WorldWideScience

Sample records for poleward heat transport

  1. Changing storm track diffusivity and the upper limit to poleward latent heat transport

    Science.gov (United States)

    Caballero, R.

    2010-12-01

    Poleward atmospheric energy transport plays a key role in the climate system by helping set the mean equator-pole temperature gradient. The mechanisms controlling the response of poleward heat flux to climate change are still poorly understood. Recent work shows that midlatitude poleward latent heat flux in atmospheric GCMs generally increases as the climate warms but reaches an upper limit at sufficiently high temperature and decreases with further warming. The reasons for this non-monotonic behavior have remained unclear. Simple arguments suggests that the latent heat flux Fl should scale as Fl ˜ vref qs, where vref is a typical meridional velocity in the baroclinic zone and qs is saturation humidity. While vref decreases with temperature, qs increases much more rapidly, so this scaling implies monotonically increasing moisture flux. We study this problem using a series of simulations employing NCAR’s CAM3 GCM coupled to a slab-ocean aquaplanet and spanning a wide range of atmospheric CO2 concentrations. We find that a modified scaling, Fl ˜ vref2 qs, describes the changes in moisture flux much more accurately. Using Lagrangian trajectory analysis, we explain the success of this scaling in terms of changes in the mixing length, which contracts proportionally to vref.

  2. Poleward energy transport: is the standard definition physically relevant at all time scales?

    Science.gov (United States)

    Liang, Minyi; Czaja, Arnaud; Graversen, Rune; Tailleux, Remi

    2018-03-01

    Poleward energy transport in the atmosphere and oceans constitutes an important branch of the global energy budget, and its role in the climate system has been the subject of many studies. In the atmosphere, the transport is affected by "eddies" and large scale meridional cells, both with zero net mass transport across latitude circles, but also partly by processes associated with a net transport of mass across latitude circles. The latter must cease to operate in steady state, but they may be significant when time variability of the heat budget is considered. Indeed, examination of reanalysis data on short (daily to monthly) timescales shows that mass variations on these timescales result in surprisingly large fluctuations (in excess of 10^{15} W = 1 PW) in the poleward heat transport. These fluctuations are referred to as "extensive", for they primarily alter the mass integrated energy of the region considered, but not its averaged value. It is suggested that extensive fluctuations mask more meaningful climate signals present in the heat transport variability on monthly and interannual timescales, and a new formulation is proposed to isolate the latter. This new formulation is applied successfully to reanalysis data and climate model simulations.

  3. Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air.

    Science.gov (United States)

    Komatsu, Kensuke K; Alexeev, Vladimir A; Repina, Irina A; Tachibana, Yoshihiro

    2018-02-13

    We carried out upper air measurements with radiosondes during the summer over the Arctic Ocean from an icebreaker moving poleward from an ice-free region, through the ice edge, and into a region of thick ice. Rapid warming of the Arctic is a significant environmental issue that occurs not only at the surface but also throughout the troposphere. In addition to the widely accepted mechanisms responsible for the increase of tropospheric warming during the summer over the Arctic, we showed a new potential contributing process to the increase, based on our direct observations and supporting numerical simulations and statistical analyses using a long-term reanalysis dataset. We refer to this new process as "Siberian Atmospheric Rivers (SARs)". Poleward upglides of SARs over cold air domes overlying sea ice provide the upper atmosphere with extra heat via condensation of water vapour. This heating drives increased buoyancy and further strengthens the ascent and heating of the mid-troposphere. This process requires the combination of SARs and sea ice as a land-ocean-atmosphere system, the implication being that large-scale heat and moisture transport from the lower latitudes can remotely amplify the warming of the Arctic troposphere in the summer.

  4. Lagrangian transport in poleward breaking Rossby waves in the North Atlantic - Europe tropopause region

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J; Peters, D [Rostock Univ. (Germany). Inst. fuer Atmosphaerenphysik

    1998-12-31

    The poleward advection of upper-tropospheric air is investigated for poleward Rossby wave breaking events. During boreal winter months the isentropic deformations of the tropopause are examined using maps of Ertel`s potential vorticity (EPV) and contour advection (CA) calculations. The role of ambient baro-tropic flow is further examined by idealized numerical models. In the vicinity of the tropopause the characteristic Lagrangian transport of air masses for ECMWF-analysis data are compared with high resolution (T106) ECHAM4 experiments. (author) 3 refs.

  5. Lagrangian transport in poleward breaking Rossby waves in the North Atlantic - Europe tropopause region

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Peters, D. [Rostock Univ. (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    The poleward advection of upper-tropospheric air is investigated for poleward Rossby wave breaking events. During boreal winter months the isentropic deformations of the tropopause are examined using maps of Ertel`s potential vorticity (EPV) and contour advection (CA) calculations. The role of ambient baro-tropic flow is further examined by idealized numerical models. In the vicinity of the tropopause the characteristic Lagrangian transport of air masses for ECMWF-analysis data are compared with high resolution (T106) ECHAM4 experiments. (author) 3 refs.

  6. Variability of Irreversible Poleward Transport in the Lower Stratosphere

    Science.gov (United States)

    Olsen, Mark; Douglass, Anne; Newman, Paul; Nash, Eric; Witte, Jacquelyn; Ziemke, Jerry

    2011-01-01

    The ascent and descent of the Brewer-Dobson circulation plays a large role in determining the distributions of many constituents in the extratropical lower stratosphere. However, relatively fast, quasi-horizontal transport out of the tropics and polar regions also significantly contribute to determining these distributions. The tropical tape recorder signal assures that there must be outflow from the tropics into the extratropical lower stratosphere. The phase of the quasi-biennial oscillation (QBO) and state of the polar vortex are known to modulate the transport from the tropical and polar regions, respectively. In this study we examine multiple years of ozone distributions in the extratropical lower stratosphere observed by the Aura Microwave Limb Sounder (MLS) and the Aura High Resolution Dynamic Limb Sounder (HIRDLS). The distributions are compared with analyses of irreversible, meridional isentropic transport. We show that there is considerable year-to-year seasonal variability in the amount of irreversible transport from the tropics, which is related to both the phase of the QBO and the state of the polar vortex. The reversibility of the transport is consistent with the number of observed breaking waves. The variability of the atmospheric index of refraction in the lower stratosphere is shown to be significantly correlated with the wave breaking and amount of irreversible transport. Finally, we will show that the seasonal extratropical stratosphere to troposphere transport of ozone can be substantially modulated by the amount of irreversible meridional transport in the lower stratosphere and we investigate how observable these differences are in data of tropospheric ozone.

  7. Thoughts on why in CESM a more poleward TOA energy imbalance favors more ocean-centric energy transport and weaker ITCZ shift responses

    Science.gov (United States)

    Yu, S.; Pritchard, M. S.

    2017-12-01

    The role of different location of top-of-atmosphere (TOA) solar forcing to the annual-mean, zonal-mean ITCZ location is examined in a dynamic ocean coupled Community Earth System Model. We observe a damped ITCZ shift response that is now a familiar response of coupled GCMs, but a new finding is that the damping efficiency is increases monotonically as the latitudinal location of forcing is moved poleward. More Poleward forcing cases exhibit weaker shifts of the annual-mean ITCZ position consistent with a more ocean-centric cross-equatorial energy partitioning response to the forcing, which is in turn linked to changes in ocean circulation, not thermodynamic structure. The ocean's dynamic response is partly due to Ekman-driven shallow overturning circulation responses, as expected from a recent theory, but also contains a significant Atlantic meridional overturning circulation (AMOC) component--which is in some sense surprising given that it is activated even in near-tropical forcing experiments. Further analysis of the interhemispheric energy budget reveals the surface heating feedback response provides a useful framework for interpreting the cross-equatorial energy transport partitioning between atmosphere and ocean. Overall, the results of this study may help explain the mixed results of the degree of ITCZ shift response to interhemispheric asymmetric forcing documented in coupled GCMs in recent years. Furthermore, the sensitive AMOC response motivates expanding current coupled theoretical frameworks on meridional energy transport partitioning to include effects beyond Ekman transport.

  8. A direct estimate of poleward volume, heat, and freshwater fluxes at 59.5°N between Greenland and Scotland

    Science.gov (United States)

    Rossby, T.; Reverdin, Gilles; Chafik, Leon; Søiland, Henrik

    2017-07-01

    The meridional overturning circulation (MOC) in the North Atlantic plays a major role in the transport of heat from low to high latitudes. In this study, we combine recent measurements of currents from the surface to >700 m from a shipboard acoustic Doppler current profiler with Argo profiles (to 2000 m) to estimate poleward volume, heat, and freshwater flux at 59.5°N between Greenland and Scotland. This is made possible thanks to the vessel Nuka Arctica that operates on a 3 week schedule between Greenland and Denmark. For the period late 2012 to early 2016, the deseasoned mean meridional overturning circulation reaches a 18.4 ± 3.4 Sv maximum at the σθ = 27.55 kg m-3 isopycnal, which varies in depth from near the surface in the western Irminger Sea to 1000 m in Rockall Trough. The total heat and freshwater fluxes across 59.5°N = 399 ± 74 TW and -0.20 ± 0.04 Sv, where the uncertainties are principally due to that of the MOC. Analysis of altimetric sea surface height variations along exactly the same route reveals a somewhat stronger geostrophic flow north during this period compared to the 23 year mean suggesting that for a long-term mean the above flux estimates should be reduced slightly to 17.4 Sv, 377 TW, and -0.19 Sv, respectively, with the same estimate uncertainties. The ADCP program is ongoing.

  9. Possible role of oceanic heat transport in early Eocene climate

    Science.gov (United States)

    Sloan, L. C.; Walker, J. C.; Moore, T. C. Jr

    1995-01-01

    Increased oceanic heat transport has often been cited as a means of maintaining warm high-latitude surface temperatures in many intervals of the geologic past, including the early Eocene. Although the excess amount of oceanic heat transport required by warm high latitude sea surface temperatures can be calculated empirically, determining how additional oceanic heat transport would take place has yet to be accomplished. That the mechanisms of enhanced poleward oceanic heat transport remain undefined in paleoclimate reconstructions is an important point that is often overlooked. Using early Eocene climate as an example, we consider various ways to produce enhanced poleward heat transport and latitudinal energy redistribution of the sign and magnitude required by interpreted early Eocene conditions. Our interpolation of early Eocene paleotemperature data indicate that an approximately 30% increase in poleward heat transport would be required to maintain Eocene high-latitude temperatures. This increased heat transport appears difficult to accomplish by any means of ocean circulation if we use present ocean circulation characteristics to evaluate early Eocene rates. Either oceanic processes were very different from those of the present to produce the early Eocene climate conditions or oceanic heat transport was not the primary cause of that climate. We believe that atmospheric processes, with contributions from other factors, such as clouds, were the most likely primary cause of early Eocene climate.

  10. The deep Canary poleward undercurrent

    Science.gov (United States)

    Velez-Belchi, P. J.; Hernandez-Guerra, A.; González-Pola, C.; Fraile, E.; Collins, C. A.; Machín, F.

    2012-12-01

    Poleward undercurrents are well known features in Eastern Boundary systems. In the California upwelling system (CalCEBS), the deep poleward flow has been observed along the entire outer continental shelf and upper-slope, using indirect methods based on geostrophic estimates and also using direct current measurements. The importance of the poleward undercurrents in the CalCEBS, among others, is to maintain its high productivity by means of the transport of equatorial Pacific waters all the way northward to Vancouver Island and the subpolar gyre but there is also concern about the low oxygen concentration of these waters. However, in the case of the Canary Current Eastern Boundary upwelling system (CanCEBS), there are very few observations of the poleward undercurrent. Most of these observations are short-term mooring records, or drifter trajectories of the upper-slope flow. Hence, the importance of the subsurface poleward flow in the CanCEBS has been only hypothesized. Moreover, due to the large differences between the shape of the coastline and topography between the California and the Canary Current system, the results obtained for the CalCEBS are not completely applicable to the CanCEBS. In this study we report the first direct observations of the continuity of the deep poleward flow of the Canary Deep Poleward undercurrent (CdPU) in the North-Africa sector of the CanCEBS, and one of the few direct observations in the North-Africa sector of the Canary Current eastern boundary. The results indicate that the Canary Island archipelago disrupts the deep poleward undercurrent even at depths where the flow is not blocked by the bathymetry. The deep poleward undercurrent flows west around the eastern-most islands and north east of the Conception Bank to rejoin the intermittent branch that follows the African slope in the Lanzarote Passage. This hypothesis is consistent with the AAIW found west of Lanzarote, as far as 17 W. But also, this hypothesis would be coherent

  11. Paleoclassical electron heat transport

    International Nuclear Information System (INIS)

    Callen, J.D.

    2005-01-01

    Radial electron heat transport in low collisionality, magnetically-confined toroidal plasmas is shown to result from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature equilibrates along magnetic field lines a long length L, which is the minimum of the electron collision length and a maximum effective half length of helical field lines. Thus, the diffusing field lines induce a radial electron heat diffusivity M ≅ L/(πR 0q ) ∼ 10 >> 1 times the magnetic field diffusivity η/μ 0 ≅ ν e (c/ω p ) 2 . The paleoclassical electron heat flux model provides interpretations for many features of 'anomalous' electron heat transport: magnitude and radial profile of electron heat diffusivity (in tokamaks, STs, and RFPs), Alcator scaling in high density plasmas, transport barriers around low order rational surfaces and near a separatrix, and a natural heat pinch (or minimum temperature gradient) heat flux form. (author)

  12. Active transport and heat.

    Science.gov (United States)

    Tait, Peter W

    2011-07-01

    Increasing heat may impede peoples' ability to be active outdoors thus limiting active transport options. Co-benefits from mitigation of and adaptation to global warming should not be assumed but need to be actively designed into strategies.

  13. Heat transport and storage

    International Nuclear Information System (INIS)

    Despois, J.

    1977-01-01

    Recalling the close connections existing between heat transport and storage, some general considerations on the problem of heat distribution and transport are presented 'in order to set out the problem' of storage in concrete form. This problem is considered in its overall plane, then studied under the angle of the different technical choices it involves. The two alternatives currently in consideration are described i.e.: storage in a mined cavity and underground storage as captive sheet [fr

  14. Heat transport system

    International Nuclear Information System (INIS)

    Pierce, B.L.

    1978-01-01

    A heat transport system of small size which can be operated in any orientation consists of a coolant loop containing a vaporizable liquid as working fluid and includes in series a vaporizer, a condenser and two one-way valves and a pressurizer connected to the loop between the two valves. The pressurizer may be divided into two chambers by a flexible diaphragm, an inert gas in one chamber acts as a pneumatic spring for the system. This system is suitable for use in a nuclear-powered artificial heart

  15. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  16. Heat transport the cold way

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A novel system for long-distance heat transport is being born in the 'Kernforschungsanlage Juelich' with the project being called 'Nukleare Fernenergie' (nuclear district energy). The project is also known as 'EVA/ADAM' [EVA = Einzelrohr-Versuchs-Anlage (single tube test facility); ADAM = Anlage mit Drei Adiabaten Methanisierungsreaktoren (plant provided with three adiabate methanising reactors)] and is based in principle on transport of energy in chemical bond within a closed loop. In the 60ies already this development was discussed both in the 'Kernforschungsanlage Juelich' and in the 'Rheinische Braunkohlenwerke' independent of each other. In 1975 these two organizations concluded a co-operation contract. (orig.) [de

  17. Mesoscale Eddies in the Northwestern Pacific Ocean: Three-Dimensional Eddy Structures and Heat/Salt Transports

    Science.gov (United States)

    Dong, Di; Brandt, Peter; Chang, Ping; Schütte, Florian; Yang, Xiaofeng; Yan, Jinhui; Zeng, Jisheng

    2017-12-01

    The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N-45°N and 130°E-180°E) is one of the most eddy-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale eddies in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected eddies, the spatial variations of structures of eddy temperature and salinity anomalies are analyzed. The results show that eddies predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on eddy trajectories and the inferred three-dimensional eddy structures is proposed to estimate heat and salt transports by eddy movements in a Lagrangian framework. Spatial distributions of eddy transports are presented over the vicinity of the KE for the first time. The magnitude of eddy-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The eddy heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to eddy propagation.

  18. Particle and heat transport in Tokamaks

    International Nuclear Information System (INIS)

    Chatelier, M.

    1984-01-01

    A limitation to performances of tokamaks is heat transport through magnetic surfaces. Principles of ''classical'' or ''neoclassical'' transport -i.e. transport due to particle and heat fluxes due to Coulomb scattering of charged particle in a magnetic field- are exposed. It is shown that beside this classical effect, ''anomalous'' transport occurs; it is associated to the existence of fluctuating electric or magnetic fields which can appear in the plasma as a result of charge and current perturbations. Tearing modes and drift wave instabilities are taken as typical examples. Experimental features are presented which show that ions behave approximately in a classical way whereas electrons are strongly anomalous [fr

  19. Ion heat transport studies in JET

    DEFF Research Database (Denmark)

    Mantica, P; Angioni, C; Baiocchi, B

    2011-01-01

    Detailed experimental studies of ion heat transport have been carried out in JET exploiting the upgrade of active charge exchange spectroscopy and the availability of multi-frequency ion cyclotron resonance heating with 3He minority. The determination of ion temperature gradient (ITG) threshold a...

  20. Theory of ion heat transport in tokamaks

    International Nuclear Information System (INIS)

    Gott, Y.V.; Yurchenko, E.I.

    1987-01-01

    Experiments which have been carried out in several tokamaks to determine the ion thermal conductivity show that it is several times the value predicted by the neoclassical theory. A possible explanation for this discrepancy is proposed. When the finite width of a banana is taken into account, there are substantial increases in the heat fluxes which stem from the important contribution of superthermal ions to the transport. If the electron diffusive flux is zero, a systematic account of the ions with E>T leads to an ion heat flux with a finite banana width which is two to four times the neoclassical prediction. The effect of the anomalous nature of the electron flux on the ion heat transport is analyzed. An expression is derived for calculating the ion heat transport over the entire range of collision rates

  1. Progress in understanding heat transport at JET

    International Nuclear Information System (INIS)

    Mantica, P.; Garbet, X.; Angioni, C.

    2005-01-01

    This paper reports recent progress in understanding heat transport mechanisms either in conventional or advanced tokamak scenarios in JET. A key experimental tool has been the use of perturbative transport techniques, both by ICH power modulation and by edge cold pulses. The availability of such results has allowed careful comparison with theoretical modelling using 1D empirical or physics based transport models, 3D fluid turbulence simulations or gyrokinetic stability analysis. In conventional L- and H-mode plasmas the issue of temperature profile stiffness has been addressed. JET results are consistent with the concept of a critical inverse temperature gradient length above which transport is enhanced by the onset of turbulence. A threshold value R/L Te ∼5 has been found for the onset of stiff electron transport, while the level of electron stiffness appears to vary strongly with plasma parameters, in particular with the ratio of electron and ion heating: electrons become stiffer when ions are strongly heated, resulting in larger R/L Ti values. This behaviour has also been found theoretically, although quantitatively weaker than in experiments. In plasmas characterized by Internal Transport Barriers (ITB), the properties of heat transport inside the ITB layer and the ITB formation mechanisms have been investigated. The plasma current profile is found to play a major role in ITB formation. The effect of negative magnetic shear on electron and ion stabilization is demonstrated both experimentally and theoretically using turbulence codes. The role of rational magnetic surfaces in ITB triggering is well assessed experimentally, but still lacks a convincing theoretical explanation. Attempts to trigger an ITB by externally induced magnetic reconnection using saddle coils have shown that MHD islands in general do not produce a sufficient variation of ExB flow shear to lead to ITB formation. First results of perturbative transport in ITBs show that the ITB is a narrow

  2. Is Climate Change Shifting the Poleward Limit of Mangroves?

    KAUST Repository

    Hickey, Sharyn M.; Phinn, Stuart R.; Callow, Nik J.; Van Niel, Kimberly P.; Hansen, Jeff E.; Duarte, Carlos M.

    2017-01-01

    are migrating poleward at their biogeographical limits across the globe in line with climate change. A coupled systematic approach utilising literature and land surface and air temperature data was used to determine and validate the global poleward extent

  3. Transport in Auxiliary Heated NSTX Discharges

    International Nuclear Information System (INIS)

    LeBlanc, B.P.; Bell, M.G.; Bell, R.E.; Bitte, M.L.; Bourdelle, C.; Gates, D.A.; Kaye, S.M.; Maingi, R.; Menard, J.E.; Mueller, D.; Ono, M.; Paul, S.F.; Redi, M.H.; Roquemore, A.L.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Synakowski, E.J.; Soukhanovskii, V.A.; Wilson, J.R.

    2003-01-01

    The NSTX spherical torus (ST) provides a unique platform to investigate magnetic confinement in auxiliary-heated plasmas at low aspect ratio. Auxiliary power is routinely coupled to ohmically heated plasmas by deuterium neutral-beam injection (NBI) and by high-harmonic fast waves (HHFW) launch. While theory predicts both techniques to preferentially heat electrons, experiment reveals the electron temperature is greater than the ion temperature during HHFW, but the electron temperature is less than the ion temperature during NBI. In the following we present the experimental data and the results of transport analyses

  4. The adjoint space in heat transport theory

    International Nuclear Information System (INIS)

    Dam, H. van; Hoogenboom, J.E.

    1980-01-01

    The mathematical concept of adjoint operators is applied to the heat transport equation and an adjoint equation is defined with a detector function as source term. The physical meaning of the solutions for the latter equation is outlined together with an application in the field of perturbation analysis. (author)

  5. ECRH and electron heat transport in tokamaks

    International Nuclear Information System (INIS)

    Zou, X.L.; Giruzzi, G.; Dumont, R.J.

    2003-01-01

    It has been observed during the ECRH experiments in tokamaks that the shape of the electron temperature profile in stationary regimes is not very sensitive to the ECRH power deposition i.e. the temperature profile remains peaked at the center even though the ECRH power deposition is off-axis. Various models have been invoked for the interpretation of this profile resilience phenomenon: the inward heat pinch, the critical temperature gradient, the Self-Organized Criticality, etc. Except the pinch effect, all of these models need a specific form of the diffusivity in the heat transport equation. In this work, our approach is to solve a simplified time-dependent heat transport equation analytically in cylindrical geometry. The features of this analytical solution are analyzed, in particular the relationship between the temperature profile resilience and the Eigenmode of the physical system with respect to the heat transport phenomenon. Finally, applications of this analytical solution for the determination of the transport coefficient and the polarization of the EC waves are presented. It has been shown that the solution of the simplified transport equation in a finite cylinder is a Fourier-Bessel series. This series represents in fact a decomposition of the heat source in Eigenmode, which are characterized by the Bessel functions of order 0. The physical interpretation of the Eigenmodes is the following: when the heat source is given by a Bessel function of order 0, the temperature profile has exactly the same form as the source at every time. At the beginning of the power injection, the effectiveness of the temperature response is the same for each Eigenmode, and the response in temperature, having the same form as the source, is local. Conversely, in the later phase of the evolution, the effectiveness of the temperature response for each Eigenmode is different: the higher the order, the lower the effectiveness. In this case the response in temperature appears as

  6. Nd isotopic structure of the Pacific Ocean 70-30 Ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world

    Science.gov (United States)

    Thomas, Deborah J.; Korty, Robert; Huber, Matthew; Schubert, Jessica A.; Haines, Brian

    2014-05-01

    The oceanic meridional overturning circulation (MOC) is a crucial component of the climate system, impacting heat and nutrient transport, and global carbon cycling. Past greenhouse climate intervals present a paradox because their weak equator-to-pole temperature gradients imply a weaker MOC, yet increased poleward oceanic heat transport appears to be required to maintain these weak gradients. To investigate the mode of MOC that operated during the early Cenozoic, we compare new Nd isotope data with Nd tracer-enabled numerical ocean circulation and coupled climate model simulations. Assimilation of new Nd isotope data from South Pacific Deep Sea Drilling Project and Ocean Drilling Program Sites 323, 463, 596, 865, and 869 with previously published data confirm the hypothesized MOC characterized by vigorous sinking in the South and North Pacific 70 to 30 Ma. Compilation of all Pacific Nd isotope data indicates vigorous, distinct, and separate overturning circulations in each basin until 40 Ma. Simulations consistently reproduce South Pacific and North Pacific deep convection over a broad range of conditions, but cases using strong deep ocean vertical mixing produced the best data-model match. Strong mixing, potentially resulting from enhanced abyssal tidal dissipation, greater interaction of wind-driven internal wave activity with submarine plateaus, or higher than modern values of the geothermal heat flux enable models to achieve enhanced MOC circulation rates with resulting Nd isotope distributions consistent with the proxy data. The consequent poleward heat transport may resolve the paradox of warmer worlds with reduced temperature gradients.

  7. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  8. Integral representation of nonlinear heat transport

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Mima, K.; Haines, M.G.

    1985-07-01

    The electron distribution function in a plasma with steep temperature gradient is obtained from a Fokker-Planck equation by Green's function method. The formula describes the nonlocal effects on thermal transport over the range, λ e /L e /L → 0. As an example, the heat wave is analyzed numerically by the integral formula and it is found that the previous simulation results are well reproduced. (author)

  9. One-Loop Operation of Primary Heat Transport System in MONJU During Heat Transport System Modifications

    International Nuclear Information System (INIS)

    Goto, T.; Tsushima, H.; Sakurai, N.; Jo, T.

    2006-01-01

    MONJU is a prototype fast breeder reactor (FBR). Modification work commenced in March 2005. Since June 2004, MONJU has changed to one-loop operation of the primary heat transport system (PHTS) with all of the secondary heat transport systems (SHTS) drained of sodium. The purposes of this change are to shorten the modification period and to reduce the cost incurred for circuit trace heating electrical consumption. Before changing condition, the following issues were investigated to show that this mode of operation was possible. The heat loss from the reactor vessel and the single primary loop must exceed the decay heat by an acceptable margin but the capacity of pre-heaters to keep the sodium within the primary vessel at about 200 deg. C must be maintained. With regard to the heat loss and the decay heat, the estimated heat loss in the primary system was in the range of 90-170 kW in one-loop operation, and the calculated decay heat was 21.2 kW. Although the heat input of the primary pump was considered, it was clear that circuit heat loss greatly exceeded the decay heat. As for pre-heaters, effective capacity was less than the heat loss. Therefore, the temperature of the reactor vessel room was raised to reduce the heat loss. One-loop operation of the PHTS was able to be executed by means of these measures. The cost of electrical consumption in the power plant has been reduced by one-loop operation of the PHTS and the modification period was shortened. (authors)

  10. First-principles simulations of heat transport

    Science.gov (United States)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    2017-11-01

    Advances in understanding heat transport in solids were recently reported by both experiment and theory. However an efficient and predictive quantum simulation framework to investigate thermal properties of solids, with the same complexity as classical simulations, has not yet been developed. Here we present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at close to equilibrium conditions, which only requires calculations of first-principles trajectories and atomic forces, thus avoiding direct computation of heat currents and energy densities. In addition the method requires much shorter sequential simulation times than ordinary molecular dynamics techniques, making it applicable within density functional theory. We discuss results for a representative oxide, MgO, at different temperatures and for ordered and nanostructured morphologies, showing the performance of the method in different conditions.

  11. Monju secondary heat transport system sodium leak

    International Nuclear Information System (INIS)

    Suzuki, Takeo; Hiroi, Hiroshi; Usami, Shin; Iwata, Koji.

