during the early 1990s. The program's maturity and commitment kindle expectations of dramatic West European advances toward the fusion energy goal. For example, achievement of fusion breakeven is expected first in JET, before 1995

  9. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  10. Magnetic-fusion energy and computers

    International Nuclear Information System (INIS)

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups

  11. LiWall Fusion - The New Concept of Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Zakharov

    2011-01-12

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  12. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  13. Superconducting magnet radiation effects in fusion reactors

    International Nuclear Information System (INIS)

    Sawan, M.E.; Walstrom, P.L.

    1986-01-01

    Radiation effects in superconducting magnets of fusion reactors are analyzed and experimental data reviewed. The interaction between the different radiation effects and impact on reactor design is discussed. The need for experimental data with higher irradiation levels is assessed

  14. Magnetic confinement fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Grad, H

    1977-03-01

    Controlled Thermonuclear Fusion offers probably the only relatively clean energy solution with completely inexhaustible fuel and unlimited power capacity. The scientific and technological problem consists in magnetically confining a hot, dense plasma (pressure several to hundreds of atmospheres, temperature 10/sup 8/ degrees or more) for an appreciable fraction of a second. The scientific and mathematical problem is to describe the behavior, such as confinement, stability, flow, compression, heating, energy transfer and diffusion of this medium in the presence of electromagnetic fields just as we now can for air or steam. Some of the extant theory consists of applications, routine or ingenious, of known mathematical structures in the theory of differential equations and in traditional analysis. Other applications of known mathematical structures offer surprises and new insights: the coordination between sub-supersonic and elliptic-hyperbolic is fractured; supersonic propagation goes upstream; etc. Other completely nonstandard mathematical structures with significant theory are being rapidly uncovered (and somewhat less rapidly understood) such as non-elliptic variational equations and new types of weak solutions. It is these new mathematical structures which one should expect to supply the foundation for the next generation's pure mathematics, if history is a guide. Despite the substantial effort over a period of some twenty years, there are still basic and important scintific and mathematical discoveries to be made, lying just beneath the surface.

  15. Reactor potential for magnetized target fusion

    International Nuclear Information System (INIS)

    Dahlin, J.E.

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well

  16. Reactor potential for magnetized target fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, J.E

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well.

  17. Magnetized Target Fusion: Prospects for Low-Cost Fusion Energy

    Science.gov (United States)

    Siemon, Richard E.; Turchi, Peter J.; Barnes, Daniel C.; Degnan, James; Parks, Paul; Ryutov, Dmitri D.; Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    Magnetized Target Fusion (MTF) has attracted renewed interest in recent years because it has the potential to resolve one of the major problems with conventional fusion energy research - the high cost of facilities to do experiments and in general develop practical fusion energy. The requirement for costly facilities can be traced to fundamental constraints. The Lawson condition implies large system size in the case of conventional magnetic confinement, or large heating power in the case of conventional inertial confinement. The MTF approach is to use much higher fuel density than with conventional magnetic confinement (corresponding to megabar pressures), which results in a much-reduced system size to achieve Lawson conditions. Intrinsically the system must be pulsed because the pressures exceed the strength of any known material. To facilitate heating the fuel (or "target") to thermonuclear conditions with a high-power high-intensity source of energy, magnetic fields are used to insulate the high-pressure fuel from material surroundings (thus "magnetized target"). Because of magnetic insulation, the required heating power intensity is reduced by many orders of magnitude compared to conventional inertial fusion, even with relatively poor energy confinement in the magnetic field, such as that characterized by Bohm diffusion. In this paper we show semi-quantitatively why MTF-should allow fusion energy production without costly facilities within the same generally accepted physical constraints used for conventional magnetic and inertial fusion. We also briefly discuss potential applications of this technology ranging from nuclear rockets for space propulsion to a practical commercial energy system. Finally, we report on the exploratory research underway, and the interesting physics issues that arise in the MTF regime of parameters. Experiments at Los Alamos are focused on formation of a suitable plasma target for compression, utilizing the knowledge base for compact

  18. Safety of magnetic fusion facilities: Guidance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities.

  19. Safety of magnetic fusion facilities: Guidance

    International Nuclear Information System (INIS)

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities

  20. Background information and technical basis for assessment of environmental implications of magnetic fusion energy

    International Nuclear Information System (INIS)

    Cannon, J.B.

    1983-08-01

    This report contains background information for assessing the potential environmental implications of fusion-based central electric power stations. It was developed as part of an environmental review of the Magnetic Fusion Energy Program. Transition of the program from demonstration of purely scientific feasibility (breakeven conditions) to exploration of engineering feasibility suggests that formal program environmental review under the National Environmental Policy Act is timely. This report is the principal reference upon which an environmental impact statement on magnetic fusion will be based

  1. LLL magnetic fusion energy program: an overview

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Over the last 12 months, significant progress has been made in the LLL magnetic fusion energy program. In the 2XIIB experiment, a tenfold improvement was achieved in the plasma confinement factor (the product of plasma density and confinement time), pushed plasma temperature and pressure to values never before reached in a magnetic fusion experiment, and demonstrated--for the first time--plasma startup by neutral beam injection. A new laser-pellet startup technique for Baseball IIT has been successfully tested and is now being incorporated in the experiment. Technological improvements have been realized, such as a breakthrough in fabricating niobium-tin conductors for superconducting magnets. These successes, together with complementary progress in theory and reactor design, have led to a proposal to build the MX facility, which could be on the threshold of a mirror fusion reactor

  2. Magnetized Target Fusion At General Fusion: An Overview

    Science.gov (United States)

    Laberge, Michel; O'Shea, Peter; Donaldson, Mike; Delage, Michael; Fusion Team, General

    2017-10-01

    Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma on a timescale faster than the thermal confinement time of the plasma. If near adiabatic compression is achieved, volumetric compression of 350X or more of a 500 eV target plasma would achieve a final plasma temperature exceeding 10 keV. Interesting fusion gains could be achieved provided the compressed plasma has sufficient density and dwell time. General Fusion (GF) is developing a compression system using pneumatic pistons to collapse a cavity formed in liquid metal containing a magnetized plasma target. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although pneumatic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the pneumatic driver front.

  3. Magnetic mirror fusion: status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Post, R.F.

    1980-02-11

    Two improved mirror systems, the tandem mirror (TM) and the field-reversed mirror (FRM) are being intensively studied. The twin practical aims of these studies: to improve the economic prospects for mirror fusion power plants and to reduce the size and/or complexity of such plants relative to earlier approaches to magnetic fusion. While at the present time the program emphasis is still strongly oriented toward answering scientific questions, the emphasis is shifting as the data accumulates and as larger facilities - ones with a heavy technological and engineering orientation - are being prepared. The experimental and theoretical progress that led to the new look in mirror fusion research is briefly reviewed, the new TM and the FRM ideas are outlined, and the projected future course of mirror fusion research is discussed.

  4. Magnetic mirror fusion: status and prospects

    International Nuclear Information System (INIS)

    Post, R.F.

    1980-01-01

    Two improved mirror systems, the tandem mirror (TM) and the field-reversed mirror (FRM) are being intensively studied. The twin practical aims of these studies: to improve the economic prospects for mirror fusion power plants and to reduce the size and/or complexity of such plants relative to earlier approaches to magnetic fusion. While at the present time the program emphasis is still strongly oriented toward answering scientific questions, the emphasis is shifting as the data accumulates and as larger facilities - ones with a heavy technological and engineering orientation - are being prepared. The experimental and theoretical progress that led to the new look in mirror fusion research is briefly reviewed, the new TM and the FRM ideas are outlined, and the projected future course of mirror fusion research is discussed

  5. Magnetized target fusion in cylindrical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Basko, M.M. E-mail: basko@vitep5.itep.ru; Churazov, M.D.; Kemp, A.; Meyer-ter-Vehn, J

    2001-05-21

    General ignition conditions for magnetized target fusion (MTF) in cylindrical geometry are formulated. To attain an MTF ignition state, the deuterium-tritium fuel must be compressed in the regime of self-sustained magnetized implosion (SSMI). We analyze the general conditions and optimal parameter values required for initiating such a regime, and demonstrate that the SSMI regime can already be realized in cylindrical implosions driven by {approx}100 kJ beams of fast ions.

  6. Low-Convergence Magnetized Liner Inertial Fusion

    Science.gov (United States)

    Slutz, Stephen; Vesey, Roger; Sinars, Daniel; Sefkow, Adam

    2013-10-01

    Numerical simulations indicate that pulsed-power driven liner-implosions could produce substantial fusion yields if the deuterium-tritium (DT) fuel is first magnetized and preheated [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. As with all inertial fusion, the implosions could be degraded by the Rayleigh-Taylor instability. Since highly convergent implosions are more susceptible to this instability, we have explored the necessary conditions to obtain significant fusion yield with low-convergence liner-implosions. Such low-convergence implosions can be obtained if the fuel is sufficiently preheated and magnetized. We present analytic and numerical studies of laser plasma heating, which indicate that low convergence implosions should be possible with sufficient laser energy. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contra.

  7. Linear magnetic fusion: summary of Seattle workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    The linear-geometry magnetic confinement concept is among the oldest used in the study of high-temperature plasmas. However, it has generally been discounted as a suitable approach for demonstrating controlled thermonuclear fusion because rapid losses from the plasma column ends necessitate very long devices. Further, the losses and how to overcome them have not yet received parametric experimental study, nor do facilities exist with which such definitive experiments could be performed. Nonetheless, the important positive attribute, simplicity, together with the appearance of several ideas for reducing end losses have provided motivation for continued research on linear magnetic fusion (LMF). These motivations led to the LMF workshop, held in Seattle, March 9--11, 1977, which explored the potential of LMF as an alternate approach to fusion. A broad range of LMF aspects were addressed, including radial and axial losses, stability and equilibrium, heating, technology, and reactor considerations. The conclusions drawn at the workshop are summarized.

  8. Linear magnetic fusion: summary of Seattle workshop

    International Nuclear Information System (INIS)

    1977-12-01

    The linear-geometry magnetic confinement concept is among the oldest used in the study of high-temperature plasmas. However, it has generally been discounted as a suitable approach for demonstrating controlled thermonuclear fusion because rapid losses from the plasma column ends necessitate very long devices. Further, the losses and how to overcome them have not yet received parametric experimental study, nor do facilities exist with which such definitive experiments could be performed. Nonetheless, the important positive attribute, simplicity, together with the appearance of several ideas for reducing end losses have provided motivation for continued research on linear magnetic fusion (LMF). These motivations led to the LMF workshop, held in Seattle, March 9--11, 1977, which explored the potential of LMF as an alternate approach to fusion. A broad range of LMF aspects were addressed, including radial and axial losses, stability and equilibrium, heating, technology, and reactor considerations. The conclusions drawn at the workshop are summarized

  9. Radiation Effects on Superconducting Fusion Magnet Components

    Science.gov (United States)

    Weber, Harald W.

    Nuclear fusion devices based on the magnetic confinement principle heavily rely on the existence and performance of superconducting magnets and have always significantly contributed to advancing superconductor and magnet technology to their limits. In view of the presently ongoing construction of the tokamak device ITER and the stellerator device Wendelstein 7X and their record breaking parameters concerning size, complexity of design, stored energy, amperage, mechanical and magnetic forces, critical current densities and stability requirements, it is deemed timely to review another critical parameter that is practically unique to these devices, namely the radiation response of all magnet components to the lifetime fluence of fast neutrons and gamma rays produced by the fusion reactions of deuterium and tritium. I will review these radiation effects in turn for the currently employed standard "technical" low temperature superconductors NbTi and Nb3Sn, the stabilizing material (Cu) as well as the magnet insulation materials and conclude by discussing the potential of high temperature superconducting materials for future generations of fusion devices, such as DEMO.

  10. Radiation considerations for superconducting fusion magnets

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1977-01-01

    Radiation environment for the magnets is characterized for various conditions expected for tokamak power reactor operation. The radiation levels are translated into radiation effects using available experimental data. The impact of the tradeoffs in radiation shielding and the change in the properties of the superconducting magnets on reactor performance and economics is examined. It is shown that (1) superconducting magnets in fusion reactors will operate at much higher radiation level than was previously anticipated; (2) additional data on radiation damage is required to better accuracy than is presently available in order to accurately quantify the change in properties in the superconducting magnet components; and (3) there is a substantial penalty for increasing (or overestimating) the shielding requirements. A perspective of future tokamak power reactors is presented and questions relating to desirable magnetic field strength and selection of materials for superconducting magnets are briefly examined

  11. Safety issues for superconducting fusion magnets

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Reich, M.; Powell, J.R.

    1978-01-01

    Safety issues for future superconducting fusion magnet systems are examined. It is found that safety and failure experience with existing superconducting magnets is not very applicable to predictions as to the safety and reliability of fusion magnets. Such predictions will have to depend on analysis and judgement for many years to come, rather than on accumulated experience. A number of generic potential structural, thermal-hydraulic, and electrical safety problems are identified and analyzed. Prevention of quenches and non-uniform temperature distributions, if quenches should occur, is of great importance, since such events can trigger processes which lead to magnet damage or failure. Engineered safety features will be necessary for fusion magnets. Two of these, an energy dispersion system and external coil containment, appear capable of reducing the probability of coil disruption to very low levels. However, they do not prevent loss of function accidents which are of economic concern. Elaborate detector, temperature equalization, and energy removal systems will be required to minimize the chances of loss of function accidents

  12. History and status of magnetic fusion research

    International Nuclear Information System (INIS)

    Jacquinot, J.

    2008-01-01

    Ever since the understanding of the basic process which powers the stars has been elucidated, humanity has been dreaming to master controlled fusion for peaceful purposes. Controlled fusion in a steady state regime must use magnetic confinement of a gas (plasma) heated up to 150 millions degrees. Physics and technology involved in such a state are extremely complex and went through many up and down phases. Nevertheless, the overall progress has been spectacular and a significant amount of energy could be produced in a well controlled manner. On this basis, an international organisation of unprecedented magnitude involving 34 countries has started working in Cadarache for the construction of the ITER project. It aims at the scientific demonstration of controlled fusion at the level of 500 MW and a power gain of 10. (author)

  13. Modern magnetic mirrors and their fusion prospects

    International Nuclear Information System (INIS)

    Burdakov, A V; Ivanov, A A; Kruglyakov, E P

    2010-01-01

    This paper reviews the most important findings from recent experiments on modern magnetic mirrors, apart from tandem mirrors and rotating plasma devices. These modern magnetic mirrors are represented by a multiple mirror device GOL-3 and a gas dynamic trap, experiments on which are carried out in Novosibirsk. Both devices are characterized by axial symmetry and improved axial confinement of plasma compared with conventional mirror machines. Recent findings from experiments enable us to more practically consider applications of the gas dynamic trap as a high-flux 14 MeV neutron source for fusion materials testing, and possibly as a driver for fusion-fission hybrids. They also indicate that effective axial plasma confinement in a multiple mirror can be obtained with a smaller plasma density compared with theory and β < 1. This is beneficial from the point of view of the technical realization of a multiple mirror reactor.

  14. Modern magnetic mirrors and their fusion prospects

    Science.gov (United States)

    Burdakov, A. V.; Ivanov, A. A.; Kruglyakov, E. P.

    2010-12-01

    This paper reviews the most important findings from recent experiments on modern magnetic mirrors, apart from tandem mirrors and rotating plasma devices. These modern magnetic mirrors are represented by a multiple mirror device GOL-3 and a gas dynamic trap, experiments on which are carried out in Novosibirsk. Both devices are characterized by axial symmetry and improved axial confinement of plasma compared with conventional mirror machines. Recent findings from experiments enable us to more practically consider applications of the gas dynamic trap as a high-flux 14 MeV neutron source for fusion materials testing, and possibly as a driver for fusion-fission hybrids. They also indicate that effective axial plasma confinement in a multiple mirror can be obtained with a smaller plasma density compared with theory and β < 1. This is beneficial from the point of view of the technical realization of a multiple mirror reactor.

  15. Realizing Technologies for Magnetized Target Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, Glen A. [Los Alamos National Laboratory

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  16. Stress analysis of superconducting magnets for magnetic fusion reactors

    International Nuclear Information System (INIS)

    Akin, J.E.; Gray, W.H.; Baudry, T.V.

    1980-01-01

    Superconducting devices involve several factors that normally are not encountered in the structural analysis of more common systems. Several of these factors ae noted and methods for including them in an analysis are cited. To illustrate the state of the analysis art for superconducting magnets, in magnetic fusion reactors, two specific projects are illustrated. They are the Large Coil Program (LCP) and the Engineering Test Facility

  17. The physics of magnetic fusion energy

    International Nuclear Information System (INIS)

    Roberts, K.V.

    1980-01-01

    A personal account is given covering the period April 1956 until the present day of the challenging theoretical problems posed by the controlled release of energy by magnetic confinement fusion. The need to analyse in detail the working of a plasma apparatus or reactor as a function of time is stressed and the application of such analysis to the various thermonuclear devices which have been considered during this period, is examined. (UK)

  18. Materials program for magnetic fusion energy

    International Nuclear Information System (INIS)

    Zwilsky, K.M.; Cohen, M.M.; Finfgeld, C.R.; Reuther, T.C.

    1978-01-01

    The Magnetic Fusion Reactor Materials Program is currently operating at a level of $7.8M. The program is divided into four technical areas which cover both short and long term problems. These are: Alloy Development for Irradiation Performance, Damage Analysis and Fundamental Studies, Plasma-Materials Interaction, and Special Purpose Materials. A description of the program planning process, the continuing management structure, and the resulting documents is presented

  19. Magnetic mirror fusion systems: Characteristics and distinctive features

    International Nuclear Information System (INIS)

    Post, R.F.

    1987-01-01

    A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power

  20. Pressure measurements in magnetic-fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration.

  1. Pressure measurements in magnetic-fusion devices

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration

  2. Fusion power by magnetic confinement - program plan

    International Nuclear Information System (INIS)

    Dean, S.O.

    1978-01-01

    This Fusion Power Program Plan treats the technical, schedular and budgetary projections for the development of fusion power using magnetic confinement. It was prepared on the basis of current technical status and program perspective. A broad overview of the probable facilities requirements and optional possible technical paths to a demonstration reactor is presented, as well as a more detailed plan for the R and D program for the next five years. The 'plan' is not a roadmap to be followed blindly to the end goal. Rather it is a tool of management, a dynamic and living document which will change and evolve as scientific, engineering/technology and commercial/economic/environmental analyses and progress proceeds. The use of plans such as this one in technically complex development programs requires judgment and flexibility as new insights into the nature of the task evolve. The presently-established program goal of the fusion program is to develop and demonstrate pure fusion central electric power stations for commercial applications

  3. Magnetic fusion energy research and development

    International Nuclear Information System (INIS)

    1984-02-01

    This report on the Department of Energy's Magnetic Fusion Program was requested by the Secretary of Energy. The Panel finds that substantial progress has been made in the three years since the previous ERAB review, although budget constraints have precluded the engineering initiatives recommended in that review and authorized in the Magnetic Fusion Energy Engineering Act of 1980 (the Act). Recognizing that the goals of the Act cannot now be met, the Panel recommends that the engineering phase be further postponed in favor of a strong base program in physics and technology, including immediate commitment to a major new tokamak-based device for the investigation of an ignited long-pulse plasma designated in this report as the Burning Core Experiment or BCX. Resources to design such a device could be obtained from within the existing program by redirecting work toward to BCX. At this time it is not possible to assess accurately the potential economic viability of fusion power in the future. The Panel strongly recommends expansion of international collaboration, particularly the joint construction and operation of major new unique facilities, such as the proposed BCX

  4. Magnetic Fusion Energy Program of India

    International Nuclear Information System (INIS)

    Sen, Abhijit

    2013-01-01

    The magnetic fusion energy program of India started in the early eighties with the construction of an indigenous tokamak device ADITYA at the Institute for Plasma Research in Gandhinagar. The initial thrust was on fundamental studies related to plasma instabilities and turbulence phenomena but there was also a significant emphasis on technology development in the areas of magnetics, high vacuum, radio-frequency heating and neutral beam technology. The program took a major leap forward in the late nineties with the decision to build a state-of-the-art superconducting tokamak (SST-1) that catapulted India into the mainstream of the international tokamak research effort. The SST experience and the associated technological and human resource development has now earned the country a place in the ITER collaboration as an equal partner with other major nations. Keeping in mind the rapidly growing and enormous energy needs of the future the program has also identified and launched key development projects that can lead us to a DEMO reactor and eventually a Fusion Power Plant in a systematic manner. I will give a brief overview of the early origins, the present status and some of the highlights of the future road map of the Indian Fusion Program. (author)

  5. Comments on open-ended magnetic systems for fusion

    International Nuclear Information System (INIS)

    Post, R.F.

    1990-01-01

    Differentiating characteristics of magnetic confinement systems having externally generated magnetic fields that are ''open'' are listed and discussed in the light of their several potential advantages for fusion power systems. It is pointed out that at this stage of fusion research ''high-Q'' (as deduced from long energy confinement times) is not necessarily the most relevant criterion by which to judge the potential of alternate fusion approaches for the economic generation of fusion power. An example is given of a hypothetical open-geometry fusion power system where low-Q operation is essential to meeting one of its main objectives (low neutron power flux)

  6. Comments on open-ended magnetic systems for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Post, R.F.

    1990-09-24

    Differentiating characteristics of magnetic confinement systems having externally generated magnetic fields that are open'' are listed and discussed in the light of their several potential advantages for fusion power systems. It is pointed out that at this stage of fusion research high-Q'' (as deduced from long energy confinement times) is not necessarily the most relevant criterion by which to judge the potential of alternate fusion approaches for the economic generation of fusion power. An example is given of a hypothetical open-geometry fusion power system where low-Q operation is essential to meeting one of its main objectives (low neutron power flux).

  7. Fusion

    International Nuclear Information System (INIS)

    Naraghi, M.

    1976-01-01

    It is proposed that Iran as a world's potential supplier of fossile fuel should participate in fusion research and gain experience in this new field. Fusion, as an ultimate source of energy in future, and the problems concerned with the fusion reactors are reviewed. Furthermore; plasma heating, magnetic and inertial confinement in a fusion reactor are discussed. A brief description of tokamak, theta pinch and magnetic mirror reactors is also included

  8. LLL magnetic fusion research: the first 25 years

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    From its inception, the Laboratory has supported research directed at tapping controlled fusion. Our magnetic fusion energy program--now one of the major elements of the national fusion energy research effort--dates back to the Laboratory's founding in 1952. This article reviews the program's beginnings, progress, and present status in terms of its ultimate goal: to demonstrate a practical and economical means of generating power from controlled fusion reactions

  9. Fusion Energy Advisory Committee report on program strategy for US magnetic fusion energy research

    International Nuclear Information System (INIS)

    Conn, R.W.; Berkner, K.H.; Culler, F.L.; Davidson, R.C.; Dreyfus, D.A.; Holdren, J.P.; McCrory, R.L.; Parker, R.R.; Rosenbluth, M.N.; Siemon, R.E.; Staudhammer, P.; Weitzner, H.

    1992-09-01

    The Fusion Energy Advisory Committee (FEAC) was charged by the Department of Energy (DOE) with developing recommendations on how best to pursue the goal of a practical magnetic fusion reactor in the context of several budget scenarios covering the period FY 1994-FY 1998. Four budget scenarios were examined, each anchored to the FY 1993 figure of $337.9 million for fusion energy (less $9 million for inertial fusion energy which is not examined here)

  10. Role of supercomputers in magnetic fusion and energy research programs

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained

  11. Computing for magnetic fusion energy research: The next five years

    International Nuclear Information System (INIS)

    Mann, L.; Glasser, A.; Sauthoff, N.

    1991-01-01

    This report considers computing needs in magnetic fusion for the next five years. It is the result of two and a half years of effort by representatives of all aspects of the magnetic fusion community. The report also factors in the results of a survey that was distributed to the laboratories and universities that support fusion. There are four areas of computing support discussed: theory, experiment, engineering, and systems

  12. Software problems in magnetic fusion research

    International Nuclear Information System (INIS)

    Gruber, R.

    1982-01-01

    The main world effort in magnetic fusion research involves studying the plasma in a Tokamak device. Four large Tokamaks are under construction (TFTR in USA, JET in Europe, T15 in USSR and JT60 in Japan). To understand the physical phenomena that occur in these costly devices, it is generally necessary to carry out extensive numerical calculations. These computer simulations make use of sophisticated numerical methods and demand high power computers. As a consequence they represent a substantial investment. To reduce software costs, the computer codes are more and more often exhanged among scientists. Standardization (STANDARD FORTRAN, OLYMPUS system) and good documentation (CPC program library) are proposed to make codes exportable. Centralized computing centers would also help in the exchange of codes and ease communication between the staff at different laboratories. (orig.)

  13. General principles of magnetic fusion confinement

    International Nuclear Information System (INIS)

    Hogan, J.T.

    1980-01-01

    A few of the areas are described in which there is close interaction between atomic/molecular (A and M) and magnetic fusion physics. The comparisons between predictions of neoclassical transport theory and experiment depend on knowledge of ionization and recombination rate coefficients. Modeling of divertor/scrapeoff plasmas requires better low energy charge exchange cross sections for H + A/sup n+/ collisions. The range of validity of neutral beam trapping cross sections must be broadened, both to encompass the energies typical of present injection experiments and to deal with the problem of prompt trapping of highly excited beam atoms at high energy. Plasma fueling models present certain anomalies that could be resolved by calculation and measurement of low energy (<1 keV) charge exchange cross sections

  14. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  15. Compact magnetic confinement fusion: Spherical torus and compact torus

    Directory of Open Access Journals (Sweden)

    Zhe Gao

    2016-05-01

    Full Text Available The spherical torus (ST and compact torus (CT are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.

  16. Progress in fusion technology in the U.S. magnetic fusion program

    International Nuclear Information System (INIS)

    Dowling, R.J.; Beard, D.S.; Haas, G.M.; Stone, P.M.; George, T.V.

    1987-01-01

    In this paper the authors discuss the major technological achievements that have taken place during the past few years in the U.S. magnetic fusion program which have contributed to the global efforts. The goal has been to establish the scientific and technological base required for fusion energy. To reach this goal the fusion RandD program is focused on four key technical issues: determine the optimum configuration of magnetic confinement systems; determine the properties of burning plasmas; develop materials for fusion systems; and establish the nuclear technology of fusion systems. The objective of the fusion technology efforts has been to develop advanced technologies and provide the necessary support for research of these four issues. This support is provided in a variety of areas such as: high vacuum technology, large magnetic field generation by superconducting and copper coils, high voltage and high current power supplies, electromagnetic wave and particle beam heating systems, plasma fueling, tritium breeding and handling, remote maintenance, energy recovery. The U.S. Fusion Technology Program provides major support or has the primary responsibility in each of the four key technical issues of fusion, as described in the Magnetic Fusion Program Plan of February 1985. This paper has summarized the Technology Program in terms of its activities and progress since the Proceedings of the SOFT Conference in 1984

  17. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  18. Magnetic fusion energy and computers: the role of computing in magnetic fusion energy research and development

    International Nuclear Information System (INIS)

    This report examines the role of computing in the Department of Energy magnetic confinement fusion program. The present status of the MFECC and its associated network is described. The third part of this report examines the role of computer models in the main elements of the fusion program and discusses their dependence on the most advanced scientific computers. A review of requirements at the National MFE Computer Center was conducted in the spring of 1976. The results of this review led to the procurement of the CRAY 1, the most advanced scientific computer available, in the spring of 1978. The utilization of this computer in the MFE program has been very successful and is also described in the third part of the report. A new study of computer requirements for the MFE program was conducted during the spring of 1979 and the results of this analysis are presented in the forth part of this report

  19. Magnetic fusion energy and computers: the role of computing in magnetic fusion energy research and development

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    This report examines the role of computing in the Department of Energy magnetic confinement fusion program. The present status of the MFECC and its associated network is described. The third part of this report examines the role of computer models in the main elements of the fusion program and discusses their dependence on the most advanced scientific computers. A review of requirements at the National MFE Computer Center was conducted in the spring of 1976. The results of this review led to the procurement of the CRAY 1, the most advanced scientific computer available, in the spring of 1978. The utilization of this computer in the MFE program has been very successful and is also described in the third part of the report. A new study of computer requirements for the MFE program was conducted during the spring of 1979 and the results of this analysis are presented in the forth part of this report.

  20. Overview of the Magnetic Fusion Energy Devlopment and Technology Program

    International Nuclear Information System (INIS)

    1978-03-01

    This publication gives a comprehensive introduction to controlled fusion research. Topics covered in the discussion include the following: (1) fusion system engineering and advanced design, (2) plasma engineering, (3) magnetic systems, (4) materials, (5) environment and safety, and (6) alternate energy applications

  1. Preliminary analysis of patent trends for magnetic fusion technology

    International Nuclear Information System (INIS)

    Levine, L.O.; Ashton, W.B.; Campbell, R.S.

    1984-02-01

    This study presents a preliminary analysis of development trends in magnetic fusion technology based on data from US patents. The research is limited to identification and description of general patent activity and ownership characteristics for 373 patents. The results suggest that more detailed studies of fusion patents could provide useful R and D planning information

  2. Introduction to the controlled nuclear fusion (magnetic containment systems)

    International Nuclear Information System (INIS)

    Cabrera, J.A.; Guasp, J.; Martin, R.

    1975-01-01

    The magnetic containment systems, their more important features, and their potentiality to became thermonuclear reactors is described. The work is based upon the first part of a set of lectures dedicated to Plasma and Fusion Physics. (author)

  3. Axial magnetic field injection in magnetized liner inertial fusion

    Science.gov (United States)

    Gourdain, P.-A.; Adams, M. B.; Davies, J. R.; Seyler, C. E.

    2017-10-01

    MagLIF is a fusion concept using a Z-pinch implosion to reach thermonuclear fusion. In current experiments, the implosion is driven by the Z-machine using 19 MA of electrical current with a rise time of 100 ns. MagLIF requires an initial axial magnetic field of 30 T to reduce heat losses to the liner wall during compression and to confine alpha particles during fusion burn. This field is generated well before the current ramp starts and needs to penetrate the transmission lines of the pulsed-power generator, as well as the liner itself. Consequently, the axial field rise time must exceed hundreds of microseconds. Any coil capable of being submitted to such a field for that length of time is inevitably bulky. The space required to fit the coil near the liner, increases the inductance of the load. In turn, the total current delivered to the load decreases since the voltage is limited by driver design. Yet, the large amount of current provided by the Z-machine can be used to produce the required 30 T field by tilting the return current posts surrounding the liner, eliminating the need for a separate coil. However, the problem now is the field penetration time, across the liner wall. This paper discusses why skin effect arguments do not hold in the presence of resistivity gradients. Numerical simulations show that fields larger than 30 T can diffuse across the liner wall in less than 60 ns, demonstrating that external coils can be replaced by return current posts with optimal helicity.

  4. Radiation damage of organic composite material for fusion magnet

    International Nuclear Information System (INIS)

    Nishijima, S.; Okada, T.

    1991-01-01

    Fusion superconducting magnets are 'series machines' in the sense that the complete magnet may decrease in overall performance when even one component does not deliver the expected performance. Such magnets are often operated under severe conditions, such as radiation environments and those materials which are most prone to damage under such radiation environments demand particular attention. The component most sensitive to radiation damage in the fusion magnet is the organic composite material used for insulation, usually glass fibre reinforced plastic (GFRP). Radiation resistant GFRPs have been developed and these will be discussed in this work, together with other aspects of radiation damage of organic composite materials. (author)

  5. Safety of magnetic fusion facilities: Volume 2, Guidance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This document provides guidance for the implementation of the requirements identified in Vol. 1 of this Standard. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While Vol. 1 is generally applicable in that requirements there apply to a wide range of fusion facilities, this volume is concerned mainly with large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This volume is oriented toward regulation in the Department of Energy (DOE) environment.

  6. Trends and developments in magnetic confinement fusion reactor concepts

    International Nuclear Information System (INIS)

    Baker, C.C.; Carlson, G.A.; Krakowski, R.A.

    1981-01-01

    An overview is presented of recent design trends and developments in reactor concepts for magnetic confinement fusion. The paper emphasizes the engineering and technology considerations of commercial fusion reactor concepts. Emphasis is placed on reactors that operate on the deuterium/tritium/lithium fuel cycle. Recent developments in tokamak, mirror, and Elmo Bumpy Torus reactor concepts are described, as well as a survey of recent developments on a wide variety of alternate magnetic fusion reactor concepts. The paper emphasizes recent developments of these concepts within the last two to three years

  7. Safety of magnetic fusion facilities: Volume 2, Guidance

    International Nuclear Information System (INIS)

    1995-01-01

    This document provides guidance for the implementation of the requirements identified in Vol. 1 of this Standard. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While Vol. 1 is generally applicable in that requirements there apply to a wide range of fusion facilities, this volume is concerned mainly with large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This volume is oriented toward regulation in the Department of Energy (DOE) environment

  8. Technology spin-offs from the magnetic fusion energy program

    International Nuclear Information System (INIS)

    1982-05-01

    A description is given of 138 possible spin-offs from the magnetic fusion program. The spin-offs cover the following areas: (1) superconducting magnets, (2) materials technology, (3) vacuum systems, (4) high frequency and high power rf, (5) electronics, (6) plasma diagnostics, (7) computers, and (8) particle beams

  9. Fusion Plasma Theory: Task 1, Magnetic confinement Fusion Plasma Theory

    International Nuclear Information System (INIS)

    Callen, J.D.

    1993-01-01

    The research performed under this grant during the current year has concentrated on few tokamak plasma confinement issues: applications of our new Chapman-Enskog-like approach for developing hybrid fluid/kinetic descriptions of tokamak plasmas; multi-faceted studies as part of our development of a new interacting island paradigm for the tokamak equilibrium'' and transport; investigations of the resolution power of BES and ECE diagnostics for measuring core plasma fluctuations; and studies of net transport in the presence of fluctuating surfaces. Recent progress and publications in these areas, and in the management of the NERSC node and the fusion theory workstations are summarized briefly in this report

  10. Impact of high magnetic fields on fusion systems

    International Nuclear Information System (INIS)

    Cohn, D.R.

    1989-01-01

    High field concepts can provide significant advantages for the size and performance of tokamak fusion reactors. These devices would make use of advanced superconductors and structural materials. Use of high plasma aspect ratios, super high field operation, and strong ohmic heating are promising new directions. The tokamak device has been demonstrated to be the most effective magnetic confinement machine for obtaining the burning plasma conditions required for a fusion reactor. Analysis of present experimental results together with basic theoretical considerations indicates that high magnetic fields can have a large beneficial impact on reactor performance and cost. At the same time superconducting magnet technology has been steadily advancing. Concepts that maximize the beneficial impacts of high fields and make use of advanced superconducting magnet technology could thus have a profound impact on the development of fusion systems. In this paper the authors discuss this approach and describe some promising directions

  11. Advanced materials: The key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural material for the first wail and blanket (FWB), (2) plasma-facing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications

  12. Advanced materials - the key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural materials for the first wall and blanket (FWB), (2) plasmafacing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications. (author)

  13. Magnetic and inertial fusion status and development plans

    International Nuclear Information System (INIS)

    Correll, D.; Storm, E.

    1987-01-01

    Controlled fusion, pursued by investigators in both the magnetic and inertial confinement research programs, continues to be a strong candidate as an intrinsically safe and virtually inexhaustible long-term energy source. We describe the status of magnetic and inertial confinement fusion in terms of the accomplishments made by the research programs for each concept. The improvement in plasma parameters (most frequently discussed in terms of the Tn tau product of ion temperature, T, density, n, and confinement time, tau) can be linked with the construction and operation of experimental facilities. The scientific progress exhibited by larger scale fusion experiments within the US, such as Princeton Plasma Physics Laboratory's Fusion Test Reactor for magnetic studies and Lawrence Livermore National Laboratory's Nova laser for inertial studies, has been optimized by the theoretical advances in plasma and computational physics. Both TFTR and Nova have exhibited ion temperatures in excess of 10 keV at confinement parameters of n tau near 10 13 cm -3 . sec. At slightly lower temperatures (near a few keV), the value of n tau has exceeded 10 14 cm -3 . sec in both devices. Near-term development plans in fusion research include experiments within the US, Europe, and Japan to improve the plasma performance to reach conditions where the rate of fusion energy production equals or exceeds the heating power incident upon the plasma. 9 refs., 7 figs

  14. Improved magnetic resonance myelography using image fusion

    International Nuclear Information System (INIS)

    Eberhardt, K.; Ganslandt, O.; Stadlbauer, A.; Landesklinikum St. Poelten

    2013-01-01

    To demonstrate that the disadvantage of missing anatomical information in heavily T2-weighted MR myelography images can be eliminated by image fusion and phase encoding in the coronal direction of the source images, resulting in MR myelography images comparable to the gold standard, i. e., post-myelography CT. This study included 110 patients suffering from extradural pathologies of the cervical and lumbar spine. All patients were investigated using 3D MR myelography and post-myelography CT. The MRI data were post-processed using image fusion and reconstruction algorithms and were compared to the corresponding images of post-myelography CT. Our approach for visualization (3D MR myelography) was able to depict intradural structures in high spatial resolution and without artifacts. The results of our visualization approach were comparable to the gold standard - post-myelography CT. Anatomical correlation was reached by image fusion of different MR data sets. The required post-processing steps were performed quickly and were available on a commercial workstation. Image fusion of different MR data sets allows for visualization of 3D data sets with enhanced quality. The results for the visualization of MR myelography in particular are comparable to conventional myelography and post-myelography CT. The missing anatomical information in heavily T2-weighted MR myelography images can be compensated by image fusion with conventional MRI. (orig.)

  15. Diagnosing Magnetized Liner Inertial Fusion experiments on Z

    Science.gov (United States)

    Hansen, Stephanie

    2014-10-01

    Recent Magnetized Liner Inertial Fusion (MagLIF) experiments performed at Sandia's Z facility have demonstrated DD fusion neutron yields above 1012 and effective confinement of charged fusion products by the flux-compressed magnetic field signaled by >1010 secondary DT neutrons. The neutron diagnostics are complemented by an extensive suite of visible and x-ray diagnostics providing power, imaging, and spectroscopic data. This talk will present analyses of emission and absorption features from the imploding and stagnating plasma that provide a consistent picture of the magnetic drive and the temperatures, densities, mix, and gradients in the fuel and liner at stagnation. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  16. Tandem mirror magnet system for the mirror fusion test facility

    International Nuclear Information System (INIS)

    Bulmer, R.H.; Van Sant, J.H.

    1980-01-01

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper

  17. Varian's involvement with magnetic fusion energy research

    International Nuclear Information System (INIS)

    Staprans, A.

    1995-01-01

    This article provides an overview of the history, accomplishments, and spinoffs of over two decades of interaction between the U.S. Fusion Energy Research Program's plasma heating scientists and Varian's Electron Device organization; an interaction which has been mutually benficial and, as with other U.S., Industry interaction with the U.S. Fusion Research Program, has produced valuable benfits to the country's economy in the form of spinoffs which have had positive commercial and economic benfits. Varian has had two major R ampersand D programs for the U.S. Fusion Energy Research Program: one the gyrotron development program, emerging from work to study the feasibility of a 200 kW CW 28 GHz gyrotron for the EBT program; and the other the development of super power tetrodes for Ion Cyclotron Power Sources

  18. Computational problems in magnetic fusion research

    International Nuclear Information System (INIS)

    Killeen, J.

    1981-01-01

    Numerical calculations have had an important role in fusion research since its beginning, but the application of computers to plasma physics has advanced rapidly in the last few years. One reason for this is the increasing sophistication of the mathematical models of plasma behavior, and another is the increased speed and memory of the computers which made it reasonable to consider numerical simulation of fusion devices. The behavior of a plasma is simulated by a variety of numerical models. Some models used for short times give detailed knowledge of the plasma on a microscopic scale, while other models used for much longer times compute macroscopic properties of the plasma dynamics. The computer models used in fusion research are surveyed. One of the most active areas of research is in time-dependent, three-dimensional, resistive magnetohydrodynamic models. These codes are reviewed briefly

  19. Structural aspects of superconducting fusion magnets

    International Nuclear Information System (INIS)

    Reich, M.; Lehner, J.; Powell, J.

    1977-01-01

    Some methods for studying various static, dynamic, elastic-plastic, and fracture mechanics problems of superconducting magnets are described. Sample solutions are given for the UWMAK-I magnet. Finite element calculations were used

  20. Engineering computations at the national magnetic fusion energy computer center

    International Nuclear Information System (INIS)

    Murty, S.

    1983-01-01

    The National Magnetic Fusion Energy Computer Center (NMFECC) was established by the U.S. Department of Energy's Division of Magnetic Fusion Energy (MFE). The NMFECC headquarters is located at Lawrence Livermore National Laboratory. Its purpose is to apply large-scale computational technology and computing techniques to the problems of controlled thermonuclear research. In addition to providing cost effective computing services, the NMFECC also maintains a large collection of computer codes in mathematics, physics, and engineering that is shared by the entire MFE research community. This review provides a broad perspective of the NMFECC, and a list of available codes at the NMFECC for engineering computations is given

  1. Technological requisites of the magnetic fusion energy programme

    International Nuclear Information System (INIS)

    Cooper, W.A.

    1983-01-01

    An integral part of magnetic fusion energy research is the development of the technologies necessary for the confinement and heating of reactor-level plasmas. Heating systems based on injecting beams of energetic neutral particles or radio-frequency waves (or both) will be required to heat plasmas to the temperatures at which fusion is self-sustaining. These systems may be used also to drive plasma currents. The magnet systems required to confine reactor-size plasmas rely on the development of effective superconductors. Safety and tritium handling concerns become important considerations in designing reactor concepts

  2. Technological requisites of the magnetic fusion energy programme

    International Nuclear Information System (INIS)

    Cooper, W.A.

    1983-01-01

    An integral part of magnetic fusion energy research is the development of the technologies necessary for the confinement and heating of reactor-level plasmas. Heating systems based on energetic neutral beam particle injection or radio frequency waves (or both) will be required to heat plasmas to the temperatures at which fusion is self-sustaining. These systems may be used also to drive plasma currents. The magnet systems required to confine reactor-sized plasmas rely on the development of effective superconductors. Issues associated with safety and tritium handling concerns become important considerations in designing reactor concepts

  3. Safety of superconducting fusion magnets: twelve problem areas

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L.R.

    1979-05-01

    Twelve problem areas of superconducting magnets for fusion reaction are described. These are: Quench Detection and Energy Dump, Stationary Normal Region of Conductor, Current Leads, Electrical Arcing, Electrical Shorts, Conductor Joints, Forces from Unequal Currents, Eddy Current Effects, Cryostat Rupture, Vacuum Failure, Fringing Field and Instrumentation for Safety. Each is described under the five categories: Identification and Definition, Possible Safety Effects, Current Practice, Adequacy of Current Practice for Fusion Magnets and Areas Requiring Further Analytical and Experimental Study. Priorities among these areas are suggested; application is made to the Large Coil Project at Oak Ridge National Laboratory.

  4. Fusion: A necessary component of US energy policy

    International Nuclear Information System (INIS)

    Correll, D.L. Jr.

    1989-01-01

    US energy policy must ensure that its security, its economy, or its world leadership in technology development are not compromised by failure to meet the nation's electrical energy needs. Increased concerns over the greenhouse effect from fossil-fuel combustion mean that US energy policy must consider how electrical energy dependence on oil and coal can be lessened by conservation, renewable energy sources, and advanced energy options (nuclear fission, solar energy, and thermonuclear fusion). In determining how US energy policy is to respond to these issues, it will be necessary to consider what role each of the three advanced energy options might play, and to determine how these options can complement one another. This paper reviews and comments on the principal US studies and legislation that have addressed fusion since 1980, and then suggests a research, development, and demonstration program that is consistent with the conclusions of those prior authorities and that will allow us to determine how fusion technology can fit into a US energy policy that takes a balanced, long term view of US needs. 17 refs

  5. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  6. Laser-driven magnetized liner inertial fusion on OMEGA

    Science.gov (United States)

    Barnak, D. H.; Davies, J. R.; Betti, R.; Bonino, M. J.; Campbell, E. M.; Glebov, V. Yu.; Harding, D. R.; Knauer, J. P.; Regan, S. P.; Sefkow, A. B.; Harvey-Thompson, A. J.; Peterson, K. J.; Sinars, D. B.; Slutz, S. A.; Weis, M. R.; Chang, P.-Y.

    2017-05-01

    Magneto-inertial fusion (MIF) combines the compression of fusion fuel, a hallmark of inertial confinement fusion (ICF), with strongly magnetized plasmas that suppress electron heat losses, a hallmark of magnetic fusion. It can reduce the traditional velocity, pressure, and convergence ratio requirements of ICF. The magnetized liner inertial fusion (MagLIF) concept being studied at the Z Pulsed-Power Facility is a key target concept in the U.S. ICF Program. Laser-driven MagLIF is being developed on OMEGA to test the scaling of MagLIF over a range of absorbed energy of the order of 1 kJ on OMEGA to 500 kJ on Z. It is also valuable as a platform for studying the key physics of MIF. An energy-scaled point design has been developed for OMEGA that is roughly 10 × smaller in linear dimensions than Z MagLIF targets. A 0.6-mm-outer-diameter plastic cylinder filled with 2.4 mg/cm3 of D2 is placed in a ˜10-T axial magnetic field, generated by a Magneto-inertial fusion electrical discharge system, the cylinder is compressed by 40 OMEGA beams, and the gas fill is preheated by a single OMEGA beam propagating along the axis. Preheating to >100 eV and axially uniform compression over 0.7 mm have been demonstrated, separately, in a series of preparatory experiments that meet our initial expectations. The preliminary results from the first integrated experiments combining magnetization, compression, and preheat demonstrating a roughly 2 x increase in the neutron yield will be reported here for the first time.

