WorldWideScience

Sample records for policies technology transfer

  1. Key policy considerations for facilitating low carbon technology transfer to developing countries

    International Nuclear Information System (INIS)

    Ockwell, David G.; Watson, Jim; MacKerron, Gordon; Pal, Prosanto; Yamin, Farhana

    2008-01-01

    Based on Phase I of a UK-India collaborative study, this paper analyses two case studies of low carbon technologies-hybrid vehicles and coal-fired power generation via integrated gasification combined cycle (IGCC). The analysis highlights the following six key considerations for the development of policy aimed at facilitating low carbon technology transfer to developing countries: (1) technology transfer needs to be seen as part of a broader process of sustained, low carbon technological capacity development in recipient countries; (2) the fact that low carbon technologies are at different stages of development means that low carbon technology transfer involves both vertical transfer (the transfer of technologies from the R and D stage through to commercialisation) and horizontal transfer (the transfer from one geographical location to another). Barriers to transfer and appropriate policy responses often vary according to the stage of technology development as well as the specific source and recipient country contexts; (3) less integrated technology transfer arrangements, involving, for example, acquisition of different items of plant from a range of host country equipment manufacturers, are more likely to involve knowledge exchange and diffusion through recipient country economies; (4) recipient firms that, as part of the transfer process, strategically aim to obtain technological know-how and knowledge necessary for innovation during the transfer process are more likely to be able to develop their capacity as a result; (5) whilst access to Intellectual Property Rights (IPRs) may sometimes be a necessary part of facilitating technology transfer, it is not likely to be sufficient in itself. Other factors such as absorptive capacity and risks associated with new technologies must also be addressed; (6) there is a central role for both national and international policy interventions in achieving low carbon technology transfer. The lack of available empirical analysis

  2. Transfer of technology to developing countries: unilateral and multilateral policy options

    International Nuclear Information System (INIS)

    Hockman, B.M.; Maskus, K.E.; Saggi, K.

    2005-01-01

    This paper analyzes national and international policy options to encourage the international transfer of technology, distinguishing between four major channels of such transfer: trade in products, trade in knowledge and technology, foreign direct investment, and intranational and international movement of people. A typology of countries and appropriate policy rules of thumb are developed as a guide to both national policymakers and multilateral rule making in the WTO. We argue that the optimal policy mix varies across countries and that there is a need for differentiation in the design and application of rules in trade agreements as well as for a more explicit focus on evaluation of the impacts of policies. (author)

  3. 77 FR 46855 - Small Business Technology Transfer Program Policy Directive

    Science.gov (United States)

    2012-08-06

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Chapter I RIN 3245-AF45 Small Business Technology Transfer Program Policy Directive AGENCY: Small Business Administration. ACTION: Final policy directive with request for comments. SUMMARY: The U.S. Small Business Administration (SBA) is amending its Small Business...

  4. International technology transfer

    International Nuclear Information System (INIS)

    Kwon, Won Gi

    1991-11-01

    This book introduces technology progress and economic growth, theoretical consideration of technology transfer, policy and mechanism on technology transfer of a developed country and a developing country, reality of international technology transfer technology transfer and industrial structure in Asia and the pacific region, technology transfer in Russia, China and Eastern Europe, cooperation of science and technology for development of Northeast Asia and strategy of technology transfer of Korea.

  5. Technology Transfer: Marketing Tomorrow's Technology

    Science.gov (United States)

    Tcheng, Erene

    1995-01-01

    The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers

  6. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false What is the FHWA's policy for research, development, and... TRANSPORTATION PLANNING AND RESEARCH PLANNING AND RESEARCH PROGRAM ADMINISTRATION Research, Development and Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and...

  7. Macrosystems management approach to nuclear technology transfer

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.; Maultsby, T.E.

    1978-01-01

    The world of the 1980s will be a world of diminishing resources, shifting economic bases, rapidly changing cultural and societal structures, and an ever increasing demand for energy. A major driving function in this massive redistribution of global power is man's ability to transfer technology, including nuclear technology, to the developing nations. The major task facing policy makers in planning and managing technology transfer is to avoid the difficulties inherent in such technology exploitation, while maximizing the technical, economic, social, and cultural benefits brought about by the technology itself. But today's policy makers, using industrial-style planning, cannot adequately deal with all the complex, closely-coupled issues involved in technology transfer. Yet, policy makers within the developing nations must be capable of tackling the full spectrum of issues associated with technology transfer before committing to a particular course of action. The transfer and acceptance of complex technology would be significantly enhanced if policy makers followed a macrosystems management approach. Macrosystems management is a decision making methodology based on the techniques of macrosystems analysis. Macrosystems analysis combines the best quantitative methods in systems analysis with the best qualitative evaluations provided by multidisciplined task teams. These are focused in a project management structure to produce solution-oriented advice to the policy makers. The general relationships and management approach offered by macrosystems analysis are examined. Nowhere are the nuclear power option problems and issues more complex than in the transfer of this technology to developing nations. Although many critical variables of interest in the analysis are generic to a particular importer/exporter relationship, two specific issues that have universally impacted the nuclear power option, namely the fuel cycle, and manpower and training, are examined in the light of

  8. Technology transfer at TRIUMF

    International Nuclear Information System (INIS)

    Gardner, P.

    1994-06-01

    TRIUMF is Canada's major national research centre for sub-atomic physics. For the past five or six years, there has been an increasing emphasis on commercializing the technology that has emanated from the scientific research at the facility. This emphasis on technology transfer reflects a national policy trend of the Canadian federal government, which is the funding source for the majority of the research performed at TRIUMF. In TRIUMF's case, however, the initiative and funding for the commercialization office came from the provincial, or local government. This paper will describe the evolution of technology transfer at the TRIUMF facility, identifying the theory, policies and practical procedures that have been developed and followed. It will also include TRIUMF's experiences in finding exploitable technologies, protecting those technologies, and locating and linking with suitable industry partners to commercialize the technologies. There will be a discussion of resource allocation, and how TRIUMF has endeavoured to establish a portfolio of projects of assorted risks and expected returns. (author). 15 refs

  9. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    OpenAIRE

    Durán-García Martín Enrique

    2014-01-01

    Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the ...

  10. An integrated approach towards technology transfer

    NARCIS (Netherlands)

    Wal, L.F. van der; Eldering, C.J.J.; Putten, N.J. van

    2010-01-01

    In 2001 the European Space Agency (ESA), the Dutch Ministry of Economic Affairs and the Netherlands Organisation of applied scientific research TNO initiated the Dutch Technology Transfer Programme (DTTP). Since then, 'technology transfer' has been a relevant part of Dutch space policy. The DTTP

  11. Technology transfer trends in Indian space programme

    Science.gov (United States)

    Sridhara Murthi, K. R.; Shoba, T. S.

    2010-10-01

    Indian space programme, whose objectives involve acceleration of economic and social development through applications of space technology, has been engaged in the development of state-of-the-art satellite systems, launch vehicles and equipment necessary for applications. Even during the early phase of evolution of this Programme, deliberate policies have been adopted by the national space agency, namely, Indian Space Research Organisation (ISRO), to promote spin-off benefit from the technologies developed for the use of space projects. Consistently adhering to this policy, ISRO has transferred over 280 technologies till date, spanning a wide spectrum of disciplines. This has resulted in a fruitful two-way cooperation between a number of SMEs and the ISRO. In order to make the technology transfer process effective, ISRO has adopted a variety of functional and organizational policies that included awareness building measures, licensee selection methods, innovative contract systems, diverse transfer processes, post licencing services and feedback mechanisms. Besides analyzing these policies and their evolution, the paper discusses various models adopted for technology transfer and their impact on assessment. It also touches upon relevant issues relating to creating interface between public funded R&D and the private commercial enterprises. It suggests few models in which international cooperation could be pursued in this field.

  12. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    Directory of Open Access Journals (Sweden)

    Durán-García Martín Enrique

    2014-07-01

    Full Text Available Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the transfer of chemical technology requires technological-environmental criteria defining, in conjunction with other criteria, an adequate process for the selection, acquisition and incorporation of technology in a holistic perspective, so it provides feasible solutions the chemical industry in pursuit of their goals. Then the criterion becomes a benchmark for assessing an appropriate technology transfer process. We performed a theoretical analysis of the technological and environmental criteria, proposing thirty-six (36 technological-environmental criteria interrelated under a systemic approach in the process of transfer of chemical technology, focused on a methodological cycle first run, based primarily on the research-action method. Future research is expected to make a refinement of the criteria from the formulation and validation of metrics so that necessary adjustments are made to optimize the process of transfer of chemical technology.

  13. Promoting the International Transfer of Low-Carbon Technologies: Evidence and Policy Challenges. Report for the Commissariat general a la strategie et a la prospective (French Center for Policy Planning)

    International Nuclear Information System (INIS)

    Glachant, Matthieu; Dussaux, Damien; Meniere, Yann; Dechezlepretre, Antoine; Auverlot, Dominique

    2013-10-01

    The international diffusion of technologies with a potential to reduce carbon emissions is at the core of current climate change negotiations. North-to-South technology transfer is of particular importance since technologies have so far been mostly developed in industrialized countries, but are urgently required to mitigate greenhouse gas (GHG) emissions in fast-growing emerging economies. Against this background, the primary objective of this study is to give recommendations on how the transfer of low-carbon technologies could be promoted. Our contribution to the current debate is threefold. First, we provide an up-to-date picture of the climate-related technology transfer landscape, based on a combination of patent data, bilateral trade data and foreign investment data. Second, we develop and implement a methodology to identify which technologies should be given priority and which recipient countries should be targeted. Third, we discuss the potential of different policy approaches and the instruments available to promote technology transfer. The picture of technology diffusion is totally different for emerging economies and least-developed countries. The latter group of countries is hardly visible in the data simply because they do not import climate-mitigation technologies. In contrast, technologies are already flowing into emerging economies through market channels such as the import of capital goods, local investment by multinational enterprises that own technologies, and the associated circulation of skilled workers (about 16-30% of global transfer flows, depending on the indicator, a percentage in line with their contribution to world GDP). South-South technology transfer is, however, very limited, as technology providers are mostly located in industrialized countries. Several countries - China, South Africa, Mexico and, to a lesser extent, Brazil - seem particularly well connected to global technology flows. Fewer technologies are transferred towards other

  14. Technology transfer of hearing aids to low and middle income countries: policy and market factors.

    Science.gov (United States)

    Seelman, Katherine D; Werner, Roye

    2014-09-01

    The competitive market advantages of industry and the balancing force of international governmental organizations (IGOs) are examined to identify market and policy in support of sustainable technology transfer of hearing aids to low and middle income countries. A second purpose is to examine the usefulness of findings for other assistive technologies (AT). Searches of electronic databases, IGO documents, industry reports and journals were supplemented by informal discussions with industry and IGO staff and audiologists. The value chain is used to examine the competitive advantage of industry and the balancing tools of certain IGOs. Both industry and IGOs engage in intellectual property (IP) and competition activities and are active in each segment of the hearing aid value chain. Their market and policy objectives and strategies are different. IGOs serve as balancing forces for the competitive advantages of industry. The hearing aid market configuration and hearing aid fitting process are not representative of other AT products but IP, trade and competition policy tools used by IGOs and governments are relevant to other AT. The value chain is a useful tool to identify the location of price mark-ups and the influence of actors. Market factors and reimbursement and subsidization policies drive hearing aid innovation. UN-related international government organization activities are responsive to the needs of disability populations who cannot afford assistive technology. Policy tools used by international governmental organizations are applicable across assistive technology. A partnership model is important to distribution of hearing aids to low and middle income countries.

  15. Climate policy in developing countries and conditional transfers

    International Nuclear Information System (INIS)

    Ruebbelke, Dirk T.G.

    2006-01-01

    This paper analyzes the role international transfers may play in international climate policy in consideration of the policy's ancillary benefits, such as air quality improvements. Ancillary benefits are especially important in many developing countries, while climate protection benefits or primary benefits play a minor role on the political agenda of these countries. In contrast, industrialized countries have a strong interest in combating climate change. These often neglected asymmetries between the developing and industrialized world affect the impacts of transfers. Interestingly, as we will show, the cost differentials between different environmental technologies among countries are the crucial prerequisite for the functioning of a transfer scheme and not the cost differentials in the execution of climate policy. This result has been overlooked by standard pure public good approaches

  16. Adaptation in the context of technology development and transfer

    DEFF Research Database (Denmark)

    Olhoff, Anne

    2015-01-01

    and transfer. It summarizes what technologies for adaptation are, how they relate to development, and what their role is in adaptation. It subsequently highlights a number of policy and research issues that could be important to inform future policy. The commentary has two key messages. First, it argues...... that informed policy decisions on technology development and transfer to enhance adaptation require systematic assessments of the findings in the theoretical and empirical literature. Second, in light of the potential for overlap between processes for adaptation and processes for technologies for adaptation......Starting from a summary of key developments under the United Nations Framework Convention on Climate Change (UNFCCC) related to adaptation and technologies, the commentary provides an initial review of the available literature relevant to adaptation in the context of technology development...

  17. Understanding the CDM's contribution to technology transfer

    International Nuclear Information System (INIS)

    Schneider, Malte; Holzer, Andreas; Hoffmann, Volker H.

    2008-01-01

    Developing countries are increasingly contributing to global greenhouse gas emissions and, consequently, climate change as a result of their rapid economic growth. In order to reduce their impact, the private sector needs to be engaged in the transfer of low-carbon technology to those countries. The Clean Development Mechanism (CDM) is currently the only market mechanism aimed at triggering changes in the pattern of emissions-intensive activities in developing countries and is likely to play a role in future negotiations. In this paper, we analyse how the CDM contributes to technology transfer. We first develop a framework from the literature that delineates the main factors which characterise technology transfer. Second, we apply this framework to the CDM by assessing existing empirical studies and drawing on additional expert interviews. We find that the CDM does contribute to technology transfer by lowering several technology-transfer barriers and by raising the transfer quality. On the basis of this analysis, we give preliminary policy recommendations

  18. Technology transfer packages

    International Nuclear Information System (INIS)

    Mizon, G.A.; Bleasdale, P.A.

    1994-01-01

    Nuclear power is firmly established in many developed countries'energy policies and is being adopted by emerging nations as an attractive way of gaining energy self sufficiency. The early users of nuclear power had to develop the technology that they needed, which now, through increasing world wide experience, has been rationalised to meet demanding economic and environmental pressures. These justifiable pressures, can lead to existing suppliers of nuclear services to consider changing to more appropriate technologies and for new suppliers to consider licensing proven technology rather then incurring the cost of developing new alternatives. The transfer of technology, under license, is made more straight forward if the owner conveniently groups appropriate technology into packages. This paper gives examples of 'Technology Packages' and suggests criteria for the specification, selection and contractual requirements to ensure successful licensing

  19. Technology Transfer Issues and a New Technology Transfer Model

    Science.gov (United States)

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  20. Climate friendly technology transfer in the energy sector: A case study of Iran

    International Nuclear Information System (INIS)

    Talaei, Alireza; Ahadi, Mohammad Sadegh; Maghsoudy, Soroush

    2014-01-01

    The energy sector is the biggest contributor of anthropogenic emissions of greenhouse gases into the atmosphere in Iran. However, abundant potential for implementing low-carbon technologies offers considerable emissions mitigation potential in this sector, and technology transfer is expected to play an important role in the widespread roll-out of these technologies. In the current work, globally existing low-carbon energy technologies that are compatible with the energy sector of Iran are identified and then prioritised against different criteria (i.e. Multi Criteria Decision Analysis). Results of technology prioritisation and a comprehensive literature review were then applied to conduct a SWOT analysis and develop a policy package aiming at facilitating the transfer of low carbon technologies to the country. Results of technology prioritisation suggest that the transport, oil and gas and electricity sectors are the highest priority sectors from technological needs perspective. In the policy package, while fuel price reform and environmental regulations are categorised as high priority policies, information campaigns and development of human resources are considered to have moderate effects on the process of technology transfer. - Highlights: • We examined the process of technology transfer in the energy sector of Iran. • Multi Criteria Decision Analysis techniques are used to prioritise the technological needs of the country. • Transportation, electricity and oil and gas sectors are found as recipients of new technologies. • A policy package was designed for facilitating technology transfer in the energy sector

  1. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Science.gov (United States)

    2012-08-06

    ... Technology Transfer (STTR) Program Policy Directives AGENCY: U.S. Small Business Administration. ACTION...) and Small Business Technology Transfer Program (STTR) Policy Directives. These amendments implement... to Edsel Brown, Assistant Director, Office of Technology, U.S. Small Business Administrator, 409...

  2. University-to-industry advanced technology transfer. A case study

    Energy Technology Data Exchange (ETDEWEB)

    Goldhor, R S; Lung, R T

    1983-06-01

    This case study examines the events in the transfer of an advanced technology (a text-to-speech reading machine) from the university group that developed the technology to an industrial firm seeking to exploit the innovation. After a brief history of the six-year project, the paper discusses the roles of the participants, markets, and time and cost considerations. A model of technology transfer is presented and policy implications derived from the case are discussed. Emphasis is placed on the need for matching technical competence between donor and recipient, and on the function of a transfer agent in facilitating the social process of technology transfer. 42 references, 6 figures, 4 tables.

  3. Mode of foreign entry, technology transfer, and foreign direct investment policy

    OpenAIRE

    Mattoo, Aaditya; Olarreaga, Marcelo; Saggi, Kamal

    2001-01-01

    Foreign direct investment can take place through the direct entry of foreign firms or the acquisition of existing domestic firms. Mattoo, Olarreaga, and Saggi examine the preferences of a foreign firm and the host country government with respect to these two modes of foreign direct investment in the presence of costly technology transfer. The tradeoff between technology transfer and market...

  4. Blind Technology Transfer or Technological Knowledge Leakage: a Case Study from the South

    Directory of Open Access Journals (Sweden)

    Dario Codner

    2012-07-01

    Full Text Available Blurring boundaries between science and technology is a new phenomenon especially in fields such as biotechnology. The present work shows the fate of biotech research papers on foreign patents produced during the last decade in Quilmes National University. It aims at recognizing the flow of scientific knowledge developed at a public university towards foreign companies and organizations as well as reflecting on its technological value, the role of technology transfer management, the institutional significance of technology transfer processes and the need to develop innovative public policies for solving structural failures caused by industrial underdevelopment

  5. Climate change scenarios and Technology Transfer Protocols

    International Nuclear Information System (INIS)

    Kypreos, Socrates; Turton, Hal

    2011-01-01

    We apply a specific version of MERGE-ETL, an integrated assessment model, to study global climate policies supported by Technology Transfer Protocols (TTPs). We model a specific formulation of such a TTP where donor countries finance via carbon tax revenues, the diffusion of carbon-free technologies in developing countries (DCs) and quantify its benefits. Industrialized countries profit from increased technology exports, global diffusion of advanced technology (leading to additional technology learning and cost reductions) and reduced climate damages through the likelihood of greater global participation in a new international agreement. DCs experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and expected secondary benefits of carbon abatement (such as reduced local and regional air pollution). The analysis identifies potential candidate technologies that could be supported under a TTP, and the impact of a TTP on economic development (including the flow of transfer subsidies) and global emissions. Although a TTP may encourage additional participation, such a proposal is only likely to be successful if an increased willingness to pay to avoid climate damages is accepted, first by the present and future generations of the industrialized world and later on, when sufficient economic growth is accumulated, by today's developing countries. - Research Highlights: → Climate policy scenarios are assessed with differentiated commitments in carbon emission control supported by Technology Transfer Protocols. → Donor countries finance, via carbon-tax revenues, the exports of carbon-free technologies in developing countries helping to get a new international agreement. → Developing countries experience increased welfare from access to subsidized technology, and profit from the reduction of damages related to climate change and secondary benefits. → Under Technology Protocols alone and

  6. Technology transfer 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  7. Technology transfer in the CNEA: Between 'supply-slide' and nuclear plan

    International Nuclear Information System (INIS)

    Enriquez, Santiago N

    2012-01-01

    This paper reflects on linkage activities and technology transfer of Atomic Energy National Commission (CNEA). Given that the CNEA was a S and T institution, which was pioneer in activities to reach out the productive sector; it will show that, since 1961, the year of the creation of the Service of Technical Assistance to Industry (SATI) -; until today -where the Law 23.877 of Promotion of the Technological Innovation is fully implemented, different modes of technology transfer based on certain S and T policies are detected. First, it will describe the characteristics of the technology transfer made by SATI, and its connection with the political decisions made by the Department of Metallurgy of CNEA to relate the domestic industry and the Nuclear Plan. In a second instance, it will describe the effects on the technology transfer after the disabling of the Nuclear Plan in 1994, the enforcement of Law 23,877 in CNEA and progressive deactivation of SATI. Finally, it will reflect on the two main stages of technology transfer in CNEA for potential S and T policies (author)

  8. Entrepreneurship and technology transfer knowledge utilization and management

    NARCIS (Netherlands)

    Chavez, Victor

    2016-01-01

    Research at the intersection of creative enterprise, knowledge intensive entrepreneurship, public policy, and economic development is limited, although individually, each of these areas has been researched extensively. Reflective practitioners in industry, Government, and Technology Transfer can

  9. Experience in transfer of nuclear technology

    International Nuclear Information System (INIS)

    Beckurts, K.H.

    1977-01-01

    Nuclear energy development in the Federal Republic of Germany was initiated in 1955. In spite of this late start, the country now has a broad potential in all branches of peaceful nuclear technology. Turkey nuclear power plants are erected by German industry, and the country has the basic technology at its disposal for all stages of the nuclear fuel cycle. In the areas of uranium enrichment and reprocessing, multilateral joint ventures with European countries have been formed. The country also has an active development program for advanced reactors. In general areas of technology transfer and development aid, in the nuclear field, there are interrelated activities of both government and industry. The government has concluded bilateral agreements with a number of countires e.g. Argentina, Brazil, India, Iran and Pakistan, covering the general field of nuclear science; in the framework of these agreements, which are being carried out mainly by the nuclear research centers at Juelich and Karlsruhe, active cooperation in research, development, education, and training are being pursued. The nonproliferation of nuclear weapons is a major objective of the Federal government which strongly affects its policies for international nuclear trade. The paper describes the nuclear technology potential available in the Federal Republic of Germany and reviews experience gathered in cooperation with developing countries. Future policies for nuclear technology transfer are discussed with special reference to the role of national R and D laboratories

  10. Climate technology transfer at the local, national and global levels: analyzing the relationships between multi-level structures

    NARCIS (Netherlands)

    Tessema Abissa, Fisseha; Tessema Abissa, Fisseha

    2014-01-01

    This thesis examines the relationships between multi-leveled decision structures for climate technology transfer through an analysis of top-down macro-policy and bottom-up micro-implementation. It examines how international climate technology transfer policy under the UNFCCC filters down to the

  11. International technology transfer for climate change mitigation and the cases of Russia and China

    International Nuclear Information System (INIS)

    Martinot, E.; Sinton, J.E.

    1997-01-01

    The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs

  12. International technology transfer for climate change mitigation and the cases of Russia and China

    Energy Technology Data Exchange (ETDEWEB)

    Martinot, E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group]|[Stockholm Environment Inst., Boston, MA (United States); Sinton, J.E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group]|[Lawrence Berkeley National Lab., CA (United States). International Energy Studies Group; Haddad, B.M. [Univ. of California, Berkeley, CA (United States)

    1997-12-31

    The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs.

  13. Technology transfer by multinationals

    OpenAIRE

    Kostyantyn Zuzik

    2003-01-01

    The paper analyses the issue of technology transfer by multinational corporations. The following questions are explored: (a) world market of technologies, the role of MNCs (b) Choice of the technology transfer mode, Dunning's OLI-theory as a factor of the choice of the mode of transfer (c) measurement and profitability of technology transfer (d) transfer of technology through partnerships, JVs, alliances and through M&As (e) aspects of technology transfer by services multinationals. Paper uti...

  14. Technology Transfer in Poland: An Investment of U.S. Government, U.S. Corporate, and Polish Government Strategies

    National Research Council Canada - National Science Library

    Hays, Susan

    1998-01-01

    This case study examines how U.S. Government (USG) policy, U.S. corporate policy, and Polish government policy affect the strategy of technology transfer of military and/or dual-use technologies in Poland...

  15. Technology transfer to US oil producers: A policy tool to sustain or increase oil production

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, W. T.

    1990-03-01

    The Department of Energy provided the Interstate Oil Compact Commission with a grant to identify and evaluate existing technology transfer channels to operators, to devise and test improvements or new technology transfer channels and to make recommendations as to how the Department of Energy's oil and gas technology transfer methods could be improved. The IOCC conducted this effort in a series of four tasks: a structural analysis to characterize the oil producing industry according to operator production size class, geographic location, awareness and use of reservoir management technologies, and strategies for adding reserves and replacing produced reserves; targeted interviews conducted with some 300 oil and gas industry participants to identify current technology transfer channels and their relative usefulness for various classes of industry participants; a design and testing phase, in which the IOCC critiqued the current technology transfer structure, based on results of the structural analysis and targeted interviews, and identified several strategies for improvement; and an evaluation of existing state outreach programs to determine whether they might provide a model for development of additional outreach programs in other producing states.

  16. Essays on Energy Technology Innovation Policy

    Science.gov (United States)

    Chan, Gabriel Angelo Sherak

    Motivated by global climate change, enhancing innovation systems for energy technologies is seen as one of the largest public policy challenges of the near future. The role of policy in enhancing energy innovation systems takes several forms: public provision of research and develop funding, facilitating the private sector's capability to develop new technologies, and creating incentives for private actors to adopt innovative and appropriate technologies. This dissertation explores research questions that span this range of policies to develop insights in how energy technology innovation policy can be reformed in the face of climate change. The first chapter of this dissertation explores how decision making to allocate public research and development funding could be improved through the integration of expert technology forecasts. I present a framework to evaluate and optimize the U.S. Department of Energy's research and development portfolio of applied energy projects, accounting for spillovers from technical complimentary and competition for the same market share. This project integrates one of the largest and most comprehensive sets of expert elicitations on energy technologies (Anadon et al., 2014b) in a benefit evaluation framework. This work entailed developing a new method for probability distribution sampling that accommodates the information that can be provided by expert elicitations. The results of this project show that public research and development in energy storage and solar photovoltaic technologies has the greatest marginal returns to economic surplus, but the methodology developed in this chapter is broadly applicable to other public and private R&D-sponsoring organizations. The second chapter of this dissertation explores how policies to transfer technologies from federally funded research laboratories to commercialization partners, largely private firms, create knowledge spillovers that lead to further innovation. In this chapter, I study the U

  17. Doctor-Patient Knowledge Transfer: Innovative Technologies and Policy Implications

    OpenAIRE

    Sára, Zoltán; Csedő, Zoltán; Tóth, Tamás; Fejes, József; Pörzse, Gábor

    2013-01-01

    The aim of this study was to empirically investigate the barriers in doctor-patient communication and knowledge transfer and the role of innovative technologies in overcoming these barriers. We applied qualitative research methods. Our results show that patients extensively use information sources, primarily the Internet before the visits. Patients regularly apply a self-diagnosis regarding their diseases. This implies several risks as many of them are not able to properly inte...

  18. Industrial technology transfer

    International Nuclear Information System (INIS)

    Bulger, W.

    1982-06-01

    The transfer of industrial technology is an essential part of the CANDU export marketing program. Potential customers require the opportunity to become self-sufficient in the supply of nuclear plant and equipment in the long term and they require local participation to the maximum extent possible. The Organization of CANDU Industries is working closely with Atomic Energy of Canada Ltd. in developing comprehensive programs for the transfer of manufacturing technology. The objectives of this program are: 1) to make available to the purchasing country all nuclear component manufacturing technology that exists in Canada; and 2) to assure that the transfer of technology takes place in an efficient and effective way. Technology transfer agreements may be in the form of joint ventures or license agreements, depending upon the requirements of the recipient

  19. CERN’s policy in the field of knowledge and technology transfer goes global

    CERN Multimedia

    CERN Bulletin

    On 2 November, the Knowledge & Technology Transfer (KTT) Group presented to the Directorate three proposals that aim to enhance KTT activities. One important aspect of the proposals is the direct involvement of all members of CERN, who are strongly encouraged to communicate any ideas for additional applications of their work. KTT is a high-priority activity area because of its potential to demonstrate the role of CERN as a source of innovation, delivering tangible benefits to society. In particular, through its know-how and its leadership, CERN is today generating innovations applicable in domains such as medical sciences, energy and the environment, as well as many others. “The measures endorsed by the Directorate on 2 November include a comprehensive policy for managing the intellectual property related to CERN technologies”, explains Claudio Parrinello, head of the KTT Group in the DG Department. “This includes a proposal to redistribute part of the income generated by ...

  20. Sustainable technology transfer

    NARCIS (Netherlands)

    Punter, H.T.; Krikhaar, R.L.; Bril, R.J.

    2006-01-01

    In this position paper we address the issue of transferring a technology from research into an industrial organization by presenting a refined process for technology transfer. Based on over two decades of industrial experience, we identified the need for a dedicated technology engineering phase for

  1. The role of technology transfer for the development of a local wind component industry in Chile

    International Nuclear Information System (INIS)

    Pueyo, Ana; Garcia, Rodrigo; Mendiluce, Maria; Morales, Dario

    2011-01-01

    This paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies. - Highlights: → We analyse the case of a Chilean company starting up wind blades production. → Technology transfer is required as the relevant knowledge is not available in the country. → We examine the factors that enable technology transfer to draw policy conclusions. → We highlight the particularities of medium sized developing countries.

  2. The role of technology transfer for the development of a local wind component industry in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, Ana, E-mail: anapueyo@hotmail.com [Technical University of Madrid (UPM)-Escuela Tecnica Superior de Ingenieros Industriales (ETSII), Madrid (Spain); Garcia, Rodrigo [Centro de Energias Renovables (CER), Santiago de Chile (Chile); Mendiluce, Maria [World Business Council for Sustainable Development (WBCSD), Geneva (Switzerland); Morales, Dario [InnovaChile-CORFO Chile, Santiago de Chile (Chile)

    2011-07-15

    This paper contributes to the debate about climate change technology transfer by analysing barriers and enablers for a Chilean company starting up the production of wind blades. Literature on the role of technology transfer for the development and deployment of local renewable energy technologies in developing countries often refers to success stories in Brazil, India and China. Instead, this case study highlights the different challenges faced by smaller emerging economies. The paper argues that successful technology transfer in a smaller economy like Chile requires: a minimum internal demand and access to regional markets to attract foreign knowledge providers; a focus in the types of technologies where the recipient country or company have a competitive advantage; and active learning processes by the recipient company. Lessons are drawn for improving the design and implementation of technology-push and market-pull policies in small or medium emerging economies. - Highlights: > We analyse the case of a Chilean company starting up wind blades production. > Technology transfer is required as the relevant knowledge is not available in the country. > We examine the factors that enable technology transfer to draw policy conclusions. > We highlight the particularities of medium sized developing countries.

  3. Innovation and technology transfer through global value chains: Evidence from China's PV industry

    International Nuclear Information System (INIS)

    Zhang, Fang; Gallagher, Kelly Sims

    2016-01-01

    China's success as a rapid innovation follower in the infant Photovoltaic (PV) industry surprised many observers. This paper explores how China inserted itself into global clean energy innovation systems by examining the case of the solar PV industry. The paper decomposes the global PV industrial value chain, and determines the main factors shaping PV technology transfer and diffusion. Chinese firms first entered PV module manufacturing through technology acquisition, and then gradually built their global competitiveness by utilizing a vertical integration strategy within segments of the industry as well as the broader PV value chain. The main drivers for PV technology transfer from the global innovation system to China are global market formation policy, international mobilization of talent, the flexibility of manufacturing in China, and belated policy incentives from China's government. The development trajectory of the PV industry in China indicates that innovation in cleaner energy technologies can occur through both global and national innovation processes, and knowledge exchange along the global PV value chain. - Highlights: •The value chain analytical approach is synergized with the theories of technology transfer and innovation systems. •A detailed review of how China integrated itself into the global solar PV innovation system is provided. •Four main factors shape PV technology transfer to China across various value chain segments. •Innovation in cleaner energy technologies is a combination of global and national innovation processes.

  4. Technology Transfer

    Science.gov (United States)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  5. Enabling frameworks for low-carbon technology transfer to small emerging economies: Analysis of ten case studies in Chile

    International Nuclear Information System (INIS)

    Pueyo, Ana

    2013-01-01

    Technology transfer is crucial to reduce the carbon intensity of developing countries. Enabling frameworks need to be in place to allow foreign technologies to flow, to be absorbed and to bring about technological change in the recipient country. This paper contributes to identifying these enabling factors by analysing 10 case studies of low-carbon technology transfer processes based in Chile. Our findings show the importance of strong economic and institutional fundamentals, a sound knowledge base, a sizable and stable demand and a functioning local industry. Policy recommendations are derived to improve the penetration of foreign low-carbon technologies in developing countries, focusing on the particularities of small and medium emerging economies. - Highlights: ► We analyse 10 case studies of low carbon technology transfer to Chile. ► We identify enablers of technology transfer to developing countries. ► We provide policy recommendations focusing on small and medium economies.

  6. Technology transfer for adaptation

    Science.gov (United States)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  7. Accelerating the transfer and diffusion of energy saving technologies steel sector experience-Lessons learned

    International Nuclear Information System (INIS)

    Okazaki, Teruo; Yamaguchi, Mitsutsune

    2011-01-01

    It is imperative to tackle the issue globally mobilizing all available policies and measures. One of the important ones among them is technology transfer and diffusion. By utilizing international co-operation, industry can promote such measures in two ways: through government policy and through industry's own voluntary initiative. Needless to say, various government policies and measures play essential role. By the same token, industry initiative can complement them. There is much literature documenting the former. On the contrary there are few on the latter. This paper sheds light on the latter. The purpose of this paper is to explore the effectiveness of global voluntary sectoral approach for technology diffusion and transfer based on steel sector experience. The goal is to contribute toward building a worldwide low-carbon society by manufacturing goods with less energy through international cooperation of each sector. The authors believe that the voluntary sectoral approach is an effective method with political and practical feasibilities, and hope to see the continued growth of more initiatives based on this approach. - Highlights: → There exist huge reduction potentials in steel industries globally. → Technology transfer and diffusion are keys to achieve reductions. → Main barriers are economic, technological and policy-related. → Case studies in overcoming barriers are discussed. → In steel industry, a voluntary sectoral approach has shown to be effective.

  8. Managerial technology transfer

    CERN Document Server

    2012-01-01

    Organisations need to think globally, but act locally - with a full appreciation of the diversity of local cultures. Major global companies must recognise that policies need to be managed with the broad context of business strategy and integrated into the work culture with the support of all elements of human resources management. Most currently, companies are accommodating national cultural differences while preserving work culture principals that encourage people to effectively execute the company's strategic objectives. Even to the casual observer, it is apparent that culture- a society's programming of the mind- has both a pervasive and changing influence on each national business environment. Global managers must recognise the influence of culture and be prepared to either respond to it or change it. This book examines current research in the study of managerial technology transfer.

  9. Integrating Science and Technology into a Policy of Lifelong Education in Nigeria.

    Science.gov (United States)

    Urevbu, Andrew O.

    1985-01-01

    Examines Nigeria's National Policy on Education guidelines, specifically focusing on science and technological education. Discusses the development of vocational and technical schools, transfer of technology, and the role of research institutes. Recommendations are made concerning academic survival skills, respect for manual skills, improved…

  10. intensifying and reorienting transfer of low carbon technologies for climate change prevention

    International Nuclear Information System (INIS)

    Pisani-Ferry, Jean; Monange, Herve; Gorges, Delphine; Senne, Valerie; Roulle, Jean-Michel

    2013-10-01

    The transfer of 'low carbon' technologies is crucial in order to moderate greenhouse gas (GHG) emissions by developing countries, which are set to rise significantly. Their implementation will determine the success of a global agreement on climate change in 2015, and this is the task of the Technology Mechanism, created in 2010. This policy brief sets out the principal results of a study commissioned from the Mines ParisTech Industrial Economics Centre (CERNA). The study shows that, unlike China, Mexico, South Africa and, to a lesser extent, Brazil, India is currently left out of international flows of low carbon technologies transfer - it is therefore a top priority, as is the rest of developing Asia, Africa and Eastern Europe. To intensify these transfers, ambitious greenhouse gas emissions reduction policies need to be implemented and absorptive capacities need to be created in countries that receive such technologies. In emerging countries, which possess a genuine capacity for innovation, and which are involved in international trade, the strengthening of intellectual property rights and the lowering of barriers to trade and investment are to be recommended. However, in the least developed countries, emphasis must be placed on technology absorptive capacities and in particular on the development of a qualified labour force

  11. Evaluating disparities in the U.S. technology transfer ecosystem to improve bench to business translation.

    Science.gov (United States)

    Weis, James; Bashyam, Ashvin; Ekchian, Gregory J; Paisner, Kathryn; Vanderford, Nathan L

    2018-01-01

    Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S.) institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of technology transfer

  12. Technology transfer of Cornell university

    International Nuclear Information System (INIS)

    Yoo, Wan Sik

    2010-01-01

    This book introduces technology transfer of Cornell university which deals with introduction of Cornell university, composition of organization and practice of technology transfer : a research contract, research perform, invention report, evaluation and succession of invention, a patent application and management, marketing, negotiation and writing contract, management of contract, compensation, result of technology transfer, cases of success on technical commercialization and daily life of technology transfer center.

  13. The development of nuclear technology transfer

    International Nuclear Information System (INIS)

    Nack-chung Sung

    1987-01-01

    Korea, as a recipient of nuclear technology transfer, has good experience of progressively building up its indigeneous capability of nuclear technology through three stages of technology transfer, namely: technology transfer under the turnkey approach, component approach, and integrated technology transfer with a local prime contractor. Here, each stage of experience of technology transfer, with Korea as a recipient, is presented. (author)

  14. Building technology transfer within research universities an entrepreneurial approach

    CERN Document Server

    O'Shea, Rory P

    2014-01-01

    For the past number of years, academic entrepreneurship has become one of the most widely studied topics in the entrepreneurship literature. Yet, despite all the research that has been conducted to date, there has not been a systematic attempt to analyze critically the factors which lie behind successful business spin-offs from university research. In this book, a group of academic thought-leaders in the field of technology transfer examine a number of areas critical to the promotion of start-ups on campus. Through a series of case studies, they examine current policies, structures, program initiatives and practices of fourteen international universities to develop a theory of successful academic entrepreneurship, with the aim of helping other universities to enhance the quality of their university transfer programs. This book is a valuable resource for researchers and graduate students working on innovation, entrepreneurship and technology transfer, as well as senior managers and policymakers.

  15. Technology transfer from nuclear research

    International Nuclear Information System (INIS)

    1989-01-01

    A number of processes, components and instruments developed at the Bhabha Atomic Research Centre, (BARC), Bombay, find application in industry and are available for transfer to private or public sector undertakings for commercial exploitation. The Technology Transfer Group (TTG) constituted in January 1980 identifies such processes and prototypes which can be made available for transfer. This catalogue contains brief descriptions of such technologies and they are arranged under three groups, namely, Group A containing descriptions of technologies already transferred, Group B containing descriptions of technologies ready for transfer and Group C containing descriptions of technology transfer proposals being processed. The position in the above-mentioned groups is as on 1 March 1989. The BARC has also set up a Technology Corner where laboratory models and prototypes of instruments, equipment and components are displayed. These are described in the second part of the catalogue. (M.G.B.)

  16. Mission & Role | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The NCI TTC serves as the focal point for implementing the Federal Technology Transfer Act to utilize patents as incentive for commercial development of technologies and to establish research collaborations and licensing among academia, federal laboratories, non-profit organizations, and industry. The TTC supports technology development activities for the National Cancer Institute and nine other NIH Institutes and Centers. TTC staff negotiate co-development agreements and licenses with universities, non-profit organizations, and pharmaceutical and biotechnology companies to ensure compliance with Federal statutes, regulations and the policies of the National Institutes of Health. TTC also reviews employee invention reports and makes recommendations concerning filing of domestic and foreign patent applications. | [google6f4cd5334ac394ab.html

  17. NASA Technology Transfer System

    Science.gov (United States)

    Tran, Peter B.; Okimura, Takeshi

    2017-01-01

    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  18. Technology transfer

    International Nuclear Information System (INIS)

    1998-01-01

    On the base of technological opportunities and of the environmental target of the various sectors of energy system this paper intend to conjugate the opportunity/objective with economic and social development through technology transfer and information dissemination [it

  19. Can CDM bring technology transfer to China?-An empirical study of technology transfer in China's CDM projects

    International Nuclear Information System (INIS)

    Wang Bo

    2010-01-01

    China has undertaken the greatest number of projects and reported the largest emission reductions on the global clean development mechanism (CDM) market. As technology transfer (TT) was designed to play a key role for Annex II countries in achieving greenhouse gas emission reductions, this study examines various factors that have affected CDM and TT in China. The proportion of total income derived from the certified emissions reductions (CER) plays a key role in the project owners' decision to adopt foreign technology. Incompatibility of CDM procedures with Chinese domestic procedures, technology diffusion (TD) effects, Chinese government policy and the role of carbon traders and CDM project consultants all contribute to the different degrees and forms of TT. International carbon traders and CDM consultants could play a larger role in TT in China's CDM projects as investors and brokers in the future.