    1996-01-01

    On December 8, 1995, the sodium leakage from the secondary heat transport system (SHTS) occurred in the piping room of the reactor auxiliary building in Monju. The secondary sodium leaked through a temperature sensor, due to the breakaway of the tip of the well tube of the sensor installed near the outlet of the intermediate heat exchanger (IHX) in the C loop of SHTS. The reactor core remained cooled and thus, from the viewpoint of radiological hazards, the safety of the reactor was secured. There were no adverse effects for operating personnel or the surrounding environment. The cause of the well tube failure is considered to result from high cycle fatigue due to flow induced vibrations. Delay in draining the sodium from the leaking loop increased the consequential effects from sodium combustion products. (author)

  12. TOUGH, Unsaturated Groundwater Transport and Heat Transport Simulation

    International Nuclear Information System (INIS)

    Pruess, K.A.; Cooper, C.; Osnes, J.D.

    1992-01-01

    1 - Description of program or function: A successor to the TOUGH program, TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures (water, water with tracer; water, CO 2 ; water, air; water, air with vapour pressure lowering, and water, hydrogen), facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. TOUGH (Transport of Unsaturated Groundwater and Heat) is a multi-dimensional numerical model for simulating the coupled transport of water, vapor, air, and heat in porous and fractured media. The program provides options for specifying injection or withdrawal of heat and fluids. Although primarily designed for studies of high-level nuclear waste isolation in partially saturated geological media, it should also be useful for a wider range of problems in heat and moisture transfer, and in the drying of porous materials. For example, geothermal reservoir simulation problems can be handled simply by setting the air mass function equal to zero on input. The TOUGH simulator was developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent transitions between liquid and vapor. TOUGH takes account of fluid flow in both liquid and gaseous phases occurring under pressure, viscous, and gravity forces according to Darcy's law. Interference between the phases is represented by means of relative permeability functions. The code handles binary, but not Knudsen, diffusion in the gas phase and capillary and phase absorption effects for the liquid phase. Heat transport occurs by means of conduction with thermal conductivity dependent on water saturation, convection, and binary diffusion, which includes both sensible and latent heat. 2 - Method of solution: All

  13. Heat transport in an anharmonic crystal

    Science.gov (United States)

    Acharya, Shiladitya; Mukherjee, Krishnendu

    2018-04-01

    We study transport of heat in an ordered, anharmonic crystal in the form of slab geometry in three dimensions. Apart from attaching baths of Langevin type to two extreme surfaces, we also attach baths of same type to the intermediate surfaces of the slab. Since the crystal is uninsulated, it exchanges energy with the intermediate heat baths. We find that both Fourier’s law of heat conduction and the Newton’s law of cooling hold to leading order in anharmonic coupling. The leading behavior of the temperature profile is exponentially falling from high to low temperature surface of the slab. As the anharmonicity increases, profiles fall more below the harmonic one in the log plot. In the thermodynamic limit thermal conductivity remains independent of the environment temperature and its leading order anharmonic contribution is linearly proportional to the temperature change between the two extreme surfaces of the slab. A fast crossover from one-dimensional (1D) to three-dimensional (3D) behavior of the thermal conductivity is observed in the system.

  14. Poloidal profiles and transport during turbulent heating

    International Nuclear Information System (INIS)

    Mascheroni, P.L.

    1977-01-01

    The current penetration stage of a turbulently heated tokamak is modeled. The basic formulae are written in slab geometry since the dominant anomalous transport has a characteristic frequency much larger than the bounce frequency. Thus, the basic framework is provided by the Maxwell and fluid equations, with classical and anomalous transport. Quasi-neutrality is used. It is shown that the anomalous collision frequency dominates the anomalous viscosity and thermal conductivity, and that the convective wave transport can be neglected. For these numerical estimates, the leading term in the quasi-linear series is used. During the current penetration stage the distribution function for the particles will depart from a single Maxwellian type. Hence, the first objective was to numerically compare calculated poloidal magnetic field profiles with measured, published poloidal profiles. The poloidal magnetic field has been calculated using a code which handles the anomalous collision frequency self-consistently. The agreement is good, and it is concluded that the current penetration stage can be satisfactorily described by this model

  15. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  16. Source effects on impurity and heat transport in a tokamak

    International Nuclear Information System (INIS)

    Bennett, R.B.

    1980-12-01

    A recently developed generalization of neoclassical theory is extended here to study heat flux contributions to impurity transport, as well as the heat fluxes themselves. The theory accounts for the first four source moments, with external drags, which has been studied previously with either fewer moments or restricted to a collisional plasma. Conditions are established for which a momentum source may be used to modify the particle and heat transport. In the course of this work, the particle and heat transport is evaluated for a two species plasma with arbitrary plasma geometry, beta, and collisionality

  17. Upgrading primary heat transport pump seals

    International Nuclear Information System (INIS)

    Graham, T.; Metcalfe, R.; Rhodes, D.; McInnes, D.

    1995-01-01

    Changes in the operating environment at the Bruce-A Nuclear Generating Station created the need for an upgraded Primary Heat Transport Pump (PHTP) seal. In particular, the requirement for low pressure running during more frequent start-ups exposed a weakness of the CAN2 seal and reduced its reliability. The primary concern at Bruce-A was the rotation of the CAN2 No. 2 stators in their holders. The introduction of low pressure running exacerbated this problem, giving rapid wear of the stator back face, overheating, and thermocracking. In addition, the resulting increase in friction between the stator and its holder increased stationary-side hysteresis and thereby changed the seal characteristic to the point where interseal pressure oscillations became prevalent. The resultant increased hysteresis also led to hard rubbing of the seal faces during temperature transients. An upgraded seal was required for improved reliability to avoid forced outages and to reduce maintenance costs. This paper describes this upgraded 'replacement seal' and its performance history. In spite of the 'teething' problems detailed in this paper, there have been no forced outages due to the replacement seal, and in the words of a seal maintenance worker at Bruce-A, 'it allows me to go home and sleep at night instead of worrying about seal failures.' (author)

  18. Intense radiative heat transport across a nano-scale gap

    International Nuclear Information System (INIS)

    Budaev, Bair V.; Ghafari, Amin; Bogy, David B.

    2016-01-01

    In this paper, we analyze the radiative heat transport in layered structures. The analysis is based on our prior description of the spectrum of thermally excited waves in systems with a heat flux. The developed method correctly predicts results for all known special cases for both large and closing gaps. Numerical examples demonstrate the applicability of our approach to the calculation of the radiative heat transport coefficient across various layered structures.

  19. Heat and Mass Transport in Heat Pipe Wick Structures

    OpenAIRE

    Iverson, B. D.; Davis, T. W.; Garimella, S V; North, M. T.; Kang, S.

    2007-01-01

    Anovel experimental approach is developed for characterizing the performance of heat pipe wick structures. This approach simulates the actual operation of wick structures in a heat pipe. Open, partially submerged, sintered copper wicks of varying pore size are studied under the partially saturated conditions found in normal heat pipe operation. A vertical wick orientation, where the capillary lift is in opposition to gravity, is selected to test the wicks under the most demanding conditions. ...

  20. SEAWAT-based simulation of axisymmetric heat transport.

    Science.gov (United States)

    Vandenbohede, Alexander; Louwyck, Andy; Vlamynck, Nele

    2014-01-01

    Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10(-10) ) than for solute transport (10(-6) ). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only. © 2013, National Ground Water Association.

  1. Some factors affecting radiative heat transport in PWR cores

    International Nuclear Information System (INIS)

    Hall, A.N.

    1989-04-01

    This report discusses radiative heat transport in Pressurized Water Reactor cores, using simple models to illustrate basic features of the transport process. Heat transport by conduction and convection is ignored in order to focus attention on the restrictions on radiative heat transport imposed by the geometry of the heat emitting and absorbing structures. The importance of the spacing of the emitting and absorbing structures is emphasised. Steady state temperature distributions are found for models of cores which are uniformly heated by fission product decay. In all of the models, a steady state temperature distribution can only be obtained if the central core temperature is in excess of the melting point of UO 2 . It has recently been reported that the MIMAS computer code, which takes into account radiative heat transport, has been used to model the heat-up of the Three Mile Island-2 reactor core, and the computations indicate that the core could not have reached the melting point of UO 2 at any time or any place. We discuss this result in the light of the calculations presented in this paper. It appears that the predicted stabilisation of the core temperatures at ∼ 2200 0 C may be a consequence of the artificially large spacing between the radial rings employed in the MIMAS code, rather than a result of physical significance. (author)

  2. Thaw flow control for liquid heat transport systems

    Science.gov (United States)

    Kirpich, Aaron S.

    1989-01-01

    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  3. Consequences of nonlinear heat transport laws on expected plasma profiles

    International Nuclear Information System (INIS)

    Lackner, K.

    1987-03-01

    The expected variation of plasma pressure profiles against changes in power deposition is investigated by using a simple linear heat transport law as well as a quadratic one. Applying the quadratic transport law it can be shown that the stiffening of the resulting profiles is sufficient to understand the experimentally measured phenomenon of 'profile consistence' without further assumptions of nonlocal effects. (orig.) [de

  4. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  5. Heat and Moisture transport of socks

    Science.gov (United States)

    Komárková, P.; Glombíková, V.; Havelka, A.

    2017-10-01

    Investigating the liquid moisture transport and thermal properties is essential for understanding physiological comfort of clothes. This study reports on an experimental investigation of moisture management transport and thermal transport on the physiological comfort of commercially available socks. There are subjective evaluation and objective measurements. Subjective evaluation of the physiological comfort of socks is based on individual sensory perception of probands during and after physical exertion. Objective measurements were performed according to standardized methods using Moisture Management tester for measuring the humidity parameters and C-term TCi analyzer for thermal conductivity and thermal effusivity. The obtained values of liquid moisture transport and thermal properties were related to the material composition and structure of the tested socks. In summary, these results show that objective measurement corresponds with probands feelings.

  6. Is Climate Change Shifting the Poleward Limit of Mangroves?

    KAUST Repository

    Hickey, Sharyn M.

    2017-02-01

    Ecological (poleward) regime shifts are a predicted response to climate change and have been well documented in terrestrial and more recently ocean species. Coastal zones are amongst the most susceptible ecosystems to the impacts of climate change, yet studies particularly focused on mangroves are lacking. Recent studies have highlighted the critical ecosystem services mangroves provide, yet there is a lack of data on temporal global population response. This study tests the notion that mangroves are migrating poleward at their biogeographical limits across the globe in line with climate change. A coupled systematic approach utilising literature and land surface and air temperature data was used to determine and validate the global poleward extent of the mangrove population. Our findings indicate that whilst temperature (land and air) have both increased across the analysed time periods, the data we located showed that mangroves were not consistently extending their latitudinal range across the globe. Mangroves, unlike other marine and terrestrial taxa, do not appear to be experiencing a poleward range expansion despite warming occurring at the present distributional limits. Understanding failure for mangroves to realise the global expansion facilitated by climate warming may require a focus on local constraints, including local anthropogenic pressures and impacts, oceanographic, hydrological, and topographical conditions.

  7. Poleward shifts in winter ranges of North American birds

    Science.gov (United States)

    Frank A. La Sorte; Frank R., III Thompson

    2007-01-01

    Climate change is thought to promote the poleward movement of geographic ranges; however, the spatial dynamics, mechanisms, and regional anthropogenic drivers associated with these trends have not been fully explored. We estimated changes in latitude of northern range boundaries, center of occurrence, and center of abundance for 254 species of winter avifauna in North...

  8. Enhanced poleward propagation of storms under climate change

    Science.gov (United States)

    Tamarin-Brodsky, Talia; Kaspi, Yohai

    2017-12-01

    Earth's midlatitudes are dominated by regions of large atmospheric weather variability—often referred to as storm tracks— which influence the distribution of temperature, precipitation and wind in the extratropics. Comprehensive climate models forced by increased greenhouse gas emissions suggest that under global warming the storm tracks shift poleward. While the poleward shift is a robust response across most models, there is currently no consensus on what the underlying dynamical mechanism is. Here we present a new perspective on the poleward shift, which is based on a Lagrangian view of the storm tracks. We show that in addition to a poleward shift in the genesis latitude of the storms, associated with the shift in baroclinicity, the latitudinal displacement of cyclonic storms increases under global warming. This is achieved by applying a storm-tracking algorithm to an ensemble of CMIP5 models. The increased latitudinal propagation in a warmer climate is shown to be a result of stronger upper-level winds and increased atmospheric water vapour. These changes in the propagation characteristics of the storms can have a significant impact on midlatitude climate.

  9. High efficiency heat transport and power conversion system for cascade

    International Nuclear Information System (INIS)

    Maya, I.; Bourque, R.F.; Creedon, R.L.; Schultz, K.R.

    1985-02-01

    The Cascade ICF reactor features a flowing blanket of solid BeO and LiAlO 2 granules with very high temperature capability (up to approx. 2300 K). The authors present here the design of a high temperature granule transport and heat exchange system, and two options for high efficiency power conversion. The centrifugal-throw transport system uses the peripheral speed imparted to the granules by the rotating chamber to effect granule transport and requires no additional equipment. The heat exchanger design is a vacuum heat transfer concept utilizing gravity-induced flow of the granules over ceramic heat exchange surfaces. A reference Brayton power cycle is presented which achieves 55% net efficiency with 1300 K peak helium temperature. A modified Field steam cycle (a hybrid Rankine/Brayton cycle) is presented as an alternate which achieves 56% net efficiency

  10. Heat transport in bubbling turbulent convection

    NARCIS (Netherlands)

    Lakkaraju, R.; Stevens, Richard Johannes Antonius Maria; Oresta, P.; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-01-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to

  11. Long-distance heat transport by hot water

    International Nuclear Information System (INIS)

    Munser, H.; Reetz, B.

    1990-01-01

    From the analysis of the centralized heat supply in the GDR energy-economical and ecological indispensable developments of long-distance heat systems in conurbation are derived. The heat extraction from a nuclear power plant combined with long- distance hot-water transport over about 110 kilometres is investigated and presented as a possibility to perspective base load heat demands for the district around Dresden. By help of industrial-economic, hydraulic and thermic evaluations of first design variants of the transit system the acceptance of this ecologic and energetic preferred solution is proved and requirements for its realization are shown

  12. Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?

    Science.gov (United States)

    Daloz, Anne Sophie; Camargo, Suzana J.

    2018-01-01

    A recent study showed that the global average latitude where tropical cyclones achieve their lifetime-maximum intensity has been migrating poleward at a rate of about one-half degree of latitude per decade over the last 30 years in each hemisphere. However, it does not answer a critical question: is the poleward migration of tropical cyclone lifetime-maximum intensity associated with a poleward migration of tropical cyclone genesis? In this study we will examine this question. First we analyze changes in the environmental variables associated with tropical cyclone genesis, namely entropy deficit, potential intensity, vertical wind shear, vorticity, skin temperature and specific humidity at 500 hPa in reanalysis datasets between 1980 and 2013. Then, a selection of these variables is combined into two tropical cyclone genesis indices that empirically relate tropical cyclone genesis to large-scale variables. We find a shift toward greater (smaller) average potential number of genesis at higher (lower) latitudes over most regions of the Pacific Ocean, which is consistent with a migration of tropical cyclone genesis towards higher latitudes. We then examine the global best track archive and find coherent and significant poleward shifts in mean genesis position over the Pacific Ocean basins.

  13. Heat transport and surface heat transfer with helium in rotating channels

    International Nuclear Information System (INIS)

    Schnapper, C.

    1978-06-01

    Heat transport and surface heat transfer with helium in rotating radially arranged channels were experimentally studied with regard to cooling of large turbogenerators with superconducting windings. Measurements with thermosiphon and thermosiphon loops of different channel diameters were performed, and results are presented. The thermodynamic state of the helium in a rotating thermosiphon and the mass flow rate in a thermosiphon loop is characterized by formulas. Heat transport by directed convection in thermosiphon loops is found to be more efficient 12 cm internal convection in thermosiphons. Steady state is reached sooner in thermosiphon loops than in thermosiphons, when heat load suddenly changes. In a very large centrifugal field single-phase heat transfer with natural and forced convection is described by similar formulas which are also applicable 10 thermosiphons in gravitation field or to heat transfer to non-rotating helium. (orig.) [de

  14. Passive heat transport in advanced CANDU containment

    International Nuclear Information System (INIS)

    Krause, M.; Mathew, P.M.

    1994-01-01

    A passive CANDU containment design has been proposed to provide the necessary heat removal following a postulated accident to maintain containment integrity. To study its feasibility and to optimize the design, multi-dimensional containment modelling may be required. This paper presents a comparison of two CFD codes, GOTHIC and PHOENICS, for multi-dimensional containment analysis and gives pressure transient predictions from a lumped-parameter and a three-dimensional GOTHIC model for a modified CANDU-3 containment. GOTHIC proved suitable for multidimensional post-accident containment analysis, as shown by the good agreement with pressure transient predictions from PHOENICS. GOTHIC is, therefore, recommended for passive CANDU containment modelling. (author)

  15. Heat transport in bubbling turbulent convection.

    Science.gov (United States)

    Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-06-04

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.

  16. Generalized heat-transport equations: parabolic and hyperbolic models

    Science.gov (United States)

    Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio

    2018-03-01

    We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.

  17. Electron and ion heat transport with lower hybrid current drive and neutral beam injection heating in ASDEX

    International Nuclear Information System (INIS)

    Soeldner, F.X.; Pereverzev, G.V.; Bartiromo, R.; Fahrbach, H.U.; Leuterer, F.; Murmann, H.D.; Staebler, A.; Steuer, K.H.

    1993-01-01

    Transport code calculations were made for experiments with the combined operation of lower hybrid current drive and heating and of neutral beam injection heating on ASDEX. Peaking or flattening of the electron temperature profile are mainly explained by modifications of the MHD induced electron heat transport. They originate from current profile changes due to lower hybrid and neutral beam current drive and to contributions from the bootstrap current. Ion heat transport cannot be described by one single model for all heating scenarios. The ion heat conductivity is reduced during lower hybrid heated phases with respect to Ohmic and neutral beam heating. (author). 13 refs, 5 figs

  18. The heat and moisture transport properties of wet porous media

    International Nuclear Information System (INIS)

    Wang, B.X.; Fang, Z.H.; Yu, W.P.

    1989-01-01

    Existing methods for determining heat and moisture transport properties in porous media are briefly reviewed, and their merits and deficiencies are discussed. Emphasis is placed on research in developing new transient methods undertaken in China during the recent years. An attempt has been made to relate the coefficients in the heat and mass transfer equations with inherent properties of the liquid and matrix and then to predict these coefficients based on limited measurements

  19. Stable solutions of nonlocal electron heat transport equations

    International Nuclear Information System (INIS)

    Prasad, M.K.; Kershaw, D.S.

    1991-01-01

    Electron heat transport equations with a nonlocal heat flux are in general ill-posed and intrinsically unstable, as proved by the present authors [Phys. Fluids B 1, 2430 (1989)]. A straightforward numerical solution of these equations will therefore lead to absurd results. It is shown here that by imposing a minimal set of constraints on the problem it is possible to arrive at a globally stable, consistent, and energy conserving numerical solution

  20. Electron heat transport studies using transient phenomena in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Jacchia, A.; Angioni, C.; Manini, A.; Ryter, F.; Apostoliceanu, M.; Conway, G.; Fahrbach, H.-U.; Kirov, K.K.; Leuterer, F.; Reich, M.; Sutttrop, W.; Cirant, S.; Mantica, P.; De Luca, F.; Weiland, J.

    2005-01-01

    Experiments in tokamaks suggest that a critical gradient length may cause the resilient behavior of T e profiles, in the absence of ITBs. This agrees in general with ITG/TEM turbulence physics. Experiments in ASDEX Upgrade using modulation techniques with ECH and/or cold pulses demonstrate the existence of a threshold in R/L Te when T e >T i and T e ≤T i . For T e >T i linear stability analyses indicate that electron heat transport is dominated by TEM modes. They agree in the value of the threshold (both T e and n e ) and for the electron heat transport increase above the threshold. The stabilization of TEM modes by collisions yielded by gyro-kinetic calculations, which suggests a transition from TEM to ITG dominated transport at high collisionality, is experimentally demonstrated by comparing heat pulse and steady-state diffusivities. For the T e ∼T i discharges above the threshold the resilience, normalized by T e 3/2 , is similar to that of the TEM dominated cases, despite very different conditions. The heat pinch predicted by fluid modeling of ITG/TEM turbulence is investigated by perturbative transport in off-axis ECH-heated discharges. (author)

  1. Electron heat transport in stochastic magnetic layer

    International Nuclear Information System (INIS)

    Becoulet, M.; Ghendrih, Ph.; Capes, H.; Grosman, A.

    1999-06-01

    Progress in the theoretical understanding of the local behaviour of the temperature field in ergodic layer was done in the framework of quasi-linear approach but this quasi-linear theory was not complete since the resonant modes coupling (due to stochasticity) was neglected. The stochastic properties of the magnetic field in the ergodic zone are now taken into account by a non-linear coupling of the temperature modes. The three-dimension heat transfer modelling in the ergodic-divertor configuration is performed by quasi-linear (ERGOT1) and non-linear (ERGOT2) numerical codes. The formalism and theoretical basis of both codes are presented. The most important effect that can be simulated with non-linear code is the averaged temperature profile flattening that occurs in the ergodic zone and the barrier creation that appears near the separatrix during divertor operation. (A.C.)

  2. Miniature Heat Transport System for Spacecraft Thermal Control

    Science.gov (United States)

    Ochterbeck, Jay M.; Ku, Jentung (Technical Monitor)

    2002-01-01

    Loop heat pipes (LHP) are efficient devices for heat transfer and use the basic principle of a closed evaporation-condensation cycle. The advantage of using a loop heat pipe over other conventional methods is that large quantities of heat can be transported through a small cross-sectional area over a considerable distance with no additional power input to the system. By using LHPs, it seems possible to meet the growing demand for high-power cooling devices. Although they are somewhat similar to conventional heat pipes, LHPs have a whole set of unique properties, such as low pressure drops and flexible lines between condenser and evaporator, that make them rather promising. LHPs are capable of providing a means of transporting heat over long distances with no input power other than the heat being transported because of the specially designed evaporator and the separation of liquid and vapor lines. For LHP design and fabrication, preliminary analysis on the basis of dimensionless criteria is necessary because of certain complicated phenomena that take place in the heat pipe. Modeling the performance of the LHP and miniaturizing its size are tasks and objectives of current research. In the course of h s work, the LHP and its components, including the evaporator (the most critical and complex part of the LHP), were modeled with the corresponding dimensionless groups also being investigated. Next, analysis of heat and mass transfer processes in the LHP, selection of the most weighted criteria from known dimensionless groups (thermal-fluid sciences), heat transfer rate limits, (heat pipe theory), and experimental ratios which are unique to a given heat pipe class are discussed. In the third part of the report, two-phase flow heat and mass transfer performances inside the LHP condenser are analyzed and calculated for Earth-normal gravity and microgravity conditions. On the basis of recent models and experimental databanks, an analysis for condensing two-phase flow regimes

  3. Global patterns in the poleward expansion of mangrove forests

    Science.gov (United States)

    Cavanaugh, K. C.; Feller, I. C.

    2016-12-01

    Understanding the processes that limit the geographic ranges of species is one of the central goals of ecology and biogeography. This issue is particularly relevant for coastal wetlands given that climate change is expected to lead to a `tropicalization' of temperate coastal and marine ecosystems. In coastal wetlands around the world, there have already been observations of mangroves expanding into salt marshes near the current poleward range limits of mangroves. However, there is still uncertainty regarding regional variability in the factors that control mangrove range limits. Here we used time series of Landsat satellite imagery to characterize patterns of mangrove abundance near their poleward range limits around the world. We tested the commonly held assumption that temporal variation in abundance should increase towards the edge of the range. We also compared variability in mangrove abundance to climate factors thought to set mangrove range limits (air temperature, water temperature, and aridity). In general, variability in mangrove abundance at range edges was high relative to range centers and this variability was correlated to one or more climate factors. However, the strength of these relationships varied among poleward range limits, suggesting that some mangrove range limits are control by processes other than climate, such as dispersal limitation.

  4. Magnetic-field asymmetry of nonlinear thermoelectric and heat transport

    International Nuclear Information System (INIS)

    Hwang, Sun-Yong; Sánchez, David; López, Rosa; Lee, Minchul

    2013-01-01

    Nonlinear transport coefficients do not obey, in general, reciprocity relations. We here discuss the magnetic-field asymmetries that arise in thermoelectric and heat transport of mesoscopic systems. Based on a scattering theory of weakly nonlinear transport, we analyze the leading-order symmetry parameters in terms of the screening potential response to either voltage or temperature shifts. We apply our general results to a quantum Hall antidot system. Interestingly, we find that certain symmetry parameters show a dependence on the measurement configuration. (paper)

  5. Transport properties and specific heat of UTe and USb

    International Nuclear Information System (INIS)

    Ochiai, A.; Suzuki, Y.; Shikama, T.; Suzuki, K.; Hotta, E.; Haga, Y.; Suzuki, T.

    1994-01-01

    Uranium monochalcogenides and monopnictides crystallize in the NaCl-type structure and exhibit ferromagnetic and antiferromagnetic order, respectively. These series reveal interesting properties such as Kondo behavior of UTe. However, such interesting properties are much sample dependent. We grew single crystals of USb and UTe with high purity using the Bridgman technique, and measured transport properties and specific heat. ((orig.))

  6. Ductile fracture behaviour of primary heat transport piping material ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Design of primary heat transport (PHT) piping of pressurised heavy water reactors (PHWR) has to ensure implementation of leak-before-break con- cepts. In order to be able to do so, the ductile fracture characteristics of PHT piping material have to be quantified. In this paper, the fracture resistance of SA333, Grade.

  7. FFTF Heat Transport System (HTS) component and system design

    International Nuclear Information System (INIS)

    Young, M.W.; Edwards, P.A.

    1980-01-01

    The FFTF Heat Transport Systems and Components designs have been completed and successfully tested at isothermal conditions up to 427 0 C (800 0 F). General performance has been as predicted in the design analyses. Operational flexibility and reliability have been outstanding throughout the test program. The components and systems have been demonstrated ready to support reactor powered operation testing planned later in 1980

  8. Latent heat transport and microlayer evaporation in nucleate boiling

    International Nuclear Information System (INIS)

    Jawurek, H.H.

    1977-08-01

    Part 1 of this work provides a broad overview and, where possible, a quantitative assessment of the complex physical processes which together constitute the mechanism of nucleate boiling heat transfer. It is shown that under a wide range of conditions the primary surface-to-liquid heat flows within an area of bubble influence are so redistributed as to manifest themselves predominantly as latent heat transport, that is, as vaporisation into attached bubbles. Part 2 deals in greater detail with one of the component processes of latent heat transport, namely microlayer evaporation. A literature review reveals the need for synchronised records of microlayer geometry versus time and of normal bubble growth and departure. An apparatus developed to provide such records is described. High-speed cine interference photography from beneath and through a transparent heating surface provided details of microlayer geometry and an image reflection system synchronised these records with the bubble profile views. Results are given for methanol and ethanol boiling at sub-atmospheric pressures and at various heat fluxes and bulk subcoolings. In all cases it is found that microlayers were of sub-micron thickness, that microlayer thinning was restricted to the inner layer edge (with the thickness elsewhere remaining constant or increasing with time) and that the contribution of this visible evaporation to the total vapour flow into bubbles was negligible. The observation of thickening towards the outer microlayer edge, however, demonstrates that a liquid replenishment flow occurred simultaneously with the evaporation process

  9. Perturbative Heat Transport Experiments on TJ-II

    International Nuclear Information System (INIS)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-01-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs

  10. Perturbative Heat Transport Experiments on TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-07-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs.