  7. Stored energy in fusion magnet materials irradiated at low temperatures

    International Nuclear Information System (INIS)

    Chaplin, R.L.; Kerchner, H.R.; Klabunde, C.E.; Coltman, R.R.

    1989-08-01

    During the power cycle of a fusion reactor, the radiation reaching the superconducting magnet system will produce an accumulation of immobile defects in the magnet materials. During a subsequent warm-up cycle of the magnet system, the defects will become mobile and interact to produce new defect configurations as well as some mutual defect annihilations which generate heat-the release of stored energy. This report presents a brief qualitative discussion of the mechanisms for the production and release of stored energy in irradiated materials, a theoretical analysis of the thermal response of irradiated materials, theoretical analysis of the thermal response of irradiated materials during warm-up, and a discussion of the possible impact of stored energy release on fusion magnet operation 20 refs

  8. Cost assessment of a generic magnetic fusion reactor

    International Nuclear Information System (INIS)

    Sheffield, J.; Dory, R.A.; Cohn, S.M.; Delene, J.G.; Parsly, L.F.; Ashby, D.E.T.F.; Reiersen, W.T.

    1986-03-01

    A generic reactor model is used to examine the economic viability of generating electricity by magnetic fusion. The simple model uses components that are representative of those used in previous reactor studies of deuterium-tritium-burning tokamaks, stellarators, bumpy tori, reversed-field pinches (RFPs), and tandem mirrors. Conservative costing assumptions are made. The generic reactor is not a tokamak; rather, it is intended to emphasize what is common to all magnetic fusion rectors. The reactor uses a superconducting toroidal coil set to produce the dominant magnetic field. To this extent, it is not as good an approximation to systems such as the RFP in which the main field is produced by a plasma current. The main output of the study is the cost of electricity as a function of the weight and size of the fusion core - blanket, shield, structure, and coils. The model shows that a 1200-MW(e) power plant with a fusion core weight of about 10,000 tonnes should be competitive in the future with fission and fossil plants. Studies of the sensitivity of the model to variations in the assumptions show that this result is not sensitively dependent on any given assumption. Of particular importance is the result that a fusion reactor of this scale may be realized with only moderate advances in physics and technology capabilities

  9. Magnet Design Considerations for Fusion Nuclear Science Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kessel, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States) Fusion Technology Institute; Titus, P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  10. Magnetic and inertial confinement fusion - an overview

    International Nuclear Information System (INIS)

    Murtaza, G.

    1993-01-01

    This paper describes the status of ICF which output is given in terms of number of emitted neutrons and fusion energy as a function of the estimated input energy from the implosion driver. Results from the highest energy laser experiments are summarised. The theoretical targets and the proposed upgrades of NOVA, GEKKO and OMEGA are also shown. The promised ICF paradise will therefore be approached through a process of interpolation between two known extremes. The objectives of this experiment was to produce more than one MW of fusion power in a controlled way, to demonstrate the technology related to tritium usage tritium injection, its tracking, monitoring/recovery and to establish safe procedures for handling tritium in compliance with the regulatory requirements. (A.B)

  11. Coherence imaging spectro-polarimetry for magnetic fusion diagnostics

    International Nuclear Information System (INIS)

    Howard, J

    2010-01-01

    This paper presents an overview of developments in imaging spectro-polarimetry for magnetic fusion diagnostics. Using various multiplexing strategies, it is possible to construct optical polarization interferometers that deliver images of underlying physical parameters such as flow speed, temperature (Doppler effect) or magnetic pitch angle (motional Stark and Zeeman effects). This paper also describes and presents first results for a new spatial heterodyne interferometric system used for both Doppler and polarization spectroscopy.

  12. Stellarator-type magnetic system for a research fusion reactor

    International Nuclear Information System (INIS)

    Kotenko, V.G.; Romanov, S.S.; Bjesjedyin, M.T.

    2001-01-01

    To create the plasma confinement region in a research fusion reactor (RFR),the possibility of using a toroidal magnetic field formed in the l=2,m=1 torsatron along with a reversed additional longitudinal magnetic field is shown.The principal difference of RFR from existing designs is greater distance between the plasma confinement region and the 1st wall, r p1 /r w <<1

  13. Superconducting (radiation hardened) magnets for mirror fusion devices

    International Nuclear Information System (INIS)

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-01-01

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10 10 to 10 11 rads, while magnet stability must be retained after the copper has been exposed to fluence above 10 19 neutrons/cm 2

  14. Compression of magnetized target in the magneto-inertial fusion

    Science.gov (United States)

    Kuzenov, V. V.

    2017-12-01

    This paper presents a mathematical model, numerical method and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion. The computer simulation of the compression process of magnetized cylindrical target by high-power laser pulse is presented.

  15. Safety of superconducting fusion magnets: twelve problem areas

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L. R.

    1979-01-01

    Twelve problem areas of superconducting magnets for fusion reaction are described. These are: Quench Detection and Energy Dump, Stationary Normal Region of Conductor, Current Leads, Electrical Arcing, Electrical Shorts, Conductor Joints, Forces from Unequal Currents, Eddy Current Effects, Cryostat Rupture, Vacuum Failure, Fringing Field and Instrumentation for Safety. Priorities among these areas are suggested.

  16. Mirror Fusion Test Facility: Superconducting magnet system cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    At the request of Victor Karpenko, Project manager for LLL`s Mirror Fusion Test Facility, EG&G has prepared this independent cost analysis for the proposed MFTF Superconducting Magnet System. The analysis has attempted to show sufficient detail to provide adequate definition for a basis of estimating costs.

  17. Role of magnetic resonance urography in pediatric renal fusion anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Sherwin S. [Children' s Mercy Hospital, Department of Radiology, Kansas City, MO (United States); Ntoulia, Aikaterini; Khrichenko, Dmitry [The Children' s Hospital of Philadelphia, Division of Body Imaging, Department of Radiology, Philadelphia, PA (United States); Back, Susan J.; Darge, Kassa [The Children' s Hospital of Philadelphia, Division of Body Imaging, Department of Radiology, Philadelphia, PA (United States); University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); Tasian, Gregory E. [University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA (United States); The Children' s Hospital of Philadelphia, Division of Urology, Department of Surgery, Philadelphia, PA (United States); Dillman, Jonathan R. [Cincinnati Children' s Hospital Medical Center, Division of Thoracoabdominal Imaging, Department of Radiology, Cincinnati, OH (United States)

    2017-12-15

    Renal fusion is on a spectrum of congenital abnormalities that occur due to disruption of the migration process of the embryonic kidneys from the pelvis to the retroperitoneal renal fossae. Clinically, renal fusion anomalies are often found incidentally and associated with increased risk for complications, such as urinary tract obstruction, infection and urolithiasis. These anomalies are most commonly imaged using ultrasound for anatomical definition and less frequently using renal scintigraphy to quantify differential renal function and assess urinary tract drainage. Functional magnetic resonance urography (fMRU) is an advanced imaging technique that combines the excellent soft-tissue contrast of conventional magnetic resonance (MR) images with the quantitative assessment based on contrast medium uptake and excretion kinetics to provide information on renal function and drainage. fMRU has been shown to be clinically useful in evaluating a number of urological conditions. A highly sensitive and radiation-free imaging modality, fMRU can provide detailed morphological and functional information that can facilitate conservative and/or surgical management of children with renal fusion anomalies. This paper reviews the embryological basis of the different types of renal fusion anomalies, their imaging appearances at fMRU, complications associated with fusion anomalies, and the important role of fMRU in diagnosing and managing children with these anomalies. (orig.)

  18. Centralized supercomputer support for magnetic fusion energy research

    International Nuclear Information System (INIS)

    Fuss, D.; Tull, G.G.

    1984-01-01

    High-speed computers with large memories are vital to magnetic fusion energy research. Magnetohydrodynamic (MHD), transport, equilibrium, Vlasov, particle, and Fokker-Planck codes that model plasma behavior play an important role in designing experimental hardware and interpreting the resulting data, as well as in advancing plasma theory itself. The size, architecture, and software of supercomputers to run these codes are often the crucial constraints on the benefits such computational modeling can provide. Hence, vector computers such as the CRAY-1 offer a valuable research resource. To meet the computational needs of the fusion program, the National Magnetic Fusion Energy Computer Center (NMFECC) was established in 1974 at the Lawrence Livermore National Laboratory. Supercomputers at the central computing facility are linked to smaller computer centers at each of the major fusion laboratories by a satellite communication network. In addition to providing large-scale computing, the NMFECC environment stimulates collaboration and the sharing of computer codes and data among the many fusion researchers in a cost-effective manner

  19. Role of magnetic resonance urography in pediatric renal fusion anomalies

    International Nuclear Information System (INIS)

    Chan, Sherwin S.; Ntoulia, Aikaterini; Khrichenko, Dmitry; Back, Susan J.; Darge, Kassa; Tasian, Gregory E.; Dillman, Jonathan R.

    2017-01-01

    Renal fusion is on a spectrum of congenital abnormalities that occur due to disruption of the migration process of the embryonic kidneys from the pelvis to the retroperitoneal renal fossae. Clinically, renal fusion anomalies are often found incidentally and associated with increased risk for complications, such as urinary tract obstruction, infection and urolithiasis. These anomalies are most commonly imaged using ultrasound for anatomical definition and less frequently using renal scintigraphy to quantify differential renal function and assess urinary tract drainage. Functional magnetic resonance urography (fMRU) is an advanced imaging technique that combines the excellent soft-tissue contrast of conventional magnetic resonance (MR) images with the quantitative assessment based on contrast medium uptake and excretion kinetics to provide information on renal function and drainage. fMRU has been shown to be clinically useful in evaluating a number of urological conditions. A highly sensitive and radiation-free imaging modality, fMRU can provide detailed morphological and functional information that can facilitate conservative and/or surgical management of children with renal fusion anomalies. This paper reviews the embryological basis of the different types of renal fusion anomalies, their imaging appearances at fMRU, complications associated with fusion anomalies, and the important role of fMRU in diagnosing and managing children with these anomalies. (orig.)

  20. Design of force-cooled conductors for large fusion magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems.

  1. Design of force-cooled conductors for large fusion magnets

    International Nuclear Information System (INIS)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems

  2. Overview of FAR-TECH's magnetic fusion energy research

    Science.gov (United States)

    Kim, Jin-Soo; Bogatu, I. N.; Galkin, S. A.; Spencer, J. Andrew; Svidzinski, V. A.; Zhao, L.

    2017-10-01

    FAR-TECH, Inc. has been working on magnetic fusion energy research over two-decades. During the years, we have developed unique approaches to help understanding the physics, and resolving issues in magnetic fusion energy. The specific areas of work have been in modeling RF waves in plasmas, MHD modeling and mode-identification, and nano-particle plasma jet and its application to disruption mitigation. Our research highlights in recent years will be presented with examples, specifically, developments of FullWave (Full Wave RF code), PMARS (Parallelized MARS code), and HEM (Hybrid ElectroMagnetic code). In addition, nano-particle plasma-jet (NPPJ) and its application for disruption mitigation will be presented. Work is supported by the U.S. DOE SBIR program.

  3. Structural design features for commercial fusion power reactor magnet systems

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.N.; Young, W.C.

    1980-01-01

    The evolution of structural design features for commercial fusion power reactor magnet systems is discussed. Changing concepts in plasma physics and impurity control, new data on radiation damage in materials and developments in the maintainability and repairability of the magnet systems are the driving influences in this evolution. Generic problems in the magnet designs are discussed for several proposed magnetic confinement system configurations, including tokamaks, tandem mirrors, the Elmo Bumpy Torus, and the reversed field theta pinch. These systems are compared on the basis of how efficiently the magnets make use of structural materials. A measure of the effectiveness of a magnet system is found by determining the ratio of net electric power output from the reactor to the stored energy in the magnetic fields produced by the magnet coils in a given system. The stored energy in the magnetic field can then be used to establish a minimum structural volume and mass by use of the virial theorem. Experience with coil types such as solenoids, toroids, Yin-Yang, etc. has established factors by which the minima must be multiplied to yield anticipated volumes and masses of realistic magnet systems. These initial, admittedly approximate, calculations allow designers to estimate early in the process the contribution of the magnet systems to the overall cost of a fusion reactor. As work progresses these estimates can be used to indicate the degree to which the designers is making effective use of the structural material. Basic rules for effective placement of structure, common to all magnet systems, are also discussed in detail. Factors are presented which make it possible to compare structural savings to the cost of researching the parameters involved in the stability of superconductors. (orig.)

  4. Open-ended magnetic confinement systems for fusion

    International Nuclear Information System (INIS)

    Post, R.F.; Ryutov, D.D.

    1995-05-01

    Magnetic confinement systems that use externally generated magnetic fields can be divided topologically into two classes: ''closed'' and 'open''. The tokamak, the stellarator, and the reversed-field-pinch approaches are representatives of the first category, while mirror-based systems and their variants are of the second category. While the recent thrust of magnetic fusion research, with its emphasis on the tokamak, has been concentrated on closed geometry, there are significant reasons for the continued pursuit of research into open-ended systems. The paper discusses these reasons, reviews the history and the present status of open-ended systems, and suggests some future directions for the research

  5. Magnetic Fusion Advisory Committee report on recommended fusion program priorities and strategy

    International Nuclear Information System (INIS)

    1983-09-01

    The Magnetic Fusion Advisory Committee recommends a new program strategy with the following principal features: (1) Initiation in FY86 of the Tokamak Fusion Core Experiment (TFCX), a moderate-cost tokamak reactor device (less than $1 B PACE) designed to achieve ignition and long-pulse equilibrium burn. Careful trade-off studies are needed before making key design choices in interrelated technology areas. Cost reductions relative to earlier plans can be realized by exploiting new plasma technology, by locating the TFCX at the TFTR site, and by assigning responsibility for complementary reactor engineering tasks to other sectors of the fusion program. (2) Potential utilization of the MFTF Upgrade to provide a cost-effective means for quasi-steady-state testing of blanket and power-system components, complementary to TFCX. This will depend on future assessments of the data base for tandem mirrors. (3) Vigorous pursuit of the broad US base program in magnetic confinement, including new machine starts, where appropriate, at approximately the present total level of support. (4) Utilization of Development and Technology programs in plasma and magnet technology in support of specific hardware requirements of the TFCX and of other major fusion facilities, so as to minimize overall program cost

  6. Large magnetic coils for fusion technology

    International Nuclear Information System (INIS)

    Komarek, P.; Ulbricht, A.

    1989-01-01

    This paper reviews the current status of research in this field and outlines future tasks and experiments for the Next European Torus (NET). Research and development work accomplished so far permits generation and safe operation of magnetic fields up to 9 T by means of NbTi coils. Fields up to 11 T are feasible if the coils are cooled with superfluid helium at 1.8 K. The potential of the Nb 3 Sn coils promise achievement of magnetic fields between 12 and 13 T. (MM) [de

  7. Magnet system for a laser heated solenoid fusion reactor

    International Nuclear Information System (INIS)

    Marston, P.G.; Nolan, J.J.; Averill, R.J.

    1976-01-01

    A hybrid magnet system is proposed that consists of a 2 m inside diameter 20 T continuous superconducting magnet surrounding a number of 4 cm bore, 20 T pulsed magnets. Each pulsed magnet encloses a plasma tube for the laser heated fusion reaction. A tritium breeder, heat exchanger, and neutron shield are located in the annular region between the pulsed magnets and the superconducting magnet. The overall length of the system is 1 kilometer. The pulsed magnets are operated in a reverse-forward current sequence so that the magnetic field in the plasma is first reduced to zero and then raised to 40 T. Novel design features are included in the pulsed magnets, pulsing circuits and the superconducting magnet. Of particular interest is the structural design which maintains practical stress levels for readily available materials in both magnets and enables operation of the superconductors in a strain-free condition. Estimated costs and comment on the advantages of the pressure support system are presented

  8. Evaluation of alternate magnetic fusion concepts, 1977

    International Nuclear Information System (INIS)

    1978-05-01

    The objective of this exercise was to evaluate all of the alternate concepts supported by DMFE with regard to: (1) confidence in the physics assumptions; (2) confidence in the development of the requisite technologies; and (3) the desirability of its pure fusion reactor configuration. A primary concern in developing the evaluation technique described in this section was the need to obtain a uniform, critical evaluation. Motivated by this concern, it was decided to have all of the concepts evaluated on the same basis or criteria and to have all concepts evaluated by the same group of experts. The evaluation criteria and procedures which were developed for this purpose are described. The concepts evaluated were the EBT, RFP, TORMAC, field reversing ion rings, linear theta pinch, laser heated solenoid, e-beam heated solenoid, multiple mirrors, fast linear reactor, LINUS, and SURMAC

  9. Personnel Safety for Future Magnetic Fusion Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee Cadwallader

    2009-07-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  10. Personnel Safety for Future Magnetic Fusion Power Plants

    International Nuclear Information System (INIS)

    Cadwallader, Lee

    2009-01-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  11. Reactor potential of the magnetically insulated inertial fusion (MICF) system

    International Nuclear Information System (INIS)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    The Magnetically Insulated Inertial Confinement Fusion (MICF) scheme is examined with regard to its potential as a power-producing reactor. This approach combines the favorable aspects of both magnetic and inertial fusions in that physical containment of the plasma is provided by a metallic shell while thermal insulation of its energy is provided by a strong, self-generated magnetic field. The plasma is created at the core of the target as a result of irradiation of the fuel-coated inner surface by a laser beam that enters through a hole in the spherical shell. The instantaneous magnetic field is generated by the current loops formed by the laser-heated, laser-ablated electrons, and preliminary experimental results at Osaka University have confirmed the presence of such a field. These same experiments have also yielded a Lawson parameter of about 5x10 12 cm -3 sec, and because of these unique properties, the plasma lifetimes in MICF have been shown to be about two orders of magnitude longer than conventional, pusher type inertial fusion schemes. In this paper a quasi one dimensional, time dependent set of particle and energy balance equations for the thermal species, namely, electrons, ions and thermal alphas which also allows for an appropriate set of fast alpha groups is utilized to assess the reactor prospects of a DT-burning MICF system. (author) [pt

  12. Construction and testing of the Mirror Fusion Test Facility magnets

    International Nuclear Information System (INIS)

    Kozman, T.; Shimer, D.; VanSant, J.; Zbasnik, J.

    1986-08-01

    This paper describes the construction and testing of the Mirror Fusion Test Facility superconducting magnet set. Construction of the first Yin Yang magnet was started in 1978. And although this particular magnet was later modified, the final construction of these magnets was not completed until 1985. When completed these 42 magnets weighed over 1200 tonnes and had a maximum stored energy of approximately 1200 MJ at full field. Together with power supplies, controls and liquid nitrogen radiation shields the cost of the fabrication of this system was over $100M. General Dynamics/Convair Division was responsible for the system design and the fabrication of 20 of the magnets. This contract was the largest single procurement action at the Lawrence Livermore National Laboratory. During the PACE acceptance tests, the 26 major magnets were operated at full field for more than 24 hours while other MFTF subsystems were tested. From all of the data, the magnets operated to the performance specifications. For physics operation in the future, additional helium and nitrogen leak checking and repair will be necessary. In this report we will discuss the operation and testing of the MFTF Magnet System, the world's largest superconducting magnet set built to date. The topics covered include a schedule of the major events, summary of the fabrication work, summary of the installation work, summary of testing and test results, and lessons learned

  13. History and status of magnetic fusion research; Evolution et statut des recherches sur la fusion controlee

    Energy Technology Data Exchange (ETDEWEB)

    Jacquinot, J. [CEA Saclay, Cabinet du Haut Commissaire, 91 - Gif-sur-Yvette (France)

    2008-02-15

    Ever since the understanding of the basic process which powers the stars has been elucidated, humanity has been dreaming to master controlled fusion for peaceful purposes. Controlled fusion in a steady state regime must use magnetic confinement of a gas (plasma) heated up to 150 millions degrees. Physics and technology involved in such a state are extremely complex and went through many up and down phases. Nevertheless, the overall progress has been spectacular and a significant amount of energy could be produced in a well controlled manner. On this basis, an international organisation of unprecedented magnitude involving 34 countries has started working in Cadarache for the construction of the ITER project. It aims at the scientific demonstration of controlled fusion at the level of 500 MW and a power gain of 10. (author)

  14. Tritium projectiles for fueling magnetic fusion plasmas

    International Nuclear Information System (INIS)

    Fisher, P.W.; Gouge, M.J.

    1995-01-01

    As part of the International Thermonuclear Engineering Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet (cylindrical projectile of frozen hydrogenic gas at a temperature in the range 6--16 K) injection system to test the mechanical and thermal properties of extruded tritium, a radioactive isotope of hydrogen. This repeating, single-stage, pneumatic injector, called the Tritium-Proof-of-Principle Phase 2 (TPOP-2) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude and accelerate hydrogenic pellets sized for the ITER device. The TPOP-2 program has the following development goals: evaluate the feasibility of extruding tritium and deuterium-tritium (D-T) mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and D-T extrusions; integrate, test, and evaluate the extruder in a repeating, single-stage light gas gun that is sized for the ITER application (pellet diameter ∼ 7 to 8 mm); evaluate options for recycling propellant and extruder exhaust gas; evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory that requires secondary and room containment systems. In initial tests with deuterium feed at ORNL, up to 13 pellets have been extruded at rates up to 1 Hz and accelerated to speeds of 1.0 to 1.1 km/s, using hydrogen propellant gas at a supply pressure of 65 bar. The pellets, typically 7.4 mm in diameter and up to 11 mm in length, are the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 11% density perturbation to ITER. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first-wall tritium inventories by a process called isotopic fueling in which tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge

  15. Influence of the magnetic toroidal field on the design of magnet systems for future fusion reactors

    International Nuclear Information System (INIS)

    Duchateau, J.L.

    2006-01-01

    It is often stated that an increase of the toroidal magnetic field on the plasma axis of tokamaks could be beneficial for future fusion reactors and will help in the economic viability of this new source of energy. After the development associated with ITER magnets regarding prototype conductors, joints and model coils, it is now possible to have a realistic approach of the design of magnet systems for fusion application and in particular of the toroidal field (TF) conductor design. This approach is meaningful since the ITER size is relevant to that of future fusion reactors. A demonstration reactor, the construction of which is supposed to start in 20 years would likely not be very different of ITER as for the magnet system

  16. High magnetic field induced otolith fusion in the zebrafish larvae.

    Science.gov (United States)

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-04-11

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an "all-or-none" manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish.

  17. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Leach Martin O

    2004-10-01

    Full Text Available Abstract Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation.

  18. Failure modes and effects analysis of fusion magnet systems

    International Nuclear Information System (INIS)

    Zimmermann, M.; Kazimi, M.S.; Siu, N.O.; Thome, R.J.

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs

  19. The Swedish fusion research programme on magnetic confinement 1978

    International Nuclear Information System (INIS)

    Lehnert, B.

    1978-02-01

    A review is given on the activities and plans for research on plasma physics and controlled fusion at the Royal Institute of Technology in Stockholm, with descriptions and motivations of the research lines being conducted. These activities include investigations on plasma-neutral gas interaction, development of special principles for plasma stabilization, magnetic confinement schemes being based mainly on poloidal fields, as well as the generation, heating, and diagnostics of plasmas being ''impermeable'' to neutral gas. (author)

  20. Superconducting magnetic energy storage for electric utilities and fusion systems

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed

  1. Thermal photons from gluon fusion with magnetic fields

    Directory of Open Access Journals (Sweden)

    Ayala Alejandro

    2017-01-01

    Full Text Available We compute the production of thermal photons in relativistic heavy-ion collisions by gluon fusion in the presence of an intense magnetic field, and during the early stages of the reaction. This photon yield is an excess over calculations that do not consider magnetic field effects. We add this excess to recent hydrodynamic calculations that are close to describing the experimental transverse momentum distribution in RHIC and LHC. We then show that with reasonable values for the temperature, magnetic field strength, and strong coupling constant, our results provide a very good description of such excess. These results support the idea that the origin of at least some of the photon excess observed in heavy-ion experiments may arise from magnetic field induced processes.

  2. Costs of magnets for large fusion power reactors: Phase I, cost of superconductors for dc magnets

    International Nuclear Information System (INIS)

    Powell, J.R.

    1972-01-01

    Projections are made for dc magnet conductor costs for large fusion power reactors. A mature fusion economy is assumed sometime after 2000 A. D. in which approximately 90,000 MW(e) of fusion reactors are constructed/year. State of the art critical current vs. field characteristics for superconductors are used in these projections. Present processing techniques are used as a basis for the design of large plants sized to produce approximately one-half of the conductor needed for the fusion magnets. Multifilamentary Nb-Ti, Pb-Bi in glass fiber, GE Nb 3 Sn tape, Linde plasma sprayed Nb 3 Sn tape, and V 3 Ga tape superconductors are investigated, together with high purity aluminum cryoconductor. Conductor costs include processing costs [capital (equipment plus buildings), labor, and operating] and materials costs. Conductor costs are compared for two sets of material costs: current (1971 A. D.) costs, and projected (after 2000 A. D.) costs. (U.S.)

  3. Magnet safety and reliability in magnetic fusion energy systems. A summary report

    International Nuclear Information System (INIS)

    Powell, J.; Hsieh, D.; Lehner, J.; Reich, M.; Yu, W.Y.

    1977-02-01

    The results of a two year study on magnet safety as it applies to Magnetic Fusion Energy Reactors and influences current program planning and experimental magnet design are presented in this summary report. Existing experience with superconducting magnet design and operation has been reviewed with the help of many active workers in this field and related to general reactor safety studies and techniques using the vast body of work generated in fission reactor safety programs as an illustrative reference base. A principal conclusion is that the inclusion of safety planning and design as a program component even at this early stage in Magnetic Fusion Reactor Development will save a great deal of money, time and design readjustment in the total thirty year program now envisaged

  4. Computing for magnetic fusion energy research: An updated vision

    International Nuclear Information System (INIS)

    Henline, P.; Giarrusso, J.; Davis, S.; Casper, T.

    1993-01-01

    This Fusion Computing Council perspective is written to present the primary of the fusion computing community at the time of publication of the report necessarily as a summary of the information contained in the individual sections. These concerns reflect FCC discussions during final review of contributions from the various working groups and portray our latest information. This report itself should be considered as dynamic, requiring periodic updating in an attempt to track rapid evolution of the computer industry relevant to requirements for magnetic fusion research. The most significant common concern among the Fusion Computing Council working groups is networking capability. All groups see an increasing need for network services due to the use of workstations, distributed computing environments, increased use of graphic services, X-window usage, remote experimental collaborations, remote data access for specific projects and other collaborations. Other areas of concern include support for workstations, enhanced infrastructure to support collaborations, the User Service Centers, NERSC and future massively parallel computers, and FCC sponsored workshops

  5. Status of tritium technology development for magnetic-fusion energy

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1983-01-01

    The development of tritium technology for the magnetic fusion energy program has progressed at a rapid rate over the past two years. The focal points for this development in the United States have been the Tritium Systems Test Assembly at Los Alamos and the FED/INTOR studies supported by the Fusion Engineering Design Center at Oak Ridge. In Canada the Canadian Fusion Fuel Technology Project has been initiated and promises to make significant contributions to the tritium technology program in the next few years. The Japanese government has now approved funding for the Tritium Processing Laboratory at the Japan Atomic Energy Research Institute's Tokai Research Establishment. Construction on this new facility is scheduled to begin in April 1983. This facility will be the center for fusion tritium technology development in Japan. The European Community is currently working on the design of the tritium facility for the Joint European Torus. There is considerable interaction between all of these programs, thus accelerating the overall development of this crucial technology

  6. The role of alpha particles in magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Lisak, M.; Wilhelmsson, H.

    1986-01-01

    Recent progress in the confinement of hot plasmas in magnetic fusion experiments throughout the world has intensified interest and research in the physics of D-T burning plasmas especially in the wide range of unresolved theoretical as well as experimental questions associated with the role of alpha particles in such devices. In order to review the state-of-the- art in this field, and to identify new issues and problems for further research, the Symposium on the Role of Alpha Particles in Magnetically Confined Fusion Plasmas was held from 24 to 26 June 1986 at Aspenaesgaarden near Goeteborg, Sweden. About 25 leading experts from nine countries attended the Symposium and gave invited talks. The major part of the programme was devoted to alpha-particle effects in tokamaks but some aspects of open systems were also discussed. The possibilities of obtaining ignition in JET and TFTR as well as physics issues for the compact ignition experiments were considered in particular. A special session was devoted to the diagnostics of alpha particles and other fusion products. In this report are summarised some of the highlights of the symposium. (authors)

  7. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.

    Science.gov (United States)

    Lynn, Alan G; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  8. BOOK REVIEW: Advanced Diagnostics for Magnetic and Inertial Confinement Fusion

    Science.gov (United States)

    Stott, PE; Wootton, A.; Gorini, G.; Sindoni, E.; Batani, D.

    2003-02-01

    This book is a collection of papers, written by specialists in the field, on advanced topics of nuclear fusion diagnostics. The 78 contributions were originally presented at the International Conference on Advanced Diagnostics for Magnetic and Inertial Fusion held at Villa Monastero, Italy in September 2001. Both magnetically confined and inertial fusion programmes are quite extensively covered, with more emphasis given to the former scheme. In the case of magnetic confinement, since the present international programme is strongly focused on next-step devices, particular attention is devoted to techniques and technologies viable in an environment with strong neutron fluxes. Indeed, in the first section, the various methods are considered in the perspective of performing the measurements of the relevant parameters in conditions approaching a burning plasma, mainly in the Tokamak configuration. The most demanding requirements, like the implications of the use of tritium and radiation resistance, are reviewed and the most challenging open issues, which require further research and development, are also clearly mentioned. The following three sections are devoted to some of the most recent developments in plasma diagnostics, which are grouped according to the following classification: `Neutron and particle diagnostics', `Optical and x-ray diagnostics' and `Interferometry, Polarimetry and Thomson Scattering'. In these chapters, several of the most recent results are given, covering measurements taken on the most advanced experiments around the world. Here the developments described deal more with the requirements imposed by the physical issues to be studied. They are therefore more focused on the approaches adopted to increase the spatial and time resolution of the diagnostics, on some methods to improve the characterisation of the turbulence and on fast particles. Good coverage is given to neutron diagnostics, which are assuming increasing relevance as the plasma

  9. Magnetic compression/magnetized target fusion (MAGO/MTF), an update

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, R.C.; Lindemuth, I.R.

    1998-03-01

    Magnetized Target Fusion (MTF) was reported in two papers at the First Symposium on Current Trends in International Fusion Research. MTF is intermediate between two very different mainline approaches to fusion: Inertial Confinement Fusion (ICF) and magnetic confinement fusion (MCF). The only US MTF experiments in which a target plasma was compressed were the Sandia National Laboratory ``Phi targets``. Despite the very interesting results from that series of experiments, the research was not pursued, and other embodiments of MTF concept such as the Fast Liner were unable to attract the financial support needed for a firm proof of principle. A mapping of the parameter space for MTF showed the significant features of this approach. The All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) has an on-going interest in this approach to thermonuclear fusion, and Los Alamos National Laboratory (LANL) and VNIIEF have done joint target plasma generation experiments relevant to MTF referred to as MAGO (transliteration of the Russian acronym for magnetic compression). The MAGO II experiment appears to have achieved on the order of 200 eV and over 100 KG, so that adiabatic compression with a relatively small convergence could bring the plasma to fusion temperatures. In addition, there are other experiments being pursued for target plasma generation and proof of principle. This paper summarizes the previous reports on MTF and MAGO and presents the progress that has been made over the past three years in creating a target plasma that is suitable for compression to provide a scientific proof of principle experiment for MAGO/MTF.

  10. Magnetic Fusion Energy Technology Fellowship Program: Summary of program activities for calendar year 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This report summarizes the activities of the US Department of Energy (DOE) Magnetic Fusion Energy Technology Fellowship program (MFETF) for the 1985 calendar year. The MFETF program has continued to support the mission of the Office of Fusion Energy (OFE) and its Division of Development and Technology (DDT) by ensuring the availability of appropriately trained engineering manpower needed to implement the OFE/DDT magnetic fusion energy agenda. This program provides training and research opportunities to highly qualified students at DOE-designated academic, private sector, and government magnetic fusion energy institutions. The objectives of the Magnetic Fusion Energy Technology Fellowship program are: (1) to provide support for graduate study, training, and research in magnetic fusion energy technology; (2) to ensure an adequate supply of appropriately trained manpower to implement the nation's magnetic fusion energy agenda; (3) to raise the visibility of careers in magnetic fusion energy technology and to encourage students to pursue such careers; and (4) to make national magnetic fusion energy facilities available for manpower training

  11. Aspects of safety and reliability for fusion magnet systems first annual report

    International Nuclear Information System (INIS)

    Powell, J.

    1976-01-01

    General systems aspects of fusion magnet safety are examined first, followed by specific detailed analyses covering structural, thermal, electrical, and other aspects of fusion magnet safety. The design examples chosen for analysis are illustrative and are not intended to be definitive, since fusion magnet designs are rapidly evolving. Included is a comprehensive collection of design and operating data relating to the safety of existing superconducting magnet systems. The remainder of the overview lists the main conclusions developed from the work to date. These should be regarded as initial steps. Since this study has concentrated on examining potential safety concerns, it may tend to overemphasize the problems of fusion magnets. In fact, many aspects of fusion magnets are well developed and are consistent with good safety practice. A short summary of the findings of this study is given

  12. Microwave generation for magnetic fusion energy applications, Task A

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Mayergoyz, I.D.; Singh, A.

    1990-05-01

    This report details progress over the past year in the research program ''Free Electron Lasers with Short Period Wigglers.'' The work is performed jointly by the laboratory for Plasma Research and the Electrical Engineering Department of the University of Maryland and is funded by the US Department of Energy Office of Fusion Energy. The goal of the work is the development of an electron cyclotron resonance heating (ECRH) scheme for magnetic fusion plasmas such as the Compact Ignition Tokamak (CIT). Our approach is the development of a free electron laser using a sheet electron beam and a short period wiggler magnet. The specific requirements for the heating method include 10 to 30 MW of average power with pulse durations of several seconds to CW at a frequency near 300 GHz (∼600 GHz) in the case of second harmonic (ECRH). Compatible with the experimental nature of the program, radiation frequency flexibility of 30% total bandwidth and 5% rapid dynamic (approx-lt 10 ms) bandwidth is desirable. As the source will eventually be applied to a reactor, priority is placed upon high system efficiency and reliability. Use of established technologies is encouraged where possible

  13. Panel discussion: Future directions in magnetic fusion--comments of John Sheffield, Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Sheffield, J.

    1992-01-01

    I will discuss two important issues for the US magnetic fusion program: the role of alternate magnetic configurations to the tokamak, and factors which need to be considered in planning the evolution of the US program

  14. Safety of superconducting magnets for fusion: thermal analysis of large cryostable magnets

    International Nuclear Information System (INIS)

    Turner, L.R.

    1980-01-01

    A thermal analysis program has been developed to study the response of a cryostable fusion magnet to abnormal conditions such as a localized heat input, overcurrent, or uncooled length of conductor. It performs a heat balance on each element. Variation of parameters with temperature, pressure, and magnetic field are incorporated. The program has been applied to a conductor with magnetic field variation along its length, carrying a high current as might occur in one toroidal field coil when a neighboring coil discharges rapidly. It is found that a stable normal region can develop, with possibly serious consequences

  15. Numerical studies of liners for magnetized target fusion (MTF)

    CERN Document Server

    Faehl, R J; Sheehey, P T; Lindemuth, I R

    1999-01-01

    Summary form only given. Magnetized target fusion (MTF) requires the fast compression of hot, dense plasmas by a conducting liner. We have used two-dimensional MHD calculations to study the electromagnetic implosion of metallic liners driven by realistic current waveforms. Parametric studies have indicated that the liner should reach velocities of 3-20 km/s, depending on the magnetic field configuration, and reach convergence ratios (initial radius divided by final radius) of at least 10. These parameters are accessible with large capacitor bank power supplies such as SHIVA or ATLAS, or with magnetic flux compression generators. One issue with the high currents that are required to implode the liner is that Ohmic heating will melt or vaporize the outer part of the liner. Calculations have shown that this is a realistic concern. We are currently addressing questions of liner instability and flux diffusion under MTF conditions. Another issue is that the magnetic fields needed to inhibit thermal losses to the wa...

  16. Magnetized Inertial Fusion (MIF) Research at the Shiva Star Facility

    Science.gov (United States)

    Degnan, James; Grabowski, C.; Domonkos, M.; Ruden, E. L.; Amdahl, D. J.; White, W. M.; Frese, M. H.; Frese, S. D.; Wurden, G. A.; Weber, T. E.

    2015-11-01

    The AFRL Shiva Star capacitor bank (1300 μF, up to 120 kV) used typically at 4 to 5 MJ stored energy, 10 to 15 MA current, 10 μs current rise time, has been used to drive metal shell (solid liner) implosions for compression of axial magnetic fields to multi-megagauss levels, suitable for compressing magnetized plasmas to MIF conditions. MIF approaches use magnetic field to reduce thermal conduction relative to inertial confinement fusion (ICF). MIF substantially reduces required implosion speed and convergence. Using profiled thickness liner enables large electrode apertures and field-reversed configuration (FRC) injection. Using a longer capture region, FRC trapped flux lifetime was made comparable to implosion time and an integrated compression test was conducted. The FRC was radially compressed a factor of ten, to 100x density >1018 cm-3 (a world FRC record), but temperatures were only 300-400 eV, compared to intended several keV. Compression to megabar pressures was inferred by the observed liner rebound, but the heating rate during the first half of the compression was less than the normal FRC decay rate. Principal diagnostics were soft x-ray imaging, soft x-ray diodes, and neutron measurements. This work has been supported by DOE-OFES.

  17. Vibration of fusion reactor components with magnetic damping

    Energy Technology Data Exchange (ETDEWEB)

    D’Amico, Gabriele; Portone, Alfredo [Fusion for Energy – Torres Diagonal Litoral B3 – c/Josep Plá n.2, Barcelona (Spain); Rubinacci, Guglielmo [Department of Electrical Eng. and Information Technologies, Università di Napoli Federico II, Via Claudio, 21, 80125 Napoli (Italy); Testoni, Pietro, E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy – Torres Diagonal Litoral B3 – c/Josep Plá n.2, Barcelona (Spain)

    2016-11-01

    The aim of this paper is to assess the importance of the magnetic damping in the dynamic response of the main plasma facing components of fusion machines, under the strong Lorentz forces due to Vertical Displacement Events. The additional eddy currents due to the vibration of the conducting structures give rise to volume loads acting as damping forces, a kind of viscous damping, being these additional loads proportional to the vibration speed. This effect could play an important role when assessing, for instance, the inertial loads associated to VV movements in case of VDEs. In this paper, we present the results of a novel numerical formulation, in which the field equations are solved by adopting a very effective fully 3D integral formulation, not limited to the analysis of thin shell structures, as already successfully done in several approaches previously published.

  18. High-density-plasma diagnostics in magnetic-confinement fusion

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1982-01-01

    The lectures will begin by defining high density in the context of magnetic confinement fusion research and listing some alternative reactor concepts, ranging from n/sub e/ approx. 2 x 10 14 cm -3 to several orders of magnitude greater, that offer potential advantages over the main-line, n/sub e/ approx. 1 x 10 14 cm -3 , Tokamak reactor designs. The high density scalings of several major diagnostic techniques, some favorable and some disadvantageous, will be discussed. Special emphasis will be given to interferometric methods, both electronic and photographic, for which integral n/sub e/dl measurements and associated techniques are accessible with low wavelength lasers. Reactor relevant experience from higher density, smaller dimension devices exists. High density implies high β, which implies economies of scale. The specialized features of high β diagnostics will be discussed

  19. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    International Nuclear Information System (INIS)

    Stratton, B.C.; Bitter, M.; Hill, K.W.; Hillis, D.L.; Hogan, J.T.

    2007-01-01

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  20. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  1. Space propulsion by fusion in a magnetic dipole

    International Nuclear Information System (INIS)

    Teller, E.; Glass, A.J.; Hasegawa, A.; Santarius, J.F.

    1992-01-01

    In this paper, the unique advantages of fusion rocket propulsion systems for distant missions are explored using the magnetic dipole configuration as an example. The dipole is found to have features well suited to space applications. Parameters are presented for a system producing a specific power of 1 kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in 1 yr and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 yr. This is about ten times better specific power performance than nuclear electric fission systems. Possibilities to further increase the specific power toward 10 kW/kg are discussed, as is an approach to implementing the concept through proof testing on the moon

  2. Status of long pulse experiments in magnetic fusion devices

    International Nuclear Information System (INIS)

    Saoutic, B

    2002-01-01

    Achieving long-duration, high-performance discharges in magnetic fusion devices is one of the most important challenges en route to a fusion reactor. At this stage, we need to bring together many physical concepts and technological achievements that hitherto have been considered as separate issues. In the course of a long duration pulse, one encounters a sequence of progressively increasing characteristic timescales, ranging from milliseconds for MHD events, seconds for energy and particle transport times, tens of seconds for current diffusion times and up to hundreds of seconds for wall processes, such as saturation and erosion, to reach equilibrium. Although many present-day experiments have pulse lengths long enough to allow studies of the MHD and transport issues in conditions that are effectively quasi steady state, most have pulse lengths that are marginal for studying current diffusion phenomena and, generally, all are too short to study wall saturation and erosion. Very few present-day experiments bring together the necessary hardware (magnets, power supplies, heating and current drive systems, cooling loops, etc) to properly address issues on timescales greater than 10 s. This paper reviews the status of present-day long pulse experiments in tokamaks and stellarators in terms of the technology and physics. We start by defining the requirements of long pulse experiments and discussing the technology that is needed. Then, we consider the relevant physics including the important interactions between physics and technology. Finally, we consider the issues that must be addressed to go beyond long pulses in order to reach full steady-state operation

  3. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    International Nuclear Information System (INIS)

    Dahlburg, Jill; Corones, James; Batchelor, Donald; Bramley, Randall; Greenwald, Martin; Jardin, Stephen; Krasheninnikov, Sergei; Laub, Alan; Leboeuf, Jean-Noel; Lindl, John; Lokke, William; Rosenbluth, Marshall; Ross, David; Schnack, Dalton

    2002-01-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world's energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the

  4. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, Jill [General Atomics, San Diego, CA (United States); Corones, James [Krell Inst., Ames, IA (United States); Batchelor, Donald [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bramley, Randall [Indiana Univ., Bloomington, IN (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jardin, Stephen [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Krasheninnikov, Sergei [Univ. of California, San Diego, CA (United States); Laub, Alan [Univ. of California, Davis, CA (United States); Leboeuf, Jean-Noel [Univ. of California, Los Angeles, CA (United States); Lindl, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lokke, William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosenbluth, Marshall [Univ. of California, San Diego, CA (United States); Ross, David [Univ. of Texas, Austin, TX (United States); Schnack, Dalton [Science Applications International Corporation, Oak Ridge, TN (United States)

    2002-11-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC

  5. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    Science.gov (United States)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  6. Fusion Performance of High Magnetic Field Expe-riments

    Science.gov (United States)

    Airoldi, A.; Cenacchi, G.; Coppi, B.

    1997-11-01

    High magnetic field machines have the characteristic of operating well within the usual limitations known as density and beta limits. This feature is highlighted in the Ignitor concept thanks to its reference field of up to 13 T on the magnetic axis and its high current densities. The two reference scenarios with plasma currents of 12 MA and 11 MA respectively, are discussed. The ramp time is 4 sec for both scenarios, whereas the following programmed time dependence of the current is different. The results of an extensive series of numerical simulations using an appropriate version of the 1+1/2D JETTO transport code show that in any case optimal fusion performances are reacheable without needing enhancement over the values of the energy replacement time predicted by the most pessimistic scalings (for the so-called L-mode regime). The density is the crucial parameter involved on the path to ignition that can be achieved provided the density rise is carefully programmed. The density profiles can be controlled by the proper use of the pellet injector that is included in the machine design.

  7. Stagnation morphology in Magnetized Liner Inertial Fusion experiments

    Science.gov (United States)

    Gomez, M. R.; Harding, E. C.; Ampleford, D. J.; Jennings, C. A.; Awe, T. J.; Chandler, G. A.; Glinsky, M. E.; Hahn, K. D.; Hansen, S. B.; Jones, B.; Knapp, P. F.; Martin, M. R.; Peterson, K. J.; Rochau, G. A.; Ruiz, C. L.; Schmit, P. F.; Sinars, D. B.; Slutz, S. A.; Weis, M. R.; Yu, E. P.

    2017-10-01

    In Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z facility, an axial current of 15-20 MA is driven through a thick metal cylinder containing axially-magnetized, laser-heated deuterium fuel. The cylinder implodes, further heating the fuel and amplifying the axial B-field. Instabilities, such as magneto-Rayleigh-Taylor, develop on the exterior of the liner and may feed through to the inner surface during the implosion. Monochromatic x-ray emission at stagnation shows the stagnation column is quasi-helical with axial variations in intensity. Recent experiments demonstrated that the stagnation emission structure changed with modifications to the target wall thickness. Additionally, applying a thick dielectric coating to the exterior of the target modified the stagnation column. A new version of the x-ray self-emission diagnostic has been developed to investigate stagnation with higher resolution. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  8. Non-superconducting magnet structures for near-term, large fusion experimental devices

    International Nuclear Information System (INIS)

    File, J.; Knutson, D.S.; Marino, R.E.; Rappe, G.H.