  20. Technology transfer by multinational firms: the resource cost of transferring technological know-how

    Energy Technology Data Exchange (ETDEWEB)

    Teece, D J

    1977-06-01

    The essence of modern economic growth is the increase in the stock of useful knowledge and the extension of its application. Since the origins of technical and social innovations have never been confined to the borders of any one nation, the economic growth of all countries depends to some degree on the successful application of a transnational stock of knowledge. Nevertheless, economists have been remarkably slow in addressing themselves to the economics of international technology transfer. This paper addresses itself to this need. The starting-point is Arrow's suggestion (Am. Econ. Review, 52: 29-35 (May 1969)) that the cost of communication, or information transfer, is a fundamental factor influencing the world-wide diffusion of technology. The purpose of the paper is to examine the level and determinants of the costs involved in transferring technology. The value of the resources that have to be utilized to accomplish the successful transfer of a given manufacturing technology is used as a measure of the cost of transfer. The resource cost concept is therefore designed to reflect the ease or difficulty of transferring technological know-how from manufacturing plants in one country to manufacturing plants in another. 32 references.

  1. Technology transfer in CANDU marketing

    International Nuclear Information System (INIS)

    Pon, G.A.

    1982-06-01

    The author discusses how the CANDU system lends itself to technology transfer, the scope of CANDU technology transfer, and the benefits and problems associated with technology transfer. The establishment of joint ventures between supplier and client nations offers benefits to both parties. Canada can offer varying technology transfer packages, each tailored to a client nation's needs and capabilities. Such a package could include all the hardware and software necessary to develop a self-sufficient nuclear infrastructure in the client nation

  2. Technology Transfer and Technology Transfer Intermediaries

    Science.gov (United States)

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  3. Evaluating Technology Transfer and Diffusion.

    Science.gov (United States)

    Bozeman, Barry; And Others

    1988-01-01

    Four articles discuss the evaluation of technology transfer and diffusion: (1) "Technology Transfer at the U.S. National Laboratories: A Framework for Evaluation"; (2) "Application of Social Psychological and Evaluation Research: Lessons from Energy Information Programs"; (3) "Technology and Knowledge Transfer in Energy R and D Laboratories: An…

  4. Technology transfer by CDM projects: A comparison of Brazil, China, India and Mexico

    International Nuclear Information System (INIS)

    Dechezlepretre, Antoine; Glachant, Matthieu; Meniere, Yann

    2009-01-01

    In a companion paper [Dechezlepretre, A., Glachant, M., Meniere, Y., 2008. The Clean Development Mechanism and the international diffusion of technologies: An empirical study, Energy Policy 36, 1273-1283], we gave a general description of technology transfers by Clean Development Mechanism (CDM) projects and we analyzed their drivers. In this paper, we use the same data and similar econometric models to explain inter-country differences. We focus on 4 countries gathering about 75% of the CDM projects: Brazil, China, India and Mexico. Sixty eight percent of Mexican projects include an international transfer of technology. The rates are, respectively, 12%, 40% and 59% for India, Brazil and China. Our results show that transfers to Mexico and Brazil are mainly related to the strong involvement of foreign partners and good technological capabilities. Besides a relative advantage with respect to these factors, the higher rate of international transfers in Mexico seems to be due to a sector-composition effect. The involvement of foreign partners is less frequent in India and China, where investment opportunities generated by fast growing economies seem to play a more important role in facilitating international technology transfers through the CDM. International transfers are also related to strong technology capabilities in China. In contrast, the lower rate of international transfer (12%) in India may be due to a better capability to diffuse domestic technologies

  5. Technology transfer quality assurance

    International Nuclear Information System (INIS)

    Hood, F.C.

    1991-03-01

    The results of research conducted at Pacific Northwest Laboratory (PNL) for the DOE are regularly transferred from the laboratory to the private sector. The principal focus of PNL is on environmental research and waste management technology; other programs of emphasis include molecular science research. The technology transfer process is predicated on Quality to achieve its objectives effectively. Total quality management (TQM) concepts and principles readily apply to the development and translation of new scientific concepts into commercial products. The concept of technology transfer epitomizes the TQM tenet of continuous improvement: always striving for a better way to do things and always satisfying the customer. A successful technology transfer process adds value to society by providing new or enhanced processes, products, and services to government and commercial customers, with a guarantee of product pedigree and process validity. 2 refs

  6. Transfer of biofuel technologies in private and commercial sectors in western India

    International Nuclear Information System (INIS)

    Saxena, S.C.; Vasudevan, P.

    1991-01-01

    The energy crisis all over the world has stimulated a lot of interest in renewable energies and indigenously produced fuels. Biofuels falls potentially into both these categories, hence biofuel technologies have attracted both scientists and practicing engineers in R ampersand D and transfer. Most of the biofuel technologies in India do not form part of the market economy, owing to unfavorable economic returns, but need large scale transfer due to their importance in the overall scenario of meeting growing energy requirements, calling for innovative approaches. In this paper an attempt has been made to analyze the gaps in transfer of biofuel technologies and describe an alternate model evolved by the authors. The experiences in the form of case studies are given, with a view to throw light on the A-B-C model's efficacy in terms of linkages and employment generation potential. Select reference to attempts made by other institutions in technology transfer to commercial sectors has also been made to focus attention on some key issues having policy implications

  7. Identifying the key processes for technology transfer through spin-offs in academic institutions : a case study in Flanders and The Netherlands

    OpenAIRE

    Meysman, Jasmine; Cleyn, De, Sven H.; Braet, Johan

    2017-01-01

    Abstract: The position and role of technology transfer offices within universities and academic institutions have changed under influence of todays society, with diminishing government subsidies and technology transfer related policies having their impact on the technology transfer processes. In order to find out what the effect of this impact is, we performed a multiple-case study on six technology transfer offices in Flanders and The Netherlands. As a result of the study, we identified two ...

  8. University Technology Transfer

    Directory of Open Access Journals (Sweden)

    Mike Cox

    2004-09-01

    Full Text Available This article describes the experiences and general observations of the author at Heriot-Watt University and concerns the transfer of university technology for the purposes of commercialisation. Full commercial exploitation of a university invention generally requires transferring that technology into the industrial arena, usually either by formation of a new company or licensing into an existing company. Commercialisation activities need to be carried out in unison with the prime activities of the university of research and teaching. Responsibility for commercialising university inventions generally rests with a specific group within the university, typically referred to as the technology transfer group. Each technology transfer should be considered individually and appropriate arrangements made for that particular invention. In general, this transfer process involves four stages: identification, evaluation, protection and exploitation. Considerations under these general headings are outlined from a university viewpoint. A phased approach is generally preferred where possible for the evaluation, protection and exploitation of an invention to balance risk with potential reward. Evaluation of the potential opportunity for a university invention involves essentially the same considerations as for an industrial invention. However, there are a range of commercial exploitation routes and potential deals so that only general guidelines can be given. Naturally, the final deal achieved is that which can be negotiated. The potential rewards for the university and inventor are both financial (via licensing income and equity realisation and non-financial.

  9. Technology Transfer In Rural Industries of Thailand: The Case of Dessert And Palm Tree Industries

    Directory of Open Access Journals (Sweden)

    Apisek Pansuwan

    2013-07-01

    Full Text Available In last decade, the small industrial sector has increasingly received attention from Thai policy makers. This study investigates the relationship between small industries and community in rural area in term of technology transfer. In the research area, knowledge and experience gathered from workplace as an employee and family businesses are the core resources to establish and run busineSses. Technically, technology transfer is divided into 2 characteristics; intra-enterprise and inter-enterprise. Intra-enterprise technology transfer comes from employers to employees, emphasizing production development. Beside, technology transfer of inter-enterprise has two directions. Firstly, direction points from the entrepreneur to material suppliers aiming to secure raw material quality. Secondly direction points from consumers to the entrepreneur aiming to put a great emphasis on product development, quality control and management.

  10. Technology Transfer Policy Applied to the U.S. Army Military History Institute Collection

    National Research Council Canada - National Science Library

    Bell, William

    1998-01-01

    .... This cooperative process is called technology transfer. The main point of the laws is to allow commercial vendors and the organizations of the federal government to enter into cooperative research and development agreements (CRADAs...

  11. Search Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  12. Available Technologies | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  13. Development of National Technology Audit Policy

    Directory of Open Access Journals (Sweden)

    Subiyanto Subiyanto

    2017-07-01

    Full Text Available The Laws have mandated implementation of technology audit, nevertheless such implementation needs an additional policy that is more technical. The concept of national audit technology policy shall make technology audit as a tool to ensure the benefit of technology application for society and technology advance for nation independency. This article discusses on technology audit policy concept especially infrastructure requirement, with emphasis on regulation, implementation tools, and related institution. The development of technology audit policy for national interest requires provision of mandatory audit implementation, accompanied by tools for developing technology auditor’s competence and technology audit institutional’s mechanism. To guide technology auditor’s competence, concept of national audit technology policy shall classify object of technology audit into product technology, production technology, and management of technology, accompanied by related parameters of technology performance evaluation.

  14. Technological entrepreneurship : technology transfer from academia to new firms

    NARCIS (Netherlands)

    Prodan, I.

    2007-01-01

    This doctoral dissertation aims to do the following: 1. Develop the conceptual model of technological entrepreneurship 2. Position technology transfer from academia to new firms in a newly developed conceptual model of technological entrepreneurship 3. Develop the model of technology transfer from

  15. Technological transfer. 1. Appropriateness for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Berrie, T W

    1978-12-01

    Capital-intensive projects dominate the technology transferred to developing countries in spite of the need to serve a pool of unskilled labor and small capital reserves. Recent doubts about the appropriateness of large industrialization projects have questioned the social and economic benefits of this approach and led to an emphasis on innovative planning for the benefit of the urban and rural poor. This shift assumed that direct attacks on the roots of poverty will be more effective than the trickle-down approach, but development planners now see that technologies can be planned that are not limited to single groups. Official policies, often working against the adoption of appropriate technologies, must consider local needs and local resources. Farm equipment, for example, must minimize the need for skilled labor and maintenance. Planners for appropriate urban technology should emphasize local capability, but should also risk occasional failure in the effort to improve the efficiency of labor.

  16. Technology Transfer Report

    Science.gov (United States)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  17. Low-carbon innovation and technology transfer in latecomer countries

    DEFF Research Database (Denmark)

    Lema, Adrian; Lema, Rasmus

    2016-01-01

    This paper examines the organizational arrangements for technology supply in solar photovoltaic projects in the Clean Development Mechanism (CDM). It shows that while lower middle-income countries typically import solar PV equipment into CDM projects, China, India and Thailand have begun to use new...... organizational arrangements for technology transfer which reflect the overall industry maturity in the solar PV sectors in these countries. This has great potential for long-term climate change mitigation efforts. However, the initiation of these new organizational arrangements often preceded the supply...... of technology into CDM projects. This raises important questions about the role of CDM in spearheading the development of technological capabilities required for sustainable development. The paper uses these findings to add to the literature about technology in CDM and to the wider policy debates over...

  18. Software engineering technology transfer: Understanding the process

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  19. Technology transfer - north/south

    Energy Technology Data Exchange (ETDEWEB)

    Ercan, Y [Gazi University, Ankara (Turkey). Faculty of Engineering and Architecture

    1991-01-01

    Technology transfer is needed to the developing countries in the fields of fuel, combustion equipment, and operations to maximise combustion efficiency and minimise the harmful emissions. Channels of technology transfer available include: direct foreign investment, joint ventures, patent and licence purchases, industrial co-operation and technical aid, importation of technical goods, and turn-key projects. Dependency on totally imported technology and equipment both in boilers and flue gas treatment systems, however, results in high investment costs and may limit extensive use of power plants based on coal. If technologies to improve the efficiencies and emission behaviour of coal utilizing facilities are transferred to developing countries, a business scheme mutually beneficial both to the developing countries and the coal producing countries can be reached, which will boost the industrialization of the developing countries. 11 refs., 3 figs., 1 tab.

  20. Innovative technology transfer of nondestructive evaluation research

    Science.gov (United States)

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  1. Technology transfer: The CANDU approach

    International Nuclear Information System (INIS)

    Hart, R.S.

    1998-01-01

    The many and diverse technologies necessary for the design, construction licensing and operation of a nuclear power plant can be efficiently assimilated by a recipient country through an effective technology transfer program supported by the firm long term commitment of both the recipient country organizations and the supplier. AECL's experience with nuclear related technology transfer spans four decades and includes the construction and operation of CANDU plants in five countries and four continents. A sixth country will be added to this list with the start of construction of two CANDU 6 plants in China in early 1997. This background provides the basis for addressing the key factors in the successful transfer of nuclear technology, providing insights into the lessons learned and introducing a framework for success. This paper provides an overview of AECL experience relative to the important factors influencing technology transfer, and reviews specific country experiences. (author)

  2. A dynamic approach to technology transfer

    International Nuclear Information System (INIS)

    Shave, D.F.; Kent, G.F.; Giambusso, A.; Jacobs, S.B.

    1987-01-01

    Stone and Webster Engineering Corporation has developed a systematic program for achieving efficient, effective technology transfer. This program is based on transferring both know-why and know-how. The transfer of know-why and know-how is achieved most effectively by working in partnership with the recipient of the technology; by employing five primary transfer mechanisms, according to the type of learning required; by treating the technology transfer as a designed process rather than an isolated event; and by using a project management approach to control and direct the process. This paper describes the philosophy, process, and training mechanisms that have worked for Stone and Webster, as well as the project management approach needed for the most effective transfer of technology. (author)

  3. Emerging environmental technologies and environmental technology policy

    Science.gov (United States)

    Clarke, Leon Edward

    This dissertation explores the role and design of environmental technology policy when environmental innovation is embodied in emerging environmental technologies such as photovoltaic cells or fuel cells. The dissertation consists of three individual studies, all of which use a simplified, general model industry between an emerging environmental technology and an entrenched, more-polluting technology. It clarifies the situations in which environmental technology policy can achieve high welfare and those in which it cannot; and it separates the possible situations an emerging environmental technology might face into four scenarios, each with its own technology policy recommendations. The second study attempts to clarify which of two factors is having a larger limiting effect on private investment in photovoltaics: the failure to internalize the environmental costs of fossil fuel electricity generation or a broad set of innovation market failures that apply to innovation irrespective of environmental concerns. The study indicates that innovation market failures are probably having a significantly larger impact than incomplete internalization. The third study explores the effectiveness of adoption subsidies at encouraging private-sector innovation. The conclusion is that adoption subsidies probably have only a limited effect on long-term, private-sector research. Two important general conclusions of the dissertation are (1) that optimal technology policy should begin with technology-push measures and end with demand-pull measures; and (2) that the technological response to internalization instruments, such as emissions taxes, may be highly nonlinear.

  4. Federal Technology Transfer Act Success Stories

    Science.gov (United States)

    Successful Federal Technology Transfer Act (FTTA) partnerships demonstrate the many advantages of technology transfer and collaboration. EPA and partner organizations create valuable and applicable technologies for the marketplace.

  5. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  6. Development of National Technology Audit Policy

    OpenAIRE

    Subiyanto Subiyanto

    2017-01-01

    The Laws have mandated implementation of technology audit, nevertheless such implementation needs an additional policy that is more technical. The concept of national audit technology policy shall make technology audit as a tool to ensure the benefit of technology application for society and technology advance for nation independency. This article discusses on technology audit policy concept especially infrastructure requirement, with emphasis on regulation, implementation tools, and related ...

  7. Technology transfer: federal legislation that helps businesses and universities

    Science.gov (United States)

    Oaks, Bill G.

    1992-05-01

    In 1980, Congress enacted the Stevenson-Wydler Technology Innovation Act to encourage federal laboratories to `spin off' their technology to industry, universities, and state and local governments. The law reflected Congressional concern for the economic well-being of the nation and the need for the United States to maintain its technological superiority. Almost half the nation's research is conducted in federal laboratories. Other legislation, the Small Business Innovation Development Act of 1982 and the National Cooperative Research Act of 1984, was followed by the Technology Transfer Act of 1986 that strengthened and consolidated policy concerning the technology transfer responsibilities of the federal labs. The law allows the labs to directly license their patents and permits the issuance of exclusive licenses. It allows the labs to enter into cooperative research and development agreements with industry, universities, and state and local governments. It institutionalized the Federal Laboratory consortium which, to that point in time, had been a formal but largely unrecognized body. Under the provisions of the law, the United States Air Force Rome Laboratory located in Rome, New York, as the Air Force lead laboratory in photonics research entered into an agreement with the Governor of the State of New York to collaborate in photonics research and development. Subsequent to that agreement, the state established the not-for-profit New York State Photonics Development Corporation in Rome to facilitate business access to Rome Laboratory's photonics research facilities and technologies. Rome Laboratory's photonics research and development program is described in this paper. The Technology Transfer Act of 1986 is summarized, and the roles and missions of the New York State Photonics Development Corporation is explained.

  8. ICAT and the NASA technology transfer process

    Science.gov (United States)

    Rifkin, Noah; Tencate, Hans; Watkins, Alison

    1993-01-01

    This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.

  9. What Is Technology Transfer? | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  10. Technology transfer and localization: A Framatome perspective

    International Nuclear Information System (INIS)

    Preneuf, R. de

    2000-01-01

    Localization and technology transfer have been important factors influencing the decision-making process in countries embarking on a nuclear power programme. It seems natural that relationships between donors and recipients of technology, beginning with sub-contracting, should evolve towards technology transfers and cooperation on an equal footing. France was both a receiver and a donor of technology transfer in the area of nuclear power. This paper describes the French experience in technology transfer and the lesson learned therefrom. (author)

  11. Environmental Policy and Technological Change

    International Nuclear Information System (INIS)

    Jaffe, Adam B.; Newell, Richard G.; Stavins, Robert N.

    2002-01-01

    The relationship between technological change and environmental policy has received increasing attention from scholars and policy makers alike over the past ten years. This is partly because the environmental impacts of social activity are significantly affected by technological change, and partly because environmental policy interventions themselves create new constraints and incentives that affect the process of technological developments. Our central purpose in this article is to provide environmental economists with a useful guide to research on technological change and the analytical tools that can be used to explore further the interaction between technology and the environment. In Part 1 of the article, we provide an overview of analytical frameworks for investigating the economics of technological change, highlighting key issues for the researcher. In Part 2, we turn our attention to theoretical analysis of the effects of environmental policy on technological change, and in Part 3, we focus on issues related to the empirical analysis of technology innovation and diffusion. Finally, we conclude in Part 4 with some additional suggestions for research

  12. Technology transfer and development: a preliminary look at Chinese technology in Guyana

    Energy Technology Data Exchange (ETDEWEB)

    Long, F

    1982-05-01

    Technology is regarded as a vital ingredient for development. Since developing countries can hardly fill their technological requirements indigenously, such countries tend to acquire the bulk of technology applied to their production systems from abroad. However, the transfer of technology tends to be associated with a series of problems: foreign exchange, inappropriateness, the generation of limited inter-sectorial linkages, limited use of raw materials, and other inputs associated with technology dependency. The study points to the fact that technology transfer need not necessarily be associated with the disadvantages identified in the literature. The study which essentially looks at the use of Chinese technology in clay-brick manufacturing in Guyana, shows that the country was able to reap several development benefits from the technology-transfer arrangement. At the same time, certain problems arising from the technology-transfer package such as the transfer of critical skills in key areas of production, and maintenance and servicing, are discussed. But these, the author argues, are not a function of restrictive conditions found in technology-transfer clauses, but rather of improper technology-transfer management. 2 tables.

  13. R&D Funding Sources and University Technology Transfer: What Is Stimulating Universities to Be More Entrepreneurial?

    Science.gov (United States)

    Powers, Joshua B.

    2004-01-01

    In recent years, universities have become increasingly entrepreneurial as evidenced by their rapid escalation into technology transfer, the process by which university-developed technologies are commercialized. Stimulated in part by a favorable policy environment for patenting and licensing as well as increased competition for limited resources,…

  14. Sustainability of University Technology Transfer: Mediating Effect of Inventor’s Technology Service

    Directory of Open Access Journals (Sweden)

    Fang Li

    2018-06-01

    Full Text Available Based on the perspective of knowledge transfer and the technology acceptance model (TAM, this paper constructs a university technology transfer sustainable development model that considers the inventor’s technology service from the perspective of the long-term cooperation of enterprise, and analyzes the mediating effect of the inventor’s technology service on university technology transfer sustainability. By using 270 questionnaires as survey data, it is found that the availability of an inventor’s technology service has a significant positive impact on the attitude tendency and practice tendency of enterprise long-term technological cooperation; enterprise technology absorption capacity and trust between a university and an enterprise also have significant influence on an inventor’s technical service availability. Therefore, the inventor’s technology service acts as a mediator in the relationship between university technology transfer sustainability and influence factors. Universities ought to establish the technology transfer model, which focuses on the inventor’s tacit knowledge transfer service, and promotes the sustainable development of the university.

  15. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  16. World energy, technology and climate policy outlook 2030 - WETO

    International Nuclear Information System (INIS)

    2003-01-01

    WETO describes in detail scenarios for the evolution of World and European energy systems, power generation technologies and impacts of climate change policy in the main world regions or countries. It presents a coherent framework to analyse the energy, technology and environment trends and issues over the period to 2030, focusing on Europe in a world context. The document highlights three key topics. First, in a Reference scenario, i.e. if no strong specific policy initiatives and measures are taken, world CO 2 emissions are expected to double in 2030 and, with a share of 90%, fossil fuels will continue to dominate the energy system. Secondly, the great majority of the increase in oil production will come from OPEC countries and the EU will rely predominantly on natural gas imported from the CIS. Lastly, as the largest growing energy demand and CO 2 emissions originate from developing countries (mainly China and India), Europe will have to intensify its co-operation, particularly in terms of transfer of technologies. (A.L.B.)

  17. Technology and international climate policy

    International Nuclear Information System (INIS)

    Clarke, Leon; Calvin, Kate; Edmonds, James A.; Kyle, Page; Wise, Marshall

    2009-01-01

    Both the nature of international climate policy architectures and the development and diffusion of new energy technologies could dramatically influence future costs of reducing global emissions of greenhouse gases. This paper explores the implications of interactions between technology availability and performance and international policy architectures for technology choice and the social cost of limiting atmospheric CO2 concentrations to 500 ppm by the year 2095. Key issues explored in the paper include the role of bioenergy production with CO2 capture and storage (CCS), overshoot concentration pathways, and the sensitivity of mitigation costs to policy and technology.

  18. Technology and international climate policy

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Leon; Calvin, Kate; Edmonds, James A.; Kyle, Page; Wise, Marshall

    2009-05-01

    Both the nature of international climate policy architectures and the development and diffusion of new energy technologies could dramatically influence future costs of reducing global emissions of greenhouse gases. This paper explores the implications of interactions between technology availability and performance and international policy architectures for technology choice and the social cost of limiting atmospheric CO2 concentrations to 500 ppm by the year 2095. Key issues explored in the paper include the role of bioenergy production with CO2 capture and storage (CCS), overshoot concentration pathways, and the sensitivity of mitigation costs to policy and technology.

  19. Science and Technology Policy

    DEFF Research Database (Denmark)

    Baark, Erik

    1996-01-01

    This paper examines the status of science and technology in Mongolia, and discusses the policy issues which have emerged with the transition to market economy in recent years.......This paper examines the status of science and technology in Mongolia, and discusses the policy issues which have emerged with the transition to market economy in recent years....

  20. Evaluating disparities in the U.S. technology transfer ecosystem to improve bench to business translation [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    James Weis

    2018-03-01

    Full Text Available Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S. institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of

  1. Assessing technology transfer in the Clean Development Mechanism

    OpenAIRE

    Cools, Sara Lena Yri

    2007-01-01

    This paper presents an operational definition of technology transfer, to be applied in studies of technology transfer in projects under the Kyoto Protocol’s Clean Development Mechanism (CDM). Although the CDM has never been given an explicit mandate for transferring technologies, its contribution in this respect has both been hoped for and exacted. The discussions of technology transfer in CDM projects are however blurred by widely varying conceptions of what technology transfer is. Qu...

  2. Toward equality of biodiversity knowledge through technology transfer.

    Science.gov (United States)

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  3. An Analysis of Second-Tier Arms Producing Countries’ Offset Policies: Technology Transfer and Defense Industrial Base Establishment

    Science.gov (United States)

    2008-03-01

    stment, technology transfer, and countertrade , which entails barter, counter-purchase, and buyback. : those that ar ended. During the Cold War...overseas investment, technology transfer, and countertrade . Each of these areas is briefly described in the remainder of this section. 18 Co...and a foreign entity. 19 Countertrade . In addition to the types of offset defined above, various types of commercial countertrade arrangements

  4. Enabling cleanup technology transfer

    International Nuclear Information System (INIS)

    Ditmars, J. D.

    2002-01-01

    Technology transfer in the environmental restoration, or cleanup, area has been challenging. While there is little doubt that innovative technologies are needed to reduce the times, risks, and costs associated with the cleanup of federal sites, particularly those of the Departments of Energy (DOE) and Defense, the use of such technologies in actual cleanups has been relatively limited. There are, of course, many reasons why technologies do not reach the implementation phase or do not get transferred from developing entities to the user community. For example, many past cleanup contracts provided few incentives for performance that would compel a contractor to seek improvement via technology applications. While performance-based contracts are becoming more common, they alone will not drive increased technology applications. This paper focuses on some applications of cleanup methodologies and technologies that have been successful and are illustrative of a more general principle. The principle is at once obvious and not widely practiced. It is that, with few exceptions, innovative cleanup technologies are rarely implemented successfully alone but rather are implemented in the context of enabling processes and methodologies. And, since cleanup is conducted in a regulatory environment, the stage is better set for technology transfer when the context includes substantive interactions with the relevant stakeholders. Examples of this principle are drawn from Argonne National Laboratory's experiences in Adaptive Sampling and Analysis Programs (ASAPs), Precise Excavation, and the DOE Technology Connection (TechCon) Program. The lessons learned may be applicable to the continuing challenges posed by the cleanup and long-term stewardship of radioactive contaminants and unexploded ordnance (UXO) at federal sites

  5. Policy Diffusion and Policy Transfer in Comparative Welfare State Research

    DEFF Research Database (Denmark)

    Obinger, Herbert; Schmitt, Carina; Starke, Peter

    2013-01-01

    existing theoretical concepts and quantitative and qualitative methodological approaches that enable the analysis of interdependencies between countries. Moreover, we summarize the empirical findings of quantitative and qualitative studies on the diffusion and transfer of social policy, from some...

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 26: The relationship between technology policy and scientific and technical information within the US and Japanese aerospace industries

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  7. Technology transfer - the role of AEA Technology

    International Nuclear Information System (INIS)

    Hughes, A.E.; Bullough, R.; Mason, J.P.

    1989-01-01

    This paper concentrates mostly on examples of spin offs which have arisen from the more basic research carried out by the AEA. However, it should not be inferred from this that the only examples of successful technology transfer by the AEA are of a similar, often unforeseen nature. The most outstanding example of technology transfer by the AEA must surely be that achieved through the applied research which has enabled the establishment of a successful civil nuclear power programme in the UK. The natural transfer of technology here, achieved by virtue of the unique bridging position of the AEA with respect to universities and the nuclear industry, means that its success can easily be overlooked; to do so would be a mistake. However, by including spin off examples, we hope to illustrate how the AEA has also succeeded in bridging to more difficult areas where the special relationship which it shares with the nuclear industry is absent. (author)

  8. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1989-01-01

    The US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decontaminated and dismantled the world's first nuclear-fueled, commercial-size electric power plant. The SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. The objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper sets out access and availability directions for SSDP technology acquisition. Discusses are technology transfer definition; technology transfer products including topical and other project reports, professional-technical society presentations, other project liaison and media relations, visual documentation, and technology transfer data base; and retrieving SSDP information

  9. Development of nuclear technology transfer - Korea as a recipient

    International Nuclear Information System (INIS)

    Sung, N.C.

    1988-01-01

    Korea, as a recipient of nuclear technology transfer, has good experience of progressively building up its indigenous capability of nuclear technology through three stages of technology transfer, namely: technology transfer under the turn-key approach, component approach, and integrated technology transfer with a local prime contractor. Here, each stage of experience of technology transfer, with Korea as a recipient, is presented

  10. Gaps, barriers and conceptual chasms: theories of technology transfer and energy in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Shove, E. [University of Lancaster (United Kingdom). Centre for the Study of Environmental Change

    1998-12-01

    Having shown how much energy might be saved through the use of economically worthwhile measures and technologies, researchers and policy makers then find themselves trying to close the gap between current practice and recognised technical potential. The ensuing process of technology transfer is often seen as a process of overcoming 'non technical barriers' which inhibit the realisation of proven technical potential. This familiar approach depends upon a strong conceptual distinction between the social, on the one hand, and the technical, on the other. But does it make sense to talk of technical potential in the abstract? Do people really have technologies 'transferred' upon them? Drawing upon ideas from the sociology of science and technology and on recent research funded by Britain's Economic and Social Research Council, this paper unpacks conventional beliefs about the diffusion of energy efficient technologies and suggests an alternative approach which acknowledges the social structuring of technical innovation. (author)

  11. Technology transfer from accelerator laboratories (challenges and opportunities)

    International Nuclear Information System (INIS)

    Verma, V.K.; Gardner, P.L.

    1994-06-01

    It is becoming increasingly evident that technology transfer from research laboratories must be a key element of their comprehensive strategic plans. Technology transfer involves using a verified and organized knowledge and research to develop commercially viable products. Management of technology transfer is the art of organizing and motivating a team of scientists, engineers and manufacturers and dealing intelligently with uncertainties. Concurrent engineering is one of the most effective approaches to optimize the process of technology transfer. The challenges, importance, opportunities and techniques of transferring technology from accelerator laboratories are discussed. (author)

  12. Transfer of nuclear technology from Spain

    International Nuclear Information System (INIS)

    Madrid, G.

    1985-01-01

    Technology transfer from Spain is possible in several fields of nuclear technology ranging from the head end of the fuel cycle (ENUSA) to the back end (ENRESA). The advantages of such a transfer are emphasized

  13. World energy, technology and climate policy outlook 2030. WETO 2030

    International Nuclear Information System (INIS)

    2003-01-01

    Starting from a set of clear key assumptions on economic activity, population and hydrocarbon resources, WETO describes in detail scenarios for the evolution of World and European energy systems, power generation technologies and impacts of climate change policy in the main world regions or countries.It presents a coherent framework to analyse the energy, technology and environment trends and issues over the period to 2030, focusing on Europe in a world context. Three of the key results of this work are: (1) in a Reference scenario, i.e.if no strong specific policy initiatives and measures are taken, world CO2 emissions are expected to double in 2030 and, with a share of 90%, fossil fuels will continue to dominate the energy system; (2) the great majority of the increase in oil production will come from OPEC countries and the EU will rely predominantly on natural gas imported from the CIS; and (3) as the largest growing energy demand and CO2 emissions originate from developing countries (mainly China and India), Europe will have to intensify its co-operation, particularly in terms of transfer of technologies. The analysis of long-term scenarios and a particular attention to the energy world context, is an important element for efficient energy, technology and environment policies towards a sustainable world

  14. Imagining value, imagining users: academic technology transfer for health innovation.

    Science.gov (United States)

    Miller, Fiona Alice; Sanders, Carrie B; Lehoux, Pascale

    2009-04-01

    Governments have invested heavily in the clinical and economic promise of health innovation and express increasing concern with the efficacy and efficiency of the health innovation system. In considering strategies for 'better' health innovation, policy makers and researchers have taken a particular interest in the work of universities and related public research organizations: How do these organizations identify and transfer promising innovations to market, and do these efforts make best use of public sector investments? We conducted an ethnographic study of technology transfer offices (TTOs) in Ontario and British Columbia, Canada, to consider the place of health and health system imperatives in judgments of value in early-stage health innovation. Our analysis suggests that the valuation process is poorly specified as a set of task-specific judgments. Instead, we argue that technology transfer professionals are active participants in the construction of the innovation and assign value by 'imagining' the end product in its 'context of use'. Oriented as they are to the commercialization of health technology, TTOs understand users primarily as market players. The immediate users of TTOs' efforts are commercial partners (i.e., licensees, investors) who are capable of translating current discoveries into future commodities. The ultimate end users - patients, clinicians, health systems - are the future consumers of the products to be sold. Attention to these proximate and more distal users in the valuation process is a complex and constitutive feature of the work of health technology transfer. At the same time, judgements about individual technologies are made in relation to a broader imperative through which TTOs seek to imagine and construct sustainable innovation systems. Judgments of value are rendered sensible in relation to the logic of valuation for systems of innovation that, in turn, configure users of health innovation in systemic ways.

  15. Information Technology and Aerospace Knowledge Diffusion: Exploring the Intermediary-End User Interface in a Policy Framework.

    Science.gov (United States)

    Pinelli, Thomas E.; And Others

    1992-01-01

    Discusses U.S. technology policy and the transfer of scientific and technical information (STI). Results of a study of knowledge diffusion in the aerospace industry are reported, including data on aerospace information intermediaries, use of computer and information technologies, and the use of NASA (National Aeronautics and Space Administration)…

  16. Communication and Cultural Change in University Technology Transfer

    Science.gov (United States)

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  17. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Butera, F.; Farinelli, U.

    1992-01-01

    With the use of critical analyses of some examples of technology transfer by industrialized to third world countries, this paper illustrates the importance, in technology transfer, of giving due consideration to the specific social and marketing contexts of the targeted developing country and its physical and financial capability to acquire all the technology necessary to make the total realization of a desired industrial scheme feasible from the economic, technical and social points of view. It also indicates that the most effective transfers are those in which efforts are made to optimize local work force learning levels, process scheme efficiency and cost through the careful integration of innovative with conventional technologies

  18. A Study on the Nuclear Technology Policy

    International Nuclear Information System (INIS)

    Lim, C. Y.; Lee, K. S.; Jeong, I.; Lee, J. H.

    2009-04-01

    The objective of the study was to make policy-proposes for enhancing the effectiveness and efficiency of national nuclear technology development programs. To do this, recent changes of international nuclear energy policy and trends of nuclear technology R and D was surveyed and analyzed. In the viewpoint of analysis of the changes in the global policy surrounding nuclear technology development and development of national nuclear R and D strategy, this study (1) analyzed the trends of nuclear technology policies and (2) discussed the mid and long term strategy of nuclear energy R and D. To put it in more detail, each subject was further explored as follows; (1) analyzed the trends of nuclear technology policies - Trend and prospects of the international and domestic nuclear policies - Investigation of development of small and medium sized policies - International collaboration for advanced nuclear technologies (2) discussed the mid and long term strategy of nuclear energy R and D - The long term development plan for future nuclear energy system - The facilitation of technology commercialization

  19. Enhancing the visibility of new technologies

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    After several years of experience and reflection on the subject of technology transfer, CERN has formalised its policy for managing the intellectual property linked to its technology transfer activities.   The new Policy on the Management of Intellectual Property in Technology Transfer activities at CERN was approved in March this year. The aim of the policy is to clarify the basic principles governing technology transfer and the management of the associated intellectual property. The document also lays down the principles governing the redistribution of the income generated by technology transfer and provides for a fund to be set up to give financial support to knowledge and technology transfer projects. "Our main aim is to do everything we can to facilitate the actual transfer of CERN technologies and know-how with potential applications in other research fields or in industrial processes or products," says Bernard Denis, who is a member of the Knowledge and Technology Transfer (...

  20. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    Science.gov (United States)

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  1. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXVI - The relationship between technology policy and scientific and technical information within the U.S. and Japanese aerospace industries

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Lahr, Tom; Hoetker, Glenn

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry, which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  2. The success of a policy model: Irrigation management transfer in Mexico

    NARCIS (Netherlands)

    Rap, E.R.

    2004-01-01

    This thesis studies the emergence, process and outcomes of the Mexican policy of Irrigation Management Transfer (IMT). Under the influence of neo-liberal government policies, the transfer of government-managed irrigation districts to water users' associations (WUAs) has radically changed irrigation

  3. The transfer of accelerator technology to industry

    International Nuclear Information System (INIS)

    Favale, A.

    1992-01-01

    The national laboratories and universities are sources for innovative accelerator technology developments. With the growing application of accelerators in such fields as semiconductor manufacturing, medical therapy isotope production, nuclear waste transmutation, materials testing, bomb detection, pure science, etc., it is becoming more important to transfer these technologies and build an accelerator industrial base. In this talk the methods of technology transfer, the issues involved in working with the labs and examples of successful technology transfers are discussed. (Author)

  4. Technology transfer around the corner?

    International Nuclear Information System (INIS)

    Willis, R.B.; Rowell, D.; Patchen, D.

    1994-01-01

    This paper will describe how the Oil and Gas industry can become involved in shaping a new national program to aid in the transfer of technology from a variety of sources to the hands of the local independents. Technology Transfer has been a ''buzzword'' in the Oil and Gas Industry for some time now. Most of them might admit that it has been more of a ''buzzword'' and less of an activity. While most of the operators in the Appalachian Basin want to apply the latest in technology to their exploration and production activities is has quite often been difficult to find the appropriate technology. The Department of Energy, realizing that much of the technology which exists involving Oil and Gas is seldom applied by those who work so hard to produce it efficiently, has instigated the Petroleum Technology Transfer Council (PTTC). The PTTC will be a national ''umbrella'' organization formed by the Independent Petroleum Association of America (IPAA), in cooperation with the state and regional oil and gas producer associations, the Gas Research Institute (GRI), the Interstate Oil and Gas Compact Commission (IOGGCC), and other groups. The mission of the PTTC is to foster the effective transfer of exploration and production technology to domestic producers in all regions of the country. One of the most important functions of the program will be to provide a feedback loop so that the needs and concerns of producers can be communicated effectively to the entire research community and to the Department of Energy

  5. A Study of the Factors Associated with Successful Technology Transfer and their Applicability to Air Force Technology Transfers.

    Science.gov (United States)

    1995-09-01

    transfer project. (D) 8a Organization has a technology transfer organization. (D,A) 10a Marketing and advertising of technologies targeted to relevant...Entrepreneurial (D) Developer: 10A: Marketing and advertising of technologies targeted to relevant industries. Most developers indicate that they marketed...regard to marketing and advertising . 10B: Technology maturation supported by internal units or by contracting out. Technology maturation is the

  6. 48 CFR 970.2770 - Technology Transfer.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  7. Technology transfer: the key to fusion commercialization

    International Nuclear Information System (INIS)

    Burnett, S.C.

    1981-01-01

    The paper brings to light some of the reasons why technology transfer is difficult in fusion, examines some of the impediments to the process, and finally looks at a successful example of technology transfer. The paper considers some subjective features of fusion - one might call them the sociology of fusion - that are none the less real and that serve as impediments to technology transfer

  8. Technology transfer in the Clean Development Mechanism

    International Nuclear Information System (INIS)

    De Coninck, H.C.; Haake, F.; Van der Linden, N.H.

    2007-01-01

    Technology transfer is often mentioned as an ancillary benefit of the Kyoto Protocol's Clean Development Mechanism (CDM), but this claim has never been researched or substantiated. The question of technology transfer is important from two perspectives: for host countries, whether the CDM provides a corridor for foreign, climate-friendly technologies and investment, and for industrialised countries as it provides export potential for climate-friendly technologies developed as a consequence of stringent greenhouse gas targets. In order to better understand whether technology transfer from the EU and elsewhere is occurring through the CDM, and what is the value of the associated foreign investment, this paper examines technology transfer in the 63 CDM projects that were registered on January 1st, 2006. Technology originates from outside the host country in almost 50% of the evaluated projects. In the projects in which the technology originates from outside the host country, 80% use technology from the European Union. Technologies used in non-CO2 greenhouse gas and wind energy projects, and a substantial share of the hydropower projects, use technology from outside the host country, but biogas, agricultural and biomass projects mainly use local technology. The associated investment value with the CDM projects that transferred technology is estimated to be around 470 million Euros, with about 390 coming from the EU. As the non-CO2 greenhouse gas projects had very low capital costs, the investment value was mostly in the more capital-intensive wind energy and hydropower projects

  9. Technology transfer from Canadian nuclear laboratories

    International Nuclear Information System (INIS)

    MacDonald, R.D.; Evans, W.; MacEwan, J.R.; Melvin, J.G.

    1985-09-01

    Canada has developed a unique nuclear power system, the CANDU reactor. AECL - Research Company (AECL-RC) has played a key role in the CANDU program by supplying its technology to the reactor's designers, constructors and operators. This technology was transferred from our laboratories to our sister AECL companies and to domestic industries and utilities. As CANDUs were built overseas, AECL-RC made its technology available to foreign utilities and agencies. Recently the company has embarked on a new transfer program, commercial R and D for nuclear and non-nuclear customers. During the years of CANDU development, AECL-RC has acquired the skills and technology that are especially valuable to other countries embarking on their own nuclear programs. This report describes AECL-RC's thirty years' experience with the transfer of technology

  10. Technological economics: innovation, project management, and technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, F R

    1981-06-01

    The relationship between economics and technology, as well as their interaction in production, productivity, project management, and in technology transfer processes are reviewed. Over the last two decades there has been an increasing interest by economists in the technologist's view of technical change and its mechanisms. The author looks at the zone between technology and economics, the technological economics, and discusses the theory of innovation recently sketched out by Nelson and Winter. The relevance to project management and technology transfer of contemporary writing by economists leads to the view that there are welcome signs of a convergence of the conceptual models now emerging and the practical problems of technology management and movement. Economists now seem more willing to come to terms with technology than technologists with economics. The economic significance of the multitudes of technically unglamorous activities in development work is seriously neglected as a result of over-emphasis on the spectacular technological break. If economic elegance were to be admitted to the criteria of success, one might get a significant improvement in the engineering of technological change. 29 references, 4 figure.