  11. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    International Nuclear Information System (INIS)

    Maassen, Jesse; Lundstrom, Mark

    2015-01-01

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions

  12. Electron heat transport in shaped TCV L-mode plasmas

    International Nuclear Information System (INIS)

    Camenen, Y; Pochelon, A; Bottino, A; Coda, S; Ryter, F; Sauter, O; Behn, R; Goodman, T P; Henderson, M A; Karpushov, A; Porte, L; Zhuang, G

    2005-01-01

    Electron heat transport experiments are performed in L-mode discharges at various plasma triangularities, using radially localized electron cyclotron heating to vary independently both the electron temperature T e and the normalized electron temperature gradient R/L T e over a large range. Local gyro-fluid (GLF23) and global collisionless gyro-kinetic (LORB5) linear simulations show that, in the present experiments, trapped electron mode (TEM) is the most unstable mode. Experimentally, the electron heat diffusivity χ e is shown to decrease with increasing collisionality, and no dependence of χ e on R/L T e is observed at high R/L T e values. These two observations are consistent with the predictions of TEM simulations, which supports the fact that TEM plays a crucial role in electron heat transport. In addition, over the broad range of positive and negative triangularities investigated, the electron heat diffusivity is observed to decrease with decreasing plasma triangularity, leading to a strong increase of plasma confinement at negative triangularity

  13. Mobile heat accumulators for lorry or train transport?; Mobile Waermespeicher fuer den LKW- oder Zugtransport?

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, Philipp

    2013-07-01

    Where heat grids cannot be laid for geographic reasons, mobile heat accumulators may be appropriate. The mobile heat accumulators are transported by lorry or train between the heat source and the heat sink. The waste heat can be decoupled from biogas plants, waste incineration plants or industrial sites. Existing road or rail networks can be used for transportation. Decisive factors to achieve low heat production costs are: free waste heat, large and continuous heat quantities as well as a short distance between the heat source and the heat sink. (orig.)

  14. Studies of heat transport to forced-flow He II

    International Nuclear Information System (INIS)

    Dresner, L.; Kashani, A.; Van Sciver, S.W.

    1985-01-01

    Analytical and experimental studies of heat transport to forced-flow He II are reported. The work is pertinent to the transfer of He II in space. An analytical model has been developed that establishes a condition for two-phase flow to occur in the transfer line. This condition sets an allowable limit to the heat leak into the transfer line. Experimental measurements of pressure drop and flow meter performances indicate that turbulent He II can be analyzed in terms of classical pressure drop correlations

  15. Local and Nonlocal Parallel Heat Transport in General Magnetic Fields

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del; Chacon, L.

    2011-01-01

    A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.

  16. Heat Transport in Gapped Spin-Chain Systems

    International Nuclear Information System (INIS)

    Shimshoni, E.

    2006-01-01

    Full Text: We study the contribution of magnetic excitations to the heat transport in gapped spin-chain systems. These systems are characterized by a substantially enhanced heat conductivity, which can be traced back to the existence of weakly violated conservation laws. We focus particularly on the behavior of clean two-leg spin ladder compounds, where one-dimensional exotic spin excitations are coupled to three-dimensional phonons. We show that the contributions of the two types of heat carriers can not be easily disentangled. Depending on the ratios of spin gaps and the Debye energy, the heat conductivity can be either exponentially increasing or exponentially decreasing as a function of temperature (T). In addition, the magnetic contribution to the total heat conductivity may be either positive or negative. We discuss its T-dependence in various possible regimes, and note that in most regimes it is dominated by spin-phonon drag: the two types of heat carriers have almost the

  17. Heating and transport in TFTR D-T plasmas

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Scott, S.D.

    1994-01-01

    The confinement and heating of supershot plasmas are significantly enhanced with tritium beam injection relative to deuterium injection in TFTR. The global energy confinement and local thermal transport are analyzed for deuterium and tritium fueled plasmas to quantify their dependence on the average mass of the hydrogenic ions. The radial profiles of the deuterium and tritium densities are determined from the DT fusion neutron emission profile

  18. Design to nullify activity movement in heat transport systems

    International Nuclear Information System (INIS)

    Hemmings, R.L.; Barber, D.

    1975-01-01

    This article describes the methods by which designers can reduce the adverse effects of system corrosion and the resultant activation of the corrosion products in heat transport systems. The presentation will cover: a) choice of materials; b) assessment of the need of components; c) control of system chemistry; d) factors considered in sizing HTS purification systems; i) control of activation and fission products; ii) decontamination. (author)

  19. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system

    Science.gov (United States)

    Kaizawa, Akihide; Maruoka, Nobuhiro; Kawai, Atsushi; Kamano, Hiroomi; Jozuka, Tetsuji; Senda, Takeshi; Akiyama, Tomohiro

    2008-05-01

    A waste heat transportation system trans-heat (TH) system is quite attractive that uses the latent heat of a phase change material (PCM). The purpose of this paper is to study the thermophysical properties of various sugars and sodium acetate trihydrate (SAT) as PCMs for a practical TH system and the heat transfer property between PCM selected and heat transfer oil, by using differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA) and a heat storage tube. As a result, erythritol, with a large latent heat of 344 kJ/kg at melting point of 117°C, high decomposition point of 160°C and excellent chemical stability under repeated phase change cycles was found to be the best PCM among them for the practical TH system. In the heat release experiments between liquid erythritol and flowing cold oil, we observed foaming phenomena of encapsulated oil, in which oil droplet was coated by solidification of PCM.

  20. Heat transport modelling in EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Brunsell, P. R.; Cecconello, M.; Drake, J. R.

    2009-02-01

    A model to estimate the heat transport in the EXTRAP T2R reversed field pinch (RFP) is described. The model, based on experimental and theoretical results, divides the RFP electron heat diffusivity χe into three regions, one in the plasma core, where χe is assumed to be determined by the tearing modes, one located around the reversal radius, where χe is assumed not dependent on the magnetic fluctuations and one in the extreme edge, where high χe is assumed. The absolute values of the core and of the reversal χe are determined by simulating the electron temperature and the soft x-ray and by comparing the simulated signals with the experimental ones. The model is used to estimate the heat diffusivity and the energy confinement time during the flat top of standard plasmas, of deep F plasmas and of plasmas obtained with the intelligent shell.

  1. Climate in the Absence of Ocean Heat Transport

    Science.gov (United States)

    Rose, B. E. J.

    2015-12-01

    The energy transported by the oceans to mid- and high latitudes is small compared to the atmosphere, yet exerts an outsized influence on the climate. A key reason is the strong interaction between ocean heat transport (OHT) and sea ice extent. I quantify this by comparing a realistic control climate simulation with a slab ocean simulation in which OHT is disabled. Using the state-of-the-art CESM with a realistic present-day continental configuration, I show that the absence of OHT leads to a 23 K global cooling and massive expansion of sea ice to near 30º latitude in both hemisphere. The ice expansion is asymmetric, with greatest extent in the South Pacific and South Indian ocean basins. I discuss implications of this enormous and asymmetric climate change for atmospheric circulation, heat transport, and tropical precipitation. Parameter sensitivity studies show that the simulated climate is far more sensitive to small changes in ice surface albedo in the absence of OHT, with some perturbations sufficient to cause a runaway Snowball Earth glaciation. I conclude that the oceans are responsible for an enormous global warming by mitigating an otherwise very potent sea ice albedo feedback, but that the magnitude of this effect is still rather uncertain. I will also present some ideas on adapting the simple energy balance model to account for the enhanced sensitivity of sea ice to heating from the ocean.

  2. Stable "Waterbelt" climates controlled by tropical ocean heat transport: A nonlinear coupled climate mechanism of relevance to Snowball Earth

    Science.gov (United States)

    Rose, Brian E. J.

    2015-02-01

    Ongoing controversy about Neoproterozoic Snowball Earth events motivates a theoretical study of stability and hysteresis properties of very cold climates. A coupled atmosphere-ocean-sea ice general circulation model (GCM) has four stable equilibria ranging from 0% to 100% ice cover, including a "Waterbelt" state with tropical sea ice. All four states are found at present-day insolation and greenhouse gas levels and with two idealized ocean basin configurations. The Waterbelt is stabilized against albedo feedback by intense but narrow wind-driven ocean overturning cells that deliver roughly 100 W m-2 heating to the ice edges. This requires three-way feedback between winds, ocean circulation, and ice extent in which circulation is shifted equatorward, following the baroclinicity at the ice margins. The thermocline is much shallower and outcrops in the tropics. Sea ice is snow-covered everywhere and has a minuscule seasonal cycle. The Waterbelt state spans a 46 W m-2 range in solar constant, has a significant hysteresis, and permits near-freezing equatorial surface temperatures. Additional context is provided by a slab ocean GCM and a diffusive energy balance model, both with prescribed ocean heat transport (OHT). Unlike the fully coupled model, these support no more than one stable ice margin, the position of which is slaved to regions of rapid poleward decrease in OHT convergence. Wide ranges of different climates (including the stable Waterbelt) are found by varying the magnitude and spatial structure of OHT in both models. Some thermodynamic arguments for the sensitivity of climate, and ice extent to OHT are presented.

  3. Turbulent transport regimes and the SOL heat flux width

    Science.gov (United States)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2014-10-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks, and for seeking possible mitigation schemes. Simulation and theory results using reduced edge/SOL turbulence models have produced SOL widths and scalings in reasonable accord with experiments in many cases. In this work, we attempt to qualitatively and conceptually understand various regimes of edge/SOL turbulence and the role of turbulent transport in establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. Recent SOLT turbulence code results are employed to understand the roles of these considerations and to develop analytical scalings. We find a heat flux width scaling with major radius R that is generally positive, consistent with older results reviewed in. The possible relationship of turbulence mechanisms to the heuristic drift mechanism is considered, together with implications for future experiments. Work supported by US DOE grant DE-FG02-97ER54392.

  4. Comparison of temperature estimates from heat transport model and electrical resistivity tomography during a shallow heat injection and storage experiment

    OpenAIRE

    Hermans, Thomas; Daoudi, Moubarak; Vandenbohede, Alexander; Robert, Tanguy; Caterina, David; Nguyen, Frédéric

    2012-01-01

    Groundwater resources are increasingly used around the world as geothermal systems. Understanding physical processes and quantification of parameters determining heat transport in porous media is therefore important. Geophysical methods may be useful in order to yield additional information with greater coverage than conventional wells. We report a heat transport study during a shallow heat injection and storage field test. Heated water (about 50°C) was injected for 6 days at the rate of 80 l...

  5. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  6. Three dimensional heat transport modeling in Vossoroca reservoir

    Science.gov (United States)

    Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias

    2017-04-01

    Freshwater reservoirs are used for many purposes as hydropower generation, water supply and irrigation. In Brazil, according to the National Energy Balance of 2013, hydropower energy corresponds to 70.1% of the Brazilian demand. Superficial waters (which include rivers, lakes and reservoirs) are the most used source for drinking water supply - 56% of the municipalities use superficial waters as a source of water. The last two years have shown that the Brazilian water and electricity supply is highly vulnerable and that improved management is urgently needed. The construction of reservoirs affects physical, chemical and biological characteristics of the water body, e.g. stratification, temperature, residence time and turbulence reduction. Some water quality issues related to reservoirs are eutrophication, greenhouse gas emission to the atmosphere and dissolved oxygen depletion in the hypolimnion. The understanding of the physical processes in the water body is fundamental to reservoir management. Lakes and reservoirs may present a seasonal behavior and stratify due to hydrological and meteorological conditions, and especially its vertical distribution may be related to water quality. Stratification can control heat and dissolved substances transport. It has been also reported the importance of horizontal temperature gradients, e.g. inflows and its density and processes of mass transfer from shallow to deeper regions of the reservoir, that also may impact water quality. Three dimensional modeling of the heat transport in lakes and reservoirs is an important tool to the understanding and management of these systems. It is possible to estimate periods of large vertical temperature gradients, inhibiting vertical transport and horizontal gradients, which could be responsible for horizontal transport of heat and substances (e.g. differential cooling or inflows). Vossoroca reservoir was constructed in 1949 by the impoundment of São João River and is located near to

  7. Thermal performance and heat transport in aquifer thermal energy storage

    Science.gov (United States)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  8. Parallel heat transport in integrable and chaotic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Negrete, D. del; Chacon, L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)

    2012-05-15

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), {chi}{sub ||} , and the perpendicular, {chi}{sub Up-Tack }, conductivities ({chi}{sub ||} /{chi}{sub Up-Tack} may exceed 10{sup 10} in fusion plasmas); (ii) Nonlocal parallel transport in the limit of small collisionality; and (iii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geometry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island), weakly chaotic (Devil's staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local parallel closures, is non-diffusive, thus casting doubts on the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

  9. Mangrove expansion and saltmarsh decline at mangrove poleward limits

    Science.gov (United States)

    Saintilan, Neil; Wilson, Nicholas C.; Rogers, Kerrylee; Rajkaran, Anusha; Krauss, Ken W.

    2014-01-01

    Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the US Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the pole-ward extension of temperature thresholds co-incident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation.

  10. Study on a neon cryogenic oscillating heat pipe with long heat transport distance

    Science.gov (United States)

    Liang, Qing; Li, Yi; Wang, Qiuliang

    2017-12-01

    An experimental study is carried out to study the heat transfer characteristics of a cryogenic oscillating heat pipe (OHP) with long heat transport distance. The OHP is made up of a capillary tube with an inner diameter of 1.0 mm and an outer diameter of 2.0 mm. The working fluid is neon, and the length of the adiabatic section is 480 mm. Tests are performed with the different heat inputs, liquid filling ratios and condenser temperature. For the cryogenic OHP with a liquid filling ratio of 30.7% at the condenser temperature of 28 K, the effective thermal conductivity is 3466-30,854 W/m K, and the maximum transfer power is 35.60 W. With the increment of the heat input, the effective thermal conductivity of the cryogenic OHP increases at the liquid filling ratios of 30.7% and 38.5%, while it first increases and then decreases at the liquid filling ratios of 15.2% and 23.3%. Moreover, the effective thermal conductivity increases with decreasing liquid filling ratio at the small heat input, and the maximum transfer power first increases and then decreases with increasing liquid filling ratio. Finally, it is found that the thermal performance of the cryogenic OHP can be improved by increasing the condenser temperature.

  11. Electron heat transport analysis of low-collisionality plasmas in the neoclassical-transport-optimized configuration of LHD

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Wakasa, Arimitsu

    2002-01-01

    Electron heat transport in low-collisionality LHD plasma is investigated in order to study the neoclassical transport optimization effect on thermal plasma transport with an optimization level typical of so-called ''advanced stellarators''. In the central region, a higher electron temperature is obtained in the optimized configuration, and transport analysis suggests the considerable effect of neoclassical transport on the electron heat transport assuming the ion-root level of radial electric field. The obtained experimental results support future reactor design in which the neoclassical and/or anomalous transports are reduced by magnetic field optimization in a non-axisymmetric configuration. (author)

  12. Cascade: a review of heat transport and plant design issues

    International Nuclear Information System (INIS)

    Murray, K.A.; McDowell, M.W.

    1984-01-01

    A conceptual heat transfer loop for Cascade, a centrifugal-action solid-breeder reaction chamber, has been investigated and results are presented. The Cascade concept, a double-cone-shaped reaction chamber, rotates along its horizontal axis. Solid Li 2 O or other lithium-ceramic granules are injected tangentially through each end of the chamber. The granules cascade axially from the smaller radii at the ends to the larger radius at the center, where they are ejected into a stationary granule catcher. Heat and tritium are then removed from the granules and the granules are reinjected into the chamber. A 50% dense Li 2 O granule throughput of 2.8 m 3 /s is transferred from the reaction chamber to the steam generators via continuous bucket elevators. The granules then fall by gravity through 4 vertical steam generators. The entire transport system is maintained at the same vacuum conditions present inside the reaction chamber

  13. Heat transport inventory monitoring for CANDU-PHW reactors

    International Nuclear Information System (INIS)

    Hussein, E.; Luxat, J.C.

    1984-01-01

    A computer-based D 2 O coolant inventory monitoring system proposed for implementation on the digital computer controllers at Ontario Hydro's CANDU generating units is discussed. By monitoring process parameters and utilizing probabilistically-based decision algorithms, timely indication of any significant loss of D 2 O inventory will be provided to the operator. The monitoring is performed in a co-ordinated manner such that D 2 O losses from either the heat transport system or the inventory control system can be detected. (orig.)

  14. A simulation of heat transfer during billet transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaklic, A.; Glogovac, B. [Institute of Metals and Technology, Ljubljana (Slovenia); Kolenko, T. [University of Ljubljana (Slovenia). Faculty of Natural Science and Technology; Zupancic, B. [University of Ljubljana (Slovenia). Faculty of Electrical Engineering; Zak, B. T. [Terming d.o.o., Ljubljana (Slovenia)

    2002-07-01

    This paper presents a simulation model for billet cooling during the billet's transport from the reheating furnace to the rolling mill. During the transport, the billet is exposed to radiation, convection and conduction. Due to the rectangular shape of the billet, the three-dimensional finite-difference model could be applied to calculate the heat conduction inside the billet. The billets are reheated in a gas-fired walking-beam furnace and are exposed to scaling. The model takes into account the effect of the thin oxide scale. We proved that the scale significantly affects the temperature distribution in the billet and should not be neglected. The model was verified by using a thermal camera. (author)

  15. Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks

    DEFF Research Database (Denmark)

    Callen, J.D.; Christiansen, J.P.; Cordey, J.G.

    1987-01-01

    time , the heating effectiveness η, and the energy offset W(0). Considering both the temperature profile responses and the global transport scaling, the constant heat pinch or excess temperature gradient model is found to best characterize the present JET data. Finally, new methods are proposed......The temperature profiles produced by various heating profiles are calculated from local heat transport models. The models take the heat flux to be the sum of heat diffusion and a non-diffusive heat flow, consistent with local measurements of heat transport. Two models are developed analytically...... in detail: (i) a heat pinch or excess temperature gradient model with constant coefficients; and (ii) a non-linear heat diffusion coefficient (χ) model. Both models predict weak (lesssim20%) temperature profile responses to physically relevant changes in the heat deposition profile – primarily because...

  16. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2011-01-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  17. Policies and initiatives for carbon neutrality in nordic heating and transport systems

    DEFF Research Database (Denmark)

    Muller, Jakob Glarbo; Wu, Qiuwei; Ostergaard, Jacob

    2012-01-01

    Policies and initiatives promoting carbon neutrality in the Nordic heating and transport systems are presented. The focus within heating systems is the propagation of heat pumps while the focus within transport systems is initiatives regarding electric vehicles (EVs). It is found that conversion...... to heat pumps in the Nordic region rely on both private economic and national economic incentives. Initiatives toward carbon neutrality in the transport system are mostly concentrated on research, development and demonstration for deployment of a large number of EVs. All Nordic countries have plans...... for the future heating and transport systems with the ambition of realizing carbon neutrality....

  18. Transition to ballistic regime for heat transport in helium II

    Energy Technology Data Exchange (ETDEWEB)

    Sciacca, Michele, E-mail: michele.sciacca@unipa.it [Dipartimento Scienze Agrarie e Forestali, Università degli studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Sellitto, Antonio, E-mail: ant.sellitto@gmail.com [Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Campus Macchia Romana, 85100 Potenza (Italy); Jou, David, E-mail: david.jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2014-07-04

    The size-dependent and flux-dependent effective thermal conductivity of narrow capillaries filled with superfluid helium is analyzed from a thermodynamic continuum perspective. The classical Landau evaluation of the effective thermal conductivity of quiescent superfluid, or the Gorter–Mellinck regime of turbulent superfluids, is extended to describe the transition to ballistic regime in narrow channels wherein the radius R is comparable to (or smaller than) the phonon mean-free path ℓ in superfluid helium. To do so, we start from an extended equation for the heat flux incorporating non-local terms, and take into consideration a heat slip flow along the walls of the tube. This leads from an effective thermal conductivity proportional to R{sup 2} (Landau regime) to another one proportional to Rℓ (ballistic regime). We consider two kinds of flows: along cylindrical pipes and along two infinite parallel plates. - Highlights: • Heat transport in counterflow helium in the ballistic regime. • The one-fluid model based on the Extended Thermodynamics is used. • The transition from the Landau regime to the ballistic regime. • The transition from quantum turbulence to ballistic regime.

  19. Currents and fluctuations of quantum heat transport in harmonic chains

    International Nuclear Information System (INIS)

    Motz, T; Ankerhold, J; Stockburger, J T

    2017-01-01

    Heat transport in open quantum systems is particularly susceptible to the modeling of system–reservoir interactions. It thus requires us to consistently treat the coupling between a quantum system and its environment. While perturbative approaches are successfully used in fields like quantum optics and quantum information, they reveal deficiencies—typically in the context of thermodynamics, when it is essential to respect additional criteria such as fluctuation-dissipation theorems. We use a non-perturbative approach for quantum dissipative dynamics based on a stochastic Liouville–von Neumann equation to provide a very general and extremely efficient formalism for heat currents and their correlations in open harmonic chains. Specific results are derived not only for first- but also for second-order moments, which requires us to account for both real and imaginary parts of bath–bath correlation functions. Spatiotemporal patterns are compared with weak coupling calculations. The regime of stronger system–reservoir couplings gives rise to an intimate interplay between reservoir fluctuations and heat transfer far from equilibrium. (paper)

  20. Coupled heat transfer in high temperature transporting system with semitransparent/opaque material

    International Nuclear Information System (INIS)

    Du Shenghua; Xia Xinjin

    2010-01-01

    The heat transfer model of the aerodynamic heating coupled with radiative cooling was developed. The thermal protect system includes the higher heat flux region with high temperature semitransparent material, the heat transporting channel and the lower heat flux region with metal. The control volume method was combined with the Monte Carlo method to calculate the coupled heat transfer of the transporting system, and the thermal equilibrium equation for the transporting channel was solved simultaneously. The effect of the aeroheating flux radio, the area ratio of radiative surfaces, the convective heat transfer coefficient of the heat transporting channel on the radiative surface temperature and the fluid temperature in the heat transporting channel were analyzed. The effect of radiation and conduction in the semitransparent material was discussed. The result shows that to increase the convective heat transfer coefficient in heat flux channel can enhance the heat transporting ability of the system, but the main parameter to effect on the temperature of the heat transporting system is the area ratio of radiative surfaces. (authors)

  1. Heat and momentum transport of ion internal transport barrier plasmas on Large Helical Device

    International Nuclear Information System (INIS)

    Nagaoka, K.; Ida, K.; Yoshinuma, M.

    2010-11-01

    The peaked ion-temperature profile with steep gradient so called ion internal transport barrier (ion ITB) was formed in the neutral beam heated plasmas on the Large Helical Device (LHD) and the high-ion-temperature regime of helical plasmas has been significantly extended. The ion thermal diffusivity in the ion ITB plasma decreases down to the neoclassical transport level. The heavy ion beam probe (HIBP) observed the smooth potential profile with negative radial electric field (ion root) in the core region where the ion thermal diffusivity decreases significantly. The large toroidal rotation was also observed in the ion ITB core and the transport of toroidal momentum was analyzed qualitatively. The decrease of momentum diffusivity with ion temperature increase was observed in the ion ITB core. The toroidal rotation driven by ion temperature gradient so called intrinsic rotation is also identified. (author)

  2. Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe

    International Nuclear Information System (INIS)

    Guo, Yuandong; Lin, Guiping; He, Jiang; Bai, Lizhan; Zhang, Hongxing; Miao, Jianyin

    2017-01-01

    Highlights: • A neon-charged CLHP integrated with a G-M cryocooler was designed and investigated. • The CLHP can realize the supercritical startup with an auxiliary heat load of 1.5 W. • Maximum heat transport capability of the CLHP was 4.5 W over a distance of 0.6 m. • There existed an optimum auxiliary heat load to expedite the supercritical startup. • There existed an optimum charged pressure to reach the largest heat transfer limit. - Abstract: Neon-charged cryogenic loop heat pipe (CLHP) can realize efficient cryogenic heat transport in the temperature range of 30–40 K, and promises great application potential in the thermal control of future space infrared exploration system. In this work, extensive experimental studies on the supercritical startup and heat transport capability of a neon-charged CLHP integrated with a G-M cryocooler were carried out, where the effects of the auxiliary heat load applied to the secondary evaporator and charged pressure of the working fluid were investigated. Experimental results showed that the CLHP could successfully realize the supercritical startup with an auxiliary heat load of 1.5 W, and there existed an optimum auxiliary heat load and charged pressure of the working fluid respectively, to achieve the maximum temperature drop rate of the primary evaporator during the supercritical startup. The CLHP could reach a maximum heat transport capability of 4.5 W over a distance of 0.6 m corresponding to the optimum charged pressure of the working fluid; however, the heat transport capability decreased with the increase of the auxiliary heat load. Furthermore, the inherent mechanisms responsible for the phenomena observed in the experiments were analyzed and discussed, to provide a better understanding from the theoretical view.

  3. Photothermal heating in metal-embedded microtools for material transport

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Palima, Darwin; Banas, Andrew Rafael

    2016-01-01

    Material transport is an important mechanism in microfluidics and drug delivery. The methods and solutions found in literature involve passively diffusing structures, microneedles and chemically fueled structures. In this work, we make use of optically actuated microtools with embedded metal layer...... as heating element for controlled loading and release. The new microtools take advantage of the photothermal-induced convection current to load and unload cargo. We also discuss some challenges encountered in realizing a self-contained polymerized microtool. Microfluidic mixing, fluid flow control...... and convection currents have been demonstrated both experimentally and numerically for static metal thin films or passively floating nanoparticles. Here we show an integration of aforementioned functionalities in an opticallyfabricated and actuated microtool. As proof of concept, we demonstrate loading...

  4. Development of CANDU 6 Primary Heat Transport System Modeling Program

    International Nuclear Information System (INIS)

    Seo, Hyung-beom; Kim, Sung-min; Park, Joong-woo; Kim, Kwang-su; Ko, Dae-hack; Han, Bong-seob

    2007-01-01

    NUCIRC is a steady-state thermal-hydraulic code used for design and performance analyses of CANDU Heat Transport System. The code is used to build PHT model in Wolsong NPP and to calculate channel flow distribution. Wolsong NPP has to calculate channel flow distribution and quality of coolant at the ROH header after every outage by OPP (Operating Policy and Principal). PHT modeling work is time consuming which need a lot of operation experience and specialty. It is very difficult to build PHT model as plant operator in two weeks which is obligate for plant operation after every outage. That is why Wolsong NPP develop NUMODEL (NUcirc MODELing) with many-years experience and a know-how of using NUCIRC code. NUMODEL is computer program which is used to create PHT model based on utilizing NUCIRC code

  5. Periodic inspection for safety of CANDU heat transport piping systems

    International Nuclear Information System (INIS)

    Ellyin, F.