    1980-10-01

    This paper describes the magnet and structural design in the following American tokamak devices: the Princeton Large Torus (PLT), the Princeton Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET), also presented herein, has a magnet structure evolved from several European programs and, like TFTR, represents state of the art magnet and structure design

  9. Magnetic fusion program in the United States: an overview and perspective

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1978-01-01

    Continuing technical progress in magnetic fusion energy research and a coherent national program involving national laboratories, industry and universities has won strong support from the new Department of Energy. This review presents recent technical progress and examines fusion in relation to other long term energy supply options. Fusion is seen as a technology which, because of its apparently minimal environmental impacts and promise of reasonable cost, has a good chance of competing successfully with the other inexhaustible energy sources

  10. Comparison between initial Magnetized Liner Inertial Fusion experiments and integrated simulations

    Science.gov (United States)

    Sefkow, A. B.; Gomez, M. R.; Geissel, M.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Peterson, K. J.; Slutz, S. A.; Koning, J. M.; Marinak, M. M.

    2014-10-01

    The Magnetized Liner Inertial Fusion (MagLIF) approach to ICF has obtained thermonuclear fusion yields using the Z facility. Integrated magnetohydrodynamic simulations provided the design for the first neutron-producing experiments using capabilities that presently exist, and the initial experiments measured stagnation radii rstag Company, for the National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  11. Assessment of some of the problems in the USA of superconducting magnets for fusion research

    International Nuclear Information System (INIS)

    Cornish, D.N.

    1981-01-01

    This paper discusses some of the general difficulties and problems encountered during the development of the technology of superconductors and superconducting magnets for fusion and expresses some personal concerns

  12. Magnetic fusion energy annual report, July 1975--September 1976

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, M.A.; McGregor, C.K.; Gottlieb, L. (eds.)

    1976-12-02

    Supporting research activities continued to provide the technical basis for future mirror-confinement experiments. The industrial development of a high-current, high-field, high-current-density Nb/sub 3/Sn conductor was the main goal of the superconducting magnet program. Beam direct conversion was being developed as a means of raising the efficiency of neutral-beam production, and plasma direct conversion was shown to work as predicted. Conceptual designs were completed for various types of power reactors. The neutral-beam program progressed in three areas: experimental work, facility construction, and conceptual design. Experiments on the 14-MeV Rotating Target Neutron Source (RTNS-II) included participation by experimenters from many different institutions. Methods for processing tritium-contaminated wastes were pursued, as were studies of tritiated methane in stainless-steel vessels, the control of tritium in mirror fusion reactors, and the development of titanium tritide targets for the RTNS. The report period witnessed a rapid maturation in ability to describe theoretically the behavior of ion-cyclotron noise in the 2XIIB and the influence of that noise on the confined plasma. The high beta values achieved in 2XIIB prompted much theoretical analysis of the properties of high-beta equilibria and stability, including those of a field-reversed state. Excellent progress was made on the development of computer codes applicable to magnetic-mirror problems, with emphasis on three-dimensional, finite-beta, guiding-center equilibria, field-reversal, and Fokker-Planck codes.

  13. Implications of NSTX Lithium Results for Magnetic Fusion Research

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P.; Canik, J.M.; Diem, S.; Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D.; Maingi, R.; Menard, J.; Paul, S.F.; Raman, R.; Sabbagh, S.A.; Skinner, C.H.; Soukhanovskii, V.; Taylor, G.

    2010-01-01

    Lithium wall coating techniques have been experimentally explored on NSTX for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ∼ 100 g of lithium onto the lower divertor plates between lithium reloadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, ELM control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  14. Implications of NSTX lithium results for magnetic fusion research

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P.; Canik, J.M.; Diem, S.; Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D.; Maingi, R.; Menard, J.; Paul, S.F.; Raman, R.; Sabbagh, S.A.; Skinner, C.H.; Soukhanovskii, V.; Taylor, G.

    2010-01-01

    Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ∼100 g of lithium onto the lower divertor plates between lithium re-loadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, edge localized mode (ELM) control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  15. Steady State Turbulent Transport in Magnetic Fusion Plasmas

    International Nuclear Information System (INIS)

    Lee, W.W.; Ethier, S.; Kolesnikov, R.; Wang, W.X.; Tang, W.M.

    2007-01-01

    For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers

  16. Fusion of magnetic resonance angiography and magnetic resonance imaging for surgical planning for meningioma. Technical note

    International Nuclear Information System (INIS)

    Kashimura, Hiroshi; Ogasawara, Kuniaki; Arai, Hiroshi

    2008-01-01

    A fusion technique for magnetic resonance (MR) angiography and MR imaging was developed to help assess the peritumoral angioarchitecture during surgical planning for meningioma. Three-dimensional time-of-flight (3D-TOF) and 3D-spoiled gradient recalled (SPGR) datasets were obtained from 10 patients with intracranial meningioma, and fused using newly developed volume registration and visualization software. Maximum intensity projection (MIP) images from 3D-TOF MR angiography and axial SPGR MR imaging were displayed at the same time on the monitor. Selecting a vessel on the real-time MIP image indicated the corresponding points on the axial image automatically. Fusion images showed displacement of the anterior cerebral or middle cerebral artery in 7 patients and encasement of the anterior cerebral arteries in I patient, with no relationship between the main arterial trunk and tumor in 2 patients. Fusion of MR angiography and MR imaging can clarify relationships between the intracranial vasculature and meningioma, and may be helpful for surgical planning for meningioma. (author)

  17. Radiation control in fusion plasmas by magnetic confinement

    International Nuclear Information System (INIS)

    Dachicourt, R.

    2012-10-01

    The present work addresses two important issues for the industrial use of fusion: plasma radiation control, as a part of the more general power handling issue, and high density tokamak operation. These two issues will be most critical in the demonstration reactor, called DEMO, intermediate step between ITER and a future commercial reactor. For DEMO, the need to radiate a large fraction of the power so as to limit the peak power load on the divertor will be a key constraint. High confinement will have to be combined with high radiated power fraction, and the required level of plasma purity. The main achievement of this thesis is to have shown experimental evidence of the existence of a stable plasma regime meeting the most critical requirements of a DEMO scenario: an electron density up to 40% above the Greenwald value, together with a fraction of radiated power close to 80%, with a good energy confinement and limited dilution. The plasma is additionally heated with ion cyclotron waves in a central electron heating scenario, featuring alpha particle heating. The original observations reported in this work bring highly valuable new pieces of information both to the physics of the tokamak edge layer and to the construction of an 'integrated operational scenario' required to successfully operate fusion devices. In the way for getting high density plasmas, the new observations involve the following topics. First, the formation of a poloidal asymmetry in the edge electron density profile, with a maximum density located close to toroidal pumped limiter. This asymmetry occurs inside the separatrix, with a constant plasma pressure on magnetic surfaces. Secondly, a correlative decrease of the electron temperature in the same edge region. Thirdly, the excellent coupling capabilities of the ICRH waves, up to a central line averaged electron density of 1.4 times the Greenwald density. Fourthly, a poloidally asymmetric edge radiation region, providing the dissipation of 80% of

  18. Magnetic fusion energy technology fellowship: Report on survey of institutional coordinators

    International Nuclear Information System (INIS)

    1993-02-01

    In 1980, the Magnetic Fusion Energy Technology (MFET) Fellowship program was established by the US Department of Energy, Office of Fusion Energy, to encourage outstanding students interested in fusion energy technology to continue their education at a qualified graduate school. The basic objective of the MFET Fellowship program is to ensure an adequate supply of scientists in this field by supporting graduate study, training, and research in magnetic fusion energy technology. The program also supports the broader objective of advancing fusion toward the realization of commercially viable energy systems through the research by MFET fellows. The MFET Fellowship program is administered by the Science/Engineering Education Division of Oak Ridge Institute for Science and Education. Guidance for program administration is provided by an academic advisory committee

  19. Magnetized target fusion: An ultra high energy approach in an unexplored parameter space

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1994-01-01

    Magnetized target fusion is a concept that may lead to practical fusion applications in a variety of settings. However, the crucial first step is to demonstrate that it works as advertised. Among the possibilities for doing this is an ultrahigh energy approach to magnetized target fusion, one powered by explosive pulsed power generators that have become available for application to thermonuclear fusion research. In a collaborative effort between Los Alamos and the All-Russian Scientific Institute for Experimental Physics (VNIIEF) a very powerful helical generator with explosive power switching has been used to produce an energetic magnetized plasma. Several diagnostics have been fielded to ascertain the properties of this plasma. We are intensively studying the results of the experiments and calculationally analyzing the performance of this experiment

  20. Issues in the commercialization of magnetic fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, A.D.; Willke, T.L.

    1979-12-01

    This study identifies and outlines the issues that must be considered if fusion is to be put into commercial practice. The issues are put into perspective around a consistent framework and a program of study and research is recommended to anticipate and handle the issues for a successful fusion commercialization program. (MOW)

  1. Issues in the commercialization of magnetic fusion power

    International Nuclear Information System (INIS)

    Rockwood, A.D.; Willke, T.L.

    1979-12-01

    This study identifies and outlines the issues that must be considered if fusion is to be put into commercial practice. The issues are put into perspective around a consistent framework and a program of study and research is recommended to anticipate and handle the issues for a successful fusion commercialization program

  2. Fatigue effects in insulation materials for fusion magnets

    International Nuclear Information System (INIS)

    Rosenkranz, P.

    2000-12-01

    The mechanical properties of insulation materials for the superconducting magnets of ITER (International Thermonuclear Experimental Reactor) and future fusion plants, i.e. woven fiber reinforced composites, have been identified as an area of concern for the long-term operation of such magnets. The magnets will be subjected to fast neutron and γ-radiation over their lifetime, which influence the mechanical properties of the insulation materials. The ultimate tensile strength and, above all, the interlaminar shear strength and their performance under dynamic load, corresponding to the pulsed operation of a TOKAMAK-confinement system, are sensitive indicators of material failure in fiber-reinforced laminates especially at cryogenic temperatures. To simulate these conditions, low frequency fatigue measurements at 10 Hz were made at 77 K up to one million cycles. Tension-tension fatigue tests were performed according to ASTM D3479. However, due to the space limitations in all irradiation facilities, the tests have to be done on samples, which are considerably smaller than those required for standard test conditions. The influence of the specimen geometry on the ultimate tensile strength under static and dynamic load conditions was, therefore, investigated on fiber-reinforced plastics. They did not show any systematic trends as long as the sample thickness does not exceed the thickness recommended in ASTM D3479. The double lap shear test method was chosen for the shear experiments because of the symmetry of the specimen geometry under tensile load and the suitability for fatigue tests. Like almost every existing test procedure for the interlaminar shear strength, this test method does not provide for a completely uniform interlaminar shear stress distribution over a sizable region in the test section of the specimen. A scaling program combined with FE-simulations was, therefore, initiated to assess the influence of the length of the test section and of the sample

  3. Controlled Nuclear Fusion by Magnetic Confinement and ITER

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Alvarez-Gaumé, Luís

    2005-01-01

    For may years harnessing fusion energy was considered the final solution to the world's energy crisis. ITER is the last step in the elusive quest. This presentation will provide in its various acientific, technological and political aspects.

  4. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  5. Environmental and economic assessments of magnetic and inertial fusion energy reactors

    Science.gov (United States)

    Yamazaki, K.; Oishi, T.; Mori, K.

    2011-10-01

    Global warming due to rapid greenhouse gas (GHG) emissions is one of the present-day crucial problems, and fusion reactors are expected to be abundant electric power generation systems to reduce human GHG emission amounts. To search for an environmental-friendly and economical fusion reactor system, comparative system studies have been done for several magnetic fusion energy reactors, and have been extended to include inertial fusion energy reactors. We clarify new scaling formulae for the cost of electricity and GHG emission rate with respect to key design parameters, which might be helpful in making a strategy for fusion research development. Comparisons with other conventional electric power generation systems are carried out taking into account the introduction of GHG taxes and the application of the carbon dioxide capture and storage system to fossil power generators.

  6. Assessment of the critical engineering data needs for the commercialization of magnetic confinement fusion

    International Nuclear Information System (INIS)

    Waganer, L.M.; Zuckerman, D.S.

    1983-01-01

    A survey of twenty-two recent conceptual fusion reactor designs was conducted to ascertain both generic and specific engineering data needs critical for the commercialization of magnetic confinement fusion (MCF). Design experts or advocates for each concept were queried as to the more critical engineering issues and data needs affecting the achievement of commercialization. For each concept, the technical issues were identified and the data needs quantified. Issues and data needs were then ranked based upon the experts' perceptions of the relative importance of each to the concept. The issues encompassed all aspects of the fusion reactor plant design including materials, performance, maintainability, operability, cost, safety and resources

  7. Ultrasound/Magnetic Resonance Image Fusion Guided Lumbosacral Plexus Block – A Clinical Study

    DEFF Research Database (Denmark)

    Strid, JM; Pedersen, Erik Morre; Søballe, Kjeld

    2014-01-01

    by guidance of US and magnetic resonance (MR) image fusion and real-time 3D electronic needle tip tracking.2 We aim to estimate the effect and the distribution of lidocaine after SSPS guided by US/MR image fusion compared to SSPS guided by ultrasound. Methods Twenty-four healthy volunteers will be included...... plexus blockade for hip surgery anaesthesia. Br J Anaesth. 2013, April 15. 2Ewertsen C, Saftoiu A, Gruionu LG, et al. Real-time image fusion involving diagnostic ultrasound. AJR Am J Roentgenol. 2013;200:W249-55....

  8. Tritium Aspects of Fueling and Exhaust Pumping in Magnetic Fusion Energy

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, Larry R. [ORNL; Meitner, Steven J. [ORNL

    2017-04-01

    Magnetically confined fusion plasmas generate energy from deuterium-tritium (DT) fusion reactions that produce energetic 3.5 MeV alpha particles and 14 MeV neutrons. Since the DT fusion reaction rate is a strong function of plasma density, an efficient fueling source is needed to maintain high plasma density in such systems. Energetic ions in fusion plasmas are able to escape the confining magnetic fields at a much higher rate than the fusion reactions occur, thus dictating the fueling rate needed. These lost ions become neutralized and need to be pumped away as exhaust gas to be reinjected into the plasma as fuel atoms.The technology to fuel and pump fusion plasmas has to be inherently compatible with the tritium fuel. An ideal holistic solution would couple the pumping and fueling such that the pump exhaust is directly fed back into pellet formation without including impurity gases. This would greatly reduce the processing needs for the exhaust. Concepts to accomplish this are discussed along with the fueling and pumping needs for a DT fusion reactor.

  9. Magnetic fusion energy materials technology program annual progress report for period ending June 30, 1977

    International Nuclear Information System (INIS)

    Scott, J.L.

    1977-09-01

    The objectives of the Magnetic Fusion Energy (MFE) Materials Technology Program, which is described in this report, are to continue to solve the materials problems of the Fusion Energy Division of ORNL and to meet needs of the national MFE program, directed by the ERDA Division of Magnetic Fusion Energy (DMFE). This work is a continuation of the program described in previous annual progress reports. The principal areas of work include radiation effects, compatibility studies, materials studies related to the plasma-materials interaction, materials engineering, radiation behavior of superconducting magnet insulation, and mechanical properties of superconducting composites. The level of effort and schedules are consistent with Logic II of the DMFE Program Plan

  10. Contribution to the study of superconducting magnetic systems in the frame of fusion projects

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.L.; Artiguelongue, H.; Bej, Z.; Ciazynski, D.; Cloez, H.; Decool, P.; Hertout, P.; Libeyre, P.; Martinez, A.; Nicollet, S.; Rubino, M.; Schild, T.; Verger, J.M. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee DRFC, 13 - Saint-Paul-lez-Durance (France)

    2000-02-01

    This report is a presentation of all the 55 publications made by the Magnet Group of the 'Departement de Recherche sur la Fusion Controlee' during the 94-99 period. These publications have been made mainly in the frame of EURATOM contracts and task for ITER. This collection deals with most of the dimensioning aspects of large superconducting magnets and hence the field interest is wider than the restricted field of magnets for fusion by magnetic confinement. Whenever it is possible, simple expressions and criteria are given for dimensioning superconducting strands, assembling them to build cables and cooling them by an adapted forced flow cooling. This is hence a major for the understanding of the behaviour of large modern superconducting magnets and provides many tools for design and construction. (author)

  11. Contribution to the study of superconducting magnetic systems in the frame of fusion projects

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Artiguelongue, H.; Bej, Z.; Ciazynski, D.; Cloez, H.; Decool, P.; Hertout, P.; Libeyre, P.; Martinez, A.; Nicollet, S.; Rubino, M.; Schild, T.; Verger, J.M.

    2000-02-01

    This report is a presentation of all the 55 publications made by the Magnet Group of the 'Departement de Recherche sur la Fusion Controlee' during the 94-99 period. These publications have been made mainly in the frame of EURATOM contracts and task for ITER. This collection deals with most of the dimensioning aspects of large superconducting magnets and hence the field interest is wider than the restricted field of magnets for fusion by magnetic confinement. Whenever it is possible, simple expressions and criteria are given for dimensioning superconducting strands, assembling them to build cables and cooling them by an adapted forced flow cooling. This is hence a major for the understanding of the behaviour of large modern superconducting magnets and provides many tools for design and construction. (author)

  12. The role of Z-pinches and related configurations in magnetized target fusion

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1997-01-01

    The use of a magnetic field within a fusion target is now known as Magnetized Target Fusion in the US and as MAGO (Magnitnoye Obzhatiye, or magnetic compression) in Russia. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (e.g., ICF), MTF involves two steps: (a) formation of a warm, magnetized, wall-confined plasma of intermediate density within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression and heating of the plasma by imploding the confining wall, or pusher. In many ways, MTF can be considered a marriage between the more mature MFE and ICF approaches, and this marriage potentially eliminates some of the hurdles encountered in the other approaches. When compared to ICF, MTF requires lower implosion velocity, lower initial density, significantly lower radial convergence, and larger targets, all of which lead to substantially reduced driver intensity, power, and symmetry requirements. When compared to MFE, MTF does not require a vacuum separating the plasma from the wall, and, in fact, complete magnetic confinement, even if possible, may not be desirable. The higher density of MTF and much shorter confinement times should make magnetized plasma formation a much less difficult step than in MFE. The substantially lower driver requirements and implosion velocity of MTF make z-pinch magnetically driven liners, magnetically imploded by existing modern pulsed power electrical current sources, a leading candidate for the target pusher of an MTF system

  13. Role of plasma material interaction in the Magnetic Fusion Program

    International Nuclear Information System (INIS)

    Appleton, B.R.; Davis, M.J.; Vook, F.L.

    1978-01-01

    The goals of the MFE Plasma-Material Interaction Program are to provide a quantitative data base for the plasma impurity problem and fuel recycling, to minimize detrimental near-surface alteration of first-wall materials, and to provide designers of confinement experiments and fusion reactors innovative concepts for walls and other components involving plasma interactions. This paper presents a comprehensive and long-range plan for solving not only the long term problems affecting economic production of fusion power but also the present and near-future critical plasma surface problems which seriously threaten progress in near term confinement devices

  14. FED-R: a fusion engineering device utilizing resistive magnets

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.; Kalsi, S.S. (eds.)

    1983-04-01

    The principal purpose of the FED-R tokamak facility is to provide a substantial quasi-steady flux of fusion neutrons irradiating a large test area in order to carry out thermal, neutronic, and radiation effects testing of experimental blanket assemblies having a variety of configurations, compositions, and purposes. The design of the FED-R device also suggests potential for an upgrade that could be employed as a full-scale demonstration reactor for some specific fusion-neutron application when required.

  15. Cryogenic hydrogen data pertinent to magnetic fusion energy

    International Nuclear Information System (INIS)

    Souers, P.C.

    1979-01-01

    To aid future hydrogen fusion researchers, I have correlated the measured physical and chemical properties of the hydrogens below 30 0 K. I have further estimated these properties for deuterium--deuterium tritide--tritium (D 2 --DT--T 2 ) fusion fuel. My resulting synthesis offers a timely view and review of cryogenic hydrogen properties, plus some hydrogen data to room temperature. My general thrust is for workers new to the field, although my discussion of the scientific background of the material would suit specialists

  16. Fusion an introduction to the physics and technology of magnetic confinement fusion

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    This second edition of a popular textbook is thoroughly revised with around 25% new and updated content.It provides an introduction to both plasma physics and fusion technology at a level that can be understood by advanced undergraduates and graduate students in the physical sciences and related engineering disciplines.As such, the contents cover various plasma confinement concepts, the support technologies needed to confine the plasma, and the designs of ITER as well as future fusion reactors.With end of chapter problems for use in courses.

  17. Focal Laser Ablation of Prostate Cancer: Feasibility of Magnetic Resonance Imaging-Ultrasound Fusion for Guidance.

    Science.gov (United States)

    Natarajan, Shyam; Jones, Tonye A; Priester, Alan M; Geoghegan, Rory; Lieu, Patricia; Delfin, Merdie; Felker, Ely; Margolis, Daniel J A; Sisk, Anthony; Pantuck, Allan; Grundfest, Warren; Marks, Leonard S

    2017-10-01

    Focal laser ablation is a potential treatment in some men with prostate cancer. Currently focal laser ablation is performed by radiologists in a magnetic resonance imaging unit (in bore). We evaluated the safety and feasibility of performing focal laser ablation in a urology clinic (out of bore) using magnetic resonance imaging-ultrasound fusion for guidance. A total of 11 men with intermediate risk prostate cancer were enrolled in this prospective, institutional review board approved pilot study. Magnetic resonance imaging-ultrasound fusion was used to guide laser fibers transrectally into regions of interest harboring intermediate risk prostate cancer. Thermal probes were inserted for real-time monitoring of intraprostatic temperatures during laser activation. Multiparametric magnetic resonance imaging (3 Tesla) was done immediately after treatment and at 6 months along with comprehensive fusion biopsy. Ten of 11 patients were successfully treated while under local anesthesia. Mean procedure time was 95 minutes (range 71 to 105). Posttreatment magnetic resonance imaging revealed a confined zone of nonperfusion in all 10 men. Mean zone volume was 4.3 cc (range 2.1 to 6.0). No CTCAE grade 3 or greater adverse events developed and no changes were observed in urinary or sexual function. At 6 months magnetic resonance imaging-ultrasound fusion biopsy of the treatment site showed no cancer in 3 patients, microfocal Gleason 3 + 3 in another 3 and persistent intermediate risk prostate cancer in 4. Focal laser ablation of prostate cancer appears safe and feasible with the patient under local anesthesia in a urology clinic using magnetic resonance imaging-ultrasound fusion for guidance and thermal probes for monitoring. Further development is necessary to refine out of bore focal laser ablation and additional studies are needed to determine appropriate treatment margins and oncologic efficacy. Copyright © 2017 American Urological Association Education and Research, Inc

  18. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion.

    Science.gov (United States)

    Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

  19. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2010-12-01

    Full Text Available Fast ignition is a new method for inertial confinement fusion (ICF in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel . More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion (MTF. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0. 25 and 0. 5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. MTF in dual hot spot can be considered as an appropriate substitution for the current ICF techniques.

  20. Magnetic fusion energy and computers. The role of computing in magnetic fusion energy research and development (second edition)

    International Nuclear Information System (INIS)

    1983-01-01

    This report documents the structure and uses of the MFE Network and presents a compilation of future computing requirements. Its primary emphasis is on the role of supercomputers in fusion research. One of its key findings is that with the introduction of each successive class of supercomputer, qualitatively improved understanding of fusion processes has been gained. At the same time, even the current Class VI machines severely limit the attainable realism of computer models. Many important problems will require the introduction of Class VII or even larger machines before they can be successfully attacked

  1. Safety analysis of superconducting toroidal field magnet for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    1979-02-01

    Safety analysis of the superconducting toroidal field magnet for a Tokamak experimental fusion reactor has been carried out. Works were accident classification, FMEA and FTA analyses, coil stability and quench behavior calculations, failure detection and coil protection system designs, structure analysis, fracture and fatigue studies, and earthquake response analysis. Accident analysis of cryostat and refrigeration system was also performed. The objective of this work is to reveal technological problems of the toroidal field magnet by safety analysis. (author)

  2. Superconductors for fusion magnets tested under pulsed field in SULTAN

    International Nuclear Information System (INIS)

    Bruzzone, P.; Bottura, L.; Katheder, H.; Blau, B.; Rohleder, I.; Vecsey, G.

    1995-01-01

    The SULTAN III test facility has been upgraded with a pair of pulsed field coils to carry out AC losses and stability experiments under full operating loads on large size, fusion conductors for ITER. A fast data aquisition system records the conductor behaviour under fast field transient. The commissioning results of the pulsed coils and instrumentation are critically discussed and the test capability of the set up is assessed. (orig.)

  3. Cerebral magnetic resonance image segmentation using data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Rajapakse, J.C.; Giedd, J.N.; Krain, A.L.; Hamburger, S.D.; Rapoport, J.L.; DeCarli, C. [National Inst. of Health, Bethesda, MD (United States)

    1996-03-01

    A semiautomated method is described for segmenting dual echo MR head scans into gray and white matter and CSF. The method is applied to brain scans of 80 healthy children and adolescents. A probabilistic data fusion equation was used to combine simultaneously acquired T2-weighted and proton density head scans for tissue segmentation. The fusion equation optimizes the probability of a voxel being a particular tissue type, given the corresponding probabilities from both images. The algorithm accounts for the intensity inhomogeneities present in the images by fusion of local regions of the images. The method was validated using a phantom (agarose gel with iron oxide particles) and hand-segmented imager. Gray and white matter volumes for subjects aged 20-30 years were close to those previously published. White matter and CSF volume increased and gray matter volume decreased significantly across ages 4-18 years. White matter, gray matter, and CSF volumes were larger for males than for females. Males and females showed similar change of gray and white matter volumes with age. This simple, reliable, and valid method can be employed in clinical research for quantification of gray and white matter and CSF volumes in MR head scans. Increase in white matter volume may reflect ongoing axonal growth and myelination, and gray matter reductions may reflect synaptic pruning or cell death in the age span of 4-18 years. 41 refs., 5 figs., 3 tabs.

  4. Magnetic Resonance Imaging-Ultrasound Fusion Biopsy During Prostate Cancer Active Surveillance.

    Science.gov (United States)

    Tran, Geraldine N; Leapman, Michael S; Nguyen, Hao G; Cowan, Janet E; Shinohara, Katsuto; Westphalen, Antonio C; Carroll, Peter R

    2017-08-01

    Fusion biopsy using multiparametric magnetic resonance imaging (MRI) and transrectal ultrasound has demonstrated favorable detection rates of high-grade prostate cancer (PCa) among previously undiagnosed men. However, the diagnostic yield among men with active surveillance (AS) remains undefined. To determine the utility of MRI-ultrasound fusion biopsy during AS by reporting rates of PCa upgrading and comparing findings with systematic biopsy. We identified patients with low- and intermediate-risk PCa enrolled in AS who received MRI-ultrasound fusion surveillance biopsies. All completed prostate multiparametric MRI with 3-T and endorectal coil reviewed by radiologists selecting regions of interest, and all underwent MRI-ultrasound fusion biopsy with concurrent systematic biopsy. We report MRI-ultrasound fusion biopsy findings, rates of Gleason score (GS) upgrading to ≥3 + 4 (any upgrading) and to ≥4 + 3 (major upgrading), tumor involvement estimates using descriptive statistics, McNemar's test of symmetry, and multivariate logistic regression. Overall, 207 men underwent MRI-ultrasound fusion biopsy following radiologic suspicion on multiparametric MRI and met inclusion criteria. Agreement between systematic and MRI-ultrasound fusion biopsy GS was borderline statistically significant (p<0.047). In total, 83 men (40%) experienced any upgrading, including 49 (24%) on systematic sampling, 30 (14%) on MRI-targeted cores, and four (2%) on both. Among those with negative results on MRI-ultrasound fusion biopsy, seven (9%) exhibited major upgrading with systematic biopsy. MRI suspicion scores were high (4/5) for all but two patients with any upgrading and for all who experienced major upgrading. On multivariate analysis, older age was associated with higher odds of any upgrading for men with GS ≤3 + 3 on previous biopsy (odds ratio: 1.10; 95% confidence interval, 1.01-1.20; p=0.03). MRI-ultrasound fusion biopsy resulted in upgrading otherwise undetected by systematic

  5. First-wall and blanket engineering development for magnetic-fusion reactors

    International Nuclear Information System (INIS)

    Baker, C.; Herman, H.; Maroni, V.; Turner, L.; Clemmer, R.; Finn, P.; Johnson, C.; Abdou, M.

    1981-01-01

    A number of programs in the USA concerned with materials and engineering development of the first wall and breeder blanket systems for magnetic-fusion power reactors are described. Argonne National Laboratory has the lead or coordinating role, with many major elements of the research and engineering tests carried out by a number of organizations including industry and other national laboratories

  6. Performance of Hall sensor-based devices for magnetic field diagnosis at fusion reactors

    Czech Academy of Sciences Publication Activity Database

    Bolshakova, I.; Ďuran, Ivan; Holyaka, R.; Hristoforou, E.; Marusenkov, A.

    2007-01-01

    Roč. 5, č. 1 (2007), s. 283-288 ISSN 1546-198X R&D Projects: GA AV ČR KJB100430504 Institutional research plan: CEZ:AV0Z20430508 Keywords : Galvanomagnetic * Sensor * Fusion Reactor * Magnetic Diagnostics * Radiation Hardness Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.587, year: 2007

  7. A review of particle fuelling and recycling processes in magnetic fusion devices

    International Nuclear Information System (INIS)

    Pitcher, C.S.

    1988-01-01

    The basic processes involved in hydrogenic fuelling and helium ash recycling in magnetic fusion devices are presented. Discussion centres on the tokamak device and the recycling behaviour of hydrogen isotopes and helium from graphite limiters and stainless steel or inconel walls. The relevant processes reviewed include backscattering, trapping/re-emission and atomic/molecular plasma reactions. (author)

  8. From patronage to partnership: Toward a new industrial policy for the fusion program

    International Nuclear Information System (INIS)

    Miller, B.

    1992-01-01

    The genesis of the overall assessment can be found in a February 1992 letter to the Department's Director of Research from the Fusion Energy Advisory Committee (FEAC) which suggested that the current level of industrial involvement in the fusion program is less than that needed to keep it actively involved for the long term. Specifically, FEAC recommended that open-quotes[in order] to provide U.S. industry with knowledge of fusion requirements and to secure the maximum benefit from industrial involvement, DOE should develop a plan that deliberately includes a broader and more integral industrial participation in the fusion program.close quotes This is another way of expressing the generally felt concern that after 30 years of waiting for some signal of a national commitment to the program, industry interest in it is flagging. Consider the following evidence. There is not significant investor-owner or public utility interest in the program at this time. The Electric Power Research Institute (EPRI), which once was committed to the idea of fusion as the long-term solution to our energy needs, now sees it playing no part in meeting the nation's long-term electrical energy demand. In its most recent annual report, it makes no mention of fusion as a future utility option, effectively consigning it to the role of perennial bridesmaid. Things are little better on the vendor side of industry that has provided the bulk of all industrial involvement in the program. In the final analysis they are profit making entities and must pay attention to the bottom-line of even their speculative research and development efforts or eventually abandon them. In short, there is no operative government policy on industrial involvement in the fusion program, only an unwritten guideline that industry growth will follow growth in the laboratory or core programs in good times and industry contraction will precede core contraction in bad times

  9. DEALS: a maintainable superconducting magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Hseih, S.Y.; Danby, G.; Powell, J.R.

    1979-01-01

    The feasibility of demountable superconducting magnet systems has been examined in a design study of a DEALS [Demountable Externally Anchored Low Stress] TF magnet for an HFITR [High Field Ignition Test Reactor] Tokamak device. All parts of the system appear feasible, including the demountable superconducting joints. Measurements on small scale prototype joints indicate that movable pressure contact joints exhibit acceptable electrical, mechanical, and cryogenic performance. Such joints permit a relatively simple support structure and are readily demountable. Assembly and disassembly sequences are described whereby any failed portion of the magnet, or any part of the reactor inside the TF coils can be removed and replaced if necessary

  10. Fusion

    Science.gov (United States)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  11. Activation of structural alloys in fusion reactor magnets

    International Nuclear Information System (INIS)

    Mann, F.M.; Doran, D.G.

    1986-01-01

    Using the REAC2 code system, both short-term and long-term activation were calculated for possible structural and magnet materials at the shield-magnet interface. The flux was taken from the STARFIRE conceptual design and a 30-year lifetime was assumed. Short-term activation does not seem to be a problem. Only materials with large amounts of niobium appear to be a potential problem for long-term activation. 2 tabs

  12. First-wall design limitations for linear magnetic fusion (LMF) reactors

    International Nuclear Information System (INIS)

    Gryczkowski, G.E.; Krakowski, R.A.; Steinhauer, L.C.; Zumdieck, J.

    1978-01-01

    One approach to the endloss problem in linear magnetic fusion (LMF) uses high magnetic field to reduce the required confinement time. This approach is limited by magnet stresses and bremsstrahlung heating of the first wall; the first-wall thermal-pulsing issue is addressed. Pertinent thermophysical parameters are developed in the context of high-field LMF to identify promising first-wall materials, and thermal fatigue experiments relevant to LMF first walls are reviewed. High-flux first-wall concepts are described which include both solid and evaporating first-wall configurations

  13. Mechanical behavior of the mirror fusion test Facility superconducting magnet coils

    International Nuclear Information System (INIS)

    Horvath, J.A.

    1980-01-01

    The mechanical response to winding and electromagnetic loads of the Mirror Fusion Test Facility (MFTF) superconducting coil pack is presented. The 375-ton (3300 N) MFTF Yin-Yang magnet, presently the world's largest superconducting magnet, is scheduled for acceptance cold-testing in May of 1981. The assembly is made up of two identical coils which together contain over 15 miles (24 km) of superconductor wound in 58 consecutive layers of 24 turns each. Topics associated with mechanical behavior include physical properties of the coil pack and its components, winding pre-load effects, finite element analysis, magnetic load redistribution, and the design impact of predicted conductor motion

  14. Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas.

    Science.gov (United States)

    Srinivasan, Bhuvana; Dimonte, Guy; Tang, Xian-Zhu

    2012-04-20

    Rayleigh-Taylor instabilities (RTI) in inertial confinement fusion implosions are expected to generate magnetic fields. A Hall-MHD model is used to study the field generation by 2D single-mode and multimode RTI in a stratified two-fluid plasma. Self-generated magnetic fields are predicted and these fields grow as the RTI progresses via the ∇n(e)×∇T(e) term in the generalized Ohm's law. Scaling studies are performed to determine the growth of the self-generated magnetic field as a function of density, acceleration, Atwood number, and perturbation wavelength.

  15. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    International Nuclear Information System (INIS)

    Schissel, David P.; Abla, G.; Burruss, J. R.; Feibush, E.; Fredian, T. W.; Goode, M. M.; Greenwald, M. J.; Keahey, K.; Leggett, T.; Li, K.; McCune, D. C.; Papka, M. E.; Randerson, L.; Sanderson, A.; Stillerman, J.; Thompson, M. R.; Uram, T.; Wallace, G.

    2012-01-01

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES Grid(FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP) provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  16. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Schissel, David P. [Princeton Plasma Physics Lab., NJ (United States); Abla, G. [Princeton Plasma Physics Lab., NJ (United States); Burruss, J. R. [Princeton Plasma Physics Lab., NJ (United States); Feibush, E. [Princeton Plasma Physics Lab., NJ (United States); Fredian, T. W. [Massachusetts Institute of Technology, Cambridge, MA (United States); Goode, M. M. [Lawrence Berkeley National Lab., CA (United States); Greenwald, M. J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Keahey, K. [Argonne National Lab., IL (United States); Leggett, T. [Argonne National Lab., IL (United States); Li, K. [Princeton Univ., NJ (United States); McCune, D. C. [Princeton Plasma Physics Lab., NJ (United States); Papka, M. E. [Argonne National Lab., IL (United States); Randerson, L. [Princeton Plasma Physics Lab., NJ (United States); Sanderson, A. [Univ. of Utah, Salt Lake City, UT (United States); Stillerman, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Thompson, M. R. [Lawrence Berkeley National Lab., CA (United States); Uram, T. [Argonne National Lab., IL (United States); Wallace, G. [Princeton Univ., NJ (United States)

    2012-12-20

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES Grid (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  17. A D-He3 fusion reactor based on a dipole magnetic field

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Chen, Liu; Princeton Univ., NJ

    1989-07-01

    An innovative fusion reactor suitable for D-He 3 fuel is proposed, based on a dipole magnetic field produced by a simple one-turn coil with approx lt 16 T near-field intensity. The equilibrium plasma, phase-space density satisfies ∂ cflx f 0 (μ, J, ψ)/∂ψ = O, where ψ is the flux function, has a steep enough pressure profile for an efficient fusion reaction yet is stable for low frequency instabilities to local beta exceeding unity. The semi-open field configuration is particularly suitable for D-He 3 reactions. 8 refs., 1 fig

  18. Radiation effects in Be and Al for a magnetic fusion production reactor

    Science.gov (United States)

    Mitchell, J. B.

    1986-12-01

    Estimates of the expected performance of beryllium and several aluminum alloy structural components of the breeding blanket of a magnetic fusion production reactor are made based on the known behavior and properties of these materials in fission reactor applications. Comparisons of the irradiation damage effects resulting from the fission reactor neutron spectra and the fusion reactor blanket spectra indicate that beryllium will perform well in the breeding blanket for at least one year and the aluminum alloy 5052 will retain structural integrity for about 5 years.

  19. Magnet and conductor developments for the Mirror Fusion Program

    International Nuclear Information System (INIS)

    Cornish, D.N.

    1981-01-01

    The conductor development and the magnet design and construction for the MFTF are described. Future plans for the Mirror Program and their influence on the associated superconductor development program are discussed. Included is a summary of the progress being made to develop large, high-field, multifilamentary Nb 3 Sn superconductors and the feasibility of building a 12-T yin-yang set of coils for the machine to follow MFTF. In a further look into the future, possible magnetic configurations and requirements for mirror reactors are surveyed

  20. Utilization of a Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research. Report of a Coordinated Research Project 2011–2016

    International Nuclear Information System (INIS)

    2016-12-01

    The IAEA actively promotes the development of controlled fusion as a source of energy. Through its coordinated research activities, the IAEA helps Member States to exchange and establish scientific and technical knowledge required for the design, construction and operation of a fusion reactor. Due to their compactness, flexibility and low operation costs, small fusion devices are a great resource for supporting and accelerating the development of mainstream fusion research on large fusion devices such as the International Thermonuclear Experimental Reactor. They play an important role in investigating the physics of controlled fusion, developing innovative technologies and diagnostics, testing new materials, training highly qualified personnel for larger fusion facilities, and supporting educational programmes for young scientists. This publication reports on the research work accomplished within the framework of the Coordinated Research Project (CRP) on Utilization of the Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research, organized and conducted by the IAEA in 2011–2016. The CRP has contributed to the coordination of a network of research institutions, thereby enhancing international collaboration through scientific visits, joint experiments and the exchange of information and equipment. A total of 16 institutions and 14 devices from 13 Member States participated in this CRP (Belgium, Bulgaria, Canada, China, Costa Rica, the Czech Republic, the Islamic Republic of Iran, Kazakhstan, Pakistan, Portugal, the Russian Federation, Ukraine and the United Kingdom).

  1. Mirror fusion test facility magnet system. Final design report

    International Nuclear Information System (INIS)

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-01-01

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy

  2. Mirror fusion test facility magnet system. Final design report

    Energy Technology Data Exchange (ETDEWEB)

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-09-03

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy. (MOW)

  3. Production of muons for fusion catalysis in a magnetic mirror configuration. Revision 1

    International Nuclear Information System (INIS)

    Moir, R.W.; Chapline, G.F. Jr.

    1986-01-01

    For muon-catalyzed fusion to be of practical interest, a very efficient means of producing muons must be found. We describe a scheme for producing muons that may be more energy efficient than any heretofore proposed. There are, in particular, some potential advantages of creating muons from collisions of high energy tritons confined in a magnetic mirror configuration. If one could catalyze 200 fusions per muon and employ a uranium blanket that would multiply the neutron energy by a factor of 10, one might produce electricity with an overall plant efficiency (ratio of electric energy produced to nuclear energy released) approaching 30%. One possible near term application of a muon-producing magnetic-mirror scheme would be to build a high-flux neutron source for radiation damage studies. The careful arrangement of triton orbits will result in many of the π - 's being produced near the axis of the magnetic mirror. The pions quickly decay into muons, which are transported into a small (few-cm-diameter) reactor chamber producing approximately 1-MW/m 2 neutron flux on the chamber walls, using a laboratory accelerator and magnetic mirror. The costs of construction and operation of the triton injection accelerator probably introduces most of the uncertainty in the viability of this scheme. If a 10-μA, 600 MeV neutral triton accelerator could be built for less than $100 million and operated cheaply enough, one might well bring muon-catalyzed fusion into practical use

  4. Fast magnetic field computation in fusion technology using GPU technology

    Energy Technology Data Exchange (ETDEWEB)

    Chiariello, Andrea Gaetano [Ass. EURATOM/ENEA/CREATE, Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy); Formisano, Alessandro, E-mail: Alessandro.Formisano@unina2.it [Ass. EURATOM/ENEA/CREATE, Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy); Martone, Raffaele [Ass. EURATOM/ENEA/CREATE, Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy)

    2013-10-15

    Highlights: ► The paper deals with high accuracy numerical simulations of high field magnets. ► The porting of existing codes of High Performance Computing architectures allowed to obtain a relevant speedup while not reducing computational accuracy. ► Some examples of applications, referred to ITER-like magnets, are reported. -- Abstract: One of the main issues in the simulation of Tokamaks functioning is the reliable and accurate computation of actual field maps in the plasma chamber. In this paper a tool able to accurately compute magnetic field maps produced by active coils of any 3D shape, wound with high number of conductors, is presented. Under linearity assumption, the coil winding is modeled by means of “sticks”, following each conductor's shape, and the contribution of each stick is computed using high speed Graphic Computing Units (GPU's). Relevant speed enhancements with respect to standard parallel computing environment are achieved in this way.

  5. A National Collaboratory To Advance The Science Of High Temperature Plasma Physics For Magnetic Fusion

    International Nuclear Information System (INIS)

    Sanderson, Allen R.; Johnson, Christopher R.

    2006-01-01

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  6. A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION

    Energy Technology Data Exchange (ETDEWEB)

    Allen R. Sanderson; Christopher R. Johnson

    2006-08-01

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  7. Review of heat transfer problems associated with magnetically-confined fusion reactor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.A.; Werner, R.W.; Carlson, G.A.; Cornish, D.N.

    1976-04-01

    Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements. Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated.

  8. Review of heat transfer problems associated with magnetically-confined fusion reactor concepts

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Werner, R.W.; Carlson, G.A.; Cornish, D.N.

    1976-01-01

    Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements. Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated

  9. Fourth annual progress report on special-purpose materials for magnetically confined fusion reactors

    International Nuclear Information System (INIS)

    1982-08-01

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. The Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits

  10. Neutron irradiation effects on superconducting and stabilizing materials for fusion magnets

    International Nuclear Information System (INIS)

    Maurer, W.

    1984-05-01

    Available low-temperature neutron irradiation data for the superconductors NbTi and Nb 3 Sn and the stabilization materials Cu and Al are collected and maximum tolerable doses for these materials are defined. A neutron flux in a reactor of about 10 9 n/cm 2 s at the magnet position is expected. However, in fusion experiments the flux can be higher by an order of magnitude or more. The energy spectrum is similar to a fission reactor. A fluence of about 10 18 n/cm 2 results during the lifetime of a fusion magnet (about 20 full power years). At this fluence and energy spectrum no severe degradation of the superconducting properties of NbTi and Nb 3 Sn will occur. But the radiation-induced resistivity is for Cu about a twentieth of the room temperature resistivity and a tenth for Al. (orig.) [de

  11. Finite element analysis of structural response of superconducting magnet for a fusion reactor

    International Nuclear Information System (INIS)

    Reich, M.; Powell, J.; Bezler, P.; Chang, T.Y.; Prachuktam, S.

    1975-01-01

    In the proposal Tokamak fusion reactor, the superconducting unit consists of an assembly of D-shaped magnets standing vertically and arranged in a toroidal configuration. Each magnet is a composite structure comprised of Nb-22%Ti and Nb-48%Ti, and stabilizing metals such as copper and aluminum or stainless steel held together by reinforced epoxies which also serve as insulators and spacers. The magnets are quite large, typically 15-20 meters in diameter with rectangular cross sections around 0.93x2m. Under static loading condition, the magnet is subjected to dead weight and large magnetic field forces, which may induce high stresses in the structure. Furthermore, additional stresses due to earthquake must also be considered for the design of the component. Both static and dynamic analyses of a typical field magnet have been performed by use of the finite element method. The magnet was assumed to be linearly elastic with equivalent homogeneous material properties. Various finite element models have been considered in order to better represent the structure for a particular loading case. For earthquake analysis, the magnet was assumed to be subjected to 50% of the El Centro 1940 earthquake and the dynamic response was obtained by the displacement spectrum analysis procedure. In the paper, numerical results are presented and the structure behavior of the magnet under static and dynamic loading conditions is discussed

  12. Benefit-analysis of accomplishments from the magnetic fusion energy (MFE) research program

    International Nuclear Information System (INIS)

    Lago, A.M.; Weinblatt, H.; Hamilton, E.E.