  11. Technology transfer and international development: Materials and manufacturing technology

    Science.gov (United States)

    1982-01-01

    Policy oriented studies on technological development in several relatively advanced developing countries were conducted. Priority sectors defined in terms of technological sophistication, capital intensity, value added, and export potential were studied in Brazil, Venezuela, Israel, and Korea. The development of technological policy alternatives for the sponsoring country is assessed. Much emphasis is placed on understanding the dynamics of the sectors through structured interviews with a large sample of firms in the leading manufacturing and materials processing sectors.

  12. A Holistic Approach for Addressing the Issue of Effective Technology Transfer in the Frame of Climate Change

    Directory of Open Access Journals (Sweden)

    Charikleia Karakosta

    2016-06-01

    Full Text Available Climate change policy and sustainable development issues and goals are closely intertwined. Recognizing the dual relationship between sustainable development and climate change points to a need for the exploration of actions that jointly address sustainable development and climate change. Technology transfer is considered an issue with growing interest worldwide and has been recognized as the key in supporting countries to achieve sustainable development, while addressing climate change challenges. This study presents an integrated decision support methodological framework for the formulation and evaluation of activities to promote technology transfer, as well as the provision of clear recommendations and strategies for framing specific policy in the context of climate change. The philosophy of the proposed approach, under the name: assess-identify-define (AID, consists of three components, where each one focuses on a particular problem. The methodology is integrated using appropriate tools in the information decision support system for effective technology transfer (DSS-ΕTT. The pilot application of the proposed methodology, in five representative developing countries, provided the possibility to evaluate the characteristics of the adopted methodology in terms of completeness, usability, extensionality, as well as analysis of results reliability.

  13. DOE/EPA sludge irradiation technology transfer program

    International Nuclear Information System (INIS)

    Ahlstrom, S.B.

    1980-01-01

    The cesium-137 sludge irradiation program has successfully progressed through the phases of technology development and pilot plant evaluation and has entered the technology transfer phase. Initial technology transfer activities have identified a growing interest among wastewater engineers and public officials to learn more about the application of irradiation in sludge treatment. As a result, a formal technology transfer program has been developed. As a major activity of this program, it is planned that the US Department of Energy, working with the US Environmental Protection Agency, state and local governments, will support the placement of five to 10 sludge irradiators at selected wastewater treatment facilities throughout the United States. Facilities which may best benefit from this process technology are being identified. Technology transfer will be stimulated as engineers and wastewater officials become familiar with the evaluation and implementation of sludge irradiation at these sites

  14. A Study on the Nuclear Technology Policy

    International Nuclear Information System (INIS)

    Oh, K. B.; Lee, K. S.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, I.; Lee, J. H.

    2007-02-01

    The objective of the study was to make policy-proposals for enhancing the effectiveness and efficiency of national nuclear technology R and D programs. To do this, environmental changes of international nuclear energy policy and trends of nuclear technology development were surveyed and analyzed. This Study analyzed trends of nuclear technology policies and developed the nuclear energy R and D innovation strategy in a viewpoint of analyzing the changes in the global policy environment associated with nuclear technology development and development of national nuclear R and D strategy

  15. The transfer of nuclear technology: necessities and limitations

    International Nuclear Information System (INIS)

    Haunschild, H.-H.

    1978-01-01

    Political and economical importance of the transfer of nuclear technologies to less developed countries is examined. Energy needs of the world create the necessity of technology transfer. Three levels are distinguished: 1) Basic elements of cooperation are agreed between the two Governments, 2) scientific cooperation and 3) industrial cooperation. Technology transfer is more than mere technology export. Limitations of nuclear technology transfer are: the lack of infrastructure, the high price of a nuclear power station but above all the problem of proliferation. In conclusion the solution of international problems of nuclear energy is the concept of cooperation on the basis of equal rights

  16. Development of Technological Profiles for Transfer of Energy- and Resource Saving Technologies

    Directory of Open Access Journals (Sweden)

    Lysenko, V.S.

    2015-01-01

    Full Text Available The article deals with the methodological foundations for the development of technological profiles for «System of Transfer of Energy- and Resource Saving Technologies». It is determined that a compliance with the methodology and standards of the European network «Relay Centers» (Innovation Relay Centers — IRC network, since 2008 — EEN, the Russian Technology Transfer Network RTTN and Uk rainian Technology Transfer Network UTTN is the main pri nciple of the development process of technological requests and offers.

  17. EPA Reports to Congress on Technology Transfer

    Science.gov (United States)

    Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.

  18. The International Trade Policy for Technology Transfers: Legal and Economic Dilemmas on Multilateralism versus Bilateralism

    DEFF Research Database (Denmark)

    Tang, Yi Shin

    In the book, the Researcher addresses the importance of international technology transfers for economic development, as well as the underlying causes for the different institutional arrangements that promote such activity. The work provides a systematic interpretation of the wide range of interests...

  19. Basic orientation of current enterprise technological policy

    OpenAIRE

    Lapteva, V.

    2008-01-01

    The article reviews the factors stimulating industrials to intensification of technological policy; quick analysis of possible sources for investment of technological policy; problems of transition to active technological policy; outline of basic forms of fixed capital stock reproduction. The article indicates necessity of keeping of optimum relationship between all forms of fixed capital stock reproduction.

  20. The Change Book: A Blueprint for Technology Transfer.

    Science.gov (United States)

    Addiction Technology Transfer Centers.

    This document was developed by the Addiction Technology Transfer Center (ATTC) National Network to improve understanding about how valuable effective technology transfer is to the fields of substance abuse treatment and prevention. Technology transfer involves creating a mechanism by which a desired change is accepted, incorporated, and reinforced…

  1. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present

  2. A model technology transfer program for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Schoeling, L.G.

    1996-08-01

    In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

  3. Success in nuclear technology transfer: A Canadian perspective

    International Nuclear Information System (INIS)

    Lawson, D.S.; Stevens, J.E.S.; Boulton, J.

    1986-10-01

    Technology transfer has played a significant part in the expansion of nuclear power to many countries of the world. Canada's involvement in nuclear technology transfer spans four decades. The experience gained through technology transfer, initially to Canadian industry and then to other countries in association with the construction of CANDU nuclear power plants, forms a basis from which to assess the factors which contribute to successful technology transfer. A strong commitment from all parties, in terms of both financial and human resources, is essential to success. Detailed planning of both the scope and timing of the technology transfer program is also required together with an assessment of the impact of the introduction of nuclear power on other sectors of the economy. (author)

  4. The Clean Development Mechanism and Technology Transfer

    DEFF Research Database (Denmark)

    Aggarwal, Aradhna

    2017-01-01

    This study assesses the impact of the Clean Development Mechanism (CDM) on the transfer of clean technology in India. The reason this study is unique is because firstly, it adopts an outcome-oriented approach to define ‘technology transfer’, which means that technology transfer occurs if firms...

  5. Processes of local alcohol policy-making in England: Does the theory of policy transfer provide useful insights into public health decision-making?

    Science.gov (United States)

    Gavens, Lucy; Holmes, John; Buykx, Penny; de Vocht, Frank; Egan, Matt; Grace, Daniel; Lock, Karen; Mooney, John D; Brennan, Alan

    2017-06-13

    Recent years have seen a rise in new and innovative policies to reduce alcohol consumption and related harm in England, which can be implemented by local, as opposed to national, policy-makers. The aim of this paper is to explore the processes that underpin the adoption of these alcohol policies within local authorities. In particular, it aims to assess whether the concept of policy transfer (i.e. a process through which knowledge about policies in one place is used in the development of policies in another time or place) provides a useful model for understanding local alcohol policy-making. Qualitative data generated through in-depth interviews and focus groups from five case study sites across England were used to explore stakeholder experiences of alcohol policy transfer between local authorities. The purposive sample of policy actors included representatives from the police, trading standards, public health, licensing, and commissioning. Thematic analysis was used inductively to identify key features in the data. Themes from the policy transfer literature identified in the data were: policy copying, emulating, hybridization, and inspiration. Participants described a multitude of ways in which learning was shared between places, ranging from formal academic evaluation to opportunistic conversations in informal settings. Participants also described facilitators and constraints to policy transfer, such as the historical policy context and the local cultural, economic, and bureaucratic context, which influenced whether or not a policy that was perceived to work in one place might be transferred successfully to another context. Theories of policy transfer provide a promising framework for characterising processes of local alcohol policy-making in England, extending beyond debates regarding evidence-informed policy to account for a much wider range of considerations. Applying a policy transfer lens enables us to move beyond simple (but still important) questions of

  6. The Spanish technology transfer. Diagnostic and perspectives

    International Nuclear Information System (INIS)

    Rodriguez Pomeda, J.; Casani Fernandez de Navarrete, F.

    2007-01-01

    After a non exhaustive literature review of technology transfer in Spain, the authors offer a synthetic view of it. The main aspects reviewed are as follows: general ideas on technology transfer and their links with universities third mission; obstacles and success factors, and, lastly, support structures and transfer tools. (Author) 58 refs

  7. Mechanisms for international technology exchange, privatization, and transfer

    International Nuclear Information System (INIS)

    Mayfield, T.

    1993-01-01

    An environmental technology transfer business assistance program is needed to encourage collaboration and technology transfer within the international community. This program helped to find appropriate mechanisms to facilitate the transfer of these technologies for use by DOE environmental restoration and waste management (ER/WM) programs while assisting U.S. private industry (especially small and medium size business) in commercializing the technologies nationally and abroad

  8. Technology transfer

    International Nuclear Information System (INIS)

    Boury, C.

    1986-01-01

    This paper emphasizes in the specific areas of design, engineering and component production. This paper presents what Framatome has to offer in these areas and its export oriented philosophy. Then, a typical example of this technology transfer philosophy is the collaboration with the South Korean firm, Korea Heavy Industries Corporation (KHIC) for the supply of KNU 9 and KNU 10 power stations

  9. Science and technology policy

    DEFF Research Database (Denmark)

    Who is responsible for environmental and technological policy in Denmark? And how are those "policy-makers" made accountable to the public for their decisions?   This report attempts to answer these important questions by presenting the Danish contribution to the EU-funded project, Analysing Public...

  10. Canadian Experience in Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Boulton, J.

    1987-01-01

    Technology transfer has and will continue to play a major role in the development of nuclear power programs. From the early beginnings of the development of the peaceful uses of nuclear power by just a few nations in the mid-1940s there has been a considerable transfer of technology and today 34 countries have nuclear programs in various stages of development. Indeed, some of the major nuclear vendors achieves their present position through a process of technology transfer and subsequent development. Canada, one of the early leaders in the development of nuclear power, has experience with a wide range of programs bout within its own borders and with other countries. This paper briefly describes this experience and the lessons learned from Canada's involvement in the transfer of nuclear power technology. Nuclear technology is complex and diverse and yet it can be assimilated by a nation given a fire commitment of both suppliers and recipients of technology to achieve success. Canada has reaped large benefits from its nuclear program and we believe this has been instrumentally linked to the sharing of goals and opportunity for participation over extended periods of time by many interests within the Canadian infrastructure. While Canada has accumulated considerable expertise in nuclear technology transfer, we believe there is still much for US to learn. Achieving proficiency in any of the many kinds of nuclear related technologies will place a heavy burden on the financial and human resources of a nation. Care must be taken to plan carefully the total criteria which will assure national benefits in industrial and economic development. Above all, effective transfer of nuclear technology requires a long term commitment by both parties

  11. A Study on the Nuclear Technology Policy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Lim, C. Y.; Yang, M. H. (and others)

    2008-03-15

    The objective of the study was to make policy-proposes for enhancing the effectiveness and efficiency of national nuclear technology development programs. To do this, changes of international nuclear energy policy environment and trends of nuclear technology development was surveyed and analyzed. In the viewpoint of analysis of the changes in the global policy environment surrounding nuclear technology development and development of national nuclear R and D strategy, this study (1) analyzed trends of nuclear technology policies and (2) developed the nuclear energy R and D innovation strategies. To put it in more detail, each subject was further explored as follows; (1) themes to analyze trends of nuclear policies: nuclear Renaissance and forecast for nuclear power plant, International collaboration for advanced nuclear technologies in GIF, INPRO and I-NERI, The present situation and outlook for world uranium market (2) themes to develop of nuclear energy R and D innovation strategies: The mid-term strategy plan of the KAERI, The technological innovation case of the KAERI.

  12. A Study on the Nuclear Technology Policy

    International Nuclear Information System (INIS)

    Kim, H. J.; Lim, C. Y.; Yang, M. H.

    2008-03-01

    The objective of the study was to make policy-proposes for enhancing the effectiveness and efficiency of national nuclear technology development programs. To do this, changes of international nuclear energy policy environment and trends of nuclear technology development was surveyed and analyzed. In the viewpoint of analysis of the changes in the global policy environment surrounding nuclear technology development and development of national nuclear R and D strategy, this study (1) analyzed trends of nuclear technology policies and (2) developed the nuclear energy R and D innovation strategies. To put it in more detail, each subject was further explored as follows; (1) themes to analyze trends of nuclear policies: nuclear Renaissance and forecast for nuclear power plant, International collaboration for advanced nuclear technologies in GIF, INPRO and I-NERI, The present situation and outlook for world uranium market (2) themes to develop of nuclear energy R and D innovation strategies: The mid-term strategy plan of the KAERI, The technological innovation case of the KAERI

  13. Barriers to the Transfer of Low-carbon Electricity Generation Technologies in Four Latin American Countries

    DEFF Research Database (Denmark)

    Desgain, Denis DR; Haselip, James Arthur

    2015-01-01

    This article discusses the conclusions of four national Technology Needs Assessment (TNA) processes in Latin America (2011-2013), as applied to the electricity sector. The primary focus is on the financial and economic barriers identified by countries to the transfer of prioritized low-carbon ene......This article discusses the conclusions of four national Technology Needs Assessment (TNA) processes in Latin America (2011-2013), as applied to the electricity sector. The primary focus is on the financial and economic barriers identified by countries to the transfer of prioritized low......-carbon energy technologies. While many electricity markets in Latin America were liberalized during the 1990s and 2000s, such market-driven reform policies were far from uniform and in reality there exist a diversity of governance frameworks for national electricity markets, exemplified here by Argentina, Cuba...... to the debate about the relationship between financial and economic barriers to technology transfer and electricity market structures, based on a new round of country-driven priorities and analysis, in support of the UNFCCC process on climate change mitigation....

  14. Optimizing Outcome in the University-Industry Technology Transfer Projects

    Science.gov (United States)

    Alavi, Hamed; Hąbek, Patrycja

    2016-06-01

    Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm) Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of knowledge in

  15. Technology transfer? The rise of China and India in green technology sectors

    DEFF Research Database (Denmark)

    Lema, Rasmus; Lema, Adrian

    2012-01-01

    International technology transfer is central to the debate about how to curb the carbon emissions from rapid economic growth in China and India. But given China and India's great progress in building innovation capabilities and green industries, how relevant is technology transfer...... for these countries? This paper seeks insights from three green technology sectors in both countries: wind power, solar energy and electric and hybrid vehicles. We find that, conventional technology transfer mechanisms such as foreign direct investments and licensing, were important for industry formation and take...

  16. Technology Transfer, Foreign Direct Investment and International Trade

    OpenAIRE

    Leonard K. Cheng

    2000-01-01

    By developing a Ricardian trade model that features technology transfer via foreign direct investment (FDI), we show that technology transfer via multinational enterprises (MNEs) increases world output and trade in goods and services. When there are many goods a continuous reduction in the cost of technology transfer will cause increasingly more technologically advanced goods to go through the product cycle, i.e., goods initially produced in the advanced North are later produced in the backwa...

  17. PWR Power Plant Reactor Maintenance: Site Experience and Technology Transfer

    International Nuclear Information System (INIS)

    Callot, T. R.

    1986-01-01

    In France, Framatome participates in every scheduled outage. Abroad our participation which was restricted only to Belgium, a few years ago now includes several stations in Europe, South Africa and the United States. In conclusion, whatever the work may be and whenever it is to be performed far away from the home office, it is the policy of Fumarate to find an arrangement with a local company for technology transfer either on a case by cast basis or more suitable within the framework of a general cooperation agreement

  18. A Study on Nuclear Technology Policy

    International Nuclear Information System (INIS)

    Oh, K. B.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, Ik; Lee, J. H.

    2006-02-01

    This study was conducted as a part of institutional activities of KAERI, and the objective of the study is to survey and analyze the change of international environment in nuclear use and research and development environment, and to propose systematic alternatives on technology policy for efficiency and effectiveness of research and development through national R and D program while timely responding to the environmental change in local and global sense. In the investigation and analysis of international environmental and technological change 1. Viability of Nuclear Renaissance 2. Recent of Nuclear Technology Policy in Japan 3. Collaboration for Advanced Nuclear Technologies in GIF, INPRO and INERI 4. Nuclear Energy Utilization and Development in Europe. In the evaluation of nuclear technology and sustainable development from the point of views of environmental change 5. External Cost of Environmental Impact in Electric Power Sector 6. Nuclear Technology Development Direction Considering Changes of the Science and Technology Policy Environment 7. Nuclear Energy Development Strategy for a Sustainable National Energy Supply

  19. A Study on Nuclear Technology Policy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K B; Chung, W S; Lee, T J; Yun, S W; Jeong, Ik; Lee, J H

    2006-02-15

    This study was conducted as a part of institutional activities of KAERI, and the objective of the study is to survey and analyze the change of international environment in nuclear use and research and development environment, and to propose systematic alternatives on technology policy for efficiency and effectiveness of research and development through national R and D program while timely responding to the environmental change in local and global sense. In the investigation and analysis of international environmental and technological change 1. Viability of Nuclear Renaissance 2. Recent of Nuclear Technology Policy in Japan 3. Collaboration for Advanced Nuclear Technologies in GIF, INPRO and INERI 4. Nuclear Energy Utilization and Development in Europe. In the evaluation of nuclear technology and sustainable development from the point of views of environmental change 5. External Cost of Environmental Impact in Electric Power Sector 6. Nuclear Technology Development Direction Considering Changes of the Science and Technology Policy Environment 7. Nuclear Energy Development Strategy for a Sustainable National Energy Supply.

  20. OPTIMIZING OUTCOME IN THE UNIVERSITY-INDUSTRY TECHNOLOGY TRANSFER PROJECTS

    Directory of Open Access Journals (Sweden)

    Hamed ALAVI

    2016-04-01

    Full Text Available Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of

  1. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    Science.gov (United States)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  2. Federal Technology Transfer Act (FTTA)

    Science.gov (United States)

    EPA's Federal Technology Transfer Act (FTTA) is a mechanism with which EPA can patent its inventions and license them to companies, through which innovative technologies can enter the marketplace to improve the environment and human health.

  3. Innovation and international technology transfer: The case of the Chinese photovoltaic industry

    International Nuclear Information System (INIS)

    Tour, Arnaud de la; Glachant, Matthieu; Meniere, Yann

    2011-01-01

    China is the largest solar photovoltaic cell producer in the world, with more than one third of worldwide production in 2008, exporting more than 95 percent of what it produces. The purpose of this paper is to understand the drivers of this success and its limits, with a particular emphasis on the role of technology transfers and innovation. Our analysis combines a review of international patent data at a detailed technology level with field interviews of ten Chinese PV companies. We show that Chinese producers have acquired the technologies and skills necessary to produce PV products through two main channels: the purchasing of manufacturing equipment in a competitive international market and the recruitment of skilled executives from the Chinese diaspora who built pioneer PV firms. The success of these firms in their market is, however, not reflected in their performance in terms of innovation. Rather, patent data highlight a policy-driven effort to catch up in critical technological areas. - Research Highlights: →China has become the world leader in the production of PV cells and modules, but remains far behind industrialized countries in the more upstream segments of the photovoltaic industry. →International technology transfers from industrialized countries to China have taken place through two main channels: the competitive market of manufacturing equipments, and labour mobility. →Fierce competition between equipment manufacturers and public availability of core technology have prevented intellectual property rights from hindering technology transfers towards China. →As compared with their foreign competitors, Chinese firms file many patents, but of low technical and commercial value. →Chinese firms' innovation is focused on process rather than on products.

  4. Macroeconomic level of technology transfer

    Directory of Open Access Journals (Sweden)

    Smirnova Nadezhda

    2016-04-01

    Full Text Available World practice of economic management has proved that the best indicator of competitiveness is achieved by that economic system, the economic units of which timely and adequately update the resource and technical base, thus achieving higher financial and economic indicators. Ensuring that sustainable development becomes possible due to the transfer of technological innovations, namely the diffusion from the developer to the customer on both commercial and free of charge basis. The article focuses on functioning of technology transfer at the macro level, namely the creation of its domestic models.

  5. Technology Policy and Employment.

    Science.gov (United States)

    Williams, Bruce

    1983-01-01

    Current social and economic problems in the United Kingdom are placed in the context of long-term trends in labor economics and the impact of new technology. The relationship of technological change and economic recovery is analyzed. Policy implications and the university's role are discussed. (MSE)

  6. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described

  7. Pakistan's experience in transfer of nuclear technology

    International Nuclear Information System (INIS)

    Ahmad Khan, Nunir

    1977-01-01

    Of all technologies, nuclear technology is perhaps the most interdisciplinary in character as it encompasses such varied fields as nuclear physics, reactor physics, mechanical, electrical electronics controls, metallurgical and even civil and geological engineering. When we speak of transfer of acquisition of nuclear technology we imply cumulative know-how in many fields, most of which are not nuclear per se but are essential for building the necessry infrastructure and back-up facilities for developing and implementing any nuclear energy program. In Pakistan, efforts on utilization of nuclear energy for peaceful applications were initiated about twenty years ago. During these years stepwise development of nuclear technology has taken place. The experience gained by Pakistan so far in transfer of nuclear technology is discussed. Suggestions have been made for continuing the transfer of this most essential technology from the advanced to the developing countries while making sure that necessary safeguard requirements are fullfilled

  8. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  9. Effective Methods of Nuclear Power Technology Transfer

    International Nuclear Information System (INIS)

    Shave, D. F.; Kent, G. F.; Giambusso, A.

    1987-01-01

    An effective technology transfer program is a necessary and significant step towards independence in nuclear power technology. Attaining success in the conduct of such a program is a result of a) the donor and recipient jointly understanding the fundamental concepts of the learning process, b) sharing a mutual philosophy involving a partnership relationship, c) joint and careful planning, d) rigorous adherence to proven project management techniques, and e) presence of adequate feedback to assure continuing success as the program proceeds. Several years ago, KEPCO President Park, Jung-KI presented a paper on technology in which he stated, 'Nuclear technology is an integration of many unit disciplines, and thus requires extensive investment and training in order to establish the base for efficient absorption of transferred technology.' This paper addresses President Park's observations by discussing the philosophy, approach, and mechanisms that are necessary to support an efficient and effective process of nuclear power technology transfer. All technical content and presentation methods discussed are based on a technology transfer program developed by Stone and Webster, as an Engineer/Constructor for nuclear power plants, and are designed and implemented to promote the primary program goal - the ability of the trainees and the organization to perform specific nuclear power related multi-discipline function independently and competitively

  10. Technology Transfer: A Contact Sport

    Science.gov (United States)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  11. The transfer of technologies for biomass energy utilization

    International Nuclear Information System (INIS)

    Schneiders, H.H.

    1995-01-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  12. The transfer of technologies for biomass energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Schneiders, H H [German Agency for Technical Cooperation (GTZ), Eschborn (Germany)

    1995-12-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  13. Technology transfer

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Illustrated by the example of the FRG's nuclear energy exports, it is shown that the nuclear technology transfer leads to new dimensions of intergovernmental relations, which hold within themselves on account of multiple state-to-state, scientific, industrial and - last but not least - personal contacts the chance of far-reaching friendships between countries and people. If the chance is taken, this can also be seen as an important contribution towards maintaining the peace. (orig.) [de

  14. A case history of technology transfer

    Science.gov (United States)

    1981-01-01

    A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.

  15. Societal and economic valuation of technology-transfer deals

    Science.gov (United States)

    Holmes, Joseph S., Jr.

    2009-09-01

    The industrial adoption of concepts such as open innovation brings new legitimacy to activities technology-transfer professionals have conducted for over 20 years. This movement highlights the need for an increased understanding of the valuation of intellectual property (IP) and technology-transfer deals. Valuation, though a centerpiece of corporate finance, is more challenging when applied to the inherent uncertainty surrounding innovation. Technology-transfer professionals are often overwhelmed by the complexity and data requirements of valuation techniques and skeptical of their applicability to and utility for technology transfer. The market longs for an approach which bridges the gap between valuation fundamentals and technology-transfer realities. This paper presents the foundations of a simple, flexible, precise/accurate, and useful framework for considering the valuation of technology-transfer deals. The approach is predicated on a 12-factor model—a 3×4 value matrix predicated on categories of economic, societal, and strategic value. Each of these three categories consists of three core subcategories followed by a fourth "other" category to facilitate inevitable special considerations. This 12-factor value matrix provides a framework for harvesting data during deals and for the application of best-of-breed valuation techniques which can be employed on a per-factor basis. Future work will include framework implementation within a database platform.

  16. Technology transfer and innovation

    International Nuclear Information System (INIS)

    Ashworth, Graham; Thornton, Anna

    1987-01-01

    The aims of the conference were advice, assistance and action for all those with technology to licence or inventions to patent, and for people seeking financial help and advice. There was a free exchange of ideas and information. Of the forty or so papers collected together, many are concerned with the financial aspects of new ventures, others look at technology transfer from academic institutes and schemes which support technological problems. One paper on fast reactor collaboration in Europe, is indexed separately. (U.K.)

  17. Partnering Events | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  18. TRIUMF: Technology transfer

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In our occasional series highlighting the increasingly important area of technology transfer and industrial spinoff from high energy physics, this month the CERN Courier focuses on TRIUMF in Vancouver, Canada's major national facility for research in subatomic physics, a particularly illustrative example of the rewards and challenges involved. TRIUMF is based on a 520 MeV negative hydrogen ion cyclotron meson factory operated by a consortium of Canadian universities. Although the primary funding from the Canadian government is earmarked for support of basic research, the laboratory has always fostered applications of the technologies available, supporting them with funds from other sources. At first this ''applied programme'' involved simply the provision of particle beams for other scientific, medical and industrial uses - protons for the development of neutrondeficient radioisotopes, neutrons for activation analysis, pions for cancer therapy, and muons for chemistry and condensed-matter physics. Twenty five years on, the technology transfer process has resulted not only in a significantly expanded internal applied programme, with many areas of activity quite independent of the big cyclotron, but also in a number of successful commercial operations in the Vancouver area. Radioisotope production has been a particularly fruitful source for technology transfer, the early development work leading to two important initiatives - the establishment of a commercial radioisotope production facility on site and the inauguration of a positron emission tomography (PET) program at the University of British Columbia nearby. In 1979 Atomic Energy of Canada Ltd's isotope production division (now Nordion International Inc.) decided to establish a western Canadian facility at TRIUMF, to produce the increasingly important neutron-deficient radioisotopes obtainable with accelerator beams, primarily for medical applications. This would complement their

  19. Technology transfer from research and development to European industry

    International Nuclear Information System (INIS)

    Conrads, H.; Theenhaus, R.

    1989-01-01

    This paper gives an overview of technology transfer, i.e. the transfer of knowledge, insights and technologies from research and development to practical application, especially in the Federal Republic of Germany. Some examples and perspectives of technology transfer for nuclear fusion are given. (author). 7 refs.; 5 figs

  20. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1991-01-01

    This paper gives some examples of how technology transfer can successfully be given to third world countries to allow them to benefit in their quest for economic growth and better standards of living through reduced energy consumption and environmental pollution. It also suggests methods by which obstacles such as high investment costs, lack of information, market demand, etc., can be overcome in order to motivate technological transfer by industrialized countries

  1. Brookhaven National Laboratory technology transfer report, fiscal year 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

  2. People transfer-sinequanon for nuclear technology transfer

    International Nuclear Information System (INIS)

    Ahmed, M.

    1977-01-01

    The main obstacles facing the developing countries which wish to adopt sophisticated nuclear technology can be the following: lack of trained personnel, lack of entrepreneurs and capital, and bureaucracy. Of these the greatest problem is undoubtedly the lack of trained manpower. Urgently required skilled manpower may be obtained through training of selected persons in foreign countries on a crash program of nuclear energy. Exchange of expertise can also take place among the developing countries themselves. Another problem particularly peculiar to the poor developing countries is the lack of entrepreneurs and capital. It therefore becomes necessary to attract entrepreneurs from abroad with all the benefit of managerial know-how and capital transfer that it entails. Exchange of scientist, teachers, managerial and administrative personnel between the developed and developing countries and also among the developing countries themselves is therefore essential for an effective transfer of nuclear technology

  3. Transfer pricing and the Czech tax policy

    Directory of Open Access Journals (Sweden)

    Veronika Solilová

    2010-01-01

    Full Text Available The Czech Republic as a small open economy with an extensive network of the international tax treaties for the avoidance of the double taxation prevents from shifting the tax base of the associated enterprises to countries with preferential tax regime through transfer pricing rules. Transfer pricing as one of the important areas of international taxes determines how the profits of the multinational enterprises are split between the jurisdictions in which they operate and which countries get to tax those profits. This situation may affect the global budget of the multinational enterprises and the tax reve­nues of the jurisdictions. This paper is focused on the transfer pricing rules used in the Czech Republic and makes recommendations for the Czech tax policy in this area based on the analysis of the transfer pricing rules in the EU Member States.

  4. Transfer of industry-oriented nuclear technology at NUCOR

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1983-10-01

    The transfer of industry-oriented nuclear technology at the Nuclear Development Corporation of South Africa (Pty) Ltd (NUCOR) is centred in a few divisions only, as most of the NUCOR's program is internally oriented. The industry-oriented activities include radiation technology, production of radioisotopes and application of nuclear techniques in solving problems of industry. The study is concerned mainly with the last of these activities. The general problem of transferring innovative technology is reviewed and a systems approach is used to analyse the transfer process at NUCOR, in terms of the organisation itself and its environment. Organisational strengths and weaknesses are identified and used as a basis to determine opportunities and threats. Possible objectives are formulated and a strategy to meet them is suggested. 'Demand-pull' as opposed to 'technology-push' is advanced as the main triggering mechanism in the transfer of industry-oriented nuclear technology. The importance of marketing this technology, as well as its commercialization, are discussed

  5. Technology transfer for development

    International Nuclear Information System (INIS)

    Abraham, D.

    1990-07-01

    The IAEA has developed a multifaceted approach to ensure that assistance to Member States results in assured technology transfer. Through advice and planning, the IAEA helps to assess the costs and benefits of a given technology, determine the basic requirements for its efficient use in conditions specific to the country, and prepare a plan for its introduction. This report describes in brief the Technical Co-operation Programmes

  6. The competence accumulation process in the technology transference strategy

    OpenAIRE

    Souza, André Silva de; Segatto-Mendes, Andréa Paula

    2008-01-01

    The present article evaluates and measures the technological competence accumulation in an automation area enterprise to distribution centers, Knapp Sudamérica Logistic and Automation Ltd, in the interval of the technology transference process previous period (1998-2001) and during the technology transference process (2002-2005). Therefore, based on an individual case study, the study identified the technology transference strategy and mechanism accorded between the head office and the branch...

  7. Legal aspects of the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Sartorelli, C.

    1980-03-01

    The paper stresses the importance of nuclear technology transfer and describes the legal instruments for transfer of technical and scientific technology, particularly from the contractual viewpoint. A description follows of the setting-up of national joint ventures for nuclear power plant projects with emphasis on technological know-how to enable operation of plants in compliance with safety standards. The possibility is discussed of the export of nuclear technology, and finally mention is made of a proposal for a 'code of conduct' on such transfers in the framework of the United Nations, having regard to the 'London agreements' on nuclear exports. (NEA) [fr

  8. Ethical Considerations in Technology Transfer.

    Science.gov (United States)

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  9. Clean Cast Steel Technology - Machinability and Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  10. Technology transfer considerations for the collider dipole magnet

    International Nuclear Information System (INIS)

    Goodzeit, C.; Fischer, R.

    1991-03-01

    The R ampersand D program at the national laboratories has resulted in significant advances in design and fabrication methods for the Collider Dipole Magnets. The status of the transfer of the technology developed by the laboratories is reviewed. The continuation of the technology transfer program is discussed with a description of: (1) the relation of technology transfer activities to collider dipole product development; (2) content of the program relating to key magnet performance issues; and (3) methods to implement the program. 5 refs

  11. Optimal Tax-Transfer Policies, Life-Cycle Labour Supply and Present-Biased Preferences

    DEFF Research Database (Denmark)

    Gunnersen, Lasse Frisgaard; Rasmussen, Bo Sandemann

    Using a two-period model with two types of agents that are characterized by present-biased preferences second-best optimal tax-transfer policies are considered. The paternalistic optimal tax-transfer policy has two main concerns: Income redistribution from high to low ability households...... consequences not only for optimal subsidies to savings but also for optimal marginal income taxes....

  12. Transferability of economic evaluations of medical technologies: a new technology for orthopedic surgery.

    Science.gov (United States)

    Steuten, Lotte; Vallejo-Torres, Laura; Young, Terry; Buxton, Martin

    2008-05-01

    Transferring results of economic evaluations across countries or jurisdictions can potentially save scarce evaluation resources while helping to make market access and reimbursement decisions in a timely fashion. This article points out why transferring results of economic evaluations is particularly important in the field of medical technologies. It then provides an overview of factors that are previously identified in the literature as affecting transferability of economic evaluations, as well as methods for transferring results in a scientifically sound way. As the current literature almost exclusively relates to transferability of pharmacoeconomic evaluations, this article highlights those factors and methodologies that are of particular relevance to transferring medical technology assessments. Considering the state-of-the-art literature and a worked, real life, example of transferring an economic evaluation of a product used in orthopedic surgery, we provide recommendations for future work in this important area of medical technology assessment.

  13. Technology transfer 1995

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

  14. Heterogeneous policies, heterogeneous technologies: The case of renewable energy

    International Nuclear Information System (INIS)

    Nicolli, Francesco; Vona, Francesco

    2016-01-01

    This paper investigates empirically the effect of market regulation and renewable energy policies on innovation activity in different renewable energy technologies. For the EU countries and the years 1980 to 2007, we built a unique dataset containing information on patent production in eight different technologies, proxies of market regulation and technology-specific renewable energy policies. Our main finding is that, compared to privatisation and unbundling, reducing entry barriers is a more significant driver of renewable energy innovation, but that its effect varies across technologies and is stronger in technologies characterised by potential entry of small, independent power producers. In addition, the inducement effect of renewable energy policies is heterogeneous and more pronounced for wind, which is the only technology that is mature and has high technological potential. Finally, ratification of the Kyoto protocol, which determined a more stable and less uncertain policy framework, amplifies the inducement effect of both energy policy and market liberalisation. - Highlights: • We study the effect of market regulation and energy policy on renewable technologies. • Reducing entry barriers is a significant driver of renewable energy innovation. • The Kyoto protocol amplifies the effect of both energy policy and liberalisation. • These effects are heterogeneous across technologies and stronger for wind.

  15. An ISM approach for analyzing the factors in technology transfer

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdavi Mazdeh

    2015-07-01

    Full Text Available Technology transfer, from research and technology organizations (RTOs toward local industries, is considered as one of important and significant strategies for countries' industrial development. In addition to recover the enormous costs of research and development for RTOs, successful technology transfer from RTOs toward local firms forms technological foundations and develops the ability to enhance the competitiveness of firms. Better understanding of factors influencing process of technology transfer helps RTOs and local firms prioritize and manage their resources in an effective and efficient way to maximize the success of technology transfer. This paper aims to identify important effective factors in technology transfer from Iranian RTOs and provides a comprehensive model, which indicate the interactions of these factors. In this regard, first, research background is reviewed and Cummings and Teng’s model (2003 [Cummings, J. L., & Teng, B.-S. (2003. Transferring R&D knowledge: The key factors affecting knowledge transfer success. Journal of Engineering and Technology Management, 20(1-2, 39-68.] was selected as the basic model in this study and it was modified through suggesting new factors identified from literature of inter-organizational knowledge and technology transfer and finally a Delphi method was applied for validation of modified model. Then, research conducted used Interpretive Structural Modeling (ISM to evaluate the relationship between the factors of final proposed model. Results indicate that there were twelve factors influencing on technology transfer process from Iranian RTOs to local firms and also the intensity of absorption capability in transferee could influence on the intensity of desorption capability in transferor.

  16. A continuing program for technology transfer to the apparel industry

    Science.gov (United States)

    Clingman, W. H.

    1971-01-01

    A six month program has been carried out to investigate various mechanisms for transferring technology to industry. This program has focused on transfer to the apparel industry through the Apparel Research Foundation. The procedure was to analyze the problem, obtain potentially relevant aerospace technology, and then transfer this technology to the industry organization. This was done in a specific case. Technology was identified relevant to stitchless joining, and this technology was transferred to the Apparel Research Foundation. The feasibility and ground rules for carrying out such activities on a broader scale were established. A specific objective was to transfer new technology from the industry organization to the industry itself. This required the establishment of an application engineering program. Another transfer mechanism tested was publication of solutions to industry problems in a format familiar to the industry. This is to be distinguished from circulating descriptions of new technology. Focus is on the industry problem and the manager is given a formula for solving it that he can follow. It was concluded that this mechanism can complement the problem statement approach to technology transfer. It is useful in achieving transfer when a large amount of application engineering is not necessary. A wide audience is immediately exposed to the technology. On the other hand, the major manufacturing problems which require a sophisticated technical solution integrating many innovations are less likely to be helped.

  17. An Effective Method For Nuclear Technology Transfer

    International Nuclear Information System (INIS)

    Jeon, Jan Pung

    1987-01-01

    Three basic entities involved in the implementation of nuclear projects are the Owner, Regulatory Authority and Nuclear Industry. Their ultimate objective is to secure the safe, reliable and economical nuclear energy. For s successful nuclear power program, the owner should maintain a good relationship with the other entities and pursue an optimization of the objectives. On the other hand, he should manage projects along the well - planned paths in order to effectively learn the nuclear technology. One of the problems in the nuclear projects of developing countries was the absence of long - term technology development program, a limited local participation and the technical incapability. For the effective technology transfer, a motivation of the technology supplier and a readiness of the recipient to accommodate such technologies are required. Advanced technology is usually developed at considerable expense with the expectation that the developer will use it in furthering his own business. Therefore, he tends to be reluctant to transfer it to the others, particularly, to the potential competitors. There is a disinclination against further technology transfer beyond the minimum contractual obligation or the requirements by Government Regulatory. So, an additional commercial incentive must be provided to the developer

  18. Food irradiation: Technology transfer in Asia, practical experiences

    Science.gov (United States)

    Kunstadt, Peter; Eng, P.

    1993-10-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.

  19. Food irradiation: technology transfer in Asia, practical experiences

    International Nuclear Information System (INIS)

    Kunstadt, P.

    1993-01-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the successful conclusion of the world's first complete food irradiation technology transfer project. (Author)

  20. Environmental policy and environment-saving technologies. Economic aspects of policy making under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Ossokina, I.

    2003-07-01

    It is generally known that natural environment is profoundly influenced by technological change. The direction and the size of this influence are, however, surrounded by uncertainties, which substantially complicate environmental policy making. This dissertation uses game-theoretical models to study policy making under uncertainty about (a) the costs of technological advances in pollution control, (b) the preferences of the policy maker and the voters, and (c) the consequences of policy measures. From a positive point of view the analysis provides explanations for environmental policies in modern democracies. From a normative point of view it gives a number of recommendations to improve environmental policies.

  1. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1988-01-01

    US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decommissioned, decontaminated, and dismantled the world's first, nuclear fueled, commercial size, electric power plant. SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. Objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper presents a working definition for technology transfer. Direction is provided for access and availability for SSDP technology acquisition

  2. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Science.gov (United States)

    2010-10-01

    ... cooperative research and development agreements with public and private entities for purposes of conducting research and development and transferring technology to the private sector. In implementing the NCTTA, DOE....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of...

  3. Science transfer for development

    International Nuclear Information System (INIS)

    Salam, A.

    1985-01-01

    Despite the recent realisation that science and technology are the sustenance and major hope for economic betterment, the third world, barring a few countries like Argentina, Brazil, China and India, has taken to science - as distinct from technology - as only a marginal activity. This is also true of the aid - giving agencies of the richer countries, of the agencies of the UN and also unfortunately of the scientific communities of the developed countries which might naturally be expected to be the Third World's foremost allies. Policy makers, prestigious commissions (like the Brandt Commission) as well as aid-givers, speak uniformly of problems of technology transfer to the developing countries as if that is all that is involved. Very few within the developing world appear to stress that for long term effectiveness, technology transfers must always be accompanied by science transfers; that the science of today is the technology of tomorrow. Science transfer is effected by and to communities of scientists. Such communities (in developing countries) need building up to a critical size in their human resources and infrastructure. This building up calls for wise science policies, with long term commitment, generous patronage, self governance and free international contacts. Further, in our countries, the high level scientist must be allowed to play a role in nation building as an equal partner to the professional planner, the economist and the technologist. Few developing countries have promulgated such policies: few aid agencies have taken it as their mandate to encourage and help build up the scientific infrastructure. (author)

  4. DESY: Technology transfer on show

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    As well as exploring the unknown, fundamental physics research, with its continual demands for special conditions and precision measurements, makes special demands on frontier technology. One of the most prolific areas of this technology transfer, superconductivity and cryogenics, was highlighted by a recent exhibition at DESY organized by the International Cryogenic Engineering Committee

  5. DESY: Technology transfer on show

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-12-15

    As well as exploring the unknown, fundamental physics research, with its continual demands for special conditions and precision measurements, makes special demands on frontier technology. One of the most prolific areas of this technology transfer, superconductivity and cryogenics, was highlighted by a recent exhibition at DESY organized by the International Cryogenic Engineering Committee.