    1979-10-01

    Periodic inspection of heat transport and emergency core cooling piping systems is intended to maintain an adequate level of safety throughout the life of the plant, and to protect plant personnel and the public from the consequences of a failure and release of fission products. This report outlines a rational approach to the periodic inspection based on a fully probabilistic model. It demonstrates the methodology based on theoretical treatment and experimental data whereby the strength of a pressurized pipe or vessel containing a defect could be evaluated. It also shows how the extension of the defect at various lifetimes could be predicted. These relationships are prerequisite for the probabilistic formulation and analysis for the periodic inspection of piping systems

  6. Optimal wall spacing for heat transport in thermal convection

    Energy Technology Data Exchange (ETDEWEB)

    Shishkina, Olga [Max Planck Institute for Dynamics and Self-Organization, Goettingen (Germany)

    2016-11-01

    The simulation of RB flow for Ra up to 1 x 10{sup 10} is computationally expensive in terms of computing power and hard disk storage. Thus, we gratefully acknowledge the computational resources supported by Leibniz-Rechenzentrum Munich. Compared to Γ=1 situation, a new physical picture of heat transport is identified here at Γ{sub opt} for any explored Ra. Therefore, a detailed comparison between Γ=1 and Γ=Γ{sub opt} is valuable for our further research, for example, their vertical temperature and velocity profiles. Additionally, we plan to compare the fluid with different Pr under geometrical confinement, which are computationally expensive for the situations of Pr<<1 and Pr>>1.

  7. Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation

    International Nuclear Information System (INIS)

    Dou, Nicholas G.; Minnich, Austin J.

    2016-01-01

    Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials

  8. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  9. Heat transport modeling of the dot spectroscopy platform on NIF

    Science.gov (United States)

    Farmer, W. A.; Jones, O. S.; Barrios, M. A.; Strozzi, D. J.; Koning, J. M.; Kerbel, G. D.; Hinkel, D. E.; Moody, J. D.; Suter, L. J.; Liedahl, D. A.; Lemos, N.; Eder, D. C.; Kauffman, R. L.; Landen, O. L.; Moore, A. S.; Schneider, M. B.

    2018-04-01

    Electron heat transport within an inertial-fusion hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. Here, simulations using the radiation-hydrodynamic code, HYDRA, are compared to hohlraum plasma experiments which contain a Manganese-Cobalt tracer dot (Barrios et al 2016 Phys. Plasmas 23 056307). The dot is placed either on the capsule or on a film midway between the capsule and the laser-entrance hole. From spectroscopic measurements, electron temperature and position of the dot are inferred. Simulations are performed with ad hoc flux limiters of f = 0.15 and f = 0.03 (with electron heat flux, q, limited to fnT 3/2/m 1/2), and two more physical means of flux limitation: the magnetohydrodynamics and nonlocal packages. The nonlocal model agrees best with the temperature of the dot-on-film and dot-on-capsule. The hohlraum produced x-ray flux is over-predicted by roughly ˜11% for the f = 0.03 model and the remaining models by ˜16%. The simulated trajectories of the dot-on-capsule are slightly ahead of the experimental trajectory for all but the f = 0.03 model. The simulated dot-on-film position disagrees with the experimental measurement for all transport models. In the MHD simulation of the dot-on-film, the dot is strongly perturbative, though the simulation predicts a peak dot-on-film temperature 2-3 keV higher than the measurement. This suggests a deficiency in the MHD modeling possibly due to the neglect of the Righi-Leduc term or interpenetrating flows of multiple ion species which would reduce the strength of the self-generated fields.

  10. Heat and momentum transport scalings in vertical convection

    Science.gov (United States)

    Shishkina, Olga

    2016-11-01

    For vertical convection, where a fluid is confined between two differently heated isothermal vertical walls, we investigate the heat and momentum transport, which are measured, respectively, by the Nusselt number Nu and the Reynolds number Re . For laminar vertical convection we derive analytically the dependence of Re and Nu on the Rayleigh number Ra and the Prandtl number Pr from our boundary layer equations and find two different scaling regimes: Nu Pr 1 / 4 Ra 1 / 4 , Re Pr - 1 / 2 Ra 1 / 2 for Pr > 1 . Direct numerical simulations for Ra from 105 to 1010 and Pr from 0.01 to 30 are in excellent ageement with our theoretical findings and show that the transition between the regimes takes place for Pr around 0.1. We summarize the results from and present new theoretical and numerical results for transitional and turbulent vertical convection. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  11. Heat Transport Enhancement of Turbulent Thermal Convection by Inserted Channels

    Science.gov (United States)

    Xia, Ke-Qing; Zhang, Lu

    2017-11-01

    We report an experimental study on the heat transport properties of turbulent Rayleigh Benard Convection (RBC) in a rectangular cell with two types of 3D-printed structures inserted inside. The first one splits the original rectangular cell into 60 identical sub cells whose aspect ratio is 1:1:10 (length, width, height). The second one splits the cell into 30 sub cells, each with a 1:2:10 aspect ratio and a baffle in the center. We find that for large Rayleigh numbers (Ra), the Nusselt numbers (Nu) of both structures increase compared with that of the empty rectangular cell. An enhancement in Nu as much as 20% is found for the second type of insertion at Rayleigh number 2 ×109 . Moreover, the Nu-Ra scaling shows a transition with both geometries. The particle image velocimetry (PIV) measurement within a single sub unit indicates that the transition may be related to the laminar to turbulent transition in flow field. Direct numerical simulations (DNS) confirm the experimental results. Our results demonstrate the potential in using insertions to enhance passive heat transfer. This work was supported by the Research Grants Council (RGC) of HKSAR (Nos. CUHK404513 and CUHK14301115).

  12. Understanding of flux-limited behaviors of heat transport in nonlinear regime

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yangyu, E-mail: yangyuhguo@gmail.com [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China); Jou, David, E-mail: david.jou@uab.es [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Wang, Moran, E-mail: mrwang@tsinghua.edu [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China)

    2016-01-28

    The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit. - Highlights: • Exploring flux-limited behaviors based on a categorization of existing nonlinear heat transport models. • Proposing phonon hydrodynamic model as a standard to evaluate heat flux limiters. • Providing accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.

  13. Climate in the absence of ocean heat transport

    Science.gov (United States)

    Rose, B. E. J.

    2017-12-01

    The energy transported by the oceans to mid- and high latitudes is small compared to the atmosphere, yet exerts an outsized influence on climate. A key reason is the strong interaction between ocean heat transport (OHT) and sea ice extent. I quantify the absolute climatic impact of OHT using the state-of-the-art CESM simulations by comparing a realistic control climate against a slab ocean simulation in which OHT is disabled. The absence of OHT leads to a massive expansion of sea ice into the subtropics in both hemispheres, and a 24 K global cooling. Analysis of the transient simulation after setting the OHT to zero reveals a global cooling process fueled by a runaway sea ice albedo feedback. This process is eventually self-limiting in the cold climate due to a combination of subtropical cloud feedbacks and surface wind effects that are both connected to a massive spin-up of the atmospheric Hadley circulation. A parameter sensitivity study shows that the simulated climate is far more sensitive to small changes in ice surface albedo in the absence of OHT. I conclude that the oceans are responsible for an enormous global warming by mitigating an otherwise very potent sea ice albedo feedback, but that the magnitude of this effect is rather uncertain. These simulations provide a graphic illustration of how the intimate coupling between sea ice and ocean circulation governs the present-day climate, and by extension, highlight the importance of modeling ocean - sea ice interaction with high fidelity.

  14. Optimizing the design of large-scale ground-coupled heat pump systems using groundwater and heat transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, H.; Itoi, R.; Fujii, J. [Kyushu University, Fukuoka (Japan). Faculty of Engineering, Department of Earth Resources Engineering; Uchida, Y. [Geological Survey of Japan, Tsukuba (Japan)

    2005-06-01

    In order to predict the long-term performance of large-scale ground-coupled heat pump (GCHP) systems, it is necessary to take into consideration well-to-well interference, especially in the presence of groundwater flow. A mass and heat transport model was developed to simulate the behavior of this type of system in the Akita Plain, northern Japan. The model was used to investigate different operational schemes and to maximize the heat extraction rate from the GCHP system. (author)

  15. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.; Higashijima, S.; Oyama, N.

    2003-01-01

    The relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated in reversed shear (RS) and high β p ELMy H-mode plasmas in JT-60U. No helium and carbon accumulation inside the ITB is observed even with ion heat transport reduced to a neoclassical level. On the other hand, the heavy impurity argon is accumulated inside the ITB. The argon density profile estimated from the soft x-ray profile is more peaked, by a factor of 2-4 in the RS plasma and of 1.6 in the high β p mode plasma, than the electron density profile. The helium diffusivity (D He ) and the ion thermal diffusivity (χ i ) are at an anomalous level in the high β p mode plasma, where D He and χ i are higher by a factor of 5-10 than the neoclassical value. In the RS plasma, D He is reduced from the anomalous to the neoclassical level, together with χ i . The carbon and argon density profiles calculated using the transport coefficients reduced to the neoclassical level only in the ITB are more peaked than the measured profiles, even when χ i is reduced to the neoclassical level. Argon exhaust from the inside of the ITB is demonstrated by applying ECH in the high β p mode plasma, where both electron and argon density profiles become flatter. The reduction of the neoclassical inward velocity for argon due to the reduction of density gradient is consistent with the experimental observation. In the RS plasma, the density gradient is not decreased by ECH and argon is not exhausted. These results suggest the importance of density gradient control to suppress heavy impurity accumulation. (author)

  16. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, Hidenobu; Higashijima, S.; Oyama, N.

    2003-01-01

    The relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated in reversed shear (RS) and high β p ELMy H-mode plasmas in JT-60U. No helium and carbon accumulation inside the ITB is observed even with ion heat transport reduced to a neoclassical level. On the other hand, the heavy impurity argon is accumulated inside the ITB. The argon density profile estimated from the soft x-ray profile is more peaked, by a factor of 2-4 in the RS plasma and of 1.6 in the high β p mode plasma, than the electron density profile. The helium diffusivity (D He ) and the ion thermal diffusivity (χ i ) are at an anomalous level in the high β p mode plasma, where D He and χ i are higher by a factor of 5-10 than the neoclassical value. In the RS plasma, D He is reduced from the anomalous to the neoclassical level, together with χ i . The carbon and argon density profiles calculated using the transport coefficients reduced to the neoclassical level only in the ITB are more peaked than the measured profiles, even when χ i is reduced to the neoclassical level. Argon exhaust from the inside of the ITB is demonstrated by applying ECH in the high β p mode plasma, where both electron and argon density profiles become flatter. The reduction of the neoclassical inward velocity for argon due to the reduction of density gradient is consistent with the experimental observation. In the RS plasma, the density gradient is not decreased by ECH and argon is not exhausted. These results suggest the importance of density control to suppress heavy impurity accumulation. (author)

  17. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach

    KAUST Repository

    Chust, Guillem; Castellani, Claudia; Licandro, Priscilla; Ibaibarriaga, Leire; Sagarminaga, Yolanda; Irigoien, Xabier

    2013-01-01

    is to verify the poleward shift of zooplankton species (Calanus finmarchicus, C. glacialis, C. helgolandicus, C. hyperboreus) for which distributional changes have been recorded in the North Atlantic Ocean and to assess how much of this shift was triggered

  18. Poleward propagating subinertial alongshore surface currents off the U.S. West Coast

    KAUST Repository

    Kim, Sung Yong; Cornuelle, Bruce D.; Terrill, Eric J.; Jones, Burton; Washburn, Libe; Moline, Mark A.; Paduan, Jeffrey D.; Garfield, Newell; Largier, John L.; Crawford, Greg; Michael Kosro, P.

    2013-01-01

    The network comprising 61 high-frequency radar systems along the U.S. West Coast (USWC) provides a unique, high resolution, and broad scale view of ocean surface circulation. Subinertial alongshore surface currents show poleward propagating signals

  19. Heat transport analysis in a district heating and snow melting system in Sapporo and Ishikari, Hokkaido applying waste heat from GTHTR300

    International Nuclear Information System (INIS)

    Kasahara, Seiji; Kamiji, Yu; Terada, Atsuhiko; Yan Xing; Inagaki, Yoshiyuki; Murata, Tetsuya; Mori, Michitsugu

    2015-01-01

    A district heating and snow melting system utilizing waste heat from Gas Turbine High temperature Gas Reactor of 300 MW_e (GTHTR300), a heat-electricity cogeneration design of high temperature gas-cooled reactor, was analyzed. Application areas are set in Sapporo and Ishikari, the heavy snowfall cities in Northern Japan. The heat transport analyses are carried out by modeling the components in the system; pipelines of the secondary water loops between GTHTR300s and heat demand district and heat exchangers to transport the heat from the secondary water loops to the tertiary loops in the district. Double pipe for the secondary loops are advantageous for less heat loss and smaller excavation area. On the other hand, these pipes has disadvantage of more electricity consumption for pumping. Most of the heat demand in the month of maximum requirement can be supplied by 2 GTHTR300s and delivered by 9 secondary loops and around 5000 heat exchangers. Closer location of GTHTR300 site to the heat demand district is largely advantageous economically. Less decrease of the distance from 40 km to 20 km made the heat loss half and cost of the heat transfer system 22% smaller. (author)

  20. Diffusive and convective transport modelling from analysis of ECRH-stimulated electron heat wave propagation. [ECRH (Electron Cyclotron Resonance Heating)

    Energy Technology Data Exchange (ETDEWEB)

    Erckmann, V; Gasparino, U; Giannone, L. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)) (and others)

    1992-01-01

    ECRH power modulation experiments in toroidal devices offer the chance to analyze the electron heat transport more conclusively: the electron heat wave propagation can be observed by ECE (or SX) leading to radial profiles of electron temperature modulation amplitude and time delay (phase shift). Taking also the stationary power balance into account, the local electron heat transport can be modelled by a combination of diffusive and convective transport terms. This method is applied to ECRH discharges in the W7-AS stellarator (B=2.5T, R=2m, a[<=]18 cm) where the ECRH power deposition is highly localized. In W7-AS, the T[sub e] modulation profiles measured by a high resolution ECE system are the basis for the local transport analysis. As experimental errors limit the separation of diffusive and convective terms in the electron heat transport for central power deposition, also ECRH power modulation experiments with off-axis deposition and inward heat wave propagation were performed (with 70 GHz o-mode as well as with 140 GHz x-mode for increased absorption). Because collisional electron-ion coupling and radiative losses are only small, low density ECRH discharges are best candidates for estimating the electron heat flux from power balance. (author) 2 refs., 3 figs.

  1. Latent heat increases storage capacity. Heat transport by truck; Latente warmte vergroot opslagcapaciteit. Warmtetransport per vrachtauto is soms heel slim

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, K.

    2012-11-15

    The project-group Biomass CHP (combined production of heat and power) organized a tour with a workshop in Dortmund, Germany, September 26, 2012, on storage and transport of heat and biogas. There are several projects in Germany involving road transport of heat by means of containers. A swimming pool in Dortmund already is using this option since 2008. Waste heat from a CHP-installation for landfill gas is collected from a waste dump [Dutch] De projectgroep Biomassa en WKK organiseerde 26 September een excursie met workshop in Dortmund over opslag en transport van warmte en biogas. Er zijn in Duitsland al meerdere projecten waarbij warmte per container over de weg wordt vervoerd. Een Dortmunds zwembad werkt hier al sinds 2008 mee. De restwarmte van een wkk op stortgas wordt opgehaald bij een afvalstortplaats.

  2. Enhanced heat transport in environmental systems using microencapsulated phase change materials

    Science.gov (United States)

    Colvin, D. P.; Mulligan, J. C.; Bryant, Y. G.

    1992-01-01

    A methodology for enhanced heat transport and storage that uses a new two-component fluid mixture consisting of a microencapsulated phase change material (microPCM) for enhanced latent heat transport is outlined. SBIR investigations for NASA, USAF, SDIO, and NSF since 1983 have demonstrated the ability of the two-component microPCM coolants to provide enhancements in heat transport up to 40 times over that of the carrier fluid alone, enhancements of 50 to 100 percent in the heat transfer coefficient, practically isothermal operation when the coolant flow is circulated in an optimal manner, and significant reductions in pump work.

  3. A review on transportation of heat energy over long distance. Exploratory development

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Q.; Wang, R.Z. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Luo, L.; Sauce, G. [LOCIE, Polytech' Savoie, Campus Scientifique, Savoie Technolac, 73376 Le Bourget-Du-Lac cedex (France)

    2009-08-15

    This paper presents a review on transportation of heat energy over long distance. For the transportation of high-temperature heat energy, the chemical catalytic reversible reaction is almost the only way available, and there are several reactions have been studied. For the relatively low-temperature heat energy, which exists widely as waste heat, there are mainly five researching aspects at present: chemical reversible reactions, phase change thermal energy storage and transportation, hydrogen-absorbing alloys, solid-gas adsorption and liquid-gas absorption. The basic principles and the characteristics of these methods are discussed. (author)

  4. Increased Ocean Heat Convergence Into the High Latitudes With CO 2 Doubling Enhances Polar-Amplified Warming: OCEAN HEAT AND POLAR WARMING

    Energy Technology Data Exchange (ETDEWEB)

    Singh, H. A. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, U.S. DOE Office of Science, Richland WA USA; Rasch, P. J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, U.S. DOE Office of Science, Richland WA USA; Rose, B. E. J. [Department of Atmospheric and Environmental Sciences, State University of New York at Albany, Albany NY USA

    2017-10-18

    We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2-doubling impact high-latitude climate. With CO2-doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high-latitudes warm while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar mid-troposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at high latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.

  5. Design capability of CANDU heat transport pump shafts against cracking

    International Nuclear Information System (INIS)

    Kumar, A.N.; Sheikh, Z.B.; Padgett, A.

    1993-01-01

    During 1986 three different Light Water Reactors (LWR's) in the U.S. reported either a cracked or fractured shaft on one or more of their reactor coolant (RC) pumps. The RC pumps for all these stations were supplied by Byron Jackson (BJ) Pump Company. A majority of CANDU heat transport (HT) pumps (equivalent of RC pumps) are supplied by BJ Pump Company and are similar in design to RC pumps. Hence the failure of these RC pumps in the U.S. utilities caused concern regarding the relevance of these failures to the BJ supplied CANDU HT pumps (HTP). This paper presents the results of AECL assessment to establish the capability of the HT pump shaft against cracking. Two methods were used for assessment: (a) detailed comparative design review of the HTP and RCP shafts; (b) semi-empirical analysis of the HTP shafts. The results of the AECL assessment showed significant differences in detailed design, materials, assembly and fits of various components and the control of operating parameters between the HT and RC pumps. It was concluded that because of these differences the failures similar to RC pump shafts are not likely to appear in HT pump shafts. This conclusion is further reinforced by about 140,000 hours of operating history of the longest running HT pump of comparable size to RC Pumps, without failures

  6. Nuclear transport of heat shock proteins in stressed cells

    International Nuclear Information System (INIS)

    Chughtai, Zahoor Saeed

    2001-01-01

    Nuclear import of proteins that are too large to passively enter the nucleus requires soluble factors, energy , and a nuclear localization signal (NLS). Nuclear protein transport can be regulated, and different forms of stress affect nucleocytoplasmic trafficking. As such, import of proteins containing a classical NLS is inhibited in starving yeast cells. In contrast, the heat shock protein hsp70 Ssa4p concentrates in nuclei upon starvation. Nuclear concentration of Ssa4p in starving cells is reversible, and transfer of nutrient-depleted cells to fresh medium induces Ssa4p nuclear export. This export reaction represents an active process that is sensitive to oxidative stress. Upon starvation, the N-terminal domain of Ssa4p mediates Ssa4p nuclear accumulation, and a short hydrophobic sequence, termed Star (for starvation), is sufficient to localize the reporter proteins green fluorescent protein or β-gaIactosidase to nuclei. To determine whether nuclear accumulation of Star-β-galactosidase depends on a specific nuclear carrier, I have analyzed its distribution in mutant yeast strains that carry a deletion of a single β-importin gene. With this assay I have identified Nmd5p as a β-importin required to concentrate Star-β-galactosidase in nuclei of stationary phase cells. (author)

  7. Nuclear transport of heat shock proteins in stressed cells

    Energy Technology Data Exchange (ETDEWEB)

    Chughtai, Zahoor Saeed

    2001-07-01

    Nuclear import of proteins that are too large to passively enter the nucleus requires soluble factors, energy , and a nuclear localization signal (NLS). Nuclear protein transport can be regulated, and different forms of stress affect nucleocytoplasmic trafficking. As such, import of proteins containing a classical NLS is inhibited in starving yeast cells. In contrast, the heat shock protein hsp70 Ssa4p concentrates in nuclei upon starvation. Nuclear concentration of Ssa4p in starving cells is reversible, and transfer of nutrient-depleted cells to fresh medium induces Ssa4p nuclear export. This export reaction represents an active process that is sensitive to oxidative stress. Upon starvation, the N-terminal domain of Ssa4p mediates Ssa4p nuclear accumulation, and a short hydrophobic sequence, termed Star (for starvation), is sufficient to localize the reporter proteins green fluorescent protein or {beta}-gaIactosidase to nuclei. To determine whether nuclear accumulation of Star-{beta}-galactosidase depends on a specific nuclear carrier, I have analyzed its distribution in mutant yeast strains that carry a deletion of a single {beta}-importin gene. With this assay I have identified Nmd5p as a {beta}-importin required to concentrate Star-{beta}-galactosidase in nuclei of stationary phase cells. (author)

  8. Strain dependence of the heat transport properties of graphene nanoribbons

    International Nuclear Information System (INIS)

    Emmeline Yeo, Pei Shan; Loh, Kian Ping; Gan, Chee Kwan

    2012-01-01

    Using a combination of accurate density-functional theory and a nonequilibrium Green’s function method, we calculate the ballistic thermal conductance characteristics of tensile-strained armchair (AGNR) and zigzag (ZGNR) edge graphene nanoribbons, with widths between 3 and 50 Å. The optimized lateral lattice constants for AGNRs of different widths display a three-family behavior when the ribbons are grouped according to N modulo 3, where N represents the number of carbon atoms across the width of the ribbon. Two lowest-frequency out-of-plane acoustic modes play a decisive role in increasing the thermal conductance of AGNR-N at low temperatures. At high temperatures the effect of tensile strain is to reduce the thermal conductance of AGNR-N and ZGNR-N. These results could be explained by the changes in force constants in the in-plane and out-of-plane directions with the application of strain. This fundamental atomistic understanding of the heat transport in graphene nanoribbons paves a way to effect changes in their thermal properties via strain at various temperatures. (paper)

  9. Fluctuation theory for transport properties in multicomponent mixtures: thermodiffusion and heat conductivity

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    2004-01-01

    The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general statis...... of the heat conductivity coefficient for ideal gas. (C) 2003 Elsevier B.V. All rights reserved.......The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general...

  10. Non-standard model for electron heat transport for multidimensional hydrodynamic codes

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Ph.; Busquet, M.; Schurtz, G. [CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France)

    2000-07-01

    In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)

  11. Non-standard model for electron heat transport for multidimensional hydrodynamic codes

    International Nuclear Information System (INIS)

    Nicolai, Ph.; Busquet, M.; Schurtz, G.

    2000-01-01

    In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)

  12. Results from transient transport experiments in Rijnhuizen tokamak project: Heat convection, transport barriers and 'non-local' effects

    International Nuclear Information System (INIS)

    Mantica, P.; Gorini, G.; Hogeweij, G.M.D.; Kloe, J. de; Lopez Cardozo, N.J.; Schilham, A.M.R.

    2001-01-01

    An overview of experimental transport studies performed on the Rijnhuizen Tokamak Project (RTP) using transient transport techniques in both Ohmic and ECH dominated plasmas is presented. Modulated Electron Cyclotron Heating (ECH) and oblique pellet injection (OPI) have been used to induce electron temperature (T e ) perturbations at different radial locations. These were used to probe the electron transport barriers observed near low order rational magnetic surfaces in ECH dominated steady-state RTP plasmas. Layers of inward electron heat convection in off-axis ECH plasmas were detected with modulated ECH. This suggests that RTP electron transport barriers consist of heat pinch layers rather than layers of low thermal diffusivity. In a different set of experiments, OPI triggered a transient rise of the core T e due to an increase of the T e gradient in the 1< q<2 region. These transient transport barriers were probed with modulated ECH and found to be due to a transient drop of the electron heat diffusivity, except for off-axis ECH plasmas, where a transient inward pinch is also observed. Transient transport studies in RTP could not solve this puzzling interplay between heat diffusion and convection in determining an electron transport barrier. They nevertheless provided challenging experimental evidence both for theoretical modelling and for future experiments. (author)

  13. Heat and damp transport in cavity bricks. Waerme- und Feuchtetransport in Hochlochziegeln

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, M

    1987-11-19

    The aim of this work is a systematic measurement of the structural effect of cavity bricks on the thermal insulation and thermal storage values depending on the material values of the bricks and the mortar. The arrangement and orientation of the hollow spaces and their dimensions should be varied. Brick shapes with socalled handle slots, which give more convenient handling, and with mortar pockets instead of mortar gaps, should be taken into account in the investigation. Special attention should be paid to the heat transport mechanism in the hollow spaces, where thermal conduction, thermal radiation and convection heat transport are superimposed on one another. The second main aim of the work is the calculation of the coupled heat and damp transport in hollow bricks. The heat and damp transport is described by a coupled system of differential equations, where the decisive transport coefficients should be shown as a function of the variables determining the transport processes. (orig./MM).

  14. Systems with a constant heat flux with applications to radiative heat transport across nanoscale gaps and layers

    Science.gov (United States)

    Budaev, Bair V.; Bogy, David B.

    2018-06-01

    We extend the statistical analysis of equilibrium systems to systems with a constant heat flux. This extension leads to natural generalizations of Maxwell-Boltzmann's and Planck's equilibrium energy distributions to energy distributions of systems with a net heat flux. This development provides a long needed foundation for addressing problems of nanoscale heat transport by a systematic method based on a few fundamental principles. As an example, we consider the computation of the radiative heat flux between narrowly spaced half-spaces maintained at different temperatures.

  15. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.

    2002-01-01

    Relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated for the first time in reversed shear (RS) and high-β p ELMy H-mode (weak positive shear) plasmas of JT-60U for understanding of compatibility of improved energy confinement and effective particle control such as exhaust of helium ash and reduction in impurity contamination. In the RS plasma, no helium and carbon accumulation inside the ITB is observed even with highly improved energy confinement. In the high-β p plasma, both helium and carbon density profiles are flat. As the ion temperature profile changes from parabolic- to box-type, the helium diffusivity decreases by a factor of about 2 as well as the ion thermal diffusivity in the RS plasma. The measured soft X-ray profile is more peaked than that calculated by assuming the same n AR profile as the n e profile in the Ar injected RS plasma with the box-type profile, suggesting accumulation of Ar inside the ITB. Particle transport is improved with no change of ion temperature in the RS plasma, when density fluctuation is drastically reduced by a pellet injection. (author)

  16. Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system

    International Nuclear Information System (INIS)

    Neves, S.F.; Couto, S.; Campos, J.B.L.M.; Mayor, T.S.

    2015-01-01

    The optimisation of the performance of products with smart/active functionalities (e. g. in protective clothing, home textiles products, automotive seats, etc.) is still a challenge for manufacturers and developers. The aim of this study was to optimise the thermal performance of a heating product by a numerical approach, by analysing several opposing requirements and defining solutions for the identified limitations, before the construction of the first prototype. A transfer model was developed to investigate the transport of heat from the skin to the environment, across a heating blanket with an embedded smart heating system. Several parameters of the textile material and of the heating system were studied, in order to optimise the thermal performance of the heating blanket. Focus was put on the effects of thickness and thermal conductivity of each layer, and on parameters associated with the heating elements, e.g. position of the heating wires relative to the skin, distance between heating wires, applied heating power, and temperature range for operation of the heating system. Furthermore, several configurations of the blanket (and corresponding heating powers) were analysed in order to minimise the heat loss from the body to the environment, and the temperature distribution along the skin. The results show that, to ensure an optimal compromise between the thermal performance of the product and the temperature oscillation along its surface, the distance between the wires should be small (and not bigger than 50 mm), and each layer of the heating blanket should have a specific thermal resistance, based on the expected external conditions during use and the requirements of the heating system (i.e. requirements regarding energy consumption/efficiency and capacity to effectively regulate body exchanges with surrounding environment). The heating system should operate in an ON/OFF mode based on the body heating needs and within a temperature range specified based on

  17. Modelling of activity transport in primary heat transport (PHT) system of Indian PHWRs

    International Nuclear Information System (INIS)

    Markandeya, S.G.; Pujari, P.K.; Gandhi, H.C.; Venkateswaran, G.; Narasimhan, S.V.; Krishnarao, K.S.; Mathur, P.K.; Venkat Raj, V.