    1987-01-01

    This report presents the results of a study commissioned by the US Department of Energy's (DOE) Office of Program Analysis to examine benefits from selected accomplishments of DOE's Magnetic Fusion Energy (MFE) Research Program. The study objectives are presented. The MFE-induced innovation and accomplishments which were studied are listed. Finally, the benefit estimation methodology used is described in detail. The next seven chapters document the results of benefit estimation for the MFE accomplishments studied

  13. Analyzing large data sets from XGC1 magnetic fusion simulations using apache spark

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, R. Michael [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-11-21

    Apache Spark is explored as a tool for analyzing large data sets from the magnetic fusion simulation code XGCI. Implementation details of Apache Spark on the NERSC Edison supercomputer are discussed, including binary file reading, and parameter setup. Here, an unsupervised machine learning algorithm, k-means clustering, is applied to XGCI particle distribution function data, showing that highly turbulent spatial regions do not have common coherent structures, but rather broad, ring-like structures in velocity space.

  14. Soldered joints—an essential component of demountable high temperature superconducting fusion magnets

    Science.gov (United States)

    Tsui, Yeekin; Surrey, Elizabeth; Hampshire, Damian

    2016-07-01

    Demountable superconducting magnet coils would offer significant benefits to commercial nuclear fusion power plants. Whether large pressed joints or large soldered joints provide the solution for demountable fusion magnets, a critical component or building block for both will be the many, smaller-scale joints that enable the supercurrent to leave the superconducting layer, cross the superconducting tape and pass into the solder that lies between the tape and the conductor that eventually provides one of the demountable surfaces. This paper considers the electrical and thermal properties of this essential component part of demountable high temperature superconducting (HTS) joints by considering the fabrication and properties of jointed HTSs consisting of a thin layer of solder (In52Sn48 or Pb38Sn62) sandwiched between two rare-earth-Ba2Cu3O7 (REBCO) second generation HTS coated conductors (CCs). The HTS joints are analysed using numerical modelling, critical current and resistivity measurements on the joints from 300 to 4.2 K in applied magnetic fields up to 12 T, as well as scanning electron microscopy studies. Our results show that the copper/silver layers significantly reduce the heating in the joints to less than a few hundred mK. When the REBCO alone is superconducting, the joint resistivity (R J) predominantly has two sources, the solder layer and an interfacial resistivity at the REBCO/silver interface (∼25 nΩ cm2) in the as-supplied CCs which together have a very weak magnetoresistance in fields up to 12 T. We achieved excellent reproducibility in the R J of the In52Sn48 soldered joints of better than 10% at temperatures below T c of the REBCO layer which can be compared to variations of more than two orders of magnitude in the literature. We also show that demountable joints in fusion energy magnets are viable and need only add a few percent to the total cryogenic cost for a fusion tokamak.

  15. Monitoring of static and variable electromagnetic fields in a large magnetic fusion plasma experimental facility

    International Nuclear Information System (INIS)

    Uda, T.; Tanaka, M.; Kawano, T.; Kamimura, Y.; Wang, J.; Fujiwara, O.

    2008-01-01

    Full text: Nuclear fusion research has been increased worldwide to develop new reliable energy source. In order to occur nuclear fusion reaction extremely high temperature plasma must be confined by magnet. Plasma confinement physics and technology has been studied by such as the large helical device LHD, which is using super conducting magnet system and plasma heating devices by electromagnetic waves. In the large magnetic fusion experimental facility, various electric power devices have potential to exposure workers by leakage of electromagnetic fields. Regarding the environmental safety static magnetic field and variable electromagnetic fields had been monitored around the LHD and related devices. Many kinds of electric power devices of which frequencies distribute from static magnetic field to high frequency of electromagnetic waves. The magnetic strength of LHD is about 3 T and workers are restricted to enter into the LHD hall, but there are many workers in the building. Environmental magnetic strength at the fixed point, where is 23 m far from the center of LHD, had been continuously measured with Gauss Meter 9900 (F.W. Bell) since the first plasma in 1998. After the plasma experiment background level was increased to about 0.06 m T, which is a double of terrestrial magnetic field. It was increased to 0.1-0.2 m T on the plasma experiment and in the case of the super conducting magnet was quickly decreased for protection of the coils system it was increased to 1 m T in short time. Extremely low frequency ELF of electromagnetic fields are caused mainly around the coil electric power supplies. The ELF magnetic strength was measured with ELT-400 (Narda). Near the supplies it was increased to higher than the occupational restriction level of the ICNIRP guide line. In order to heat ion plasma 38 MHz electromagnetic wave heating are used. Around the electromagnetic wave generators, electromagnetic fields have been continuously measured using EMC-300 EP (Narda) with

  16. Program for development of toroidal superconducting magnets for fusion research, May 1975

    International Nuclear Information System (INIS)

    Long, H.M.; Lubell, M.S.

    1975-11-01

    The objective of this program is a tested magnet design which demonstrates the suitability and reliability needed to qualify toroidal superconducting magnets for fusion research devices in a time compatible with the D-T burning experiments time frame. The overall applied development program including tasks, manpower, and cost estimates is detailed here, but for the full toroidal system only the cost and time frame are outlined to show compatibility with the present program. The details of the full toroidal system fall under major device fabrication and will be included in a subsequent document

  17. Energy system for the generation of divertor magnetic fields in the PDX fusion research device

    International Nuclear Information System (INIS)

    Turitzin, N.M.

    1976-05-01

    One of the major problems encountered in the development of Tokamak type fusion reactors is the presence of impurities in the plasma. The PDX device is designed to study the operation of poloidal magnetic field divertors and consequent magnetic limiters for controlling and reducing the amount of impurities. A system of coils placed at specific locations produces a required field configuration for the poloidal divertor. This paper describes the system of energy supplies required and the interrelations of field coil currents during plasma current initiation, growth and steady state

  18. Demountable low stress high field toroidal field magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Hsieh, D.; Lehner, J.; Suenaga, M.

    1977-01-01

    A new type of superconducting magnet system for large fusion reactors is described in this report. Instead of winding large planar or multi-axis coils, as has been proposed in previous fusion reactor designs, the superconducting coils are made by joining together several prefabricated conductor sections. The joints can be unmade and sections removed if they fail. Conductor sections can be made at a factory and shipped to the reactor site for assembly. The conductor stress level in the assembled coil can be kept small by external support of the coil at a number of points along its perimeter, so that the magnetic forces are transmitted to an external warm reinforcement structure. This warm reinforcement structure can also be the primary containment for the fusion reactor, constructed similar to a PCRV (Prestressed Concrete Reactor Vessel) used in fission reactors. Low thermal conductivity, high strength supports are used to transfer the magnetic forces to the external reinforcement through a hydraulic system. The hydraulic supports are movable and can be programmed to accommodate thermal contraction and to minimize stress in the superconducting coil

  19. Special-purpose materials for magnetically confined fusion reactors. Third annual progress report

    International Nuclear Information System (INIS)

    1981-11-01

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. It is recognized that there will be numerous materials problems that will arise during the design and construction of large magnetic-fusion energy devices such as the Engineering Test Facility (ETF) and Demonstration Reactor (DEMO). Most of these problems will be specific to a particular design or project and are the responsibility of the project, not the Materials and Radiation Effects Branch. Consequently, the Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits

  20. Demountable low stress high field toroidal field magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Hsieh, D.; Lehner, J.; Suenaga, M.

    1978-01-01

    A new type of superconducting magnet system for large fusion reactors is described. Instead of winding large planar or multi-axis coils, as has been proposed in previous fusion reactor designs, the superconducting coils are made by joining together several prefabricated conductor sections. The joints can be unmade and sections removed if they fail. Conductor sections can be made at a factory and shipped to the reactor site for assembly. The conductor stress level in the assembled coil can be kept small by external support of the coil at a number of points along its perimeter, so that the magnetic forces are transmitted to an external warm reinforcement structure. This warm reinforcement structure can also be the primary containment for the fusion reactor, constructed similar to a PCRV (Prestressed Concrete Reactor Vessel) used in fission reactors. Low thermal conductivity, high strength supports are used to transfer the magnetic forces to the external reinforcement through a hydraulic system. The hydraulic supports are movable and can be programmed to accommodate thermal contraction and to minimize stress in the superconducting coil. (author)

  1. Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

    Directory of Open Access Journals (Sweden)

    Hyeon K. Park

    2017-10-01

    Full Text Available The role of electromagnetic (EM waves in magnetic fusion plasma—ranging from radio frequency (RF to microwaves—has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV = 10000 K that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

  2. The superconducting magnet system for the WENDELSTEIN 7-X fusion experiment

    International Nuclear Information System (INIS)

    Sapper, J.

    1995-01-01

    In devices of the TOKAMAK type (JET/Culham, GB, and TFTR/Princeton Laboratory, U.S.A.), successful plasma ignition was achieved, and fusion-induced generation of electricity of some megawatts, for a period of seconds. Experiments of the next generation will tackle the problems of electricity generation sustained over longer periods, for which the STELLARATOR machines are the device of choice, as these, other than the TOKAMAKS, do not require generation of plasma ring currents between 10 and 20 MA. The magnet system in the STELLARATOR devices has to be a superconducting magnet system. At present, bench-scale LT superconductors are available made of materials on the basis of NbTi or Nb 3 Sn, which are applied according to system configuration ( induction at the conductor, current density, temperature, alternating magnetic field load). The paper explains the magnet system intended for use in the planned STELLARATOR WENDELSTEIN 7-X experiments at IPP, Garching. (orig./MM) [de

  3. Organic insulators and the copper stabilizer for fusion-reactor magnets

    International Nuclear Information System (INIS)

    Coltman, R.R. Jr.

    1981-11-01

    The materials which compose the large composite superconducting fusion reactor magnets are subjected to mechanical stress, neutron and gamma-ray radiation with broad energy spectra, high magnetic fields, and thermal cycling from 4 to 300 K. Of the materials now considered for use in the magnets, results show that the organic insulators and the Cu stabilizer are the most sensitive to this environment. In response to the need for stabilizer data, magnetoresistivity changes were studied in eight variously prepared specimens of Cu throughout five cycles of an alternate neutron irradiation (4.0 K) and annealing (14 h at 307 K) program. The results were combined with those on the radiation behavior of epoxy and polyimide organic insulators to provide a preliminary assessment of their comparative radiation resistance in a typical magnet location of the Experimental Power Reactor

  4. Non linear dynamics of magnetic islands in fusion plasmas

    International Nuclear Information System (INIS)

    Meshcheriakov, D.

    2012-10-01

    In this thesis we investigate the issues of linear stability of the tearing modes in a presence of both curvature and diamagnetic rotation using the non linear full-MHD toroidal code XTOR-2F, which includes anisotropic heat transport, diamagnetic and geometrical effects. This analysis is applied to one of the fully non-inductive discharges on Tore-Supra. Such experiments are crucially important to demonstrate reactor scale steady state operation for the tokamak. The possibility of a full linear stabilization of the tearing modes by diamagnetic rotation in the presence of toroidal curvature is shown. The stabilization threshold does not follow the classical scaling law connecting the growth rate of islands to plasma conductivity, measured here by the Lundquist number (S). However, for numerical reasons, the conductivity used in the simulations is lower than that of the experiment, which raises the question of extrapolation of the obtained results to the experimental situation. The extrapolation of the obtained results requires simulations with several different conductivities. It predicts that the mode at q = 2 surface to be stable at value of diamagnetic frequency consistent with the experimental one at S = S(exp). In the linearly stable domain, the mode is metastable: saturation level depends on the seed island size. In the non linear regime, the saturation of n=1, m=2 mode is found to be strongly reduced by diamagnetic rotation and by Lundquist number. However, the extrapolation to the experimental situation shows that if the island is destabilized, it will saturate at a detectable level for the Tore Supra diagnostic. For a large plasma aspect ratio (i.e. weak curvature effects), the reduction of the saturated width by diamagnetic frequency takes the form of a jump reminiscent of multiple states evidenced in slab geometry case. The question of extrapolation of the obtained results towards future generation of fusion devices is also addressed. In particular, for

  5. Program for development of high-field superconducting magnets for fusion research

    International Nuclear Information System (INIS)

    1975-01-01

    Three superconducting magnet programs at LLL are outlined. The first program, the one considered in greatest detail, is a developmental program in which LLL will work closely with superconductor manufacturers to develop multifilamentary Nb 3 Sn superconductor suitable for use in large CTR magnets. The result of this program will be the fabrication of a rather large magnet (but one that is much smaller than future CTR magnets) and the determination of its performance limitations. In the second program, the developed multifilamentary Nb 3 Sn superconductor will be used to construct the magnets for the Fusion Engineering Research Facility (FERF) machine. In this program, the bulk of the effort will be in magnet design and winding. The third program chronologically overlaps the first two programs. This program includes the fabrication and testing of the superconducting magnets for the MX machine although, as explained in the Technical Plan, only the cost of the development work is included in this document. At the present time, Nb--Ti superconductor is being considered. Apart from some initial conductor design work, the major effort will be in magnet design and winding

  6. Summary of the report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy

    International Nuclear Information System (INIS)

    Holdren, J.P.; Berwald, D.H.; Budnitz, R.J.

    1987-01-01

    The Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) has assessed magnetic fusion energy's prospects for providing energy with economic, environmental, and safety characteristics that would be attractive compared with other energy sources (mainly fission) available in the year 2015 and beyond. ESECOM gives particular attention to the interaction of environmental, safety, and economic characteristics of a variety of magnetic fusion reactors, and compares them with a variety of fission cases. Eight fusion cases, two fusion-fission hybrid cases, and four fission cases are examined, using consistent economic and safety models. These models permit exploration of the environmental, safety, and economic potential of fusion concepts using a wide range of possible materials choices, power densities, power conversion schemes, and fuel cycles. The ESECOM analysis indicates that magnetic fusion energy systems have the potential to achieve costs-of-electricity comparable to those of present and future fission systems, coupled with significant safety and environmental advantages. 75 refs., 2 figs., 24 tabs

  7. Fifty Years of Magnetic Fusion Research (1958–2008: Brief Historical Overview and Discussion of Future Trends

    Directory of Open Access Journals (Sweden)

    Laila A. El-Guebaly

    2010-06-01

    Full Text Available Fifty years ago, the secrecy surrounding magnetically controlled thermonuclear fusion had been lifted allowing researchers to freely share technical results and discuss the challenges of harnessing fusion power. There were only four magnetic confinement fusion concepts pursued internationally: tokamak, stellarator, pinch, and mirror. Since the early 1970s, numerous fusion designs have been developed for the four original and three new approaches: spherical torus, field-reversed configuration, and spheromak. At present, the tokamak is regarded worldwide as the most viable candidate to demonstrate fusion energy generation. Numerous power plant studies (>50, extensive R&D programs, more than 100 operating experiments, and an impressive international collaboration led to the current wealth of fusion information and understanding. As a result, fusion promises to be a major part of the energy mix in the 21st century. The fusion roadmaps developed to date take different approaches, depending on the anticipated power plant concept and the degree of extrapolation beyond ITER. Several Demos with differing approaches will be built in the US, EU, Japan, China, Russia, Korea, India, and other countries to cover the wide range of near-term and advanced fusion systems.

  8. Compression, heating and fusion in dynamic pinches stabilized by an axial magnetic field

    International Nuclear Information System (INIS)

    Libermann, M.A.; Golberg, S.M.; Velikovich, A.L.

    1990-01-01

    The inertial confinement Z-pinch fusion systems have at least one advantage: there is no limitation on I like I PB , the current can be as high as the pulsed power driver is capable to deliver. When a dynamic Z-pinch is treated as an ICF system, its most important characteristic is stability of compression. The idea of combining the advantages of inertial and magnetic approaches to controlled fusion in some hybrid scheme has been discussed for a long time. It was shown that a sufficiently strong magnetic field in the ICF systems can localize the ignition by suppressing the electron thermal conductivity and diffusion of the α-particles, and also provide an initial preheating of the compressed plasma. It was also pointed out that perhaps the most important is the possibility to inhibit the development of hydrodynamic instabilities in the course of compression with the aid of the magnetic field, thus increasing the degree of stable radial compression. It was shown, that a relatively small axial magnetic field can significantly improve the uniform radial compression by suppressing the most dangerous sausage and kink modes of RT instability associated with inward acceleration of an annular plasma by the azimuthal magnetic field. This allows one to obtain higher degrees of stable radial compression up to 22-fold compression achieved instead of convetnional -8. The stabilizing effect of axial magnetic field on pinch implosions can be explained with the aid of an ideal MHD model. Stability of an implosion can be expected if the final number of e-folding of the dominating perturbation modes n ef is shown to be small or, at least, limited in comparison with the case when no axial magnetic field is present. (author) 9 refs., 1 fig

  9. The Progress of Research Project for Magnetized Target Fusion in China

    Science.gov (United States)

    Yang, Xian-Jun

    2015-11-01

    The fusion of magnetized plasma called Magnetized Target Fusion (MTF) is a hot research area recently. It may significantly reduce the cost and size. Great progress has been achieved in past decades around the world. Five years ago, China initiated the MTF project and has gotten some progress as follows: 1. Verifying the feasibility of ignition of MTF by means of first principle and MHD simulation; 2. Generating the magnetic field over 1400 Tesla, which can be suppress the heat conduction from charged particles, deposit the energy of alpha particle to promote the ignition process, and produce the stable magnetized plasma for the target of ignition; 3. The imploding facility of FP-1 can put several Mega Joule energy to the solid liner of about ten gram in the range of microsecond risen time, while the simulating tool has been developed for design and analysis of the process; 4. The target of FRC can be generated by ``YG 1 facility'' while some simulating tools have be developed. Next five years, the above theoretical work and the experiments of MTF may be integrated to step up as the National project, which may make my term play an important lead role and be supposed to achieve farther progress in China. Supported by the National Natural Science Foundation of China under Grant No 11175028.

  10. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited)

    International Nuclear Information System (INIS)

    Smith, Roger J.

    2008-01-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B pol diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T e , n e , and B || along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n e B || product and higher n e and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  11. JSME construction standard for superconducting magnets of fusion facilities. Toward the construction of ITER

    International Nuclear Information System (INIS)

    Nakasone, Yuji; Takahashi, Yukio; Sato, Kazuyoshi; Nishimura, Arata; Suzuki, Tetsuya; Irie, Hirosada; Nakahira, Masataka

    2009-01-01

    The present paper describes the general view of the construction standard, which the Japan Society of Mechanical Engineers (JSME) has recently set up and published, for superconducting magnet structures to be used in nuclear fusion facilities. The present target of the standard is tokamak-type fusion energy facilities, especially the International Thermonuclear Experimental Reactor called ITER for short. The standard contains rules for structural materials including cryogenic materials, structural design considering magnetic forces, manufacture including welding and installation, nondestructive testing, pressure proof tests and leak tests of toroidal field magnet structures. The standard covers requirements for structural integrity, deformation control, and leak tightness of all the components of the superconducting magnets and their supports except for superconducting strands and electrical insulators. The standard does not cover deterioration, which may occur in service as a result of corrosion, radiation effects, or instability of material. The standard consists of seven articles and twelve mandatory and non-mandatory appendices to the articles; i.e., (1) Scope, roles and responsibilities, (2) Materials, (3) Structural design, (4) Fabrication and installation, (5) Non-destructive examination, (6) Pressure and leak testing, and (7) Terms used in general requirements. (author)

  12. Assessing the Performance of Sensor Fusion Methods: Application to Magnetic-Inertial-Based Human Body Tracking.

    Science.gov (United States)

    Ligorio, Gabriele; Bergamini, Elena; Pasciuto, Ilaria; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2016-01-26

    Information from complementary and redundant sensors are often combined within sensor fusion algorithms to obtain a single accurate observation of the system at hand. However, measurements from each sensor are characterized by uncertainties. When multiple data are fused, it is often unclear how all these uncertainties interact and influence the overall performance of the sensor fusion algorithm. To address this issue, a benchmarking procedure is presented, where simulated and real data are combined in different scenarios in order to quantify how each sensor's uncertainties influence the accuracy of the final result. The proposed procedure was applied to the estimation of the pelvis orientation using a waist-worn magnetic-inertial measurement unit. Ground-truth data were obtained from a stereophotogrammetric system and used to obtain simulated data. Two Kalman-based sensor fusion algorithms were submitted to the proposed benchmarking procedure. For the considered application, gyroscope uncertainties proved to be the main error source in orientation estimation accuracy for both tested algorithms. Moreover, although different performances were obtained using simulated data, these differences became negligible when real data were considered. The outcome of this evaluation may be useful both to improve the design of new sensor fusion methods and to drive the algorithm tuning process.

  13. Magnetic Fusion Science Fellowship program: Summary of program activities for calendar year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    This report describes the 1985-1986 progress of the Magnetic Fusion Science Fellowship program (MFSF). The program was established in January of 1985 by the Office of Fusion Energy (OFE) of the US Department of Energy (DOE) to encourage talented undergraduate and first-year graduate students to enter qualified graduate programs in the sciences related to fusion energy development. The program currently has twelve fellows in participating programs. Six new fellows are being appointed during each of the program's next two award cycles. Appointments are for one year and are renewable for two additional years with a three year maximum. The stipend level also continues at a $1000 a month or $12,000 a year. The program pays all tuition and fee expenses for the fellows. Another important aspect of the fellowship program is the practicum. During the practicum fellows receive three month appointments to work at DOE designated fusion science research and development centers. The practicum allows the MFSF fellows to directly participate in on-going DOE research and development programs

  14. The Science and Technology Challenges of the Plasma-Material Interface for Magnetic Fusion Energy

    Science.gov (United States)

    Whyte, Dennis

    2013-09-01

    The boundary plasma and plasma-material interactions of magnetic fusion devices are reviewed. The boundary of magnetic confinement devices, from the high-temperature, collisionless pedestal through to the surrounding surfaces and the nearby cold high-density collisional plasmas, encompasses an enormous range of plasma and material physics, and their integrated coupling. Due to fundamental limits of material response the boundary will largely define the viability of future large MFE experiments (ITER) and reactors (e.g. ARIES designs). The fusion community faces an enormous knowledge deficit in stepping from present devices, and even ITER, towards fusion devices typical of that required for efficient energy production. This deficit will be bridged by improving our fundamental science understanding of this complex interface region. The research activities and gaps are reviewed and organized to three major axes of challenges: power density, plasma duration, and material temperature. The boundary can also be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are reviewed, with a particular emphasis on establishing the use dimensionless parameters to understand this complex system. Proposed technology and science innovations towards solving the PMI/boundary challenges will be examined. Supported by US DOE award DE-SC00-02060 and cooperative agreement DE-FC02-99ER54512.

  15. Generation and compression of a target plasma for magnetized target fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, R.C.; Lindemuth, I.R.; Sheehey, P.T. [and others

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Magnetized target fusion (MTF) is intermediate between the two very different approaches to fusion: inertial and magnetic confinement fusion (ICF and MCF). Results from collaboration with a Russian MTF team on their MAGO experiments suggest they have a target plasma suitable for compression to provide an MTF proof of principle. This LDRD project had tow main objectives: first, to provide a computational basis for experimental investigation of an alternative MTF plasma, and second to explore the physics and computational needs for a continuing program. Secondary objectives included analytic and computational support for MTF experiments. The first objective was fulfilled. The second main objective has several facets to be described in the body of this report. Finally, the authors have developed tools for analyzing data collected on the MAGO a nd LDRD experiments, and have tested them on limited MAGO data.

  16. Magnet design with 100-kA HTS STARS conductors for the helical fusion reactor

    Science.gov (United States)

    Yanagi, N.; Terazaki, Y.; Ito, S.; Tamura, H.; Hamaguchi, S.; Mito, T.; Hashizume, H.; Sagara, A.

    2016-12-01

    The high-temperature superconducting (HTS) option is employed for the conceptual design of the LHD-type helical fusion reactor FFHR-d1. The 100-kA-class STARS (Stacked Tapes Assembled in Rigid Structure) conductor is used for the magnet system including the continuously wound helical coils. Protection of the magnet system in case of a quench is a crucial issue and the hot-spot temperature during an emergency discharge is estimated based on the zero-dimensional and one-dimensional analyses. The number of division of the coil winding package is examined to limit the voltage generation. For cooling the HTS magnet, helium gas flow is considered and its feasibility is examined by simple analysis as a first step.

  17. Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Samulyak, Roman V. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Parks, Paul [General Atomics, San Diego, CA (United States)

    2013-08-31

    The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.

  18. Elastic stability and vibration of toroidal magnets for fusion reactors. Final report

    International Nuclear Information System (INIS)

    Moon, F.C.; Swanson, C.

    1975-09-01

    The vibration and elastic stability of a set of discrete superconducting toroidal field magnets arranged to form a ''bumpy'' torus is examined. The mutual destabilizing magnetic forces between magnet pairs are calculated using a numerical differential inductance technique. It is shown that the mutual attractive magnetic forces can produce elastic buckling of the entire toroidal set. The vibration modes of the set are also found as functions of the coil current. The response of the set of magnets to an earthquake type motion of the toroidal base is calculated. The calculations have been incorporated in a computer code which accompanies the report. Measurements are made of the lateral stiffness of a flexible, planar, superconducting coil between two rigid coils in series. These tests show a dramatic decrease in the natural bending frequency with subsequent elastic instability or ''buckling'' at a critical value of the current in the coils. These observations support a magnetoelastic analysis which shows that proposed designs, of toroidal field coils for Tokamak fusion reactors, have insufficient lateral support for mechanical stability of the magnets

  19. Design study of superconducting magnets for tokamak experimental fusion reactor, (1)

    International Nuclear Information System (INIS)

    1980-03-01

    Design study has been made of superconducting magnets for a Tokamak experimental fusion reactor: toroidal field magnet design, poloidal field magnet design, refrigeration system design, magnet safety analysis, and magnet assembling and disassembling system design. A maximum toroidal field in the coil is 11.0 T, providing 5.5 T at plasma center. Nb 3 Sn superconducting cable is used to attain the toroidal field of 11 T. The coil bore is 7.3 x 11.2 m, and the coil shape is deformed constant-tension D-shape. The magnetomotive force is 185.6 MAT, and the operational current is 25.9 kA. In poloidal field magnet design, the coil is pancake-wound Nb 3 Sn conductor. The conductor is enclosed in Ti-alloy sheath, which serves also as helium containment vessel. The conductor is cooled by forced flow supercritical helium of 7 atm and 4.6 K, and the operational current is 25 -- 27 kA. (author)

  20. Magnetic resonance imaging-transrectal ultrasound fusion focal cryotherapy of the prostate: A prospective development study.

    Science.gov (United States)

    Valerio, Massimo; Shah, Taimur Tariq; Shah, Paras; Mccartan, Neil; Emberton, Mark; Arya, Manit; Ahmed, Hashim Uddin

    2017-04-01

    The use of software-based magnetic resonance-transrectal ultrasound fusion to deliver focal therapy may increase the precision of treatment. This is a prospective development study assessing the feasibility of Magnetic resonance imaging-transrectal ultrasound (MRI-TRUS) fusion focal cryotherapy. Consecutive patients undergoing focal cryotherapy were included in an academic registry (December 2013-June 2014). MRI-TRUS fusion focal cryotherapy was offered to men with visible clinically significant prostate cancer (Galil SeedNet system). Eligibility was determined by multiparametric MRI (mpMRI), and transperineal template mapping or targeted biopsies. A rigid fusion platform (Biojet) was used with the operator ensuring the ice ball covered at least the lesion. Adverse events were scored using the NCICTC V4. Genitourinary toxicity was assessed using patient-reported outcome measures (IPSS, IIEF-15, and UCLA-EPIC). Early contrast-enhanced MRI and mpMRI at 6 to 12 months were used to assess extent of lesion ablation. Of 23 patients scheduled, 5 did not have image fusion owing to surgeon preference. Overall, 18 patients undergoing image-fusion cryotherapy had median age of 68 (interquartile range [IQR]: 65-73) years and median preoperative prostate-specific antigen = 9.54 (5.65-16)ng/ml. In all, 13 (72.2%) and 5 (27.8%) patients had intermediate and high-risk cancer, respectively. In total, 10 adverse events were reported with one of these as serious (grade 3) because of admission for hematuria requiring wash out only. There was no difference in the IIEF-15 between baseline and study end (P = 0.24). The IPSS remained stable (P = 0.12), whereas the UCLA-EPIC tended to improve (P = 0.065). The prostate-specific antigen level significantly decreased at 1.8 (1.04-2.93) ng/ml (Pcryotherapy is feasible in most patients and seems to accurately guide ablation demonstrated by posttreatment imaging. Additional studies are needed to determine efficacy using postcryotherapy biopsy

  1. Enhancing Ignition Probability and Fusion Yield in NIF Indirect Drive Targets with Applied Magnetic Fields

    Science.gov (United States)

    Perkins, L. John; Logan, B. Grant; Ho, Darwin; Zimmerman, George; Rhodes, Mark; Blackfield, Donald; Hawkins, Steven

    2017-10-01

    Imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under capsule compression may relax conditions for ignition and propagating burn in indirect-drive ICF targets. This may allow attainment of ignition, or at least significant fusion energy yields, in presently-performing ICF targets on the National Ignition Facility that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation. Results of detailed 2D radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction and stabilization of higher-mode RT instabilities. Optimum initial applied fields are around 50 T. Off-line testing has been performed of a hohlraum coil and pulsed power supply that could be integrated on NIF; axial fields of 58T were obtained. Given the full plasma structure at capsule stagnation may be governed by 3-D resistive MHD, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to assess the potential of applied magnetic fields to NIF ICF ignition and burn. Work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  2. Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Program

    Science.gov (United States)

    Awe, T. J.; Shelton, K. P.; Sefkow, A. B.; Lamppa, D. C.; Baker, J. L.; Rovang, D. C.; Robertson, G. K.

    2017-09-01

    A cryogenically cooled hardware platform has been developed and commissioned on the Z Facility at Sandia National Laboratories in support of the Magnetized Liner Inertial Fusion (MagLIF) Program. MagLIF is a magneto-inertial fusion concept that employs a magnetically imploded metallic tube (liner) to compress and inertially confine premagnetized and preheated fusion fuel. The fuel is preheated using a ˜2 kJ laser that must pass through a ˜1.5-3.5-μm-thick polyimide "window" at the target's laser entrance hole (LEH). As the terawatt-class laser interacts with the dense window, laser plasma instabilities (LPIs) can develop, which reduce the preheat energy delivered to the fuel, initiate fuel contamination, and degrade target performance. Cryogenically cooled targets increase the parameter space accessible to MagLIF target designs by allowing nearly 10 times thinner windows to be used for any accessible gas density. Thinner LEH windows reduce the deleterious effects of difficult to model LPIs. The Z Facility's cryogenic infrastructure has been significantly altered to enable compatibility with the premagnetization and fuel preheat stages of MagLIF. The MagLIF cryostat brings the liquid helium coolant directly to the target via an electrically resistive conduit. This design maximizes cooling power while allowing rapid diffusion of the axial magnetic field supplied by external Helmholtz-like coils. A variety of techniques have been developed to mitigate the accumulation of ice from vacuum chamber contaminants on the cooled LEH window, as even a few hundred nanometers of ice would impact laser energy coupling to the fuel region. The MagLIF cryostat has demonstrated compatibility with the premagnetization and preheat stages of MagLIF and the ability to cool targets to liquid deuterium temperatures in approximately 5 min.

  3. Fusion magnet safety studies program: superconducting magnet protection system and failure. Interim report

    International Nuclear Information System (INIS)

    Allinger, J.; Danby, G.; Hsieh, S.Y.; Keane, J.; Powell, J.; Prodell, A.

    1975-11-01

    This report includes the first two quarters study of available information on schemes for protecting superconducting magnets. These schemes can be divided into two different categories. The first category deals with the detection of faulty regions (or normal regions) in the magnet. The second category relates to the protection of the magnet when a fault is detected, and the derived signal which can be used to activate a safety system (or energy removal system). The general detection and protection methods are first described briefly and then followed by a survey of the protection systems used by different laboratories for various magnets. A survey of the cause of the magnet difficulties or failures is also included. A preliminary discussion of these protection schemes and the experimental development of this program is given

  4. Fusion magnet safety studies program: superconducting magnet protection system and failure. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Allinger, J.; Danby, G.; Hsieh, S.Y.; Keane, J.; Powell, J.; Prodell, A.

    1975-11-01

    This report includes the first two quarters study of available information on schemes for protecting superconducting magnets. These schemes can be divided into two different categories. The first category deals with the detection of faulty regions (or normal regions) in the magnet. The second category relates to the protection of the magnet when a fault is detected, and the derived signal which can be used to activate a safety system (or energy removal system). The general detection and protection methods are first described briefly and then followed by a survey of the protection systems used by different laboratories for various magnets. A survey of the cause of the magnet difficulties or failures is also included. A preliminary discussion of these protection schemes and the experimental development of this program is given.

  5. IEFIT - An Interactive Approach to High Temperature Fusion Plasma Magnetic Equilibrium Fitting

    International Nuclear Information System (INIS)

    Peng, Q.; Schachter, J.; Schissel, D.P.; Lao, L.L.

    1999-01-01

    An interactive IDL based wrapper, IEFIT, has been created for the magnetic equilibrium reconstruction code EFIT written in FORTRAN. It allows high temperature fusion physicists to rapidly optimize a plasma equilibrium reconstruction by eliminating the unnecessarily repeated initialization in the conventional approach along with the immediate display of the fitting results of each input variation. It uses a new IDL based graphics package, GaPlotObj, developed in cooperation with Fanning Software Consulting, that provides a unified interface with great flexibility in presenting and analyzing scientific data. The overall interactivity reduces the process to minutes from the usual hours

  6. Electromagnetic properties of REBaCuO superconducting tapes considered for magnets of fusion reactors.

    Czech Academy of Sciences Publication Activity Database

    Jirsa, Miloš; Rameš, Michal; Ďuran, Ivan; Entler, Slavomír; Melíšek, T.; Kováč, P.; Viererbl, L.

    2017-01-01

    Roč. 124, November (2017), s. 73-76 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Superconducting REBaCuO tapes * Magnetic hysteresis loops * Transport currents * Engineering currents * Angular dependence * Neutron irradiation Subject RIV: JF - Nuclear Energetics; JF - Nuclear Energetics (FZU-D) OBOR OECD: Nuclear related engineering; Nuclear related engineering (FZU-D) Impact factor: 1.319, year: 2016 www.sciencedirect.com/science/article/pii/S0920379617304829

  7. Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas

    Science.gov (United States)

    Wolf, R. C.; Bock, A.; Ford, O. P.; Reimer, R.; Burckhart, A.; Dinklage, A.; Hobirk, J.; Howard, J.; Reich, M.; Stober, J.

    2015-10-01

    The utilization of the Motional Stark Effect (MSE) experienced by the neutral hydrogen or deuterium injected into magnetically confined high temperature plasmas is a well established technique to infer the internal magnetic field distribution of fusion experiments. In their rest frame, the neutral atoms experience a Lorentz electric field, EL = v × B, which results in a characteristic line splitting and polarized line emission. The different properties of the Stark multiplet allow inferring, both the magnetic field strength and the orientation of the magnetic field vector. Besides recording the full MSE spectrum, several types of polarimeters have been developed to measure the polarization direction of the Stark line emission. To test physics models of the magnetic field distribution and dynamics, the accuracy requirements are quite demanding. In view of these requirements, the capabilities and issues of the different techniques are discussed, including the influence of the Zeeman Effect and the sensitivity to radial electric fields. A newly developed Imaging MSE system, which has been tested on the ASDEX Upgrade tokamak, is presented. The sensitivity allows to resolve sawtooth oscillations. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  8. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    International Nuclear Information System (INIS)

    Schissel, D.P.; Abla, G.; Burruss, J.R.; Feibush, E.; Fredian, T.W.; Goode, M.M.; Greenwald, M.J.; Keahey, K.; Leggett, T.; Li, K.; McCune, D.C.; Papka, M.E.; Randerson, L.; Sanderson, A.; Stillerman, J.; Thompson, M.R.; Uram, T.; Wallace, G.

    2006-01-01

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large

  9. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Christoph M.

    2017-05-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  10. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    CERN Document Server

    Bayer, Christoph M

    2017-01-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  11. Calculations of alpha particle loss for reversed magnetic shear in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Redi, M.H.; White, R.B.; Batha, S.H.; Levinton, F.M.; McCune, D.C.

    1997-03-01

    Hamiltonian coordinate, guiding center code calculations of the toroidal field ripple loss of alpha particles from a reversed shear plasma predict both total alpha losses and ripple diffusion losses to be greater than those from a comparable non-reversed magnetic shear plasma in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. High central q is found to increase alpha ripple losses as well as first orbit losses of alphas in the reversed shear simulations. A simple ripple loss model, benchmarked against the guiding center code, is found to work satisfactorily in transport analysis modelling of reversed and monotonic shear scenarios. Alpha ripple transport on TFTR affects ions within r/a=0.5, not at the plasma edge. The entire plasma is above threshold for stochastic ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped 3.5 MeV alphas are lost stochastically or through prompt losses. The 40% alpha particle loss predictions for TFTR suggest that reduction of toroidal field ripple will be a critical issue in the design of a reversed shear fusion reactor.

  12. Considerations of the high magnetic field tokamak path on the approach to fusion energy

    Science.gov (United States)

    Marmar, Earl

    2015-11-01

    This tutorial will review the physics basis, and its applications, for high magnetic field, compact visions of steady-state pilot plants and fusion reactors. This includes: energy and particle confinement; transport barriers; heating and current drive; scrape-off layer and divertor physics including implications for power handling, and ash/impurity control. The development of new technologies, particularly high-temperature, high critical magnetic field superconducting materials opens a new opportunity to consider the leverage of on-axis magnetic fields of 10T or more, enabling the feasibility of smaller sized devices on the path to fusion energy, including a pilot plant which could produce hundreds of megawatts of net electricity in a 10T tokamak with major radius of order 3 meter. Incorporating jointed magnetic coils, also made feasible by the high temperature superconductors, can dramatically improve flexibility of experimental superconducting facilities, and ultimately maintainability for reactor systems. Steady-state requires high bootstrap fraction, combined with efficient off-axis current drive, and existing and new approaches for RF sustainment will be covered, including Lower Hybrid Current Drive (both from the low- and high-field side), ECCD, and fast-wave techniques. External torque drive from neutral beams, routinely used in most present-day experiments to enhance confinement and suppress instabilities, will be weak or absent in reactors. Alternative, RF-based flow drive, using mode-converted ICRF waves will be discussed. All reactor concepts have extraordinary power handling requirements, combined with stringent limits on PFC erosion and impurity sources; the current state of the art in divertor configurations will be compared with emerging and new concepts, including snowflake, x-point, x-divertor and liquid metals, to meet these challenges. Supported by USDOE.

  13. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited).

    Science.gov (United States)

    Smith, Roger J

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  14. Exploitation of a Breakthrough in Magnetic Confinement Fusion to Improve Transuranic Incineration

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Erich [Nuclear and Radiation Engineering Program, The University of Texas at Austin, Austin, TX 78712 (United States); Kotschenreuther, Mike; Mahajan, Swadesh; Valanju, Prashant [Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States)

    2009-06-15

    A fusion-assisted transmutation system for the destruction of transuranic nuclear waste is developed by combining a subcritical fusion-fission hybrid assembly uniquely equipped to burn the worst thermal non-fissile transuranic isotopes with a new fuel cycle that uses cheaper light water reactors for most of the transmutation. The centerpiece of this fuel cycle, the high power density compact fusion neutron source (CFNS, 100 MW, outer radius <3 m), is made possible by a new divertor with a heat-handling capacity five times that of the standard alternative. The number of hybrids needed to destroy a given amount of waste is about an order of magnitude below the corresponding number of critical fast spectrum reactors (FR) as the latter cannot fully exploit the new fuel cycle. Also, the time needed for 99% transuranic waste destruction reduces from centuries (with FR) to decades. The generic Hybrid, combining neutron-rich fusion with energy-rich fission, was first conceptualized several decades ago. However, it is only now that accumulated advances in fusion science and technology allow designing a neutron source like CFNS that is simultaneously compact and high power density, offering a neutron source an order of magnitude stronger than that obtained from accelerator driven systems. The former is essential for efficient coupling to the fission blanket, and the latter is key to efficient neutron production necessary to yield high neutron fluxes needed for effective transmutation. The recent invention of the SuperX-Divertor (SXD)1, a new magnetic configuration that allows the system to safely exhaust large heat and particle fluxes peculiar to CFNS-like devices, is a crucial addition to the underlying knowledge base. The subcritical FFTS acquires a definite advantage over the critical FR approach because of its ability to support an innovative fuel cycle that makes the cheaper LWR do the bulk (75%) of the transuranic transmutation via deep burn in an inert matrix fuel

  15. Prompt photon yield and elliptic flow from gluon fusion induced by magnetic fields in relativistic heavy-ion collisions

    Science.gov (United States)

    Ayala, Alejandro; Castaño-Yepes, Jorge David; Dominguez, C. A.; Hernández, L. A.; Hernández-Ortiz, Saúl; Tejeda-Yeomans, María Elena

    2017-07-01

    We compute photon production at early times in semicentral relativistic heavy-ion collisions from nonequilibrium gluon fusion induced by a magnetic field. The calculation accounts for the main features of the collision at these early times, namely, the intense magnetic field and the high gluon occupation number. The gluon fusion channel is made possible by the magnetic field and would otherwise be forbidden due to charge conjugation invariance. Thus, the photon yield from this process is an excess over calculations without magnetic field effects. We compare this excess to the difference between PHENIX data and recent hydrodynamic calculations for the photon transverse momentum distribution and elliptic flow coefficient v2 . We show that with reasonable values for the saturation scale and magnetic field strength, the calculation helps us better describe the experimental results obtained at RHIC energies for the lowest part of the transverse photon momentum.

  16. Cryogenic electrical properties of irradiated cyanate ester/epoxy insulation for fusion magnets

    Science.gov (United States)

    Li, X.; Wu, Z. X.; Li, J.; Xu, D.; Liu, H. M.; Huang, R. J.; Li, L. F.

    2017-12-01

    The insulation materials used in high field fusion magnets require excellent mechanical properties, high electrical breakdown strength, good thermal conductivity and high radiation tolerance. Previous investigations showed that cyanate ester/epoxy (CE/EP) insulation material, a candidate insulation for fusion magnets, can maintain good mechanical performance at cryogenic temperature after 10 MGy irradiation and has a much longer pot life than traditional epoxy insulation material. In order to quantify the electrical properties of the CE/EP insulation material at low temperature, a cryogenic electrical property testing system cooled by a G-M cryocooler was developed for this study. An insulation material with 40% cyanate ester and 60% epoxy was subjected to 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min, and total doses of 1 MGy, 5 MGy and 10 MGy. The electrical breakdown strength of this CE/EP insulation material was measured before and after irradiation. The results show that cryogenic temperature has a positive effect on the electrical breakdown strength of this composite, while the influence of 60Co γ–ray irradiation is not obvious at 6.1 K.

  17. Design study of superconducting toroidal magnet for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    1977-10-01

    Design study of the superconducting toroidal magnet for the Tokamak experimental fusion reactor has been carried out. Performed here were conductor design, magnetic field calculation, design of coil support, stress analysis, design of refrigeration system and safety analysis. The maximum toroidal field at the coil is 12.0 T, providing 6.0 T at the plasma center. The coil bore is 7.3 x 11.2 m, and the coil shape is deformed constant-tension D-shape. 16 coil design was chosen, considering the necessity for good access for the evacuation port or the support structure of blanket and shield. The maximum field ripple obtained in the plasma region is 0.47%. The operational current is 25,100 amperes, and the cryogenic stabilization is fulfilled. Nb 3 Sn superconductor was chosen in spite of its brittleness, to attain a toroidal field of 12 T which is higher than a practical limit for NbTi superconductor. The development of large Nb 3 Sn coil technology would be necessary to realize an economic fusion power reactor. (auth.)

  18. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.

    Science.gov (United States)

    Yao, Hongwei; Lee, Myungwoon; Liao, Shu-Yu; Hong, Mei

    2016-12-13

    The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no 13 C- 13 C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may

  19. Change in properties of superconducting magnet materials by fusion neutron irradiation

    International Nuclear Information System (INIS)

    Nishimura, Arata; Nishijima, Shigehiro; Takeuchi, Takao; Nishitani, Takeo

    2007-01-01

    A fusion reactor will generate a lot of high energy neutron and much energy will be taken out of the neutrons by a blanket system. Since some neutrons will stream out of a plasma vacuum vessel through neutral beam injection ports and penetrate a blanket system, a superconducting magnet system, which provides high magnetic field to confirm high energy particles, will be irradiated by a certain amount of neutrons. By developing the new NBI system or by reducing the penetration, the neutron fluence to the superconducting magnet will be able to be reduced. However, it is not easy to achieve the lower streaming and penetration at the present. Therefore, investigations on irradiation behavior of superconducting magnet materials are desired and some novel researches have been performed from 1970s. In general, the critical current of the superconducting wire increases under fast neutron environment comparing with that of the non-irradiated wire, and then decreased to almost zero as an increase of neutron fluence. On the other hand, the critical temperature of the wire starts to get down around 10 22 n/m 2 of neutron fluence and the temperature margin will be decreased during the operation by the neutron irradiation. In this paper, some aspects of irradiated materials will be overviewed and general tendency will be discussed focussing on knock-on effect of fast neutron and long range ordering of A15 compounds

  20. Passive MHD Spectroscopy for Enabling Magnetic Reconstructions on Spherical Tokamak Plasmas at General Fusion Inc

    Science.gov (United States)

    O'Shea, Peter; Laberge, Michel; Mossman, Alex; Reynolds, Meritt

    2017-10-01

    Magnetic reconstructions on lab based plasma injectors at General Fusion relies heavily on edge magnetic (``Bdot'') probes. On plasma experiments built for field compression (PCS) tests, the number and locations of Bdot probes is limited by mechanical constraints. Additional information about the q profiles near the core in our Spector plasmas is obtained using passive MHD spectroscopy. The coaxial helicity injection (CHI) formation process naturally generates hollow current profiles and reversed shear early in each discharge. Central Ohmic heating naturally peaks the current profiles as our plasmas evolve in time, simultaneously reducing the core safety factor, q(0), and reverse shear. As the central, non-monotonic q-profile crosses rational flux surfaces, we observe transient magnetic reconnection events (MRE's) due to the double tearing mode. Modal analysis allows us to infer the q surfaces involved in each burst. The parametric dependence of the timing of MRE's allows us to estimate the continuous time evolution of the core q profile. Combining core MHD spectroscopy with edge magnetic probe measurements greatly enhances our certainty of the overall q profile.