  6. [Technology transfer to the facility for production of medicines].

    Science.gov (United States)

    Beregovykh, V V; Spitskiĭ, O P

    2013-01-01

    Innovation development of pharmaceutical industry is close connected to knowledge transfer going to each subsequent life cycle phase of medicinal product. Formal regulation of technology and knowledge transfer is essential for achievement high quality during production of medicines designed during development phase. Conceptual tools, approaches and requirements are considered that are necessary for knowledge and technology transfer across all the life cycle phases of medicines. They are based on scientific knowledge of medicinal products and take into account both international and Russian regulations in the area of development, production and distribution of medicines. Importance of taking into consideration all aspects related to quality of medicines in all steps of technology transfer is shown. An approach is described for technology transfer organization for Russian pharmaceutical manufacturers based on international guides in this area.

  7. BUSINESS MODELS FOR INCREASING TECHNOLOGICAL TRANSFER EFFECTIVENESS

    Directory of Open Access Journals (Sweden)

    Simina FULGA

    2016-05-01

    Full Text Available The present paper is devoted to analyze the appropriate recommendations to increase the effectiveness of technology transfer organizations (centers from ReNITT, by using the specific instruments of Business Model Canvas, associated to the technological transfer value chain for the value added services addressed to their clients and according to a continuously improved competitive strategy over competition analysis.

  8. Development of Technology Transfer Economic Growth Metrics

    Science.gov (United States)

    Mastrangelo, Christina M.

    1998-01-01

    The primary objective of this project is to determine the feasibility of producing technology transfer metrics that answer the question: Do NASA/MSFC technical assistance activities impact economic growth? The data for this project resides in a 7800-record database maintained by Tec-Masters, Incorporated. The technology assistance data results from survey responses from companies and individuals who have interacted with NASA via a Technology Transfer Agreement, or TTA. The goal of this project was to determine if the existing data could provide indications of increased wealth. This work demonstrates that there is evidence that companies that used NASA technology transfer have a higher job growth rate than the rest of the economy. It also shows that the jobs being supported are jobs in higher wage SIC codes, and this indicates improvements in personal wealth. Finally, this work suggests that with correct data, the wealth issue may be addressed.

  9. Exploring the influence of technology size on the duration of production technology transfer implementation

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2005-01-01

    This study explores the relationship between technology size and installation time in technology transfer projects. A literature study revealed that the installation time has so far not received much attention. Current studies address the effectiveness of technology transfer rather than efficiency.

  10. Technology transfer in a horizontally differentiated product-market

    NARCIS (Netherlands)

    Mukherjee, A.; Balasubramanian, N.

    1999-01-01

    This paper considers technology transfer in a Cournot-duopoly market where the firms produce horizontally differentiated products. It turns out that without the threat of imitation from the licensee, the licenser always transfers its best technology. However, the patent licensing contract consists

  11. Technology transfer for women entrepreneurs: issues for consideration.

    Science.gov (United States)

    Everts, S I

    1998-01-01

    This article discusses the effectiveness of technology transfers to women entrepreneurs in developing countries. Most women's enterprises share common characteristics: very small businesses, employment of women owners and maybe some family members, limited working capital, low profit margins, and flexible or part-time work. Many enterprises do not plan for growth. Women tend to diversify and use risk-avoidance strategies. Support for women's enterprises ignores the characteristics of women's enterprises. Support mechanisms could be offered that would perfect risk-spreading strategies and dynamic enterprise management through other means than growth. Many initiatives, since the 1970s, have transferred technologies to women. Technologies were applied to only a few domains and were viewed as appropriate based on their small size, low level of complexity, low cost, and environmental friendliness. Technology transfers may not be viewed by beneficiaries as the appropriate answer to needs. The bottleneck in transfers to women is not in the development of prototypes, but in the dissemination of technology that is sustainable, appropriate, and accessible. Key features for determining appropriateness include baseline studies, consumer linkages, and a repetitive process. Institutional factors may limit appropriateness. There is a need for long-term outputs, better links with users, training in use of the technology, grouping of women into larger units, and technology availability in quantities large enough to meet demand. Guidelines need to be developed that include appropriate content and training that ensures transfer of knowledge to practice.

  12. On transferring the grid technology to the biomedical community.

    Science.gov (United States)

    Mohammed, Yassene; Sax, Ulrich; Dickmann, Frank; Lippert, Joerg; Solodenko, Juri; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which resulted in the Grid. The inter domain transfer process of this technology has been an intuitive process. Some difficulties facing the life science community can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies that have achieved certain stability. Grid and Cloud solutions are technologies that are still in flux. We illustrate how Grid computing creates new difficulties for the technology transfer process that are not considered in Bozeman's model. We show why the success of health Grids should be measured by the qualified scientific human capital and opportunities created, and not primarily by the market impact. With two examples we show how the Grid technology transfer theory corresponds to the reality. We conclude with recommendations that can help improve the adoption of Grid solutions into the biomedical community. These results give a more concise explanation of the difficulties most life science IT projects are facing in the late funding periods, and show some leveraging steps which can help to overcome the "vale of tears".

  13. Technology transfer and the management of radioactive waste

    International Nuclear Information System (INIS)

    Bonne, A.; Chan-Sands, C.

    1998-01-01

    One of the IAEA's fundamental roles is to act as a centre for the transfer of nuclear technologies, including those for managing radioactive wastes. In the area of waste management technology, the Agency is actively working to improve and develop new and efficient means to fulfill that responsibility. Recognizing its responsibilities and challenges, IAEA efforts related to radioactive waste management technologies into the next century are framed around three major areas: the development and implementation of mechanisms for better technology transfer and information exchange; the promotion of sustainable and safer processes and procedures; and the provision of peer reviews and direct technical assistance that help facilitate bilateral and multinational efforts. To illustrate some specific elements of the overall programme, this article reviews selected technology-transfer activities that have been initiated in the field

  14. Legitimation problems of participatory processes in technology assessment and technology policy.

    Science.gov (United States)

    Saretzki, Thomas

    2012-11-01

    Since James Carroll (1971) made a strong case for "participatory technology", scientists, engineers, policy-makers and the public at large have seen quite a number of different approaches to design and implement participatory processes in technology assessment and technology policy. As these participatory experiments and practices spread over the last two decades, one could easily get the impression that participation turned from a theoretical normative claim to a working practice that goes without saying. Looking beyond the well-known forerunners and considering the ambivalent experiences that have been made under different conditions in various places, however, the "if" and "how" of participation are still contested issues when questions of technology are on the agenda. Legitimation problems indicate that attempts to justify participation in a given case have not been entirely successful in the eyes of relevant groups among the sponsors, participants, organizers or observers. Legitimation problems of participatory processes in technology assessment and technology policy vary considerably, and they do so not only with the two domains and the ways of their interrelation or the specific features of the participatory processes. If we ask whether or not participation is seen as problematic in technology assessment and technology policy-making and in what sense it is being evaluated as problematic, then we find that the answer depends also on the approaches and criteria that have been used to legitimize or delegitimize the call for a specific design of participation.

  15. Heterogeneous Policies, Heterogeneous Technologies: The Case of Renewable Energy

    International Nuclear Information System (INIS)

    Nicolli, Francesco; Vona, Francesco

    2014-07-01

    This paper investigates empirically the effect of market regulation and renewable energy policies on innovation activity in different renewable energy technologies. For the EU countries and the years 1980 to 2007, we built a unique dataset containing information on patent production in eight different technologies, proxies of market regulation and technology-specific renewable energy policies. Our main findings show that lowering entry barriers is a more significant driver of renewable energy innovation than privatisation and un-bundling, but its effect varies across technologies, being stronger in technologies characterised by the potential entry of small, independent power producers. Additionally, the inducement effect of renewable energy policies is heterogeneous and more pronounced for wind, which is the only technology that is mature and has high technological potential. Finally, the ratification of the Kyoto protocol - determining a more stable and less uncertain policy framework - amplifies the inducement effect of both energy policy and market liberalisation. (authors)

  16. Technology Transfer and Commercialization Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    Michelle R. Blacker

    2008-12-01

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers

  17. Transfer of radiation technology to developing countries

    Science.gov (United States)

    Markovic, Vitomir; Ridwan, Mohammad

    1993-10-01

    Transfer of technology is a complex process with many facets, options and constraints. While the concept is an important step in bringing industrialization process to agricultural based countries, it is clear, however, that a country will only benefit from a new technology if it addresses a real need, and if it can be absorbed and adapted to suit the existing cultural and technological base. International Atomic Energy Agency, as UN body, has a mandate to promote nuclear applicationsand assist Member States in transfer of technology for peaceful applications. This mandate has been pursued by many different mechanisms developed in the past years: technical assistance, coordinated research programmes, scientific and technical meetings, publications, etc. In all these activities the Agency is the organizer and initiator, but main contributions come from expert services from developed countries and, increasingly, from developing countries themselves. The technical cooperation among developing coutries more and more becomes part of different programmes. In particular, regional cooperation has been demonstrated as an effective instrument for transfer of technology from developed and among developing countries. Some examples of actual programmes are given.

  18. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  19. Technology transfer, a two-way street

    International Nuclear Information System (INIS)

    Martin, H.L.

    1994-01-01

    Technology transfer through the Pollution Prevention ampersand Control Conferences, which have been cosponsored by the Environmental Protection Agency and by the professional societies of industry, greatly improved the environmental projects of the Department of Energy at Savannah River Site (SRS) in the mid-1980's. Those technologies, used in the liquid effluent treatment of the metal finishing liquid effluents from aluminum cleaning and nickel plating of fuel and targets for the nuclear production reactors, have been enhanced by the research and development of SRS engineers and scientists. The technology transfer has now become a two-way street to the benefit of our Nation's environment as these enhancements are being adopted in the metal finishing industry. These success stories are examples of the achievements anticipated in the 1990's as technology development in the federal facilities is shared with commercial industry

  20. A Conceptual Model of Technology Transfer for Public Universities in Mexico

    Directory of Open Access Journals (Sweden)

    Hugo Necoechea

    2013-12-01

    Full Text Available Technology transfer from academic and scientific institutions has been transformed into a strategic variable for companies and nations who wish to cope with the challenges of a global economy. Since the early 1970s, many technology transfer models have tried to introduce key factors in the process. Previous studies have shown that technology transfer is influenced by various elements. This study is based on a review of two recent technology transfer models that we have used as basic concepts for developing our own conceptual model. Researcher–firm networks have been considered as key elements in the technology transfer process between public universities and firms. The conceptual model proposed could be useful to improve the efficiency of existing technology transfer mechanisms.

  1. Dual Space Technology Transfer

    Science.gov (United States)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  2. Educational Technology Policy in Israel

    Science.gov (United States)

    Slakmon, Benzi

    2017-01-01

    The study examines Israel's educational technology policy in light of the coming-of-age of ICT. The study shows the ways it has been developing, and identifies two major shifts which have occurred in recent years: the introduction of the national educational cloud, and the enabling of the "bring your own device" (BYOD) policy. The way…

  3. Assessment of the impacts of transferring certain nuclear reactor technologies to the Soviet Union and Eastern Europe

    International Nuclear Information System (INIS)

    Upton, J.W. Jr.

    1987-06-01

    The Office of International Security Affairs of the US Department of Energy (DOE) has asked Pacific Northwest Laboratory (PNL) researchers to assist in evaluating the impact that transfer of specific nuclear reactor technologies may have on US national security interests. The evaluation is intended to be used as a technical basis and guideline to approve or disapprove requests from government and industry to transfer a specific technology to Soviet countries. The US Government has a responsibility to review such requests. For the post-Chernobyl information-gathering and dissemination process, the DOE is serving as the US Government's point of contact with private industry. It is DOE's policy to encourage and assist the Eastern Bloc countries to enhance the safety, reliability, and safe operation of civil nuclear reactor power plant facilities worldwide consistent with US national security and nonproliferation interests. Any requests from industry for the supply of nuclear reactor technology, equipment, and services will be considered in accordance with existing nuclear export policy, law, and regulations. All requests and proposals, whether discussed in this document or not, will be reviewed on a case-by-case basis. It should be noted that this is the initial version of the report. Subsequent, updated versions are expected to follow. Design and operation of nuclear reactor power plants involves an extensive array of technologies, not all of which have been addressed here

  4. Innovation and international technology transfer: The case of the Chinese photovoltaic industry

    International Nuclear Information System (INIS)

    De la Tour, A.; Glachant, M.; Meniere, Y.

    2010-01-01

    China is the largest solar photovoltaic cell producer in the world, with more than one third of worldwide production in 2008, exporting more than 95 percent of what it produces. The purpose of this paper is to understand the drivers of this success and its limits, with a particular emphasis on the role of technology transfers and innovation. Our analysis combines a review of international patent data at a detailed technology level with field interviews of ten Chinese PV companies. We show that Chinese producers have acquired the technologies and skills necessary to produce PV products through two main channels: the purchasing of manufacturing equipment in a competitive international market and the recruitment of skilled executives from the Chinese Diaspora who built pioneer PV firms. The success of these firms in their market is, however, not reflected in their performance in terms of innovation. Rather, patent data rather highlight a policy-driven effort to catch up in critical technological areas. (authors)

  5. Innovation and international technology transfer: The case of the Chinese photovoltaic industry

    Energy Technology Data Exchange (ETDEWEB)

    De la Tour, A.; Glachant, M.; Meniere, Y.

    2010-07-01

    China is the largest solar photovoltaic cell producer in the world, with more than one third of worldwide production in 2008, exporting more than 95 percent of what it produces. The purpose of this paper is to understand the drivers of this success and its limits, with a particular emphasis on the role of technology transfers and innovation. Our analysis combines a review of international patent data at a detailed technology level with field interviews of ten Chinese PV companies. We show that Chinese producers have acquired the technologies and skills necessary to produce PV products through two main channels: the purchasing of manufacturing equipment in a competitive international market and the recruitment of skilled executives from the Chinese Diaspora who built pioneer PV firms. The success of these firms in their market is, however, not reflected in their performance in terms of innovation. Rather, patent data rather highlight a policy-driven effort to catch up in critical technological areas. (authors)

  6. Innovation and international technology transfer: The case of the Chinese photovoltaic industry

    Energy Technology Data Exchange (ETDEWEB)

    Tour, Arnaud de la; Glachant, Matthieu; Meniere, Yann [Cerna, Mines ParisTech, 60 Boulevard Saint Michel, 75006 Paris (France)

    2011-02-15

    China is the largest solar photovoltaic cell producer in the world, with more than one third of worldwide production in 2008, exporting more than 95 percent of what it produces. The purpose of this paper is to understand the drivers of this success and its limits, with a particular emphasis on the role of technology transfers and innovation. Our analysis combines a review of international patent data at a detailed technology level with field interviews of ten Chinese PV companies. We show that Chinese producers have acquired the technologies and skills necessary to produce PV products through two main channels: the purchasing of manufacturing equipment in a competitive international market and the recruitment of skilled executives from the Chinese diaspora who built pioneer PV firms. The success of these firms in their market is, however, not reflected in their performance in terms of innovation. Rather, patent data highlight a policy-driven effort to catch up in critical technological areas. (author)

  7. A DYNAMICAL SYSTEM APPROACH IN MODELING TECHNOLOGY TRANSFER

    Directory of Open Access Journals (Sweden)

    Hennie Husniah

    2016-05-01

    Full Text Available In this paper we discuss a mathematical model of two parties technology transfer from a leader to a follower. The model is reconstructed via dynamical system approach from a known standard Raz and Assa model and we found some important conclusion which have not been discussed in the original model. The model assumes that in the absence of technology transfer from a leader to a follower, both the leader and the follower have a capability to grow independently with a known upper limit of the development. We obtain a rich mathematical structure of the steady state solution of the model. We discuss a special situation in which the upper limit of the technological development of the follower is higher than that of the leader, but the leader has started earlier than the follower in implementing the technology. In this case we show a paradox stating that the follower is unable to reach its original upper limit of the technological development could appear whenever the transfer rate is sufficiently high.  We propose a new model to increase realism so that any technological transfer rate could only has a positive effect in accelerating the rate of growth of the follower in reaching its original upper limit of the development.

  8. The Practices and Politics of Making Policy: Irrigation Management Transfer in Mexico

    NARCIS (Netherlands)

    Rap, E.R.; Wester, P.

    2013-01-01

    This article argues that policy making is an interactive and ongoing process that transcends the spatio-temporal boundaries drawn by a linear, rational or instrumental model of policy. We construct this argument by analysing the making of the Irrigation Management Transfer (IMT) policy in Mexico in

  9. 78 FR 24749 - Health Information Technology Policy Committee Appointment

    Science.gov (United States)

    2013-04-26

    ... GOVERNMENT ACCOUNTABILITY OFFICE Health Information Technology Policy Committee Appointment AGENCY... Recovery and Reinvestment Act of 2009 (ARRA) established the Health Information Technology Policy Committee to make recommendations on the implementation of a nationwide health information technology...

  10. Technology Transfer: A Third World Perspective.

    Science.gov (United States)

    Akubue, Anthony I.

    2002-01-01

    Technology transfer models are based on assumptions that do not reflect Third-World realities. Obstacles to building indigenous technology capacity include multinational corporations' control of innovations, strings attached to foreign aid, and indigenous reluctance to undertake research. Four areas of development include foreign direct…

  11. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  12. License Agreements | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    NCI Technology Transfer Center (TTC) licenses the discoveries of NCI and nine other NIH Institutes so new technologies can be developed and commercialized, to convert them into public health benefits.

  13. Technology transfer in the national laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  14. Effective technology transfer through regional information teams

    International Nuclear Information System (INIS)

    Wicks, D.E.; Gahan, B.; Hoyle, G.

    1997-01-01

    Communication and the transfer of technical information is critical to the international gas industry. The technical research results developed through Gas Research Institute's natural gas supply program have been disseminated through a number of vehicles. Two primary vehicles are GRI's Information Centers and Regional Technology Transfer Agents (RTTA). The Information Centers serve as repositories for GRI information as well as provide no-cost literature searching expertise. The RTTAs actively communicate and interface with area producers, introducing potential technology adopters with GRI technology managers and/or the appropriate licensed product or service distributors. The combination of Information Centers and RTTAs continues to help independent producers break through the barriers of technology and accelerate the benefits of lower cost natural gas recovery. (au)

  15. Technology Transfer: Technocultures, Power and Communication--The Australian Experience.

    Science.gov (United States)

    More, Elizabeth; Irwin, Harry

    1995-01-01

    Discusses issues of communication and power in the organizational dimensions of international technology transfer, including technoculture differences and strategic political alliances. Theoretical discussion is supplemented by analysis of international technology transfer activities involving Australian participation in the aerospace and…

  16. Differences in technology transfer between science-based and development-based industries : transfer mechanisms and barriers

    NARCIS (Netherlands)

    Gilsing, V.A.; Bekkers, R.N.A.; Bodas Freitas, I.M.; Steen, van der M.

    2011-01-01

    Although several studies in the wide body of literature on technology transfer have hinted at differences across industries, this still remains an understudied issue. Our study addresses this topic and considers to what degree technology transfer processes differ across different industrial sectors.

  17. Creation of a European network dedicated to technology transfer

    CERN Multimedia

    2008-01-01

    The CERN Council recently approved the creation of a technology transfer network, whose aim will be to improve European industry’s access to the technologies developed by the particle physics community in the Member States. The gas detectors for the TOTEM experiment (GEM) offer potential for fruitful collaboration within the framework of the TT network. Many other technologies are going down the same road.The desire to set up a technology transfer network follows on from the European Strategy for Particle Physics, approved by the CERN Council on 14 July 2006 in Lisbon. In this context, special emphasis was laid on European industry’s participation in the implementation of particle physics programmes and, in particular, its access to the new technologies developed by the scientific community. It was recognised that effort needs to be put into improving the efficiency of technology transfer...

  18. State of the Science in Technology Transfer: At the Confluence of Academic Research and Business Development--Merging Technology Transfer with Knowledge Translation to Deliver Value

    Science.gov (United States)

    Lane, Joseph P.

    2010-01-01

    The practice of technology transfer continues to evolve into a discipline. Efforts continue in the field of assistive technology (AT) to move technology-related prototypes, resulting from development in the academic sector, to product commercialization within the business sector. The article describes how technology transfer can be linked to…

  19. Moving R&D to the Marketplace, A Guidebook for Technology Transfer Managers

    Energy Technology Data Exchange (ETDEWEB)

    Mock, John E.; Kenkeremath, Deepak C.; Janis, F. Timothy

    1993-01-01

    This Guidebook serves as an introduction as well as a refresher for technology transfer managers. It focuses on the question: What can the Technology Transfer manager do when confronted by complex situations and events? The main functional issues addressed here concern the conduct of technology transfer in Technology Utilization programs. These R&D programs whose primary mission is to develop technologies that will be used outside of the Federal sector. Renewable energy, health care, and agricultural advances are technologies of this type. The contents of this Guidebook will be of value to managers in a variety of Federal, State, university and industry technology development and transfer programs. The general area of transferring service innovations is not covered here. The Guidebook is primarily about the development and care of hardware. This Guidebook makes no attempt to judge the value of specific technologies in meeting societal needs. Rather, it addresses the improvement of the technology transfer process itself. It does, however, include reminders that ascertainment of the social value of specific technologies is one of the important yet difficult tasks of R&D and technology transfer programs. [DJE-2005

  20. Transferring technology to the public sector.

    Science.gov (United States)

    Alper, M. E.

    1972-01-01

    Approximately four years ago the Jet Propulsion Laboratory, under NASA sponsorship, began to devote some of its resources to examining ways to transfer space technology to the civil sector. As experience accumulated under this program, certain principles basic to success in technology transfer became apparent. An adequate definition of each problem must be developed before any substantial effort is expended on a solution. In most instances, a source of funds other than the potential user is required to support the problem definition phase of the work. Sensitivity to the user's concerns and effective interpersonal communications between the user and technical personnel are essential to success.

  1. How can public policies accelerate the progress in technologies for the struggle against climate change?

    International Nuclear Information System (INIS)

    Vieillefosse, A.

    2008-01-01

    After having recalled the three stages of the technical progress according to Schumpeter (invention, innovation and diffusion), and the roles of R and D and learning in this process, the author briefly comments the cost evolution of different energy production technologies between 1980 and 1995, proposes a simple modelling of the learning system under the influence of public policies, and indicates the research themes by 2050. Then, she discusses the fact that the R and D level is not socially optimal, notably because of market imperfections, and also because some innovations may have applications within a time which is too long for companies. This is the reason why the State generally takes care of fundamental research. She discusses either demand-based or supply-based public policies aiming at accelerating the progress in low carbon technologies, describes the international cooperation in R and D (agreement on research on low carbon technologies, standards), and how to promote the diffusion of technology towards developing countries (problem of emission increase in these countries, technology transfer in general and within the frame of the convention on climate change, public development support and direct foreign investments)

  2. Nuclear energy technology transfer: the security barriers

    International Nuclear Information System (INIS)

    Rinne, R.L.

    1975-08-01

    The problems presented by security considerations to the transfer of nuclear energy technology are examined. In the case of fusion, the national security barrier associated with the laser and E-beam approaches is discussed; for fission, the international security requirements, due to the possibility of the theft or diversion of special nuclear materials or sabotage of nuclear facilities, are highlighted. The paper outlines the nuclear fuel cycle and terrorist threat, examples of security barriers, and the current approaches to transferring technology. (auth)

  3. Two perspectives on a successful lab/industry technology transfer

    International Nuclear Information System (INIS)

    MacArthur, D.W.; Ulbrich, R.

    1995-01-01

    Technology transfer from government laboratories to private business is of increasing concern in today's marketplace. Some prospective partners (on both sides) believe that technology transfer is a relatively simple process requiring little or no extra effort from the participants. In the authors experience this is not true and, in fact, positive results from a collaboration are directly proportional to the effort that both parties invest in the relationship. Communication, both between prospective partners before an agreement and between partners following the agreement, is essential. Neither technology nor marketing can stand by itself; it is the combination of the two that can produce a useful and available product. Laboratories and industries often have very different ways of looking at almost everything. Misunderstandings arising from these differences can short-circuit the transfer process or result in the production of a product that is unsalable. The authors will cover some of their experiences, potential problems, and their solutions. Examples discussed here is transfer of technology for long-range alpha detection developed at Los Alamos National Laboratory and transferred to Eberline Instrument Corporation

  4. Technology Transfer Annual Report Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Wendy Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to

  5. Emergent information technologies and enabling policies for counter-terrorism

    CERN Document Server

    Popp, R

    2006-01-01

    Explores both counter-terrorism and enabling policy dimensions of emerging information technologies in national security After the September 11th attacks, "connecting the dots" has become the watchword for using information and intelligence to protect the United States from future terrorist attacks. Advanced and emerging information technologies offer key assets in confronting a secretive, asymmetric, and networked enemy. Yet, in a free and open society, policies must ensure that these powerful technologies are used responsibly, and that privacy and civil liberties remain protected. Emergent Information Technologies and Enabling Policies for Counter-Terrorism provides a unique, integrated treatment of cutting-edge counter-terrorism technologies and their corresponding policy options. Featuring contributions from nationally recognized authorities and experts, this book brings together a diverse knowledge base for those charged with protecting our nation from terrorist attacks while preserving our civil liberti...

  6. International nuclear technology transfer

    International Nuclear Information System (INIS)

    Cartwright, P.; Rocchio, J.P.

    1978-01-01

    Light water reactors (LWRs), originally developed in the United States, became the nuclear workhorses for utilities in Europe and Japan largely because the U.S. industry was willing and able to transfer its nuclear know-how abroad. In this international effort, the industry had the encouragement and support of the U.S. governement. In the case of the boiling water reactor (BWR) the program for technology transfer was developed in response to overseas customer demands for support in building local designs and manufacturing capabilities. The principal vehicles have been technology exchange agreements through which complete engineering and manufacturing information is furnished covering BWR systems and fuel. Agreements are held with companies in Germany, Japan, Italy, and Sweden. In recent years, a comprehensive program of joint technology development with overseas manufacturers has begun. The rapidly escalating cost of nuclear research and development make it desirable to minimize duplication of effort. These joint programs provide a mechanism for two or more parties jointly to plan a development program, assign work tasks among themselves, and exchange test results. Despite a slower-than-hoped-for start, nuclear power today is playing a significant role in the economic growth of some developing countries, and can continue to do so. Roughly half of the 23 free world nations that have adopted LWRs are developing countries

  7. A research proposal for investigating the effect of foreign direct investments on technology transfer in the Arabian Gulf (GCC)

    Science.gov (United States)

    Tahat, Kaher; Whelan, Susan

    2015-02-01

    In terms of hosting countries perspectives, Foreign Direct Investments (FDI) could have a positive effect on its developing economy, by transferring, both: resources of finance in addition to the international technology (ITT) (Choi, 1997). Multinational companies (MNC) are engaging in the transferring of the new technology, internally as well as licensing older one; they create "Spillover" (Knowledge) for facilitating the transfer of ITT in line with geographical location, period of investment, and the type of industry. Furthermore, the effect of these spillovers depends on the level of transferring this knowledge based on FDI attraction policies of the host country (Huang, 2009). Considering the Arabian Gulf council countries (GCC) as "FDI- rich hosting countries", who are not seeking for financial resources, i.e., they already have a huge financial capacity for funding their different projects, even though FDI has been powerfully presented in GCC . They saw noticeable increases in FDI inflows beginning in 2002, (www.unctad.org.fdistatistics). Therefore by assumption, FDI inflows to GCC could positively affect their economic growth through transferring the advanced technology, in order to build up their level of technology (productivity growth) as well as their economic diversification strategy. If so how this Knowledge could be diffused and measured in order to maximize its benefit and enhancing the productivity growth, and what is the current status of (GCC).

  8. Technology transfer and commercialization of in situ vitrification technology

    International Nuclear Information System (INIS)

    Williams, L.D.; Hansen, J.E.

    1992-01-01

    In situ vitrification (ISV) technology was conceived and an initial proof-of-principle test was conducted in 1980 by Battelle Memorial Institute for the U.S. Department of Energy (DOE) at Pacific Northwest Laboratory (PNL). The technology was rapidly developed through bench, engineering pilot, and large scales in the following years. In 1986, DOE granted rights to the basic ISV patent to Battelle in exchange for a commitment to commercialize the technology. Geosafe Corporation was established as the operating entity to accomplish the commercialization objective. This paper describes and provides status information on the technology transfer and commercialization effort

  9. Does Technology Transfer Help Small and Medium Companies? Empirical Evidence from Korea

    Directory of Open Access Journals (Sweden)

    Dae-Hwan Kim

    2016-11-01

    Full Text Available We challenge the view that technology transfer from big companies to small and medium (SM size companies helps SM companies to prosper. With a large dataset of SM companies in Korea, we utilize the stochastic production frontier (SPF model to examine the productivity of inputs and the generalized linear model (GLM to compare business performance between two groups of SM companies: SM companies that receive technology transfer and those that do not receive technology transfer from big companies. The empirical results demonstrate that the transfer of technology from big companies to SM companies help SM companies to enjoy productivity of capital. Nonetheless, SM companies receiving technology transfer were found to underperform in terms of labor productivity and profit margin compared to their counterparts. We further investigate the reasons why SM companies receiving technology transfer from big companies underperform relative to their counterparts, and our findings shows that the former do not export much of their product and face more difficulties such as lower price for their products imposed by big companies than the latter. By identifying the negative rather than the conventionally assumed positive effect of technology transfer, this paper contributes to the literature on the relationship between technology transfer and SM companies’ prosperity in the case of Korea. Our findings have important implications for how SM companies should strategize and rethink about the clauses embedded in the transfer of technology that they receive from big companies because technology transfer plays as a barrier to their prosperity.

  10. Science, Technology, and Innovation Policy

    DEFF Research Database (Denmark)

    Lundvall, Bengt-Åke; Borrás, Susana

    2005-01-01

    This chapter is about what governments have done and could do to promote the production, diffusion, and use of scientific and technical knowledge in order to realize national objectives. We begin the chapter with "story-telling" based on sketchy historical facts. The aim of  the two stories...... is to illustrate that innovation policy covers a wide set of issues that have been on the agenda far back in history while still remaining important today. We move on to sketch the history of innovation policy, splitting it up into the three ideal types: science, technology, and innovation policy. We use OECD...

  11. Siemens technology transfer and cooperation in the nuclear fuel area

    International Nuclear Information System (INIS)

    Holley, H.-P.; Fuchs, J. H.; Rothenbuecher, R. A.

    1997-01-01

    Siemens is a full-range supplier in the area of nuclear power generation with broad experience and activities in the field of nuclear fuel. Siemens has developed advanced fuel technology for all types fuel assemblies used throughout the world and has significant experience worldwide in technology transfer in the field of nuclear fuel. Technology transfer and cooperation has ranged between the provision of mechanical design advice for a specific fuel design and the erection of complete fabrication plants for commercial operation in 3 countries. In the following the wide range of Siemens' technology transfer activities for both fuel design and fuel fabrication technologies are shown

  12. Airlie House Pollution Prevention Technology Transfer pilot projects

    Energy Technology Data Exchange (ETDEWEB)

    Thuot, J.R.; Myron, H.; Gatrone, R.; McHenry, J.

    1996-08-01

    The projects were a series of pilot projects developed for DOE with the intention of transferring pollution prevention technology to private industry. The concept was to develop small technology transfer initiatives in partnership with the private sector. Argonne National Laboratory developed three projects: the microscale chemistry in education program, the microscale cost benefit study, and the Bethel New Life recycling trainee program. The two microscale chemistry projects focused on introducing microscale chemistry technologies to secondary and college education. These programs were inexpensive to develop and received excellent evaluations from participants and regulators. The recycle trainee project provided training for two participants and identified recycling and source reduction opportunities in Argonne`s solid waste stream. The pilot projects demonstrated that technology transfer initiatives can be developed and implemented with a small budget and within a short period of time. The essential components of the pilot projects were identification of target technologies that were already available, identification of target audiences, and a focus of effort to achieve a limited but defined objective.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 57; US Scientific and Technical Information Policy

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    In fiscal year 1994, the United States government spent about $68 billion for science and technology. Although there is general agreement among policy makers that the results of this expenditure can be used to enhance technological innovation and improve economic competitiveness, there is no coherent scientific and technical information (STI) policy. The absence of a cohesive policy and STI policy framework means that the transfer and utilization of STI goes uncoordinated. This chapter examines the U.S. government's role in funding science and technology, reviews Federal STI activities and involvement in the transfer and use of STI resulting from federally-funded science and technology, presents issues surrounding the use of federally-funded STI, and offers recommendations for improving the transfer and use of STI.

  14. University Technology Transfer Information Processing from the Attention Based View

    Science.gov (United States)

    Hamilton, Clovia

    2015-01-01

    Between 2005 and 2011, there was no substantial growth in licenses executed by university technology transfer offices. Since the passage of the Bayh Dole Act of 1980, universities have owned technological inventions afforded by federal research funding. There are still university technology transfer offices that struggle with increasing their…

  15. Directed International Technological Change and Climate Policy: New Methods for Identifying Robust Policies Under Conditions of Deep Uncertainty

    Science.gov (United States)

    Molina-Perez, Edmundo

    : climate change, elasticity of substitution between renewable and fossil energy and three different sources of technological uncertainty (i.e. R&D returns, innovation propensity and technological transferability). The performance of eight different GCF and non-GCF based policy regimes is evaluated in light of various end-of-century climate policy targets. Then I combine traditional scenario discovery data mining methods (Bryant and Lempert, 2010) with high dimensional stacking methods (Suzuki, Stem and Manzocchi, 2015; Taylor et al., 2006; LeBlanc, Ward and Wittels, 1990) to quantitatively characterize the conditions under which it is possible to stabilize greenhouse gas emissions and keep temperature rise below 2°C before the end of the century. Finally, I describe a method by which it is possible to combine the results of scenario discovery with high-dimensional stacking to construct a dynamic architecture of low cost technological cooperation. This dynamic architecture consists of adaptive pathways (Kwakkel, Haasnoot and Walker, 2014; Haasnoot et al., 2013) which begin with carbon taxation across both regions as a critical near term action. Then in subsequent phases different forms of cooperation are triggered depending on the unfolding climate and technological conditions. I show that there is no single policy regime that dominates over the entire uncertainty space. Instead I find that it is possible to combine these different architectures into a dynamic framework for technological cooperation across regions that can be adapted to unfolding climate and technological conditions which can lead to a greater rate of success and to lower costs in meeting the end-of-century climate change objectives agreed at the 2015 Paris Conference of the Parties. Keywords: international technological change, emerging nations, climate change, technological uncertainties, Green Climate Fund.

  16. 78 FR 7784 - Health Information Technology Policy Committee Nomination Letters

    Science.gov (United States)

    2013-02-04

    ... GOVERNMENT ACCOUNTABILITY OFFICE Health Information Technology Policy Committee Nomination Letters.... SUMMARY: The American Recovery and Reinvestment Act of 2009 (ARRA) established the Health Information Technology Policy Committee (Health IT Policy Committee) and gave the Comptroller General responsibility for...

  17. 78 FR 74129 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2013-12-10

    ... for Environmental Policy and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT members represent academia...

  18. Technology development and transfer in environmental management

    International Nuclear Information System (INIS)

    Katz, J.; Karnovitz, A.; Yarbrough, M.

    1994-01-01

    Federal efforts to develop and employ the innovative technologies needed to clean up contaminated facilities would greatly benefit from a greater degree of interaction and integration with the energies and resources of the private sector. Yet there are numerous institutional, economic, and regulatory obstacles to the transfer and commercialization of environmental restoration and waste management technologies. These obstacles discourage private sector involvement and investment in Federal efforts to develop and use innovative technologies. A further effect is to impede market development even where private sector interest is high. Lowering these market barriers will facilitate the commercialization of innovative environmental cleanup technologies and expedite the cleanup of contaminated Federal and private facilities. This paper identifies the major barriers to transfer and commercialization of innovative technologies and suggests possible strategies to overcome them. Emphasis is placed on issues particularly relevant to the Department of Energy's Environmental Restoration and Waste Management (EM) program, but which are applicable to other Federal agencies confronting complex environmental cleanup problems

  19. 75 FR 25240 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2010-05-07

    ... ENVIRONMENTAL PROTECTION AGENCY National Advisory Council for Environmental Policy and Technology... for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT is a committee of...

  20. CONDITIONS FOR TECHNOLOGY TRANSFER IN THE AGRICULTURE OF CONGO REPUBLIC*

    Directory of Open Access Journals (Sweden)

    Katarzyna Andrzejczak

    2017-03-01

    Full Text Available The majority of the population in Sub-Saharan Africa is employed in agriculture. Nevertheless, the productivity of the sector is relatively low in comparison with other regions of the world. Based on convergence theory, technology transfer can enhance growth. However, the effective transfer of technology requires a certain absorption capacity from the recipient. Based on the qualitative research on cassava production in Congo Brazzaville, we identified key factors that influence the transfer process. These factors have been divided into four key areas: market, institutions, technology, and social capability. Cassava production value chain in Ignie region served as a case study for the evaluation of technology transfer absorptive capacity in Congo agriculture. We learned that the lack of agro-technical education, shortages in infrastructure, unavailability of business services, and market structure are among the main barriers of the intensification of technology use in agriculture.

  1. Technology policy in the face of the environment catastrophe

    International Nuclear Information System (INIS)

    Krupp, H.

    1990-01-01

    Some 70 experts from science, industry and politics discussed in December 1989 in a seminar of the WE Heraeus Foundation the 'Options and priorities of future research and technology policy'. In the face of looming global climate changes and other environmental problems, the main subject was an ecologically oriented research and technology policy which safeguards the future on a long-term basis. This policy has to fulfil the following criteria: - wide time horizon (100 years), - world solidarity (North/South countries), - if possible small risks for the population, - welfare instead of economic growth. The proceedings contain lectures and discussions, giving a representative survey of the international state of research and technology policy and, illustrated by concrete examples, drawing up future demands on this policy. (orig./HSCH) With 28 figs [de

  2. Router Agent Technology for Policy-Based Network Management

    Science.gov (United States)

    Chow, Edward T.; Sudhir, Gurusham; Chang, Hsin-Ping; James, Mark; Liu, Yih-Chiao J.; Chiang, Winston

    2011-01-01

    This innovation can be run as a standalone network application on any computer in a networked environment. This design can be configured to control one or more routers (one instance per router), and can also be configured to listen to a policy server over the network to receive new policies based on the policy- based network management technology. The Router Agent Technology transforms the received policies into suitable Access Control List syntax for the routers it is configured to control. It commits the newly generated access control lists to the routers and provides feedback regarding any errors that were faced. The innovation also automatically generates a time-stamped log file regarding all updates to the router it is configured to control. This technology, once installed on a local network computer and started, is autonomous because it has the capability to keep listening to new policies from the policy server, transforming those policies to router-compliant access lists, and committing those access lists to a specified interface on the specified router on the network with any error feedback regarding commitment process. The stand-alone application is named RouterAgent and is currently realized as a fully functional (version 1) implementation for the Windows operating system and for CISCO routers.

  3. Foreign cooperative technology development and transfer

    International Nuclear Information System (INIS)

    Schassburger, R.J.; Robinson, R.A.

    1988-01-01

    It is the policy of the US Department of Energy (DOE) that, in pursuing the development of mined geologic repositories in the United States, the waste isolation program will continue to actively support international cooperation and exchange activities that are judged to be in the best interest of the program and in compliance with the Nuclear Waste Policy Act of 1982, Sec. 223. Because there are common technical issues and because technology development often requires large expenditures of funds and dedication of significant capital resources, it is advantageous to cooperate with foreign organizations carrying out similar activities. The DOE's Office of Civilian Radioactive Waste Management is working on cooperative nuclear waste isolation technology development programs with the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA), Canada's Atomic Energy of Canada, Limited (AECL), Sweden, Switzerland, and the Federal Republic of Germany. This paper describes recent technology results that have been obtained in DOE's foreign cooperative programs. Specific technology development studies are discussed for cooperative efforts with Canada, OECD/NEA, and a natural analog project in Brazil

  4. The process for technology transfer in Baltimore

    Science.gov (United States)

    Golden, T. S.

    1978-01-01

    Ingredients essential for a successful decision process relative to proper technological choices for a large city were determined during four years of experience in the NASA/Baltimore Applications Project. The general approach, rationale, and process of technology transfer are discussed.

  5. A proactive transfer policy for critical patient flow management.

    Science.gov (United States)

    González, Jaime; Ferrer, Juan-Carlos; Cataldo, Alejandro; Rojas, Luis

    2018-02-17

    Hospital emergency departments are often overcrowded, resulting in long wait times and a public perception of poor attention. Delays in transferring patients needing further treatment increases emergency department congestion, has negative impacts on their health and may increase their mortality rates. A model built around a Markov decision process is proposed to improve the efficiency of patient flows between the emergency department and other hospital units. With each day divided into time periods, the formulation estimates bed demand for the next period as the basis for determining a proactive rather than reactive transfer decision policy. Due to the high dimensionality of the optimization problem involved, an approximate dynamic programming approach is used to derive an approximation of the optimal decision policy, which indicates that a certain number of beds should be kept free in the different units as a function of the next period demand estimate. Testing the model on two instances of different sizes demonstrates that the optimal number of patient transfers between units changes when the emergency patient arrival rate for transfer to other units changes at a single unit, but remains stable if the change is proportionally the same for all units. In a simulation using real data for a hospital in Chile, significant improvements are achieved by the model in key emergency department performance indicators such as patient wait times (reduction higher than 50%), patient capacity (21% increase) and queue abandonment (from 7% down to less than 1%).