    2000-01-01

    Nuclear Power plants (NPPs) are designed and built with the aim of minimising the occupational exposure to the operational and maintenance staff. Despite the use of prudently selected materials of construction with high corrosion resistance and adopting very stringent water chemistry controls during operation the build-up of activity in the Primary Heat Transport (PHT) systems of NPPs has been found to be unavoidable. The Indian Pressurised Heavy Water Reactors (PHWRs) are no exception to this. To enable advance planning of maintenance work and the decontamination schedules, it is necessary to perform the off-site calculations to predict the activity buildup in the PHT circuits of the NPPs. A computer code ANUCRUD is under development for predicting the corrosion product and activity transport behaviour in the PHT circuits of Indian PHWRs. The present paper briefly describes some of the salient features of the code ANUCRUD. As a first attempt, preliminary calculations for predicting corrosion product crud concentration buildup in the PHT circuit of the 220 MWe Indian PHWR have been carried out using the code. The findings of these studies are discussed in the paper. Finally, the further improvements proposed to be carried out in the code are also brought out in the paper. (author)

  18. Ballistic near-field heat transport in dense many-body systems

    Science.gov (United States)

    Latella, Ivan; Biehs, Svend-Age; Messina, Riccardo; Rodriguez, Alejandro W.; Ben-Abdallah, Philippe

    2018-01-01

    Radiative heat transport mediated by near-field interactions is known to be superdiffusive in dilute, many-body systems. Here we use a generalized Landauer theory of radiative heat transfer in many-body planar systems to demonstrate a nonmonotonic transition from superdiffusive to ballistic transport in dense systems. We show that such a transition is associated to a change of the polarization of dominant modes. Our findings are complemented by a quantitative study of the relaxation dynamics of the system in the different regimes of heat transport. This result could have important consequences on thermal management at nanoscale of many-body systems.

  19. Minimization of transport and distribution cost for district heating study of particular cases

    International Nuclear Information System (INIS)

    Barreau, A.; Caizergues, R.; Moret Bailly, J.

    1977-01-01

    The transport and distribution of hot pressurized water involve different sets of criteria: transport networks, heat distribution networks, storages. The minimization of transport cost is studied together with the distribution of thermal energy. The same parameters are introduced into these programs. The same method is used for rate of flow calculations, but mathematical methods of pipe diameter calculation are different. Some transport and distribution networks are studied with the corresponding computed programs: 52 branches networks-27 terminations; 287 branches networks-148 terminations

  20. FEFLOW finite element modeling of flow, mass and heat transport in porous and fractured media

    CERN Document Server

    Diersch, Hans-Jörg G

    2013-01-01

    Placing advanced theoretical and numerical methods in the hands of modeling practitioners and scientists, this book explores the FEFLOW system for solving flow, mass and heat transport processes in porous and fractured media. Offers applications and exercises.

  1. Subcooled He II heat transport in the channel with abrupt contractions/enlargements

    International Nuclear Information System (INIS)

    Maekawa, R.; Iwamoto, A.; Hamaguchi, S.; Mito, T.

    2002-01-01

    Heat transport mechanisms for subcooled He II in the channel with abrupt contractions and/or enlargements have been investigated under steady state conditions. The channel, made of G-10, contains various contraction geometries to simulate the cooling channel of a superconducting magnet. In other words, contractions are periodically placed along the channel to simulate the spacers within the magnet winding. A copper block heater inputs the heat to the channel from one end, while the other end is open to the He II bath. Temperature profiles were measured with temperature sensors embedded in the channel as a function of heat input. Calculations were performed using a simple one-dimensional turbulent heat transport equation and with geometric factor consideration. The effects on heat transport mechanisms in He II caused by abrupt change of channel geometry and size are discussed

  2. Heat transport in the XXZ spin chain: from ballistic to diffusive regimes and dephasing enhancement

    International Nuclear Information System (INIS)

    Mendoza-Arenas, J J; Al-Assam, S; Clark, S R; Jaksch, D

    2013-01-01

    In this work we study the heat transport in an XXZ spin-1/2 Heisenberg chain with homogeneous magnetic field, incoherently driven out of equilibrium by reservoirs at the boundaries. We focus on the effect of bulk dephasing (energy-dissipative) processes in different parameter regimes of the system. The non-equilibrium steady state of the chain is obtained by simulating its evolution under the corresponding Lindblad master equation, using the time evolving block decimation method. In the absence of dephasing, the heat transport is ballistic for weak interactions, while being diffusive in the strongly interacting regime, as evidenced by the heat current scaling with the system size. When bulk dephasing takes place in the system, diffusive transport is induced in the weakly interacting regime, with the heat current monotonically decreasing with the dephasing rate. In contrast, in the strongly interacting regime, the heat current can be significantly enhanced by dephasing for systems of small size. (paper)

  3. Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and Tide-Resolving Simulation

    Science.gov (United States)

    Stewart, Andrew L.; Klocker, Andreas; Menemenlis, Dimitris

    2018-01-01

    Almost all heat reaching the bases of Antarctica's ice shelves originates from warm Circumpolar Deep Water in the open Southern Ocean. This study quantifies the roles of mean and transient flows in transporting heat across almost the entire Antarctic continental slope and shelf using an ocean/sea ice model run at eddy- and tide-resolving (1/48°) horizontal resolution. Heat transfer by transient flows is approximately attributed to eddies and tides via a decomposition into time scales shorter than and longer than 1 day, respectively. It is shown that eddies transfer heat across the continental slope (ocean depths greater than 1,500 m), but tides produce a stronger shoreward heat flux across the shelf break (ocean depths between 500 m and 1,000 m). However, the tidal heat fluxes are approximately compensated by mean flows, leaving the eddy heat flux to balance the net shoreward heat transport. The eddy-driven cross-slope overturning circulation is too weak to account for the eddy heat flux. This suggests that isopycnal eddy stirring is the principal mechanism of shoreward heat transport around Antarctica, though likely modulated by tides and surface forcing.

  4. Experimental investigation on heat transport in gravel-sand materials

    DEFF Research Database (Denmark)

    Maureschat, Gerald; Heller, Alfred

    1997-01-01

    in sand-gravel material, the storage media is to be water satured. In this case, handling of such material on site is rather complex. The conduction is highly dependent on the thermal properties of the storage media and so is the overall thermal performance of a storage applying such media. For sandy...... out in a small size experiment. The experiment consists of a highly insulated box filled with two kinds of sand material crossed by a plastic heat pipe. Heat transfer is measured under dry and water satured conditions in a cross-section.The conclusions are clear. To obtain necessary heat conduction...

  5. Heating and active control of profiles and transport by IBW in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhao Yanping; Wan Baonian; Li Jiangang

    2003-01-01

    Significant progress on Ion Bernstein Wave (IBW) heating and control of profiles has been obtained in HT-7. Both on-axis and off-axis electron heating with global peaked and local steep electron pressure profiles were realized if the position of the resonant layer was selected to be plasma far from the plasma edge region. Reduction of electron heat transport has been observed from sawtooth heat pulse propagation. Improvement of both particle and energy confinement was slight in the on-axis and considerable in the off-axis heating cases. The improved confinement in off-axis heating mode may be due to the extension of the high performance plasma volume caused by IBW. These studies demonstrate that IBWs are potentially a tool for active control of plasma profiles and transport. (author)

  6. Mobile heat storage containers and their transport by rail or road

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, Philipp

    2013-10-15

    Mobile heat storage containers are capable of making a contribution to the meaningful use of energy which is needed for use at a location other than where it originates. The study presented in this report outlines the technology of mobile heat storage and analyses an example of its transport by rail or road. (orig.)

  7. Process for the transport of heat energy released by a nuclear reactor

    International Nuclear Information System (INIS)

    Nuernberg, H.W.; Wolff, G.

    1978-01-01

    The heat produced in a nuclear reactor is converted into latent chemical binding energy. The heat can be released again below 400 0 C by recombination after transport by decomposition of ethane or propane into ethylene or propylene and hydrogen. (TK) [de

  8. Magnetically Modulated Heat Transport in a Global Simulation of Solar Magneto-convection

    Energy Technology Data Exchange (ETDEWEB)

    Cossette, Jean-Francois [Laboratory for Atmospheric and Space Physics, Campus Box 600, University of Colorado, Boulder, CO 80303 (United States); Charbonneau, Paul [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada); Smolarkiewicz, Piotr K. [European Centre for Medium-Range Weather Forecasts, Reading, RG2 9AX (United Kingdom); Rast, Mark P., E-mail: Jean-Francois.Cossette@lasp.colorado.edu, E-mail: paulchar@astro.umontreal.ca, E-mail: smolar@ecmwf.int, E-mail: Mark.Rast@lasp.colorado.edu [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, Campus Box 391, University of Colorado, Boulder, CO 80303 (United States)

    2017-05-20

    We present results from a global MHD simulation of solar convection in which the heat transported by convective flows varies in-phase with the total magnetic energy. The purely random initial magnetic field specified in this experiment develops into a well-organized large-scale antisymmetric component undergoing hemispherically synchronized polarity reversals on a 40 year period. A key feature of the simulation is the use of a Newtonian cooling term in the entropy equation to maintain a convectively unstable stratification and drive convection, as opposed to the specification of heating and cooling terms at the bottom and top boundaries. When taken together, the solar-like magnetic cycle and the convective heat flux signature suggest that a cyclic modulation of the large-scale heat-carrying convective flows could be operating inside the real Sun. We carry out an analysis of the entropy and momentum equations to uncover the physical mechanism responsible for the enhanced heat transport. The analysis suggests that the modulation is caused by a magnetic tension imbalance inside upflows and downflows, which perturbs their respective contributions to heat transport in such a way as to enhance the total convective heat flux at cycle maximum. Potential consequences of the heat transport modulation for solar irradiance variability are briefly discussed.

  9. Diffusive heat transport across magnetic islands and stochastic layers in tokamaks

    International Nuclear Information System (INIS)

    Hoelzl, Matthias

    2010-01-01

    Heat transport in tokamak plasmas with magnetic islands and ergodic field lines was simulated at realistic plasma parameters in realistic tokamak geometries. This requires the treatment of anisotropic heat diffusion, which is more efficient along magnetic field lines by up to ten orders of magnitude than perpendicular to them. Comparisons with analytical predictions and experimental measurements allow to determine the stability properties of neoclassical tearing modes as well as the experimental heat diffusion anisotropy.

  10. Heat transport as torsional responses and Keldysh formalism in a curved spacetime

    OpenAIRE

    Shitade, Atsuo

    2013-01-01

    We revisit a theory of heat transport in the light of a gauge theory of gravity and find the proper heat current with a corresponding gauge field, which yields the natural definitions of the heat magnetization and the Kubo-formula contribution to the thermal conductivity as torsional responses. We also develop a general framework for calculating gravitational responses by combining the Keldysh and Cartan formalisms. By using this framework, we explicitly calculate these two quantities and rep...

  11. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques.

    Science.gov (United States)

    F.C. Meinzer; J.R. Brooks; J.-C. Domec; B.L. Gartner; J.M. Warren; D.R. Woodruff; K. Bible; D.C. Shaw

    2006-01-01

    The volume and complexity of their vascular systems make the dynamics of tong-distance water transport in large trees difficult to study. We used heat and deuterated water (D20) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the coniferous species Pseudotsuga menziesii...

  12. VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.

    Science.gov (United States)

    Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R

    2018-01-29

    Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.

  13. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars.

    Science.gov (United States)

    Hu, Yongyun; Yang, Jun

    2014-01-14

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere-ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an "eyeball." For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets.

  14. Diffusive and convective transport modelling from analysis of ECRH-stimulated electron heat wave propagation

    International Nuclear Information System (INIS)

    Erckmann, V.; Gasparino, U.; Giannone, L.

    1992-01-01

    ECRH power modulation experiments in toroidal devices offer the chance to analyze the electron heat transport more conclusively: the electron heat wave propagation can be observed by ECE (or SX) leading to radial profiles of electron temperature modulation amplitude and time delay (phase shift). Taking also the stationary power balance into account, the local electron heat transport can be modelled by a combination of diffusive and convective transport terms. This method is applied to ECRH discharges in the W7-AS stellarator (B=2.5T, R=2m, a≤18 cm) where the ECRH power deposition is highly localized. In W7-AS, the T e modulation profiles measured by a high resolution ECE system are the basis for the local transport analysis. As experimental errors limit the separation of diffusive and convective terms in the electron heat transport for central power deposition, also ECRH power modulation experiments with off-axis deposition and inward heat wave propagation were performed (with 70 GHz o-mode as well as with 140 GHz x-mode for increased absorption). Because collisional electron-ion coupling and radiative losses are only small, low density ECRH discharges are best candidates for estimating the electron heat flux from power balance. (author) 2 refs., 3 figs

  15. Thickness Optimisation of Textiles Subjected to Heat and Mass Transport during Ironing

    Directory of Open Access Journals (Sweden)

    Korycki Ryszard

    2016-09-01

    Full Text Available Let us next analyse the coupled problem during ironing of textiles, that is, the heat is transported with mass whereas the mass transport with heat is negligible. It is necessary to define both physical and mathematical models. Introducing two-phase system of mass sorption by fibres, the transport equations are introduced and accompanied by the set of boundary and initial conditions. Optimisation of material thickness during ironing is gradient oriented. The first-order sensitivity of an arbitrary objective functional is analysed and included in optimisation procedure. Numerical example is the thickness optimisation of different textile materials in ironing device.

  16. Heating and active control of profiles and transport by IBW in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhao Yanping

    2002-01-01

    By a series of technical improvements and intensive RF boronization, significant progresses on the IBW heating and control of profiles and transport has been obtained since last IAEA meeting. Both on-axis and off-axis electron heating with global peaked and local steeped electron pressure profile was realized if the resonant layer is in plasma far from the edge region. Maximum increment of electron temperature was about 2 keV at power of 200 kW. The heating factor reached 9.4 eV x 10 13 cm -3 /kW. Reduction of local electron heat transport around resonant layer has been observed. Significant improvement of particle confinement by a factor of 2-4 with very peaked density profile was obtained if 5/2-deuterium resonant layer is located at the plasma edge. Global transport and edge poloidal velocity shear can been controlled by IBW. (author)

  17. Decline and poleward shift in Indian summer monsoon synoptic activity in a warming climate

    Science.gov (United States)

    Sandeep, S.; Ajayamohan, R. S.; Boos, William R.; Sabin, T. P.; Praveen, V.

    2018-03-01

    Cyclonic atmospheric vortices of varying intensity, collectively known as low-pressure systems (LPS), travel northwest across central India and produce more than half of the precipitation received by that fertile region and its ˜600 million inhabitants. Yet, future changes in LPS activity are poorly understood, due in part to inadequate representation of these storms in current climate models. Using a high-resolution atmospheric general circulation model that realistically simulates the genesis distribution of LPS, here we show that Indian monsoon LPS activity declines about 45% by the late 21st century in simulations of a business-as-usual emission scenario. The distribution of LPS genesis shifts poleward as it weakens, with oceanic genesis decreasing by ˜60% and continental genesis increasing by ˜10%; over land the increase in storm counts is accompanied by a shift toward lower storm wind speeds. The weakening and poleward shift of the genesis distribution in a warmer climate are confirmed and attributed, via a statistical model, to the reduction and poleward shift of low-level absolute vorticity over the monsoon region, which in turn are robust features of most coupled model projections. The poleward shift in LPS activity results in an increased frequency of extreme precipitation events over northern India.

  18. Plants on the move: plant-soil interactions in poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.

    2008-01-01

    As a result of recent global climate change, areas that have previously been climatically unsuitable for species have now become suitable new habitats. Many plant-species are expanding their range polewards, colonizing these newly available areas. If these species are able to expand their range

  19. Poleward propagating subinertial alongshore surface currents off the U.S. West Coast

    KAUST Repository

    Kim, Sung Yong

    2013-12-01

    The network comprising 61 high-frequency radar systems along the U.S. West Coast (USWC) provides a unique, high resolution, and broad scale view of ocean surface circulation. Subinertial alongshore surface currents show poleward propagating signals with phase speeds of O(10) and O(100-300) km d -1 that are consistent with historical in situ observations off the USWC and that can be possibly interpreted as coastally trapped waves (CTWs). The propagating signals in the slow mode are partly observed in southern California, which may result from scattering and reflection of higher-mode CTWs due to curvature of shoreline and bathymetry near Point Conception, California. On the other hand, considering the order of the phase speed in the slow mode, the poleward propagating signals may be attributed to alongshore advection or pressure-driven flows. A statistical regression of coastal winds at National Data Buoy Center buoys on the observed surface currents partitions locally and remotely wind-forced components, isolates footprints of the equatorward propagating storm events in winter off the USWC, and shows the poleward propagating signals year round. Key Points A unique resource to examine synoptic-scale alongshore variability Isolation of equatorward wind events in winter using a statistical model Poleward propagating surface signals year-round © 2013. American Geophysical Union. All Rights Reserved.

  20. Characteristics of nonlocally-coupled transition of the heat transport in LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Ida, K.; Tanaka, K.; Tokuzawa, T.; Itoh, K.; Shimozuma, T.; Kubo, S.; Tsuchiya, H.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Yamada, H.; Inagaki, S.

    2010-01-01

    A comparison of characteristics between a nonlocal transport phenomenon and an electron internal transport barrier (ITB) in the Large Helical Device is performed with a transient transport analysis and from the viewpoint of a dynamic behavior of transport state. The electron ITB is characterized by a jump of electron temperature gradient. In contrast, the transient transport analysis indicates the nonlocal transport phenomenon is characterized by a jump of electron heat flux. And seen from the viewpoint of the dynamic behavior of transport state, the physical mechanism of the appearance of the nonlocal transport phenomenon is found to be qualitatively different from that of the formation of the electron ITB. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas

    International Nuclear Information System (INIS)

    Inagaki, S.; Ida, K.; Tamura, N.; Shimozuma, T.; Kubo, S.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Ohkubo, K.; Takenaga, H.; Isayama, A.; Takizuka, T.; Kamada, Y.; Miura, Y.

    2005-01-01

    Transient transport experiments are performed in plasmas with and without Internal Transport Barrier (ITB) on LHD and JT-60U. The dependence of χ e on electron temperature, T e , and electron temperature gradient, ∇T e , is analyzed by an empirical non-linear heat transport model. In plasmas without ITB, two different types of non-linearity of the electron heat transport are observed from cold/heat pulse propagation. The χ e depends on T e and ∇T e in JT-60U, while the ∇T e dependence is weak in LHD. Inside the ITB region, there is no or weak ∇T e dependence both in LHD and JT-60U. A cold pulse growing driven by the negative T e dependence of χ e is observed inside the ITB region (LHD) and near the boundary of the ITB region (JT-60U). (author)

  2. Study of Heat Flux Threshold and Perturbation Effect on Transport Barrier Formation Based on Bifurcation Model

    International Nuclear Information System (INIS)

    Chatthong, B.; Onjun, T.; Imbeaux, F.; Sarazin, Y.; Strugarek, A.; Picha, R.; Poolyarat, N.

    2011-06-01

    Full text: Formation of transport barrier in fusion plasma is studied using a simple one-field bistable S-curve bifurcation model. This model is characterized by an S-line with two stable branches corresponding to the low (L) and high (H) confinement modes, connected by an unstable branch. Assumptions used in this model are such that the reduction in anomalous transport is caused by v E velocity shear effect and also this velocity shear is proportional to pressure gradient. In this study, analytical and numerical approaches are used to obtain necessary conditions for transport barrier formation, i.e. the ratio of anomalous over neoclassical coefficients and heat flux thresholds which must be exceeded. Several profiles of heat sources are considered in this work including constant, Gaussian, and hyperbolic tangent forms. Moreover, the effect of perturbation in heat flux is investigated with respect to transport barrier formation

  3. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  4. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  5. Modification of the finite element heat and mass transfer code (FEHMN) to model multicomponent reactive transport

    International Nuclear Information System (INIS)

    Viswanathan, H.S.

    1995-01-01

    The finite element code FEHMN is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developed hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent K d model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also provide that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies

  6. Integrated heat transport simulation of high ion temperature plasma of LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Yamaguchi, H.; Sakai, A.

    2014-10-01

    A first dynamical simulation of high ion temperature plasma with carbon pellet injection of LHD is performed by the integrated simulation GNET-TD + TASK3D. NBI heating deposition of time evolving plasma is evaluated by the 5D drift kinetic equation solver, GNET-TD and the heat transport of multi-ion species plasma (e, H, He, C) is studied by the integrated transport simulation code, TASK3D. Achievement of high ion temperature plasma is attributed to the 1) increase of heating power per ion due to the temporal increase of effective charge, 2) reduction of effective neoclassical transport with impurities, 3) reduction of turbulence transport. The reduction of turbulence transport is most significant contribution to achieve the high ion temperature and the reduction of the turbulent transport from the L-mode plasma (normal hydrogen plasma) is evaluated to be a factor about five by using integrated heat transport simulation code. Applying the Z effective dependent turbulent reduction model we obtain a similar time behavior of ion temperature after the C pellet injection with the experimental results. (author)

  7. Fission products transport in CANDU Primary Heat Transport System in a severe accident

    International Nuclear Information System (INIS)

    Constantin, M.; Rizoiu, A.; Turcu, I.; Negut, Gh.

    2005-01-01

    Full text: The paper is intended to analyse the distribution of the fission products (FPs) in CANDU Primary Heat Transport (PHT) System by using the ASTEC code (Accident Source Term Evaluation Code). The complexity of the data required by ASTEC and the complexity of CANDU PHT were strong motivation to begin with a simplified geometry in order to avoid the introducing of unmanageable errors at the level of input deck. Thus only 1/4 of the PHT circuit was simulated, an simplified FPs inventory and some simplifications in the feeders geometry were also used. The circuit consists of 95 horizontal fuel channels connected to 95 horizontal out-feeders, then through vertical feeders to the outlet-header (a big pipe that collects the water from feeders); the circuit continues from the outlet-header with a riser and then with the steam generator and a pump. After this pump, the circuit was broken; in this point the FPs are transferred to the containment. The data related to the nodes' definitions, temperatures and pressure conditions were chosen as possible as real data from CANDU NPP loss of coolant accident sequence. Temperature and pressure conditions in the time of the accident were calculated by CATHENA code and the source term of FPs introduced into the PHT was estimated by ORIGEN code. The results consist of mass distributions in the nodes of the circuit and the mass transfer to the containment through the break for different species (FPs and chemical species). The study is completed by sensitivity analysis for the parameters with important uncertainties. (authors)

  8. Nonlocal heat transport and improved target design for x-ray heating studies at x-ray free electron lasers

    Science.gov (United States)

    Hoidn, Oliver; Seidler, Gerald T.

    2018-01-01

    The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.

  9. Nonlinear charge transport in bipolar semiconductors due to electron heating

    International Nuclear Information System (INIS)

    Molina-Valdovinos, S.; Gurevich, Yu.G.

    2016-01-01

    It is known that when strong electric field is applied to a semiconductor sample, the current voltage characteristic deviates from the linear response. In this letter, we propose a new point of view of nonlinearity in semiconductors which is associated with the electron temperature dependence on the recombination rate. The heating of the charge carriers breaks the balance between generation and recombination, giving rise to nonequilibrium charge carriers concentration and nonlinearity. - Highlights: • A new mechanism of nonlinearity of current-voltage characteristic (CVC) is proposed. • The hot electron temperature violates the equilibrium between electrons and holes. • This violation gives rise to nonequilibrium concentration of electrons and holes. • This leads to nonlinear CVC (along with the heating nonlinearity).

  10. Nonlinear charge transport in bipolar semiconductors due to electron heating

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Valdovinos, S., E-mail: sergiom@fisica.uaz.edu.mx [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, CP 98060, Zacatecas, Zac, México (Mexico); Gurevich, Yu.G. [Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Física, Av. IPN 2508, México D.F., CP 07360, México (Mexico)

    2016-05-27

    It is known that when strong electric field is applied to a semiconductor sample, the current voltage characteristic deviates from the linear response. In this letter, we propose a new point of view of nonlinearity in semiconductors which is associated with the electron temperature dependence on the recombination rate. The heating of the charge carriers breaks the balance between generation and recombination, giving rise to nonequilibrium charge carriers concentration and nonlinearity. - Highlights: • A new mechanism of nonlinearity of current-voltage characteristic (CVC) is proposed. • The hot electron temperature violates the equilibrium between electrons and holes. • This violation gives rise to nonequilibrium concentration of electrons and holes. • This leads to nonlinear CVC (along with the heating nonlinearity).

  11. Molecular dynamics study on heat transport from single-walled carbon nanotubes to Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ya; Zhu, Jie, E-mail: zhujie@iet.cn; Tang, Da-Wei

    2015-02-06

    In this paper, non-equilibrium molecular dynamics simulations were performed to investigate the heat transport between a vertically aligned single-walled carbon nanotube (SWNT) and Si substrate, to find out the influence of temperature and system sizes, including diameter and length of SWNT and measurements of substrate. Results revealed that high temperature hindered heat transport in SWNT itself but was a beneficial stimulus for heat transport at interface of SWNT and Si. Furthermore, the system sizes strongly affected the peaks in vibrational density of states of Si, which led to interfacial thermal conductance dependent on system sizes. - Highlights: • NEMD is performed to simulate the heat transport from SWNT to Si substrate. • We analyze both interfacial thermal conductance and thermal conductivity of SWNT. • High temperature is a beneficial stimulus for heat transport at the interface. • Interfacial thermal conductance strongly depends on the sizes of SWNT and substrate. • We calculate VDOS of C and Si atoms to analyze phonon couplings between them.

  12. 3D modeling of groundwater heat transport in the shallow Westliches Leibnitzer Feld aquifer, Austria

    Science.gov (United States)

    Rock, Gerhard; Kupfersberger, Hans

    2018-02-01

    For the shallow Westliches Leibnitzer feld aquifer (45 km2) we applied the recently developed methodology by Kupfersberger et al. (2017a) to derive the thermal upper boundary for a 3D heat transport model from observed air temperatures. We distinguished between land uses of grass and agriculture, sealed surfaces, forest and water bodies. To represent the heat flux from heated buildings and the mixture between different land surfaces in urban areas we ran the 1D vertical heat conduction module SoilTemp which is coupled to the heat transport model (using FEFLOW) on a time step basis. Over a simulation period of 23 years the comparison between measured and observed groundwater temperatures yielded NSE values ranging from 0.41 to 0.92 including readings at different depths. The model results showed that the thermal input signals lead to distinctly different vertical groundwater temperature distributions. To overcome the influence of specific warm or cold years we introduced the computation of an annual averaged groundwater temperature profile. With respect to the use of groundwater cooling or heating facilities we evaluated the application of vertically averaged statistical groundwater temperature distributions compared to the use of temperature distributions at selected dates. We concluded that the heat transport model serves well as an aquifer scale management tool to optimize the use of the shallow subsurface for thermal purposes and to analyze the impacts of corresponding measures on groundwater temperatures.