  1. Summary of the workshop on structural analysis needs for magnetic fusion energy superconducting magnets

    International Nuclear Information System (INIS)

    Reich, M.; Lehner, J.; Powell, J.

    1976-09-01

    The technical portions of the meeting were divided into three major sessions as follows: (1) Review of methods being presently used by the MFE community for structural evaluation of current designs. (2) Future structural analysis needs. (3) Open discussions dealing with adequacy of present methods, the improvements needed for MFE magnet structural analysis, and the establishment of an MFE magnet structural advisory group. Summaries of the individual talks presented on Wednesday and Thursday (i.e., items 1 and 2 above) are included following the workshop schedule given later in this synopsis

  2. Fusion cost normalization

    International Nuclear Information System (INIS)

    Schulte, S.C.; Willke, T.L.

    1978-01-01

    The categorization and accounting methods described in this paper provide a common format that can be used to assess the economic character of magnetically confined fusion reactor design concepts. The format was developed with assistance from the fusion economics community, thus ensuring that the methods meet with the approval of potential users. The format will aid designers in the preparation of design concept cost estimates and also provide policy makers with a tool to assist in appraising which design concepts may be economically promising. Adherence to the format when evaluating prospective fusion reactor design concepts will result in the identification of the more promising concepts, thus enabling the fusion power alternatives with better economic potential to be quickly and efficiently developed

  3. The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion

    Science.gov (United States)

    Perkins, L. J.; Ho, D. D.-M.; Logan, B. G.; Zimmerman, G. B.; Rhodes, M. A.; Strozzi, D. J.; Blackfield, D. T.; Hawkins, S. A.

    2017-06-01

    We examine the potential that imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under implosion compression may relax the conditions required for ignition and propagating burn in indirect-drive inertial confinement fusion (ICF) targets. This may allow the attainment of ignition, or at least significant fusion energy yields, in presently performing ICF targets on the National Ignition Facility (NIF) that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation [Doeppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. Results of detailed two-dimensional radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction, and potential stabilization of higher-mode Rayleigh-Taylor instabilities. Optimum initial applied fields are found to be around 50 T. Given that the full plasma structure at capsule stagnation may be governed by three-dimensional resistive magneto-hydrodynamics, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to further assess the potential of applied magnetic fields to ICF ignition and burn on NIF.

  4. Laser-Plasma Interaction in Presence of an Obliquely External Magnetic Field: Application to Laser Fusion without Radioactivity

    Science.gov (United States)

    Mobaraki, M.; Jafari, S.

    2016-08-01

    In this paper, the nonlinear interaction of ultra-high power laser beam with fusion plasma at relativistic regime in the presence of obliquely external magnetic Geld has been studied. Imposing an external magnetic Geld on plasma can modify the density profile of the plasma so that the thermal conductivity of electrons reduces which is considered to be the decrease of the threshold energy for ignition. To achieve the fusion of Hydrogen-Boron (HB) fuel, the block acceleration model of plasma is employed. Energy production by HB isotopes can be of interest, since its reaction does not generate radioactive tritium. By using the inhibit factor in the block model acceleration of plasma and Maxwell's as well as the momentum transfer equations, the electron density distribution and dielectric permittivity of the plasma medium are obtained. Numerical results indicate that with increasing the intensity of the external magnetic field, the oscillation of the laser magnetic field decreases, while the dielectric permittivity increases. Moreover, the amplitude of the electron density becomes highly peaked and the plasma electrons are strongly bunched with increasing the intensity of external magnetic field. Therefore, the magnetized plasma can act as a positive focusing lens to enhance the fusion process. Besides, we find that with increasing θ-angle (from oblique external magnetic field) between 0 and 90°, the dielectric permittivity increases, while for θ between 90° and 180°, the dielectric permittivity decreases with increasing θ.

  5. Controlled fusion; La fusion controlee

    Energy Technology Data Exchange (ETDEWEB)

    Bobin, J.L

    2005-07-01

    During the last fifty years the researches on controlled thermonuclear fusion reached great performance in the magnetic confinement (tokamaks) as in the inertial confinement (lasers). But the state of the art is not in favor of the apparition of the fusion in the energy market before the second half of the 21 century. To explain this opinion the author presents the fusion reactions of light nuclei and the problems bound to the magnetic confinement. (A.L.B.)

  6. Design and fabrication of the superconducting-magnet system for the Mirror Fusion Test Facility (MFTF-B)

    International Nuclear Information System (INIS)

    Tatro, R.E.; Wohlwend, J.W.; Kozman, T.A.

    1982-01-01

    The superconducting magnet system for the Mirror Fusion Test Facility (MFTF-B) consists of 24 magnets; i.e. two pairs of C-shaped Yin-Yang coils, four C-shaped transition coils, four solenoidal axicell coils, and a 12-solenoid central cell. General Dynamics Convair Division has designed all the coils and is responsible for fabricating 20 coils. The two Yin-Yang pairs (four coils) are being fabricated by the Lawrence Livermore National Laboratory. Since MFTF-B is not a magnet development program, but rather a major physics experiment critical to the mirror fusion program, the basic philosophy has been to use proven materials and analytical techniques wherever possible. The transition and axicell coils are currently being analyzed and designed, while fabrication is under way on the solenoid magnets

  7. Nuclear fusion - a strategic approach

    International Nuclear Information System (INIS)

    Colombo, U.

    1989-01-01

    Aspects of nuclear fusion research with particular reference to Europe are reviewed. The energy scenario with regard to nuclear fusion is considered including economic, political and scientific problems of energy policy in view of the long-term research effort required. Mention is also made of the need to phase out the use of fossil fuels for environmental reasons. Research into magnetic and inertial confinement fusion is considered. It is concluded that the development of thermonuclear reactors will eventually be brought to practical fruition. (UK)

  8. Magnetic resonance imaging on disc degeneration changes after implantation of an interspinous spacer and fusion of the adjacent segment.

    Science.gov (United States)

    Liu, Xiaokang; Liu, Yingjie; Lian, Xiaofeng; Xu, Jianguang

    2015-01-01

    The aim of the study was to investigate the changes of the lumbar intervertebral disc degeneration by magnetic resonance imaging (MRI) after the implantation of interspinous device and the fusion of the adjacent segment. A total of 62 consecutive patients suffering L5/S1 lumbar disc herniation (LDH) with concomitant disc space narrowing or low-grade instability up to 5 mm translational slip in L5/S1 level were treated with lumbar interbody fusion (LIF) via posterior approach. Thirty-four of these patients (Coflex group) received an additional implantation of the interspinous spacer device (Coflex™) in the level L4/L5, while the rest of 28 patients (fusion group) underwent the fusion surgery alone. Clinical and radiographic examinations were performed at pre- and postoperative visits to compare the clinical outcomes and the changes of the L4/L5 vertebral disc degeneration on MRI in both Coflex and fusion group. Although both Coflex and fusion group showed improvements of the clinical outcomes assessed by the Oswestry Disability Index (ODI) after surgery, patients in Coflex group had more significant amelioration (P fusion surgery could delay the disc degeneration of the adjacent segment.

  9. Conceptual design of the superconducting magnet system for the helical fusion reactor

    International Nuclear Information System (INIS)

    Yanagi, Nagato; Hamaguchi, Shinji; Takahata, Kazuya; Natsume, Kyohei

    2013-01-01

    Current status of conceptual design of superconducting magnet system and low temperature system for the helical fusion reactor are introduced. There are three kinds of candidates of superconducting magnets such as Cable-in-conduit (CIC), Low-Temperature Superconductor (LTS) and High-Temperature Superconductor (HTS). Their characteristic properties, coil designs and cooling systems are stated. The freezer and low temperature distribution system, bus line and current lead, and excitation power source for superconducting coil are reported. The various elements of superconducting magnet system of FFHR-d1, partial cross section of FFHR helical coil using CIC, conceptual diagram of helical coil winding method of FFHR using CIC, relation among mass flow of supercritical helium supplied into CIC conductor and temperature increasing and pressure loss, cross section structure of LTS indirect-cooling conductor at 100 kA, cross section of 100-kA HTS conductor, connection method of helical coil segment and YBCO conductor are illustrated. (S.Y.)

  10. Materials studies for magnetic fusion energy applications at low temperatures, 7

    Science.gov (United States)

    Reed, R. P.; Simon, N. J.

    1984-05-01

    Work leading toward development of strong, tough structural alloys for use in superconducting magnets of magnetic fusion power plants is reported. Low temperature studies were conducted to assess the quantitative dependence of the yield strength, density, and elastic constants of AISI 304 stainless steels upon carbon and nitrogen concentration. Tensile property measurements of developmental austenitic steels confirmed the dependence of yield strength upon temperature. Evidence is presented to show that the flow strength and austenite stability of stainless steels are not significantly affected by 8-T fields at 4 K. Instrumentation developed for low temperature testing included a computer assisted apparatus used to measure threshold fatigue. Low temperature welding research involved an investigation of the weld reinforcement effect on the weld joint strength and measurements of the 4 K fracture toughness of magnesium-chromium steel weldments and electroodes. In the area of non-metallics, a standardized test specimen was devised to aid in screening radiation-resistant composites for magnet insulation. Mechanical properties of concrete mortar and polyurethane foam at 4 K are reported.

  11. Potential applications of NbN composites in fusion reactor magnets

    International Nuclear Information System (INIS)

    Capone, D.W. II; Gray, K.E.; Kampwirth, R.T.; Ho, H.L.

    1986-02-01

    Recent projected requirements for large scale fusion reactor magnets call for the development of advanced superconducting materials capable of producing peak magnetic fields in excess of 15 T with current densities in the windings in excess of 2 x 10 3 A/cm 2 . These materials will be exposed to large stresses (up to 500 MPa) and neutron fluences as high as 10 22 n/cm 2 over the lifetime of the conductor. The demonstrated strain and radiation tolerance of NbN together with excellent superconducting properties make it a promising candidate to be used in a superconducting composite capable of satisfying these requirements. Our program at Argonne is directed towards demonstrating a method of fabrication which is capable of achieving these goals. Tests will be conducted on moderate lengths of NbN superconducting composites to verify the ability to achieve large overall current densities in magnetic fields up to 20 T. High field applications of NbN are also being investigated by groups in Japan and Germany

  12. Integrated Approach to Dense Magnetized Plasmas Applications in Nuclear Fusion Technology. Report of a Coordinated Research Project 2007-2011

    International Nuclear Information System (INIS)

    2013-04-01

    Through its coordinated research activities, the IAEA promotes the development and application of nuclear technologies in Member States. The scientific and technical knowledge required for the construction and operation of large nuclear fusion research facilities, including ITER and the Laser Megajoule in France, and the Z machine and the National Ignition Facility in the United States of America, necessitates several accompanying research and development programmes in physics and technology. This is particularly true in the areas of materials science and fusion technology. Hence, the long standing IAEA effort to conduct coordinated research projects (CRPs) in these areas is aimed at: (i) the development of appropriate technical tools to investigate the issue of materials damage and degradation in a fusion plasma environment; and (ii) the emergence of a knowledge based understanding of the various processes underlying materials damage and degradation, thereby leading to the identification of suitable candidate materials fulfilling the stringent requirements of a fusion environment in any next step facility. Dense magnetized plasma (DMP) devices serve as a first test bench for testing of fusion relevant plasma facing materials, diagnostic development and calibration, technologies and scaling to conceptual principles of larger devices while sophisticated testing facilities such as the International Fusion Materials Irradiation Facility (IFMIF) are being designed. The CRP on Integrated Approach to Dense Magnetized Plasmas Applications in Nuclear Fusion Technology described herein was initiated in 2007 with the participation of 12 research institutions in 8 Member States and was concluded in 2011. It was designed with specific research objectives falling into two main categories: support to mainstream fusion research and development of DMP technology. This publication is a compilation of the individual reports submitted by the 12 CRP participants. These reports discuss

  13. Stress relaxation technique of high magnetic field superconducting magnet for the nuclear fusion

    International Nuclear Information System (INIS)

    Kamimoto, Masayuki; Tateishi, Hiroshi; Agatsuma, Ko; Arai, Kazuaki; Umeda, Masaichi

    1999-01-01

    Here were attempted not only to prove effectiveness of a stress self-supporting type wire material for magnet constituting technique, but also to develop a fiber reinforcing type superconducting wire material used by materials with excellent strain resistance to expand usable range of the stress self-supporting type with material. In 1997 fiscal year, superconductive features of the wire material produced by using composite processing method were evaluated, actual applicability for superconducting wire material was inspected, and investigation on manufacturing parameter of NbN thin films on trial production at present apparatus was conducted. (G.K.)

  14. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    International Nuclear Information System (INIS)

    Siemon, R.E.

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations

  15. Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor

    International Nuclear Information System (INIS)

    Hora, H.; Nissim, N.

    2016-01-01

    Measured highly elevated gains of proton–boron (HB11) fusion (Picciottoet al., Phys. Rev. X4, 031030 (2014)) confirmed the exceptional avalanche reaction process (Lalousiset al., Laser Part. Beams 32, 409 (2014); Horaet al., Laser Part. Beams33, 607 (2015)) for the combination of the non-thermal block ignition using ultrahigh intensity laser pulses of picoseconds duration. The ultrahigh acceleration above 10 20  cm s −2 for plasma blocks was theoretically and numerically predicted since 1978 (Hora,Physics of Laser Driven Plasmas(Wiley, 1981), pp. 178 and 179) and measured (Sauerbrey, Phys. Plasmas3, 4712 (1996)) in exact agreement (Horaet al., Phys. Plasmas14, 072701 (2007)) when the dominating force was overcoming thermal processes. This is based on Maxwell’s stress tensor by the dielectric properties of plasma leading to the nonlinear (ponderomotive) force f NL resulting in ultra-fast expanding plasma blocks by a dielectric explosion. Combining this with measured ultrahigh magnetic fields and the avalanche process opens an option for an environmentally absolute clean and economic boron fusion power reactor. Finally, this is supported also by other experiments with very high HB11 reactions under different conditions (Labauneet al., Nature Commun.4, 2506 (2013)).

  16. New Information Processing Methods for Control in Magnetic Confinement Nuclear Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Murari, A. [Consorzio RFX - Associazione EURATOM ENEA per la Fusione, Padova (Italy); Vega, J.; Ratta, G. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Mazon, D. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Farthing, J.; Zabeo, L. [Euratom/UKAEA Fusion Association, Abingdon (United Kingdom); Svensson, J. [IPP Greifswald Max-Planck-Institut fur Plasmaphysik, Greifswald (Germany); Testa, D. [Plasma Physics Research Center (CRPP), Lausanne (Switzerland); Vagliasindi, G. [Siciliae Studium Generale (Italy); Blum, J.; Boulbe, C.; Faugeras, B. [Nice Univ. Sophia Antipolis, 06 (France)

    2009-07-01

    The information processing challenges in fusion are: -) many variables due to highly complex problems, -) non-linear processes (interaction of the plasma with the structures and interaction of the different phenomena occurring in the plasma with each other), -) not theory available (it means no derivation from first principles) and -) huge amount of data (Tbytes per shot for ITER). The main computing methods for fusion are: 1) Bayesian statistics and Grad-Shafranov equation can be used for the real time determination of the magnetic topology, 2) the use of Support Vector Machines (SVM) can be used to solve problems of classification, regression and probability density estimation, 3) Cellular non linear networks (CNN) and FPGAs can be used for real time image processing. More innovative methods are needed to study the feedback in a view of physics understanding. New methods are required not only to manage the large quantities of data but also to identify the system properly and to implement the most appropriate control strategies. This document is made of the presentation slides. (A.C.)

  17. The development of the high-tension wire for nuclear fusion superconductive magnet measurement

    International Nuclear Information System (INIS)

    Yoshida, Kiyoshi; Morita, Yohsuke; Yamazaki, Takanori; Watanabe, Kiyoshi; Furusawa, Ken-ichi.

    1987-01-01

    Following on tokamak critical plasma testing device JT-60, experimental fusion reactor JT-100 is being developed. The 6 kV high-tension wire has been developed for use in JT-100 under ultra-low temperature and high radiation environment. Used for superconductive magnet measurement, the wire is inserted in the vacuum vessel, being immersed within the liquid helium. As the insulating material of this wire, polyetherimido was found to be most suitable in the respects of radiation resistance and voltage-withstand property. In an electric wire covered with polyetherimido, which was made in trial, its test in voltage-withstand and bending characteristics at ultra-low temperature showed the wire to be usable for the intended purpose. (Mori, K.)

  18. Identification of future engineering-development needs of alternative concepts for magnetic-fusion energy

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1982-01-01

    A qualitative identification of future engineering needs of alternative fusion concepts (AFCs) is presented. These needs are assessed relative to the similar needs of the tokamak in order to emphasize differences in required technology with respect to the well documented mainline approach. Although nearly thirty AFCs can be identified as being associated with some level of reactor projection, redirection, refocusing, and general similarities can be used to generate a reduced AFC list that includes only the bumpy tori, stellarators, reversed-field pinches, and compact toroids. Furthermore, each AFC has the potential of operating as a conventional (low power density, superconducting magnets) or a compact, high-power-density (HPD) system. Hence, in order to make tractable an otherwise difficult task, the future engineering needs for the AFCs are addressed here for conventional versus compact approaches, with the latter being treated as a generic class and the former being composed of bumpy tori, stellarators, reversed-field pinches, and compact toroids

  19. 'Optical' soft x-ray arrays for fluctuation diagnostics in magnetic fusion energy experiments

    International Nuclear Information System (INIS)

    Delgado-Aparicio, L.F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Kaita, R.; Roquemore, L.; Johnson, D.; Majeski, R.

    2004-01-01

    We are developing large pixel count, fast (≥100 kHz) and continuously sampling soft x-ray (SXR) array for the diagnosis of magnetohydrodynamics (MHD) and turbulent fluctuations in magnetic fusion energy plasmas. The arrays are based on efficient scintillators, high thoughput multiclad fiber optics, and multichannel light amplification and integration. Compared to conventional x-ray diode arrays, such systems can provide vastly increased spatial coverage, and access to difficult locations with small neutron noise and damage. An eight-channel array has been built using columnar CsI:Tl as an SXR converter and a multianode photomultiplier tube as photoamplifier. The overall system efficiency is measured using laboratory SXR sources, while the time response and signal-to-noise performance have been evaluated by recording MHD activity from the spherical tori (ST) Current Drive Experiment-Upgrade and National Spherical Torus Experiment, both at Princeton Plasma Physics Laboratory

  20. Assessment of ion-atom collision data for magnetic fusion plasma edge modelling

    International Nuclear Information System (INIS)

    Phaneuf, R.A.

    1990-01-01

    Cross-section data for ion-atom collision processes which play important roles in the edge plasma of magnetically-confined fusion devices are surveyed and reviewed. The species considered include H, He, Li, Be, C, O, Ne, Al, Si, Ar, Ti, Cr, Fe, Ni, Cu, Mo, W and their ions. The most important ion-atom collision processes occurring in the edge plasma are charge-exchange reactions. Excitation and ionization processes are also considered. The scope is limited to atomic species and to collision velocities corresponding to plasma ion temperatures in the 2-200 eV range. Sources of evaluated or recommended data are presented where possible, and deficiencies in the data base are indicated. 42 refs., 1 fig., 4 tabs

  1. Modeling of wall recycling effects on the global particle balance in magnetic fusion devices

    Science.gov (United States)

    Hirooka, Y.; Masuzaki, S.; Suzuki, H.; Kenmotsu, T.; Kawamura, T.

    2001-03-01

    A zero-dimensional particle balance model has been developed to compute hydrogen inventories in the four major reservoirs; core plasma, scraped-off layer (SOL), gas region, and wall of a magnetic fusion reactor system. This model takes as input separately calculated hydrogen reemission and reflection coefficients. Model applications have successfully reproduced the core plasma transient behavior with and without density decay observed in the large helical device (LHD). Particle balance modeling has also been done for a hypothetical steady-state reactor employing carbon as the plasma-facing material. Results indicate that codeposition-induced wall pumping is quite effective in controlling the core density although, on the other hand, the tritium inventory concerns environmental safety.

  2. Hand Pose Estimation by Fusion of Inertial and Magnetic Sensing Aided by a Permanent Magnet.

    Science.gov (United States)

    Kortier, Henk G; Antonsson, Jacob; Schepers, H Martin; Gustafsson, Fredrik; Veltink, Peter H

    2015-09-01

    Tracking human body motions using inertial sensors has become a well-accepted method in ambulatory applications since the subject is not confined to a lab-bounded volume. However, a major drawback is the inability to estimate relative body positions over time because inertial sensor information only allows position tracking through strapdown integration, but does not provide any information about relative positions. In addition, strapdown integration inherently results in drift of the estimated position over time. We propose a novel method in which a permanent magnet combined with 3-D magnetometers and 3-D inertial sensors are used to estimate the global trunk orientation and relative pose of the hand with respect to the trunk. An Extended Kalman Filter is presented to fuse estimates obtained from inertial sensors with magnetic updates such that the position and orientation between the human hand and trunk as well as the global trunk orientation can be estimated robustly. This has been demonstrated in multiple experiments in which various hand tasks were performed. The most complex task in which simultaneous movements of both trunk and hand were performed resulted in an average rms position difference with an optical reference system of 19.7±2.2 mm whereas the relative trunk-hand and global trunk orientation error was 2.3±0.9 and 8.6±8.7 deg respectively.

  3. Increasing the magnetic-field capability of the magneto-inertial fusion electrical discharge system using an inductively coupled coil

    Science.gov (United States)

    Barnak, D. H.; Davies, J. R.; Fiksel, G.; Chang, P.-Y.; Zabir, E.; Betti, R.

    2018-03-01

    Magnetized high energy density physics (HEDP) is a very active and relatively unexplored field that has applications in inertial confinement fusion, astrophysical plasma science, and basic plasma physics. A self-contained device, the Magneto-Inertial Fusion Electrical Discharge System, MIFEDS [G. Fiksel et al., Rev. Sci. Instrum. 86, 016105 (2015)], was developed at the Laboratory for Laser Energetics to conduct magnetized HEDP experiments on both the OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495-506 (1997)] and OMEGA EP [J. H. Kelly et al., J. Phys. IV France 133, 75 (2006) and L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)] laser systems. Extremely high magnetic fields are a necessity for magnetized HEDP, and the need for stronger magnetic fields continues to drive the redevelopment of the MIFEDS device. It is proposed in this paper that a magnetic coil that is inductively coupled rather than directly connecting to the MIFEDS device can increase the overall strength of the magnetic field for HEDP experiments by increasing the efficiency of energy transfer while decreasing the effective magnetized volume. A brief explanation of the energy delivery of the MIFEDS device illustrates the benefit of inductive coupling and is compared to that of direct connection for varying coil size and geometry. A prototype was then constructed to demonstrate a 7-fold increase in energy delivery using inductive coupling.

  4. Magnets for the Mirror Fusion Test Facility: testing of the first Yin-Yang and the design and development of other magnets

    International Nuclear Information System (INIS)

    Kozman, T.A.; Wang, S.T.; Chang, Y.

    1983-01-01

    Completed in May 1981, the first Yin-Yang magnet for the tandem Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) was successfully tested in February 1982 to its full design field (7.68 T) and current (5775 A). Since that time, the entire magnet array has been reconfigured - from the original A-cell to an axicell design. The MFTF-B magnet array now contains a total of 26 large superconducting coils: 2 sets of yin-yang pairs, 2 sets of transition magnets (each containing two coils), 2 sets of axicell magnets (each containing three coils), and 12 central-cell solenoids. This paper chronicles recent magnet history - from te testing of the initial yin-yang set, through the design of the axicell configuration, to the planned development of the system

  5. Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks

    Directory of Open Access Journals (Sweden)

    Elena Bergamini

    2014-10-01

    Full Text Available Magnetic and inertial measurement units are an emerging technology to obtain 3D orientation of body segments in human movement analysis. In this respect, sensor fusion is used to limit the drift errors resulting from the gyroscope data integration by exploiting accelerometer and magnetic aiding sensors. The present study aims at investigating the effectiveness of sensor fusion methods under different experimental conditions. Manual and locomotion tasks, differing in time duration, measurement volume, presence/absence of static phases, and out-of-plane movements, were performed by six subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter and complementary (Non-linear observer filtering, were selected, and their accuracy was assessed in terms of attitude (pitch and roll angles and heading (yaw angle errors using stereophotogrammetric data as a reference. The sensor fusion approaches provided significantly more accurate results than gyroscope data integration. Accuracy improved mostly for heading and when the movement exhibited stationary phases, evenly distributed 3D rotations, it occurred in a small volume, and its duration was greater than approximately 20 s. These results were independent from the specific sensor fusion method used. Practice guidelines for improving the outcome accuracy are provided.

  6. Fusion connection: contributions to industry, defense, and basic science resulting from scientific advances made in the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    Finn, T.; Woo, J.; Temkin, R.

    1985-10-01

    Fusion research has led to significant contributions in many different areas of industry, defense, and basic science. This diversity is represented visually in the introductory figure which shows both a radio galaxy, and a microchip produced by plasma etching. Some of these spin-off technologies are discussed

  7. LDRD final report on confinement of cluster fusion plasmas with magnetic fields.

    Energy Technology Data Exchange (ETDEWEB)

    Argo, Jeffrey W.; Kellogg, Jeffrey W.; Headley, Daniel Ignacio; Stoltzfus, Brian Scott; Waugh, Caleb J.; Lewis, Sean M.; Porter, John Larry, Jr.; Wisher, Matthew; Struve, Kenneth William; Savage, Mark Edward; Quevedo, Hernan J.; Bengtson, Roger

    2011-11-01

    Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must be brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the

  8. Proposal of a concept and reliability analysis for a fusion plant magnet protection system

    International Nuclear Information System (INIS)

    Schnauder, H.; Pamfilie, E.

    1993-05-01

    The unavailability for the current switch down in case of a demand in the magnet coils of a fusion demonstration plant must be decreased by a few orders of magnitude as compared to the one of experimental facilities. The safety requirements to prevent initiation of event sequences which might lead to the release of radioactivity and energy by the plant must be fulfilled with the same standards as applied in a normally applicable plant. On the basis of this proven technology a general usable magnet protection system will be proposed, which achieves some considerable improvements in the failure detectability as compared to the conventional protection systems. It will be demonstrated by fault tree analysis that the principal demands on safety can be satisfied by that approach. The improvements are achieved by the use of an additional microprocessor supported system for failure detection without being used for initiation of any safety related actions. An influence on a safety action by the additional system therefore is excluded. (orig.) [de

  9. Structural analysis of magnetic fusion energy systems in a combined interactive/batch computer environment

    International Nuclear Information System (INIS)

    Johnson, N.E.; Singhal, M.K.; Walls, J.C.; Gray, W.H.

    1979-01-01

    A system of computer programs has been developed to aid in the preparation of input data for and the evaluation of output data from finite element structural analyses of magnetic fusion energy devices. The system utilizes the NASTRAN structural analysis computer program and a special set of interactive pre- and post-processor computer programs, and has been designed for use in an environment wherein a time-share computer system is linked to a batch computer system. In such an environment, the analyst must only enter, review and/or manipulate data through interactive terminals linked to the time-share computer system. The primary pre-processor programs include NASDAT, NASERR and TORMAC. NASDAT and TORMAC are used to generate NASTRAN input data. NASERR performs routine error checks on this data. The NASTRAN program is run on a batch computer system using data generated by NASDAT and TORMAC. The primary post-processing programs include NASCMP and NASPOP. NASCMP is used to compress the data initially stored on magnetic tape by NASTRAN so as to facilitate interactive use of the data. NASPOP reads the data stored by NASCMP and reproduces NASTRAN output for selected grid points, elements and/or data types

  10. Development of effective power supply using electric double layer capacitor for static magnetic field coils in fusion plasma experiments.

    Science.gov (United States)

    Inomoto, M; Abe, K; Yamada, T; Kuwahata, A; Kamio, S; Cao, Q H; Sakumura, M; Suzuki, N; Watanabe, T; Ono, Y

    2011-02-01

    A cost-effective power supply for static magnetic field coils used in fusion plasma experiments has been developed by application of an electric double layer capacitor (EDLC). A prototype EDLC power supply system was constructed in the form of a series LCR circuit. Coil current of 100 A with flat-top longer than 1 s was successfully supplied to an equilibrium field coil of a fusion plasma experimental apparatus by a single EDLC module with capacitance of 30 F. The present EDLC power supply has revealed sufficient performance for plasma confinement experiments whose discharge duration times are an order of several seconds.

  11. First research coordination meeting on atomic collision data for diagnostics of magnetic fusion plasmas, Vienna, 21-25 June 1982

    International Nuclear Information System (INIS)

    Katsonis, K.; Lorenz, A.

    1982-10-01

    Proceedings of the first meeting of the participants in the IAEA Coordinated Research Programme on atomic collision data for diagnostics of magnetically confined fusion plasmas, convened by the IAEA Nuclear Data Section on 21 - 25 June 1982, at IAEA Headquarters in Vienna. The meeting participants reviewed the status of electron excitation, electron ionization and charge transfer data for selected fusion relevant elements, made specific recommendations on the use of these existing data, and identified those data which needed to be measured or calculated. (author)

  12. The interaction of the near-field plasma with antennas used in magnetic fusion research

    Science.gov (United States)

    Caughman, John

    2015-09-01

    Plasma heating and current drive using antennas in the Ion Cyclotron Range of Frequencies (ICRF) are important elements for the success of magnetic fusion. The antennas must operate in a harsh environment, where local plasma densities can be >1018/m3, magnetic fields can range from 0.2-5 Tesla, and antenna operating voltages can be >40 kV. This environment creates operational issues due to the interaction of the near-field of the antenna with the local plasma. In addition to parasitic losses in this plasma region, voltage and current distributions on the antenna structure lead to the formation of high electric fields and RF plasma sheaths, which can lead to enhanced particle and energy fluxes on the antenna and on surfaces intersected by magnetic field lines connected to or passing near the antenna. These issues are being studied using a simple electrode structure and a single-strap antenna on the Prototype Materials Plasma EXperiment (Proto-MPEX) at ORNL, which is a linear plasma device that uses an electron Bernstein wave heated helicon plasma source to create a high-density plasma suitable for use in a plasma-material interaction test stand. Several diagnostics are being used to characterize the near-field interactions, including double-Langmuir probes, a retarding field energy analyzer, and optical emission spectroscopy. The RF electric field is being studied utilizing Dynamic Stark Effect spectroscopy and Doppler-Free Saturation Spectroscopy. Recent experimental results and future plans will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  13. Fusion breeder

    International Nuclear Information System (INIS)

    Moir, R.W.

    1982-01-01

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs

  14. Prospects for the use of high-Tc superconductors in fusion magnets and options for their test in SULTAN

    International Nuclear Information System (INIS)

    Wesche, Rainer; Bruzzone, Pierluigi; March, Stephen; Marinucci, Claudio; Stepanov, Boris; Uglietti, Davide

    2013-01-01

    Highlights: ► RE-123 tapes j c ≥ 500 A/cm (77 K) would enable fusion magnets operating above 20 K. ► Quench studies indicate that the protection of RE-123 fusion magnets is a challenge. ► Possibilities to test 50 kA class HTS conductors in SULTAN have been identified. ► HTS bus bar of large thermal resistance needed to connect sample and NbTi flux pump. ► Tests in the 20–50 K range require additional changes in the SULTAN cryogenics. -- Abstract: In the last few years, the critical current densities of long commercially available REBa 2 Cu 3 O 7−x (RE-123, where RE represents Y or a rare earth element) coated conductors have reached values of 250 A/cm-width at 77 K and zero applied field. Even higher values of 600 A/cm-w (77 K, B = 0) have been demonstrated in shorter lengths. The attractive features of the use of these high-T c superconductors (HTS) are operation temperatures above 20 K and/or magnetic fields higher than those envisaged for the ITER TF coils. Possible operation conditions for HTS fusion magnets have been studied taking into consideration the possible further improvements of RE-123 coated conductors. Investigations of stability and quench behavior indicate that stability is not a problem, whereas quench detection and protection need attention. Because of the high currents necessary for fusion magnets, many tapes need to be assembled into a transposed conductor. The qualification of HTS conductors for fusion magnets would require their test at magnetic fields of 11 T and currents well above 10 kA. The possibilities to test straight HTS conductor samples in SULTAN have been considered. For a test at 4.5 K, only the development of a low resistance joint between the HTS conductor under test and the NbTi transformer of SULTAN would be necessary. Tests up to 20 K would require that the HTS sample is connected with the NbTi transformer by a conduction-cooled HTS bus bar of large thermal resistance similar to the HTS module of a current

  15. Fusion devices

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1977-01-01

    Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included

  16. Superconducting magnet and conductor research activities in the US fusion program

    International Nuclear Information System (INIS)

    Michael, P.C.; Schultz, J.H.; Antaya, T.A.; Ballinger, R.; Chiesa, L.; Feng, J.; Gung, C.-Y.; Harris, D.; Kim, J.-H.; Lee, P.; Martovetsky, N.; Minervini, J.V.; Radovinsky, A.; Salvetti, M.; Takayasu, M.; Titus, P.

    2006-01-01

    Fusion research in the United States is sponsored by the Department of Energy's Office of Fusion Energy Sciences (OFES). The OFES sponsors a wide range of programs to advance fusion science, fusion technology, and basic plasma science. Most experimental devices in the US fusion program are constructed using conventional technologies; however, a small portion of the fusion research program is directed towards large scale commercial power generation, which typically relies on superconductor technology to facilitate steady-state operation with high fusion power gain, Q. The superconductor portion of the US fusion research program is limited to a small number of laboratories including the Plasma Science and Fusion Center at MIT, Lawrence Livermore National Laboratory (LLNL), and the Applied Superconductivity Center at University of Wisconsin, Madison. Although Brookhaven National Laboratory (BNL) and Lawrence Berkeley National Laboratory (LBNL) are primarily sponsored by the US's High Energy Physics program, both have made significant contributions to advance the superconductor technology needed for the US fusion program. This paper summarizes recent superconductor activities in the US fusion program

  17. Diagnostic Value of Guided Biopsies: Fusion and Cognitive-registration Magnetic Resonance Imaging Versus Conventional Ultrasound Biopsy of the Prostate

    Science.gov (United States)

    Oberlin, Daniel T.; Casalino, David D.; Miller, Frank H.; Matulewicz, Richard S.; Perry, Kent T.; Nadler, Robert B.; Kundu, Shilajit; Catalona, William J.; Meeks, Joshua J.

    2016-01-01

    Objective To better assess the increased utilization of multiparametric magnetic resonance imaging (mpMRI) and fusion biopsy of the prostate, we compared prostate cancer detection rates among (a) men undergoing MR-ultrasound (US) fusion biopsy, (b) mpMRI cognitive-registration biopsy, and (c) conventional transrectal US-guided biopsy for the detection of prostate cancer. Materials and Methods We present a retrospective review of consecutive patients undergoing mpMRI of the prostate with subsequent prostate biopsy from October 2013 to September 2015. Lesions concerning for prostate cancer visualized on mpMRI were targeted with cognitive-registration or MR-US fusion biopsies. A cohort of men undergoing conventional prostate biopsy was utilized for comparison. Rates of cancer detection were compared among the 3 cohorts. Results A total of 231 patients underwent mpMRI-targeted biopsy (81 fusion, 150 cognitive). There was no difference in prostate specific antigen, mpMRI-defined Prostate Imaging Reporting and Data System score or number of lesions, or history of prostate cancer among the cohorts. The overall detection rate of cancer was significantly higher in the fusion cohort (48.1%) compared with both the cognitive (34.6% P = .04) and conventional (32.0%, P = .03) cohorts. Cancer detection rates were comparable in the MRI-cognitive and transrectal prostate US biopsy groups (34.6% vs 32%). MR fusion detected significantly more Gleason ≥7 cancer (61.5 vs 37.5%, P = .04) and significantly less Gleason 6 cancer (38.5 vs 62.5%, P = .04) compared with conventional biopsy. Conclusion Targeted biopsy of the prostate using MR-US fusion increased the cancer detection rate compared with both cognitive registration and conventional biopsy and was associated with detection of higher-grade cancer compared with conventional biopsy. PMID:26966043

  18. Fabrication and Test of a 60-kA HTS Current Lead for Fusion Magnet System

    Science.gov (United States)

    Ando, T.; Isono, T.; Kawano, K.; Hamada, K.; Matsui, K.; Nunoya, Y.; Hara, E.; Kato, T.; Okuno, K.; Bono, T.; Tomioka, A.; Sanuki, Y.; Ito, I.; Sakaki, K.; Konno, M.; Uede, T.

    2004-06-01

    A 60-kA HTS current lead was fabricated and tested in the frame of the R&D work for large fusion magnets such as the ITER magnet. The design of the current lead was characterized by its safe thermal protection for the current decay of about ten seconds after quench as well as lower electrical power consumption for its cryogenic equipment. The 60-kA current lead is composed of a lower temperature HTS part using HTS and a high temperature copper part using a conventional copper cable. The HTS part consists of 48 HTS units installed in the cylindrical array into the grooves provided on the outer surface of a stainless steel cylinder with a diameter of 146 mm. The unit was composed of six Bi2223/Ag-10at%Au tapes and its cross-sectional dimension is 6.5 mm × 2.7 mm. The stainless steel cylinder and Ag alloy sheath have a share in thermal protection for quench. The current lead was tested under the cooling condition that the bottom of the HTS part was immersed into 4.2 K liquid helium, and the bottom of the copper part was forced cooled with a helium gas of 3.2 g/s at 20 K. The lead was successfully operated at 60 kA without quench. Heat load to liquid helium was 4.8 W. The total electrical power consumption for the cryogenic equipment was estimated as 37 % of that of conventional copper current lead.

  19. Recent Progress and Future Potential of Magnetized Liner Inertial Fusion (MagLIF)

    Energy Technology Data Exchange (ETDEWEB)

    Slutz, Stephen A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gomez, Matthew R [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sefkow, Adam B [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sinars, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hahn, Kelly [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Stephanie B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harding, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knapp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schmit, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jennings, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Awe, Thomas James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herrmann, M. C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hess, Mark Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johns, Owen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lamppa, Derek C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McBride, Ryan D [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geissel, Matthias [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rovang, Dean C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chandler, Gordon A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Gary Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cuneo, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harvey-Thompson, Adam James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Porter, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robertson, Grafton Kincannon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gregory A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ruiz, Carlos L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Savage, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Ian C [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stygar, William A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vesey, Roger A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-04-01

    The standard approaches to inertial confinement fusion (ICF) rely on implosion velocities greater than 300 km/s and spherical convergence to achieve the high fuel temperatures (T > 4 keV) and areal densities (ρr > 0.3 g/cm2) required for ignition1. Such high velocities are achieved by heating the outside surface of a spherical capsuleeither directly with a large number of laser beams (Direct Drive) or with x-rays generated within a hohlraum (Indirect Drive). A much more energetically efficient approach is to use the magnetic pressure generated by a pulsed power machine to directly drive an implosion. In this approach 5-10% of the stored energy can be converted to the implosion of a metal tube generally referred to as a “liner”. However, the implosion velocity is not very high 70-100 km/s and the convergence is cylindrical (rather than spherical) making it more difficult to achieve the high temperatures and areal densities needed for ignition.

  20. Results of the international Large Coil Task: a milestone for superconducting magnets in fusion power

    International Nuclear Information System (INIS)

    Dresner, L.; Fietz, W.A.; Gauss, S.

    1989-01-01

    The aim of the Large Coil Task (LCT) was to demonstrate the reliable operation of large superconducting toroidal field coils and to prove the design principles and fabrication techniques to be applied for the magnets in a tokamak experimental power reactor. This has been achieved by an international development effort involving the US DOE, EURATOM, JAERI and the Swiss government. Six different D-shaped test coils were separately designed, developed and constructed by the LCT participants, then extensively tested together in a compact toroidal array. Detailed information on coil design and manufacture and all test data were shared among the LCT participants. The full six-coil array tests were carried out in a continuous period from the beginning of 1986 until September 1987. Beside the originally planned tests to reach an 8 T design point performance, the tests went well beyond this goal, reaching 9 T peak field in each coil. The experiments also delineated the limits of operability and demonstrated the coil safety under abnormal conditions. For fusion application the transient a.c. field behaviour in the coils was also of great interest. Three of the coils have been tested in this respect and showed excellent performance, with loss values in agreement with the theoretical predictions. (author)

  1. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France)], E-mail: gaelle.chevet@cea.fr; Schlosser, J. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France); Martin, E.; Herb, V.; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SAFRAN-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)

    2009-03-31

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  2. Kinetic transport in a magnetically confined and flux-constrained fusion plasma

    International Nuclear Information System (INIS)

    Darmet, G.

    2007-11-01

    This work deals with the kinetic transport in a fusion plasma magnetically confined and flux-constrained. The author proposes a new interpretation of the dynamics of zonal flows. The model that has been studied is a gyrokinetic model reduced to the transport of trapped ions. The inter-change stability that is generated allows the study of the kinetic transport of trapped ions. This model has a threshold instability and can be simulated over a few tens confining time for either thermal bath constraint or flux constraint. For thermal baths constraint, the simulation shows a metastable state where zonal flows are prevailing while turbulence is non-existent. In the case of a flux-constraint, zonal flows appear and relax by exchanging energy with system's kinetic energy and turbulence energy. The competition between zonal flows and turbulence can be then simulated by a predator-prey model. 2 regimes can be featured out: an improved confining regime where zonal flows dominate transport and a turbulent regime where zonal flows and turbulent transport are of the same magnitude order. We show that flux as well as the Reynolds tensor play an important role in the dynamics of the zonal flows and that the gyrokinetic description is relevant for all plasma regions. (A.C.)

  3. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Science.gov (United States)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-03-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  4. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    International Nuclear Information System (INIS)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-01-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load

  5. Large superconductors and joints for fusion magnets: From conceptual design to testing at full scale

    Science.gov (United States)

    Ciazynski, D.; Duchateau, J. L.; Decool, P.; Libeyre, P.; Turck, B.

    2001-02-01

    A new kind of superconductor, using the cable-in-conduit concept, is emerging, mainly in the context of fusion activity. At present no large Nb3Sn magnet in the world is operating using this concept. The difficulty of this technology, which has now been studied for 20 years, is that it requires major advances in several interconnected new fields, such as handling a large number (1000) of superconducting strands, high current conductors (50 kA), forced flow cryogenics, Nb3Sn technology, low loss conductors in pulsed operation, high current connections and high voltage insulation (10 kV), as well as demonstration of its economical and industrial feasibility. CEA has been very much involved, during the past ten years, in this development, which took place in the framework of the NET and ITER technological programmes. One major milestone was reached in 1998-1999 with the successful tests by Euratom-CEA of three full size conductor and connection samples in the SULTAN facility in Switzerland.

  6. Expression, one-step purification, and immobilization of HaloTag(TM) fusion proteins on chloroalkane-functionalized magnetic beads.

    Science.gov (United States)

    Motejadded, Hassan; Kranz, Bertolt; Berensmeier, Sonja; Franzreb, Matthias; Altenbuchner, Josef

    2010-11-01

    The presented work introduces a novel method to immobilize enzymes either purified or directly out of a crude extract onto magnetic particles in the micrometer range. This method is based on the creation of a fusion protein consisting of the enzyme of choice and a mutant dehalogenase. The dehalogenase gene is commercially available from the company Promega under the name HaloTag(TM). When the fusion protein is contacted with magnetic beads having chemically synthesized, chloroalkane ligands on their surface, the dehalogenase and the ligand undergo a covalent coupling leading to stable and spatially defined immobilization. The principle was proved with a lipase fused to the HaloTag(TM) gene and magnetic poly(methyl)methacrylate beads as carriers. The solubility of the tagged lipase was strongly increased by fusion of the malE gene at the N-terminal end of the HaloTag(TM) lipase gene. This tripartite protein was purified on amylose resin and used for immobilization. About 13 µg protein could be immobilized per 1 mg of beads within a few minutes. Due to the defined binding site, no activity loss was observed in the course of the immobilization. The resulting enzyme carrier was tested with the same beads up to six times for lipase activity over a storage period of 36 days at 8 °C. No loss of activity was found during this time.