  6. IVF policy and global/local politics: the making of multiple-embryo transfer regulation in Taiwan.

    Science.gov (United States)

    Wu, Chia-Ling

    2012-08-01

    This paper analyzes the regulatory trajectory of multiple-embryo transfer in in-vitro fertilization (IVF) in Taiwan. Taking a latecomer to policy-making as the case, it argues the importance of conceptualizing the global/local dynamics in policy-making for assisted reproductive technology (ART). The conceptual framework is built upon recent literature on standardization, science policy, and global assemblage. I propose three interrelated features that reveal the "global in the local": (1) the power relationships among stakeholders, (2) the selected global form that involved actors drew upon, and (3) the re-contextualized assemblage made of local networks. Data included archives, interviews, and participant observation. In different historical periods the specific stakeholders selected different preferred global forms for Taiwan, such as Britain's code of ethics in the 1990s, the American guideline in the early 2000s, and the European trend in the mid-2000s. The global is heterogeneous. The failure to transfer the British regulation, the revision of the American guideline by adding one more embryo than it specified, and the gap between the cited European trend and the "no more than four" in Taiwan's 2007 Human Reproduction Law all show that the local network further transforms the selected global form, confining it to rhetoric only or tailoring it to local needs. Overall, Taiwanese practitioners successfully maintained their medical autonomy to build a 'flexible standardization'. Multiple pregnancy remains the most common health risk of IVF in Taiwan. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Transfer of Canadian nuclear regulatory technology

    International Nuclear Information System (INIS)

    Harvie, J.D.

    1985-10-01

    This paper discusses the Canadian approach to the regulation of nuclear power reactors, and its possible application to CANDU reactors in other countries. It describes the programs which are in place to transfer information on licensing matters to egulatory agencies in other countries, and to offer training on nuclear safety regulation as it is practised in Canada. Experience to date in the transfer of regulatory technology is discussed. 5 refs

  8. Legislation on university technology transfer and research management 2012

    International Nuclear Information System (INIS)

    2012-02-01

    This book deals with legislation on university technology transfer in 2012, which includes invention promotion act, legislation on technology transfer and promotion of industrialization, legislation on industrial education and industrial cooperation, and special legislation on venture business. It lists the legislation related research and development by government department : fundamental law of scientific technique, law on evaluation and management of domestic research development business, national science and technology council and the patent office.

  9. Green technological change. Renewable energies, policy mix and innovation. Results of the GRETCHEN project on the impact of policy mixes on the technological and structural change in renewable energy electricity production technologies in Germany

    International Nuclear Information System (INIS)

    Rogge, Karoline S.; Breitschopf, Barbara; Mattes, Katharina; Cantner, Uwe; Graf, Holger; Herrmann, Johannes; Kalthaus, Martin; Lutz, Christian; Wiebe, Kirsten

    2015-09-01

    The report on the GRETCHEN project that was concerned with the impact of policy mixes on the technological and structural change in renewable energy electricity production technologies in Germany covers the following issues: market and technology development of renewable energy electricity production technologies; the policy mix for renewable electricity production technologies, innovative impact of the policy mix; subordinate conclusions for politics and research.

  10. A southern region conference on technology transfer and extension

    Science.gov (United States)

    Sarah F. Ashton; William G. Hubbard; H. Michael Rauscher

    2009-01-01

    Forest landowners and managers have different education and technology transfer needs and preferences. To be effective it is important to use a multi-faceted science delivery/technology transfer program to reach them. Multi-faceted science delivery programs can provide similar content over a wide range of mechanisms including printed publications, face-to-face...

  11. US public policy and emerging technologies: the case of solar energy

    International Nuclear Information System (INIS)

    Rahm, Dianne

    1993-01-01

    Public policy is generally believed to have an effect on the emergence and rate of diffusion of technology. Solar energy technologies are no exception. This article explores the relationship between a variety of United States (US) public policies and the emergence and diffusion of solar energy technologies using data gathered as part of the National Solar Energy Policy Study. The article presents findings regarding the status and policy position of US renewable energy research and development (R and D) and manufacturing organizations. Specific policy options which could be adopted to speed emergence and diffusion of solar energy technology products are discussed. (Author)

  12. 78 FR 42945 - Health Information Technology Policy Committee Vacancy

    Science.gov (United States)

    2013-07-18

    ... GOVERNMENT ACCOUNTABILITY OFFICE Health Information Technology Policy Committee Vacancy AGENCY... American Recovery and Reinvestment Act of 2009 (ARRA) established the Health Information Technology Policy... its 20 members. ARRA requires that one member have expertise in health information privacy and...

  13. Near-term technology policies for long-term climate targets--economy wide versus technology specific approaches

    International Nuclear Information System (INIS)

    Sanden, B.A.; Azar, Christian

    2005-01-01

    The aim of this paper is to offer suggestions when it comes to near-term technology policies for long-term climate targets based on some insights into the nature of technical change. We make a distinction between economy wide and technology specific policy instruments and put forward two key hypotheses: (i) Near-term carbon targets such as the Kyoto protocol can be met by economy wide price instruments (carbon taxes, or a cap-and-trade system) changing the technologies we pick from the shelf (higher energy efficiency in cars, buildings and industry, wind, biomass for heat and electricity, natural gas instead of coal, solar thermal, etc.). (ii) Technology specific policies are needed to bring new technologies to the shelf. Without these new technologies, stricter emission reduction targets may be considered impossible to meet by the government, industry and the general public, and therefore not adopted. The policies required to bring these more advanced technologies to the shelf are more complex and include increased public research and development, demonstration, niche market creation, support for networks within the new industries, standard settings and infrastructure policies (e.g., when it comes to hydrogen distribution). There is a risk that the society in its quest for cost-efficiency in meeting near-term emissions targets, becomes blindfolded when it comes to the more difficult, but equally important issue of bringing more advanced technologies to the shelf. The paper presents mechanisms that cause technology look in, how these very mechanisms can be used to get out of the current 'carbon lock-in' and the risk with premature lock-ins into new technologies that do not deliver what they currently promise. We then review certain climate policy proposals with regards to their expected technology impact, and finally we present a let-a-hundred-flowers-bloom strategy for the next couple of decades

  14. Stormwater management the American way: why no policy transfer?

    Directory of Open Access Journals (Sweden)

    David P. Dolowitz

    2015-09-01

    Full Text Available From the 1940s until the 1980s the federal government gradually extended its authority over the structure of the American stormwater management system. The goal was to improve the water quality of the nation’s waterways by regulating the pollution loads entering the system, primarily through the use of gray infrastructure. However during the1980s the Environmental Protection Agency (EPA began to explore new approaches toward the regulation of stormwater pollution. Instead of focusing only on gray mechanisms, the EPA began developing and promoting the use of low impact development (LID techniques as an element municipal governments could use to achieve their total maxim daily load of pollutants allowable under the National Pollutant Discharge Elimination System permit system. In light of the incentive offered by the EPA for the use of LID in the management of stormwater, it should be expected to provide a perfect area to observe policy transfer between federal, state and local governments; but it does not. This article will establish why the EPA began promoting a green approach to stormwater management and why this has not led to a widespread transfer of best management practices in the ways the literatures associated with federalism and policy transfer would suggest.

  15. Evolutionary Policy Transfer and Search Methods for Boosting Behavior Quality: RoboCup Keep-Away Case Study

    Directory of Open Access Journals (Sweden)

    Geoff Nitschke

    2017-11-01

    Full Text Available This study evaluates various evolutionary search methods to direct neural controller evolution in company with policy (behavior transfer across increasingly complex collective robotic (RoboCup keep-away tasks. Robot behaviors are first evolved in a source task and then transferred for further evolution to more complex target tasks. Evolutionary search methods tested include objective-based search (fitness function, behavioral and genotypic diversity maintenance, and hybrids of such diversity maintenance and objective-based search. Evolved behavior quality is evaluated according to effectiveness and efficiency. Effectiveness is the average task performance of transferred and evolved behaviors, where task performance is the average time the ball is controlled by a keeper team. Efficiency is the average number of generations taken for the fittest evolved behaviors to reach a minimum task performance threshold given policy transfer. Results indicate that policy transfer coupled with hybridized evolution (behavioral diversity maintenance and objective-based search addresses the bootstrapping problem for increasingly complex keep-away tasks. That is, this hybrid method (coupled with policy transfer evolves behaviors that could not otherwise be evolved. Also, this hybrid evolutionary search was demonstrated as consistently evolving topologically simple neural controllers that elicited high-quality behaviors.

  16. 77 FR 27774 - Health Information Technology Policy Committee Vacancy

    Science.gov (United States)

    2012-05-11

    ... GOVERNMENT ACCOUNTABILITY OFFICE Health Information Technology Policy Committee Vacancy AGENCY... American Recovery and Reinvestment Act of 2009 (ARRA) established the Health Information Technology Policy.... ADDRESSES: GAO: [email protected] . GAO: 441 G Street NW., Washington, DC 20548. FOR FURTHER INFORMATION...

  17. What Motivates Brazilian Academic Researchers to Transfer Technology?

    Directory of Open Access Journals (Sweden)

    Lisiane Closs

    2013-12-01

    Full Text Available This study investigated what motivates Brazilian academic researchers to get involved in University-Industry Technology Transfer (UITT and deterrents to contributing to this process. The research relied on interviews with experienced academic scientists and managers from four universities in Brazil. Determination, persistence and entrepreneurship, related to motivational types Self-direction and Stimulation, were prominent. Hedonism, Achievement and Power - highlighting a shift in their professional identity - were also observed. Universalism type involved opening career opportunities, awakening and maintaining the interest of students. The major motivational goals were: generate resources, solve problems, professional challenge, personal gains, personal gratification, academic prestige, competition, and solving problems of society. Factors that discouraged researchers were: time required for UITT, lack of incentive, innovation environment, and fear of contravening university rules, among others. Knowledge of motivational profiles of academic scientists favors the development of incentive policies and programs for UITT, helping to attract and retain qualified researchers at Brazilian universities.

  18. Why not stop transfer of technology

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, J M

    1979-01-01

    One of the crucial themes in the dialogue between rich and poor nations is the nature and volume of the transfer of technology from the industrialized to the developing world. In contrast to the demand of overcoming the technology gap, Prof. Baumer argues that the postulate should rather be formulated as reduction of technological dependence. Industrialized countries say without technology, there is no growth; they say modern technology is the right technology. They are indeed against a cutting of costs and basically against simplifying the getting hold of their technology. Of prime importance is the development of technology at the site of the problems themselves. Problems can be solved in technically quite different ways - from simple to very complicated - and drawer-technology is only in the rarest cases the best solution. (MCW)

  19. A hypertext-based Internet-assessable database for the MSFC Technology Transfer Office

    Science.gov (United States)

    Jackson, Jeff

    1994-01-01

    There exists a continuing need to disseminate technical information and facilities capabilities from NASA field centers in an effort to promote the successful transfer of technologies developed with public funds to the private sector. As technology transfer is a stated NASA mission, there exists a critical need for NASA centers to document technology capabilities and disseminate this information on as wide a basis as possible. Certainly local and regional dissemination is critical, but global dissemination of scientific and engineering facilities and capabilities gives NASA centers the ability to contribute to technology transfer on a much broader scale. Additionally, information should be disseminated in a complete and rapidly available form. To accomplish this information dissemination, the unique capabilities of the Internet are being exploited. The Internet allows widescale information distribution in a rapid fashion to aid in the accomplishment of technology transfer goals established by the NASA/MSFC Technology Transfer Office. Rapid information retrieval coupled with appropriate electronic feedback, allows the scientific and technical capabilities of Marshall Space Flight Center, often unique in the world, to be explored by a large number of potential benefactors of NASA (or NASA-derived) technologies. Electronic feedback, coupled with personal contact with the MSFC Technology Transfer Office personnel, allows rapid responses to technical requests from industry and academic personnel as well as private citizens. The remainder of this report gives a brief overview of the Mosaic software and a discussion of technology transfer office and laboratory facilities data that have been made available on the Internet to promote technology transfer.

  20. JAERI Nuclear Engineering School and technology transfer

    International Nuclear Information System (INIS)

    Nishimura, Kazuaki; Kawaguchi, Chiyoji

    1978-01-01

    A method is introduced to evaluate the degree of nuclear technology transfer; that is, the output powers of Japanese nuclear reactors constructed in these 20 years are chronologically plotted in a semi-log figure. All reactors plotted are classified into imported and domestic ones according to a value of domestication factor. A space between two historical trajectories of reactor construction may be interpreted as one of the measures indicating the degree of nuclear technology transfer. In connection with this method, historical change of educational and training courses in Nuclear Engineering School of Japan Atomic Energy Research Institute is reviewed in this report. (author)

  1. Polymer solidification: Technology transfer to DOE and industry

    International Nuclear Information System (INIS)

    Kalb, P.D.; Strand, G.

    1994-01-01

    In keeping with the congressional mandate for technology transfer between federal research and development institutions and U.S. industry, the Brookhaven National Laboratory (BNL) Environmental and Waste Technology Center is pursuing industrial partnership with industry. These efforts, supported by the Department of Energy's Office of Environmental Restoration and Waste Management involve both the transfer of BNL developed technology to industry and the use of commercially developed technologies as part of an integrated waste treatment system. A Cooperative Research and Development Agreement has been established with VECTRA Technologies, Inc. (formerly Pacific Nuclear), a U.S. company that provides waste treatment and other services to the commercial nuclear power industry. The agreement involves investigation of polyethylene encapsulation for treatment of ion exchange resin wastes. In addition, other avenues of cooperation are being investigated including use of a VECTRA Technologies volume reduction pre-treatment process for use with the polyethylene technology in treating aqueous radioactive, hazardous, and mixed wastes

  2. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  3. The Competence Accumulation Process in the Technology Transference Strategy

    Directory of Open Access Journals (Sweden)

    André Silva de Souza

    2008-04-01

    Full Text Available The present article evaluates and measures the technological competence accumulation in an automation area enterprise to distribution centers, Knapp Sudamérica Logistic and Automation Ltd, in the interval of the technology transference process previous period (1998-2001 and during the technology transference process(2002-2005. Therefore, based on an individual case study, the study identified the technology transference strategy and mechanism accorded between the head office and the branch office, the technological functions and activities developed by the receiver and, at last, the critical factors present in this process. The echnological competences accumulation exam was accomplished based on an analytical structure existent in the literature that was adapted to the researched segment analysis. The obtained results showed that the planed, organized, controlled and continuous effort to generating and disseminating knowledge allowed the enterprise to speed up the accumulation process of technological competences promoting the converting of this process from individual level to the organizational one: besides, it also allowed the identification of barriers and facilitators involved in this process.

  4. Determinants of International Technology Transfer: an Empirical Analysis of the Enterprise Europe Network

    Directory of Open Access Journals (Sweden)

    Carina Araújo

    2014-09-01

    Full Text Available This paper explores the key factors that foster technology transfer within the triad university-industry-government in an international context, i.e., the Enterprise Europe Network (EEN. Based on 71 technological Partnership Agreements (PAs, estimation results indicate that PAs associated to partners that provide their collaborators with the appropriate training in technology transfer-related issues, present substantial past experience in international or technological projects, and participate in extensive networks, are those that achieve better performances in terms of international technology transfer. High levels of formal schooling per se are not a key determinant of international technology transfer; the critical factor is highly educated human resources who receive complementary training in technology transfer issues.

  5. The Impact of U.S. Export Control and Technology Transfer Regime on the Joint Strike Fighter (JSF) Project'A UK Perspective

    OpenAIRE

    David Moore; Peter Ito; Stuart Young; Kevin Burgess; Peter Antill

    2011-01-01

    Proceedings Paper (for Acquisition Research Program) The research assessed the international impact of the U.S. export control and technology transfer regime, with a focus on the UK experience with the U.S. requirements as they relate to the Joint Strike Fighter (JSF) and the impact on logistical support for the JSF fleet. UK government and industry representatives indicated agreement with the goals of U.S. policy, skepticism regarding the impact of those policies on effective project man...

  6. 77 FR 46805 - Small Business Innovation Research Program Policy Directive

    Science.gov (United States)

    2012-08-06

    ... Vol. 77 Monday, No. 151 August 6, 2012 Part II Small Business Administration 13 CFR Chapter I Small Business Innovation Research Program Policy Directive; Small Business Technology Transfer Program Policy Directive; Small Business Innovation Research (SBIR) Program and Small Business Technology...

  7. Distance technology transfer course content development.

    Science.gov (United States)

    2013-06-01

    The Illinois Department of Transportation (IDOT) offers multiple technology transfer courses for engineering, : project design, and safety training for state and local agency personnel. These courses are often essential to the : agency mission. Becau...

  8. Introduction of Capacitive Power Transfer Technology

    OpenAIRE

    Hattori, Reiji

    2017-01-01

    Wireless power transfer (WPT) technology is expected for eliminating troublesomeness of connecting an electronic cable. The development of WPT technology has a long history since Nikola Tesla built up Wardenclyffe Tower located in Long Island, New York for developing a WPT system in the early 1980’s. But it cannot be said that WPT technology is widely spread in a current human life space enough. The reason is that it cannot find the specific application which only WPT can achieve yet. There a...

  9. Early Learning and Educational Technology Policy Brief

    Science.gov (United States)

    Lee, Joan

    2016-01-01

    Recognizing the growth of technology use in early learning settings, the U.S. Department of Education and U.S. Department of Health and Human Services collaborated in the development of the "Early Learning and Educational Technology Policy Brief" to promote developmentally appropriate use of technology in homes and early learning…

  10. Introduction to the workshop on technology transfer in software engineering

    NARCIS (Netherlands)

    Harrison, Warren; Wieringa, Roelf J.

    The goal of the Workshop on Technology Transfer in Software Engineering is to increase our understanding of technology transfer in software engineering, and to learn from successful case studies. We wanted to bring researchers and practitioners together to create an inventory of problems in software

  11. Technology Transfer: From the Research Bench to Commercialization

    Directory of Open Access Journals (Sweden)

    Gail A. Van Norman, MD

    2017-02-01

    Full Text Available Summary: Progress in medicine hinges on the successful translation of basic science discoveries into new medical devices, diagnostics, and therapeutics. “Technology transfer” is the process by which new innovations flow from the basic research bench to commercial entities and then to public use. In academic institutions, intellectual property rights do not usually fall automatically to the individual inventor per se, but most often are the property of the institution. Technology transfer offices are tasked with seeing to it that such intellectual property rights are properly managed and commercialized. This 2-part series explores the technology transfer process from invention to commercialization. Part 1 reviews basic aspects of intellectual property rights, primarily patents and copyrights. Part 2 will discuss the ways in which inventions become commercialized through startup companies and licensing arrangements with industry players. Key Words: copyright, intellectual property, patent, technology transfer

  12. Robot, Eye, and ROI: Technology Transformation Versus Technology Transfer

    OpenAIRE

    Sacerdoti, Earl

    1985-01-01

    I want to discuss two aspects of technology transfer. First I've been asked to present a brief perspective on how AI is fitting into a particular application area: Industrial automation. Then I want to give my two cents worth on AI as a business activity.

  13. Technological transfer to the education

    Directory of Open Access Journals (Sweden)

    Enrique Melamed-Varela

    2016-12-01

    Full Text Available One of the most efficient strategies related to generation of differentiation factors which contribute to stability and sustainability in time as well as the  momentum of technological development in different territories is represented by the growth in scientific, technological and innovative development based on the structure of economic systems. Education is considered a fundamental element because it is the essence in the formation and fortification of the capacities, skills and competencies in human capital. This is needed for the management of research projects, development and innovation that will contribute to technology transfer and the progress of scientific knowledge that is encouraged from the inside of the organizational structures of the national economic sectors One of the most influential and conceptual tendencies of economic thinking in the countries (Gomez, Ibagón& Forero, 2014 are represented by the theories based on endogenous development in Latin America.  In addition,  the scientific development of a nation brewing from a process of internal learning and strengthening of the technical and technological capabilities that support the processes of education and research as generators of knowledge (Amar &Diazgranados, 2006, this principle is supported by Mazzucato´s (2014 theory,  who considers states as  capable of generating a platform for enabling capabilities of resources for the scientific and technological development entrepreneurs ;fact that are continuously supported by education. Starting from this series of concepts, the following question arises: do different levels of modern educational institutions use technological access? It must be taken into account that the scientific and technological progress results of the research, development and innovation (RDI is not indifferent for educational organizations, an activity that is mostly awarded to the universities and technological development centers (Ortiz, 2012

  14. Educational Policy and Technological Development in Africa: An X ...

    African Journals Online (AJOL)

    Technological development is a basic artery through which nations strive to attain true independence. However, the level of technological development is dependent on the system, policy and philosophy of education that is dominant or prevalent in such a country. Any nation that lacks a sound system or policy of education ...

  15. Technology policy for climate change mitigation: a transatlantic perspective

    International Nuclear Information System (INIS)

    2004-01-01

    This workshop was the second climate policy conference jointly organized by RFF and IFRI in Paris. (The first one, ''How to Make Progress Post-Kyoto?'', was held on March 19, 2003). This Summary Paper is divided into two parts: The first part presents short summaries of all the presentations at the workshop (rationale and past experience in technology policies, the challenges and policy responses of the climate friendly technologies). The second part, which is an edited version of the closing remarks by Pierre Noel (Ifri), highlights some of the policy lessons that emerged from the workshop. (A.L.B.)

  16. Technology policy for climate change mitigation: a transatlantic perspective

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This workshop was the second climate policy conference jointly organized by RFF and IFRI in Paris. (The first one, ''How to Make Progress Post-Kyoto?'', was held on March 19, 2003). This Summary Paper is divided into two parts: The first part presents short summaries of all the presentations at the workshop (rationale and past experience in technology policies, the challenges and policy responses of the climate friendly technologies). The second part, which is an edited version of the closing remarks by Pierre Noel (Ifri), highlights some of the policy lessons that emerged from the workshop. (A.L.B.)

  17. Transfer of nuclear technology: A designer-contractor's perspective

    International Nuclear Information System (INIS)

    See Hoye, D.; Hedges, K.R.; Hink, A.D.

    2000-01-01

    The paper presents the successful Canadian experience in developing a nuclear power technology - CANDU - and exporting it. Consideration is paid to technology that has to be transferred, receiver country objectives and mechanisms and organizational framework. (author)

  18. NREL Solar Cell Wins Federal Technology Transfer Prize | News | NREL

    Science.gov (United States)

    Solar Cell Wins Federal Technology Transfer Prize News Release: NREL Solar Cell Wins Federal Technology Transfer Prize May 7, 2009 A new class of ultra-light, high-efficiency solar cells developed by the U.S. Department of Energy's National Renewable Energy Laboratory has been awarded a national prize

  19. Blending addiction research and practice: strategies for technology transfer.

    Science.gov (United States)

    Condon, Timothy P; Miner, Lucinda L; Balmer, Curtis W; Pintello, Denise

    2008-09-01

    Consistent with traditional conceptions of technology transfer, efforts to translate substance abuse and addiction research into treatment practice have typically relied on the passive dissemination of research findings. The large gap between addiction research and practice, however, indicates that there are many barriers to successful technology transfer and that dissemination alone is not sufficient to produce lasting changes in addiction treatment. To accelerate the translation of research into practice, the National Institute on Drug Abuse launched the Blending Initiative in 2001. In part a collaboration with the Substance Abuse and Mental Health Services Administration/Center for Substance Abuse Treatment's Addiction Technology Transfer Center program, this initiative aims to improve the development, effectiveness, and usability of evidence-based practices and reduce the obstacles to their timely adoption and implementation.

  20. Technology and knowledge transfer for development

    CSIR Research Space (South Africa)

    Chakwizira, J

    2008-01-01

    Full Text Available policy makers, higher education and research (HER) communities, production entrepreneurs, funding agencies and consumers associations should be given priority. More emphasis on technological education and training as well as on the ability to acquire... Universities, Higher Education and Research & Development Institutions, Ministries of Education, Science & Technology in collaboration and partnership with other Ministries such as Ministry of Health, Ministry of Environment & Tourism, Ministry of Mining...

  1. NASA programs in technology transfer and their relation to remote sensing education

    Science.gov (United States)

    Weinstein, R. H.

    1980-01-01

    Technology transfer to users is a central feature of NASA programs. In each major area of responsibility, a variety of mechanisms was established to provide for this transfer of operational capability to the proper end user, be it a Federal agency, industry, or other public sector users. In addition, the Technology Utilization program was established to cut across all program areas and to make available a wealth of 'spinoff' technology (i.e., secondary applications of space technology to ground-based use). The transfer of remote sensing technology, particularly to state and local users, presents some real challenges in application and education for NASA and the university community. The agency's approach to the transfer of remote sensing technology and the current and potential role of universities in the process are considered.

  2. Egypt's policy concerning food irradiation research and technology

    International Nuclear Information System (INIS)

    Roushdy, H.M.

    1978-01-01

    The paper reviews current research in Egypt in the field of radiation preservation of food to accumulate the necessary data for drafting Egypts' policy towards prospects for application. Research activities in Egypt have been oriented to solving problems of local economic importance, e.g. inhibition of sprouting in potatoes, onions and garlic, extension of shelf-life of vegetables and fruits, disinfestation of stored grains and grain products, preservation of meat, meat products, fish, fats and oils, and elimination of parasites and microorganisms from animal feed. Extensive studies have been performed to determine the lowest radiation level required for short-term storage, changes in organoleptic, physical, chemical and microbiological values of irradiated food and wholesomeness studies to give evidence of the safety of irradiated food for human consumption. The paper summarizes Egypt's national planning for the transfer of such new technology, the establishment of the National Centre for Radiation Research and Technology to build up the national infrastructure for food irradiation research and application, and the formation of a Supreme Committee for Radiation Preservation of Food. Finally, the paper also surveys the locally available irradiators and correlates the design, capacity and capital cost against the actual needs of Egypt and the experience acquired. (author)

  3. Space assets, technology and services in support of energy policy

    Science.gov (United States)

    Vasko, C. A.; Adriaensen, M.; Bretel, A.; Duvaux-Bechon, I.; Giannopapa, C. G.

    2017-09-01

    Space can be used as a tool by decision and policy makers in developing, implementing and monitoring various policy areas including resource management, environment, transport, security and energy. This paper focuses on the role of space for the energy policy. Firstly, the paper summarizes the European Union's (EU) main objectives in energy policy enclosed in the Energy Strategy 2020-2030-2050 and demonstrates how space assets can contribute to achieving those objectives. Secondly, the paper addresses how the European Space Agency (ESA) has established multiple initiatives and programs that directly finance the development of space assets, technology and applications that deliver services in support of the EU energy policy and sector. These efforts should be continued and strengthened in order to overcome identified technological challenges. The use of space assets, technology and applications, can help achieve the energy policy objectives for the next decades.

  4. Public policy and clean technology promotion. The synergy between environmental economics and evolutionary economics of technological change

    Energy Technology Data Exchange (ETDEWEB)

    Rio Gonzalez, Pablo del [Universidad de Castilla-La Mancha, Toledo (Spain). Facultad de Ciencias Juridicas y Sociales de Toledo

    2004-07-01

    Obstacles to clean technology development, innovation and diffusion are not only related to the lack of internalisation of environmental externalities in production costs, as defended by traditional environmental economics. Empirical studies show that many other obstacles prevent these technologies from penetrating the market. The relevance of these obstacles differs between sectors, firms and technologies. Consequently, a more focused approach is proposed. By taking a look at the specific, real-world barriers to clean technologies, a policy framework as well as some specific measures that target those barriers are suggested. These instruments are useful and complementary in a policy framework that, in addition to specific instruments, takes into account the influence of the style of regulation and the configuration of actors in the environmental technological change process. This paper proposes a coherent framework integrating environmental policy and technology policy instruments. This is deemed necessary in the technological transition to sustainable development. (author)

  5. [Nursing performance in the policy transfer of directly observed treatment of tuberculosis].

    Science.gov (United States)

    Souza, Káren Mendes Jorge de; Sá, Lenilde Duarte de; Silva, Laís Mara Caetano da; Palha, Pedro Fredemir

    2014-10-01

    Analyzing the policy transfer of directly observed treatment of tuberculosis from the perspective of nursing. This is a descriptive study with qualitative approach, which had 10 nurses of the Family Health Strategy in São Paulo as subjects. The interviews were carried out between May and June 2013, and were adopted the technique of thematic content analysis and the referential of policy transfer. On the signification of this treatment, are related the senses of disciplinary monitoring, the bond and approximation to the context of patients' lives. Operationally, nurses, community health agents and nursing technicians stand out as agents of implementation of this policy, developing multiple actions of user embracement. The nurse is evidenced as an educator in health, leader in the family health team, and capable of creating emotional bond with users. It was found that the innovations proposed in the treatment are incipient in the daily work of nurses.

  6. Ethiopian Journal of Science and Technology: Editorial Policies

    African Journals Online (AJOL)

    Ethiopian Journal of Science and Technology: Editorial Policies ... Science and Technology (EJST) publishes high quality original research articles, reviews, short communications, ... Professor Afework Bekele, Addis Ababa University, Ethiopia.

  7. Policy and innovation: Nanoenergy technology in the USA and China

    International Nuclear Information System (INIS)

    Liu, Na; Guan, JianCheng

    2016-01-01

    The USA is a leading country while China is an up-and-coming one in nanotechnology. We carried out a cross-country comparative study on policy and innovation of the two countries in subset nanoenergy field. They both created favorable policy environments for nanotechnology involving applications of nanotechnology in the energy sector. However, Chinese policy deployments for nanotechnology lack coordinated arrangements and effective assessment mechanisms. China performs better than the USA in technological quantity, but weaker in technological influence. The USA expresses an industry-oriented model in nanoenergy technological research and development, but China exhibits a university-and-institute-oriented model. Interorganizational collaboration relationships in the two countries are both still very rare and have huge development space. They both have a long way to go in converting their technological achievements into commercial products, especially China. Finally, we provide the policy implications of this study. In particular, the Chinese government should strengthen its efforts in policies by changing the national S&T evaluation system to set up the basic idea that quality is better than quantity in order to raise the original innovation motivations of innovators. - Highlights: •We compare development status of nanoenergy technologies between China and the USA. •We mainly focus on their policies, innovation performance and pattern in nanoenergy. •Differences are observed in nanoenergy technologies developed in these two countries. •We propose their endeavor directions in nanoenergy based on this study.

  8. Key Findings and Recommendations for Technology Transfer at the ITS JPO

    Science.gov (United States)

    2011-03-18

    This report provides key findings and recommendations for technology transfer at the Intelligent Transportation Systems Joint Program Office (ITS JPO) based upon an assessment of best practices in technology transfer in other industries, such as nati...

  9. 76 FR 73632 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-11-29

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Request for Nominations to the National Advisory Council for Environmental Policy and Technology (NACEPT). SUMMARY: The U.S. Environmental... appointment to the National Advisory Council for Environmental Policy and Technology (NACEPT). Vacancies are...

  10. 77 FR 39705 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-07-05

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Advisory Committee... meeting of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  11. 76 FR 1431 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-01-10

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  12. 75 FR 52941 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2010-08-30

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  13. 76 FR 24481 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-05-02

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  14. 76 FR 68183 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-11-03

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management issues. NACEPT...

  15. 77 FR 1931 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-01-12

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Advisory Committee... meeting of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  16. 75 FR 38810 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2010-07-06

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  17. 77 FR 3475 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-01-24

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of advisory committee... teleconference of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  18. 76 FR 37112 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2011-06-24

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of meeting. SUMMARY... of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology, and management...

  19. Waste minimization and pollution prevention technology transfer : the Airlie House Projects

    International Nuclear Information System (INIS)

    Gatrone, R.; McHenry, J.; Myron, H.; Thout, J. R.

    1998-01-01

    The Airlie House Pollution Prevention Technology Transfer Projects were a series of pilot projects developed for the US Department of Energy with the intention of transferring pollution prevention technology to the private sector. The concept was to develop small technology transfer initiatives in partnership with the private sector. Argonne National Laboratory developed three projects: the microscale chemistry in education project, the microscale cost benefit study project, and the Bethel New Life recycling trainee project. The two microscale chemistry projects focused on introducing microscale chemistry technologies to secondary and college education. These programs were inexpensive to develop and received excellent evaluations from participants and regulators. The Bethel New Life recycling trainee project provided training for two participants who helped identify recycling and source reduction opportunities in Argonne National Laboratory's solid waste stream. The pilot projects demonstrated that technology transfer initiatives can be developed and implemented with a small budget and within a short period of time. The essential components of the pilot projects were identifying target technologies that were already available, identifying target audiences, and focusing on achieving a limited but defined objective

  20. A practical approach to the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Segerberg, F.

    1978-01-01

    The paper deals specifically with the transfer of light-water reactor technology to a developing country. The technology transfer scheme presented assumes that Sweden is the supplier of this technology. The basis of the proposed approach is that hardware deliveries for nuclear power plants in the recipient country should constitute an activity in parallel with the general technology transfer. It is pointed out that the developing countries form a very heterogeneous group with respect to industrial capability. On the other hand the supplier nations are not a homogeneous group. Sweden's most relevant characteristics as supplier nation can be summarized under the following headings: (i) fairly small and highly industrialized country; (ii) concentration on nuclear power to cover increasing electricity demands; (iii) independent reactor technology; (iv) well-established infrastructure with regard to component manufacturing; (v) political neutrality. It follows that each combination of two countries constitutes a unique example. The nuclear technology transfer schemes must consequently be extremely flexible. The paper outlines a 'modular' system. This concept means that the supplier offers a great variety of independent courses, training opportunities, facilities etc. which can then be combined into a package meeting the wishes of the recipient nation. The components in a Swedish package of this kind are elaborated. The paper ends with the general conclusion that Sweden has so far been successful in combining high national ambitions with limited manpower and limited financial resources. The underlying efficiency and flexibility will hopefully make Sweden an attractive partner for developing countries. (author)

  1. The Transfer of HRM Policies and Practices in American Multinational Hotels in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Amal Hatem Alkhaldi

    2014-12-01

    Full Text Available Global competition in the international business environment has pushed companies to achieve competitive advantage through mergers, acquisitions and through locating their subsidiaries in less developed counties for cost effectiveness. Consequently, the competitive pressure has increased the significance of human resource management (HRM in multinational companies (MNCs, and MNCs have recognised the significance of the transfer HRM process across borders. This study examines the transfer of HRM policies and practices of US MNCs to their subsidiaries in Saudi Arabia. The aim of the study is to determine the extent to which US MNCs transfer HRM policies and practices from their Headquarters to their subsidiaries in Saudi Arabia; and identify the factors that facilitate and inhibit HRM transfer. The paper is based on an investigation of the interaction between home-country and host-country effects in determining HRM policies and practices in MNCs in the context of the Middle East. The study adopts a mixed methods approach of documentary analysis, focus group interviews of employees and in depth interviews of key informants in four subsidiaries of US owned international hotel chains located in Riyadh, Saudi Arabia.

  2. 77 FR 8859 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2012-02-15

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Cancellation and Rescheduling of National Advisory Council for Environmental Policy and Technology (NACEPT) Committee Meeting. SUMMARY: EPA... Environmental Policy and Technology (NACEPT) Meeting to be held at the EPA Potomac Yard Conference Center, One...

  3. 78 FR 47316 - National Advisory Council for Environmental Policy and Technology

    Science.gov (United States)

    2013-08-05

    ... and Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Request for nominations to the National Advisory Council for Environmental Policy and Technology (NACEPT). SUMMARY: The U.S. Environmental... Environmental Policy and Technology (NACEPT). Vacancies are anticipated to be filled by February, 2014. Sources...

  4. Rationales for technology-specific RES support and their relevance for German policy

    International Nuclear Information System (INIS)

    Gawel, Erik; Lehmann, Paul; Purkus, Alexandra; Söderholm, Patrik; Witte, Katherina

    2017-01-01

    In order to achieve cost-effective RES-E deployment it is often argued that technology-neutral support schemes for renewables are indispensable. Against this background, RES-E support policies making widely use of technology differentiation in remuneration settings, e.g. across the EU, are frequently criticized from a theoretical point of view. However, in this paper we provide a systematic critique of the technology neutrality concept as a foundation for designing policy support schemes in the RES-E technology field. Specifically, the main objective of the paper is to scrutinize the arguments for technology-neutrality, and discuss three conceptual arguments for why technology-specific support schemes could in fact help minimize the societal costs of reaching future RES-E targets. We also briefly address different political economy concerns, which could constrain the choice of cost-effective policy support schemes, and that have to be taken into account for economic policy advice. For empirical illustration of the key arguments we refer to the case of German RES-E policy-making. The central conclusion from this paper is that technology-specific RES-E support schemes may generate significant economic benefits, particularly if technology markets work imperfectly and in second-best policy settings with additional non-internalized market failures. - Highlights: • Three theoretical cost-effectiveness reasons for technology-specific RES-E support. • German case study to show relevance of theoretical arguments for policy-making. • Political economy constraints to technology-neutral support are demonstrated. • Technology-specific RES-E support may generate significant economic benefits.

  5. Technology Transfer: From the Research Bench to Commercialization

    Directory of Open Access Journals (Sweden)

    Gail A. Van Norman, MD

    2017-04-01

    Full Text Available Summary: Technology transfer (TT encompasses a variety of activities that move academic discoveries into the public sector. Part 1 of this 2-part series explored steps in acquisition of intellectual property (IP rights (e.g., patents and copyrights. Part 2 focuses on processes of commercialization, including the technology transfer office, project development toward commercialization, and licensing either through the establishment of startup companies (venture capital–backed or otherwise or directly to industry. In private industry, TT often occurs through the sale of IP, products, or services, but in universities, the majority of TT occurs through the licensing of IP. Key Words: commercialization, licensing, technology transfer, venture capital

  6. Are clean technology and environmental quality conflicting policy goals?

    OpenAIRE

    Brechet, Thierry; Meunier, Guy; Institut National de la Recherche Agronomique UR 1303 Alimentation et Sciences Sociales

    2012-01-01

    In this paper we analyze the effects of an environmental policy on the diffusion of a clean technology in an economy where firms compete on the output market. We show that the share of adopting firms is non-monotonic with the stringency of the environmental policy, and that the adoption of the clean technology may well increase the pollution level. We also compare the effects of an emission tax and tradable pollution permits on welfare, technology adoption, and pollution level. We show that, ...

  7. Are Clean Technology and Environmental Quality Conflicting Policy Goals?

    OpenAIRE

    Thierry Brechet; Guy Meunier

    2012-01-01

    In this paper we analyze the effects of an environmental policy on the diffusion of a clean technology in an economy where firms compete on the output market. We show that the share of adopting firms is non-monotonic with the stringency of the environmental policy, and that the adoption of the clean technology may well increase the pollution level. We also compare the effects of an emission tax and tradable pollution permits on welfare, technology adoption, and pollution level. We show that, ...

  8. Reducing multiple births in assisted reproduction technology.

    Science.gov (United States)

    Bhattacharya, Siladitya; Kamath, Mohan S

    2014-02-01

    Multiple pregnancy, a complication of assisted reproduction technology, is associated with poorer maternal and perinatal outcomes. The primary reason behind this is the strategy of replacing more than one embryo during an assisted reproduction technology cycle to maximise pregnancy rates. The solution to this problem is to reduce the number of embryos transferred during in-vitro fertilisation. The transition from triple- to double-embryo transfer, which decreased the risk of triplets without compromising pregnancy rates, was easily implemented. The adoption of a single embryo transfer policy has been slow because of concerns about impaired pregnancy rates in a fresh assisted reproduction technology cycle. Widespread availability of effective cryopreservation programmes means that elective single embryo transfer, along with subsequent frozen embryo transfers, could provide a way forward. Any such strategy will need to consider couples' preferences and existing funding policies, both of which have a profound influence on decision making around embryo transfer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Science.gov (United States)

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  10. Summary of the National Technology Transfer and Advancement Act

    Science.gov (United States)

    Provides a summary of the National Technology Transfer and Advancement Act which pomote economic, environmental, and social well-being by bringing technology and industrial innovation to the marketplace

  11. Nursing performance in the policy transfer of directly observed treatment of tuberculosis

    Directory of Open Access Journals (Sweden)

    Káren Mendes Jorge de Souza

    2014-10-01

    Full Text Available Objective Analyzing the policy transfer of directly observed treatment of tuberculosis from the perspective of nursing. Method This is a descriptive study with qualitative approach, which had 10 nurses of the Family Health Strategy in São Paulo as subjects. The interviews were carried out between May and June 2013, and were adopted the technique of thematic content analysis and the referential of policy transfer. Results On the signification of this treatment, are related the senses of disciplinary monitoring, the bond and approximation to the context of patients’ lives. Operationally, nurses, community health agents and nursing technicians stand out as agents of implementation of this policy, developing multiple actions of user embracement. The nurse is evidenced as an educator in health, leader in the family health team, and capable of creating emotional bond with users. Conclusion It was found that the innovations proposed in the treatment are incipient in the daily work of nurses.

  12. Considerations on technology transfer process in nuclear power industry for developing countries

    International Nuclear Information System (INIS)

    Castro, I.P.