  13. Analysis for Heat Transfer in a High Current-Passing Carbon Nanosphere Using Nontraditional Thermal Transport Model.

    Science.gov (United States)

    Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y

    2015-11-01

    This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.

  14. Fluid description of particle transport in hf heated magnetized plasma

    International Nuclear Information System (INIS)

    Klima, R.

    1980-01-01

    Particle fluxes averaged over high-frequency oscillations are analyzed. The collisional effects and the kinetic mechanisms of energy absorption are included. Spatial dependences of both the high-frequency and the (quasi-)steady electromagnetic fields are arbitrary. The equations governing the fluxes are deduced from the moments of the averaged kinetic equation. Explicit expressions for steady state fluxes are given in terms of electromagnetic field quantities. The results can also be applied to anomalous transport phenomena in weakly turbulent plasmas. (author)

  15. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria

    2014-12-01

    Full Text Available In this paper, a theoretical investigation has been carried out to study the combined effect of rotation speed modulation and internal heating on thermal instability in a temperature dependent viscous horizontal fluid layer. Rayleigh–Bénard momentum equation with Coriolis term has been considered to describe the convective flow. The system is rotating about it is own axis with non-uniform rotational speed. In particular, a time-periodic and sinusoidally varying rotational speed has been considered. A weak nonlinear stability analysis is performed to find the effect of modulation on heat transport. Nusselt number is obtained in terms of amplitude of convection and internal Rayleigh number, and depicted graphically for showing the effects of various parameters of the system. The effect of modulated rotation speed is found to have a stabilizing effect for different values of modulation frequency. Further, internal heating and thermo-rheological parameters are found to destabilize the system.

  16. Characteristics of convective heat transport in a packed pebble-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmohsin, Rahman S., E-mail: rsar62@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Al-Dahhan, Muthanna H., E-mail: aldahhanm@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Department of Nuclear Engineering, 301 W. 14th St./222 Fulton Hall (United States)

    2015-04-01

    Highlights: • A fast-response heat transfer probe has been developed and used in this work. • Heat transport has been quantified in terms of local heat transfer coefficients. • The method of the electrically heated single sphere in packing has been applied. • The heat transfer coefficient increases from the center to the wall of packed bed. • This work advancing the knowledge of heat transport in the studied packed bed. - Abstract: Obtaining more precise results and a better understanding of the heat transport mechanism in the dynamic core of packed pebble-bed reactors is needed because this mechanism poses extreme challenges to the reliable design and efficient operation of these reactors. This mechanism can be quantified in terms of a solid-to-gas convective heat transfer coefficient. Therefore, in this work, the local convective heat transfer coefficients and their radial profiles were measured experimentally in a separate effect pilot-plant scale and cold-flow experimental setup of 0.3 m in diameter, using a sophisticated noninvasive heat transfer probe of spherical type. The effect of gas velocity on the heat transfer coefficient was investigated over a wide range of Reynolds numbers of practical importance. The experimental investigations of this work include various radial locations along the height of the bed. It was found that an increase in coolant gas flow velocity causes an increase in the heat transfer coefficient and that effect of the gas flow rate varies from laminar to turbulent flow regimes at all radial positions of the studied packed pebble-bed reactor. The results show that the local heat transfer coefficient increases from the bed center to the wall due to the change in the bed structure, and hence, in the flow pattern of the coolant gas. The findings clearly indicate that one value of an overall heat transfer coefficient cannot represent the local heat transfer coefficients within the bed; therefore, correlations are needed to

  17. A new treatment of the heat transport equation with a transport barrier and applications to ECRH experiments in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Zou, X.L.; Giruzzi, A.G.; Bouquey, F.; Clary, J.; Darbos, C.; Lennholm, M.; Magne, R.; Segui, J.L. [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee, 13 - Saint-Paul-lez-Durance (France); Clemencon, A. [MIT, Electrochemical Energy Laboratory, Cambridge, MA (United States); Guivarch, C. [Ecole Nationale des Ponts et Chaussees, 77 - Marne-la-Vallee (France)

    2004-07-01

    An exact analytical solution of the electron heat diffusion equation in a cylinder has been found with a step-like diffusion coefficient, plus a monomial increase in the radial direction and a constant damping term. This model is sufficiently general to describe heat diffusion in the presence of a critical gradient threshold or a transport barrier, superimposed to the usual trend of increasing heat diffusivity from the plasma core to the edge. This type of representation allows us to see some well-known properties of heat transport phenomena in a different light. For instance, it has been shown that the contributions of the Eigenmodes to the time dependent solution grow at speeds that depend on the Eigenmode order i.e. at the beginning of the heating phase all the Eigenmodes are equally involved, whereas at the end only the lower order ones are left. This implies, e.g., that high frequency modulation experiments provide a characterization of transport phenomena that is intrinsically different with respect to power balance analysis of a stationary phase. It is particularly useful to analyse power switch on/off events and whenever high frequency modulations are not technically feasible. Low-frequency (1-2 Hz) ECRH modulation experiments have been performed on Tore Supra. A large jump (a factor of 8) in the heat diffusivity has been clearly identified at the ECRH power deposition layer. The amplitude and phase of several harmonics of the Fourier transform of the modulated temperature, as well as the time evolution of the modulated temperature have been reproduced by the analytical solution. The jump is found to be much weaker at lower ECRH power (one gyrotron)

  18. Analysis of heat transfer and contaminant transport in fume hoods

    International Nuclear Information System (INIS)

    Pathanjali, C.; Rahman, M.M.

    1996-01-01

    The paper presents the analysis of three-dimensional flow patterns and the associated heat and mass transfer mechanisms in a fume hood enclosure. The flow enters the hood through the front window opening (positive x-direction) and leaves the cupboard through an opening on the top of the hood (positive z-direction). The flow was assumed to be fully turbulent. The flow pattern for different sash openings were studied. The flow pattern around an object located at the bottom of the hood was studied for different locations of the object. It was found that air entering the hood proceeds directly to the back wall, impinges it and turns upward toward the top wall and exits through the outlet. The flow finds its way around any object forming a recirculating region at its training surface. With an increase in the sash opening, the velocity becomes higher and the fluid traces the path to the outlet more quickly. The volume occupied by recirculating flow decreases with increase in sash opening. Both temperature and concentration were found to be maximum near the source and gradually decreased as the heated air or gaseous contaminant entrained with incoming air. The local concentration decreased with increase in sash opening area. The results will be very useful to design experiments with optimum sash opening providing adequate disposal of contaminants with minimum use of conditioned air inside the room

  19. Heat, mass, and momentum transport model for hydrogen diffusion flames in nuclear reactor containments

    International Nuclear Information System (INIS)

    Travis, J.R.

    1985-01-01

    It is now possible to analyze the time-dependent, fully three-dimensional behavior of hydrogen diffusion flames in nuclear reactor containments. This analysis involves coupling the full Navier-Stokes equations with multi-species transport to the global chemical kinetics of hydrogen combustion. A transport equation for the subgrid scale turbulent kinetic energy density is solved to produce the time and space dependent turbulent transport coefficients. The heat transfer coefficient governing the exchange of heat between fluid computational cells adjacent to wall cells is calculated by a modified Reynolds analogy formulation. The analysis of a MARK-III containment indicates very complex flow patterns that greatly influence fluid and wall temperatures and heat fluxes. 18 refs., 24 figs

  20. Numerical simulation of the transport phenomena due to sudden heating in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Lei, S.Y.; Zheng, G.Y.; Wang, B.X.; Yang, R.G.; Xia, C.M.

    1997-07-01

    Such process as wet porous media suddenly heated by hot fluids frequently occurs in nature and in industrial applications. The three-variable simulation model was developed to predict violent transport phenomena due to sudden heating in porous media. Two sets of independent variables were applied to different regions in porous media in the simulation. For the wet zone, temperature, wet saturation and air pressure were used as the independent variables. For the dry zone, the independent variables were temperature, vapor pressure and air pressure. The model simulated two complicated transport processes in wet unsaturated porous media which is suddenly heated by melting metal or boiling water. The effect of the gas pressure is also investigated on the overall transport phenomena.

  1. The influence of meridional ice transport on Europa's ocean stratification and heat content

    Science.gov (United States)

    Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2017-12-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  2. EFFECTIVENESS ANALYSIS OF CAMPUS HEAT SUPPLY SYSTEM OF DNIPROPETROVSK NATIONAL UNIVERSITY OF RAILWAY TRANSPORT

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2014-03-01

    Full Text Available Purpose. Heat consumption for heating and hot water supply of housing and industrial facilities is an essential part of heat energy consumption. Prerequisite for development of energy saving measures in existing heating systems is their preliminary examination. The investigation results of campus heating system of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan are presented in the article. On the basis of the analysis it is proposed to take the energy saving measures and assess their effectiveness. Methodology. Analysis of the consumption structure of thermal energy for heating domestic and hot water supply was fulfilled. The real costs of heat supply during the calendar year and the normative costs were compared. Findings. The recording expenditures data of thermal energy for heating supply of residential buildings and dormitories in 2012 were analyzed. The comparison of actual performance with specific regulations was performed. This comparison revealed problems, whose solution will help the efficient use of thermal energy. Originality. For the first time the impact of climate conditions, features of schemes and designs of heating systems on the effective use of thermal energy were analyzed. It was studied the contribution of each component. Practical value. Based on the analysis of thermal energy consumption it was developed a list of possible energy saving measures that can be implemented in the system of heat and power facilities. It was evaluated the fuel and energy resources saving.

  3. Solar-energy heats a transportation test center--Pueblo, Colorado

    Science.gov (United States)

    1981-01-01

    Petroleum-base, thermal energy transport fluid circulating through 583 square feet of flat-plate solar collectors accumulates majority of energy for space heating and domestic hot-water of large Test Center. Report describes operation, maintenance, and performance of system which is suitable for warehouses and similar buildings. For test period from February 1979 to January 1980, solar-heating fraction was 31 percent, solar hot-water fraction 79 percent.

  4. Study of heat transfer and particle transport in Tore Supra and HL-2A tokamaks

    International Nuclear Information System (INIS)

    Song, S.

    2011-12-01

    This thesis reports on experimental studies of heat and particles transport performed on 2 large tokamaks: Tore Supra (based at CEA/Cadarache, France) and HL-2A (based at the Southwestern Institute of Physics, Chengdu, China). The modulated source is the Electron Cyclotron Resonance Heating (ECRH) for the heat pinch and density pump-out studies, while the non-local transport experiments use the Supersonic Molecular Beam Injection (SMBI) as source of modulation. The emphasis is put on the inward heat pinch. In the off-axis ECRH modulation experiments on Tore Supra with low frequency (1 Hz), strong heat inward transport has been observed, in particular for low density. Two transport models have been applied in order to analyze the experimental behavior. The first one is the linear pinch model (LPM) and the second one is an empirical model based on micro-instabilities theory, named Critical Gradient Model (CGM). Good agreement has been found for all harmonics between the experimental data and the simulation using LPM. On the other hand, good agreement has not been achieved using CGM. The density pump-out with large particles and energy losses during ECRH is commonly observed in tokamaks. A new dynamic approach using the modulation technique has been used in HL-2A for analyzing the transient phase of the density pump-out. A correlation between the turbulence increase and the density pump-out has been found. The non-local transport phenomenon, characterized by a fast transient process compared to the normal diffusive response to the perturbation is observed. Both phenomena, i.e., pump-out and non-locality, show as simultaneous variation of density and temperature. This can be an inspiration for the usage of a transport matrix which considers the density and temperature evolution together. Simulations with a simple transport matrix, with non-diagonal terms coupling temperature and density qualitatively reproduce the non-local and pump-out effects qualitatively

  5. A predictive transport modeling code for ICRF-heated tokamaks

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hwang, D.Q.

    1992-02-01

    In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3. Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5

  6. Computational study of heat transport in compositionally disordered binary crystals

    International Nuclear Information System (INIS)

    Lyver, John W.; Blaisten-Barojas, Estela

    2006-01-01

    The thermal conductivity of compositionally disordered binary crystals with atoms interacting through Lennard-Jones potentials has been studied as a function of temperature. The two species in the crystal differ in mass, hard-core atomic diameter, well depth and relative concentration. The isobaric Monte Carlo was used to equilibrate the samples at near-zero pressure. The isoenergy molecular dynamics combined with the Green-Kubo approach was taken to calculate the heat current time-dependent autocorrelation function and determine the lattice thermal conductivity of the sample. The inverse temperature dependence of the lattice thermal conductivity was shown to fail at low temperatures when the atomic diameters of the two species differ. Instead, the thermal conductivity was nearly a constant across temperatures for species with different atomic diameters. Overall, it is shown that there is a dramatic decrease of the lattice thermal conductivity with increasing atomic radii ratio between species and a moderate decrease due to mass disorder

  7. FFTF primary heat transport system heating, ventilating and air conditioning system experience

    International Nuclear Information System (INIS)

    Umek, A.M.; Hicks, D.F.; Schweiger, D.L.

    1981-01-01

    FFTF cools its primary/in-containment sodium equipment cells by means of a forced nitrogen cooling system which exchanges heat with a water-glycol system. The nitrogen cooling system is also used to maintain an inert gas atmosphere in the cells containing sodium equipment. Sodium Piping and Components have installed electrical resistance heaters to maintain a minimum sodium temperature and stainless steel jacketed mineral insulation to reduce heat loss. Design features and test results of a comprehensive redesign of the HVAC and insulation system required to support long-term nuclear operations are discussed

  8. Heat transport in low-dimensional materials: A review and perspective

    Directory of Open Access Journals (Sweden)

    Zhiping Xu

    2016-05-01

    Full Text Available Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum-mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.

  9. Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber

    Science.gov (United States)

    Gomez-Heredia, C. L.; Macias, J.; Ordonez-Miranda, J.; Ares, O.; Alvarado-Gil, J. J.

    2017-01-01

    Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen's number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorrheat transport.

  10. Required momentum, heat, and mass transport experiments for liquid-metal blankets

    International Nuclear Information System (INIS)

    Tillack, M.S.; Sze, D.K.; Abdou, M.A.

    1986-01-01

    Through the effects on fluid flow, many aspects of blanket behavior are affected by magnetohydrodynamic (MHD) effects, including pressure drop, heat transfer, mass transfer, and structural behavior. In this paper, a set of experiments is examined that could be performed in order to reduce the uncertainties in the highly related set of issues dealing with momentum, heat, and mass transport under the influence of a strong magnetic field (i.e., magnetic transport phenomena). By improving our basic understanding and by providing direct experimental data on blanket behavior, these experiments will lead to improved designs and an accurate assessment of the attractiveness of liquid-metal blankets

  11. Flexibility analysis of main primary heat transport system : Narora Atomic Power Project

    International Nuclear Information System (INIS)

    Rastogi, S.K.

    1975-01-01

    The paper presents flexibility analysis problem of main primary heat transport system and the approximate analysis that has been made to estimate the loads coming on major equipments. The primary heat transport system for Narora Atomic Power Project is adopting vertical steam generators and pumps equally divided on either side of the reactor with inter-connecting pipes and feeders. Since the system is mainly spring supported with movement of a few points in certain direction defined but no anchorage, it represents a good problem for flexibility analysis which can only be solved in one step by developing a good computer programme. (author)

  12. Design considerations for CRBRP heat transport system piping operating at elevated temperatures

    International Nuclear Information System (INIS)

    Pollono, L.P.; Mello, R.M.

    1979-01-01

    The heat transport system sodium piping for the Clinch River Breeder Reactor Plant (CRBRP) within the reactor containment building must withstand high temperatures for long periods of time. Each phase of the mechanical design process of the piping system is influenced by elevated temperature considerations which include material thermal creep effects, ratchetting caused by rapid temperature transients and stress relaxation, and material degradation effects. The structural design philosophy taken to design the CRBRP piping operating in a high temperature environment is described. The resulting design of the heat transport system piping is presented along with a discussion of special features that resulted from the elevated temperature considerations

  13. Investigation of thermal energy transport from an anisotropic central heating element to the adjacent channels: A multipoint flux approximation

    KAUST Repository

    Salama, Amgad; Sun, Shuyu; El-Amin, Mohamed

    2015-01-01

    anisotropy of the heating element and/or the encompassing plates on thermal energy transport to the fluid passing through the two channels. When the medium is anisotropic with respect to thermal conductivity; energy transport to the neighboring channels

  14. Modification of the finite element heat and mass transfer code (FEHM) to model multicomponent reactive transport

    International Nuclear Information System (INIS)

    Viswanathan, H.S.

    1996-08-01

    The finite element code FEHMN, developed by scientists at Los Alamos National Laboratory (LANL), is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developing hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent Kd model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The new chemical capabilities of FEHMN are illustrated by using Los Alamos National Laboratory's site scale model of Yucca Mountain to model two-dimensional, vadose zone 14 C transport. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also prove that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies

  15. An alternative treatment of heat flow for charge transport in semiconductor devices

    International Nuclear Information System (INIS)

    Grupen, Matt

    2009-01-01

    A unique thermodynamic model of Fermi gases suitable for semiconductor device simulation is presented. Like other models, such as drift diffusion and hydrodynamics, it employs moments of the Boltzmann transport equation derived using the Fermi-Dirac distribution function. However, unlike other approaches, it replaces the concept of an electron thermal conductivity with the heat capacity of an ideal Fermi gas to determine heat flow. The model is used to simulate a field-effect transistor and show that the external current-voltage characteristics are strong functions of the state space available to the heated Fermi distribution.

  16. Heat science and transport phenomena in fuel cells; Thermique et phenomenes de transport dans les piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Liberatore, P.M.; Boillot, M. [Laboratoire des Sciences du Genie Chimique de Nancy, 54 - Vandoeuvre-les-Nancy (France); Bonnet, C.; Didieerjean, S.; Lapicque, F.; Deseure, J.; Lottin, O.; Maillet, D.; Oseen-Senda, J. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, 54 - Vandoeuvre Les Nancy (France); Alexandre, A. [Laboratoire d' Etudes Thermiques, ENSMA, 86 Poitiers (France); Topin, F.; Occelli, R.; Daurelle, J.V. [IUSTI / Polytech' Marseille, Institut universitaire des Systemes Thermiques Industriels Ecole, 13 - Marseille (France); Pauchet, J.; Feidt, M. [CEA Grenoble, Groupement pour la recherche sur les echangeurs thermiques (Greth), 38 (France); Voarino, C. [CEA Centre d' Etudes du Ripault, 37 - Tours (France); Morel, B.; Laurentin, J.; Bultel, Y.; Lefebvre-Joud, F. [CEA Grenoble, LEPMI, 38 (France); Auvity, B.; Lasbet, Y.; Castelain, C.; Peerohossaini, H. [Ecole Centrale de Nantes, Laboratoire de Thermocinetique de Nantes (LTN), 44 - Nantes (France)

    2005-07-01

    In this work are gathered the transparencies of the lectures presented at the conference 'heat science and transport phenomena in fuel cells'. The different lectures have dealt with 1)the gas distribution in the bipolar plates of a fuel cell: experimental studies and computerized simulations 2)two-phase heat distributors in the PEMFC 3)a numerical study of the flow properties of the backing layers on the transfers in a PEMFC 4)modelling of the heat and mass transfers in a PEMFC 5)two-phase cooling of the PEMFC with pentane 6)stationary thermodynamic model of the SOFC in the GECOPAC system 7)modelling of the internal reforming at the anode of the SOFC 8)towards a new thermal design of the PEMFC bipolar plates. (O.M.)

  17. Heat pulse analysis in JET and relation to local energy transport models

    International Nuclear Information System (INIS)

    Haas, J.C.M. de; Lopes Cardozo, N.J.; Han, W.; Sack, C.; Taroni, A.

    1989-01-01

    The evolution of a perturbation T e of the electron temperature depends on the linearised expression of the heat flux q e and may be not simply related to the local value of the electron heat conductivity χ e . It is possible that local heat transport models predicting similar temperature profiles and global energy confinement properties, imply a different propagation of heat pulses. We investigate here this possibility for the case of two models developed at JET. We also present results obtained at JET on a set of discharges covering the range of currents from 2 to 5 MA. Only L-modes, limiter discharges are considered here. Experimental results on the scaling of χ HP , the value of χ e related to heat pulse propagation, are compared with those of χ HP derived from the models. (author) 7 refs., 2 figs., 2 tabs

  18. A pumped, two-phase flow heat transport system for orbiting instrument payloads

    Science.gov (United States)

    Fowle, A. A.

    1981-01-01

    A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.

  19. Moment approach to neoclassical flows, currents and transport in auxiliary heated tokamaks

    International Nuclear Information System (INIS)

    Kim, Yil Bong.

    1988-02-01

    The moment approach is utilized to derive the full complement of neoclassical transport processes in auxiliary heated tokamaks. The effects of auxiliary heating [neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH)] considered arise from the collisional interaction between the background plasma species and the fast-ion-tail species. From a known fast ion distribution function we evaluate the parallel (to the magnetic field) momentum and heat flow inputs to the background plasma. Then, through the momentum and heat flow balance equations, we can determine the induced parallel flows (and current) and radial transpot fluxes in ''equilibrium'' (on the time scale much longer than the collisional relaxation time, i.e., t >> 1ν/sub ii/). In addition to the fast-ion-induced current, the total neoclassical current includes the boostap current, which is driven by the pressure and temperature gradients, the Pfirsch-Schlueter current which is required for charge neutrality, and the neoclassical (including trapped particle effects) Spitzer current due to the parallel electric field. The radial transport fluxes also include off-diagonal compnents in the transport matrix which correspond to the Ware (neoclassical) pinch due to the inductive applied electric field an the fast-ion-induced radial fluxes, in addition to the usual pressure- and temperature-gradient-driven fluxes (particle diffusion and heat conduction). Once the tranport coefficient are completely determined, the radial fluxes and the heat fluxes can be substituted into the density and energy evolution equations to provide a complete description of ''equilibrium'' (δδt << ν/sub ii/) neoclassical transport processes in a plasma. 47 refs., 14 figs

  20. Delayed effects of chlorpyrifos across metamorphosis on dispersal-related traits in a poleward moving damselfly.

    Science.gov (United States)

    Dinh, Khuong Van; Janssens, Lizanne; Therry, Lieven; Bervoets, Lieven; Bonte, Dries; Stoks, Robby

    2016-11-01

    How exposure to contaminants may interfere with the widespread poleward range expansions under global warming is largely unknown. Pesticide exposure may negatively affect traits shaping the speed of range expansion, including traits related to population growth rate and dispersal-related traits. Moreover, rapid evolution of growth rates during poleward range expansions may come at a cost of a reduced investment in detoxification and repair thereby increasing the vulnerability to contaminants at expanding range fronts. We tested effects of a sublethal concentration of the widespread pesticide chlorpyrifos on traits related to range expansion in replicated edge and core populations of the poleward moving damselfly Coenagrion scitulum reared at low and high food levels in a common garden experiment. Food limitation in the larval stage had strong negative effects both in the larval stage and across metamorphosis in the adult stage. Exposure to chlorpyrifos during the larval stage did not affect larval traits but caused delayed effects across metamorphosis by increasing the incidence of wing malformations during metamorphosis and by reducing a key component of the adult immune response. There was some support for an evolutionary trade-off scenario as the faster growing edge larvae suffered a higher mortality during metamorphosis. Instead, there was no clear support for the faster growing edge larvae being more vulnerable to chlorpyrifos. Our data indicate that sublethal delayed effects of pesticide exposure, partly in association with the rapid evolution of faster growth rates, may slow down range expansions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    Science.gov (United States)

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  2. The Influence of Heat Flux Boundary Heterogeneity on Heat Transport in Earth's Core

    Science.gov (United States)

    Davies, C. J.; Mound, J. E.

    2017-12-01

    Rotating convection in planetary systems can be subjected to large lateral variations in heat flux from above; for example, due to the interaction between the metallic cores of terrestrial planets and their overlying silicate mantles. The boundary anomalies can significantly reorganise the pattern of convection and influence global diagnostics such as the Nusselt number. We have conducted a suite of numerical simulations of rotating convection in a spherical shell geometry comparing convection with homogeneous boundary conditions to that with two patterns of heat flux variation at the outer boundary: one hemispheric pattern, and one derived from seismic tomographic imaging of Earth's lower mantle. We consider Ekman numbers down to 10-6 and flux-based Rayleigh numbers up to 800 times critical. The heterogeneous boundary conditions tend to increase the Nusselt number relative to the equivalent homogeneous case by altering both the flow and temperature fields, particularly near the top of the convecting region. The enhancement in Nusselt number tends to increase as the amplitude and wavelength of the boundary heterogeneity is increased and as the system becomes more supercritical. In our suite of models, the increase in Nusselt number can be as large as 25%. The slope of the Nusselt-Rayleigh scaling also changes when boundary heterogeneity is included, which has implications when extrapolating to planetary conditions. Additionally, regions of effective thermal stratification can develop when strongly heterogeneous heat flux conditions are applied at the outer boundary.

  3. Study of heat transport in structured soil under grass cover. Dual-continuum approach

    Czech Academy of Sciences Publication Activity Database

    Votrubová, J.; Dohnal, M.; Tesař, Miroslav; Vogel, T.

    2011-01-01

    Roč. 13, - (2011), s. 7414 ISSN 1607-7962. [European Geosciences Union General Assembly 2011. 03.04.2011-08.04.2011, Vienna] R&D Projects: GA ČR GA205/08/1174 Institutional research plan: CEZ:AV0Z20600510 Keywords : water and heat transport * model S1D * Sumava Mts. Subject RIV: DA - Hydrology ; Limnology

  4. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    Science.gov (United States)

    Bridger, D. W.; Allen, D. M.

    2014-01-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  5. Studies of Electron Transport and Isochoric Heating and Their Applicability to Fast Ignition

    International Nuclear Information System (INIS)

    Key, M H; Amiranoff, F; Andersen, C; Batani, D; Baton, S D; Cowan, T; Fisch, N; Freeman, R; Gremillet, L; Hall, T; Hatchett, S; Hill, J; King, J; Kodama, R; Koch, J; Koenig, M; Lasinski, B; Langdon, B; MacKinnon, A; Martinolli, E; Norreys, P; Parks, P; Perrelli-Cippo, E; Rabec Le Gloahec, M; Rosenbluth, M; Rousseaux, C; Santon, J J; Scianitti, F; Snavely, R; Tabak, M; Tanaka, K; Town, R; Tsutumi, T; Stephens, R

    2003-01-01

    Experimental measurements of electron transport and isochoric heating in 100 J, 1 ps laser irradiation of solid A1 targets are presented. Modeling with a hybrid PIC code is compared with the data and good agreement is obtained using a heuristic model for the electron injection. The relevance for fast ignition is discussed

  6. Numerical modeling of coupled water flow and heat transport in soil and snow

    Science.gov (United States)

    Thijs J. Kelleners; Jeremy Koonce; Rose Shillito; Jelle Dijkema; Markus Berli; Michael H. Young; John M. Frank; William Massman

    2016-01-01

    A one-dimensional vertical numerical model for coupled water flow and heat transport in soil and snow was modified to include all three phases of water: vapor, liquid, and ice. The top boundary condition in the model is driven by incoming precipitation and the surface energy balance. The model was applied to three different terrestrial systems: A warm desert bare...

  7. Thermal transport in low dimensions from statistical physics to nanoscale heat transfer

    CERN Document Server

    2016-01-01

    Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of na...

  8. Study of the electron heat transport in Tore-Supra tokamak

    International Nuclear Information System (INIS)

    Harauchamps, E.