  7. Fabrication and Characterization of a Low Magnetic Zr-1Mo Alloy by Powder Bed Fusion Using a Fiber Laser

    Directory of Open Access Journals (Sweden)

    Xiaohao Sun

    2017-11-01

    Full Text Available A low magnetic Zr-1Mo alloy was fabricated by a powder bed fusion (PBF process using a fiber laser. The microstructure, surface morphology, and pore distribution of the as-built Zr-1Mo alloy were observed. Its magnetic susceptibility and Vickers hardness were evaluated by magnetic susceptibility balance and a microindentation tester, respectively. The as-built Zr-1Mo alloy mainly consisted of an α′ phase with an acicular structure. From the processing maps of the surface morphology and pore distribution, open pores on the top surface due to the lack of fusion corresponded to grid-like distributed pores, and large pores corresponded to balling particles on the top surface. The Vickers hardness was influenced by the oxygen and nitrogen contents rather than the porosity. The magnetic susceptibilities of the as-built Zr-1Mo alloy still were one-third those of Ti-6Al-4V and Ti-6Al-7Nb, thus PBF can be applicable to the fabrication process for the low magnetic Zr-1Mo alloy.

  8. Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, Alla [Univ. of Nevada, Reno, NV (United States)

    2014-03-14

    Spectroscopy of radiation emitted by impurities plays an important role in the study of magnetically confined fusion plasmas. The measurements of these impurities are crucial for the control of the general machine conditions, for the monitoring of the impurity levels, and for the detection of various possible fault conditions. Low-Z impurities, typically present in concentrations of 1%, are lithium, beryllium, boron, carbon, and oxygen. Some of the common medium-Z impurities are metals such as iron, nickel, and copper, and high-Z impurities, such as tungsten, are present in smaller concentrations of 0.1% or less. Despite the relatively small concentration numbers, the aforementioned impurities might make a substantial contribution to radiated power, and also influence both plasma conditions and instruments. A detailed theoretical study of line radiation from impurities that covers a very broad spectral range from less than 1 Å to more than 1000 Å has been accomplished and the results were applied to the LLNL Electron Beam Ion Trap (EBIT) and the Sustained Spheromak Physics Experiment (SSPX) and to the National Spherical Torus Experiment (NSTX) at Princeton. Though low- and medium-Z impurities were also studied, the main emphasis was made on the comprehensive theoretical study of radiation from tungsten using different state-of-the-art atomic structure codes such as Relativistic Many-Body Perturbation Theory (RMBPT). The important component of this research was a comparison of the results from the RMBPT code with other codes such as the Multiconfigurational Hartree–Fock developed by Cowan (COWAN code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and estimation of accuracy of calculations. We also have studied dielectronic recombination, an important recombination process for fusion plasma, for variety of highly and low charged tungsten ions using COWAN and HULLAC codes. Accurate DR rate coefficients are needed for

  9. Fusion physics

    CERN Document Server

    Lackner, Karl; Tran, Minh Quang

    2012-01-01

    This publication is a comprehensive reference for graduate students and an invaluable guide for more experienced researchers. It provides an introduction to nuclear fusion and its status and prospects, and features specialized chapters written by leaders in the field, presenting the main research and development concepts in fusion physics. It starts with an introduction to the case for the development of fusion as an energy source. Magnetic and inertial confinement are addressed. Dedicated chapters focus on the physics of confinement, the equilibrium and stability of tokamaks, diagnostics, heating and current drive by neutral beam and radiofrequency waves, and plasma–wall interactions. While the tokamak is a leading concept for the realization of fusion, other concepts (helical confinement and, in a broader sense, other magnetic and inertial configurations) are also addressed in the book. At over 1100 pages, this publication provides an unparalleled resource for fusion physicists and engineers.

  10. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices.

    Science.gov (United States)

    Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G

    2013-12-01

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  11. Use of a Simple, Inexpensive Dual-Modality Phantom as a Learning Tool for Magnetic Resonance Imaging-Ultrasound Fusion Techniques.

    Science.gov (United States)

    Walter, William R; Burke, Christopher J; Diallo, Mamadou; Adler, Ronald S

    2018-02-15

    We describe an easily constructed, customizable phantom for magnetic resonance imaging-ultrasound fusion imaging and demonstrate its role as a learning tool to initiate clinical use of this emerging modality. Magnetic resonance imaging-ultrasound fusion can prove unwieldy to integrate into routine practice. We demonstrate real-time fusion with single-sequence magnetic resonance imaging uploaded to the ultrasound console. Phantom training sessions allow radiologists and sonographers to practice fiducial marker selection and improve efficiency with the fusion hardware and software interfaces. Such a tool is useful when the modality is first introduced to a practice and in settings of sporadic use, in which intermittent training may be useful. © 2018 by the American Institute of Ultrasound in Medicine.

  12. Ultrahigh field magnetic resonance and colour Doppler real-time fusion imaging of the orbit - a hybrid tool for assessment of choroidal melanoma

    International Nuclear Information System (INIS)

    Walter, Uwe; Niendorf, Thoralf; Rieger, Jan; Graessl, Andreas; Krueger, Paul-Christian; Langner, Soenke; Guthoff, Rudolf F.; Stachs, Oliver

    2014-01-01

    A combination of magnetic resonance images with real-time high-resolution ultrasound known as fusion imaging may improve ophthalmologic examination. This study was undertaken to evaluate the feasibility of orbital high-field magnetic resonance and real-time colour Doppler ultrasound image fusion and navigation. This case study, performed between April and June 2013, included one healthy man (age, 47 years) and two patients (one woman, 57 years; one man, 67 years) with choroidal melanomas. All cases underwent 7.0-T magnetic resonance imaging using a custom-made ocular imaging surface coil. The Digital Imaging and Communications in Medicine volume data set was then loaded into the ultrasound system for manual registration of the live ultrasound image and fusion imaging examination. Data registration, matching and then volume navigation were feasible in all cases. Fusion imaging provided real-time imaging capabilities and high tissue contrast of choroidal tumour and optic nerve. It also allowed adding a real-time colour Doppler signal on magnetic resonance images for assessment of vasculature of tumour and retrobulbar structures. The combination of orbital high-field magnetic resonance and colour Doppler ultrasound image fusion and navigation is feasible. Multimodal fusion imaging promises to foster assessment and monitoring of choroidal melanoma and optic nerve disorders. (orig.)

  13. Ultrahigh field magnetic resonance and colour Doppler real-time fusion imaging of the orbit - a hybrid tool for assessment of choroidal melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Uwe [University of Rostock, Department of Neurology, Rostock (Germany); Niendorf, Thoralf; Rieger, Jan [Berlin Ultrahigh Field Facility, Max-Delbrueck-Center for Molecular Medicine, Berlin (Germany); MRI.TOOLS GmbH, Berlin (Germany); Graessl, Andreas [Berlin Ultrahigh Field Facility, Max-Delbrueck-Center for Molecular Medicine, Berlin (Germany); Krueger, Paul-Christian; Langner, Soenke [University of Greifswald, Institute for Diagnostic Radiology and Neuroradiology, Greifswald (Germany); Guthoff, Rudolf F.; Stachs, Oliver [University of Rostock, Department of Ophthalmology, Rostock (Germany)

    2014-05-15

    A combination of magnetic resonance images with real-time high-resolution ultrasound known as fusion imaging may improve ophthalmologic examination. This study was undertaken to evaluate the feasibility of orbital high-field magnetic resonance and real-time colour Doppler ultrasound image fusion and navigation. This case study, performed between April and June 2013, included one healthy man (age, 47 years) and two patients (one woman, 57 years; one man, 67 years) with choroidal melanomas. All cases underwent 7.0-T magnetic resonance imaging using a custom-made ocular imaging surface coil. The Digital Imaging and Communications in Medicine volume data set was then loaded into the ultrasound system for manual registration of the live ultrasound image and fusion imaging examination. Data registration, matching and then volume navigation were feasible in all cases. Fusion imaging provided real-time imaging capabilities and high tissue contrast of choroidal tumour and optic nerve. It also allowed adding a real-time colour Doppler signal on magnetic resonance images for assessment of vasculature of tumour and retrobulbar structures. The combination of orbital high-field magnetic resonance and colour Doppler ultrasound image fusion and navigation is feasible. Multimodal fusion imaging promises to foster assessment and monitoring of choroidal melanoma and optic nerve disorders. (orig.)

  14. Interaction between sheared flows and turbulent transport in magnetized fusion-grade plasmas; Interaction entre ecoulements cisailles et transport turbulent dans les plasmas de fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, M.

    2008-11-15

    The H confinement regime is set when the heating power reaches a threshold value P{sub c} and is linked to the formation of a transport barrier in the edge region of the plasma. Such a barrier is characterized by a high pressure gradient and is submitted to ELM (edge localized mode) instabilities. ELM instabilities trigger violent quasi-periodical ejections of matter and heat that induce quasi-periodical relaxations of the transport barrier called relaxation oscillations. In this work we studied the interaction between sheared flows and turbulence in fusion plasmas. In particular, we studied the complex dynamics of a transport barrier and we show through a simulation that resonant magnetic perturbations could control relaxation oscillations without a significant loss of confinement

  15. CORSICA: A comprehensive simulation of toroidal magnetic-fusion devices. Final report to the LDRD Program

    Energy Technology Data Exchange (ETDEWEB)

    Crotinger, J.A.; LoDestro, L.; Pearlstein, L.D.; Tarditi, A.; Casper, T.A.; Hooper, E.B.

    1997-03-21

    In 1992, our group began exploring the requirements for a comprehensive simulation code for toroidal magnetic fusion experiments. There were several motivations for taking this step. First, the new machines being designed were much larger and more expensive than current experiments. Second, these new designs called for much more sophisticated control of the plasma shape and position, as well as the distributions of energy, mass, and current within the plasma. These factors alone made it clear that a comprehensive simulation capability would be an extremely valuable tool for machine design. The final motivating factor was that the national Numerical Tokamak Project (NTP) had recently received High Performance Computing and Communications (HPCC) Grand Challenge funding to model turbulent transport in tokamaks, raising the possibility that first-principles simulations of this process might be practical in the near future. We felt that the best way to capitalize on this development was to integrate the resulting turbulence simulation codes into a comprehensive simulation. Such simulations must include the effects of many microscopic length- and time-scales. In order to do a comprehensive simulation efficiently, the length- and time- scale disparities must be exploited. We proposed to do this by coupling the average or quasistatic effects from the fast time-scales to a slow-time-scale transport code for the macroscopic plasma evolution. In FY93-FY96 we received funding to investigate algorithms for computationally coupling such disparate-scale simulations and to implement these algorithms in a prototype simulation code, dubbed CORSICA. Work on algorithms and test cases proceeded in parallel, with the algorithms being incorporated into CORSICA as they became mature. In this report we discuss the methods and algorithms, the CORSICA code, its applications, and our plans for the future.

  16. Fusion power by magnetic confinement: plans and the associated need for nuclear engineers

    International Nuclear Information System (INIS)

    Hirsch, R.L.; Beard, D.S.

    1975-01-01

    An essential ingredient in the fusion development plan will be the training of appropriate scientific and technical manpower. In examining the need for fusion-trained nuclear engineers, it is projected that an additional 120 to 250 engineers at the MS and PhD levels will be needed between now and 1980. To be most effective, these graduates must not only be trained in the ''classic'' physical, nuclear, mechanical, and electrical sciences, but they will need specialized training in fusion plasma physics and fusion materials science. To help develop the appropriate educational programs, close cooperation between U. S. Energy Research and Development Administration (ERDA) headquarters, ERDA laboratories, private industry, and the universities will be essential. An emerging need for a carefully structured ''fusion technology'' option in nuclear engineering departments is plainly evident and is already beginning to be developed at leading institutions

  17. International power supply policy and the globalisation of research: the example of fusion research

    International Nuclear Information System (INIS)

    Bechmann, G.; Gloede, F.; Lessmann, E.

    2001-01-01

    At the present state of our information, we can affirm that fusion research, as far as the necessary financial expenditures and their political justification are concerned, is a matter of politically controversial debate. In the political arenas, projects like controlled nuclear fusion are discussed primarily with regard to the controllability of complex technical systems and the sustainability of our future supply of electric power. The attempt to discuss this problem will have to consider: (i) on the one hand, already established concepts of sustainability; (ii) and on the other, the - according to the present state of our knowledge - foreseeable characteristics of a system of power generation and supply based on fusion reactors. Not only do the goals of global technology projects have to be embedded in patterns of universally accepted legitimisation (sustainability), but the organisation of research and development is also changing into networks acting globally. In this sense, globalisation means not only the worldwide linking of financial markets and the permanent availability of information and communication networks, but above all the creation of global organisations of research and innovation processes. The globalisation of research and development of technology has several dimensions: (i) the recognition and treatment of global problems; (ii) the transformation and evolution of new forms of organisation and cooperation in a global community of researchers; (iii) the constitution of Global Change Research. Fusion is playing a 'pathfinder role' for these processes and is at the same time itself an expression of the globalisation of the production of technology

  18. International power supply policy and the globalisation of research: the example of fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Bechmann, G.; Gloede, F. E-mail: fritz.gloede@itas.fzk.de; Lessmann, E

    2001-11-01

    At the present state of our information, we can affirm that fusion research, as far as the necessary financial expenditures and their political justification are concerned, is a matter of politically controversial debate. In the political arenas, projects like controlled nuclear fusion are discussed primarily with regard to the controllability of complex technical systems and the sustainability of our future supply of electric power. The attempt to discuss this problem will have to consider: (i) on the one hand, already established concepts of sustainability; (ii) and on the other, the - according to the present state of our knowledge - foreseeable characteristics of a system of power generation and supply based on fusion reactors. Not only do the goals of global technology projects have to be embedded in patterns of universally accepted legitimisation (sustainability), but the organisation of research and development is also changing into networks acting globally. In this sense, globalisation means not only the worldwide linking of financial markets and the permanent availability of information and communication networks, but above all the creation of global organisations of research and innovation processes. The globalisation of research and development of technology has several dimensions: (i) the recognition and treatment of global problems; (ii) the transformation and evolution of new forms of organisation and cooperation in a global community of researchers; (iii) the constitution of Global Change Research. Fusion is playing a 'pathfinder role' for these processes and is at the same time itself an expression of the globalisation of the production of technology.

  19. The attitudes of science policy, environmental, and utility leaders on US energy issues and fusion

    International Nuclear Information System (INIS)

    Miller, J.D.

    1986-01-01

    One example of basic and applied research at LLNL that has produced major, highly visible scientific and engineering advances has been the research related to controlled fusion energy. Continuing experimentation at LLNL and elsewhere is likely to demonstrate that fusion is a viable, inexhaustible alternative source of energy. Having conducted major fusion energy experiments for over 30 years at LLNL, it scientists and engineers recognized the enormous challenges that lay ahead in this important endeavor. To be successful, it was clear that collaborative efforts with universities, private industry, and other national laboratories would need to be greatly expanded. Along with invention and scientific discovery would come the challenge of transferring the myriad of new technologies from the laboratories to the private sector for commercialization of the fusion energy process and the application of related technologies to yet unimagined new industries and products. Therefore, using fusion energy research as the focus, the Laboratory's Technology Transfer Initiatives Program contracted with the Public Opinion Laboratory to conduct a survey designed to promote a better understanding of effective technology transfer. As one of the recognized authorities on scientific surveys, Dr. Jon Miller of the POL worked with Laboratory scientists to understand the objectives of the survey. He then formulated the questions, designed the survey, and derived his survey sample from a qualified list developed at the POL, which has formed the basis for other survey panels. This report, prepared by Dr. Miller, describes the basis and methodology of this survey process and then presents the survey findings and some conclusions. 12 refs., 28 tabs

  20. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide

  1. Neutron-irradiation facilities at the Intense Pulsed Neutron Source-I for fusion magnet materials studies

    International Nuclear Information System (INIS)

    Brown, B.S.; Blewitt, T.H.

    1982-01-01

    The decommissioning of reactor-based neutron sources in the USA has led to the development of a new generation of neutron sources that employ high-energy accelerators. Among the accelerator-based neutron sources presently in operation, the highest-flux source is the Intense Pulsed Neutron Source (IPNS), a user facility at Argonne National Laboratory. Neutrons in this source are produced by the interaction of 400 to 500 MeV protons with either of two 238 U target systems. In the Radiation Effects Facility (REF), the 238 U target is surrounded by Pb for neutron generatjion and reflection. The REF has three separate irradiation thimbles. Two thimbles provide irradiation temperatures between that of liquid He and several hundred degrees centigrade. The third thimble operates at ambient temperature. The large irradiation volume, the neutron spectrum and flux, the ability to transfer samples without warm up, and the dedication of the facilities during the irradiation make this ideally suited for radiation damage studies on components for superconducting fusion magnets. Possible experiments for fusion magnet materials are discussed on cyclic irradiation and annealing of stabilizers in a high magnetic field, mechanical tests on organic insulation irradiated at 4 K, and superconductors measured in high fields after irradiation

  2. Myometrial invasion and overall staging of endometrial carcinoma: assessment using fusion of T2-weighted magnetic resonance imaging and diffusion-weighted magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Guo Y

    2017-12-01

    Full Text Available Yu Guo,1,2 Ping Wang,2 Penghui Wang,2 Wei Gao,1 Fenge Li,3 Xueling Yang,1 Hongyan Ni,2 Wen Shen,2 Zhi Guo1 1Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin, 2Department of Radiology, Tianjin First Center Hospital, The First Central Clinical College of Tianjin Medical University, Tianjin, 3Department of Gynecology, Tianjin First Center Hospital, Tianjin, People’s Republic of China Background: The age of onset of endometrial carcinoma has been decreasing in recent years. In endometrial carcinoma, it is important to accurately assess invasion depth and preoperative staging. Fusion of T2-weighted magnetic resonance imaging (T2WI and diffusion-weighted magnetic resonance imaging (DWI may contribute to the improvement of anatomical localization of lesions.Materials and methods: In our study, a total of 58 endometrial carcinoma cases were included. Based on the revised 2009 International Federation of Gynecology and Obstetrics staging system, a fusion of T2WI and DWI was utilized for the evaluation of invasion depth and determination of the overall stage. Postoperative pathologic assessment was considered as the reference standard. The consistency of T2WI image staging and pathologic staging, and the consistency of fused T2WI and DWI and pathologic staging were all analyzed using Kappa statistics.Results: Compared with the T2WI group, a significantly higher diagnostic accuracy was observed for myometrial invasion with fusion of T2WI and DWI (77.6% for T2WI; 94.8% for T2WI-DWI. For the identification of deep invasion, we calculated values for diagnostic sensitivity (69.2% for T2WI; 92.3% for T2WI-DWI, specificity (80% for T2WI; 95.6% for T2WI-DWI, positive predictive value (50% for T2WI; 85.7% for T2WI-DWI, and negative predictive value (90% for

  3. Energy sweepstakes: fusion gets a chance

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1980-01-01

    Congress plans to speed up the magnetic-fusion program by shifting the emphasis from plasma research to fusion-reactor engineering. The bill doubles the overall fusion budget over the next five years in order to construct a Fusion Engineering Device (FED) by 1990. A review panel of scientists suggested limiting the cost to under $1 billion and holding the increase until late 1983. The panel also suggested waiting until 1990 to set a date for demonstrating a competitive commercial reactor even though progress made in the 1970s could bring a realistic date as close as 2000. The new policy evolves from the debate between tokamak hawks, who want to take the best prospect to commercialization immediately, and the doves, who want to wait to see if the best possible concept turns out to be the magnetic mirror or some other contender. The Engineering Test Facility (ETF) represents a compromise of these positions

  4. Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging and Fusion Guided Targeted Biopsy Evaluated by Transperineal Template Saturation Prostate Biopsy for the Detection and Characterization of Prostate Cancer.

    Science.gov (United States)

    Mortezavi, Ashkan; Märzendorfer, Olivia; Donati, Olivio F; Rizzi, Gianluca; Rupp, Niels J; Wettstein, Marian S; Gross, Oliver; Sulser, Tullio; Hermanns, Thomas; Eberli, Daniel

    2018-02-21

    We evaluated the diagnostic accuracy of multiparametric magnetic resonance imaging and multiparametric magnetic resonance imaging/transrectal ultrasound fusion guided targeted biopsy against that of transperineal template saturation prostate biopsy to detect prostate cancer. We retrospectively analyzed the records of 415 men who consecutively presented for prostate biopsy between November 2014 and September 2016 at our tertiary care center. Multiparametric magnetic resonance imaging was performed using a 3 Tesla device without an endorectal coil, followed by transperineal template saturation prostate biopsy with the BiopSee® fusion system. Additional fusion guided targeted biopsy was done in men with a suspicious lesion on multiparametric magnetic resonance imaging, defined as Likert score 3 to 5. Any Gleason pattern 4 was defined as clinically significant prostate cancer. The detection rates of multiparametric magnetic resonance imaging and fusion guided targeted biopsy were compared with the detection rate of transperineal template saturation prostate biopsy using the McNemar test. We obtained a median of 40 (range 30 to 55) and 3 (range 2 to 4) transperineal template saturation prostate biopsy and fusion guided targeted biopsy cores, respectively. Of the 124 patients (29.9%) without a suspicious lesion on multiparametric magnetic resonance imaging 32 (25.8%) were found to have clinically significant prostate cancer on transperineal template saturation prostate biopsy. Of the 291 patients (70.1%) with a Likert score of 3 to 5 clinically significant prostate cancer was detected in 129 (44.3%) by multiparametric magnetic resonance imaging fusion guided targeted biopsy, in 176 (60.5%) by transperineal template saturation prostate biopsy and in 187 (64.3%) by the combined approach. Overall 58 cases (19.9%) of clinically significant prostate cancer would have been missed if fusion guided targeted biopsy had been performed exclusively. The sensitivity of

  5. Summary of the US Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM)

    International Nuclear Information System (INIS)

    Logan, B.G.; Holdren, J.P.; Berwald, D.H.

    1988-01-01

    ESECOM has completed a recent assessment of the competitive potential of magnetic fusion energy (MFE) compared to present and future fission energy sources giving particular emphasis to the interaction of environmental, safety, and economic characteristics. By consistently applying a set of economic and safety models to a set of MFE concepts using a wide range of possible material choices, power densities, power conversion methods, and fuel cycles, ESECOM finds that several different MFE concepts have the potential to achieve costs of electricity comparable to those of fission systems, coupled with significant safety and environmental advantages. 13 refs., 7 tabs

  6. Effect of Prostate Magnetic Resonance Imaging/Ultrasound Fusion-guided Biopsy on Radiation Treatment Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Aaron; Valle, Luca F.; Shankavaram, Uma; Krauze, Andra; Kaushal, Aradhana; Schott, Erica; Cooley-Zgela, Theresa [Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Wood, Bradford [Center for Interventional Oncology, National Institutes of Health, Bethesda, Maryland (United States); Pinto, Peter [Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Choyke, Peter; Turkbey, Baris [Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Citrin, Deborah E., E-mail: citrind@mail.nih.gov [Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States)

    2017-04-01

    Purpose: Targeted magnetic resonance imaging (MRI)/ultrasound fusion prostate biopsy (MRI-Bx) has recently been compared with the standard of care extended sextant ultrasound-guided prostate biopsy (SOC-Bx), with the former associated with an increased rate of detection of clinically significant prostate cancer. The present study sought to determine the influence of MRI-Bx on radiation therapy and androgen deprivation therapy (ADT) recommendations. Methods and Materials: All patients who had received radiation treatment and had undergone SOC-Bx and MRI-Bx at our institution were included. Using the clinical T stage, pretreatment prostate-specific antigen, and Gleason score, patients were categorized into National Comprehensive Cancer Network risk groups and radiation treatment or ADT recommendations assigned. Intensification of the recommended treatment after multiparametric MRI, SOC-Bx, and MRI-Bx was evaluated. Results: From January 2008 to January 2016, 73 patients received radiation therapy at our institution after undergoing a simultaneous SOC-Bx and MRI-Bx (n=47 with previous SOC-Bx). Repeat SOC-Bx and MRI-Bx resulted in frequent upgrading compared with previous SOC-Bx (Gleason score 7, 6.7% vs 44.6%; P<.001; Gleason score 8-10, 2.1% vs 38%; P<.001). MRI-Bx increased the proportion of patients classified as very high risk from 24.7% to 41.1% (P=.027). Compared with SOC-Bx alone, including the MRI-Bx findings resulted in a greater percentage of pathologically positive cores (mean 37% vs 44%). Incorporation of multiparametric MRI and MRI-Bx results increased the recommended use and duration of ADT (duration increased in 28 of 73 patients and ADT was added for 8 of 73 patients). Conclusions: In patients referred for radiation treatment, MRI-Bx resulted in an increase in the percentage of positive cores, Gleason score, and risk grouping. The benefit of treatment intensification in accordance with the MRI-Bx findings is unknown.

  7. The quest for fusion energy

    International Nuclear Information System (INIS)

    Johnson, J.L.

    1997-10-01

    A brief history of the magnetic fusion program from the point of view of a stellarator enthusiast who worked at a major tokamak laboratory. The reason that success in the magnetic fusion energy program is essential is presented. (author)

  8. Accelerator and fusion research division

    International Nuclear Information System (INIS)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations

  9. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  10. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    Energy Technology Data Exchange (ETDEWEB)

    L. Grisham and J.W. Kwan

    2008-08-12

    Some years ago it was suggested that halogen negative ions [1] could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  11. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    Energy Technology Data Exchange (ETDEWEB)

    Grisham, L.R.; Kwan, J.W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions [1]could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  12. Magnetic Resonance and Ultrasound Image Fusion Supported Transperineal Prostate Biopsy Using the Ginsburg Protocol: Technique, Learning Points, and Biopsy Results.

    Science.gov (United States)

    Hansen, Nienke; Patruno, Giulio; Wadhwa, Karan; Gaziev, Gabriele; Miano, Roberto; Barrett, Tristan; Gnanapragasam, Vincent; Doble, Andrew; Warren, Anne; Bratt, Ola; Kastner, Christof

    2016-08-01

    Prostate biopsy supported by transperineal image fusion has recently been developed as a new method to the improve accuracy of prostate cancer detection. To describe the Ginsburg protocol for transperineal prostate biopsy supported by multiparametric magnetic resonance imaging (mpMRI) and transrectal ultrasound (TRUS) image fusion, provide learning points for its application, and report biopsy results. The article is supplemented by a Surgery in Motion video. This single-centre retrospective outcome study included 534 patients from March 2012 to October 2015. A total of 107 had no previous prostate biopsy, 295 had benign TRUS-guided biopsies, and 159 were on active surveillance for low-risk cancer. A Likert scale reported mpMRI for suspicion of cancer from 1 (no suspicion) to 5 (cancer highly likely). Transperineal biopsies were obtained under general anaesthesia using BiopSee fusion software (Medcom, Darmstadt, Germany). All patients had systematic biopsies, two cores from each of 12 anatomic sectors. Likert 3-5 lesions were targeted with a further two cores per lesion. Any cancer and Gleason score 7-10 cancer on biopsy were noted. Descriptive statistics and positive predictive values (PPVs) and negative predictive values (NPVs) were calculated. The detection rate of Gleason score 7-10 cancer was similar across clinical groups. Likert scale 3-5 MRI lesions were reported in 378 (71%) of the patients. Cancer was detected in 249 (66%) and Gleason score 7-10 cancer was noted in 157 (42%) of these patients. PPV for detecting 7-10 cancer was 0.15 for Likert score 3, 0.43 for score 4, and 0.63 for score 5. NPV of Likert 1-2 findings was 0.87 for Gleason score 7-10 and 0.97 for Gleason score ≥4+3=7 cancer. Limitations include lack of data on complications. Transperineal prostate biopsy supported by MRI/TRUS image fusion using the Ginsburg protocol yielded high detection rates of Gleason score 7-10 cancer. Because the NPV for excluding Gleason score 7-10 cancer was very

  13. An induction-based magnetohydrodynamic 3D code for finite magnetic Reynolds number liquid-metal flows in fusion blankets

    Energy Technology Data Exchange (ETDEWEB)

    Kawczynski, Charlie; Smolentsev, Sergey, E-mail: sergey@fusion.ucla.edu; Abdou, Mohamed

    2016-11-01

    Highlights: • A new induction-based magnetohydrodynamic code was developed using a finite difference method. • The code was benchmarked against purely hydrodynamic and MHD flows for low and finite magnetic Reynolds number. • Possible applications of the new code include liquid-metal MHD flows in the breeder blanket during unsteady events in the plasma. - Abstract: Most numerical analysis performed in the past for MHD flows in liquid-metal blankets were based on the assumption of low magnetic Reynolds number and involved numerical codes that utilized electric potential as the main electromagnetic variable. One limitation of this approach is that such codes cannot be applied to truly unsteady processes, for example, MHD flows of liquid-metal breeder/coolant during unsteady events in plasma, such as major plasma disruptions, edge-localized modes and vertical displacements, when changes in plasmas occur at millisecond timescales. Our newly developed code MOONS (Magnetohydrodynamic Object-Oriented Numerical Solver) uses the magnetic field as the main electromagnetic variable to relax the limitations of the low magnetic Reynolds number approximation for more realistic fusion reactor environments. The new code, written in Fortran, implements a 3D finite-difference method and is capable of simulating multi-material domains. The constrained transport method was implemented to evolve the magnetic field in time and assure that the magnetic field remains solenoidal within machine accuracy at every time step. Various verification tests have been performed including purely hydrodynamic flows and MHD flows at low and finite magnetic Reynolds numbers. Test results have demonstrated very good accuracy against known analytic solutions and other numerical data.

  14. Review of magnetic fusion energy neutron cross section needs: neutronics viewpoint

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Muir, D.W.

    1977-01-01

    In the overall context of fusion nucleonic analysis, most cross section deficiencies lie in the energy range 14 MeV and below. This review deals not only with new data requirements generated by current interest in d-Li sources but also with the needs of conventional nucleonic studies (i.e., 14-MeV source calculations). The many compilations of requirements are referenced, and the current assessment of high-priority needs is succinctly summarized. Then typical methodology and results (sensitivity and uncertainty analysis) are given for quantitative data assessments of the Tokamak Fusion Test Reactor and a fusion Experimental Power Reactor. Finally, a summary is presented of some probings into data above 14 MeV, which have potential applications for d-Li irradiation facilities, d-Be medical therapy sources, and electronuclear fuel production facilities. 2 figures, 9 tables

  15. Thermal challenges for ITER and for the thermonuclear fusion by magnetic confinement

    International Nuclear Information System (INIS)

    Grosman, A.; Magaud, Ph.

    2006-01-01

    In the heart of the sun and other stars, light nuclei combine together to make heavier nuclei. This fusion process releases an enormous amount of energy at the origin of the heat and light received on the Earth. Mastering such reactions for energy generation would open the way to practically inexhaustible resources. This is the objective of researches started by the main industrial nations. After a recall of the main principles of thermonuclear fusion and plasma confinement, this article focusses on the components of a reactor submitted to strong thermal stresses: the plasma facing components and the tritium generating blanket. (J.S.)

  16. Flywheel induction motor-generator for magnet power supply in small fusion device.

    Science.gov (United States)

    Hatakeyma, S; Yoshino, F; Tsutsui, H; Tsuji-Iio, S

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms).

  17. Development of tritium technology for the United States magnetic fusion energy program

    International Nuclear Information System (INIS)

    Anderson, J.L.; Wilkes, W.R.

    1980-01-01

    Tritium technology development for the DOE fusion program is taking place principally at three laboratories, Mound Facility, Argonne National Laboratory and the Los Alamos Scientific Laboratory. This paper will review the major aspects of each of the three programs and look at aspects of the tritium technology being developed at other laboratories within the United States. Facilities and experiments to be discussed include the Tritium Effluent Control Laboratory and the Tritium Storage and Delivery System for the Tokamak Fusion Test Reactor at Mound Facility; the Lithium Processing Test Loop and the solid breeder blanket studies at Argonne; and the Tritium Systems Test Assembly at Los Alamos

  18. Improved localization of implanted subdural electrode contacts on magnetic resonance imaging with an elastic image fusion algorithm in an invasive electroencephalography recording.

    Science.gov (United States)

    Stieglitz, Lennart Henning; Ayer, Christian; Schindler, Kaspar; Oertel, Markus Florian; Wiest, Roland; Pollo, Claudio

    2014-12-01

    Accurate projection of implanted subdural electrode contacts in presurgical evaluation of pharmacoresistant epilepsy cases by invasive electroencephalography is highly relevant. Linear fusion of computed tomography and magnetic resonance images may display the contacts in the wrong position as a result of brain shift effects. A retrospective study in 5 patients with pharmacoresistant epilepsy was performed to evaluate whether an elastic image fusion algorithm can provide a more accurate projection of the electrode contacts on the preimplantation magnetic resonance images compared with linear fusion. An automated elastic image fusion algorithm (AEF), a guided elastic image fusion algorithm (GEF), and a standard linear fusion algorithm were used on preoperative magnetic resonance images and postimplantation computed tomography scans. Vertical correction of virtual contact positions, total virtual contact shift, corrections of midline shift, and brain shifts caused by pneumocephalus were measured. Both AEF and GEF worked well with all 5 cases. An average midline shift of 1.7 mm (SD, 1.25 mm) was corrected to 0.4 mm (SD, 0.8 mm) after AEF and to 0.0 mm (SD, 0 mm) after GEF. Median virtual distances between contacts and cortical surface were corrected by a significant amount, from 2.3 mm after linear fusion algorithm to 0.0 mm after AEF and GEF (P < .001). Mean total relative corrections of 3.1 mm (SD, 1.85 mm) after AEF and 3.0 mm (SD, 1.77 mm) after GEF were achieved. The tested version of GEF did not achieve a satisfying virtual correction of pneumocephalus. The technique provided a clear improvement in fusion of preimplantation and postimplantation scans, although the accuracy is difficult to evaluate.

  19. Kinetic transport in a magnetically confined and flux-constrained fusion plasma; Transport cinetique dans un plasma de fusion magnetique a flux force

    Energy Technology Data Exchange (ETDEWEB)

    Darmet, G

    2007-11-15

    This work deals with the kinetic transport in a fusion plasma magnetically confined and flux-constrained. The author proposes a new interpretation of the dynamics of zonal flows. The model that has been studied is a gyrokinetic model reduced to the transport of trapped ions. The inter-change stability that is generated allows the study of the kinetic transport of trapped ions. This model has a threshold instability and can be simulated over a few tens confining time for either thermal bath constraint or flux constraint. For thermal baths constraint, the simulation shows a metastable state where zonal flows are prevailing while turbulence is non-existent. In the case of a flux-constraint, zonal flows appear and relax by exchanging energy with system's kinetic energy and turbulence energy. The competition between zonal flows and turbulence can be then simulated by a predator-prey model. 2 regimes can be featured out: an improved confining regime where zonal flows dominate transport and a turbulent regime where zonal flows and turbulent transport are of the same magnitude order. We show that flux as well as the Reynolds tensor play an important role in the dynamics of the zonal flows and that the gyrokinetic description is relevant for all plasma regions. (A.C.)

  20. The U.S. program for fusion nuclear technology development

    International Nuclear Information System (INIS)

    Clarke, J.F.; Haas, G.M.

    1989-01-01

    The Fusion Nuclear Technology (FNT) research and development program in the United States is shaped by a hierarchy of documents and by the environment for nuclear energy existing in the United States. The fission nuclear industry in the United States has suffered problems with public perception of safety, waste disposal issues, and economics as influenced by safety and environmental issues. For fusion to be a viable energy alternative, it must offer significant improvements in these areas. The hierarchy of documents defining objectives, plans, and strategy of the U.S. FNT program consists of the Magnetic Fusion Program Plan (MFPP) (February 1985), the Technical Planning Activity Final Report (January 1987), the Finesse Program Report (January 1987), and the Blanket Comparison and Selection Study Final Report (September 1984). In addition, two other documents are also significant in shaping FNT policy. These are the IEA report on Material for Fusion (December 1986) and the Summary of the Report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (September 1987). The U.S. Magnetic Fusion Program Plan defines four key technical issues (magnetic confinement systems, properties of burning plasmas, fusion nuclear technology, and fusion materials). (orig./KP)

  1. REQUIREMENTS FOR COLLISION DATA ON THE SPECIES HELIUM, BERYLLIUM AND BORON IN MAGNETIC CONFINEMENT FUSION

    NARCIS (Netherlands)

    SUMMERS, HP; VONHELLERMANN, M; DEHEER, FJ; HOEKSTRA, R

    1992-01-01

    Requirements for collision data on helium, beryllium and boron are reviewed in the light of the directions of present and planned tokamak fusion experiments. The occurrence of the atoms and ions of these species and their roles in plasma behaviour and diagnostic measurements are described. Special

  2. A need for non-tokamak approaches to magnetic fusion energy

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.; Miller, R.L.

    1992-01-01

    Focusing exclusively on conventional tokamak physics in the quest for commercial fusion power is premature, and the options for both advanced-tokamak and non-tokamak concepts need continued investigation. The basis for this claim is developed, and promising advanced-tokamak and non-tokamak options are suggested

  3. High-speed repetitive pellet injector prototype for magnetic confinement fusion devices

    International Nuclear Information System (INIS)

    Frattolillo, A.; Gasparotto, M.; Migliori, S.; Angelone, G.; Baldarelli, M.; Scaramuzzi, F.; Ronci, G.; Reggiori, A.; Riva, G.; Carlevaro, R.; Daminelli, G.B.

    1992-01-01

    The design of a test facility aimed at demonstrating the feasibility of high-speed repetitive acceleration of solid D 2 pellets for fusion applications, developed in a collaboration between Oak Ridge National Laboratory and ENEA Frascati, is presented. The results of tests performed at the CNPM/CNR on the piston wear in a repetitively operating two-stage gun are also reported

  4. Millimeter-wave imaging of magnetic fusion plasmas: technology innovations advancing physics understanding

    Science.gov (United States)

    Wang, Y.; Tobias, B.; Chang, Y.-T.; Yu, J.-H.; Li, M.; Hu, F.; Chen, M.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Gu, J.; Liu, X.; Zhu, Y.; Domier, C. W.; Shi, L.; Valeo, E.; Kramer, G. J.; Kuwahara, D.; Nagayama, Y.; Mase, A.; Luhmann, N. C., Jr.

    2017-07-01

    Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. Microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These have the potential to greatly advance microwave fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfvén eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today’s most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.

  5. Magnetic Resonance Imaging-Transrectal Ultrasound Guided Fusion Biopsy to Detect Progression in Patients with Existing Lesions on Active Surveillance for Low and Intermediate Risk Prostate Cancer.

    Science.gov (United States)

    Frye, Thomas P; George, Arvin K; Kilchevsky, Amichai; Maruf, Mahir; Siddiqui, M Minhaj; Kongnyuy, Michael; Muthigi, Akhil; Han, Hui; Parnes, Howard L; Merino, Maria; Choyke, Peter L; Turkbey, Baris; Wood, Brad; Pinto, Peter A

    2017-03-01

    Active surveillance is an established option for men with low risk prostate cancer. Multiparametric magnetic resonance imaging with magnetic resonance imaging-transrectal ultrasound fusion guided biopsy may better identify patients for active surveillance compared to systematic 12-core biopsy due to improved risk stratification. To our knowledge the performance of multiparametric magnetic resonance imaging in following men on active surveillance with visible lesions is unknown. We evaluated multiparametric magnetic resonance imaging and magnetic resonance imaging-transrectal ultrasound fusion guided biopsy to monitor men on active surveillance. This retrospective review included men from 2007 to 2015 with prostate cancer on active surveillance in whom magnetic resonance imaging visible lesions were monitored by multiparametric magnetic resonance imaging and fusion guided biopsy. Progression was defined by ISUP (International Society of Urological Pathology) grade group 1 to 2 and ISUP grade group 2 to 3. Significance was considered at p ≤0.05. A total of 166 patients on active surveillance with 2 or more fusion guided biopsies were included in analysis. Mean followup was 25.5 months. Of the patients 29.5% had pathological progression. Targeted biopsy alone identified 44.9% of patients who progressed compared to 30.6% identified by systematic 12-core biopsy alone (p = 0.03). Fusion guided biopsy detected 26% more cases of pathological progression on surveillance biopsy compared to systematic 12-core biopsy. Progression on multiparametric magnetic resonance imaging was the sole predictor of pathological progression at surveillance biopsy (p = 0.013). Multiparametric magnetic resonance imaging progression in the entire cohort had 81% negative predictive value, 35% positive predictive value, 77.6% sensitivity and 40.5% specificity in detecting pathological progression. Multiparametric magnetic resonance imaging progression predicts the risk of pathological

  6. Proceedings of the workshop on structural analysis needs for magnetic fusion energy superconducting magnets: a technical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Reich, M.; Lehner, J.; Powell, J.; Bezler, P.

    1976-01-01

    The technical portions of the meeting were divided into three major sessions as follows: (1) Review of methods being presently used by the MFE community for structural evaluation of current designs. (2) Future structural analysis needs. (3) Open discussions dealing with adequacy of present methods, the improvements needed for MFE magnet structural analysis, and the establishment of an MFE magnet structural advisory group. Summaries of the individual talks are presented.

  7. Proceedings of the workshop on structural analysis needs for magnetic fusion energy superconducting magnets: a technical assessment

    International Nuclear Information System (INIS)

    Reich, M.; Lehner, J.; Powell, J.; Bezler, P.

    1976-01-01

    The technical portions of the meeting were divided into three major sessions as follows: (1) Review of methods being presently used by the MFE community for structural evaluation of current designs. (2) Future structural analysis needs. (3) Open discussions dealing with adequacy of present methods, the improvements needed for MFE magnet structural analysis, and the establishment of an MFE magnet structural advisory group. Summaries of the individual talks are presented

  8. Cryogenic aspects of a demountable toroidal field magnet system for tokamak type fusion reactors

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Powell, J.; Lehner, J.

    1977-01-01

    A new concept for superconducting Toroidal Field (TF) magnet construction is presented. It is termed the ''Demountable Externally Anchored Low Stress'' (DEALS) magnet system. In contrast to continuous wound conventional superconducting coils, each magnet coil is made from several straight coil segments to form a polygon which can be joined and disjoined to improve reactor maintenance accessibility or to replace failed coil segments if necessary. A design example is presented of a DEALS magnet system for a UWMAK II size reactor. The overall magnet system is described, followed by a detailed analysis of the major heat loads in order to assess the refrigeration requirements for the concept. Despite the increased heat loads caused by high current power leads (200,000 amps) and the coil warm reinforcement support system, the analysis shows that at most, only about one percent (approximately 20 Mw) of the plant electrical output (approximately 2,000 Mw) is needed to operate the magnet cryogenic system. The advantages and the drawbacks of the DEALS magnet system are also discussed. The advantages include: capability to replace failed coils, increased accessibility to the blanket shield assembly, reduced reliability requirements for the magnet, much lower stress in conductor, easier application of improved high field brittle superconductors like Nb 3 Sn, improved magnet safety features, etc. The drawbacks are the increased refrigeration requirements and the necessity of a movable coil support system. A comparison with a conventional magnet system is made. It is concluded that the benefits of the DEALS approach far outweigh its penalties, and that the DEALS concept is the most practical, economical way to construct TF magnet systems for Tokamak reactors

  9. Fast neutron spectrometry with organic scintillators applied to magnetic fusion experiments

    CERN Document Server

    Kaschuck, Y A; Trykov, L A; Semenov, V P

    2002-01-01

    Neutron spectrometry with NE213 liquid scintillators is commonly used in thermonuclear fusion experiments to measure the 2.45 and 14.1 MeV neutron flux. We present the unfolded neutron spectrum, which was accumulated during several ohmic deuterium plasma discharges in the Frascati Tokamak Upgrade using a 2''x2'' NE213 scintillator. In this paper, we review the application of organic scintillator neutron spectrometers to tokamaks, focusing in particular on the comparison between NE213 and stilbene scintillators. Various aspects of the calibration technique and neutron spectra unfolding procedure are considered in the context of their application for fusion neutron spectrometry. Testing and calibration measurements have been carried out using D-D and D-T neutron generator facilities with both NE213 and stilbene scintillators. The main result from these measurements is that stilbene scintillator has better neutron energy resolution than NE213. Our stilbene detector could be used for the determination of the ion ...

  10. Avalanche boron fusion by laser picosecond block ignition with magnetic trapping for clean and economic reactor

    Czech Academy of Sciences Publication Activity Database

    Hora, H.; Korn, Georg; Eliezer, S.; Nissim, N.; Lalousis, P.; Giuffrida, Lorenzo; Margarone, Daniele; Picciotto, A.; Miley, G. H.; Moustaizis, S.; Martinez-Val, J.M.; Barty, C.P.J.; Kirchhoff, G.J.

    2016-01-01

    Roč. 4, Oct (2016), 1-9, č. článku e35. ISSN 2095-4719 R&D Projects: GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : boron fusion energy * dielectric nonlinear force explosion * economic reactor * environmentally clean energy Subject RIV: BL - Plasma and Gas Discharge Physics

  11. Brain Atlas Fusion from High-Thickness Diagnostic Magnetic Resonance Images by Learning-Based Super-Resolution

    Science.gov (United States)

    Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian

    2017-01-01

    It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images. PMID:29062159

  12. Brain Atlas Fusion from High-Thickness Diagnostic Magnetic Resonance Images by Learning-Based Super-Resolution.

    Science.gov (United States)

    Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian

    2017-03-01

    It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.