    2000-01-01

    Nuclear know-how cannot possibly be developed globally in developing countries, so technology transfer is the only conceivable way to make nuclear power accessible to these countries. Technology transfer process accounts for three mayor steps, namely acquisition, assimilation and diffusion, so a serious nuclear power program should comprise all of them. Substantial national efforts should be made by developing countries in financial, industrial, scientific, organizational and many other aspects in order to succeed a profitable technology transfer, but developing countries cannot make it by themselves. Finance is the biggest problem for developing world nuclear power projects. Human resource qualification is another important aspect of the nuclear power technology transfer, where technology receptor countries should prepare thousands of professionals in domestic and foreign schools. Challenge for nuclear power deployment is economical, but also social and political. Developed countries should be open to cooperate with developing countries in meeting their needs for nuclear power deployment that should be stimulated and coordinated by an international body which should serve as mediator for nuclear power technology transfer. This process must be carried out on the basis of mutual benefits, in which the developed world can exploit the fast growing market of energy in the developing world, but with the necessary condition of the previous preparation of our countries for this technology transfer. (author)

  13. Technology transfer program at the Morgantown Energy Technology Center: FY 87 program report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.A.; Lessing, K.B.

    1987-10-01

    The Morgantown Energy Technology Center (METC), located in Morgantown, West Virginia, is an energy research center of the US Department of Energy's (DOE's) Office of Fossil Energy. The research and development work is different from research work conducted by other Government agencies. In DOE research, the Government is not the ultimate ''customer'' for the technologies developed; the ''customer'' is business and industry in the private sector. Thus, tehcnology transfer is a fundamental goal of the DOE. The mission of the Fossil Energy program is to enhance the use of the nations's fossil energy resources. METC's mission applies to certain technologies within the broad scope of technologies encompassed by the Office of Fossil Energy. The Government functions as an underwriter of risk and as a catalyst to stimulate the development of technologies and technical information that might otherwise proceed at a slower pace because of the high-risk nature of the research involved. The research programs and priorities are industry driven; the purpose is to address the perceived needs of industry such that industry will ultimately bring the technologies to the commercial market. As evidenced in this report, METC has an active and effective technology transfer program that is incorporated into all aspects of project planning and execution. Technology transfer at METC is a way of life---a part of everyday activities to further this goal. Each person has a charge to communicate the ideas from within METC to those best able to utilize that information. 4 figs., 20 tabs.

  14. R&D and Technology Transfer: Firm-Level Evidence from Chinese Industry

    OpenAIRE

    Albert G. Z. Hu; Gary H. Jefferson; Qian Jinchang

    2005-01-01

    In bridging the technology gap with the OECD nations, developing economies have access to three avenues of technological advance: domestic R&D, technology transfer, and foreign direct investment. This paper examines the contributions of each of these avenues, as well as their interactions, to productivity within Chinese industry. Based on a large data set for China's large and medium-size enterprises, the estimation results show that in-house R&D significantly complements technology transfer-...

  15. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Science.gov (United States)

    2010-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  16. Technology Transfer and Climate Change: Additional Considerations for Implementation under the UNFCCC

    Directory of Open Access Journals (Sweden)

    Karen Sullivan

    2011-06-01

    Full Text Available Technology transfer is recognised as playing a central and critical role in the global response to climate change, as embodied in the Unite Nations Framework Convention on Climate Change (UNFCCC. However, technology transfer is a complex process, and despite numerous attempts to prescribe approaches to optimisation, there remain serious obstacles to its effective operation. The breadth of technologies and range of would-be recipient territories under the climate change regime serve to complicate things even further. Against this background, the Expert Group on Technology Transfer have produced a robust Strategy, which it will now fall to the Technology Mechanism announced in Cancun to implement. However, despite the rigour with which the technology transfer strategy was produced, it is never possible to cover all possible eventualities. It is on this basis that this article presents a number of tactical and strategic issues which may merit further consideration as the implementation process moves forward. At the operational level, such issues include a possible role for a centralised or regional technology procurement effort, the need for greater emphasis on sectoral specific approaches to technology transfer, and a pragmatic approach to reducing the impact of some barriers to transactions by the expedient use of insurance to reduce risk, as opposed to the longer term approach of international standardisation. At the strategic level, there are major issues with regard to prioritisation of resources applied to technology transfer, and in particular the resolution of the tensions existing between achieving sustainable development and the time critical need to achieve climate stabilisation.

  17. Transfer of NPP technology from Finland fo Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Varis, M. V.K. [Imatran Voima Oy, Vantaa (Finland); Frigyesi, F. [Paksi Atomeroemue Vallalat (Hungary)

    1989-07-15

    Imatran Voima Oy (IVO), which accounts for 45% of the total Finnish electricity supply, have their own architect-engineering capacity. This know-how is also available internationally (IVO International). This report explains how technology is transferred to the client's organisation using the advantages of the client's own organization culture, supplemented by IVO's experience. The technology transferred to the Hungarian Paks Nuclear Power Company (PAV) regarding project management services is a good example. A materials management example explains the method. The customer is familiarized via wall chart on which the useful features in IVO's system are added.

  18. Proceedings: international conference on transfer of forest science knowledge and technology.

    Science.gov (United States)

    Cynthia Miner; Ruth Jacobs; Dennis Dykstra; Becky Bittner

    2007-01-01

    This proceedings compiles papers presented by extensionists, natural resource specialists, scientists, technology transfer specialists, and others at an international conference that examined knowledge and technology transfer theories, methods, and case studies. Theory topics included adult education, applied science, extension, diffusion of innovations, social...

  19. Analysing success of regulatory policy transfers: Evidence from Turkish energy markets

    International Nuclear Information System (INIS)

    Dastan, Seyit Ali

    2011-01-01

    Economic regulation of public utilities has become a worldwide phenomenon with the preceding privatisation stream. It is questionable to transfer regulatory models hastily without customising the policy options or introducing necessary institutional reforms enabling the achievement of expected results of regulatory reform. Institutional configuration of a country affects credibility of regulatory commitments, quality of regulatory design, and way of policy transfer. Turkey’s energy market regulation experience confirms the decisive role of institutions in shaping the regulatory framework. - Highlights: ► The last quarter of the 20th century witnessed public sector reforms all over the world. ► The British model of utility regulation swept globally. ► In Turkey’s adoption of the utility regulation model, different factors affected in various ways. ► Higher political stability and regulatory experience provide faith in the regulatory framework.

  20. Characteristics and determinants of knowledge transfer policies at universities and public institutions in medical research--protocol for a systematic review of the qualitative research literature.

    Science.gov (United States)

    Jahn, Rosa; Müller, Olaf; Bozorgmehr, Kayvan

    2015-08-19

    Universities, public institutions, and the transfer of knowledge to the private sector play a major role in the development of medical technologies. The decisions of universities and public institutions regarding the transfer of knowledge impact the accessibility of the final product, making it easier or more difficult for consumers to access these products. In the case of medical research, these products are pharmaceuticals, diagnostics, or medical procedures. The ethical dimension of access to these potentially lifesaving products is apparent and distinguishes the transfer of medical knowledge from the transfer of knowledge in other areas. While the general field of technology transfer from academic and public to private actors is attracting an increasing amount of scholarly attention, the specifications of knowledge transfer in the medical field are not as well explored. This review seeks to provide a systematic overview and analysis of the qualitative literature on the characteristics and determinants of knowledge transfer in medical research and development. The review systematically searches the literature for qualitative studies that focus on knowledge transfer characteristics and determinants at medical academic and public research institutions. It aims at identifying and analyzing the literature on the content and context of knowledge transfer policies, decision-making processes, and actors at academic and public institutions. The search strategy includes the databases PubMed, Web of Science, ProQuest, and DiVa. These databases will be searched based on pre-specified search terms. The studies selected for inclusion in the review will be critically assessed for their quality utilizing the Qualitative Research Checklist developed by the Clinical Appraisal Skills Programme. Data extraction and synthesis will be based on the meta-ethnographic approach. This review seeks to further the understanding of the kinds of transfer pathways that exist in medical

  1. Technology Transfer: Use of Federally Funded Research and Development

    National Research Council Canada - National Science Library

    Schacht, Wendy H

    2007-01-01

    .... These applications can result from technology transfer, a process by which technology developed in one organization, in one area, or for one purpose is applied in another organization, in another...

  2. Technology assessment and technology policy in Europe : New concepts, new goals, new infrastructures

    NARCIS (Netherlands)

    Smits, R.; Leyten, J.; Hertog, P. den

    1995-01-01

    Starting from the observation that the technological potentials are underutilized in economic and in social tems, this article raises the question of what role technology assessment (TA) can play in technology policy to address this problem. The causes of the problem of underutilization are analyzed

  3. Factors that Influence the Dissemination of Knowledge in Technology Transfer among Malaysian Manufacturing Employees

    Directory of Open Access Journals (Sweden)

    Mughaneswari ap Sahadevan

    2014-05-01

    Full Text Available The meaning of technology transfer is so wide but mostly involving some form of technology-related exchange. However, in this particular paper, technology transfer is consider as a concept to examine the process of  disseminating knowledge and skills that a person owned to another person in order to generate higher productivity with new approach of producing a particular product or service. Although, many researchers have explored the evolution of technology transfer, nonetheless some drivers are yet to be explored in a Malaysian manufacturing industry. This study, therefore attempts to determine the relationship between absorptive capacity, transfer capacity, communication motivation and learning intent and technology transfer performance. A survey methodology was used in a Japanese multinational company based in Klang Valley, Malaysia. A total of 117 questionnaires were received. Results show that absorptive capacity is the most significant to influence technology transfer performance. Normal 0 false false false IN X-NONE X-NONE Key words: Technology transfer, absorptive capacity, Malaysia.   Normal 0 false false false IN X-NONE X-NONE Nuclear technology transfer adapted to the needs of developing countries

    International Nuclear Information System (INIS)

    Martin, A.; Nentwich, D.

    1983-01-01

    The paper explains the build-up of nuclear know-how in the Federal Republic of Germany after 1955, when activities in the nuclear field became permitted. Furthermore, it shows the development of nuclear technology transfer via the increasing number of nuclear power plants exported. The inevitable interrelationship between the efficient transfer of know-how and long-term nuclear co-operation is demonstrated. Emphasis is put on the adaptation of nuclear technology transfer to the needs of the recipient countries. Guidelines to achieve the desired goal are given. (author)

  4. Requirements for effective technology transfer for engineering and project management. The views of the recipient country and the technology supplier

    International Nuclear Information System (INIS)

    Backhaus, K.W.

    1986-04-01

    Technology transfer in the area of engineering and project management for nuclear power plant projects is considered a rather complex and sophisticated matter. Therefore only within a long-term nuclear co-operation a meaningful transfer of such a multifaceted technology can reasonably be achieved. A long-term nuclear co-operation anticipates a nuclear power plant program consisting of a few nuclear power plants of a certain type and size in order to achieve the indispensable effect ''learning by doing''. The objectives of nuclear technology transfer may be in general or in particular; absorption of a foreign nuclear technology and its adaptation to the conditions and needs of the receiver's country; built-up of industrial infrastructure for planning, construction and operation of nuclear power plants; raising of the general industrial level and achieve a spin-off effect; creation of a basis for independent development of nuclear technology. The technology transfer on one side and the construction program of nuclear power plants on the other side cannot be practiced by two parallel but separated event, however, they form one unit. Contrary to the import of industrial equipment in terms of ''black box'', by means of a nuclear technology transfer the introduction of new dependencies will be prevented. The technology transfer can remarkably be facilitated by forming a joint venture engineering company in the recipient country. The required know-how potential within a certain time period determines the intensity of the technology transfer and consequently the man power to be involved. The realization of such technology transfer is demonstrated by means of practical examples. (author). 12 figs

  5. A study on the nuclear technology policy

    International Nuclear Information System (INIS)

    Yang, M. H.; Kim, H. J.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, Ik

    2002-01-01

    This study was carried out as a part of institutional activities of KAERI. This study suggested the effective and systematic alternatives for the development of domestic industry through nuclear long-term R and D program while timely responding to the environmental change in local and global sense. First of all, this study investigated the current status and prospect of nuclear power supply, the global technological change of nuclear fuel cycle, the nuclear policy changes of major countries and the role of nuclear energy in East Asian countries. Second, some policy alternatives are suggested in association with the role of national R and D in enhancing industrial competitiveness, the effective management of nuclear long-term R and D program to facilitate technological innovation and the way to enlarge the utilization of nuclear R and D results and radiation technology

  6. Technical innovation and policy of scientific technique

    International Nuclear Information System (INIS)

    Song, Wi Jin

    2006-04-01

    This book deals with system of innovation and policy of scientific technology : main view point and Topic, technical politics and technical learning, spread of internet and change of structure in information and communications industry, characteristic of technical innovation of software as open source, transfer into national innovation system, change of activity of public scientific technology, theory on technical innovation, evolution of technical innovation policy and participation of civil.

  7. Towards a European Energy Technology Policy - The European Strategic Energy Technology Plan (Set-Plan)

    International Nuclear Information System (INIS)

    Mercier, A.; Petric, H.; Peteves, E.

    2008-01-01

    The transition to a low carbon economy will take decades and affect the entire economy. There is a timely opportunity for investment in energy infrastructure. However, decisions to invest in technologies that are fully aligned with policy and society priorities do not necessarily come naturally, although it will profoundly affect the level of sustainability of the European energy system for decades to come. Technology development needs to be accelerated and prioritized at the highest level of the European policy agenda. This is the essence of the European Strategic Energy Technology Plan (SET-Plan). The SET-Plan makes concrete proposals for action to establish an energy technology policy for Europe, with a new mind-set for planning and working together and to foster science for transforming energy technologies to achieve EU energy and climate change goals for 2020, and to contribute to the worldwide transition to a low carbon economy by 2050. This paper gives an overview of the SET-Plan initiative and highlights its latest developments. It emphasises the importance of information in support of decision-making for investing in the development of low carbon technologies and shows the first results of the technology mapping undertaken by the newly established Information System of the SET-Plan (SETIS).(author)

  8. TECHNOLOGY TRANSFER NETWORKS ON PAPAYA PRODUCTION WITH TRANSITIONAL GROWERS

    Directory of Open Access Journals (Sweden)

    Octavio Cano-Reyes

    2012-11-01

    Full Text Available Social networks analysis applied to rural innovation processes becomes a very useful technology transfer tool, since it helps to understand the complexity of social relationships among people and/or institutions in their environment, and it also defines those innovation networks given in specific working groups or regions. This study was conducted from April to May 2011 to determine those networks and key players present in the group of growers associated as “Productora y Comercializadora de Papaya de Cotaxtla S.P.R. de R.L.”, that influence the technology transfer process in Cotaxtla, Veracruz, Mexico. Data were analyzed using UCINET 6 software. Three centrality measures were obtained: range, degree of mediation and closeness. Of 32 network players, 27 actively diffuse innovations according to their interests; alliances must be established with them to transfer technology. Four growers stand out as central actors, which along with the Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias, the Colegio de Postgraduados and the growers’ organization itself, could be the most appropriate actors to establish a technology transfer program to accelerate the diffusion and adoption of innovations. Wholesalers, middlemen and credit institutions do not participate in this process, but having capital they could be incorporated in the innovation diffusion process.

  9. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER.

    Science.gov (United States)

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F; Sanberg, Paul R

    2014-11-01

    Academic technology transfer in its current form began with the passage of the Bayh-Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh-Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1.

  10. [Nasal submicron emulsion of Scutellariae Radix extract preparation technology research based on phase transfer of solute technology].

    Science.gov (United States)

    Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming

    2015-07-01

    Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.

  11. Project approach helps technology transfer

    International Nuclear Information System (INIS)

    Walcher, M.W.

    1982-01-01

    The placing of the contract by the National Power Corporation with Westinghouse for the Philippines nuclear power plant (PNPP-1) is described. Maximised use of Philippine contractors under Westinghouse supervision was provided for. Technology transfer is an important benefit of the contract arrangements, since National Power Corporation project management acquires considerable nuclear plant experience during plant construction through consultation with technical personnel. (U.K.)

  12. Technology transfer and knowledge management in cooperation networks: the Airzone case

    International Nuclear Information System (INIS)

    Benavides Velasco, C. A.; Quintana Garcia, C.

    2007-01-01

    This paper highlights the importance of cooperation networks between the public system of R and D and industry to promote technology transfer, knowledge management, and the consolidation and growth of new technology firms. Through the case of Air zone,his paper shows the significance of collaboration agreements between University and industry to enhance technology transfer and the success of entrepreneurial projects. (Author) 28 refs

  13. International water and sanitation technology transfers, experiences from Europe

    NARCIS (Netherlands)

    Krozer, Yoram; Hophmayer Tokich, Sharon

    2016-01-01

    Possibilities of transferring cost-effective, innovative water and wastewater technologies on public water markets are discussed based on experiences of the Dutch water business cluster in the Central and Eastern European Countries. These transfers evolved under suitable conditions, among others

  14. THE MANAGEMENT OF MAINTENANCE TECHNOLOGY TRANSFER IN THE SOUTH AFRICAN AVIATION INDUSTRY

    Directory of Open Access Journals (Sweden)

    L.I. Le Grange

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper reports on research into the technology transfer activities of South African aviation industry companies. The technologies surrounding the maintenance function were investigated, since this is one of the main functions in this industry. The investigation shows the extent to which technology is transferred from external sources to the individual companies. The investigation was also extended to cover internal technology transfer. The result of the investigation indicated the sources of technology, the mechanisms used for transfer, and the barriers to the transfer process both for internal and external technology transfer. The paper concludes with a look into what the future may hold for maintenance in the aviation industry given the current trend in technology development.

    AFRIKAANSE OPSOMMING: Hierdie artikel beskryf navorsing oor die tegnologie-oordrag aktiwiteite van Suid-Afrikaanse lugvaartnywerheidmaatskappye. Die tegnologieë wat verband hou met die onderhoudfunksie is ondersoek, aangesien dit een van die hooffunksies in dié nywerheidsektor is. Die ondersoek toon die omvang van tegnologie-oordrag van eksterne bronne na individuele maatskappye. Die ondersoek is uitgebrei om ook interne tegnologie-oordrag in te sluit. Die resultaat van die ondersoek het die bronne van tegnologie, die oordrag-meganismes en die versperrings tot interne en eksterne oordrag, geïdentifiseer. Die artikel sluit af met ‘n toekomsblik vir instandhouding vir die lugvaartnywerheid in die lig van huidige neigings in tegnologiese ontwikkeling.

  15. Improving NASA's technology transfer process through increased screening and evaluation in the information dissemination program

    Science.gov (United States)

    Laepple, H.

    1979-01-01

    The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.

  16. Role of a national research organization in the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Ahmad, Ishaq

    1977-01-01

    Nuclear technology holds great promise for developing countries because it can contribute to national development. The developing countries, however, lack the resources and expertise to develop nuclear technology through their own efforts. A national research organization devoted to the promotion and utilization of nucler technology can provide an effective channel for the transfer of nuclear technology. The problems which the national research organization is likely to face in executing its tasks as an agent for the transfer of technology are discussed. An appreciation of these problems would enable the organization to restructure its priorities so as to achieve maximum effectiveness. The various ways by which the national research organization can speed up the task of transfer of technology are also discussed

  17. Night vision and electro-optics technology transfer, 1972 - 1981

    Science.gov (United States)

    Fulton, R. W.; Mason, G. F.

    1981-09-01

    The purpose of this special report, 'Night Vision and Electro-Optics Technology Transfer 1972-1981,' is threefold: To illustrate, through actual case histories, the potential for exploiting a highly developed and available military technology for solving non-military problems. To provide, in a layman's language, the principles behind night vision and electro-optical devices in order that an awareness may be developed relative to the potential for adopting this technology for non-military applications. To obtain maximum dollar return from research and development investments by applying this technology to secondary applications. This includes, but is not limited to, applications by other Government agencies, state and local governments, colleges and universities, and medical organizations. It is desired that this summary of Technology Transfer activities within Night Vision and Electro-Optics Laboratory (NV/EOL) will benefit those who desire to explore one of the vast technological resources available within the Defense Department and the Federal Government.

  18. Factors that Influence the Dissemination of Knowledge in Technology Transfer among Malaysian Manufacturing Employees

    Directory of Open Access Journals (Sweden)

    Mughaneswari ap Sahadevan

    2014-04-01

    Full Text Available The meaning of technology transfer is so wide but mostly involving some form of technology-re- lated exchange. However, in this particular paper, technology transfer is consider as a concept to examine the process of disseminating knowledge and skills that a person owned to another per- son in order to generate higher productivity with new approach of producing a particular prod- uct or service. Although, many researchers have explored the evolution of technology transfer, nonetheless some drivers are yet to be explored in a Malaysian manufacturing industry. This study, therefore attempts to determine the relationship between absorptive capacity, transfer capacity, communication motivation and learning intent and technology transfer performance. A survey methodology was used in a Japanese multinational company based in Klang Valley, Malaysia. A total of 117 questionnaires were received. Results show that absorptive capacity is the most signifi- cant to influence technology transfer performance.

  19. Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    Science.gov (United States)

    Trivoli, George W.

    1996-01-01

    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.

  1. Technology transfer and the Argentina-German cooperation agreement

    International Nuclear Information System (INIS)

    Di Primio, J.C.

    1977-01-01

    The transfer of technology from developed countries is usually done through industrial enterprises. The local industrialization of imported technology does not necessary imply that full benefit is extracted from its application. A pre-established scientific and technical infrastructure is needed to understand and incorporate it, and to develop methods for improvement and use at the industrial level, in the frame of national conditions. The transference of nuclear technology has shown recently new concepts for the implementation. It is becoming a rule that massive industrial nuclear technology transfer to developing nations is conditioned by the latter requirement for simulataneous assistance to create or promote that infrastructure. An example of international cooperation to meet the requirement explained above is the Argentine-German agreement for the peaceful applications of nuclear energy. Since 1971 it has been used to strengthen the scientific and technical programs of the Argentine Atomic Energy Commission, by application to fields relevant by its industrial implications. The objectives and implementation of the agreement are described: cooperative actions where initially directed to the infrastructure needed to support the nuclear fuel cycle industry. The results achieved during the period 1971-76 are critically analyzed. This analysis has influenced the selection of future cooperative projects as well as the extension of the cooperation to other nuclear fields of common interest [es

  2. Policy implications of technologies for cognitive enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Sarewitz, Daniel R. (Arizona State University, Tempe, AZ); Karas, Thomas H.

    2007-02-01

    The Advanced Concepts Group at Sandia National Laboratory and the Consortium for Science, Policy and Outcomes at Arizona State University convened a workshop in May 2006 to explore the potential policy implications of technologies that might enhance human cognitive abilities. The group's deliberations sought to identify core values and concerns raised by the prospect of cognitive enhancement. The workshop focused on the policy implications of various prospective cognitive enhancements and on the technologies/nanotechnology, biotechnology, information technology, and cognitive science--that enable them. The prospect of rapidly emerging technological capabilities to enhance human cognition makes urgent a daunting array of questions, tensions, ambitions, and concerns. The workshop elicited dilemmas and concerns in ten overlapping areas: science and democracy; equity and justice; freedom and control; intergenerational issues; ethics and competition; individual and community rights; speed and deliberations; ethical uncertainty; humanness; and sociocultural risk. We identified four different perspectives to encompass the diverse issues related to emergence of cognitive enhancement technologies: (1) Laissez-faire--emphasizes freedom of individuals to seek and employ enhancement technologies based on their own judgment; (2) Managed technological optimism--believes that while these technologies promise great benefits, such benefits cannot emerge without an active government role; (3) Managed technological skepticism--views that the quality of life arises more out of society's institutions than its technologies; and (4) Human Essentialism--starts with the notion of a human essence (whether God-given or evolutionary in origin) that should not be modified. While the perspectives differ significantly about both human nature and the role of government, each encompasses a belief in the value of transparency and reliable information that can allow public discussion and

  3. Energy management under policy and technology uncertainty

    International Nuclear Information System (INIS)

    Tylock, Steven M.; Seager, Thomas P.; Snell, Jeff; Bennett, Erin R.; Sweet, Don

    2012-01-01

    Energy managers in public agencies are subject to multiple and sometimes conflicting policy objectives regarding cost, environmental, and security concerns associated with alternative energy technologies. Making infrastructure investment decisions requires balancing different distributions of risks and benefits that are far from clear. For example, managers at permanent Army installations must incorporate Congressional legislative objectives, executive orders, Department of Defense directives, state laws and regulations, local restrictions, and multiple stakeholder concerns when undertaking new energy initiatives. Moreover, uncertainty with regard to alternative energy technologies is typically much greater than that associated with traditional technologies, both because the technologies themselves are continuously evolving and because the intermittent nature of many renewable technologies makes a certain level of uncertainty irreducible. This paper describes a novel stochastic multi-attribute analytic approach that allows users to explore different priorities or weighting schemes in combination with uncertainties related to technology performance. To illustrate the utility of this approach for understanding conflicting policy or stakeholder perspectives, prioritizing the need for more information, and making investment decisions, we apply this approach to an energy technology decision problem representative of a permanent military base. Highlights: ► Incorporate disparate criteria with uncertain performance. ► Analyze decisions with contrasting stakeholder positions. ► Interactively compare alternatives based on uncertain weighting. ► User friendly multi-criteria decision analysis (MCDA) tool.

  4. Technology-Critical Elements: Economic and Policy Perspectives

    Science.gov (United States)

    Eggert, R. G.

    2017-12-01

    Critical elements are those that provide essential functionality to modern engineered materials, have few ready substitutes and are subject to supply-chain risks or concerns about long-run availability. This paper provides economic and public-policy perspectives on critical elements. It suggests: that which elements are critical is situational and changes over time; that we are not running out of mineral-derived raw materials in a geologic sense but rather, for some elements, face scarcities that are technological, environmental, political or economic in nature; and that public policy's most important role over the longer term is fostering scientific and technological innovation, especially early stage research, that has the potential to overcome these scarcities.

  5. Should the north make unilateral technology transfers to the south? North-South cooperation and conflicts in responses to global climate change

    International Nuclear Information System (INIS)

    Yang, Zili

    1999-01-01

    Whether developed countries should make unilateral technology transfers to developing countries in order to address global environment problems is debatable. This paper discusses the issue in a framework that recognizing nations' joint production of environmental externalities. Unlike the existing literature on unilateral transfers, this paper presents a North-South environmental-economic optimal growth model that allows transfers to mitigate externalities only. The paper derives criteria that would make such transfers feasible. By solving the transfer problem in a modified RICE model [Nordhaus, W.D., Yang, Z., 1996. A regional dynamic general equilibrium model of alternative climate change strategies, Am. Econ. Rev., 86 (4) 741-65], this paper also provides information on the timing and the amount of unilateral transfers from North to South to address potential global warming problem, one major global environmental externality. A policy implication from his study is that moderate employment of unilateral transfers would benefit North along with the world as a whole

  6. NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners. With specialized teams, TTC guides the interactions of our partners from the point of discovery to patenting, from invention development to licensing. We play a key role in helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class researchers, facilities, and knowledge.

  7. Fruit Fly Liquid Larval Diet Technology Transfer and Update

    Science.gov (United States)

    Since October 2006, USDA-ARS has been implementing a fruit fly liquid larval diet technology transfer, which has proceeded according to the following steps: (1) Recruitment of interested groups through request; (2) Establishment of the Material Transfer Agreement (MTA) with ARS; (3) Fruit fly liquid...

  8. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    Science.gov (United States)

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  9. Technology transfer to Africa: constraints for CDM operations

    International Nuclear Information System (INIS)

    Karani, Patrick

    2002-01-01

    It is practically difficult to design, implement and manage Clean Development Mechanism (CDM) projects in Africa without a provision for capacity building that will enable the application of modern technologies and techniques. Existing institutions need strengthening, human capacity needs to be developed and new markets need to be promoted. The author outlines institutional and market constraints in relation to technology transfer (e.g renewable energy technologies) and development in Africa. (Author)

  10. 77 FR 2719 - National Advisory Council for Environmental Policy and Technology; Meeting

    Science.gov (United States)

    2012-01-19

    ... and Technology; Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Advisory... a public meeting of the National Advisory Council for Environmental Policy and Technology (NACEPT). NACEPT provides advice to the EPA Administrator on a broad range of environmental policy, technology...

  11. TECHNOLOGY TRANSFER FROM THE UNIVERSITY OF MINNESOTA ESTIMATING THE ECONOMIC IMPACT

    OpenAIRE

    Ruttan, Vernon W.

    2001-01-01

    There is strong synergy among research, education, technology development and technology transfer. Examples of successful public-private technology transfer linkage institutions are provided. But efforts to document the benefits of research conducted at the University of Minnesota to the state have rarely been conducted with the rigor that would be required to meet the test of professional credibility. A program of research to develop more rigorous evidence on economic benefits to the State i...

  12. From Head Start to Sure Start: Reflections on Policy Transfer

    Science.gov (United States)

    Welshman, John

    2010-01-01

    This article uses the history of debates over the US Head Start programme (1965), Early Head Start (1994) and the UK Sure Start initiative (1998), as a window on to policy transfer. In all the three, the aim was that early intervention could offer a means of boosting children's educational attainment and of countering the wider effects of poverty…

  13. Progress in Energy Storage Technologies: Models and Methods for Policy Analysis

    Science.gov (United States)

    Matteson, Schuyler W.

    Climate change and other sustainability challenges have led to the development of new technologies that increase energy efficiency and reduce the utilization of finite resources. To promote the adoption of technologies with social benefits, governments often enact policies that provide financial incentives at the point of purchase. In their current form, these subsidies have the potential to increase the diffusion of emerging technologies; however, accounting for technological progress can improve program success while decreasing net public investment. This research develops novel methods using experience curves for the development of more efficient subsidy policies. By providing case studies in the field of automotive energy storage technologies, this dissertation also applies the methods to show the impacts of incorporating technological progress into energy policies. Specific findings include learning-dependent tapering subsidies for electric vehicles based on the lithium-ion battery experience curve, the effects of residual learning rates in lead-acid batteries on emerging technology cost competitiveness, and a cascading diffusion assessment of plug-in hybrid electric vehicle subsidy programs. Notably, the results show that considering learning rates in policy development can save billions of dollars in public funds, while also lending insight into the decision of whether or not to subsidize a given technology.

  14. Green technological change. Renewable energies, policy mix and innovation. Results of the GRETCHEN project on the impact of policy mixes on the technological and structural change in renewable energy electricity production technologies in Germany; Gruener Wandel. Erneuerbare Energien, Policy Mix und Innovation. Ergebnisse des GRETCHEN-Projektes zum Einfluss des Policy Mixes auf technologischen und strukturellen Wandel bei erneuerbaren Stromerzeugungstechnologien in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, Karoline S.; Breitschopf, Barbara; Mattes, Katharina [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany); Cantner, Uwe; Graf, Holger; Herrmann, Johannes; Kalthaus, Martin [Jena Univ. (Germany); Lutz, Christian; Wiebe, Kirsten [Gesellschaft fuer Wirtschaftliche Strukturforschung mbH (GWS), Osnabrueck (Germany)

    2015-09-15

    The report on the GRETCHEN project that was concerned with the impact of policy mixes on the technological and structural change in renewable energy electricity production technologies in Germany covers the following issues: market and technology development of renewable energy electricity production technologies; the policy mix for renewable electricity production technologies, innovative impact of the policy mix; subordinate conclusions for politics and research.

  15. Space technology transfer to developing countries: opportunities and difficulties

    Science.gov (United States)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  16. Knowledge Incubation and Collaboration for Science, Technology Adoption, Resourcing and Transfer (KIC-START)

    International Nuclear Information System (INIS)

    Ugbor, U.; Cilliers, A.; Kurwitz, R. C.

    2016-01-01

    Full text: In order to address the effectiveness of national networks in Member States, and to implement regional and national strategies, it is important to understand the necessary conditions that ensure successful creation and sharing of knowledge, including, effective policy and programme incentives, promoting collaboration, innovation and networking. Furthermore, Member States with aspirations to develop their nuclear programmes (power and non-power applications in agriculture, industry and health sector), need to develop their own capabilities if they are to fully benefit from the social and economic opportunities from nuclear science and technology. Ultimately nuclear innovation programmes that take into account the role of universities, education and industry would lead to a robust nuclear programme that maximizes social and economic benefit. This paper a presents an initiative for capturing best practices in the areas of university collaboration and innovation, which are driven by learning, research and entrepreneurship. The initiative covers Knowledge (creation), Innovation and Collaboration for Science and Technology Adoption, Resourcing and Transfer (KIC-START). (author

  17. Sustainable city policy. Economic, environmental, technological

    Energy Technology Data Exchange (ETDEWEB)

    Camagni, R.; Capello, R. [Politecnico di Milano, Milan (Italy). Economics Dept.; Nijkamp, P. [Dept. of Spatial Economics. Fac. of Economics and Econometrics. Vrije Univ., Amsterdam (Netherlands)

    1995-12-31

    While the reasons for advocating intensified environmental concerns at the urban level are more and more accepted and clear, the question how to overcome such concerns is still fraught with many difficulties. The aim of the present paper is to formulate some policy guidelines, based on economic principles, for a `sustainable city`; it is an ambitious aim, since a unique and operationally defined `recipe` is difficult to envisage. An urban policy for a sustainable city needs to take different (and contrasting) aspects and many conflicting interests into consideration, while many political, social and economic frictions need to be overcome. A description of various aspects and concepts concerning sustainability issues at the urban level is given in Section 2. Section 3 then provides some considerations on possible technological, economic and environmental urban policies, by creating a typo logy of policy tools associated with different causes of urban decline. Section 4 provides some new, and partly provocative, suggestions for specific urban sustainability policies; in particular it deals with the problem of urban sustainability indicators, measures, and critical threshold levels at which urban sustainability policies should be implemented. Some reflective remarks will conclude the paper. 3 figs., 4 tabs., 25 refs.

  18. Sustainable city policy. Economic, environmental, technological

    International Nuclear Information System (INIS)

    Camagni, R.; Capello, R.

    1995-01-01

    While the reasons for advocating intensified environmental concerns at the urban level are more and more accepted and clear, the question how to overcome such concerns is still fraught with many difficulties. The aim of the present paper is to formulate some policy guidelines, based on economic principles, for a 'sustainable city'; it is an ambitious aim, since a unique and operationally defined 'recipe' is difficult to envisage. An urban policy for a sustainable city needs to take different (and contrasting) aspects and many conflicting interests into consideration, while many political, social and economic frictions need to be overcome. A description of various aspects and concepts concerning sustainability issues at the urban level is given in Section 2. Section 3 then provides some considerations on possible technological, economic and environmental urban policies, by creating a typo logy of policy tools associated with different causes of urban decline. Section 4 provides some new, and partly provocative, suggestions for specific urban sustainability policies; in particular it deals with the problem of urban sustainability indicators, measures, and critical threshold levels at which urban sustainability policies should be implemented. Some reflective remarks will conclude the paper. 3 figs., 4 tabs., 25 refs

  19. Reverse knowledge and technology transfer: imbalances caused by cognitive barriers in asymmetric relationships

    NARCIS (Netherlands)

    Millar-Schijf, Carla C.J.M.; Choi, Chong-Ju

    2009-01-01

    An imbalance exists in almost any type of knowledge and technology transfer due to the information asymmetry of the relationship. However, this is especially the case for reverse technology and knowledge transfer which is epitomised for us by "transfers from an MNC's subsidiary to its headquarters".

  20. Technology transfer in Activities Implemented Jointly (AIJ)

    Energy Technology Data Exchange (ETDEWEB)

    Usher, P.E.O. [United Nations Environment Programme (Cayman Islands)

    1998-08-01

    The agreed objective of the United Nations Framework Convention on Climate Change is to bring about early and significant reductions in greenhouse gas emissions. For many, the most attractive option for promoting this end is joint implementation. Indivisible from this is the transfer of current and innovative technology, though technology transfer is not conditional on joint implementation. The somewhat ad hoc nature of Activities Implemented Jointly (AIJ) and the failure to establish ground rules at the outset is considered. Common action can contribute to cost-effective mitigation of climate change through a sharing of the costs, benefits and risks of R and D, cross fertilisation of ideas among countries, economies of scale for new technologies, and clear signals to the international market. Potential problems include: the reluctance of national private industry to share proprietary information which might compromise competitiveness; premature convergence on technical standards that might inhibit the emergence of more developed technology; specific national circumstances which mean that solutions satisfactory to others are inappropriate in its case. This latter issue is of particular relevance to developing countries. AIJ needs to be approached in a systematic way taking into account lessons learned from evaluating the pilot phase if it is to be seen to be working effectively. (UK)

  1. From technology transfer to local manufacturing: China's emergence in the global wind power industry

    Science.gov (United States)

    Lewis, Joanna Ingram

    This dissertation examines the development of China's large wind turbine industry, including the players, the status of the technology, and the strategies used to develop turbines for the Chinese market. The primary goals of this research project are to identify the models of international technology transfer that have been used among firms in China's wind power industry; examine to what extent these technology transfers have contributed to China's ability to locally manufacture large wind turbine technology; and evaluate China's ability to become a major player in the global wind industry. China is a particularly important place to study the opportunities for and dynamics of clean energy development due to its role in global energy consumption. China is the largest coal consuming and producing nation in the world, and consequently the second largest national emitter of carbon dioxide after only the United States. Energy consumption and carbon emissions are growing rapidly, and China is expected to surpass the US and become the largest energy consuming nation and carbon dioxide emitter in coming decades. The central finding of this dissertation is that even though each firm involved in the large wind turbine manufacturing industry in China has followed a very different pathway of technology procurement for the Chinese market, all of the firms are increasing the utilization of locally-manufactured components, and many are doing so without transferring turbine technology or the associated intellectual property. Only one fully Chinese-owned firm, Goldwind, has succeeded in developing a commercially available large wind turbine for the Chinese market. No Chinese firms or foreign firms are manufacturing turbines in China for export overseas, though many have stated plans to do so. There already exists a possible niche market for the smaller turbines that are currently being made in China, particularly in less developed countries that are looking for less expensive

  2. Technology, market and policy aspects of geothermal energy in Europe

    Science.gov (United States)

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    The Strategic Energy Technology Plan (SET-Plan) is the technology pillar of the EU's energy and climate policy. The goal of the SET-Plan is to achieve EU worldwide leadership in the production of energy technological solutions capable of delivering EU 2020 and 2050 targets for a low carbon economy. The Joint Research Centre (JRC) runs and manages the SET-Plan Information System (SETIS) to support the SET-Plan. Under SETIS, the JRC publishes a number of regularly updated key references on the state of low carbon technology, research and innovation in Europe. Within the framework of the SET-Plan, the geothermal sector is placed into context with other power and heat generation technologies. The talk will give an introduction to some of JRC's geothermal research activities. Amongst others, the JRC Geothermal status report will be presented. This report aims to contribute to the general knowledge about the geothermal sector, its technology, economics and policies, with a focus on innovation, research, development and deployment activities as well as policy support schemes within the European Union. The speech will present the main findings of the report, providing an overview of the activities and progress made by the geothermal energy sector, the status of its sub-technologies and current developments. In addition, the speech will discuss the economic, market and policy aspects of geothermal energy for power production, direct use and ground source heat pumps in Europe and beyond.

  3. Modeling and Simulation of Bus Dispatching Policy for Timed Transfers on Signalized Networks

    Science.gov (United States)

    Cho, Hsun-Jung; Lin, Guey-Shii

    2007-12-01

    The major work of this study is to formulate the system cost functions and to integrate the bus dispatching policy with signal control. The integrated model mainly includes the flow dispersion model for links, signal control model for nodes, and dispatching control model for transfer terminals. All such models are inter-related for transfer operations in one-center transit network. The integrated model that combines dispatching policies with flexible signal control modes can be applied to assess the effectiveness of transfer operations. It is found that, if bus arrival information is reliable, an early dispatching decision made at the mean bus arrival times is preferable. The costs for coordinated operations with slack times are relatively low at the optimal common headway when applying adaptive route control. Based on such findings, a threshold function of bus headway for justifying an adaptive signal route control under various time values of auto drivers is developed.

  4. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  5. The technology transfer and the Laguna Verde power plants

    International Nuclear Information System (INIS)

    Garza, R.F. de La

    1991-01-01

    The process of technology transfer to the construction of Laguna Verde Nuclear Power Plants, Mexico, is described. The options and the efforts for absorbing the technology of Nuclear Power Plant design and construction by the mexican engineers are emphasized. (author)

  6. Managing knowledge: a technology transfer case study in IEN

    International Nuclear Information System (INIS)

    Pereira, Ana Gabriella Amorim Abreu

    2009-01-01

    Knowledge management is paramount nowadays. In order to enable the members of an organization to deal with their current situations effectively it is mandatory to know and enhance its intellectual capital. Managing the organization knowledge is important to the extent that it allows and reinforce its mission (what we are trying to accomplish?), and performance (how do we deliver the results?). As a result of a knowledge management effort, the organization can create value for itself and for society as a whole. In this paper, we argue that a technology developed at a research institute and transferred to an industry is knowledge to be managed in order to create value, both for the society and for the Institute. In order to manage such knowledge, it is proposed an approach to enhance the value creation potential of a technology transfer. This paper propose an investigation to expand the understanding on how a public research institute and a private firm could introduce their value creation wishes into a technology transfer agreement in a way to reflect and provide the realization of those wishes. It is proposed that, from the identification of the organizations expectations it is possible to infer which agreement attributes will contribute to that value creation and to establish satisfactory agreement configurations. These configurations have the potential to generate those consequences, given that, through the transfer, each organization seeks to increase potential benefits and to reduce potential sacrifices. Supported by exchange flow and value creation models, by the knowledge management and the means-end theory, an approach to increase the value creation potential of a technology transfer is proposed. Evidences from a case study sustain the proposed approach. The case study unity is the Instituto de Engenharia Nuclear, a public research institute. (author)

  7. Outlook for renewable energy technologies: Assessment of international programs and policies

    Energy Technology Data Exchange (ETDEWEB)

    Branstetter, L.J.; Vidal, R.C.; Bruch, V.L.; Zurn, R.