    2004-01-01

    This work presents analytical solutions to the electron heat transport equation involving a damping term and a convection term in a cylindrical geometry. These solutions, processed by Matlab, allow the determination of the evolution of the radial profile of electron temperature in tokamaks during heating. The modulated injection of waves around the electron cyclotron frequency is an efficient tool to study heat transport experimentally in tokamaks. The comparison of these analytical solutions with experimental results from Tore-Supra during 2 discharges (30550 and 31165) shows the presence of a sudden change for the diffusion and damping coefficients. The hypothesis of the presence of a pinch spread all along the plasma might explain the shape of the experimental temperature profiles. These analytical solutions could be used to determine the time evolution of plasma density as well or of any parameter whose evolution is governed by a diffusion-convection equation. (A.C.)

  9. Heat transport in the quasi-single-helicity islands of EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Brunsell, P. R.; Drake, J.

    2009-03-01

    The heat transport inside the magnetic island generated in a quasi-single-helicity regime of a reversed-field pinch device is studied by using a numerical code that simulates the electron temperature and the soft x-ray emissivity. The heat diffusivity χe inside the island is determined by matching the simulated signals with the experimental ones. Inside the island, χe turns out to be from one to two orders of magnitude lower than the diffusivity in the surrounding plasma, where the magnetic field is stochastic. Furthermore, the heat transport properties inside the island are studied in correlation with the plasma current and with the amplitude of the magnetic fluctuations.

  10. Modeling of amorphous pocket formation in silicon by numerical solution of the heat transport equation

    International Nuclear Information System (INIS)

    Kovac, D.; Otto, G.; Hobler, G.

    2005-01-01

    In this paper we present a model of amorphous pocket formation that is based on binary collision simulations to generate the distribution of deposited energy, and on numerical solution of the heat transport equation to describe the quenching process. The heat transport equation is modified to consider the heat of melting when the melting temperature is crossed at any point in space. It is discretized with finite differences on grid points that coincide with the crystallographic lattice sites, which allows easy determination of molten atoms. Atoms are considered molten if the average of their energy and the energy of their neighbors meets the melting criterion. The results obtained with this model are in good overall agreement with published experimental data on P, As, Te and Tl implantations in Si and with data on the polyatomic effect at cryogenic temperature

  11. [The design of heat dissipation of the field low temperature box for storage and transportation].

    Science.gov (United States)

    Wei, Jiancang; Suin, Jianjun; Wu, Jian

    2013-02-01

    Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design.

  12. Transient heat transport studies in JET conventional and advanced tokamak plasmas

    International Nuclear Information System (INIS)

    Mantica, P.; Coffey, I.; Dux, R.

    2003-01-01

    Transient transport studies are a valuable complement to steady-state analysis for the understanding of transport mechanisms and the validation of physics-based transport models. This paper presents results from transient heat transport experiments in JET and their modelling. Edge cold pulses and modulation of ICRH (in mode conversion scheme) have been used to provide detectable electron and ion temperature perturbations. The experiments have been performed in conventional L-mode plasmas or in Advanced Tokamak regimes, in the presence of an Internal Transport Barrier (ITB). In conventional plasmas, the issues of stiffness and non-locality have been addressed. Cold pulse propagation in ITB plasmas has provided useful insight into the physics of ITB formation. The use of edge perturbations for ITB triggering has been explored. Modelling of the experimental results has been performed using both empirical models and physics-based models. Results of cold pulse experiments in ITBs have also been compared with turbulence simulations. (author)

  13. The Role of Ocean and Atmospheric Heat Transport in the Arctic Amplification

    Science.gov (United States)

    Vargas Martes, R. M.; Kwon, Y. O.; Furey, H. H.

    2017-12-01

    Observational data and climate model projections have suggested that the Arctic region is warming around twice faster than the rest of the globe, which has been referred as the Arctic Amplification (AA). While the local feedbacks, e.g. sea ice-albedo feedback, are often suggested as the primary driver of AA by previous studies, the role of meridional heat transport by ocean and atmosphere is less clear. This study uses the Community Earth System Model version 1 Large Ensemble simulation (CESM1-LE) to seek deeper understanding of the role meridional oceanic and atmospheric heat transports play in AA. The simulation consists of 40 ensemble members with the same physics and external forcing using a single fully coupled climate model. Each ensemble member spans two time periods; the historical period from 1920 to 2005 using the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical forcing and the future period from 2006 to 2100 using the CMIP5 Representative Concentration Pathways 8.5 (RCP8.5) scenario. Each of the ensemble members are initialized with slightly different air temperatures. As the CESM1-LE uses a single model unlike the CMIP5 multi-model ensemble, the internal variability and the externally forced components can be separated more clearly. The projections are calculated by comparing the period 2081-2100 relative to the time period 2001-2020. The CESM1-LE projects an AA of 2.5-2.8 times faster than the global average, which is within the range of those from the CMIP5 multi-model ensemble. However, the spread of AA from the CESM1-LE, which is attributed to the internal variability, is 2-3 times smaller than that of the CMIP5 ensemble, which may also include the inter-model differences. CESM1LE projects a decrease in the atmospheric heat transport into the Arctic and an increase in the oceanic heat transport. The atmospheric heat transport is further decomposed into moisture transport and dry static energy transport. Also, the oceanic heat

  14. Impact of plasma triangularity and collisionality on electron heat transport in TCV L-mode plasmas

    International Nuclear Information System (INIS)

    Camenen, Y.; Pochelon, A.; Behn, R.; Bottino, A.; Bortolon, A.; Coda, S.; Karpushov, A.; Sauter, O.; Zhuang, G.

    2007-01-01

    The impact of plasma shaping on electron heat transport is investigated in TCV L-mode plasmas. The study is motivated by the observation of an increase in the energy confinement time with decreasing plasma triangularity which may not be explained by a change in the temperature gradient induced by changes in the geometry of the flux surfaces. The plasma triangularity is varied over a wide range, from positive to negative values, and various plasmas conditions are explored by changing the total electron cyclotron (EC) heating power and the plasma density. The mid-radius electron heat diffusivity is shown to significantly decrease with decreasing triangularity and, for similar plasma conditions, only half of the EC power is required at a triangularity of -0.4 compared with +0.4 to obtain the same temperature profile. Besides, the observed dependence of the electron heat diffusivity on the electron temperature, electron density and effective charge can be grouped in a unique dependence on the plasma effective collisionality. In summary, the electron heat transport level exhibits a continuous decrease with decreasing triangularity and increasing collisionality. Local gyro-fluid and global gyro-kinetic simulations predict that trapped electron modes are the most unstable modes in these EC heated plasmas with an effective collisionality ranging from 0.2 to 1. The modes stability dependence on the plasma triangularity is investigated

  15. Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles

    Directory of Open Access Journals (Sweden)

    Jaćimovski Darko R.

    2014-01-01

    Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022

  16. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    International Nuclear Information System (INIS)

    Li, Yunyun; Li, Nianbei; Hänggi, Peter; Li, Baowen; Liu, Sha

    2015-01-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  17. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    Science.gov (United States)

    Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen

    2015-04-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  18. A practical nonlocal model for heat transport in magnetized laser plasmas

    International Nuclear Information System (INIS)

    Nicolaie, Ph.D.; Feugeas, J.-L.A.; Schurtz, G.P.

    2006-01-01

    A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaie, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case

  19. A practical nonlocal model for heat transport in magnetized laser plasmas

    Science.gov (United States)

    Nicolaï, Ph. D.; Feugeas, J.-L. A.; Schurtz, G. P.

    2006-03-01

    A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaï, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case.

  20. Skylab and solar exploration. [chromosphere-corona structure, energy production and heat transport processes

    Science.gov (United States)

    Von Puttkamer, J.

    1973-01-01

    Review of some of the findings concerning solar structure, energy production, and heat transport obtained with the aid of the manned Skylab space station observatory launched on May 14, 1973. Among the topics discussed are the observation of thermonuclear fusion processes which cannot be simulated on earth, the observation of short-wave solar radiation not visible to observers on earth, and the investigation of energy-transport processes occurring in the photosphere, chromosphere, and corona. An apparent paradox is noted in that the cooler chromosphere is heating the hotter corona, seemingly in defiance of the second law of thermodynamics, thus suggesting that a nonthermal mechanism underlies the energy transport. Understanding of this nonthermal mechanism is regarded as an indispensable prerequisite for future development of plasma systems for terrestrial applications.

  1. A continuum self organized critically model of turbulent heat transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Tangri, V; Das, A; Kaw, P; Singh, R [Institute for Plasma Research, Gandhinagar (India)

    2003-09-01

    Based on the now well known and experimentally observed critical gradient length (R/L{sub Te} = RT/{nabla}T) in tokamaks, we present a continuum one dimensional model for explaining self organized heat transport in tokamaks. Key parameters of this model include a novel hysteresis parameter which ensures that the switch of heat transport coefficient {chi} upwards and downwards takes place at two different values of R/L{sub Te}. Extensive numerical simulations of this model reproduce many features of present day tokamaks such as submarginal temperature profiles, intermittent transport events, 1/f scaling of the frequency spectra, propagating fronts, etc. This model utilises a minimal set of phenomenological parameters, which may be determined from experiments and/or simulations. Analytical and physical understanding of the observed features has also been attempted. (author)

  2. Safety studies on heat transport and afterheat removal for GCR accident conditions

    International Nuclear Information System (INIS)

    Hishida, Makoto

    1996-01-01

    The IAEA coordinated an international research program on 'Heat Transport and Afterheat Removal for GCRs under Accident Conditions (CRP-3)'. America, China, France, Germany, Japan, Netherlands and Russia participate the program. Final goal of the program is to show clearly to the world one of the most important salient features of the HTGR, that is the HTGR reactor can be cooled down by passive measures without causing any damage to the nuclear reactor system even in accidental conditions, and to make clear the boundaries (or restrictions) for the passive cooling regime. The first 5 year term of the coordinate program started in 1993 and established a goal to improve common knowledge for decay heat removal and to improve our tools, like computer codes and analytical models for the prediction of the performance of decay heat removal system. We are now performing benchmark problems for these purposes. The present efforts are concentrated on the benchmark for the passive heat removal performance outside the reactor vessel, partly because we have two different type of the HTGR in the world, the pebble bed type and the block type reactor. They have quite different heat dissipation behavior inside the reactor vessel. However, they have quite similar residual heat removal process outside the reactor vessel. For the first step of the international cooperation, we selected the common problem. After finishing the present benchmark we are planning to proceed to tackle the inside heat removal problem. (J.P.N.)

  3. Study of electronic heat transport in plasma through diagnosis based on modulated electron cyclotron heating; Etudes de transport de la chaleur electronique par injection modulee d'ondes a la frequence cyclotronique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Clemencon, A.; Guivarch, C

    2003-07-01

    In order to make nuclear fusion energetically profitable, it is crucial to heat and confine the plasma efficiently. Studying the behavior of the heat diffusion coefficient is a key issue in this matter. The use of modulated electron cyclotron heating as a diagnostic has suggested the existence of a transport barrier under certain plasma conditions. We have determined the solution to the heat transport equation, for several heat diffusion coefficient profiles. By comparing the analytical solutions with experimental data; we are able to study the heat diffusion coefficient profile. Thus, in certain experiments, we can confirm that the heat diffusion coefficient switches from low to high values at the radius where the electron cyclotron heat deposition is made. (authors)

  4. Magnetic flux tubes and transport of heat in the convection zone of the sun

    International Nuclear Information System (INIS)

    Spruit, H.C.

    1977-01-01

    This thesis consists of five papers dealing with transport of heat in the solar convection zone on the one hand, and with the structure of magnetic flux tubes in the top of the convection zone on the other hand. These subjects are interrelated. For example, the heat flow in the convection zone is disturbed by the presence of magnetic flux tubes, while exchange of heat between a flux tube and the convection zone is important for the energy balance of such a tube. A major part of this thesis deals with the structure of small magnetic flux tubes. Such small tubes (diameters less than about 2'') carry most of the flux appearing at the solar surface. An attempt is made to construct models of the surface layers of such small tubes in sufficient detail to make a comparison with observations possible. Underlying these model calculations is the assumption that the magnetic elements at the solar surface are flux tubes in a roughly static equilibrium. The structure of such tubes is governed by their pressure equilibrium, exchange of heat with the surroundings, and transport of heat by some modified form of convection along the tube. The tube models calculated are compared with observations

  5. Increased Heat Transport in Ultra-hot Jupiter Atmospheres through H2 Dissociation and Recombination

    Science.gov (United States)

    Bell, Taylor J.; Cowan, Nicolas B.

    2018-04-01

    A new class of exoplanets is beginning to emerge: planets with dayside atmospheres that resemble stellar atmospheres as most of their molecular constituents dissociate. The effects of the dissociation of these species will be varied and must be carefully accounted for. Here we take the first steps toward understanding the consequences of dissociation and recombination of molecular hydrogen (H2) on atmospheric heat recirculation. Using a simple energy balance model with eastward winds, we demonstrate that H2 dissociation/recombination can significantly increase the day–night heat transport on ultra-hot Jupiters (UHJs): gas giant exoplanets where significant H2 dissociation occurs. The atomic hydrogen from the highly irradiated daysides of UHJs will transport some of the energy deposited on the dayside toward the nightside of the planet where the H atoms recombine into H2; this mechanism bears similarities to latent heat. Given a fixed wind speed, this will act to increase the heat recirculation efficiency; alternatively, a measured heat recirculation efficiency will require slower wind speeds after accounting for H2 dissociation/recombination.

  6. Numerical modelling of coupled fluid, heat, and solute transport in deformable fractured rock

    International Nuclear Information System (INIS)

    Chan, T.; Reid, J.A.K.

    1987-01-01

    This paper reports on a three-dimensional (3D) finite-element code, MOTIF (model of transport in fractured/porous media), developed to model the coupled processes of groundwater flow, heat transport, brine transport, and one-species radionuclide transport in geological media. Three types of elements are available: a 3D continuum element, a planar fracture element that can be oriented in any arbitrary direction in 3D space or pipe flow in 3D space, and a line element for simulating fracture flow in 2D space or pipe flow in 3D space. As a quality-assurance measure, the MOTIF code was verified by comparison of its results with analytical solutions and other published numerical solutions

  7. Finite speed heat transport in a quantum spin chain after quenched local cooling

    Science.gov (United States)

    Fries, Pascal; Hinrichsen, Haye

    2017-04-01

    We study the dynamics of an initially thermalized spin chain in the quantum XY-model, after sudden coupling to a heat bath of lower temperature at one end of the chain. In the semi-classical limit we see an exponential decay of the system-bath heatflux by exact solution of the reduced dynamics. In the full quantum description however, we numerically find the heatflux to reach intermediate plateaus where it is approximately constant—a phenomenon that we attribute to the finite speed of heat transport via spin waves.

  8. The heat transport system and plant design for the HYLIFE-2 fusion reactor

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1990-01-01

    HYLIFE is the name given to a family of self-healing liquid-wall reactor concepts for inertial confinement fusion. This HYLIFE-II concept employs the molten salt, Flibe, for the liquid jets instead of liquid lithium used in the original HYLIFE-I study. A preliminary conceptual design study of the heat transport system and the balance of plant of the HYLIFE-II fusion power plant is described in this paper with special emphasis on a scoping study to determine the best intermediate heat exchanger geometry and flow conditions for minimum cost of electricity. 11 refs., 8 figs

  9. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach

    KAUST Repository

    Chust, Guillem

    2013-09-16

    In the last decade, the analysis based on Continuous Plankton Recorder survey in the eastern North Atlantic Ocean detected one of the most striking examples of marine poleward migration related to sea warming. The main objective of this study is to verify the poleward shift of zooplankton species (Calanus finmarchicus, C. glacialis, C. helgolandicus, C. hyperboreus) for which distributional changes have been recorded in the North Atlantic Ocean and to assess how much of this shift was triggered by sea warming, using Generalized Additive Models. To this end, the population gravity centre of observed data was compared with that of a series of simulation experiments: (i) a model using only climate factors (i.e. niche-based model) to simulate species habitat suitability, (ii) a model using only temporal and spatial terms to reconstruct the population distribution, and (iii) a model using both factors combined, using a subset of observations as independent dataset for validation. Our findings show that only C. finmarchicus had a consistent poleward shift, triggered by sea warming, estimated in 8.1 km per decade in the North Atlantic (16.5 per decade for the northeast), which is substantially lower than previous works at the assemblage level and restricted to the Northeast Atlantic. On the contrary, C. helgolandicus is expanding in all directions, although its northern distribution limit in the North Sea has shifted northward. Calanus glacialis and C. hyperboreus, which have the geographic centres of populations mainly in the NW Atlantic, showed a slight southward shift, probably responding to cool water penetrating southward in the Labrador Current. Our approach, supported by high model accuracy, shows its power in detecting species latitudinal shifts and identifying its causes, since the trend of occurrence observed data is influenced by the sampling frequency, which has progressively concentrated to lower latitudes with time. © 2013 © 2013 International Council for

  10. Heat and fission product transport in molten core material pool with crust

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2005-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the reactor vessel during a severe accident. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool is estimated by product of the mass concentration and energy conversion factor of each fission product. Twenty-nine elements are chosen and classified by their chemical properties to calculate heat generation rate in the pool. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis is performed for heat and fission product transport in a molten core material pool during the Three Mile Island Unit 2 (TMI-2) accident. The pool is assumed to be a partially filled hemisphere, whose change in geometry is neglected during the numerical calculation. Calculated results indicate that the peak temperature in the molten pool is significantly lowered, since a substantial amount of the volatile fission products is released from the molten pool during progression of the accident. The results may directly be applied to the existing severe accident analysis codes to more mechanistically determine the thermal load to the reactor vessel lower head during the in-vessel retention

  11. Two-phase optimizing approach to design assessments of long distance heat transportation for CHP systems

    International Nuclear Information System (INIS)

    Hirsch, Piotr; Duzinkiewicz, Kazimierz; Grochowski, Michał; Piotrowski, Robert

    2016-01-01

    Highlights: • New method for long distance heat transportation system effectivity evaluation. • Decision model formulation which reflects time and spatial structure of the problem. • Multi-criteria and complex approach to solving the decision-making problem. • Solver based on simulation-optimization approach with two-phase optimization method. • Sensitivity analysis of the optimization procedure elements. - Abstract: Cogeneration or Combined Heat and Power (CHP) for power plants is a method of putting to use waste heat which would be otherwise released to the environment. This allows the increase in thermodynamic efficiency of the plant and can be a source of environmental friendly heat for District Heating (DH). In the paper CHP for Nuclear Power Plant (NPP) is analyzed with the focus on heat transportation. A method for effectivity and feasibility evaluation of the long distance, high power Heat Transportation System (HTS) between the NPP and the DH network is proposed. As a part of the method the multi-criteria decision-making problem, having the structure of the mathematical programming problem, for optimized selection of design and operating parameters of the HTS is formulated. The constraints for this problem include a static model of HTS, that allows considerations of system lifetime, time variability and spatial topology. Thereby variation of annual heat demand within the DH area, variability of ground temperature, insulation and pipe aging and/or terrain elevation profile can be taken into account in the decision-making process. The HTS construction costs, pumping power, and heat losses are considered as objective functions. In general, the analyzed optimization problem is multi-criteria, hybrid and nonlinear. The two-phase optimization based on optimization-simulation framework is proposed to solve the decision-making problem. The solver introduces a number of assumptions concerning the optimization process. Methods for problem decomposition

  12. Integral analysis of debris material and heat transport in reactor vessel lower plenum

    International Nuclear Information System (INIS)

    Suh, K.Y.; Henry, R.E.

    1994-01-01

    An integral, fast-running, two-region model has been developed to characterize the debris material and heat transport in the reactor lower plenum under severe accident conditions. The debris bed is segregated into the oxidic pool and an overlying metallic layer. Debris crusts can develop on three surfaces: the top of the molten pool, the RPV wall, and the internal structures. To account for the decay heat generation, the crust temperature profile is assumed to be parabolic. The oxidic debris pool is homogeneously mixed and has the same material composition, and hence the same thermophysical properties, as the crusts, while the metallic constituents are assumed to rise to the top of the debris pool. Steady-state relationships are used to describe the heat transfer rates, with the assessment of solid or liquid state, and the liquid superheat in the pool being based on the average debris temperature. Natural convection heat transfer from the molten debris pool to the upper, lower and embedded crusts is calculated based on the pool Rayleigh number with the conduction heat transfer from the crusts being determined by the crust temperature profile. The downward heat flux is transferred to the lowest part of the RPV lower head through a crust-to-RPV contact resistance. The sideward heat flux is transferred to the upper regions of the RPV lower head as well as to the internal structures. The upward heat flux goes to the metal layer, water, or available heat sink structures above. Quenching due to water ingression is modeled separately from the energy transfer through the crust. The RPV wall temperature distribution and the primary system pressure are utilized to estimate challenges to the RPV integrity. ((orig.))

  13. Electron thermal energy transport research based on dynamical relationship between heat flux and temperature gradient

    International Nuclear Information System (INIS)

    Notake, Takashi; Inagaki, Shigeru; Tamura, Naoki

    2008-01-01

    In the nuclear fusion plasmas, both of thermal energy and particle transport governed by turbulent flow are anomalously enhanced more than neoclassical levels. Thus, to clarify a relationship between the turbulent flow and the anomalous transports has been the most worthwhile work. There are experimental results that the turbulent flow induces various phenomena on transport processes such as non-linearity, transition, hysteresis, multi-branches and non-locality. We are approaching these complicated problems by analyzing not conventional power balance but these phenomena directly. They are recognized as dynamical trajectories in the flux and gradient space and must be a clue to comprehend a physical mechanism of arcane anomalous transport. Especially, to elucidate the mechanism for electron thermal energy transport is critical in the fusion plasma researches because the burning plasmas will be sustained by alpha-particle heating. In large helical device, the dynamical relationships between electron thermal energy fluxes and electron temperature gradients are investigated by using modulated electron cyclotron resonance heating and modern electron cyclotron emission diagnostic systems. Some trajectories such as hysteresis loop or line segments with steep slope which represent non-linear property are observed in the experiment. (author)

  14. Comparing the value of bioenergy in the heating and transport sectors of an electricity-intensive energy system in Norway

    International Nuclear Information System (INIS)

    Assefa Hagos, Dejene; Gebremedhin, Alemayehu; Folsland Bolkesjø, Torjus

    2015-01-01

    The objective of this paper is to identify the most valuable sector for the use of bioenergy in a flexible energy system in order to meet the energy policy objectives of Inland Norway. A reference system was used to construct alternative systems in the heating and transport sectors. The alternative system in the heating sector is based on heat pumps and bio-heat boilers while the alternative systems in the transport sector are based on three different pathways: bio-dimethyl ether, hydrogen fuel cell vehicles and battery electric vehicles. The alternative systems were compared with the reference system after a business-economic optimisation had been made using an energy system analysis tool. The results show that the excess electricity availability due to increased energy efficiency measures hampers the competitiveness and penetration of bio-heating over heat pumps in the heating sector. Indeed, the synergy effect of using bio-dimethyl ether in the transport sector for an increased share of renewable energy sources is much higher than that of the hydrogen fuel cell vehicle and battery electric vehicle pathways. The study also revealed that increasing renewable energy production would increase the renewable energy share more than what would be achieved by an increase in energy efficiency. -- Highlights: •Bio-heating is less competitive over heat pump for low quality heat production. •Renewable energy production meets policy objectives better than system efficiency. •Bioenergy is more valuable in the transport sector than the heating sector

  15. Thermal transport of carbon nanotubes and graphene under optical and electrical heating measured by Raman spectroscopy

    Science.gov (United States)

    Hsu, I.-Kai

    This thesis presents systematic studies of thermal transport in individual single walled carbon nanotubes (SWCNTs) and graphene by optical and electrical approaches using Raman spectroscopy. In the work presented from Chapter 2 to Chapter 6, individual suspended CNTs are preferentially measured in order to explore their intrinsic thermal properties. Moreover, the Raman thermometry is developed to detect the temperature of the carbon nanotube (CNT). A parabolic temperature profile is observed in the suspended region of the CNT while a heating laser scans across it, providing a direct evidence of diffusive thermal transport in an individual suspended CNT. Based on the curvature of the temperature profile, we can solve for the ratio of thermal contact resistance to the thermal resistance of the CNT, which spans the range from 0.02 to 17. The influence of thermal contact resistance on the thermal transport in an individual suspended CNT is also studied. The Raman thermometry is carried out in the center of a CNT, while its contact length is successively shortened by an atomic force microscope (AFM) tip cutting technique. By investigating the dependence of the CNT temperature on its thermal contact length, the temperature of a CNT is found to increase dramatically as the contact length is made shorter. This work reveals the importance of manipulating the CNT thermal contact length when adopting CNT as a thermal management material. In using a focused laser to induce heating in a suspended CNT, one open question that remains unanswered is how many of the incident photons are absorbed by the CNT of interest. To address this question, micro-fabricated platinum thermometers, together with micro-Raman spectroscopy are used to quantify the optical absorption of an individual CNT. The absorbed power in the CNT is equal to the power detected by two thermometers at the end of the CNT. Our result shows that the optical absorption lies in the range between 0.03 to 0.44%. In

  16. Electron heat transport in current carrying and currentless thermonuclear plasmas. Tokamaks and stellarators compared

    International Nuclear Information System (INIS)

    Peters, M.

    1996-01-01

    In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity χ to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.)

  17. Electron heat transport in current carrying and currentless thermonuclear plasmas. Tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M

    1996-01-16

    In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity {chi} to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.).

  18. Conceptual design of heat transport systems and components of PFBR-NSSS

    International Nuclear Information System (INIS)

    Chetal, S.C.; Bhoje, S.B.; Kale, R.D.; Rao, A.S.L.K.; Mitra, T.K.; Selvaraj, A.; Sethi, V.K.; Sundaramoorthy, T.R.; Balasubramaniyan, V.; Vaidyanathan, G.

    1996-01-01

    The production of electrical power from sodium cooled fast reactors in the present power scenario in India demands emphasis on plant economics consistent with safety. Number of heat transport systems/components and the design of principal heat transport components viz sodium pumps, IHX and steam generators play significant role in the plant capital cost and capacity factor. The paper discusses the basis of selection of 2 primary pumps, 4 IHX, 2 secondary loops, 2 secondary pumps and 8 steam generators for the 500 MWe Prototype Fast Breeder Reactor (PFBR), which is now in design stage. The principal design features of primary pump, IHX and steam generator have been selected based on design simplicity, ease of manufacture and utilization of established designs. The paper also describes the conceptual design of above mentioned three components. (author). 3 figs, 2 tabs

  19. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  20. Heat-pipe effect on the transport of gaseous radionuclides released from a nuclear waste container

    International Nuclear Information System (INIS)

    Zhou, W.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1990-11-01

    When an unsaturated porous medium is subjected to a temperature gradient and the temperature is sufficiently high, vadose water is heated and vaporizes. Vapor flows under its pressure gradient towards colder regions where it condenses. Vaporization and condensation produce a liquid saturation gradient, creating a capillary pressure gradient inside the porous medium. Condensate flows towards the hot end under the influence of a capillary pressure gradient. This is a heat pipe in an unsaturated porous medium. We study analytically the transport of gaseous species released from a spent-fuel waste package, as affected by a time-dependent heat pipe in an unsaturated rock. For parameter values typical of a potential repository in partially saturated fractured tuff at Yucca Mountain, we found that a heat pipe develops shortly after waste is buried, and the heat-pipe's spatial extent is time-dependent. Water vapor movements produced by the heat pipe can significantly affect the migration of gaseous radionuclides. 12 refs., 6 figs., 1 tab

  1. Three-dimensional model of heat transport during In Situ Vitrification with melting and cool down

    International Nuclear Information System (INIS)

    Hawkes, G.L.