  13. The impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Sanz, J.; Vujic, J.L.

    1996-01-01

    Inertial fusion energy (IFE) and magnetic fusion energy (MFE) power plants will probably operate in a pulsed mode. The two different schemes, however, will have quite different time periods. Typical repetition rates for IFE power plants will be 1-5 Hz. MFE power plants will ramp up in current for about 1 hour, shut down for several minutes, and repeat the process. Traditionally, activation calculations for IFE and MFE power plants have assumed continuous operation and used either the ''steady state'' (SS) or ''equivalent steady state'' (ESS) approximations. It has been suggested recently that the SS and ESS methods may not yield accurate results for all radionuclides of interest. The present work expands that of Sisolak, et al. by applying their formulae to conditions which might be experienced in typical IFE and MFE power plants. In addition, complicated, multi-step reaction/decay chains are analyzed using an upgraded version of the ACAB radionuclide generation/depletion code. Our results indicate that the SS method is suitable for application to MFE power plant conditions. We also find that the ESS method generates acceptable results for radionuclides with half-lives more than a factor of three greater than the time between pulses. For components that are subject to 0.05 Hz (or more frequent) irradiation (such as coolant), use of the ESS method is recommended. For components or materials that are subject to less frequent irradiation (such as high-Z target materials), pulsed irradiation calculations should be used

  14. Assessment of technical risks and R and D requirements for a magnetic confinement fusion fuel system. Final report

    International Nuclear Information System (INIS)

    DeFreece, D.A.

    1983-11-01

    This report documents a specific use and results of a novel technique for assessing the technical risks associated with the hardware development of a possible future commercial fusion power plant fuel system. Technical risk is defined as the risk that a particular technology or component which is currently under development will not achieve a set of required technical specifications. A technical risk assessment is the quantification of this risk. This Technical Risk Assessment (TRA) methodology was applied to a deuterium-tritium fuel system for a magnetic-confinement fusion power plant. The fuel system is defined to support a generic commercial reactor with at least two viable options for each critical subsystem. Each subsystem option is defined in detail including nominal performance requirements and subsystem interfaces. Subsystem experts were canvassed to obtain values for past, present and future technical performance parameters for each of the subsystem options. These forecasts are presented as probabilities of achieving given levels of performance in specific time periods for assumed funding scenarios. Several funding scenarios were examined to discern whether performance limitations are caused by funding or technology. A computerized Fuel System simulation is described which uses these subsystem performance parameter forecasts as inputs

  15. Canada's Fusion Program

    International Nuclear Information System (INIS)

    Jackson, D. P.

    1990-01-01

    Canada's fusion strategy is based on developing specialized technologies in well-defined areas and supplying these technologies to international fusion projects. Two areas are specially emphasized in Canada: engineered fusion system technologies, and specific magnetic confinement and materials studies. The Canadian Fusion Fuels Technology Project focuses on the first of these areas. It tritium and fusion reactor fuel systems, remote maintenance and related safety studies. In the second area, the Centre Canadian de fusion magnetique operates the Tokamak de Varennes, the main magnetic fusion device in Canada. Both projects are partnerships linking the Government of Canada, represented by Atomic Energy of Canada Limited, and provincial governments, electrical utilities, universities and industry. Canada's program has extensive international links, through which it collaborates with the major world fusion programs, including participation in the International Thermonuclear Experimental Reactor project

  16. Fusion of 4D echocardiography and cine cardiac magnetic resonance volumes using a salient spatio-temporal analysis

    Science.gov (United States)

    Atehortúa, Angélica; Garreau, Mireille; Romero, Eduardo

    2017-11-01

    An accurate left (LV) and right ventricular (RV) function quantification is important to support evaluation, diagnosis and prognosis of cardiac pathologies such as the cardiomyopathies. Currently, diagnosis by ultrasound is the most cost-effective examination. However, this modality is highly noisy and operator dependent, hence prone to errors. Therefore, fusion with other cardiac modalities may provide complementary information and improve the analysis of the specific pathologies like cardiomyopathies. This paper proposes an automatic registration between two complementary modalities, 4D echocardiography and Magnetic resonance images, by mapping both modalities to a common space of salience where an optimal registration between them is estimated. The obtained matrix transformation is then applied to the MRI volume which is superimposed to the 4D echocardiography. Manually selected marks in both modalities are used to evaluate the precision of the superimposition. Preliminary results, in three evaluation cases, show the distance between these marked points and the estimated with the transformation is about 2 mm.

  17. ITER and topics on electro-magnetics in fusion machine design

    International Nuclear Information System (INIS)

    Nakahira, Masataka

    2006-01-01

    This commentary provides outline of ITER project, ITER Vacuum Vessel design and topics of electro-magnetic design. The author has joined ITER project for over 10 years and been involved in the Vacuum Vessel design and technical development. Based on the experience, the author tries to express topical issues about structural design and assessment of electro-magnetic load from the view point of systematization. Therefore, characteristics of the electro-magnetic load, difference from pressure, and issues on application of existing design method are clarified comparing with pressure vessel design. (author)

  18. 7. IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices - Booklet of abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting has provided an appropriate forum to discuss current issues covering a wide range of technical topics related to the steady state operation issues and also to encourage forecast of the ITER performances. The technical meeting includes invited and contributed papers. The topics that have been dealt with are: 1) Superconducting devices (ITER, KSTAR, Tore-Supra, HT-7U, EAST, LHD, Wendelstein-7-X,...); 2) Long-pulse operation and advanced tokamak physics; 3) steady state fusion technologies; 4) Long pulse heating and current drive; 5) Particle control and power exhaust, and 6) ITER-related research and development issues. This document gathers the abstracts

  19. Fast Ignition Thermonuclear Fusion: Enhancement of the Pellet Gain by the Colossal-Magnetic-Field Shells

    Science.gov (United States)

    Stefan, V. Alexander

    2013-10-01

    The fast ignition fusion pellet gain can be enhanced by a laser generated B-field shell. The B-field shell, (similar to Earth's B-field, but with the alternating B-poles), follows the pellet compression in a frozen-in B-field regime. A properly designed laser-pellet coupling can lead to the generation of a B-field shell, (up to 100 MG), which inhibits electron thermal transport and confines the alpha-particles. In principle, a pellet gain of few-100s can be achieved in this manner. Supported in part by Nikola Tesla Labs, Stefan University, 1010 Pearl, La Jolla, CA 92038-1007.

  20. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    Science.gov (United States)

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  1. Fracture mechanics behavior of a Ni-Fe superalloy sheath for superconducting fusion magnets. Pt. 2. Magnet life analysis model

    International Nuclear Information System (INIS)

    Kim, J.H.

    1997-01-01

    For pt.1 see ibid., p.251-67,(1997). From previous results of fatigue crack growth and fracture toughness measurements for a Ni-Fe base superalloy, a primary candidate for the International Thermonuclear Experimental Reactor (ITER) central solenoid (CS) conduit, we derive an improved magnet life analysis model from the framework of Newman and Raju. For the superalloy conduit with an initial semielliptical surface crack in its thickness direction, the model predicts the evolution of crack aspect ratio for a wide range of initial crack geometries under pure tension and bending fatigue. The prediction of final fracture due to fatigue crack growth using the linear elastic fracture mechanics approach is shown to be underconservative. An alternative model based on Newman's elastic-plastic fracture toughness parameter is derived for the base metal with nearly semicircular cracks. The improved life analysis model taking into account the fatigue and fracture behavior is applied to the ITER CS magnet and the results are compared with those from earlier models. Accounting for the crack shape evolution leads to significantly longer life compared to assuming a constant aspect ratio. For the superalloy base metal we find that the expected fatigue life of engineering design activity design of the CS magnet is about eight times the design requirement. Even the conceptual design activity design with a free-standing CS meets the life requirement when analyzed by the improved model. (orig.)

  2. Compendium of computer codes for the researcher in magnetic fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Porter, G.D. (ed.)

    1989-03-10

    This is a compendium of computer codes, which are available to the fusion researcher. It is intended to be a document that permits a quick evaluation of the tools available to the experimenter who wants to both analyze his data, and compare the results of his analysis with the predictions of available theories. This document will be updated frequently to maintain its usefulness. I would appreciate receiving further information about codes not included here from anyone who has used them. The information required includes a brief description of the code (including any special features), a bibliography of the documentation available for the code and/or the underlying physics, a list of people to contact for help in running the code, instructions on how to access the code, and a description of the output from the code. Wherever possible, the code contacts should include people from each of the fusion facilities so that the novice can talk to someone ''down the hall'' when he first tries to use a code. I would also appreciate any comments about possible additions and improvements in the index. I encourage any additional criticism of this document. 137 refs.

  3. The role of the boundary plasma in defining the viability of a magnetic fusion reactor: A review

    Science.gov (United States)

    Whyte, Dennis

    2012-10-01

    The boundary of magnetic confinement devices, from the pedestal through to the surrounding surfaces, encompasses an enormous range of plasma and material physics, and their integrated coupling. It is becoming clear that due to fundamental limits of plasma stability and material response the boundary will largely define the viability of an MFE reactor. However we face an enormous knowledge deficit in stepping from present devices and ITER towards a demonstration power plant. We review the boundary and plasma-material interaction (PMI) research required to address this deficit as well as related theoretical/scaling methods for extending present results to future devices. The research activities and gaps are reviewed and organized to three major axes of challenges: power density, plasma duration, and material temperature. The boundary can also be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are reviewed. Dimensionless parameters, often used to organized core plasma transport on similarity arguments, can be extended to the boundary plasma, plasma-surface interactions and material response. The scaling methodology suggests intriguing ways forward to prescribe and understand the boundary issues of an eventual reactor in intermediate size devices. Finally, proposed technology and science innovations towards solving the extreme PMI/boundary challenges of magnetic fusion energy will be reviewed.

  4. Reconstruction of Axial Energy Deposition in Magnetic Liner Inertial Fusion Based on PECOS Shadowgraph Unfolds Using the AMR Code FLASH

    Science.gov (United States)

    Adams, Marissa; Jennings, Christopher; Slutz, Stephen; Peterson, Kyle; Gourdain, Pierre; U. Rochester-Sandia Collaboration

    2017-10-01

    Magnetic Liner Inertial Fusion (MagLIF) experiments incorporate a laser to preheat a deuterium filled capsule before compression via a magnetically imploding liner. In this work, we focus on the blast wave formed in the fuel during the laser preheat component of MagLIF, where approximately 1kJ of energy is deposited in 3ns into the capsule axially before implosion. To model blast waves directly relevant to experiments such as MagLIF, we inferred deposited energy from shadowgraphy of laser-only experiments preformed at the PECOS target chamber using the Z-Beamlet laser. These energy profiles were used to initialize 2-dimensional simulations using by the adaptive mesh refinement code FLASH. Gradients or asymmetries in the energy deposition may seed instabilities that alter the fuel's distribution, or promote mix, as the blast wave interacts with the liner wall. The AMR capabilities of FLASH allow us to study the development and dynamics of these instabilities within the fuel and their effect on the liner before implosion. Sandia Natl Labs is managed by NTES of Sandia, LLC., a subsidiary of Honeywell International, Inc, for the U.S. DOEs NNSA under contract DE-NA0003525.

  5. Instability growth for magnetized liner inertial fusion seeded by electro-thermal, electro-choric, and material strength effects

    International Nuclear Information System (INIS)

    Pecover, J. D.; Chittenden, J. P.

    2015-01-01

    A critical limitation of magnetically imploded systems such as magnetized liner inertial fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is the magneto-Rayleigh-Taylor (MRT) instability which primarily disrupts the outer surface of the liner. MagLIF-relevant experiments have showed large amplitude multi-mode MRT instability growth growing from surface roughness [McBride et al., Phys. Rev. Lett. 109, 135004 (2012)], which is only reproduced by 3D simulations using our MHD code Gorgon when an artificially azimuthally correlated initialisation is added. We have shown that the missing azimuthal correlation could be provided by a combination of the electro-thermal instability (ETI) and an “electro-choric” instability (ECI); describing, respectively, the tendency of current to correlate azimuthally early in time due to temperature dependent Ohmic heating; and an amplification of the ETI driven by density dependent resistivity around vapourisation. We developed and implemented a material strength model in Gorgon to improve simulation of the solid phase of liner implosions which, when applied to simulations exhibiting the ETI and ECI, gave a significant increase in wavelength and amplitude. Full circumference simulations of the MRT instability provided a significant improvement on previous randomly initialised results and approached agreement with experiment

  6. Cooperation and competition on the path to fusion energy

    International Nuclear Information System (INIS)

    1984-01-01

    The United States, the European Community, and Japan are actively considering whether worthwhile advantages lie in increased cooperation among their respective programs of research and development in magnetically confined fusion. To help answer that question for the United States, this report examines why cooperation is a policy option, what might be done, and how

  7. Equilibrium and stability MHD in the magnetic confinement for thermonuclear fusion

    International Nuclear Information System (INIS)

    Otero, Dino; Proto, A.N.

    1979-08-01

    A survey of the mayor systems for magnetic confinement of plasmas is made. The basic concepts are reviewed briefly. The equilibrium and stability conditions for open systems (mirrors, magnetic wells, Z and Theta-pinches), for toroidal axisymmetric (Z-Pinch, Screw-Pinch, Belt-Pinch and Tokamak) and toroidal non-axisymmetric systems (High-β Stellarator and low-β Theta-Pinch) are discussed. A comparative analysis between the diferent systems is made. In the conclusions, the author's opinions about future developments in the field are included. (author) [es

  8. Feasibility of three-dimensional magnetic resonance angiography-fluoroscopy image fusion technique in guiding complex endovascular aortic procedures in patients with renal insufficiency.

    Science.gov (United States)

    Schwein, Adeline; Chinnadurai, Ponraj; Shah, Dipan J; Lumsden, Alan B; Bechara, Carlos F; Bismuth, Jean

    2017-05-01

    Three-dimensional image fusion of preoperative computed tomography (CT) angiography with fluoroscopy using intraoperative noncontrast cone-beam CT (CBCT) has been shown to improve endovascular procedures by reducing procedure length, radiation dose, and contrast media volume. However, patients with a contraindication to CT angiography (renal insufficiency, iodinated contrast allergy) may not benefit from this image fusion technique. The primary objective of this study was to evaluate the feasibility of magnetic resonance angiography (MRA) and fluoroscopy image fusion using noncontrast CBCT as a guidance tool during complex endovascular aortic procedures, especially in patients with renal insufficiency. All endovascular aortic procedures done under MRA image fusion guidance at a single-center were retrospectively reviewed. The patients had moderate to severe renal insufficiency and underwent diagnostic contrast-enhanced magnetic resonance imaging after gadolinium or ferumoxytol injection. Relevant vascular landmarks electronically marked in MRA images were overlaid on real-time two-dimensional fluoroscopy for image guidance, after image fusion with noncontrast intraoperative CBCT. Technical success, time for image registration, procedure time, fluoroscopy time, number of digital subtraction angiography (DSA) acquisitions before stent deployment or vessel catheterization, and renal function before and after the procedure were recorded. The image fusion accuracy was qualitatively evaluated on a binary scale by three physicians after review of image data showing virtual landmarks from MRA on fluoroscopy. Between November 2012 and March 2016, 10 patients underwent endovascular procedures for aortoiliac aneurysmal disease or aortic dissection using MRA image fusion guidance. All procedures were technically successful. A paired t-test analysis showed no difference between preimaging and postoperative renal function (P = .6). The mean time required for MRA-CBCT image

  9. Comparing Three Different Techniques for Magnetic Resonance Imaging-targeted Prostate Biopsies : A Systematic Review of In-bore versus Magnetic Resonance Imaging-transrectal Ultrasound fusion versus Cognitive Registration. Is There a Preferred Technique?

    NARCIS (Netherlands)

    Wegelin, Olivier; Melick, H.H.E.; Hooft, Lotty; Bosch, J L H Ruud; Reitsma, Hans B; Barentsz, Jelle O; Somford, Diederik M

    CONTEXT: The introduction of magnetic resonance imaging-guided biopsies (MRI-GB) has changed the paradigm concerning prostate biopsies. Three techniques of MRI-GB are available: (1) in-bore MRI target biopsy (MRI-TB), (2) MRI-transrectal ultrasound fusion (FUS-TB), and (3) cognitive registration

  10. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling

    International Nuclear Information System (INIS)

    Kim, K.

    1991-08-01

    This report contains three documents describing the progress made by the University of Illinois electromagnetic railgun program sponsored by the Office of Fusion Energy of the United States Department of Energy during the period from July 16, 1990 to August 16, 1991. The first document contains a brief summary of the tasks initiated, continued, or completed, the status of major tasks, and the research effort distribution, estimated and actual, during the period. The second document contains a description of the work performed on time resolved laser interferometric density measurement of the railgun plasma-arc armature. The third document is an account of research on the spectroscopic measurement of the electron density and temperature of the railgun plasma arc

  11. Magnetic fusion energy materials technology program, annual progress report for period ending June 30, 1976

    International Nuclear Information System (INIS)

    Scott, J.L.

    1976-09-01

    Activities in research programs are reported on materials for use in thermonuclear reactor development. Information and data are included on radiation effects on stainless steel 316, nickel-base alloys, molybdenum-base alloys, vanadium alloys, and SAP. Results of compatibility studies involving iron-base alloys and lithium are also included along with research results on magnet development

  12. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling

    International Nuclear Information System (INIS)

    Kim, K.; Zhang, J.

    1992-01-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection

  13. Magnetic fusion energy materials technology program, annual progress report for period ending June 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J.L. (comp.)

    1976-09-01

    Activities in research programs are reported on materials for use in thermonuclear reactor development. Information and data are included on radiation effects on stainless steel 316, nickel-base alloys, molybdenum-base alloys, vanadium alloys, and SAP. Results of compatibility studies involving iron-base alloys and lithium are also included along with research results on magnet development. (JRD)

  14. A Comprehensive Analysis of Cribriform Morphology on Magnetic Resonance Imaging/Ultrasound Fusion Biopsy Correlated with Radical Prostatectomy Specimens.

    Science.gov (United States)

    Truong, Matthew; Feng, Changyong; Hollenberg, Gary; Weinberg, Eric; Messing, Edward M; Miyamoto, Hiroshi; Frye, Thomas P

    2018-01-01

    Recently a large body of evidence has emerged indicating that cribriform morphology is an aggressive prostate cancer morphological pattern associated with higher cancer specific mortality. In a comprehensive analysis we compared traditional and contemporary prostate biopsy techniques to detect prostate cancer with cribriform morphology with radical prostatectomy serving as the reference standard. We queried a retrospectively maintained, single institution, multiparametric magnetic resonance imaging database of 1,001 patients to identify 240 who underwent magnetic resonance imaging-ultrasound fusion targeted biopsy and concurrent systematic biopsy from December 2014 to December 2016. Of the 3,978 biopsy cores obtained 694 positive cores were rereviewed by a genitourinary pathologist for pattern 4 subtype (cribriform, fused and poorly formed glands). Using paired analysis pathological results among 3 biopsy methods (systematic biopsy, targeted biopsy and systematic plus targeted biopsy) were compared. Prostatectomy specimens were also pathologically reviewed. Systematic plus targeted biopsy was superior to systematic biopsy alone or targeted biopsy alone to detect cribriform morphology (all p <0.0001). On final histopathology cribriform tumor foci were associated with an increased percent of pattern 4 involvement and extraprostatic extension (p <0.0001 and 0.003, respectively). Only 17.4% of cribriform tumors in pure form were visible on multiparametric magnetic resonance imaging. Based on final histopathology the sensitivity of systematic biopsy, targeted biopsy and systematic plus targeted biopsy for cribriform morphology was 20.7%, 28.6% and 37.1%, respectively. Although systematic plus targeted biopsy was the most accurate biopsy method to detect cribriform morphology, biopsy sensitivity and specificity remained poor. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. Atomic physics issues in fusion

    International Nuclear Information System (INIS)

    Post, D.E.

    1982-01-01

    Atomic physics issues have played a large role in controlled fusion research. A general introduction to the present role of atomic processes in both inertial and magnetic controlled fusion work is presented. (Auth.)

  16. Numerical calculations of an effective elasticity tensor and peak stresses for the large fusion magnets

    International Nuclear Information System (INIS)

    Iwanicki, T.; Maurer, W.; Heinz, W.

    1983-01-01

    For the calculation of mechanical properties of large magnet systems in 3-dimensional space, a very fine subdivision of the magnet structure is necessary. In the finite element programmes, this will lead to unacceptable long computing times and to the limits of computer-storage capacity. This limitation requires a simplification of the structure model. This problem can be solved by the numerical method, called ''numerical simulation'', by which an effective elasticity tensor will be obtained for a composite material. The structure has to perform a homogeneity condition, i.e. it must be possible to define a ''representative volume element'' (RVE). With the effective elasticity tensor, which can be found for such RVE, it is possible to calculate the average stress and with the interpolation of a surface displacement also the peak stresses in each point of the structure. A good agreement is found between experimental and theoretical moduli of elasticity. (author)

  17. Transient Behaviour of Superconducting Magnet Systems of Fusion Reactor ITER during Safety Discharge

    Directory of Open Access Journals (Sweden)

    A. M. Miri

    2008-01-01

    Full Text Available To investigate the transient behaviour of the toroidal and poloidal field coils magnet systems of the International Thermonuclear Experimental Reactor during safety discharge, network models with lumped elements are established. Frequency-dependant values of the network elements, that is, inductances and resistances are calculated with the finite element method. That way, overvoltages can be determined. According to these overvoltages, the insulation coordination of coils has to be selected.

  18. Fusion reactor development: A review

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This paper is a review of the current prospects for fusion reactor development based upon the present status in plasma physics research, fusion technology development and reactor conceptual design for the tokamak magnetic confinement concept. Recent advances in tokamak plasma research and fusion technology development are summarized. The direction and conclusions of tokamak reactor conceptual design are discussed. The status of alternate magnetic confinement concept research is reviewed briefly. A feasible timetable for the development of fusion reactors is presented

  19. Fusion engineering device design description

    International Nuclear Information System (INIS)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  20. Fusion engineering device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  1. Fusion Engineering Device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  2. Role of the large coil program in the development of superconducting magnets for fusion reactors

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.

    1978-01-01

    Three U.S. industrial teams are designing and will build one coil each to a common set of specifications. Coil specifications and test conditions were chosen to insure maximum relevance to fusion program needs. Each test coil will have a 2.5 x 3.5 m D-shape bore, will contain about 7 MA-turns, and must operate at a peak field of 8 T while subjected to pulsed fields up to 0.14 T in a test stand that can accommodate up to 6 coils in a compact toroidal array. Coils by General Dynamics/Convair and General Electric will use different NbTi conductors cooled by pool-boiling helium. The Westinghouse coil will use Nb 3 Sn cooled by a forced flow of supercritical helium. These coils will be delivered in 1980 and 1981 for testing in the Large Coil Test Facility at Oak Ridge in a compact toroidal array with three coils from outside the U.S. These will be produced by EURATOM, Japan, and Switzerland for testing under an International Energy Agency agreement

  3. Historical Perspective on the United States Fusion Program

    International Nuclear Information System (INIS)

    Dean, Stephen O.

    2005-01-01

    Progress and Policy is traced over the approximately 55 year history of the U. S. Fusion Program. The classified beginnings of the effort in the 1950s ended with declassification in 1958. The effort struggled during the 1960s, but ended on a positive note with the emergence of the tokamak and the promise of laser fusion. The decade of the 1970s was the 'Golden Age' of fusion, with large budget increases and the construction of many new facilities, including the Tokamak Fusion Test Reactor (TFTR) and the Shiva laser. The decade ended on a high note with the passage of the Magnetic Fusion Energy Engineering Act of 1980, overwhelming approved by Congress and signed by President Carter. The Act called for a '$20 billion, 20 year' effort aimed at construction of a fusion Demonstration Power Plant around the end of the century. The U. S. Magnetic Fusion Energy program has been on a downhill slide since 1980, both in terms of budgets and the construction of new facilities. The Inertial Confinement Fusion program, funded by Department of Energy Defense Programs, has faired considerably better, with the construction of many new facilities, including the National Ignition Facility (NIF)

  4. Experimental studies of materials migration in magnetic confinement fusion devices : Novel methods for measurement of macro particle migration, transport of atomic impurities and characterization of exposed surfaces

    OpenAIRE

    Bykov, Igor

    2014-01-01

    During several decades of research and development in the field of Magnetically Confined Fusion (MCF) the preferred selection of materials for Plasma Facing Components (PFC) has changed repeatedly. Without doubt, endurance of the first wall will decide research availability and lifespan of the first International Thermonuclear Research Reactor (ITER). Materials erosion, redeposition and mixing in the reactor are the critical processes responsible for modification of materials properties under...

  5. Guide to making time-lapse graphics using the facilities of the National Magnetic Fusion Energy Computing Center

    International Nuclear Information System (INIS)

    Munro, J.K. Jr.

    1980-05-01

    The advent of large, fast computers has opened the way to modeling more complex physical processes and to handling very large quantities of experimental data. The amount of information that can be processed in a short period of time is so great that use of graphical displays assumes greater importance as a means of displaying this information. Information from dynamical processes can be displayed conveniently by use of animated graphics. This guide presents the basic techniques for generating black and white animated graphics, with consideration of aesthetic, mechanical, and computational problems. The guide is intended for use by someone who wants to make movies on the National Magnetic Fusion Energy Computing Center (NMFECC) CDC-7600. Problems encountered by a geographically remote user are given particular attention. Detailed information is given that will allow a remote user to do some file checking and diagnosis before giving graphics files to the system for processing into film in order to spot problems without having to wait for film to be delivered. Source listings of some useful software are given in appendices along with descriptions of how to use it. 3 figures, 5 tables

  6. Experimental results of a sheet-beam, high power, FEL amplifier with application to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.; Destler, W.W.; Granatstein, V.L. [Univ. of Maryland, College Park, MD (United States)] [and others

    1995-12-31

    The experimental study of sheet-beam FELs as candidate millimeter-wave sources for heating magnetic fusion plasmas has achieved a major milestone. In a proof-of-principle, pulsed experiment, saturated FEL amplifier operation was achieved with 250 kW of output power at 86 GHz. Input microwave power was 1 kW, beam voltage was 450 kV and beam current was 17 A. The planar wiggler had a peak value of 3.8 kG, a period of 0.96 cm and was 71 cm long. The linear gain of 30 dB, saturated gain of 24 dB and saturated efficiency of 3% all are in good agreement with theoretical prediction. Follow-on work would include development of a thermionic sheet-beam electron-gun compatible with CW FEL operation, adding a section of tapered wiggler to increase the output power to levels in excess of 1 megawatt, and increasing the FEL frequency.

  7. Large superconducting conductors and joints for fusion magnets: From conceptual design to test at full size scale

    International Nuclear Information System (INIS)

    Ciazynski, D.; Duchateau, J.L.; Decool, P.; Libeyre, P.; Turck, B.

    2001-01-01

    A new kind of superconducting conductor, using the so-called cable-in-conduit concept, is emerging mainly involving fusion activity. It is to be noted that at present time no large Nb 3 Sn magnet in the world is operating using this concept. The difficulty of this technology which has now been studied for 20 years, is that it has to integrate major progresses in multiple interconnected new fields such as: large number (1000) of superconducting strands, high current conductors (50 kA), forced flow cryogenics, Nb 3 Sn technology, low loss conductors in pulsed operation, high current connections, high voltage insulation (10 kV), economical and industrial feasibility. CEA was very involved during these last 10 years in this development which took place in the frame of the NET and ITER technological programs. One major milestone was reached in 1998-1999 with the successful tests by our Association of three full size conductor and connection samples in the Sultan facility (Villigen, Switzerland). (author)

  8. Structural analysis of the magnet system for Mirror Fusion Test Facility (MFTF). Addendum I

    International Nuclear Information System (INIS)

    Loss, K.R.; Wohlwend, J.W.

    1979-09-01

    The stress analysis refinement of the MFTF magnet system using GDSAP (General Dynamics Structural Analysis Program) and NASTRAN finite element computer models has been completed. The objective of this analysis was to calculate a more refined case and jacket stress distribution. The GDSAP model was refined in the minor radius area to yield a more detailed prediction of the stress distributions in critical areas identified by the previous analysis. Modifications in the case plate thickness (from 3.0 inches to 3.2 inches) and in the conductor pack load distribution and stiffness were included. The GDSAP model was converted to an identical NASTRAN model to determine the influence on stress results using higher order elements

  9. Handling and archiving of magnetic fusion data at DIII-D

    International Nuclear Information System (INIS)

    VanderLaan, J.F.; Miller, S.; McHarg, B.B. Jr.; Henline, P.A.

    1995-10-01

    Recent modifications to the computer network at DIII-D enhance the collection and distribution of newly acquired and archived experimental data. Linked clients and servers route new data from diagnostic computers to centralized mass storage and distribute data on demand to local and remote workstations and computers. Capacity for data handling exceeds the upper limit of DIII-D Tokamak data production of about 4 GBytes per day. Network users have fast access to new data stored on line. An interactive program handles requests for restoration of data archived off line. Disk management procedures retain selected data on line in preference to other data. Redundancy of all components on the archiving path from the network to magnetic media has prevented loss of data. Older data are rearchived as dictated by limited media life

  10. Irradiation effect of the insulating materials for fusion superconducting magnets at cryogenic temperature

    Science.gov (United States)

    Kobayashi, Koji; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    In ITER, superconducting magnets should be used in such severe environment as high fluence of fast neutron, cryogenic temperature and large electromagnetic forces. Insulating material is one of the most sensitive component to radiation. So radiation resistance on mechanical properties at cryogenic temperature are required for insulating material. The purpose of this study is to evaluate irradiation effect of insulating material at cryogenic temperature by gamma-ray irradiation. Firstly, glass fiber reinforced plastic (GFRP) and hybrid composite were prepared. After irradiation at room temperature (RT) or liquid nitrogen temperature (LNT, 77 K), interlaminar shear strength (ILSS) and glass-transition temperature (Tg) measurement were conducted. It was shown that insulating materials irradiated at room temperature were much degraded than those at cryogenic temperature.

  11. The value of magnetic resonance imaging and ultrasonography (MRI/US)-fusion biopsy platforms in prostate cancer detection: a systematic review.

    Science.gov (United States)

    Gayet, Maudy; van der Aa, Anouk; Beerlage, Harrie P; Schrier, Bart Ph; Mulders, Peter F A; Wijkstra, Hessel

    2016-03-01

    Despite limitations considering the presence, staging and aggressiveness of prostate cancer, ultrasonography (US)-guided systematic biopsies (SBs) are still the 'gold standard' for the diagnosis of prostate cancer. Recently, promising results have been published for targeted prostate biopsies (TBs) using magnetic resonance imaging (MRI) and ultrasonography (MRI/US)-fusion platforms. Different platforms are USA Food and Drug Administration registered and have, mostly subjective, strengths and weaknesses. To our knowledge, no systematic review exists that objectively compares prostate cancer detection rates between the different platforms available. To assess the value of the different MRI/US-fusion platforms in prostate cancer detection, we compared platform-guided TB with SB, and other ways of MRI TB (cognitive fusion or in-bore MR fusion). We performed a systematic review of well-designed prospective randomised and non-randomised trials in the English language published between 1 January 2004 and 17 February 2015, using PubMed, Embase and Cochrane Library databases. Search terms included: 'prostate cancer', 'MR/ultrasound(US) fusion' and 'targeted biopsies'. Extraction of articles was performed by two authors (M.G. and A.A.) and were evaluated by the other authors. Randomised and non-randomised prospective clinical trials comparing TB using MRI/US-fusion platforms and SB, or other ways of TB (cognitive fusion or MR in-bore fusion) were included. In all, 11 of 1865 studies met the inclusion criteria, involving seven different fusion platforms and 2626 patients: 1119 biopsy naïve, 1433 with prior negative biopsy, 50 not mentioned (either biopsy naïve or with prior negative biopsy) and 24 on active surveillance (who were disregarded). The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to assess the quality of included articles. No clear advantage of MRI/US fusion-guided TBs was seen for cancer detection rates (CDRs) of all prostate

  12. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1991-01-01

    This report discusses the following topics: superconducting magnet technology high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies -- Aries; ITER physics; ITER superconducting PF scenario and magnet analysis; and safety, environmental and economic factors in fusion development

  13. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  14. Sensor fusion of electron paramagnetic resonance and magnetorelaxometry data for quantitative magnetic nanoparticle imaging

    International Nuclear Information System (INIS)

    Coene, A; Leliaert, J; Crevecoeur, G; Dupré, L

    2017-01-01

    Magnetorelaxometry (MRX) imaging and electron paramagnetic resonance (EPR) are two non-invasive techniques capable of recovering the magnetic nanoparticle (MNP) distribution. Both techniques solve an ill-posed inverse problem in order to find the spatial MNP distribution. A lot of research has been done on increasing the stability of these inverse problems with the main objective to improve the quality of MNP imaging. In this paper a proof of concept is presented in which the sensor data of both techniques is fused into EPR–MRX, with the intention to stabilize the inverse problem. First, both techniques are compared by reconstructing several phantoms with different sizes for various noise levels and calculating stability, sensitivity and reconstruction quality parameters for these cases. This study reveals that both techniques are sensitive to different information from the MNP distributions and generate complementary measurement data. As such, their merging might stabilize the inverse problem. In a next step we investigated how both techniques need to be combined to reduce their respective drawbacks, such as a high number of required measurements and reduced stability, and to improve MNP reconstructions. We were able to stabilize both techniques, increase reconstruction quality by an average of 5% and reduce measurement times by 88%. These improvements could make EPR–MRX a valuable and accurate technique in a clinical environment. (paper)

  15. Adiabatic Quasi-Spherical Compressions Driven by Magnetic Pressure for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Nash, Thomas J.

    2000-01-01

    The magnetic implosion of a high-Z quasi-spherical shell filled with DT fuel by the 20-MA Z accelerator can heat the fuel to near-ignition temperature. The attainable implosion velocity on Z, 13-cm/micros, is fast enough that thermal losses from the fuel to the shell are small. The high-Z shell traps radiation losses from the fuel, and the fuel reaches a high enough density to reabsorb the trapped radiation. The implosion is then nearly adiabatic. In this case the temperature of the fuel increases as the square of the convergence. The initial temperature of the fuel is set by the heating of an ion acoustic wave to be about 200-eV after a convergence of 4. To reach the ignition temperature of 5-keV an additional convergence of 5 is required. The implosion dynamics of the quasi-spherical implosion is modeled with the 2-D radiation hydrodynamic code LASNEX. LASNEX shows an 8-mm diameter quasi-spherical tungsten shell on Z driving 6-atmospheres of DT fuel nearly to ignition at 3.5-keV with a convergence of 20. The convergence is limited by mass flow along the surface of the quasi-spherical shell. With a convergence of 20 the final spot size is 400-microm in diameter

  16. High-speed repetitive pellet injector for plasma fueling of magnetic confinement fusion devices

    International Nuclear Information System (INIS)

    Combs, S.K.; Baylor, L.R.; Foust, C.R.

    1993-01-01

    The projected fueling requirements of future magnetic confinement devices for controlled thermonuclear research [e.g., the International Thermonuclear Experimental Reactor (ITER)] indicate that a flexible plasma fueling capability is required. This includes a mix of traditional gas puffing and low- and high-velocity deuterium-tritium pellets. Conventional pellet injectors (based on light gas guns or centrifugal accelerators) can reliably provide frozen hydrogen pellets (1- to 6-mm-diam sizes tested) up to ∼1.3-km/s velocity at the appropriate pellet fueling rates (1 to 10 Hz or greater). For long-pulse operation in a higher velocity regime (>2 km/s), an experiment in collaboration between Oak Ridge National Laboratory (ORNL) and ENEA Frascati is under way. This activity will be carried out in the framework of a collaborative agreement between the US Department of Energy and European Atomic Energy Community -- ENEA Association. In this experiment, an existing ORNL hydrogen extruder (equipped with a pellet chambering mechanism/gun barrel assembly) and a Frascati two-stage light gas gun driver have been combined on a test facility at ORNL. Initial testing has been carried out with single deuterium pellets accelerated up to 2.05 km/s with the two-stage driver; in addition, some preliminary repetitive testing (to commission the diagnostics) was performed at reduced speeds, including sequences at 0.5 to 1 Hz and 10 to 30 pellets. The primary objective of this study is to demonstrate repetitive operation (up to ∼1 Hz) with speeds in the 2- to 3-km/s range. In addition, the strength of extruded hydrogen ice as opposed to that produced in situ by direct condensation in pipe guns can be investigated. The equipment and initial experimental results are described

  17. Controlled Nuclear Fusion.

    Science.gov (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  18. The fusion reactor

    International Nuclear Information System (INIS)

    Brennan, M.H.

    1974-01-01

    Basic principles of the fusion reactor are outlined. Plasma heating and confinement schemes are described. These confinement systems include the linear Z pinch, magnetic mirrors and Tokamaks. A fusion reactor is described and a discussion is given of its environmental impact and its fuel situation. (R.L.)

  19. International aspects of fusion

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1979-12-01

    International collaborative efforts in magnetic confinement fusion in which the USA is involved are reviewed. These efforts are carried under the auspices of international agencies and through bilateral agreements

  20. Fusion technology (FT)

    International Nuclear Information System (INIS)

    1978-01-01

    The annual report of tha fusion technology (FT) working group discusses the projects carried out by the participating institutes in the fields of 1) fuel injection and plasma heating, 2) magnetic field technology, and 3) systems investigations. (HK) [de

  1. Structure-Related Roles for the Conservation of the HIV-1 Fusion Peptide Sequence Revealed by Nuclear Magnetic Resonance.

    Science.gov (United States)

    Serrano, Soraya; Huarte, Nerea; Rujas, Edurne; Andreu, David; Nieva, José L; Jiménez, María Angeles

    2017-10-17

    Despite extensive characterization of the human immunodeficiency virus type 1 (HIV-1) hydrophobic fusion peptide (FP), the structure-function relationships underlying its extraordinary degree of conservation remain poorly understood. Specifically, the fact that the tandem repeat of the FLGFLG tripeptide is absolutely conserved suggests that high hydrophobicity may not suffice to unleash FP function. Here, we have compared the nuclear magnetic resonance (NMR) structures adopted in nonpolar media by two FP surrogates, wtFP-tag and scrFP-tag, which had equal hydrophobicity but contained wild-type and scrambled core sequences LFLGFLG and FGLLGFL, respectively. In addition, these peptides were tagged at their C-termini with an epitope sequence that folded independently, thereby allowing Western blot detection without interfering with FP structure. We observed similar α-helical FP conformations for both specimens dissolved in the low-polarity medium 25% (v/v) 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), but important differences in contact with micelles of the membrane mimetic dodecylphosphocholine (DPC). Thus, whereas wtFP-tag preserved a helix displaying a Gly-rich ridge, the scrambled sequence lost in great part the helical structure upon being solubilized in DPC. Western blot analyses further revealed the capacity of wtFP-tag to assemble trimers in membranes, whereas membrane oligomers were not observed in the case of the scrFP-tag sequence. We conclude that, beyond hydrophobicity, preserving sequence order is an important feature for defining the secondary structures and oligomeric states adopted by the HIV FP in membranes.

  2. An examination of the relationship between the federal government and private fusion development

    International Nuclear Information System (INIS)

    Repici, D.J.

    1983-01-01

    The institutional and political criteria, which must be satisfied as prerequisites to any realistic cooperation between the federal government and privately financed fusion engineering development, are examined. The transition of the federal magnetic fusion program from an aggressive development effort into a more science-oriented endeavor is presented as an opportunity for private initiative on an equal partnership basis with the government. Organizational mechanisms and policy changes are proposed that would facilitate such an industrial-governmental partnership

  3. Frontiers in fusion research

    CERN Document Server

    Kikuchi, Mitsuru

    2011-01-01

    Frontiers in Fusion Research provides a systematic overview of the latest physical principles of fusion and plasma confinement. It is primarily devoted to the principle of magnetic plasma confinement, that has been systematized through 50 years of fusion research. Frontiers in Fusion Research begins with an introduction to the study of plasma, discussing the astronomical birth of hydrogen energy and the beginnings of human attempts to harness the Sun's energy for use on Earth. It moves on to chapters that cover a variety of topics such as: * charged particle motion, * plasma kinetic theory, *

  4. Diagnostic performance of fluorodeoxyglucose positron emission tomography/magnetic resonance imaging fusion images of gynecological malignant tumors. Comparison with positron emission tomography/computed tomography

    International Nuclear Information System (INIS)

    Nakajo, Kazuya; Tatsumi, Mitsuaki; Inoue, Atsuo

    2010-01-01

    We compared the diagnostic accuracy of fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and PET/magnetic resonance imaging (MRI) fusion images for gynecological malignancies. A total of 31 patients with gynecological malignancies were enrolled. FDG-PET images were fused to CT, T1- and T2-weighted images (T1WI, T2WI). PET-MRI fusion was performed semiautomatically. We performed three types of evaluation to demonstrate the usefulness of PET/MRI fusion images in comparison with that of inline PET/CT as follows: depiction of the uterus and the ovarian lesions on CT or MRI mapping images (first evaluation); additional information for lesion localization with PET and mapping images (second evaluation); and the image quality of fusion on interpretation (third evaluation). For the first evaluation, the score for T2WI (4.68±0.65) was significantly higher than that for CT (3.54±1.02) or T1WI (3.71±0.97) (P<0.01). For the second evaluation, the scores for the localization of FDG accumulation showing that T2WI (2.74±0.57) provided significantly more additional information for the identification of anatomical sites of FDG accumulation than did CT (2.06±0.68) or T1WI (2.23±0.61) (P<0.01). For the third evaluation, the three-point rating scale for the patient group as a whole demonstrated that PET/T2WI (2.72±0.54) localized the lesion significantly more convincingly than PET/CT (2.23±0.50) or PET/T1WI (2.29±0.53) (P<0.01). PET/T2WI fusion images are superior for the detection and localization of gynecological malignancies. (author)

  5. Studies on plasma direct energy converters for thermal and fusion-produced ions using slanted cusp magnetic and distributed electric fields

    Science.gov (United States)

    Yasaka, Y.; Goto, K.; Taniguchi, A.; Tsuji, A.; Takeno, H.

    2009-07-01

    Two types of direct energy converters, cusp direct energy converter (CUSPDEC) and travelling-wave (TW) DEC, used to produce electricity from thermal ions and fusion products in an advanced fuelled fusion, are investigated using small-scale devices. In CUSPDEC, magnetized electrons are deflected along the field lines of the cusp magnetic field to the line cusp region and collected by an electron collector, while weakly magnetized ions can traverse the separatrix and enter into the point cusp region. Thus, ions are separated from electrons, and flow into an ion collector to produce dc power. Efficiencies of energy conversion of separated ions with large thermal spread of energy are measured to be ~55%. An additional lateral electrode, together with the existing collector, constitutes a two-stage ion collector that provides distributed ion-decelerating fields. From the measured voltage-current characteristics, the efficiency of this collector is estimated to be improved to 65-70%, which is consistent with the calculation. Fusion-produced fast ions enter into TWDEC and are velocity-modulated by RF fields, bunched and then decelerated by RF travelling-wave fields on the decelerator to produce RF power. The TWDEC device has shown that the energies of ions of 3-6 keV can be decreased by 10-15% for a one-wavelength decelerator. This would give a total efficiency of 60-70% for a full-length decelerator. A novel system is being investigated for further improvement, in which the incoming ions are deflected transversely, according to each energy, to form a fan-shaped beam and a distributed electrode array for modulation and deceleration generates travelling-waves appropriate to each ion path depending on the energy.

  6. Evaluation of Novel Genetic Algorithm Generated Schemes for Positron Emission Tomography (PET)/Magnetic Resonance Imaging (MRI) Image Fusion

    OpenAIRE

    Baum, K. G.; Schmidt, E.; Rafferty, K.; Krol, A.; Helguera, María

    2011-01-01

    The use and benefits of a multimodality approach in the context of breast cancer imaging are discussed. Fusion techniques that allow multiple images to be viewed simultaneously are discussed. Many of these fusion techniques rely on the use of color tables. A genetic algorithm that generates color tables that have desired properties such as satisfying the order principle, the rows, and columns principle, have perceivable uniformity and have maximum contrast is introduced. The generated 2D colo...

  7. Document controlled fusion

    International Nuclear Information System (INIS)

    Abou, C.; Demarthon, F.; Ter Minassian, V.

    2004-01-01

    Since the years 30, the magnetic confinement is one of the researches programs to control the nuclear fusion. This document presents in a first part the historical aspects of the researches on the controlled fusion and in the second part the nuclear fusion. The nuclear fusion forcing two atomic nuclei to fuse together by reproducing the conditions of the thermonuclear reactions that make the stars burn. This technology is a potential source of inexhaustible energy for the future. Then are presented the tokamak which make possible to confine an extremely hot gaseous mixture (plasma that is over one hundred million degrees) in a vacuum chamber and the ITER project (superconductor tokamak) that will make it possible to attain the stage in which the plasma maintains the fusion reaction itself and therefore produces more energy than it consumes. The last part presents the projects of new fusion reactors. (A.L.B.)

  8. Early experience with X-ray magnetic resonance fusion for low-flow vascular malformations in the pediatric interventional radiology suite

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tiffany J. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Keck School of Medicine of the University of Southern California, Los Angeles, CA (United States); Girard, Erin [Siemens Corporation, Corporate Technology, Princeton, NJ (United States); Shellikeri, Sphoorti; Vossough, Arastoo; Ho-Fung, Victor; Cahill, Anne Marie [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Setser, Randolph [Siemens Medical Solutions USA, Inc., Hoffman Estates, IL (United States)

    2016-03-15

    This technical innovation describes our experience using an X-ray magnetic resonance fusion (XMRF) software program to overlay 3-D MR images on real-time fluoroscopic images during sclerotherapy procedures for vascular malformations at a large pediatric institution. Five cases have been selected to illustrate the application and various clinical utilities of XMRF during sclerotherapy procedures as well as the technical limitations of this technique. The cases demonstrate how to use XMRF in the interventional suite to derive additional information to improve therapeutic confidence with regards to the extent of lesion filling and to guide clinical management in terms of intraprocedural interventional measures. (orig.)