    1995-02-01

    The report presents an evaluation of worldwide research efforts in three specific renewable energy technologies, with a view towards future United States (US) energy security, environmental factors, and industrial competitiveness. The overall energy technology priorities of foreign governments and industry leaders, as well as the motivating factors for these priorities, are identified and evaluated from both technological and policy perspectives. The specific technologies of interest are wind, solar thermal, and solar photovoltaics (PV). These program areas, as well as the overall energy policies of Denmark, France, Germany, Italy, the United Kingdom (UK), Japan, Russia, and the European Community as a whole are described. The present and likely future picture for worldwide technological leadership in these technologies-is portrayed. The report is meant to help in forecasting challenges to US preeminence in the various technology areas, particularly over the next ten years, and to help guide US policy-makers as they try to identify specific actions which would help to retain and/or expand the US leadership position.

  8. Science and technology policy for the 1980s

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Four reports analyze the problems of innovation policy. They discuss interactions between scientific and technological development and economic and social progress. They also discuss international cooperation. They see scientific and technological resources as vital to meeting present economic challenges. 112 references, 3 figures, 10 tables.

  9. Comparative Characteristics of Technology Transfer in Developed Countries

    Directory of Open Access Journals (Sweden)

    Natalia Palii

    2013-08-01

    Full Text Available The research into innovation transfer in the global economy is a very urgent issue under the modern conditions of development of any country. Comparative characteristics of technology transfer in such countries and regions as the USA, EU, Asia, presented in the article, permit us to detect certain patterns of this process inherent both in developed and developing countries. The analysis made in the article can be useful for developing technology transfer processes in the Danube countries’ economy. The analytical method used in this research allowed us to determine the factor that is crucial for the growth of the world market of high-technology products and services. The analysis was conducted on several criteria such as the level of expenditure on R&D in the whole global economy, as well as in individual countries and regions. Besides, there were taken into account the added value of high-tech industries and the share of expenditure on R&D in total production costs. The conclusions regarding the effectiveness of funds allocated for scientific research and experimental development in the U.S. can be drawn on the basis of data presented in the paper on the amount of added value of the U.S. high-tech industries.

  10. Useful models for simulating policies to induce technological change

    International Nuclear Information System (INIS)

    Rivers, Nic; Jaccard, Mark

    2006-01-01

    Conventional top-down and bottom-up energy-economy models have limitations that affect their usefulness to policy-makers. Efforts to develop hybrid models, that incorporate valuable aspects of these two frameworks, may be more useful by representing technologies in the energy-economy explicitly while also representing more realistically the way in which businesses and consumers choose between those technologies. This representation allows for the realistic simulation of a wide range of technology-specific regulations and fiscal incentives alongside economy-wide fiscal incentives and disincentives. These policies can be assessed based on the costs required to reach a goal in the medium term, as well as on the degree to which they induce technological change that affects costs over long time periods

  11. Innovation, technology transfer and development: the spin-off companies

    Directory of Open Access Journals (Sweden)

    Teodoro Valente

    2014-05-01

    Full Text Available The article starts from the identification of the reasons why Italy is less prone to technology transfer than other countries, and indicates some key issues for the diffusion of technological innovations and the development of human capital. In particular, technology transfer is not a generic form of exploitation of outcome of the research, it involves specific actions that have impact on economic production, such as the patenting and the creation of new companies (spin-offs. The author discusses the various forms of spin-offs of university research, the evolution of the phenomenon in the structures of the uni- versities, the stages of development of a spin-off company and the current fund- ing arrangements and to be promoted.

  12. Improving Energy Efficiency Through Technology. Trends, Investment Behaviour and Policy Design

    Energy Technology Data Exchange (ETDEWEB)

    Florax, R.J.G.M. [Purdue University, West Lafayette, IN (United States); De Groot, H.L.F. [VU University, Amsterdam (Netherlands); Mulder, P. [Tinbergen Institute, Amsterdam (Netherlands)] (eds.)

    2011-10-15

    This innovative book explores the adoption of energy-saving technologies and their impact on energy efficiency improvements. It contains a mix of theoretical and empirical contributions, and combines and compares economic and physical indicators to monitor and analyse trends in energy efficiency. The authors pay considerable attention to empirical research on the determinants of energy-saving investment including uncertainty, energy-price volatility and subsidies. They also discuss the role of energy modelling in policy design and the potential effect of energy policies on technology diffusion in energy-extensive sectors. Written from a multi-disciplinary perspective, this book will appeal to academics and graduates in the areas of energy-saving technologies, energy economics and natural resource economics, as well as policy makers - particularly those in energy policy.

  13. Environmentally friendly type coal utilization technology transfer project. Downstream field; Kankyo chowagata sekitan riyo gijutsu iten jigyo. Karyu bun`ya

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper arranged the result of the clean coal technology transfer project carried out during October to December, 1996. For the purpose of supporting introduction/spread of clean coal technology (CCT) in Asian and Pacific countries, the project invited engineers of the countries to Japan, aiming at fermentation of the understanding of CCT and improvement in ability. The project was held by NEDO and managed by Center for Coal Utilization, Japan. The manager course is for policy decision makers, management and senior management (plant manager class). By taking up CCT assessment and a menu of economical efficiency, prepared was the environment to which CCT is introduced in case of working out policy and planning plant/equipment investment. Moreover, the engineer course is for policy planners, medium-class management (section chief class), senior engineers (planners), and takes up materials for judgment in case of planning CCT facilities and proposing measures to reduce environmental loads by management and improvement of facilities at the same time. Fifteen engineers were invited: 6 from China, 3 from Indonesia, 3 from the Philippines, and 3 from Thailand

  14. Plans & Policies for Technology in Education: A Compendium. A Technology Leadership Network Special Report.

    Science.gov (United States)

    National School Boards Association, Alexandria, VA. Inst. for the Transfer of Technology to Education.

    This document shows how education leaders nationwide--many of them part of the National School Boards Association's 345-district Technology Leadership Network--have addressed technology-related policy issues such as copyright, purchasing, network/Internet use, and ethics as well as technology planning topics including staff development, classroom…

  15. System analysis for technology transfer readiness assessment of horticultural postharvest

    Science.gov (United States)

    Hayuningtyas, M.; Djatna, T.

    2018-04-01

    Availability of postharvest technology is becoming abundant, but only a few technologies are applicable and useful to a wider community purposes. Based on this problem it requires a significant readiness level of transfer technology approach. This system is reliable to access readiness a technology with level, from 1-9 and to minimize time of transfer technology in every level, time required technology from the selection process can be minimum. Problem was solved by using Relief method to determine ranking by weighting feasible criteria on postharvest technology in each level and PERT (Program Evaluation Review Technique) to schedule. The results from ranking process of post-harvest technology in the field of horticulture is able to pass level 7. That, technology can be developed to increase into pilot scale and minimize time required for technological readiness on PERT with optimistic time of 7,9 years. Readiness level 9 shows that technology has been tested on the actual conditions also tied with estimated production price compared to competitors. This system can be used to determine readiness of technology innovation that is derived from agricultural raw materials and passes certain stages.

  16. Investments in technology subject to uncertainty. Analysis and policy

    DEFF Research Database (Denmark)

    Pedersen, Jørgen Lindgaard

    1997-01-01

    Investments in technology are today of such a magnitude that it matters. In the paper there are three important questions. First on the question in which sense technological uncertainty can be said to be a problem. Second on strategies for diminishing technological uncertainties. Three on policy...

  17. The Role of Empirical Evidence for Transferring a New Technology to Industry

    Science.gov (United States)

    Baldassarre, Maria Teresa; Bruno, Giovanni; Caivano, Danilo; Visaggio, Giuseppe

    Technology transfer and innovation diffusion are key success factors for an enterprise. The shift to a new software technology involves, on one hand, inevitable changes to ingrained and familiar processes and, on the other, requires training, changes in practices and commitment on behalf of technical staff and management. Nevertheless, industry is often reluctant to innovation due to the changes it determines. The process of innovation diffusion is easier if the new technology is supported by empirical evidence. In this sense our conjecture is that Empirical Software Engineering (ESE) serves as means for validating and transferring a new technology within production processes. In this paper, the authors report their experience of a method, Multiview Framework, defined in the SERLAB research laboratory as support for designing and managing a goal oriented measurement program that has been validated through various empirical studies before being transferred to an Italian SME. Our discussion points out the important role of empirical evidence for obtaining management commitment and buy-in on behalf of technical staff, and for making technological transfer possible.

  18. Evaluating business models for microgrids: Interactions of technology and policy

    International Nuclear Information System (INIS)

    Hanna, Ryan; Ghonima, Mohamed; Kleissl, Jan; Tynan, George; Victor, David G.

    2017-01-01

    Policy makers are increasingly focused on strategies to decentralize the electricity grid. We analyze the business model for one mode of decentralization—microgrids—and quantify the economics for self-supply of electricity and thermal energy and explicitly resolve technological as well as policy variables. We offer a tool, based on the Distributed Energy Resources Customer Adoption Model (DER-CAM) modeling framework, that determines the cost-minimal capacity and operation of distributed energy resources in a microgrid, and apply it in southern California to three “iconic” microgrid types which represent typical commercial adopters: a large commercial building, critical infrastructure, and campus. We find that optimal investment leads to some deployment of renewables but that natural gas technologies underpin the most robust business cases—due in part to relatively cheap gas and high electricity rates. This finding contrasts sharply with most policy advocacy, which has focused on the potentials for decentralization of the grid to encourage deployment of renewables. Decentralization could radically reduce customer energy costs, but without the right policy framework it could create large numbers of small decentralized sources of gas-based carbon emissions that will be difficult to control if policy makers want to achieve deep cuts in greenhouse gas emissions. - Highlights: • We offer a modeling tool to study technology and policy variables for microgrids. • We construct comprehensive load profiles for three likely adopters of microgrids. • Investment in natural gas generators is key to enabling business models. • Solar PV and storage are optimal but as supplements to gas generation. • Business models are highly robust to sensitivity in technology and policy variables.

  19. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during

  20. Technology transfer assessment in the nuclear agreement Brazil-Germany

    International Nuclear Information System (INIS)

    Cecchi, J.C.

    1985-04-01

    The three main arguments utilized in the Nuclear Brazil-Germany Agreement celebrated in 1975 were the following: a) the low Brazilian hydroelectric potential insufficient to attend the increasing of electrical energy demand; b) the low cost of nuclear energy related to hydroelectric energy: c) and finally, the nuclear technology transfer, involving inclusive the fuel cycle and that could permit to Brazil self-sufficiency in the nuclear energy field. Thus, this work intends to describe and discussing the 'technology transfer strategy' trying to understand and showing which are its main characteristics, and also which are the real actuals results. (author) [pt

  1. Multigigabit wireless transfer of trigger data through millimetre wave technology

    International Nuclear Information System (INIS)

    Brenner, R; Cheng, S

    2010-01-01

    The amount of data that can be transferred from highly granular tracking detectors with several million channels is today limited by the available bandwidth in the readout links which again is limited by power budget, mass and the available space for services. The low bandwidth prevents the tracker from being fully read out in real time which is a requirement for becomming a part of the first level trigger. To get the tracker to contribute to the fast trigger decision the data transfer bandwidth from the tracker has either to be increased for all data to be read out in real time or the quantity of the data to be reduced by improving the quality of the data or a combination of the two. A higher data transfer rate can be achieved by increasing the the number of data links, the data transfer speed or a combination of both. The quantity of data read out from the detector can be reduced by introducing on-detector intelligence. Next generation multigigabit wireless technology has several features that makes the technology attractive for use in future trackers. The technology can provide both higher bandwidth for data readout and means to build on-detector intelligence to improve the quality of data. The emerging millimetre wave technology offers components that are small size,low power and mass thus well suited for integration in trackers. In this paper the feasibility of wireless transfer of trigger data using 60 GHz radio in the future upgraded tracker at the Super Large Hadron Collider (SLHC) is investigated.

  2. University Technology Transfer Factors as Predictors of Entrepreneurial Orientation

    Science.gov (United States)

    Kirkman, Dorothy M.

    2011-01-01

    University technology transfer is a collaborative effort between academia and industry involving knowledge sharing and learning. Working closely with their university partners affords biotechnology firms the opportunity to successfully develop licensed inventions and gain access to novel scientific and technological discoveries. These factors may…

  3. Participation of the public and technology policy

    International Nuclear Information System (INIS)

    Paschen, H.; Bechmann, G.; Gloede, F.

    1989-01-01

    Public participation is placed in the context of the government's technology policy whose legitimation can be questioned in view of the dispute in our society about technological development and its role in decision for shaping the future of the industrial society. This lack of legitimation has induced a search for instruments that might help to close the acceptance gap. Participation of the public is one of these instruments and is discussed in connection with technology assessment, early warning system, and environmental impact assessment. (HSCH) [de

  4. International Scientist Mobility and the Locus of Knowledge and Technology Transfer

    DEFF Research Database (Denmark)

    Edler, Jakob; Fier, Hedie; Grimpe, Christoph

    2011-01-01

    Despite the growing interest of scholars and policymakers to better understand the determinants for researchers in public science to transfer knowledge and technology to firms, little is known how temporary international mobility of scientists affects both their propensity to engage in knowledge ...... circulation”. The article contributes to the growing strand of the literature on scientist mobility and on the determinants of industry–science linkages at the individual level.Scientist......Despite the growing interest of scholars and policymakers to better understand the determinants for researchers in public science to transfer knowledge and technology to firms, little is known how temporary international mobility of scientists affects both their propensity to engage in knowledge...... and technology transfer (KTT) as well as the locus of such transfer. Based on a sample of more than 950 German academics from science and engineering faculties, we investigate how the duration and the frequency of scientists’ visits at research institutions outside their home country affect KTT activities. We...

  5. Art and technology: A comparative study of policy legitimation

    NARCIS (Netherlands)

    N.M. Wijnberg (Nachoem)

    1994-01-01

    textabstractThe legitimation of technology policy is discussed from the point of view of the neoclassical and of the dynamic, Schumpeterian, approach. The results are presented, using the traditional categories of policy legitimation in welfare theory: public goods, externalities, and merit goods.

  6. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Heerkens, Johannes M.G.

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics.

  7. A New Strategic Approach to Technology Transfer

    Science.gov (United States)

    The principal goal of Federal research and development (R&D) is to solve problems for public benefit. Technology transfer, innovation, entrepreneurship: words and concepts that once belonged exclusively in the domain of private research enterprises, have quickly become part of everyday lexicon in Fe...

  8. Assistive technology policy: a position paper from the first global research, innovation, and education on assistive technology (GREAT) summit.

    Science.gov (United States)

    MacLachlan, Malcolm; Banes, David; Bell, Diane; Borg, Johan; Donnelly, Brian; Fembek, Michael; Ghosh, Ritu; Gowran, Rosemary Joan; Hannay, Emma; Hiscock, Diana; Hoogerwerf, Evert-Jan; Howe, Tracey; Kohler, Friedbert; Layton, Natasha; Long, Siobhán; Mannan, Hasheem; Mji, Gubela; Odera Ongolo, Thomas; Perry, Katherine; Pettersson, Cecilia; Power, Jessica; Delgado Ramos, Vinicius; Slepičková, Lenka; Smith, Emma M; Tay-Teo, Kiu; Geiser, Priscille; Hooks, Hilary

    2018-07-01

    Increased awareness, interest and use of assistive technology (AT) presents substantial opportunities for many citizens to become, or continue being, meaningful participants in society. However, there is a significant shortfall between the need for and provision of AT, and this is patterned by a range of social, demographic and structural factors. To seize the opportunity that assistive technology offers, regional, national and sub-national assistive technology policies are urgently required. This paper was developed for and through discussion at the Global Research, Innovation and Education on Assistive Technology (GREAT) Summit; organized under the auspices of the World Health Organization's Global Collaboration on Assistive Technology (GATE) program. It outlines some of the key principles that AT polices should address and recognizes that AT policy should be tailored to the realities of the contexts and resources available. AT policy should be developed as a part of the evolution of related policy across a number of different sectors and should have clear and direct links to AT as mediators and moderators for achieving the Sustainable Development Goals. The consultation process, development and implementation of policy should be fully inclusive of AT users, and their representative organizations, be across the lifespan, and imbued with a strong systems-thinking ethos. Six barriers are identified which funnel and diminish access to AT and are addressed systematically within this paper. We illustrate an example of good practice through a case study of AT services in Norway, and we note the challenges experienced in less well-resourced settings. A number of economic factors relating to AT and economic arguments for promoting AT use are also discussed. To address policy-development the importance of active citizenship and advocacy, the need to find mechanisms to scale up good community practices to a higher level, and the importance of political engagement for the

  9. Towards "Thick Description" of Educational Transfer: Understanding a Japanese Institution's "Import" of European Language Policy

    Science.gov (United States)

    Rappleye, Jeremy; Imoto, Yuki; Horiguchi, Sachiko

    2011-01-01

    Globalisation and convergence in educational policy worldwide has reinvigorated, while rendering more complex, the classic theme of educational transfer. Framed by this wider pursuit of new understandings of a changing transfer/context puzzle, this paper explores how an ethnographic "thick description" might complement and extend recent…

  10. Techno-Nationalism and the Construction of University Technology Transfer

    Science.gov (United States)

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived dependency…

  11. Development of a Technology Transfer Score for Evaluating Research Proposals: Case Study of Demand Response Technologies in the Pacific Northwest

    Science.gov (United States)

    Estep, Judith

    Investment in Research and Development (R&D) is necessary for innovation, allowing an organization to maintain a competitive edge. The U.S. Federal Government invests billions of dollars, primarily in basic research technologies to help fill the pipeline for other organizations to take the technology into commercialization. However, it is not about just investing in innovation, it is about converting that research into application. A cursory review of the research proposal evaluation criteria suggests that there is little to no emphasis placed on the transfer of research results. This effort is motivated by a need to move research into application. One segment that is facing technology challenges is the energy sector. Historically, the electric grid has been stable and predictable; therefore, there were no immediate drivers to innovate. However, an aging infrastructure, integration of renewable energy, and aggressive energy efficiency targets are motivating the need for research and to put promising results into application. Many technologies exist or are in development but the rate at which they are being adopted is slow. The goal of this research is to develop a decision model that can be used to identify the technology transfer potential of a research proposal. An organization can use the model to select the proposals whose research outcomes are more likely to move into application. The model begins to close the chasm between research and application--otherwise known as the "valley of death". A comprehensive literature review was conducted to understand when the idea of technology application or transfer should begin. Next, the attributes that are necessary for successful technology transfer were identified. The emphasis of successful technology transfer occurs when there is a productive relationship between the researchers and the technology recipient. A hierarchical decision model, along with desirability curves, was used to understand the complexities of the

  12. Toward Competitive and Innovative ASEAN SMEs: Philippine SME Policy Index 2012

    OpenAIRE

    Aldaba, Rafaelita M.; Aldaba, Fernando T.

    2014-01-01

    The ASEAN SME Policy Index is an analytical tool to review, track, and identify gaps in small and medium enterprise (SME) policy development and implementation. The index covers the following eight policy areas: institutional framework; cheaper and faster start-up and better legislation and regulation for SMEs; access to information and supporting services; access to finance; technology and technology transfer; market access and getting more output of the single market; promotion of entrepren...

  13. Climate Change Science,Technology & Policy

    Indian Academy of Sciences (India)

    Table of contents. Climate Change Science,Technology & Policy · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Millions at Risk from Parry et al., 2001 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Climate Change · Is the global warming in the 20th century due to the increase in radiation emitted by the sun? Frohlich C, Lean J. 1998; ...

  14. Research, development, demonstration, and early deployment policies for advanced-coal technology in China

    International Nuclear Information System (INIS)

    Zhao Lifeng; Gallagher, Kelly Sims

    2007-01-01

    Advanced-coal technologies will increasingly play a significant role in addressing China's multiple energy challenges. This paper introduces the current status of energy in China, evaluates the research, development, and demonstration policies for advanced-coal technologies during the Tenth Five-Year Plan, and gives policy prospects for advanced-coal technologies in the Eleventh Five-Year Plan. Early deployment policies for advanced-coal technologies are discussed and some recommendations are put forward. China has made great progress in the development of advanced-coal technologies. In terms of research, development, and demonstration of advanced-coal technologies, China has achieved breakthroughs in developing and demonstrating advanced-coal gasification, direct and indirect coal liquefaction, and key technologies of Integrated Gasification Combined Cycle (IGCC) and co-production systems. Progress on actual deployment of advanced-coal technologies has been more limited, in part due to insufficient supporting policies. Recently, industry chose Ultra Super Critical (USC) Pulverized Coal (PC) and Super Critical (SC) PC for new capacity coupled with pollution-control technology, and 300 MW Circulating Fluidized Bed (CFB) as a supplement

  15. Convexity of oligopoly games without transferable technologies

    NARCIS (Netherlands)

    Driessen, Theo; Meinhardt, Holger I.

    2005-01-01

    We present sufficient conditions involving the inverse demand function and the cost functions to establish the convexity of oligopoly TU-games without transferable technologies. For convex TU-games it is well known that the core is relatively large and that it is generically nonempty. The former

  16. Technology transfer and national participation. Key issue paper no. 3

    International Nuclear Information System (INIS)

    Chernilin, Y.F.

    2000-01-01

    Nuclear technology was developed in industrialized countries and largely remains in a few industrialized countries. Non-nuclear countries today find it necessary to import this technology. Some aspects of technology transfer: legal and institutional structure; different type of agreements; arrangements; and national participation are presented in this paper. (author)

  17. Climate Change and Requirement of Transfer of Environmentally Sound Technology

    DEFF Research Database (Denmark)

    Uddin, Mahatab

    that developed the technology, to another that adopts, adapts, and uses it. As different kinds of threats posed by climate change are continuously increasing all over the world the issue of “technology transfer” especially the transfer of environmentally sound technologies has become one of the key topics...

  18. E-Beam - a new transfer system for isolator technology

    International Nuclear Information System (INIS)

    Sadat, Theo; Huber, Thomas

    2002-01-01

    In every aseptic filling application, the sterile transfer of goods into the aseptic area is a challenge, and there are many different ways to do it. With isolator technology a higher sterility assurance level (SAL) is achieved. This SAL is only as good as the weakest segment in the chain of manufacturing. The transfer of goods into and out of the isolator is one of these critical segments. Today different techniques, some already well established, others still very new, are available on the market like: dry heat tunnel, autoclave, pulsed light, rapid transfer systems (RTP), H 2 O 2 tunnel, UV light, etc. all these systems are either not applicable for continuous transfer, only good for heat-compatible materials like glass, or do not guarantee a 6 log spore reduction. E-Beam opens new perspectives in this field. With E-beam technology it is possible to transfer heat-sensitive (plastic), pre-sterilised materials at high speed, continuously into an aseptic area. E-Beam unifies three different technologies, that result in a very efficient and high-speed decontamination machine designed for the pharmaceutical industry. First, there is the electron beam that decontaminates the goods and an accurate shielding that protects the surrounding from this beam. Second, there is the conveyor system that guarantees the output and the correct exposure time underneath the beam. And third, there is the isolator interface to provide correct differential pressure and clean air inside the tunnel as well as the decontamination of the tunnel with H 2 O 2 prior to production. The E-beam is a low-energy electron beam, capable of decontaminating any kind of surface. It penetrates only a few micrometers into the material and therefore does not deform the packaging media. Currently, machines are being built to transfer pre-sterilised syringes, packed in plastic tubs with a Tyvek cover into an aseptic filling isolator with the following data: decontamination efficiency of 10 6 (6 log spore

  19. International co-operation and the transfer of nuclear technology

    International Nuclear Information System (INIS)

    di Primio, J.C.

    1977-01-01

    The transfer of technology from developed countries is usually done through industrial enterprises. The local industrialization of imported technology does not necessarily imply that full benefit is extracted from its application. A pre-established scientific and technical infrastructure is needed to understand and incorporate it, and to develop methods for improvement and use at the industrial level, in the frame of national conditions. The transference of nuclear technology has recently shown new concepts for implementation. It is becoming a rule that massive industrial nuclear technology transfer to developing nations is tied to a requirement for simultaneous assistance in creating or promoting the infrastructure. An example of international co-operation to meet this requirement is the Argentine-German Agreement for the Peaceful Applications of Nuclear Energy. Since 1971 this has been used to strengthen the scientific and technical programmes of the Argentine Atomic Energy Commission in the relevant fields of industrial applications. The objectives and implementation of the agreement are described: co-operative actions were initially directed to the infrastructure needed to support the nuclear fuel cycle industry. The results achieved during the period 1971-1976 are critically analysed. This analysis has influenced the selection of future co-operative projects as well as the extension of the co-operation to other nuclear fields of common interest. (author)

  20. Technology Transfer, Labour and Local Learning Processes in Malaysian Industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    1999-01-01

    The transfer of technologies by the foreign electronic industries operating in Malaysia involves training of workers for various purposes. The upgrading of skills to assimilate the transferred technology aims at increasing productivity and product quality. Communicating awareness about work hazards...... is meant to reduce breakdowns in production and workers' accidents. How do the training paradigms, which transnationals introduce in their subsidiaries in Malaysia, interact with the preconditions of learning with the local labour force? In shaping local learning processes, what is the scope for workers...

  1. Technology transfer from biomedical research to clinical practice: measuring innovation performance.

    Science.gov (United States)

    Balas, E Andrew; Elkin, Peter L

    2013-12-01

    Studies documented 17 years of transfer time from clinical trials to practice of care. Launched in 2002, the National Institutes of Health (NIH) translational research initiative needs to develop metrics for impact assessment. A recent White House report highlighted that research and development productivity is declining as a result of increased research spending while the new drugs output is flat. The goal of this study was to develop an expanded model of research-based innovation and performance thresholds of transfer from research to practice. Models for transfer of research to practice have been collected and reviewed. Subsequently, innovation pathways have been specified based on common characteristics. An integrated, intellectual property transfer model is described. The central but often disregarded role of research innovation disclosure is highlighted. Measures of research transfer and milestones of progress have been identified based on the Association of University Technology Managers 2012 performance reports. Numeric milestones of technology transfer are recommended at threshold (top 50%), target (top 25%), and stretch goal (top 10%) performance levels. Transfer measures and corresponding target levels include research spending to disclosure (0.81), patents to start-up (>0.1), patents to licenses (>2.25), and average per license income (>$48,000). Several limitations of measurement are described. Academic institutions should take strategic steps to bring innovation to the center of scholarly discussions. Research on research, particularly on pathways to disclosures, is needed to improve R&D productivity. Researchers should be informed about the technology transfer performance of their institution and regulations should better support innovators.

  2. 75 FR 80830 - Proposed Collection; Comment Request; Technology Transfer Center External Customer Satisfaction...

    Science.gov (United States)

    2010-12-23

    ... Request; Technology Transfer Center External Customer Satisfaction Survey (NCI) SUMMARY: In compliance...: Technology Transfer Center External Customer Satisfaction Survey (NCI). Type of Information Collection...: Obtain information on the satisfaction of TTC's external customers with TTC customer services; collect...

  3. Evaluation of technology transferring: The experiences of the first Navy Domestic Technology Transfair. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    In August 1989 the Office of the Chief of Naval Research and the American Defense Preparedness Association conducted the first Navy Domestic Technology Transfair. The objective of the Transfair was to expose the US Navy`s years of solid experience across a broad span of technology to organizations outside of the Navy. It was an opportunity for private industry to capitalize on the Navy developed technology and this opening for industry was the primary focus of the Transfair. The event provided a unique forum to meet leading Navy scientific and engineering innovators face-to-face. Information was available concerning licensing of naval technology that was for sale to the private sector. Further, discussions covered opportunities for new cooperative research and development agreements with Navy laboratories and R&D activities. These agreements were authorized under the Federal Technology Transfer Act of 1986. The Transfair program was conducted in such a manner as to allow each Navy inventor, either scientist or engineer, to present a system, piece of hardware, or licensable concept in a formal paper presentation. Then, the Navy inventors were available in two, two-hour periods in which individual discussions were conducted, with attendees pursuing specific venues of cooperative agreements as desired. This report provides specifics concerning the technologies that were made available for transfer to the private sector during the Transfair. The Transfair concept sought to add special emphasis to the opening that the 1988 Technology Transfer Act brought to the marketplace. The experience was a step in the education of the possibilities for cooperation between the government and the private sector to share technology. Of additional significance is the economic enhancement for business expansion with the application of the technology to markets beyond defense.

  4. Beyond technology-push and demand-pull: Lessons from California's solar policy

    International Nuclear Information System (INIS)

    Taylor, Margaret

    2008-01-01

    The scale of the technological transformation required to reduce greenhouse gas emissions to 'safe' levels while minimizing economic impacts necessitates an emphasis on designing climate policy to foster, or at least not impede, environmental innovation. There is only a weak empirical base for policy-makers to stand on regarding the comparative innovation effects of various climate policy options, however. Empirical scholarship in environmental innovation is hindered by the complexity of both the innovation process and the interactions between the dual market failures of pollution and innovation that are in play, and it appears that the field would benefit from the structure provided by a common lexicon. This paper focuses on the issues related to policy categorization in this field; these issues have received little attention in the literature despite their importance to making insights gained from empirical studies generalizable. The paper reviews the origins, strengths, and weaknesses of the dominant policy typology of technology-push versus demand-pull instruments. Its primary contribution, however, is to assemble a comprehensive chronology of solar policy in California and its impacts on innovation, where known, and then use this as a basis for building a new policy categorization that takes advantage of the intuitive resonance of the dominant typology, while encompassing the broader range of policy instruments that are employed in practice in order to stimulate environmental innovation. The most noteworthy aspect of the new categorization is that it introduces a third category of environmental innovation policy instrument that focuses on improving the interface between technology suppliers and users. This reflects developments in the economics of innovation literature as well as considerable evidence in the domain of distributed solar energy technologies that opportunism by some of the actors that work at this interface can be a barrier to innovation

  5. A dedicated fund supports technological innovation

    CERN Document Server

    Katarina Anthony

    2010-01-01

    The Knowledge and Technology Transfer (KTT) Group is calling on CERN Departments to take their technology out of the confines of the laboratory and make it ready for dissemination. For the first time, projects can apply for financial support from the newly established KTT Fund.   Scientific inquiry can lead to unexpected developments for society when researchers apply their expertise for public use. CERN actively encourages this transfer of knowledge and technology and, for the first time, has created a dedicated fund to provide financial support to projects aiming at disseminating their technologies to external audiences. CERN’s technology transfer schemes were formalised in the recent Policy on the Management of Intellectual Property in Technology Transfer, approved in March. Revenues generated by commercial exploitation will be distributed between the members of the team that developed the technology, their Department, and the KTT Fund for reinvestment in further KTT projects. &qu...

  6. Helping transfer technology to developing countries

    International Nuclear Information System (INIS)

    Masters, R.

    1978-01-01

    Manpower planning and training are an increasingly important part of the activities of the IAEA which organises a number of courses for engineers and administrators from developing countries. The Agency supports the view of these countries that there should be a real transfer of nuclear technology and not just the import of equipment and services. A Construction and Operation Management course held at Karlsruhe, is reviewed. (author)

  7. The Technology Transfer of the ICT Curriculum in Taiwan

    Science.gov (United States)

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  8. Technology transfer: Half-way houses. No. 17

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, R.W.

    1995-05-01

    In the fall of 1993, 1 was asked by the Center for National Security Studies (CNSS) of the Los Alamos National Laboratory (LANL) to study the ways in which technology transfer and defense conversion had been accomplished at General Atomics (GA) and Science Applications International Corporation (SAIC) by interviewing Harold Agnew, who had served as director of Los Alamos before becoming president of General Atomics in 1979, and J. Robert Beyster, who had been a staff member at Los Alamos and at General Atomics before founding SAIC in 1969. Harold Agnew readily complied with my request for an interview and also suggested that I talk to Douglas Fouquet, who is in charge of public relations at General Atomics and is their unofficial historian. Robert Beyster was not available for an interview, but, through the courtesy of John C. Hopkins, a former director of CNSS, I was able to interview SAIC`s executive vice president, Donald M. Kerr, who is also a former director at Los Alamos, and Steven Rockwood, a sector vice president at SAIC who was formerly a staff member at the Laboratory Because Agnew, Kerr, and Rockwood are all familiar with LANL, as well as with their respective companies, the interviews becam exercises In comparative analyses of technology transfer. In what follows, I have tried to summarize both the interviews and some of the research which attended them. It is the historian`s hope that by use of comparative institutional analyses, Laboratory administrators may learn something of value in directing their efforts toward the transfer of technology to private industry and other government agencies.

  9. The effects of economic and policy incentives on carbon mitigation technologies

    International Nuclear Information System (INIS)

    Newell, Richard G.; Jaffe, Adam B.; Stavins, Robert N.

    2006-01-01

    The ability to estimate the likely effects of potential climate change policies on energy use and greenhouse gas (GHG) emissions requires an improved understanding of the relationship between different policy alternatives and energy-saving and GHG-reducing changes in technology. A particularly important and understudied aspect of this set of issues is the conceptual and empirical modeling of how the various stages of technological change are interrelated, how they unfold over time in response to market forces, and the differential impact of various policies (for example, R and D subsidies, environmental taxes, information programs). We summarize several contributions to this literature and suggest promising areas for continued research on empirical analysis and modeling of induced technological change

  10. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the

  11. Supporting the diffusion of healthy public policy in Canada: the Prevention Policies Directory.

    Science.gov (United States)

    Politis, Christopher E; Halligan, Michelle H; Keen, Deb; Kerner, Jon F

    2014-01-01

    Healthy public policy plays an essential role in a comprehensive public health approach to preventing cancer and chronic disease. Public policies spread through the 'policy diffusion' process, enabling governments to learn from another's enacted policy solutions. The Prevention Policies Directory (the Directory), an online database of municipal, provincial/territorial, and federal cancer and chronic disease prevention policies from across Canada, was developed to facilitate the diffusion of healthy public policies and support the work of prevention researchers, practitioners, and policy specialists. This information technology solution was implemented, through a participatory engagement approach, as a communication channel or policy knowledge transfer tool. It also addressed the intrinsic shortcomings of environmental scanning for policy surveillance and monitoring. A combination of quantitative web metrics and qualitative anecdotal evidence have illustrated that the Directory is becoming an important tool for healthy public policy surveillance and policy diffusion in Canada.

  12. 77 FR 39705 - National Advisory Council for Environmental Policy and Technology; Charter Renewal

    Science.gov (United States)

    2012-07-05

    ... and Technology; Charter Renewal AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. Notice... Advisory Council for Environmental Policy and Technology (NACEPT) is a necessary committee which is in the... environmental policy, technology and management issues. Inquiries may be directed to Mark Joyce, U.S. EPA, (Mail...

  13. Gestão de tecnologia em universidades: uma análise do patenteamento e dos fatores de dificuldade e de apoio à transferência de tecnologia no Estado de São Paulo Technology management in universities: an analysis of patenting and support and difficulty factors in technology transfer in São Paulo State

    Directory of Open Access Journals (Sweden)

    Leonardo Augusto Garnica

    2009-12-01

    Full Text Available A gestão da tecnologia nas universidades públicas brasileiras tem ganhado crescente importância para o sistema de inovação brasileiro. A Lei de Inovação de 2004 forneceu diretrizes legais específicas acerca da propriedade intelectual, cooperação técnica e transferência tecnológica favorecendo a intensificação desses processos. O objetivo deste trabalho foi apreender as políticas institucionais e os desafios para a transferência de tecnologia em universidades públicas do Estado de São Paulo, a saber: USP, Unesp, Unicamp, Unifesp e UFSCar, buscando identificar fatores de dificuldade e de apoio em processos de transferência de tecnologia observados pelos agentes das universidades e empresas parceiras. A pesquisa, de tipo qualitativa, utilizou-se da estratégia de estudo multicaso e por meio da realização de entrevistas a respeito de contratos de transferência de tecnologia foi realizada análise comparativa das universidades. Verificou-se um crescimento do patenteamento e da atividade de comercialização de tecnologia em todos os casos, porém ainda recentes.Technology management in Brazilian public universities has gained increasing importance within the Brazilian innovation system. The Innovation Act of 2004 provides specific legal guidance on intellectual property, technical cooperation and technology transfer, favoring the intensification of these processes. The objective of this work was to understand the institutional policies and challenges for technology transfer in the public universities, as well as to identify forces and obstacles related to technology commercialization. The kind of analyses was qualitative, and for the empirical part of the work, the strategy of case studies was used in institutions such as: USP, Unesp, Unicamp, Unifesp e UFSCar. Using technology transfer contracts from each one of them, this article reveals key aspects, forces and obstacles within that practice. An increase in intellectual

  14. Globalization, Governance and Public Policy Transference Globalización, gobierno y transferenciade políticas públicas

    Directory of Open Access Journals (Sweden)

    Pedro Flores Crespo

    2002-10-01

    Full Text Available Globalization and governance pave the way for the ocurrence of policy transfer processes. This article shows that higher education policy in Mexico has been historically influenced by foreign educational models. By using the Policy Transfer Framework, this article also makes three claims: (1 the academic debate has been generally focused on the role of specific international organizations, so a limited perspective about the policy transfer approach emerges; (2 the process of identifying what objects are being transferred to Mexican educational agenda is blurred, and thus, (3 as a consequence of methodological weaknesses, it is difficult to validate whether or not policy transfer processes are taking place in this Latin American country. Therefore, further research needs to be done in order to broaden the understanding of the policy transfer processes in Mexico. La globalización impacta significativamente sobre las formas de gobierno las cuales, a su vez, crean una nueva institucionalidad que sirve de base para la transferencia de políticas públicas. En este artículo se utiliza el Marco de la Transferencia de Políticas para analizar el caso de la educación superior en México, y se sostiene que históricamente el sistema universitario mexicano ha usado de manera recurrente la experiencia externa para la elaboración de sus propias estrategias en materia educativa. Asimismo, se destaca que: (1 el análisis general sobre la adopción o copia de políticas educativas en México se ha centrado básicamente en el papel que desempeñan algunos organismos internacionales lo que genera una visión limitada de la transferencia de políticas; (2 es difícil identificar qué objetos se están realmente transfiriendo de estos organismos a la agenda educativa nacional y, por lo tanto, (3 validar la existencia de una transferencia de políticas educativas es un proceso complicado y abierto a cuestionamientos de tipo metodológico. Por lo tanto, se

  15. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-05-01

    During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

  16. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  17. Studying Policy Transfer through the Lens of Social Network Analysis

    DEFF Research Database (Denmark)

    Staunæs, Dorthe; Brøgger, Katja; Steiner-Khamsi, Gita

    Studying Policy Transfer through the Lens of Social Network Analysis The panelists present the findings of a joint empirical research project carried out at Aarhus University (DPU/Copenhagen) and at Teachers College, Columbia University (New York). The research project succeeded to identify...... discursive networks of political stakeholders and policy advisors that were considered key actors in the Danish school reform. The research team investigated how these networks interrelate, change over time, and represent different constituents (government, academe, business), at times contradicting...... or collaborating with each other, respectively. Against the backdrop of globalization studies in comparative education, the research project attempted to identify borrowers, translators, and brokers of educational reform drawing on a complementary set of expertise from social network analysis methodology (Oren...

  18. A Review on the Recent Development of Capacitive Wireless Power Transfer Technology

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2017-11-01

    Full Text Available Capacitive power transfer (CPT technology is an effective and important alternative to the conventional inductive power transfer (IPT. It utilizes high-frequency electric fields to transfer electric power, which has three distinguishing advantages: negligible eddy-current loss, relatively low cost and weight, and excellent misalignment performance. In recent years, the power level and efficiency of CPT systems has been significantly improved and has reached the power level suitable for electric vehicle charging applications. This paper reviews the latest developments in CPT technology, focusing on two key technologies: the compensation circuit topology and the capacitive coupler structure. The comparison with the IPT system and some critical issues in practical applications are also discussed. Based on these analyses, the future research direction can be developed and the applications of the CPT technology can be promoted.

  19. Technology Transfer of Isotopes-Based Assay: Strategies and Mechanisms

    International Nuclear Information System (INIS)

    Tabbada, R.S.D.C.; Rañada, M.L.O.; Mendoza, A.D.L.; Panganiban, R.; Castañeda, S.S.; Sombrito, E.Z.; Arcamo, S.V.R.