  9. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  10. SciDAC Fusiongrid Project--A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    SCHISSEL, D.P.; ABLA, G.; BURRUSS, J.R.; FEIBUSH, E.; FREDIAN, T.W.; GOODE, M.M.; GREENWALD, M.J.; KEAHEY, K.; LEGGETT, T.; LI, K.; McCUNE, D.C.; PAPKA, M.E.; RANDERSON, L.; SANDERSON, A.; STILLERMAN, J.; THOMPSON, M.R.; URAM, T.; WALLACE, G.

    2006-08-31

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large

  11. CEMRACS 2010: Numerical methods for fusion

    International Nuclear Information System (INIS)

    2011-01-01

    This CEMRACS summer school is devoted to the mathematical and numerical modeling of plasma problems that occur in magnetic or inertial fusion. The main topics of this year are the following: -) asymptotic solutions for fluid models of plasma, -) the hydrodynamics of the implosion and the coupling with radiative transfer in inertial fusion, -) gyrokinetic simulations of magnetic fusion plasmas, and -) Landau damping.

  12. Assessment of neurovascular compression in patients with trigeminal neuralgia with a boundary fusion three-dimensional magnetic resonance cisternogram/angiogram

    International Nuclear Information System (INIS)

    Satoh, Toru; Omi, Megumi; Ohsako, Chika; Onoda, Keisuke; Date, Isao

    2007-01-01

    Precise assessment of the complex nerve-vessel relationship at the root entry zone (REZ) of the trigeminal nerve is useful for the planning of the microvascular decompression (MVD) in patients with trigeminal neuralgia. We have applied a boundary imaging of fusion three-dimensional (3D) magnetic resonance (MR) cisternogram/angiogram. The boundary imaging allows virtual assessment of the spatial relationship of the neurovascular compression at the REZ of the trigeminal nerve. The boundary images depicted complex anatomical relationship of the offending vessels to the trigeminal nerve REZ. The presence of offending vessels, compressive site, and degree of neurovascular compression were assessed from various viewpoints in the cistern and virtually through the brainstem and trigeminal nerve per se. The 3D visualization of the nerve-vessel relationship with fusion images was consistent with the intraoperative findings. The boundary fusion 3D MR cisternogram/angiogram may prove a useful adjunct for the diagnosis and decision-marking process to execute the MVD in patients with trigeminal neuralgia. (author)

  13. Numerical study and modeling of hydrodynamic instabilities in the context of inertial confinement fusion in the presence of self-generated magnetic fields

    International Nuclear Information System (INIS)

    Levy, Y.

    2012-01-01

    In the context of inertial confinement fusion we investigate effects of magnetic fields on the development in the linear regime of two hydrodynamic instabilities: Richtmyer-Meshkov instability using ideal magnetohydrodynamics and ablative Rayleigh-Taylor instability in both acceleration and deceleration stages. Direct numerical simulations with a linear perturbation code enable us to confirm the stabilizing effect of the component of the magnetic field along the perturbations wave vector. The amplitude doesn't grow linearly in time but experiences oscillations instead. The compressibility taken into account in the code does not affect predictions given by an already existing impulsive and incompressible model. As far as Rayleigh-Taylor instability is concerned we study the effects of self-generated magnetic fields that arise from the development of the instability itself. In the acceleration stage we perform two dimensional simulations in planar geometry. We show that magnetic fields of about 1 T can be generated and that the instability growth transits more rapidly into nonlinear growth with the enhancement of the development of the third harmonic. We also propose an adaptation of an existing model that aims at studying thermal conductivity anisotropy effects, to take into account the effects of the self-generated magnetic fields on the Rayleigh-Taylor instability growth rate. Finally, in the deceleration stage, we perform two dimensional simulations in cylindrical geometry that take into account self-generation of magnetic fields due to the instability development. It reveals magnetic fields of about several thousands of Teslas that are not strong enough though to affect the instability behavior. (author) [fr

  14. Fusion research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress.

  15. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    International Nuclear Information System (INIS)

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems

  16. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  17. Study on remanent magnetization of Fe-9Cr steel and its effect on in-vessel remote handling for future fusion reactors

    International Nuclear Information System (INIS)

    Maione, Ivan A.; Marracci, Mirko; Tellini, Bernardo

    2013-01-01

    Highlights: ► The FM model of a DEMO reactor has been implemented in ANSYS for EM analysis on blanket segments. ► An approximate method to overcome a limitation of ANSYS dealing with ferromagnetic material has been implemented and tested. ► A magnetic characterization of Fe-9Cr steel has been performed. ► We show the effect of ferromagnetic material in in-vessel components in absence of plasma on remote handling procedures. -- Abstract: This work is mainly focused on the study of remanent magnetization of in-vessel components for DEMO fusion reactor and its effect on remote handling procedures. In particular a DEMO reactor configuration based on multi module segment (MMS) design in vertical maintenance is investigated. The system has been analyzed considering the reference magnetic properties of EUROFER97 and of similar Fe-9Cr steel characterized by the authors. The numerical analysis of the EM forces acting on the blanket segment is performed using the commercial ANSYS © code for which a procedure to consider a demagnetization curve with non-zero coercive field for non-permanent magnets has been developed

  18. Fusion power plant simulations: a progress report

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.M.; Pattern, J.S.; Amend, W.E.

    1976-01-01

    The objective of the fusion systems analysis at ANL is to develop simulations to compare alternative conceptual designs of magnetically confined fusion power plants. The power plant computer simulation progress is described. Some system studies are also discussed. (MOW)

  19. Spinal fusion

    Science.gov (United States)

    ... Herniated disk - fusion; Spinal stenosis - fusion; Laminectomy - fusion Patient Instructions Bathroom safety - adults Preventing falls Preventing falls - what to ask your doctor Spine surgery - discharge Surgical wound care - open Images Scoliosis Spinal ...

  20. Fusion development and technology

    International Nuclear Information System (INIS)

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R ampersand D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development

  1. Fusion development and technology

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development.

  2. Fusion safety program plan

    International Nuclear Information System (INIS)

    Crocker, J.G.; Holland, D.F.; Herring, J.S.

    1980-09-01

    The program plan consists of research that has been divided into 13 different areas. These areas focus on the radioactive inventories that are expected in fusion reactors, the energy sources potentially available to release a portion of these inventories, and analysis and design techniques to assess and ensure that the safety risks associated with operation of magnetic fusion facilities are acceptably low. The document presents both long-term program requirements that must be fulfilled as part of the commercialization of fusion power and a five-year plan for each of the 13 different program areas. Also presented is a general discussion of magnetic fusion reactor safety, a method for establishing priorities in the program, and specific priority ratings for each task in the five-year plan

  3. Some fusion perspectives

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1977-01-01

    Some of the concepts of nuclear fusion reactions, advanced fusion fuels, environmental impacts, etc., are explored using the following general outline: I. Principles of Fusion (Nuclear Fuels and Reactions, Lawson Condition, n tau vs T, Nuclear Burn Characteristics); II. Magnetic Mirror Possibilities (the Ion Layer and Electron Layer, Exponential Build-up at MeV energies, Lorentz trapping at GeV energies); III. Pellet Fuel Fusion Prospects (Advanced Pellet Fuel Fusion Prospects, Burn Characteristics and Applications, Excitation-heating Prospects for Runaway Ion Temperatures). Inasmuch as the outline is very skeletal, a significant research and development effort may be in order to evaluate these prospects in more detail and hopefully ''harness the H-bomb'' for peaceful applications, the author concludes. 28 references

  4. Fusion safety data base

    International Nuclear Information System (INIS)

    Laats, E.T.; Hardy, H.A.

    1983-01-01

    The purpose of this Fusion Safety Data Base Program is to provide a repository of data for the design and development of safe commercial fusion reactors. The program is sponsored by the United States Department of Energy (DOE), Office of Fusion Energy. The function of the program is to collect, examine, permanently store, and make available the safety data to the entire US magnetic-fusion energy community. The sources of data will include domestic and foreign fusion reactor safety-related research programs. Any participant in the DOE Program may use the Data Base Program from his terminal through user friendly dialog and can view the contents in the form of text, tables, graphs, or system diagrams

  5. Accelerator Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  6. Accelerator & Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  7. Accelerator ampersand Fusion Research Division 1991 summary of activities

    International Nuclear Information System (INIS)

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations

  8. Accelerator and fusion research division. 1992 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

  9. The restructured fusion program and the role of alternative fusion concepts

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    This testimony to the subcommittee on Energy and the Environment of the U.S. House of Representatives's Committee on Science pushes for about 25% of the fusion budget to go to alternative fusion concepts. These concepts are: low density magnetic confinement, inertial confinement fusion, high density magnetic confinement, and non- thermonuclear and miscellaneous programs. Various aspects of each of these concepts are outlined

  10. Status of fusion technology

    International Nuclear Information System (INIS)

    Mohan, Ashok

    1978-01-01

    The current status of fusion technology is surveyed. Limited reserves of fossil fuel and dangers of proliferation from nuclear reactors have brought into focus the need to develop an optional energy source. Fusion is being looked upon as an optional energy source which is free from environmental hazards unlike fossil fuels and nuclear reactors. Investments in R and D of fusion energy have increased rapidly in USA, Japan, USSR and European countries. Out of the various fusion fuels known, a mixture of D and T is widely chosen. The main problem in fusion technology is the confinement of plasma for a time sufficient to start the fusion reaction. This can be done magnetically or inertially. The three approaches to magnetic confinement are : (1) tokamak, (2) mirror and (3) pinch. Inertial confinement makes use of lasers or electron beams or ion beams. Both the methods of confinement i.e. magnetic and inertial have problems which are identified and their nature is discussed. (M.G.B.)

  11. Cost-Effectiveness of Magnetic Resonance Imaging and Targeted Fusion Biopsy for Early Detection of Prostate Cancer.

    Science.gov (United States)

    Barnett, Christine L; Davenport, Matthew S; Montgomery, Jeffrey S; Wei, John T; Montie, James E; Denton, Brian T

    2018-02-01

    To determine how best to use MRI and targeted MR/ultrasound fusion biopsy for early detection of prostate cancer in men with elevated PSA and whether it can be cost-effective. A Markov model of prostate cancer onset and progression was developed to estimate health and economic consequences of prostate cancer screening with MRI. Men were screened with prostate-specific antigen (PSA) from ages 55 to 69. Men with elevated PSA (>4 ng/mL) received an MRI, followed by targeted fusion or combined (standard + targeted fusion) biopsy on positive MRI, and standard or no biopsy on negative MRI. Prostate imaging reporting and data system (PI-RADS) score on MRI determined biopsy decisions. Deaths averted, quality-adjusted life years (QALYs), cost, and incremental cost-effectiveness ratio (ICER) were estimated for each strategy. With a negative MRI, standard biopsy was more expensive and had lower QALYs than performing no biopsy. The optimal screening strategy (ICER: $23,483/QALY) recommended combined biopsy for men with PI-RADS score ≥3 and no biopsy for men with PI-RADS score <3, and reduced the number of screening biopsies by 15%. Threshold analysis suggests MRI continues to be cost-effective when sensitivity and specificity of MRI and combined biopsy are simultaneously reduced by 19.0. Our analysis suggests MRI followed by targeted MR/ultrasound fusion biopsy can be a cost-effective approach for early detection of prostate cancer. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Confirmatory biopsy of men under active surveillance: extended versus saturation versus multiparametric magnetic resonance imaging/transrectal ultrasound fusion prostate biopsy.

    Science.gov (United States)

    Pepe, Pietro; Cimino, Sebastiano; Garufi, Antonio; Priolo, Giandomenico; Russo, Giorgio Ivan; Giardina, Raimondo; Reale, Giulio; Pennisi, Michele; Morgia, Giuseppe

    2017-08-01

    The aim of this study was to evaluate the detection rate for clinically significant prostate cancer (PCa) after multiparametric magnetic resonance imaging (mpMRI)/transrectal ultrasound (TRUS) fusion biopsy versus extended biopsy or saturation prostate biopsy (SPBx) in men enrolled on active surveillance (AS). From May 2013 to January 2016, 100 men with very low-risk PCa were enrolled on AS. Eligible criteria were: life expectancy greater than 10 years, cT1c, prostate-specific antigen (PSA) below 10 ng/ml, PSA density less than 0.20 ng/ml², three or fewer unilateral positive biopsy cores, Gleason score (GS) equal to 6 and greatest percentage of cancer in a core 50% or lower. All patients underwent 3.0 T pelvic mpMRI before confirmatory transperineal extended biopsy (20 cores) and SPBx (median 30 cores) combined with mpMRI/TRUS fusion targeted biopsy (median four cores) of suspicious lesions [Prostate Imaging Reporting and Data System (PI-RADS) 3-5]. Clinically significant PCa was defined as the presence of at least one core with a GS of 4 or higher. After confirmatory biopsy, 16 out of 60 (26.6%) patients showed significant PCa. Targeted biopsy of PI-RADS 4-5 versus PI-RADS 3-5 lesions diagnosed six out of 16 (37.5%) and 12 out of 16 (87.5%) significant PCa, respectively, with two false positives (5%). The detection rate for significant PCa was equal to 68.8% on mpMRI/TRUS fusion biopsy, 75% on extended biopsy and 100% on SPBx. mpMRI/TRUS targeted biopsy and extended biopsy missed five out of 16 (31.2%) and four out of 16 (25%) PCa, respectively. Although mpMRI may improve the diagnosis of significant PCa in men under AS, SPBx had a higher detection rate for clinically significant PCa.

  13. Fusion reactors as a future energy source

    International Nuclear Information System (INIS)

    Seifritz, W.

    A detailed update of fusion research concepts is given. Discussions are given for the following areas: (1) the magnetic confinement principle, (2) UWMAK I: conceptual design for a fusion reactor, (3) the inertial confinement principle, (4) the laser fusion power plant, (5) electron-induced fusion, (6) the long-term development potential of fusion reactors, (7) the symbiosis between fusion and fission reactors, (8) fuel supply for fusion reactors, (9) safety and environmental impact, and (10) accidents, and (11) waste removal and storage

  14. Experimental investigation of adiabatic compression and heating using collision of an MHD-driven jet with a gas target cloud for magnetized target fusion

    Science.gov (United States)

    Seo, Byonghoon; Li, Hui; Bellan, Paul

    2017-10-01

    We are studying magnetized target fusion using an experimental method where an imploding liner compressing a plasma is simulated by a high-speed MHD-driven plasma jet colliding with a gas target cloud. This has the advantage of being non-destructive so orders of magnitude more shots are possible. Since the actual density and temperature are much more modest than fusion-relevant values, the goal is to determine the scaling of the increase in density and temperature when an actual experimental plasma is adiabatically compressed. Two new-developed diagnostics are operating and providing data. The first new diagnostic is a fiber-coupled interferometer which measures line-integrated electron density not only as a function of time, but also as a function of position along the jet. The second new diagnostic is laser Thomson scattering which measures electron density and temperature at the location where the jet collides with the cloud. These diagnostics show that when the jet collides with a target cloud the jet slows down substantially and both the electron density and temperature increase. The experimental measurements are being compared with 3D MHD and hybrid kinetic numerical simulations that model the actual experimental geometry.

  15. A fuzzy feature fusion method for auto-segmentation of gliomas with multi-modality diffusion and perfusion magnetic resonance images in radiotherapy.

    Science.gov (United States)

    Guo, Lu; Wang, Ping; Sun, Ranran; Yang, Chengwen; Zhang, Ning; Guo, Yu; Feng, Yuanming

    2018-02-19

    The diffusion and perfusion magnetic resonance (MR) images can provide functional information about tumour and enable more sensitive detection of the tumour extent. We aimed to develop a fuzzy feature fusion method for auto-segmentation of gliomas in radiotherapy planning using multi-parametric functional MR images including apparent diffusion coefficient (ADC), fractional anisotropy (FA) and relative cerebral blood volume (rCBV). For each functional modality, one histogram-based fuzzy model was created to transform image volume into a fuzzy feature space. Based on the fuzzy fusion result of the three fuzzy feature spaces, regions with high possibility belonging to tumour were generated automatically. The auto-segmentations of tumour in structural MR images were added in final auto-segmented gross tumour volume (GTV). For evaluation, one radiation oncologist delineated GTVs for nine patients with all modalities. Comparisons between manually delineated and auto-segmented GTVs showed that, the mean volume difference was 8.69% (±5.62%); the mean Dice's similarity coefficient (DSC) was 0.88 (±0.02); the mean sensitivity and specificity of auto-segmentation was 0.87 (±0.04) and 0.98 (±0.01) respectively. High accuracy and efficiency can be achieved with the new method, which shows potential of utilizing functional multi-parametric MR images for target definition in precision radiation treatment planning for patients with gliomas.

  16. Magnetic fusion energy plasma interactive and high heat flux components. Volume I. Technical assessment of the critical issues and problem areas in the plasma materials interaction field

    International Nuclear Information System (INIS)

    Conn, R.W.; Gauster, W.B.; Heifetz, D.; Marmar, E.; Wilson, K.L.

    1984-01-01

    A technical assessment of the critical issues and problem areas in the field of plasma materials interactions (PMI) in magnetic fusion devices shows these problems to be central for near-term experiments, for intermediate-range reactor devices including D-T burning physics experiments, and for long-term reactor machines. Critical technical issues are ones central to understanding and successful operation of existing and near-term experiments/reactors or devices of great importance for the long run, i.e., ones which will require an extensive, long-term development effort and thus should receive attention now. Four subgroups were formed to assess the critical PMI issues along four major lines: (1) PMI and plasma confinement physics experiments; (2) plasma-edge modelling and theory; (3) surface physics; and (4) materials technology for in-vessel components and the first wall. The report which follows is divided into four major sections, one for each of these topics

  17. Magnetic fusion energy plasma interactive and high heat flux components. Volume I. Technical assessment of the critical issues and problem areas in the plasma materials interaction field

    Energy Technology Data Exchange (ETDEWEB)

    Conn, R.W.; Gauster, W.B.; Heifetz, D.; Marmar, E.; Wilson, K.L. (eds.)

    1984-01-01

    A technical assessment of the critical issues and problem areas in the field of plasma materials interactions (PMI) in magnetic fusion devices shows these problems to be central for near-term experiments, for intermediate-range reactor devices including D-T burning physics experiments, and for long-term reactor machines. Critical technical issues are ones central to understanding and successful operation of existing and near-term experiments/reactors or devices of great importance for the long run, i.e., ones which will require an extensive, long-term development effort and thus should receive attention now. Four subgroups were formed to assess the critical PMI issues along four major lines: (1) PMI and plasma confinement physics experiments; (2) plasma-edge modelling and theory; (3) surface physics; and (4) materials technology for in-vessel components and the first wall. The report which follows is divided into four major sections, one for each of these topics.

  18. Method and apparatus to produce and maintain a thick, flowing, liquid lithium first wall for toroidal magnetic confinement DT fusion reactors

    Science.gov (United States)

    Woolley, Robert D.

    2002-01-01

    A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.

  19. The scientific status of fusion

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1989-01-01

    The development of fusion energy has been a large-scale scientific undertaking of broad interest. The magnetic plasma containment in tokamaks and the laser-drive ignition of microfusion capsules appear to be scientifically feasible sources of energy. These concepts are bounded by questions of required intensity in magnetid field and plasma currents or in drive energy and, for both concepts, by issues of plasma stability and energy transport. The basic concept and the current scientific issues are described for magnetic fusion and for the interesting, but likely infeasible, muon-catalyzed fusion concept. Inertial fusion is mentioned, qualitatively, to complete the context. For magnetic fusion, the required net energy production within the plasma may be accomplished soon, but the more useful goal of self-sustained plasma ignition requires a new device of somewhat uncertain (factor of 2) cost and size. (orig.)

  20. EMP Fusion

    OpenAIRE

    KUNTAY, Isık

    2010-01-01

    This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces...

  1. Fusion energy 2000. Fusion energy 1998 (2001 Edition). Proceedings

    International Nuclear Information System (INIS)

    2001-01-01

    This CD-ROM contains the Proceedings of 18th International Conference on Fusion Energy. It also contains an updated version of the Fusion Energy Conference 1998 Proceedings (38 additional papers included) as well as information on how to use this CD-ROM. The 18th International Atomic Energy Agency Fusion Energy Conference (FEC-2000) was held in Sorrento, Italy, 4-10 October 2000. 573 participants from over thirty countries and three international organizations took part in this Conference. The Conference was organized by the IAEA in co-operation with the Italian National Agency for New Technology, Energy and Environment (ENEA). Around 400 papers were presented in 22 oral and 8 poster sessions on magnetic confinement experiments, inertial fusion energy, plasma heating and current drive, ITER engineering design activities, magnetic confinement theory, innovative concepts, fusion technology, and safety and environment aspects. The 17th International Atomic Energy Agency (IAEA) Fusion Energy Conference was held in Yokohama, Japan, 19-24 October 1999. This 6-day conference, which was attended by 835 participants from over 30 countries and two international organizations, was organized by the IAEA in co-operation with the Japan Atomic Energy Research Institute (JAERI). More than 360 papers plus 5 summary talks were presented in 23 oral and 8 poster sessions on magnetic confinement and experiments, inertial fusion energy, plasma heating and current drive, ITER engineering design activities, magnetic confinement theory, innovative concepts and fusion technology

  2. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.

    Science.gov (United States)

    Joglekar, A S; Thomas, A G R; Fox, W; Bhattacharjee, A

    2014-03-14

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this mechanism is only relevant in a high β plasma. However, the Hall parameter ωcτei can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  3. Initial progress in the first wall, blanket, and shield Engineering Test Program for magnetically confined fusion-power reactors

    International Nuclear Information System (INIS)

    Herman, H.; Baker, C.C.; Maroni, V.A.

    1981-10-01

    The first wall/blanket/shield (FW/B/S) Engineering Test Program (ETP) progressed from the planning stage into implementation during July, 1981. The program, generic in nature, comprises four Test Program Elements (TPE's), the emphasis of which is on defining the performance parameters for the Fusion Engineering Device (FED) and the major fusion device to follow FED. These elements are: (1) nonnuclear thermal-hydraulic and thermomechanical testing of first wall and component facsimiles with emphasis on surface heat loads and heat transient (i.e., plasma disruption) effects; (2) nonnuclear and nuclear testing of FW/B/S components and assemblies with emphasis on bulk (nuclear) heating effects, integrated FW/B/S hydraulics and mechanics, blanket coolant system transients, and nuclear benchmarks; (3) FW/B/S electromagnetic and eddy current effects testing, including pulsed field penetration, torque and force restraint, electromagnetic materials, liquid metal MHD effects and the like; and (4) FW/B/S Assembly, Maintenance and Repair (AMR) studies focusing on generic AMR criteria, with the objective of preparing an AMR designers guidebook; also, development of rapid remote assembly/disassembly joint system technology, leak detection and remote handling methods

  4. Initial progress in the first wall, blanket, and shield Engineering Test Program for magnetically confined fusion-power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Herman, H.; Baker, C.C.; Maroni, V.A.

    1981-10-01

    The first wall/blanket/shield (FW/B/S) Engineering Test Program (ETP) progressed from the planning stage into implementation during July, 1981. The program, generic in nature, comprises four Test Program Elements (TPE's), the emphasis of which is on defining the performance parameters for the Fusion Engineering Device (FED) and the major fusion device to follow FED. These elements are: (1) nonnuclear thermal-hydraulic and thermomechanical testing of first wall and component facsimiles with emphasis on surface heat loads and heat transient (i.e., plasma disruption) effects; (2) nonnuclear and nuclear testing of FW/B/S components and assemblies with emphasis on bulk (nuclear) heating effects, integrated FW/B/S hydraulics and mechanics, blanket coolant system transients, and nuclear benchmarks; (3) FW/B/S electromagnetic and eddy current effects testing, including pulsed field penetration, torque and force restraint, electromagnetic materials, liquid metal MHD effects and the like; and (4) FW/B/S Assembly, Maintenance and Repair (AMR) studies focusing on generic AMR criteria, with the objective of preparing an AMR designers guidebook; also, development of rapid remote assembly/disassembly joint system technology, leak detection and remote handling methods.

  5. Seeking tools for image fusion between computed tomography, structural and functional magnetic resonance methods for applications in neurosurgery; Ferramentas para fusao de imagens dos metodos de tomografia computadorizada, ressonancia magnetica e ressonancia magnetica funcional para aplicacao pre-neurocirurgica

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Liana Guerra Sanches da, E-mail: liana@einstein.br [Departamento de Diagnostico por Imagem, Hospital Israelita Albert Einstein - HIAE, Sao Paulo (SP) (Brazil); Amaro Junior, Edson [Faculdade de Medicina, Universidade de Sao Paulo - USP, Sao Paulo, SP (Brazil). Deptartamento de Diagnostico por Imagem; Instituto do Cerebro - InCe, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil)

    2012-04-15

    To evaluate tools for the fusion of images generated by tomography and structural and functional magnetic resonance imaging. Methods: Magnetic resonance and functional magnetic resonance imaging were performed while a volunteer who had previously undergone cranial tomography performed motor and somatosensory tasks in a 3-Tesla scanner. Image data were analyzed with different programs, and the results were compared. Results: We constructed a flow chart of computational processes that allowed measurement of the spatial congruence between the methods. There was no single computational tool that contained the entire set of functions necessary to achieve the goal. Conclusion: The fusion of the images from the three methods proved to be feasible with the use of four free-access software programs (OsiriX, Register, MRIcro and FSL). Our results may serve as a basis for building software that will be useful as a virtual tool prior to neurosurgery. (author)

  6. Adjacent segment degeneration after lumbar spinal fusion: the impact of anterior column support: a randomized clinical trial with an eight- to thirteen-year magnetic resonance imaging follow-up.

    Science.gov (United States)

    Videbaek, Tina S; Egund, Niels; Christensen, Finn B; Grethe Jurik, Anne; Bünger, Cody E

    2010-10-15

    Randomized controlled trial. To analyze long-term adjacent segment degeneration (ASD) after lumbar fusion on magnetic resonance imaging and compare randomization groups with and without anterior column support. ASD can be a long-term complication after fusion. The prevalence and the cause of ASD are not well documented, but ASD are one of the main arguments for introducing the use of motion-preserving techniques as an alternative to fusion. Anterior lumbar interbody fusion combined with posterolateral lumbar fusion (ALIF+PLF) has been proved superior to posterolateral fusion alone regarding outcome and cost-effectiveness. Between 1996 and 1999, 148 patients with severe chronic low back pain were randomly selected for ALIF+PLF or for PLF alone. Ninety-five patients participated. ASD was examined on magnetic resonance imaging with regard to disc degeneration, disc herniation, stenosis, and endplate changes. Disc heights on radiographs taken at index surgery and at long-term follow-up were compared. Outcome was assessed by validated questionnaires. The follow-up rate was 76%. ASD was similar between randomization groups. In the total cohort, endplate changes were seen in 26% of the participants and correlated significantly with the presence of disc degeneration and disc herniation. Disc degeneration and dorsal disc herniation were the parameters registered most frequently and were significantly more pronounced at the first adjacent level than at the second and the third adjacent levels. Patients without disc height reduction over time were significantly younger than patients with disc height reduction. Disc degeneration and stenosis correlated significantly with outcome at the first adjacent level. The cause of the superior outcome in the group with anterior support is still unclear. Compared with the findings reported in the literature, the prevalence of ASD is likely to be in concordance with the expected changes in a nonoperated symptomatic population and therefore

  7. Fusion reactor materials

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Burn, G.L.; Knee', S.S.; Dowker, C.L.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  8. Energy from nuclear fusion

    International Nuclear Information System (INIS)

    Pinkau, K.

    1997-01-01

    Nuclear fusion research is conducted for the long-term objective of developing a power plant generating energy from the fusion of atomic nuclei. In order for the fusion fire to be ignited the fuel, a hydrogen plasma, must be confined in magnetic fields and heated to high temperatures - a design principle resulting in good safety characteristics and environmental compatibility. As the source materials required for the fusion process are available in almost unlimited quantities and are distributed all over the world, nuclear fusion could make a sizeable contribution towards future energy supplies. Since its beginnings in the early fifties, fusion research has approached its ambitious goal in painstaking, detailed work. Sometimes unnoticed by the public, these activities have made considerable progress especially in the past few years. Such formerly critical problems as plasma heating, thermal insulation, prevention of plasma impurities, and energy extraction can now be considered nearly solved. It has been possible in the meantime to generate fusion powers of several megawatt. The results obtained so far allow a test reactor to be planned which, for the first time, is to produce a self-sustaining plasma with powers in the gigawatt range. (orig.) [de

  9. Fusion Studies in Japan

    Science.gov (United States)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  10. 17. IAEA fusion energy conference. Extended synopses

    International Nuclear Information System (INIS)

    1998-01-01

    Book of extended synopses of the papers, accepted by a international programme committee for presentation at the 17th IAEA Fusion Energy Conference in Yokohama, Japan. The subjects covered are magnetic confinement experiments, plasma heating and current drive, ITER EDA, inertial fusion energy, innovative concepts, fusion technology and theory

  11. Snowmass Fusion Summer Study Group workshop

    International Nuclear Information System (INIS)

    Clement, S.

    1999-01-01

    The Snowmass Fusion Summer Study Group workshop, has taken place at Snowmass, Colorado, 11-23 July 1999. Its purpose was to discuss opportunities and directions in fusion energy science for the next decade. About 300 experts from all fields in the magnetic and inertial fusion communities attended, coming mostly from the US, but with some foreign participation

  12. Safety and environmental aspects of fusion reactors

    International Nuclear Information System (INIS)

    Kilic, H.; Jensen, B.

    1982-01-01

    This paper deals with those problems concerning safety and environmental aspects of the future fusion reactors (e.g. fuel cycle, magnetic failure, after heat disturbances, radioactive waste and magnetic field)

  13. Rencontre on fusion technology

    International Nuclear Information System (INIS)

    Read, S.F.J.

    1979-02-01

    This report of a rencontre held to consider the technology of magnetic confinement fusion devices gives the agenda for the meeting and lists those topics which were identified as areas of research. These topics included materials, tritium, structures and heat transfer, neutronics and nuclear data, and corrosion problems. (UK)

  14. Magnetic Fusion Energy Program. Volume I. Introduction, technical summaries, list of publications, etc., Appendices A-K. Annual report

    International Nuclear Information System (INIS)

    Aamodt, R.E.; Byrne, R.N.; Catto, P.J.

    1979-12-01

    An abstract was prepared for the progress summary on transport theory for open and closed magnetic configurations. Seven abstracts were prepared for included appendices of more detailed work on individual devices. Also included is a list of publications, technical presentations, and DOE program contributions

  15. Fusion research activities in China

    International Nuclear Information System (INIS)

    Deng Xiwen

    1998-01-01

    The fusion program in China has been executed in most areas of magnetic confinement fusion for more than 30 years. Basing on the situation of the power supply requirements of China, the fusion program is becoming an important and vital component of the nuclear power program in China. This paper reviews the status of fusion research and next step plans in China. The motivation and goal of the Chinese fusion program is explained. Research and development on tokamak physics and engineering in the southwestern institute of physics (SWIP) and the institute of plasma physics of Academic Sinica (ASIPP) are introduced. A fusion breeder program and a pure fusion reactor design program have been supported by the state science and technology commission (SSTC) and the China national nuclear corporation (CNNC), respectively. Some features and progress of fusion reactor R and D activities are reviewed. Non fusion applications of plasma science are an important part of China fusion research; a brief introduction about this area is given. Finally, an introductional collaboration network on fusion research activities in China is reported. (orig.)

  16. Fusion power

    International Nuclear Information System (INIS)

    Hancox, R.

    1981-01-01

    The principles of fusion power, and its advantages and disadvantages, are outlined. Present research programmes and future plans directed towards the development of a fusion power reactor, are summarized. (U.K.)

  17. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...... by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum...

  18. Fusion: introduction

    International Nuclear Information System (INIS)

    Decreton, M.

    2006-01-01

    The article gives an overview and introduction to the activities of SCK-CEN's research programme on fusion. The decision to construct the ITER international nuclear fusion experiment in Cadarache is highlighted. A summary of the Belgian contributions to fusion research is given with particular emphasis on studies of radiation effects on diagnostics systems, radiation effects on remote handling sensing systems, fusion waste management and socio-economic studies

  19. Nonlinear Theoretical Tools for Fusion-related Microturbulence: Historical Evolution, and Recent Applications to Stochastic Magnetic Fields, Zonal-flow Dynamics, and Intermittency

    International Nuclear Information System (INIS)

    Krommes, J.A.

    2009-01-01

    Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-? theorem is discussed. An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.

  20. Nonlinear theoretical tools for fusion-related microturbulence: Historical evolution, and recent applications to stochastic magnetic fields, zonal-flow dynamics, and intermittency

    Science.gov (United States)

    Krommes, J. A.

    2009-05-01

    Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-χ theorem is discussed. An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.

  1. Nonlinear Theoretical Tools for Fusion-related Microturbulence: Historical Evolution, and Recent Applications to Stochastic Magnetic Fields, Zonal-flow Dynamics, and Intermittency

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Krommes

    2009-05-19

    Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-χ theorem is discussed. An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.

  2. EDITORIAL: Safety aspects of fusion power plants

    Science.gov (United States)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential

  3. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  4. Fusion Canada

    International Nuclear Information System (INIS)

    1987-07-01

    This first issue of a quarterly newsletter announces the startup of the Tokamak de Varennes, describes Canada's national fusion program, and outlines the Canadian Fusion Fuels Technology Program. A map gives the location of the eleven principal fusion centres in Canada. (L.L.)

  5. Building the US National Fusion Grid: results from the National Fusion Collaboratory Project

    International Nuclear Information System (INIS)

    Schissel, D.P.; Burruss, J.R.; Finkelstein, A.; Flanagan, S.M.; Foster, I.T.; Fredian, T.W.; Greenwald, M.J.; Johnson, C.R.; Keahey, K.; Klasky, S.A.; Li, K.; McCune, D.C.; Papka, M.; Peng, Q.; Randerson, L.; Sanderson, A.; Stillerman, J.; Stevens, R.; Thompson, M.R.; Wallace, G.

    2004-01-01

    The US National Fusion Collaboratory Project is developing a persistent infrastructure to enable scientific collaboration for all aspects of magnetic fusion research. The project is creating a robust, user-friendly collaborative software environment and making it available to more than 1000 fusion scientists in 40 institutions who perform magnetic fusion research in the United States. In particular, the project is developing and deploying a national Fusion Energy Sciences Grid (FusionGrid) that is a system for secure sharing of computation, visualization, and data resources over the Internet. The FusionGrid goal is to allow scientists at remote sites to fully participate in experimental and computational activities as if they were working at a common site thereby creating a virtual organization of the US fusion community. The project is funded by the USDOE Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program and unites fusion and computer science researchers to directly address these challenges

  6. Magnetic fusion energy plasma interactive and high heat flux components. Volume II. Technical assessment of the critical issues and problem areas in high heat flux materials and component development

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.A.; Boyd, R.D.; Easor, J.R.; Gauster, W.B.; Gordon, J.D.; Mattas, R.F.; Morgan, G.D.; Ulrickson, M.A,; Watson, R.D.; Wolfer, W.G,

    1984-06-01

    A technical assessment of the critical issues and problem areas for high heat flux materials and components (HHFMC) in magnetic fusion devices shows these problems to be of critical importance for the successful operation of near-term fusion experiments and for the feasibility and attractiveness of long-term fusion reactors. A number of subgroups were formed to assess the critical HHFMC issues along the following major lines: (1) source conditions, (2) systems integration, (3) materials and processes, (4) thermal hydraulics, (5) thermomechanical response, (6) electromagnetic response, (7) instrumentation and control, and (8) test facilities. The details of the technical assessment are presented in eight chapters. The primary technical issues and needs for each area are highlighted.

  7. Magnetic fusion energy plasma interactive and high heat flux components. Volume II. Technical assessment of the critical issues and problem areas in high heat flux materials and component development

    International Nuclear Information System (INIS)

    Abdou, M.A.; Boyd, R.D.; Easor, J.R.

    1984-06-01

    A technical assessment of the critical issues and problem areas for high heat flux materials and components (HHFMC) in magnetic fusion devices shows these problems to be of critical importance for the successful operation of near-term fusion experiments and for the feasibility and attractiveness of long-term fusion reactors. A number of subgroups were formed to assess the critical HHFMC issues along the following major lines: (1) source conditions, (2) systems integration, (3) materials and processes, (4) thermal hydraulics, (5) thermomechanical response, (6) electromagnetic response, (7) instrumentation and control, and (8) test facilities. The details of the technical assessment are presented in eight chapters. The primary technical issues and needs for each area are highlighted

  8. Fusion as an energy option

    International Nuclear Information System (INIS)

    Steiner, D.

    1976-01-01

    The environmental issues, alternative fusion fuels, the economic potential, and the time scale of fusion power are assessed. It is common for the advocate of a long-term energy source to claim his source (fission, fusion, solar, etc.) as the ultimate solution to man's energy needs. The author does not believe that such a stance will lead to a rational energy policy. Dr. Steiner encourages a long-term energy policy that has as its goal the development of fission breeders, fusion, and solar energy--not be totally reliant on a single source. He does advocate vigorous funding for fusion, not because it is a guarantee for ''clean, limitless, and cheap power,'' but because it may provide an important energy option for the next century

  9. Magnetic Reconnection

    NARCIS (Netherlands)

    Schep, T. J.

    1994-01-01

    This lecture deals with the concept of magnetic field lines and with the conservation of magnetic flux. In high temperature fusion devices like tokamaks flux conservation can be violated and reconnection can occur at closed magnetic field lines. Reconnection processes lead to changes in the global

  10. Advances in laser solenoid fusion reactor design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Quimby, D.C.

    1978-01-01

    The laser solenoid is an alternate fusion concept based on a laser-heated magnetically-confined plasma column. The reactor concept has evolved in several systems studies over the last five years. We describe recent advances in the plasma physics and technology of laser-plasma coupling. The technology advances include progress on first walls, inner magnet design, confinement module design, and reactor maintenance. We also describe a new generation of laser solenoid fusion and fusion-fission reactor designs

  11. Overview of fusion reactor safety

    Science.gov (United States)

    Cohen, S.; Crocker, J. G.

    Use of deuterium-tritium fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control; (2) neutron activation of structural materials, fluid streams and reactor hall environment; (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions; (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices; and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power.

  12. Overview of fusion reactor safety

    International Nuclear Information System (INIS)

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Use of deuterium-tritium burning fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control, (2) neutron activation of structural materials, fluid streams and reactor hall environment, (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions, (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices, and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power

  13. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1986-05-01

    In 1982, KfK joined the fusion programme of EURATOM as a further association introducing its experience in nuclear technology. KfK closely cooperates with IPP Garching, the two institutions forming a research unit aiming at planning and realization of future development steps of fusion. KfK has combined its forces in the Nuclear Fusion Project (PKF) with participation of several KfK departments to the project tasks. Previous work of KfK in magnetic fusion has addressed mainly superconducting magnets, plasma heating by cluster ions and studies on structural materials. At present, emphasis of our work has concentrated increasingly on the nuclear part, i.e. the first wall and blanket structures and the elements of the tritium extraction and purification system. Associated to this component development are studies of remote maintenance and safety. Most of the actual work addresses NET, the next step to a demonstration of fusion feasibility. NET is supposed to follow JET, the operating plasma physics experiment of Euratom, on the 1990's. Detailed progress of the work in the past half year is described in this report. (orig./GG)

  14. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  15. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1985-05-01

    In the current Fusion Technology Programme of the European Community the KfK association is working at present on 16 R and D contracts. Most of the work is strongly oriented towards the Next European Torus. Direct support to NET is given by three KfK delegates being member of the NET study group. In addition to the R and D contracts the association is working on 11 NET study contracts. Though KfK contributes to all areas defined in fusion technology, the main emphasis is put on superconducting magnet and breeding blanket development. Other important fields are tritium technology, materials research, and remote handling. (orig./GG)

  16. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  17. Diffusion-weighted whole-body magnetic resonance imaging with background body signal suppression/T2 image fusion for the diagnosis of acute cholecystitis

    Science.gov (United States)

    Tomizawa, Minoru; Shinozaki, Fuminobu; Tanaka, Satomi; Sunaoshi, Takafumi; Kano, Daisuke; Sugiyama, Eriko; Shite, Misaki; Haga, Ryouta; Fukamizu, Yoshiya; Fujita, Toshiyuki; Kagayama, Satoshi; Hasegawa, Rumiko; Shirai, Yoshinori; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2017-01-01

    Prompt and accurate diagnosis is critical in the treatment of acute cholecystitis. Diffusion-weighted whole-body magnetic resonance imaging with background body signal suppression/T2 image fusion (DWIBS/T2) identifies areas with high signal intensity, corresponding to inflammation. In the present study, the records and images of patients with acute cholecystitis who underwent DWIBS/T2 between January 2013 and March 2014 were retrospectively analyzed. A total of 11 patients with acute cholecystitis were enrolled. In one patient, DWIBS/T2 identified a thickened wall and high signal intensity, with high signal intensity in the pericholecystic space that suggested localized peritonitis. Positive DWIBS/T2 results indicating acute cholecystitis were obtained in 10/11 patients, with a sensitivity of 90.9%. In addition, wall thickening and high signal intensity were absent in DWIBS/T2 images when wall thickening was not detected by computed tomography. Wall thickening and high signal intensity was attenuated when patients with acute cholecystitis were clinically treated. These data suggest that a thickened gallbladder wall and high signal intensity are indicative of acute cholecystitis and that DWIBS/T2 may be a useful technique in evaluating the severity of acute cholecystitis. PMID:28672991

  18. Fabrication and properties of conductors for fusion magnets. Annual report, October 1, 1976--September 30, 1977. [Nb/sub 3/ Sn conductor testing

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    The objectives of this project are to develop suitable and economical conductors for fusion magnets, in particular, to develop methods for improving the mechanical properties of Nb/sub 3/Sn conductors. This includes the measurement and study of degradation mechanisms of Nb/sub 3/Sn conductors under mechanical strain. The investigation of degradation in the superconducting properties of Nb/sub 3/Sn conductors under mechanical stresses for FY 1977 can be divided into the following areas: (1) monofilamentary Nb/sub 3/Sn wires, (2) multifilamentary Nb/sub 3/Sn wires and conductors, (3) effects of additives to Nb/sub 3/Sn, (4) mechanism for degradation, and (5) construction of high field test facilities. Our effort in FY 1977 has been concentrated in the investigation of T/sub c/, J/sub c/ and H/sub c2/ variations in monofilamentary Nb/sub 3/Sn wires. The most important finding in this study is that a Nb/sub 3/Sn wire can sustain mechanical strain well beyond 1% if a proper ratio of the matrix to the Nb core was chosen.

  19. Malakoplakia of the Prostate as a Mimicker of Prostate Cancer on Prostate Health Index and Magnetic Resonance Imaging-Fusion Prostate Biopsy: A Case Report.

    Science.gov (United States)

    Heah, Nathaniel H; Tan, Teck Wei; Tan, Yung Khan

    2017-01-01

    Background: Isolated malakoplakia of the prostate is a rare inflammatory condition that has been clinically mistaken for prostatic malignancies. The development of Prostate Imaging Reporting and Data System (PI-RADS) classifications, and Prostate Health Index (PHI) has led to more accurate diagnosis of clinically significant disease and stratification of patients that may be at risk of prostate cancer. Case Presentation: We present a case of a 75-year-old male who was on follow-up with our hospital for elevated prostate specific antigen (PSA). He was admitted for an episode of urosepsis, which was treated with antibiotics and subsequently underwent further workup and was found to have a raised PHI, as well as a high PI-RADS classification and was later found to have malakoplakia based on histology of prostate tissue obtained during targeted magnetic resonance imaging (MRI)-guided fusion prostate biopsy. Conclusion: To our understanding, this is the first case where a prostate lesion has been labeled as a PI-RADS 5 lesion, with elevated PHI that has subsequently been proven histologically to be malakoplakia. An important possible confounder is the interval between the MRI and the episode of urosepsis and it is well known that urosepsis can affect the PSA and MRI result. We present this case to highlight the potential for a false diagnosis of prostate cancer, in spite of laboratory and radiological findings.

  20. Fusion: The Energy of the Universe

    International Nuclear Information System (INIS)

    Lister, J

    2006-01-01

    trails', since it is so tempting to produce a 'backroom' solution to mankind's hunger for energy. Unfortunately, Chapter 8 can only regret that none of them has passed closer peer review. Chapters 9 and 10 concentrate on the 'tokamak' concept for magnetic confinement, the basis for the JET and ITER projects, as well as for a wealth of smaller, national projects. The hopes and the disappointments are well and very frankly illustrated. The motivation for building a project of the size of ITER is made very clear. Present fusion research cannot forget that its mission is to develop an industrial reactor, not just a powerful research tool. Chapter 11 presents the major challenges between ITER and a reactor. Finally, Chapter 12 reminds us of why we need energy, why we do not have a credible solution at the mid-term (20 years) and why we have no solution in the longer term. The public awareness of this is growing, at last, even though the arguments were all on the table in the 1970's. This chapter therefore closes the book by bringing the reader back to earth rather suitably with the hard reality of energy needs and the absence of credible policies. This book has already received impressive approval among a wide range of people, since it so evidently succeeds in its goal to explain Fusion to many levels of reader. Gary McCracken and Peter Stott (one time editor of Plasma Physics and Controlled Fusion) both dedicated their careers to magnetic confinement fusion, mostly at Culham working on UKAEA projects and later on the JET project. They were both deeply involved with international collaborations and both were working abroad when they retired. The mixture between ideas, developments and people is most successfully developed. They clearly underline the importance of strong international collaboration on which this field depends. This open background is tangible in their recently published work, in which they have tried to communicate their love and understanding of this exciting