    2015-01-01

    Receptor Binding Assay for Paralytic Shellfish Poisoning (PSP RBA) is an isotope-based assay for detection and quantification of PSP toxins in seafood. It was established in the Philippines through a national program based on the recommendations of the Expert Mission sent by the International Atomic Energy Agency (IAEA). Through the said program, the Philippines Nuclear Research Institute (PNRI) was able to put up an RBA facility and develop expertise. Advantages of the technique against Mouse Bioassay (MBA) and high-performance Liquid Chromatography (HPLC) methods were are established. RBA is being utilized by some developed countries as screening method for Harmful Algal Bloom (HAB) Monitoring. However, it was not immediately adopted by the national HAB regulatory body for the following reasons: (1) acceptance of RBA as an official national method of analysis for PSP, (2) logistics and financial concerns in building up and maintaining a RBA facility, (3) considerations on the use of radioactive materials. To address these issues, the Philippines Council for Agriculture, Aquatic and Natural Resources Research and Development (PCAARRD) approved a Grants-In-Aid Project to initiate and to facilitate the transfer of the RBA technology to the monitoring and regulatory body. The project has two major objectives: capacity building and technology transfer. The capacity building focuses on human resources development of HAB monitoring personnel, specifically training on RBA and on the use of radioactive materials. On the other hand, the technology transfer deals with assistance that PNRI may render in establishing the new RBA facility and over-all know-how of the project. In this is poster, the mechanisms and strategies being undertaken by PNRI, in collaboration with the regulatory and monitoring body, to address the limitation of transferring a technology that utilizes radioactive materials including the technical difficulties are presented and discussed. (author)

  20. Transfer of infrared thermography predictive maintenance technologies to Soviet-designed nuclear power plants: experience at Chernobyl

    Science.gov (United States)

    Pugh, Ray; Huff, Roy

    1999-03-01

    The importance of infrared (IR) technology and analysis in today's world of predictive maintenance and reliability- centered maintenance cannot be understated. The use of infrared is especially important in facilities that are required to maintain a high degree of equipment reliability because of plant or public safety concerns. As with all maintenance tools, particularly those used in predictive maintenance approaches, training plays a key role in their effectiveness and the benefit gained from their use. This paper details an effort to transfer IR technology to Soviet- designed nuclear power plants in Russia, Ukraine, and Lithuania. Delivery of this technology and post-delivery training activities have been completed recently at the Chornobyl nuclear power plant in Ukraine. Many interesting challenges were encountered during this effort. Hardware procurement and delivery of IR technology to a sensitive country were complicated by United States regulations. Freight and shipping infrastructure and host-country customs policies complicated hardware transport. Training activities were complicated by special hardware, software and training material translation needs, limited communication opportunities, and site logistical concerns. These challenges and others encountered while supplying the Chornobyl plant with state-of-the-art IR technology are described in this paper.

  1. Brazilian university technology transfer to rural areas Transferência de tecnologia de universidades brasileiras na área rural

    Directory of Open Access Journals (Sweden)

    Enio Marchesan

    2010-10-01

    Full Text Available In agriculture, there is a difference between average yield obtained by farmers and crop potential. There is technology available to increase yields, but not all farmers have access to it and/or use this information. This clearly characterizes an extension and technology transference problem. There are several technology transfer systems, but there is no system to fit all conditions. Therefore, it is necessary to create extension solutions according to local conditions. Another rural extension challenge is efficiency, despite continuous funding reductions. One proposal that has resulted from extension reform worldwide has suggested integration between the public and private sectors. The public universities could play the role of training and updating technical assistance of human resources, which is the one of the main aspects that has limited technology transfer. The objective of this study was to identify approaches to promote technology transfer generated in Brazilian public universities to rural areas through literature review. An experimental approach of technology transfer is presented here where a Brazilian university extension Vice-chancellor incorporates professionals from consolidated research groups according to demand. In this way, public universities take part of their social functions, by integrating teaching, research, and extension.Em agricultura, há diferenças entre a produtividade média obtida pelos produtores e o potencial produtivo dos cultivos. Há informação tecnológica disponível para aumentar a produtividade, mas nem todos os produtores têm acesso e/ou usam a informação. Isso caracteriza claramente um problema de extensão e transferência de tecnologia. Há vários sistemas de transferência de tecnologia, mas, como não há sistema que se ajuste a todas as condições, é necessário criar alternativas adequadas às condições de cada local. Outro desafio da extensão rural é ser eficiente, apesar da cont

  2. Weapons to widgets: Organic systems and public policy for tech transfer

    Science.gov (United States)

    Cargo, Russell A.

    1994-01-01

    Large cuts in defense spending cause serious repercussions throughout the American economy. One means to counter the negative effects of defense reductions is to redirect federal dollars to temporarily prop up defense industries and, over the longer-term, stimulate growth of new nondefense industries. The creation of non-defense products and industries by channeling ideas from public laboratories into the private sector manufacturing facilities, known as technology transfer, is being undertaken in a massive program that has high visibility, large amounts of money, and broad federal agency involvement. How effectively federal money can be directed toward stimulating the creation of non-defense products will define the strength of the economy, (i.e., tax base, employment level, trade balance, capital investments, etc.), over the next decade. Key functions of the tech transfer process are technology and market assessment, capital formation, manufacturing feasibility, sales and distribution, and business organization creation. Those, however, are not functions typically associated with the federal government. Is the government prepared to provide leadership in those areas? This paper suggests organic systems theory as a means to structure the public sector's actions to provide leadership in functional areas normally outside their scope of expertise. By applying new ideas in organization theory, can we design government action to efficiently and effectively transfer technologies?

  3. The uncounted benefits: Federal efforts in domestic technology transfer

    Science.gov (United States)

    Chapman, R. L.; Hirst, K.

    1986-01-01

    Organized technology transfer activities conducted by the agencies of the U.S. government are described. The focus is upon agency or departmental level activity rather than the laboratory level. None of the programs on which information was collected has been assessed or evaluated individually. However, the aggregate programs of the government have been judged in terms of obvious gaps and opportunities for future improvement. An overview, descriptions of the various agency or department programs of technology transfer, a list of persons interviewed or consulted during the survey, and a bibliography of publications, reports and other material made available to the study staff are given. An extensive appendix of illustrative material collected from the various programs is also given.

  4. Clean energy technology transfer. A review of programs under the UNFCCC

    International Nuclear Information System (INIS)

    Kline, D.; Vimmerstedt, L.; Benioff, R.

    2004-01-01

    This paper describes the experience and results of programs designed to operationalize the technology transfer provisions of the United Nations Framework Convention on Climate Change (UNFCCC). These programs share a common goal of demonstrating modalities for developed country parties to fulfill their obligation under the UNFCCC to support technology transfer to developing country parties that facilitates their participation in global efforts to combat climate changes. Several related U.S. bilateral programs and programs supported by the Climate Technology Initiative, a multilateral effort on behalf of a number of Organization for Economic Cooperation and Development (OECD) countries, are included in this review. The discussion highlights a number of common elements of the approaches of many of these programs as well as some differences. It presents case studies that focus on methods and results in China, Mexico, and Southern Africa, and catalogues and describes the implementation activities and results that these programs have achieved. It concludes by assessing the implications of this experience for the international community as it moves forward with the climate change technology transfer enterprise

  5. What do we need from intermediaries for technology transfer to China?

    DEFF Research Database (Denmark)

    Li-Ying, Jason

    2012-01-01

    . To facilitate technology transfer between technology providers and recipients and to compensate for the weakness in the system of innovation, the role of technology intermediaries as bridging organizations has been widely recognized and discussed. This study deepens our understanding of the role...

  6. A direct healthcare cost analysis of the cryopreserved versus fresh transfer policy at the blastocyst stage.

    Science.gov (United States)

    Papaleo, Enrico; Pagliardini, Luca; Vanni, Valeria Stella; Delprato, Diana; Rubino, Patrizia; Candiani, Massimo; Viganò, Paola

    2017-01-01

    A cost analysis covering direct healthcare costs relating to IVF freeze-all policy was conducted. Normal- and high- responder patients treated with a freeze-all policy (n = 63) compared with fresh transfer IVF (n = 189) matched by age, body mass index, duration and cause of infertility, predictive factors for IVF (number of oocytes used for fertilization) and study period, according to a 1:3 ratio were included. Total costs per patient (€6952 versus €6863) and mean costs per live birth were similar between the freeze-all strategy (€13,101, 95% CI 10,686 to 17,041) and fresh transfer IVF (€15,279, 95% CI 13,212 to 18,030). A mean per live birth cost-saving of €2178 (95% CI -1810 to 6165) resulted in a freeze-all strategy owing to fewer embryo transfer procedures (1.29 ± 0.5 versus 1.41 ± 0.7); differences were not significant. Sensitivity analysis revealed that the freeze-all strategy remained cost-effective until the live birth rate is either higher or only slightly lower (≥-0.59%) in the freeze-all group compared with fresh cycles. A freeze-all policy does not increase costs compared with fresh transfer, owing to negligible additional expenses, i.e. vitrification, endometrial priming and monitoring, against fewer embryo transfer procedures required to achieve pregnancy. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  7. INTERNATIONAL TECHNOLOGY TRANSFER AND LOCALIZATION: SUCCESS STORIES IN NUCLEAR BRANCH

    Directory of Open Access Journals (Sweden)

    Yulia V. Chernyakhovskaya

    2016-01-01

    Full Text Available countries are considering nuclear power industry development [2, p. 3; 3, p. 3; 4]. For newcomer-countries it is of great importance to stimulate the national industry through NPP projects implementation based on technology transfer and localization (TTL. The study and systematization of world experience is useful in purpose to elaborate the national industry development programs. Objectives. The aim of article is to determine success factors of TTL; tasks: 1 to study TTL international experience in the fi eld of nuclear power technologies; 2 on the ground of the world practice to analyze preconditions, contents, stages, arrangement modes, formats and results of TTL. Methods. The following methods are utilized in the study: analysis and synthesis including problem-chronological, cause and eff ect and logical analysis and historical-diachronic method (method of periodization. Results. The following conclusions presented below have been made on the basis of the three cases study related to nuclear industry development using TTL (France, South Korea and China. Conclusions. The TTL success factors includes: Government support that provides long-term governmental development plan of nuclear power and industry for nuclear power based on TTL, and an appropriate international cooperation (under favorable conditions of “NPP buyers market”; Complex approach to implementation of the national TTL program and NPP construction projects: signing of NPP construction contracts with vendors stipulating technology transfer; NPP designing and constructing should be performed jointly with training and transferring of technical documentation and software. Technology transfer cooperation should be implemented through the licenses agreements and setting up joint ventures; Public acceptance and support.

  8. Optimal Selection Method of Process Patents for Technology Transfer Using Fuzzy Linguistic Computing

    Directory of Open Access Journals (Sweden)

    Gangfeng Wang

    2014-01-01

    Full Text Available Under the open innovation paradigm, technology transfer of process patents is one of the most important mechanisms for manufacturing companies to implement process innovation and enhance the competitive edge. To achieve promising technology transfers, we need to evaluate the feasibility of process patents and optimally select the most appropriate patent according to the actual manufacturing situation. Hence, this paper proposes an optimal selection method of process patents using multiple criteria decision-making and 2-tuple fuzzy linguistic computing to avoid information loss during the processes of evaluation integration. An evaluation index system for technology transfer feasibility of process patents is designed initially. Then, fuzzy linguistic computing approach is applied to aggregate the evaluations of criteria weights for each criterion and corresponding subcriteria. Furthermore, performance ratings for subcriteria and fuzzy aggregated ratings of criteria are calculated. Thus, we obtain the overall technology transfer feasibility of patent alternatives. Finally, a case study of aeroengine turbine manufacturing is presented to demonstrate the applicability of the proposed method.

  9. The National Information Infrastructure and Dual-Use Technology Transfer

    National Research Council Canada - National Science Library

    Wigand, Rolf

    1997-01-01

    .... Concepts and principles guiding the organization, structure, and design of Web sites as a suitable medium for electronic technology transfer are from the literature on transaction costs, marketing...

  10. Technology Transfer, Foreign Direct Investment and Economic ...

    African Journals Online (AJOL)

    The aim of this study is to investigate the long-run equilibrium relationship between various international factors and economic growth, as well as to assess the short-term impact of inward FDI, trade and economic growth on international technology transfer to Nigeria. To achieve this, the study used a time series data from ...

  11. Japan acts to speed technology transfer from universities

    CERN Multimedia

    Saegusa, A

    1999-01-01

    A Japanese law will take effect in the autumn to promote technology transfer from universities and laboratories. The new measures aim to encourage collaborations with the commercial sector and allow industrial research partners to retain title to inventions (1 page).

  12. Policy-Based mobility Management for Heterogeneous Networks

    DEFF Research Database (Denmark)

    Mihovska, Albena D.

    2007-01-01

    Next generation communications will be composed of flexible, scalable and context-aware, secure and resilient architectures and technologies that allow full mobility of the user and enable dynamic management policies that ensure end-to-end secure transmission of data and services across heterogen......Next generation communications will be composed of flexible, scalable and context-aware, secure and resilient architectures and technologies that allow full mobility of the user and enable dynamic management policies that ensure end-to-end secure transmission of data and services across...... access technology (RAT) association, user and flow context transfer, handover decision, and deployment priority. Index Terms— distributed RRM, centralized...

  13. Institutional Support : African Technology Policy Studies - Tanzania ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    African Technology Policy Studies - Tanzania (ATPS-Tanzania) was registered as a national nongovernmental organization in 2001. ... While resource flows to ATPS-Tanzania from ATPS headquarters in Nairobi were reliable, the organization produced a larger volume of research outputs than most other ATPS national ...

  14. Applications of aerospace technology in biomedicine. A technology transfer profile: Patient monitoring

    Science.gov (United States)

    Murray, D. M.

    1971-01-01

    NASA contributions to cardiovascular monitoring are described along with innovations in intracardiac blood pressure monitoring. A brief overview of the process of NASA technology transfer in patient monitoring is presented and a list of bioinstrumentation tech briefs and the number of requests for technical support is included.

  15. Stakeholder Engagement Opportunities in Systematic Reviews: Knowledge Transfer for Policy and Practice

    Science.gov (United States)

    Keown, Kiera; Van Eerd, Dwayne; Irvin, Emma

    2008-01-01

    Knowledge transfer and exchange is the process of increasing the awareness and use of research evidence in policy or practice decision making by nonresearch audiences or stakeholders. One way to accomplish this end is through ongoing interaction between researchers and interested nonresearch audiences, which provides an opportunity for the two…

  16. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities.

    Science.gov (United States)

    Nijboer, F

    2015-02-01

    This paper provides an analysis of perspectives from different stakeholders on the state-of-the-art of BCI. Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed. Second, the potential target group, which could benefit from BCIs as access technologies is expected to be very small. Development costs are therefore high, while reimbursements are expected to be low, which challenges the commercial viability. Third, potential target users should be much more included in the design process of BCIs to ensure that the end-products meet technical, ethical, legal and social requirements. These three issues need to be urgently addressed so that target users may benefit from this promising technology. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. The Analysis of the Relationship between Clean Technology Transfer and Chinese Intellectual Property Countering the Climate Changes

    DEFF Research Database (Denmark)

    Min, Hao

    This report discusses the relationship between the Chinese intellectual property systems which counter with the climate change and the transfer of clean technology, and states how to encourage the developed countries transfer the clean technology to the developing countries according to the relat...... property countering the climate changes; the analysis of current technology transfer modes relating to the climate; the difficulties of Chinese countering climate changes technology transfer and strategic thinking....

  18. Healthy China 2020 : Policy and Technology Evaluation | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Healthy China 2020 : Policy and Technology Evaluation ... aimed at providing a blueprint for universal basic healthcare coverage for all by 2020. ... Implementing clinical pathway management and reforming compensation mechanism in rural ...

  19. The Clean Development Mechanism as a Vehicle for Technology Transfer and Sustainable Development - Myth or Reality?

    Directory of Open Access Journals (Sweden)

    Gary Cox

    2010-09-01

    Full Text Available This paper critically examines the clean development mechanism (CDM established under Article 12 of the Kyoto Protocol in terms of its effectiveness as a vehicle for technology transfer to developing countries, a specific commitment under the UNFCCC. Fundamentally, the paper poses the question of whether technology transfer as part of the CDM is a myth or a reality in the broader context of sustainable development. Technology transfer between countries of the North and South is explored in a historical context and the emergence of technology transfer obligations is traced in multilateral environmental agreements. The architecture of the UNFCCC and the Kyoto Protocol are examined in relation to technology transfer obligations. Empirical studies are reviewed to gain an understanding of how CDM operates in practice, with a closer examination of a small number of recent CDM projects. There is an update on the Technology Mechanism being established under the Copenhagen Accord. The paper concludes with a summary of the benefits of CDM to date and its current limitations in achieving the scaling-up of affordable environmentally sound technology transfer envisaged in the Bali Action Plan. The conclusion is that technology transfer must be a much more explicit objective of CDM with better targeting of projects in order to achieve locally sustainable equitable outcomes. Furthermore, the link between CDM and technology transfer needs to be much more explicitly made in order that, in the long run, such interventions will lead to viable low emission development pathways in developing countries.

  20. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  1. Incorporating the Delphi Technique to investigate renewable energy technology transfer in Saudi Arabia

    Science.gov (United States)

    Al-Otaibi, Nasir K.

    Saudi Arabia is a major oil-producing nation facing a rapidly-growing population, high unemployment, climate change, and the depletion of its natural resources, potentially including its oil supply. Technology transfer is regarded as a means to diversify countries' economies beyond their natural resources. This dissertation examined the opportunities and barriers to utilizing technology transfer successfully to build renewable energy resources in Saudi Arabia to diversify the economy beyond oil production. Examples of other developing countries that have successfully used technology transfer to transform their economies are explored, including Japan, Malayasia, and the United Arab Emirates. Brazil is presented as a detailed case study to illustrate its transition to an economy based to a much greater degree than before on renewable energy. Following a pilot study, the Delphi Method was used in this research to gather the opinions of a panel of technology transfer experts consisting of 10 heterogeneous members of different institutions in the Kingdom of Saudi Arabia, including aviation, telecommunication, oil industry, education, health systems, and military and governmental organizations. In three rounds of questioning, the experts identified Education, Dependence on Oil, and Manpower as the 3 most significant factors influencing the potential for success of renewable energy technology transfer for Saudi Arabia. Political factors were also rated toward the "Very Important" end of a Likert scale and were discussed as they impact Education, Oil Dependence, and Manpower. The experts' opinions are presented and interpreted. They form the basis for recommended future research and discussion of how in light of its political system and its dependence on oil, Saudi Arabia can realistically move forward on renewable energy technology transfer and secure its economic future.

  2. Power Generation Technology Choice in the Presence of Climate Policy

    International Nuclear Information System (INIS)

    Pettersson, Fredrik

    2005-01-01

    The overall purpose of this thesis is to analyze power generation technology choices in the presence of climate policy. Special attention is paid to the diffusion of renewable power technologies following a carbon pricing policy, and this topic is analyzed in two self-contained papers. The overall objective of paper 1 is to analyze how future investments in the Swedish power sector can be affected by carbon pricing policies following the Kyoto Protocol. In the first part we focus on the price of carbon following the Kyoto commitments and to what extent this policy will affect the relative competitiveness of the available investment alternatives. The second part pays attention to the possible impacts of technology learning - and the resulting cost decreases - on the economics of power generation in the presence of climate policy. The first part considers the majority of power generation technologies available in Sweden, while the second part focuses solely on the competition between combined cycle natural gas plants and the cheapest renewable power alternative, wind power. Methodologically, we approach the above issues from the perspective of a power generator who considers investing in new generation capacity. This implies that we first of all assess the lifetime engineering costs of different power generation technologies in Sweden, and analyze the impact of carbon pricing on the competitive cost position of these technologies under varying rate-of-return requirements. Overall the results indicate that in general it is not certain that compliance with the Kyoto commitments implies substantial increases in renewable power sources. If, therefore, renewable power sources are favored for reasons beyond climate policy additional policy instruments will be needed. The purpose of paper 2 is to analyze the costs for reducing CO 2 emissions in the power-generating sectors in Croatia, the European part of Russia, Macedonia, Serbia and the Ukraine in 2020 by using a linear

  3. Toward Technology-Sensitive Catching-Up Policies: Insights from Renewable Energy in China

    DEFF Research Database (Denmark)

    Binz, Christian; Gosens, Jorrit; Hansen, Teis

    2017-01-01

    , but were of limited importance in the early solar PV industry, and resulted only in a limited period of rapid growth in the biomass power plant industry. The relative progress achieved in these three industries is not related to top-down policy guidance alone, but also to private sector initiative......, international interdependencies, and flexibility in adapting policy mixes to each industry's technological characteristics. These results suggest that policy makers in newly industrializing countries (NICs) should avoid drafting generic sector plans, but should tailor plans to individual industries, and respond...... to changing policy support needs as technological capacities and global competitiveness develop....

  4. NASA technology utilization applications. [transfer of medical sciences

    Science.gov (United States)

    1973-01-01

    The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.

  5. Remote sensing education in NASA's technology transfer program

    Science.gov (United States)

    Weinstein, R. H.

    1981-01-01

    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  6. Climate change policy and international trade. Policy considerations in the US

    International Nuclear Information System (INIS)

    Weber, Christopher L.; Peters, Glen P.

    2009-01-01

    Significant recent attention, in both research and policy realms, has been given to the intersection of international trade and global climate change. Trade presents challenges to climate policy through carbon leakage and competitiveness concerns, but also potential solutions through the use of cooperative trade agreements, technology transfer, or carbon tariffs against recalcitrant nations. This study examines how trade may affect climate policy in the US and specifically examines the use of carbon tariffs as suggested by recent bills before the US Congress. We argue that even if such actions are legal at the World Trade Organization, they are probably not necessary to protect industrial competitiveness in the traditional sense, could cover only a small proportion of total embodied emissions in trade, and may in fact be counterproductive at a moment when global cooperation is desperately needed. While political agreement may necessitate at least the threat of carbon tariffs, cooperative agreements such as global sectoral agreements, technology sharing, etc. could be more productive in the short term. (author)

  7. Science and Technology Policy in Colombia: A Comparative Review

    NARCIS (Netherlands)

    Correa-Restrepo, Juan Santiago; Tejada-Gomez, Maria Alejandra; Cayon-Fallon, Edgardo; Ordonez Matamoros, Hector Gonzalo

    2014-01-01

    The purpose of the present paper is to assess the current situation of the science and technology system in Colombia from a comparative perspective of quality indicators in Latin America and the Caribbean (LAC). We analyze the development of the science and technology policy in Colombia form a

  8. Policies to Encourage the Development of Water Sanitation Technology

    NARCIS (Netherlands)

    Euverink, G.J.W.; Temmink, B.G.; Rozendal, R.A.; Buisman, C.J.N.

    2009-01-01

    This chapter examines innovations in water technology, policies to develop technologies that will contribute to a sustainalbe economy, and the introduction of the new concepts to society. We discuss our views on how wastewater treatment may be performed in the future in such a way that the WFD

  9. U.S. EPA Federal Technology Transfer Program Fact Sheet

    Science.gov (United States)

    The Federal Technology Transfer Act (FTTA), enacted by Congress in 1986 and building on previous legislation, improves access to federal laboratories by non-federal organizations for research and development opportunities.

  10. Collaborating with EPA through the Federal Technology Transfer Act

    Science.gov (United States)

    Under the Federal Technology Transfer Act (FTTA), EPA can collaborate with external parties on research projects, and share research materials. Learn more about the types of partnerships the EPA offers.

  11. White paper on science and technology, 1999. New development in science and technology policy: responding to national and societal needs

    International Nuclear Information System (INIS)

    1999-01-01

    This white paper presents various considerations on present important issues on Japanese science and technology by focusing on what is demanded of Japan's science and technology policy in responding to these national and social needs. This papers concern policy measures intended to promote science and technology, and has been submitted to the hundred forty-second session of the Diet, pursuant to Article 8 of the Science and Technology Basic Law (Law No. 130), enacted in 1995. Part 1 and Part 2 of this report discuss the trends in a wide range of scientific and technical activities to help understanding the policy measures implemented to promote science and technology, which are then discussed in Part 3. The title of Part 1 is new development in science and technology policy: responding to national and societal needs. In this part, what sort of efforts is needed in the world of today, where science and technology are engines for social and economic revolution was examined in order for science and technology to better meet national and societal needs. In Part 2, current status of science and technology in Japan and other nations in the areas pertaining to science and technology were examined using various data as to the scientific and technical activities in Japan. This information will then be used for a more in-depth analysis of the trends in Japan's research activities. Part 3 provides a summary of the Science and Technology Basic Plan that was determined in July 1996 based on the Science and Technology Basic Law. It continues with a discussion of the policies that were implemented in FY1998 for the promotion of science and technology, in line with this basic plan. (M.N.)

  12. The academic spin-offs as technology transfer way

    International Nuclear Information System (INIS)

    Gomez Gras, J. M.; Mira Solves, I.; Verdu Jover, A. J.; Sancho Azuar, J.

    2007-01-01

    One of the technology transfer mechanisms used by universities that has risen more interest in the last decade is the formation of academic spin-off, firms specifically created for the commercial exploitation of technology derived from research results. In the current paper we review the typologies and the development process of this kind of firms, as well as we propose a model that groups the conditioning factors of spin-off activity in the internal university environment. (Author) 92 refs

  13. The Transfer of HRM Policies and Practices in American Multinational Hotels in Saudi Arabia (P.155-164

    Directory of Open Access Journals (Sweden)

    Amal Hatem Alkhaldi

    2016-03-01

    Full Text Available Global   competition   in   the   international   business   environment has   pushed companies to achieve competitive advantage through mergers, acquisitions and through locating their subsidiaries in less developed counties for cost effectiveness. Consequently, the competitive pressure has increased the significance of human resource management (HRM in multinational companies (MNCs, and MNCs have recognised the significance of the transfer HRM process across borders. This study examines the transfer of HRM policies and practices of US MNCs to their subsidiaries in Saudi Arabia. The aim of the study is to determine the extent to which US MNCs transfer HRM policies and practices from their Headquarters to their subsidiaries in Saudi Arabia; and identify the factors that facilitate and inhibit HRM transfer. The paper is based on an investigation of the interaction between home-country and host-country effects in determining HRM policies and practices in MNCs in the context of the Middle East. The study adopts a mixed methods approach of documentary analysis, focus group interviews of employees and in depth interviews of key informants in four subsidiaries of US owned international hotel chains located in Riyadh, Saudi Arabia.Keywords: Home  country, host  country, human  resource  managem transfer,Institutional theory, culture conditions.

  14. Technology transfer for Ukrainian milk treatment: A case study

    International Nuclear Information System (INIS)

    Dunn, M.J.; Walker, J.S.

    1994-01-01

    As a result of the Chernobyl Nuclear Power Plant accident, radioactive fission products have contaminated the food chain in the Ukraine. The highest doses to humans are a result of cesium contamination in milk. The milk produced in the Ukraine contains radioactive cesium at levels up to 10 times the acceptance standards. Bradtec has developed and demonstrated technology for the US Department of Energy for the treatment of groundwater and effluent water. This technology has also been tested and demonstrated for the Ukrainian government for the purpose of treating contaminated milk. Bradtec, a small business offering specialized technologies in the field of environmental remediation and waste management, has successfully worked with a consortium of businesses, National Laboratories and DOE Headquarters staff to develop and implement a technology demonstration strategy which has led to the implementation of a series collaboration agreements with Ukrainian officials. This paper describes, in a case study approach, the path followed by Bradtec and its collaboration partners in successfully implementing a technology transfer strategy. Also presented is an update on new programs that can provide benefit to private sector companies as DOE seeks to assist the private sector in joint venture/technology transfer relationships with the NIS (New Independent States). This paper should be of interest to all businesses seeking to participate in business opportunities in the NIS

  15. Role of national centers of research and development in nuclear technology transfer

    International Nuclear Information System (INIS)

    Graf, J.-J.; Millies, Pierre.

    1977-01-01

    National Research Centers are shown to play a leading role in nuclear technology transfer, whatever may be the directing scheme of nuclear development in the country envisaged. The first act of the Center consists in training specialists in the various nuclear fields. It must ensure the transfer of technological knowledge towards industry (in metallurgy, mechanics, electronics) and other nuclear auxiliary techniques, together with the transfer towards administration (laws). A simplified scheme of nuclear development strategy based on the French scheme (the French Atomic Energy Commission (CEA) with its subsidiary Companies) is presented that is usable for developing countries [fr

  16. Interregional technology transfer on advanced materials and renewable energy systems

    International Nuclear Information System (INIS)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M.

    2008-01-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems

  17. Interregional technology transfer on advanced materials and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M. [Department of Mechanical Engineering, Technological Educational Institute of Serres, Serres (Greece)

    2008-07-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems.

  18. Teacher Verbal Aggressiveness and Credibility Mediate the Relationship between Teacher Technology Policies and Perceived Student Learning

    Science.gov (United States)

    Finn, Amber N.; Ledbetter, Andrew M.

    2014-01-01

    In this study, we extend previous work on teacher technology policies by refining the teacher technology policies instrument to account for the technology purpose (social, academic) and type (cell phone, laptop/tablet), and examine a model of teacher technology policies and perceived learning. We found that students are more sensitive to policies…

  19. The Role of Transition of Workforce between Companies in Transferring Technology

    Directory of Open Access Journals (Sweden)

    Sedki Esmaeel Rezouki

    2015-12-01

    Full Text Available The transition of professionals between different sectors is considered as one of sources of acquisition of technology and will lead to add the practical experience to them. This experience depending on different factors like: the scientific degree and practical experience by the professionals, the technology possessed by the transferor sector, the duration that spent by experienced in transferor sector, the type of work performed by professional….etc. The research aims to verify the affect of these factors in technology transfer process. Research reached that the technology transfer process which is depending on the Iraqi competencies in work is unsatisfied level between Iraqi organizations because there are different obstacles behind this. Research diagnosed such obstacles as well as the procedures that followed-up by professionals to serve this process.

  20. 76 FR 8371 - Notice Correction; Generic Submission of Technology Transfer Center (TTC) External Customer...

    Science.gov (United States)

    2011-02-14

    ... Submission of Technology Transfer Center (TTC) External Customer Satisfaction Surveys (NCI) The Federal... project titled, ``Technology Transfer Center (TTC) External Customer Satisfaction Survey (NCI)'' was... will include multiple customer satisfaction surveys over the course of three years. At this time, only...

  1. Poverty Alleviation and Environmental Sustainability through Improved Regimes of Technology Transfer

    Directory of Open Access Journals (Sweden)

    Klaus Bosselmann

    2006-06-01

    Full Text Available To achieve the Millennium Development Goals, international technology transfer can play a major role for poverty alleviation and environmental sustainability. At present, there are economic, social and legal (rather than technical barriers preventing the transfer of environmentally sound technology (EST from a wider use in international regimes. Removing these barriers requires greater political and regulatory efforts both domestically and internationally. To enable EST transfer, developed States need to improve domestic market conditions such as removal of negative subsidies and barriers to foreign investment, targeted fiscal incentives and law reforms favouring sustainable production and use of energy. There is no realistic perspective for international EST transfer as long as it is disadvantaged domestically. A coherent EST transfer regime is only possible through greater governmental intervention at the national and international level, including environmental regulations, national systems of innovation, and creating an enabling environment for EST. Such intervention should include effective public-private partnerships, both within and between States. Partnerships, if guided by law, could ensure EST innovation more efficiently than purely State-driven or market-driven EST transfers. In search for a model, the EST transfer regime under the Vienna Ozone Layer Convention and the Montreal Protocol deserves recognition. For example, the clean development mechanism under the Kyoto Protocol allows for considerable scope for EST transfer. The potential of EST transfer for climate change and for meeting the Millennium Development Goals has yet to be realized.

  2. Technology geography: studying the relationships between technology, location and productivity

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2006-01-01

    Operations management, international management, public policy and economic geography are scientific areas which come together in the study of international technology transfer. This study shows how each of these areas has its own central issues but also has specific parts that are relevant for

  3. Analisis dan Perancangan Sistem Informasi Direktorat Research & Technology Transfer Binus University

    Directory of Open Access Journals (Sweden)

    Mahenda Metta Surya

    2014-12-01

    Full Text Available Rapid growth of information technology development as well as increasing level of competition make every company need to establish an information system to support its business process. Research & Technology Transfer Directorate of Binus University is aware of this matter and makes a goal to improve the existing business process and develop a web-based information system that is able to support the existing business process to be more effective and efficient. This study aims to conduct an analysis and a design of information system for Research & Technology Transfer Directorate Binus University that can enhance the existing business process. Research used two methods, firstly data gathering done by conducting field studies and literature reviews, secondly the analysis and design of the system with object-oriented method. The result achieved from this research is a web-based information system that can support Research & Technology Transfer Directorate business process. The conclusion of this research is a new integrated web-based information system that can support and enhance current business process by connecting all parts of the system with the result to make all process more effective and efficient.

  4. Technology Policy and Practice in Africa | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Osita M. Ogbu has a doctorate in economics from Howard University and was a ... Unit, University of Sussex, and also has a background in chemical engineering. ... on technology policy and industrial development in sub-Saharan Africa.

  5. Information and Communication Technology (ICT) Policy for Rural ...

    African Journals Online (AJOL)

    Information and Communication Technology (ICT) Policy for Rural Community ... It is against this background that the Nigerian Government has formulated ... The desire is there, the awareness has been created but the will power to budget ...

  6. The Dairy Technology System in Venezuela. Summary of Research 79.

    Science.gov (United States)

    Nieto, Ruben D.; Henderson, Janet L.

    A study examined the agricultural technology system in Venezuela with emphasis on the dairy industry. An analytical framework was used to identify the strengths and weaknesses of the following components of Venezuela's agricultural technology system: policy, technology development, technology transfer, and technology use. Selected government…

  7. Technology transfer: A cooperative agreement and success story

    International Nuclear Information System (INIS)

    Reno, H.W.; McNeel, K.; Armstrong, A.T.; Vance, J.K.

    1996-01-01

    This paper describes the cooperative agreement between the U.S. Department of Energy and Envirocare of Utah, Inc., wherein the former transferred macroencapsulative technology to the latter for purposes of demonstrating commercialization of treatment and disposal of 225, 000 Kg of radioactive lead stored at departmental installations

  8. Agile manufacturing and technology transfer to industrialising countries

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Boer, S.J.

    2003-01-01

    One of the requirements of agile manufacturing, the necessity to gain flexibility, can be reached by using a supplier network. A possible way to develop a supplier network is by subcontracting to parties in industrialising countries. In most cases, it is necessary to transfer technology. The

  9. 6. Seminar of the IIE-ININ-IMP on technological specialties. Topic 15: commercialization and technology transfer

    International Nuclear Information System (INIS)

    1992-01-01

    The document includes 9 papers presented at the 6. Seminar of the IIE-ININ-IMP (Mexico) on technological specialties in the field of commercialization and technology transfer. (Topic 15). One item was in INIS s ubject scope and a separate abstract was prepared for it

  10. Identifying the science and technology dimensions of emerging public policy issues through horizon scanning.

    Science.gov (United States)

    Parker, Miles; Acland, Andrew; Armstrong, Harry J; Bellingham, Jim R; Bland, Jessica; Bodmer, Helen C; Burall, Simon; Castell, Sarah; Chilvers, Jason; Cleevely, David D; Cope, David; Costanzo, Lucia; Dolan, James A; Doubleday, Robert; Feng, Wai Yi; Godfray, H Charles J; Good, David A; Grant, Jonathan; Green, Nick; Groen, Arnoud J; Guilliams, Tim T; Gupta, Sunjai; Hall, Amanda C; Heathfield, Adam; Hotopp, Ulrike; Kass, Gary; Leeder, Tim; Lickorish, Fiona A; Lueshi, Leila M; Magee, Chris; Mata, Tiago; McBride, Tony; McCarthy, Natasha; Mercer, Alan; Neilson, Ross; Ouchikh, Jackie; Oughton, Edward J; Oxenham, David; Pallett, Helen; Palmer, James; Patmore, Jeff; Petts, Judith; Pinkerton, Jan; Ploszek, Richard; Pratt, Alan; Rocks, Sophie A; Stansfield, Neil; Surkovic, Elizabeth; Tyler, Christopher P; Watkinson, Andrew R; Wentworth, Jonny; Willis, Rebecca; Wollner, Patrick K A; Worts, Kim; Sutherland, William J

    2014-01-01

    Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.

  11. Identifying the science and technology dimensions of emerging public policy issues through horizon scanning.

    Directory of Open Access Journals (Sweden)

    Miles Parker

    Full Text Available Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.

  12. Identifying the Science and Technology Dimensions of Emerging Public Policy Issues through Horizon Scanning

    Science.gov (United States)

    Parker, Miles; Acland, Andrew; Armstrong, Harry J.; Bellingham, Jim R.; Bland, Jessica; Bodmer, Helen C.; Burall, Simon; Castell, Sarah; Chilvers, Jason; Cleevely, David D.; Cope, David; Costanzo, Lucia; Dolan, James A.; Doubleday, Robert; Feng, Wai Yi; Godfray, H. Charles J.; Good, David A.; Grant, Jonathan; Green, Nick; Groen, Arnoud J.; Guilliams, Tim T.; Gupta, Sunjai; Hall, Amanda C.; Heathfield, Adam; Hotopp, Ulrike; Kass, Gary; Leeder, Tim; Lickorish, Fiona A.; Lueshi, Leila M.; Magee, Chris; Mata, Tiago; McBride, Tony; McCarthy, Natasha; Mercer, Alan; Neilson, Ross; Ouchikh, Jackie; Oughton, Edward J.; Oxenham, David; Pallett, Helen; Palmer, James; Patmore, Jeff; Petts, Judith; Pinkerton, Jan; Ploszek, Richard; Pratt, Alan; Rocks, Sophie A.; Stansfield, Neil; Surkovic, Elizabeth; Tyler, Christopher P.; Watkinson, Andrew R.; Wentworth, Jonny; Willis, Rebecca; Wollner, Patrick K. A.; Worts, Kim; Sutherland, William J.

    2014-01-01

    Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security. PMID:24879444

  13. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, Viola [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Chapman, Kathy [Petroleum Tech. Transfer Council, Tulsa, OK (United States); Lovendahl, Kristi [Petroleum Tech. Transfer Council, Tulsa, OK (United States)

    2014-09-30

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to find relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  14. Moderation of Policy-Making? : Science and Technology Policy Evaluation Beyond Impact Measurement—the Case of Germany

    NARCIS (Netherlands)

    Kuhlmann, Stefan

    1998-01-01

    In the field of science and technology policies, for the most part, evaluation procedures are utilized as a way of measuring the scientific and technological quality or the socio-economic impacts of publicly funded research. Beyond this practice, could evaluation procedures be used as a medium for

  15. 247 Educational Policy and Technological Development in Africa ...

    African Journals Online (AJOL)

    User

    Our modern world is sharply divided along two socio- economic poles of ... This article therefore, will look at how Nigeria's educational policy affects her level of .... the scientific and technological culture” (Umoren, 1996). vii. Lack of appropriate ...

  16. Westinghouse experience in the transfer of nuclear technology

    International Nuclear Information System (INIS)

    Simpson, J.W.

    1977-01-01

    Westinghouse experience with transfer of technical information is two-sided. First is our experience in learning, and the second is our experience in teaching others. Westinghouse conducts a special school to which government, academic and industry people are invited. There are many problems involved in all technology transfers; these include: keeping information current, making certain changes are compatible with the supplier's manufacturing capability and also suitable to the receiver, patent right and proprietary information. The building, testing and maintenance of the unit on the line - and then a succession of its sister plant is the basis for the Westinghouse leadership

  17. Developing Public Policies for New Welfare Technologies – A Case Study of Telemedicine and Telehomecare

    DEFF Research Database (Denmark)

    Tambo, Torben

    2012-01-01

    and communication-based technologies (ICT) for homecare and monitoring (telemedicine, telehomecare). Despite major investments and national commitment, public policies have not yet found a general approach to move from technological and clinical opportunity and into large-scale regular use of the technology...... (normalisation). This article provides two case studies from Denmark; one case with hypertension monitoring at a local level and another case on national policy implementation through funding of selected demonstration projects. Among the findings are that policy-making processes certainly face major challenges...... in capturing research and development for the transition of technologies into working practice. Furthermore, policy approaches of supporting experimentation and demonstration are found inadequate in promoting technology into a level of normalisation in highly cross-organisational operational environments...

  18. Factors influencing the technology upgrading and catch-up of Chinese wind turbine manufacturers: Technology acquisition mechanisms and government policies

    International Nuclear Information System (INIS)

    Qiu, Yueming; Ortolano, Leonard; David Wang, Yi

    2013-01-01

    This paper uses firm level data for the Chinese wind turbine manufacturing industry from 1998 to 2009 to quantify the effects of technology acquisition mechanisms – purchasing production licenses from foreign manufacturers, joint design with foreign design firms, joint-ventures and domestic R and D – on wind turbine manufacturers' technology levels (as measured by turbine size, in megawatts). It also examines the impacts of government policies on manufacturer technology levels. Technology upgrading (measured by increase of turbine size) and catch-up (measured by decrease in the distance to the world technology frontier in terms of turbine size) are used to measure advances in technology level. Results from econometric modeling studies indicate that firms' technology acquisition mechanisms and degree of business diversification are statistically significant factors in influencing technology upgrading. Similar results were found for the catch-up variable (i.e., distance to the world technology frontier). The influence of government policies is significant for technology upgrading but not catch-up. These and other modeling results are shown to have implications for both policymakers and wind turbine manufacturers. - Highlights: ► Technology acquired through joint design has the highest level. ► Technology acquired through purchasing production license has the lowest level. ► Technology acquired through domestic R and D has the level in between. ► A firm with related other businesses tends to have a higher level of technology. ► The influence of policies is significant for technology upgrade but not catch-up

  19. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China.

    Science.gov (United States)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-01

    Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the

  20. EPA and the Federal Technology Transfer Act: Opportunity knocks

    Energy Technology Data Exchange (ETDEWEB)

    Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.