    1993-01-01

    A potential technology for permanent remediation of buried wastes is the In Situ Vitrification (ISV) process. This process uses electrical resistance heating to melt waste and contaminated soil in place to produce a durable, glasslike material that encapsulates and immobilizes buried wastes. The magnitude of the resulting electrical resistance heating is sufficient to cause soil melting. As the molten region grows, surface heat losses cause the soil near the surface to re solidify. This paper presents numerical results obtained by considering heat transport and melting when solving the conservation of mass and energy equations using finite element methods. A local heat source is calculated by solving the electric field equation and calculating a Joule Heat source term. The model considered is a three-dimensional model of the electrodes and surrounding soil. Also included in the model is subsidence; where the surface of the melted soil subsides due to the change in density when the soil melts. A power vs. time profile is implemented for typical ISV experiments. The model agrees well with experimental data for melt volume and melt shape

  2. Heat and Fission Product Transport in a Molten U-Zr-O Pool With Crust

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2002-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry and the change of pool geometry during the numerical calculation was neglected. Results of the numerical calculation revealed that the peak temperature of the molten pool significantly decreased and most of the volatile fission products were released from the molten pool during the accident. (authors)

  3. Tokamak electron heat transport by direct numerical simulation of small scale turbulence

    International Nuclear Information System (INIS)

    Labit, B.

    2002-10-01

    In a fusion machine, understanding plasma turbulence, which causes a degradation of the measured energy confinement time, would constitute a major progress in this field. In tokamaks, the measured ion and electron thermal conductivities are of comparable magnitude. The possible sources of turbulence are the temperature and density gradients occurring in a fusion plasma. Whereas the heat losses in the ion channel are reasonably well understood, the origin of the electron losses is more uncertain. In addition to the radial velocity associated to the fluctuations of the electric field, electrons are more affected than ions by the magnetic field fluctuations. In experiments, the confinement time can be conveniently expressed in terms of dimensionless parameters. Although still somewhat too imprecise, these scaling laws exhibit strong dependencies on the normalized pressure β or the normalized Larmor radius, ρ * . The present thesis assesses whether a tridimensional, electromagnetic, nonlinear fluid model of plasma turbulence driven by a specific instability can reproduce the dependence of the experimental electron heat losses on the dimensionless parameters β and ρ * . The investigated interchange instability is the Electron Temperature Gradient driven one (ETG). The model is built by using the set of Braginskii equations. The developed simulation code is global in the sense that a fixed heat flux is imposed at the inner boundary, leaving the gradients free to evolve. From the nonlinear simulations, we have put in light three characteristics for the ETG turbulence: the turbulent transport is essentially electrostatic; the potential and pressure fluctuations form radially elongated cells called streamers; the transport level is very low compared to the experimental values. The thermal transport dependence study has shown a very small role of the normalized pressure, which is in contradiction with the Ohkama's formula. On the other hand, the crucial role of the

  4. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    OpenAIRE

    Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie Keith; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.

    2009-01-01

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier–Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were valida...

  5. Performance of the FFTF heat transport system during cycles 1 and 2

    International Nuclear Information System (INIS)

    Burke, T.M.; Yunker, W.H.; Cramer, E.R.

    1983-01-01

    From April 1982 through May 1983, the Fast Flux Test Facility (FFTF) completed its first two full cycles of operation. This experience has provided significant information relative to the performance of the Main Heat Transport System (MHTS). While in general, the MHTS performance has been extremely good, there have been a few unanticipated events and trends which could very well influence the design and/or operation of further LMFBR plants. The performance of the major MHTS components is discussed

  6. Material and fabrication considerations for the CANDU-PHWR heat transport system

    International Nuclear Information System (INIS)

    Filipovic, A.; Price, E.G.; Barber, D.; Nickerson, J.

    1987-03-01

    CANDU PHWR nuclear systems have used carbon steel material for over 25 years. The accumulated operating experience of over 200 reactor years has proven this unique AECL approach to be both technically and economically attractive. This paper discusses design, material and fabrication considerations for out-reactor heat transport system major components. The contribution of this unique choice of materials and equipment to the outstanding CANDU performance is briefly covered

  7. Heat transport and afterheat removal for gas cooled reactors under accident conditions

    International Nuclear Information System (INIS)

    2001-01-01

    The Co-ordinated Research Project (CRP) on Heat Transport and Afterheat Removal for Gas Cooled Reactors Under Accident Conditions was organized within the framework of the International Working Group on Gas Cooled Reactors (IWGGCR). This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs) and supports the conduct of these activities. Advanced GCR designs currently being developed are predicted to achieve a high degree of safety through reliance on inherent safety features. Such design features should permit the technical demonstration of exceptional public protection with significantly reduced emergency planning requirements. For advanced GCRs, this predicted high degree of safety largely derives from the ability of the ceramic coated fuel particles to retain the fission products under normal and accident conditions, the safe neutron physics behaviour of the core, the chemical stability of the core and the ability of the design to dissipate decay heat by natural heat transport mechanisms without reaching excessive temperatures. Prior to licensing and commercial deployment of advanced GCRs, these features must first be demonstrated under experimental conditions representing realistic reactor conditions, and the methods used to predict the performance of the fuel and reactor must be validated against these experimental data. Within this CRP, the participants addressed the inherent mechanisms for removal of decay heat from GCRs under accident conditions. The objective of this CRP was to establish sufficient experimental data at realistic conditions and validated analytical tools to confirm the predicted safe thermal response of advance gas cooled reactors during accidents. The scope includes experimental and analytical investigations of heat transport by natural convection conduction and thermal

  8. Advanced Intermediate Heat Transport Loop Design Configurations for Hydrogen Production Using High Temperature Nuclear Reactors

    International Nuclear Information System (INIS)

    Chang Oh; Cliff Davis; Rober Barner; Paul Pickard

    2005-01-01

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic evaluations and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various

  9. Analysis of simulation methodology for calculation of the heat of transport for vacancy thermodiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, William C.; Schelling, Patrick K., E-mail: patrick.schelling@ucf.edu [Advanced Material Processing and Analysis Center and Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States)

    2014-07-14

    Computation of the heat of transport Q{sub a}{sup *} in monatomic crystalline solids is investigated using the methodology first developed by Gillan [J. Phys. C: Solid State Phys. 11, 4469 (1978)] and further developed by Grout and coworkers [Philos. Mag. Lett. 74, 217 (1996)], referred to as the Grout-Gillan method. In the case of pair potentials, the hopping of a vacancy results in a heat wave that persists for up to 10 ps, consistent with previous studies. This leads to generally positive values for Q{sub a}{sup *} which can be quite large and are strongly dependent on the specific details of the pair potential. By contrast, when the interactions are described using the embedded atom model, there is no evidence of a heat wave, and Q{sub a}{sup *} is found to be negative. This demonstrates that the dynamics of vacancy hopping depends strongly on the details of the empirical potential. However, the results obtained here are in strong disagreement with experiment. Arguments are presented which demonstrate that there is a fundamental error made in the Grout-Gillan method due to the fact that the ensemble of states only includes successful atom hops and hence does not represent an equilibrium ensemble. This places the interpretation of the quantity computed in the Grout-Gillan method as the heat of transport in doubt. It is demonstrated that trajectories which do not yield hopping events are nevertheless relevant to computation of the heat of transport Q{sub a}{sup *}.

  10. Physical aspects of thermotherapy: A study of heat transport with a view to treatment optimisation

    Science.gov (United States)

    Olsrud, Johan Karl Otto

    1998-12-01

    Local treatment with the aim to destruct tissue by heating (thermotherapy) may in some cases be an alternative or complement to surgical methods, and has gained increased interest during the last decade. The major advantage of these, often minimally-invasive methods, is that the disease can be controlled with reduced treatment trauma and complications. The extent of thermal damage is a complex function of the physical properties of tissue, which influence the temperature distribution, and of the biological response to heat. In this thesis, methods of obtaining a well-controlled treatment have been studied from a physical point of view, with emphasis on interstitial laser-induced heating of tumours in the liver and intracavitary heating as a treatment for menorrhagia. Hepatic inflow occlusion, in combination with temperature-feedback control of the output power of the laser, resulted in well defined damaged volumes during interstitial laser thermotherapy in normal porcine liver. In addition, phantom experiments showed that the use of multiple diffusing laser fibres allows heating of clinically relevant tissue volumes in a single session. Methods for numerical simulation of heat transport were used to calculate the temperature distribution and the results agreed well with experiments. It was also found from numerical simulation that the influence of light transport on the damaged volume may be negligible in interstitial laser thermotherapy in human liver. Finite element analysis, disregarding light transport, was therefore proposed as a suitable method for 3D treatment planning. Finite element simulation was also used to model intracavitary heating of the uterus, with the purpose of providing an increased understanding of the influence of various treatment parameters on blood flow and on the depth of tissue damage. The thermal conductivity of human uterine tissue, which was used in these simulations, was measured. Furthermore, magnetic resonance imaging (MRI) was

  11. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces

    Science.gov (United States)

    Sun, Chao; Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef

    2017-11-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchet-like roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the Large Scale Circulation Roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. This work is financially supported by the Natural Science Foundation of China under Grant No. 11672156, the Dutch Foundation for Fundamental Research on Matter (FOM), the Dutch Technology Foundation (STW) and a VIDI Grant.

  12. Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces

    Science.gov (United States)

    Jiang, Hechuan; Zhu, Xiaojue; Mathai, Varghese; Verzicco, Roberto; Lohse, Detlef; Sun, Chao

    2018-01-01

    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchetlike roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the large scale circulation roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through a quantitative analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. The current work has important implications for passive and active flow control in engineering, biofluid dynamics, and geophysical flows.

  13. Interhemispheric Changes in Atlantic Ocean Heat Content and Their Link to Global Monsoons

    Science.gov (United States)

    Lopez, H.; Lee, S. K.; Dong, S.; Goni, G. J.

    2015-12-01

    This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. The effect of eddies on the NH (SH) poleward of 30° is opposite with heat flux divergence (convergence), which must be balanced by sinking (rising) motion, consistent with a poleward (equatorward) displacement of the jet stream and mean storm track. The mechanism described here could easily be interpreted for the case of strong SAMHT, with the reverse influence on the interhemispheric atmospheric circulation and monsoons. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.

  14. Turbulent transport regimes and the scrape-off layer heat flux width

    Science.gov (United States)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2015-04-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments.

  15. Turbulent transport regimes and the scrape-off layer heat flux width

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2015-01-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments

  16. Influence of transport on EBW heating efficiency in magnetic confinement devices

    International Nuclear Information System (INIS)

    Cappa, A.; Castejon, F.; Lopez-Bruna, D.; Tereshchenko, M.

    2007-01-01

    The main advantage of the heating performed by electron Bernstein waves (EBW) in the O-X-B1 regime (O mode injection that is converted into X mode, which is converted in Bernstein wave, strongly absorbed close to the cyclotron resonance layer at first harmonic) is that there is no cut-off density. Therefore, this heating system can work without upper density limit, still having all the advantages of electron cyclotron resonance heating (ECRH), which is localised in phase space due to its resonant nature. The heating efficiency of Bernstein waves depends on the fraction of waves that is transformed from O to X mode at the O mode cut off layer, then on the fraction of power converted into Bernstein waves at the upper hybrid resonance layer and, finally, on the final position of the absorption in the plasma. All these factors are related to the density profile, since the positions of the cut off and of the upper hybrid resonance layers depend on the actual plasma density profile. Besides, the absorption profile depends also on the temperature profile. Moreover, it is possible to observe that the former layers only appear for high enough plasma density, than can be obtained by gas puffing, as has been observed in the simulations performed for TJ-II stellarator. For such reasons, particle transport is basic for understanding and guaranteeing EBW heating. In this work, TJ-II plasmas are taken as a case example in order to simulate the full evolution of a plasma discharge that is created and heated by ECRH in a first step and finally is heated using EBW. The evolution of the discharge is simulated using the transport code ASTRA and the sequence of the discharge is as follows: O mode is launched on a steady state plasma with density lower than the O mode cut-off. Then a gas puff is injected in order to increase the plasma density over the level in which EBW heating is efficient because O mode cut off and upper hybrid layer appear. EBW ray tracing calculations are performed

  17. Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium

    Science.gov (United States)

    Mongiovì, Maria Stella; Jou, David; Sciacca, Michele

    2018-01-01

    This review paper puts together some results concerning non equilibrium thermodynamics and heat transport properties of superfluid He II. A one-fluid extended model of superfluid helium, which considers heat flux as an additional independent variable, is presented, its microscopic bases are analyzed, and compared with the well known two-fluid model. In laminar situations, the fundamental fields are density, velocity, absolute temperature, and heat flux. Such a theory is able to describe the thermomechanical phenomena, the propagation of two sounds in liquid helium, and of fourth sound in superleak. It also leads in a natural way to a two-fluid model on purely macroscopical grounds and allows a small amount of entropy associated with the superfluid component. Other important features of liquid He II arise in rotating situations and in superfluid turbulence, both characterized by the presence of quantized vortices (thin vortex lines whose circulation is restricted by a quantum condition). Such vortices have a deep influence on the transport properties of superfluid helium, as they increase very much its thermal resistance. Thus, heat flux influences the vortices which, in turn, modify the heat flux. The dynamics of vortex lines is the central topic in turbulent superfluid helium. The model is generalized to take into account the vortices in different cases of physical interest: rotating superfluids, counterflow superfluid turbulence, combined counterflow and rotation, and mass flow in addition to heat flow. To do this, the averaged vortex line density per unit volume L, is introduced and its dynamical equations are considered. Linear and non-linear evolution equations for L are written for homogeneous and inhomogeneous, isotropic and anisotropic situations. Several physical experiments are analyzed and the influence of vortices on the effective thermal conductivity of turbulent superfluid helium is found. Transitions from laminar to turbulent flows, from diffusive to

  18. Estimating the health benefits from natural gas use in transport and heating in Santiago, Chile.

    Science.gov (United States)

    Mena-Carrasco, Marcelo; Oliva, Estefania; Saide, Pablo; Spak, Scott N; de la Maza, Cristóbal; Osses, Mauricio; Tolvett, Sebastián; Campbell, J Elliott; Tsao, Tsao Es Chi-Chung; Molina, Luisa T

    2012-07-01

    Chilean law requires the assessment of air pollution control strategies for their costs and benefits. Here we employ an online weather and chemical transport model, WRF-Chem, and a gridded population density map, LANDSCAN, to estimate changes in fine particle pollution exposure, health benefits, and economic valuation for two emission reduction strategies based on increasing the use of compressed natural gas (CNG) in Santiago, Chile. The first scenario, switching to a CNG public transportation system, would reduce urban PM2.5 emissions by 229 t/year. The second scenario would reduce wood burning emissions by 671 t/year, with unique hourly emission reductions distributed from daily heating demand. The CNG bus scenario reduces annual PM2.5 by 0.33 μg/m³ and up to 2 μg/m³ during winter months, while the residential heating scenario reduces annual PM2.5 by 2.07 μg/m³, with peaks exceeding 8 μg/m³ during strong air pollution episodes in winter months. These ambient pollution reductions lead to 36 avoided premature mortalities for the CNG bus scenario, and 229 for the CNG heating scenario. Both policies are shown to be cost-effective ways of reducing air pollution, as they target high-emitting area pollution sources and reduce concentrations over densely populated urban areas as well as less dense areas outside the city limits. Unlike the concentration rollback methods commonly used in public policy analyses, which assume homogeneous reductions across a whole city (including homogeneous population densities), and without accounting for the seasonality of certain emissions, this approach accounts for both seasonality and diurnal emission profiles for both the transportation and residential heating sectors. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    International Nuclear Information System (INIS)

    Calderoni, Pattrick

    2010-01-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogeneous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R and D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part

  20. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  1. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz

    2018-01-30

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  2. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz; Hantouche, Mireille; Khurshid, Muneeb; Mohamed, Samah; Nasir, Ehson Fawad; Farooq, Aamir; Roberts, William L.; Knio, Omar; Sarathy, Mani

    2018-01-01

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  3. EFFECT OF SANDSTONE ANISOTROPY ON ITS HEAT AND MOISTURE TRANSPORT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Jan Fořt

    2015-09-01

    Full Text Available Each type of natural stone has its own geological history, formation conditions, different chemical and mineralogical composition, which influence its possible anisotropy. Knowledge in the natural stones anisotropy represents crucial information for the process of stone quarrying, its correct usage and arrangement in building applications. Because of anisotropy, many natural stones exhibit different heat and moisture transport properties in various directions. The main goal of this study is to analyse several anisotropy indices and their effect on heat transport and capillary absorption. For the experimental determination of the anisotropy effect, five types of sandstone coming from different operating quarries in the Czech Republic are chosen. These materials are often used for restoration of culture heritage monuments as well as for other building applications where they are used as facing slabs, facade panels, decoration stones, paving, etc. For basic characterization of studied materials, determination of their bulk density, matrix density and total open porosity is done. Chemical composition of particular sandstones is analysed by X-Ray Fluorescence. Anisotropy is examined by the non-destructive measurement of velocity of ultrasonic wave propagation. On the basis of ultrasound testing data, the relative anisotropy, total anisotropy and anisotropy coefficient are calculated. Then, the measurement of thermal conductivity and thermal diffusivity in various directions of samples orientation is carried out. The obtained results reveal significant differences between the parameters characterizing the heat transport in various directions, whereas these values are in accordance with the indices of anisotropy. Capillary water transport is described by water absorption coefficient measured using a sorption experiment, which is performed for distilled water and 1M NaCl water solution.  The measured data confirm the effect of anisotropy which is

  4. Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber

    Directory of Open Access Journals (Sweden)

    C. L. Gomez-Heredia

    2017-01-01

    Full Text Available Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen’s number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorrheat transport.

  5. Coupling between particle and heat transport during power modulation experiments in Tore Supra

    International Nuclear Information System (INIS)

    Zou, X.L.; Giruzzi, G.; Artaud, J.F.; Bouquey, F.; Bremond, S.; Clary, J.; Darbos, C.; Eury, S.P.; Lennholm, M.; Magne, R.; Segui, J.L.

    2004-01-01

    Power modulations are a powerful tool often used to investigate heat transport processes in tokamaks. In some situations, this could also be an interesting method for the investigation of the particle transport due to the anomalous pinch. Low frequency (∼ 1 Hz) power modulation experiments, using both electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH), have been performed in the Tore Supra tokamak. Strong coupling has been observed between the temperature and density modulations during the low frequency ECRH and ICRH modulation experiments. It has been shown that mechanisms as outgassing, Ware pinch effect, curvature driven pinch are not likely to be responsible for this density modulation. Because of its dependence on temperature or temperature gradient, the thermodiffusion is a serious candidate to be the driving source for this density modulation. This analysis shows that low frequency power modulation experiments have a great potential for the investigation of the anomalous particle pinch in tokamaks. Future plans will include the use of more precise density profile measurements using X-mode reflectometry

  6. Study on a non-powered heat transporting system; Mudoryoku netsu hanso system ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Y [Kanto Gakuin University, Yokohama (Japan)

    1997-11-25

    This paper proposes a non-powered heat transportation (HT) system. The system is composed of an evaporator, condenser, receiver, switching chamber (SC) and 3 check valves which are connected with each other by vapor and liquid tubes. Condensed liquid supercooled in the condenser exists in the receiver forming a saturated condition at a concerned temperature, and condensed liquid is lifted up from the condenser to the receiver by pressure difference between the evaporator and receiver. Generally evaporation pressure is higher by pressure difference between liquid levels in the condenser and receiver. The lifted up amount of condensed liquid increases with evaporation pressure, resulting in an increase in heating surface area of the condenser and amount of condensed liquid. A proper evaporator pressure is thus retained by reduction of evaporation pressure. SC is connected with the receiver and evaporator, and switches high- and low-pressure valves by motion of an inner float to transport heat from the evaporator to condenser. Reverse HT is possible as normal latent HT by installing a bypass. Some problems are also described. 2 refs., 8 figs.

  7. Coupling between particle and heat transport during power modulation experiments in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Zou, X.L.; Giruzzi, G.; Artaud, J.F.; Bouquey, F.; Bremond, S.; Clary, J.; Darbos, C.; Eury, S.P.; Lennholm, M.; Magne, R.; Segui, J.L

    2004-07-01

    Power modulations are a powerful tool often used to investigate heat transport processes in tokamaks. In some situations, this could also be an interesting method for the investigation of the particle transport due to the anomalous pinch. Low frequency ({approx} 1 Hz) power modulation experiments, using both electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH), have been performed in the Tore Supra tokamak. Strong coupling has been observed between the temperature and density modulations during the low frequency ECRH and ICRH modulation experiments. It has been shown that mechanisms as outgassing, Ware pinch effect, curvature driven pinch are not likely to be responsible for this density modulation. Because of its dependence on temperature or temperature gradient, the thermodiffusion is a serious candidate to be the driving source for this density modulation. This analysis shows that low frequency power modulation experiments have a great potential for the investigation of the anomalous particle pinch in tokamaks. Future plans will include the use of more precise density profile measurements using X-mode reflectometry.

  8. Low frequency turbulence, particle and heat transport in the Wisconsin levitated octupole

    International Nuclear Information System (INIS)

    Garner, H.R.

    1982-01-01

    Low frequency turbulence in the drift frequency range and its relation to the observed particle transport in the Wisconsin Levitated Octupole has been studied with a microwave scattering apparatus. The experimental parameters were T/sub e/ approx. T/sub i/ 13 cm -3 , 200 G < B/sub p-average/ < 1.25 kG. The effect of shear on the transport was studied by the addition of a small toroidal field. By matching experimentally measured density profiles to those given by numerical solutions of the transport equations, diffusion coefficients were obtained. Time dependent density fluctuation spectra were measured with an 8 mm microwave scattering diagnostic to correlate the drift wave portion of the spectrum with the observed diffusion. The density fluctuation spectrum of low frequency (1 kHz < ω < 6 MHz) turbulence was measured for several values of perpendicular wavenumber, k/sub perpendicular to/. Electron heat transport was studied by fitting experimentally measured electron temperature profiles to those predicted by numerical solutions of electron energy transport equation

  9. Influence of root-water-uptake parameterization on simulated heat transport in a structured forest soil

    Science.gov (United States)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir

    2015-04-01

    Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  10. Heat and Moisture Transport and Storage Parameters of Bricks Affected by the Environment

    Science.gov (United States)

    Kočí, Václav; Čáchová, Monika; Koňáková, Dana; Vejmelková, Eva; Jerman, Miloš; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2018-05-01

    The effect of external environment on heat and moisture transport and storage properties of the traditional fired clay brick, sand-lime brick and highly perforated ceramic block commonly used in the Czech Republic and on their hygrothermal performance in building envelopes is analyzed by a combination of experimental and computational techniques. The experimental measurements of thermal, hygric and basic physical parameters are carried out in the reference state and after a 3-year exposure of the bricks to real climatic conditions of the city of Prague. The obtained results showed that after 3 years of weathering the porosity of the analyzed bricks increased up to five percentage points which led to an increase in liquid and gaseous moisture transport parameters and a decrease in thermal conductivity. Computational modeling of hygrothermal performance of building envelopes made of the studied bricks was done using both reference and weather-affected data. The simulated results indicated an improvement in the annual energy balances and a decrease in the time-of-wetness functions as a result of the use of data obtained after the 3-year exposure to the environment. The effects of weathering on both heat and moisture transport and storage parameters of the analyzed bricks and on their hygrothermal performance were found significant despite the occurrence of warm winters in the time period of 2012-2015 when the brick specimens were exposed to the environment.

  11. Mitigation of strontium and ruthenium release in the CANDU primary heat transport system

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, J

    1998-03-01

    In certain severe accident scenarios, low-volatility fission products can appear to contribute significantly to dose, if treated with undue conservatism. Hence a survey was performed, to see if factors that may mitigate release of strontium and ruthenium could be incorporated into safety analyses, to cover parameters such as location in the fuel matrix under normal operating conditions, release from fuel, transport and deposition in the primary heat transport system and chemistry. In addition chemical equilibrium calculations were performed to investigate the volatility of strontium and ruthenium in the presence of uranium and important fission products. Strontium is very soluble in the U0{sub 2} fuel, up to 12 atom %, and hence release is improbable, particularly under oxidizing conditions until volatilization of the fuel matrix itself occurs. Ruthenium, however, can be released at low temperatures, but only under oxidizing conditions. These may occur during a fuel-handling accident or as a result of an end-fitting failure. Under these conditions, the primary heat transport system cannot be credited for retention. The volatile form of ruthenium, RuO{sub 4}(g), is thermally unstable above 381 K and decomposes to RuO{sub 2}(s) and O{sub 2}(g) upon contact with surfaces, a factor that is likely to minimize the release of ruthenium into the environment. (author)

  12. Mitigation of strontium and ruthenium release in the CANDU primary heat transport system

    International Nuclear Information System (INIS)

    McFarlane, J.

    1998-03-01

    In certain severe accident scenarios, low-volatility fission products can appear to contribute significantly to dose, if treated with undue conservatism. Hence a survey was performed, to see if factors that may mitigate release of strontium and ruthenium could be incorporated into safety analyses, to cover parameters such as location in the fuel matrix under normal operating conditions, release from fuel, transport and deposition in the primary heat transport system and chemistry. In addition chemical equilibrium calculations were performed to investigate the volatility of strontium and ruthenium in the presence of uranium and important fission products. Strontium is very soluble in the U0 2 fuel, up to 12 atom %, and hence release is improbable, particularly under oxidizing conditions until volatilization of the fuel matrix itself occurs. Ruthenium, however, can be released at low temperatures, but only under oxidizing conditions. These may occur during a fuel-handling accident or as a result of an end-fitting failure. Under these conditions, the primary heat transport system cannot be credited for retention. The volatile form of ruthenium, RuO 4 (g), is thermally unstable above 381 K and decomposes to RuO 2 (s) and O 2 (g) upon contact with surfaces, a factor that is likely to minimize the release of ruthenium into the environment. (author)

  13. Changes in the poleward energy flux by the atmosphere and ocean as a possible cause for ice ages

    Energy Technology Data Exchange (ETDEWEB)

    Newell, R E

    1974-01-01

    It is proposed that the two preferred modes of temperature and circulation of the atmosphere which occurred over the past 100,000 yr correspond to two modes of partitioning of the poleward energy flux between the atmosphere and ocean. At present the ocean carries an appreciable fraction of the transport, for example about three-eighths at 30/sup 0/N. In the cold mode it is suggested that the ocean carries less, and the atmosphere more, than at present. During the formation of the ice, at 50,000 BP, for example, the overall flux is expected to be slightly lower than at present and during melting, at 16,000 BP, slightly higher. The transition between the modes is seen as a natural imbalance in the atmosphere-ocean energy budget with a gradual warming of the ocean during an Ice Age eventually culminating in its termination. At the present the imbalance is thought to correspond to a natural cooling of the ocean, which will lead to the next Ice Age. The magnitude of temperature changes in the polar regions differ between the hemispheres in the same way as present seasonal changes, being larger in the northern than in the southern hemisphere. Overall the atmospheric energy cycle was more intense during the Ice Ages than now. Observational tests are proposed by which predictions from the present arguments may be compared with deductions about the environment of the past. Data used for the present state of the atmospheric general circulation are the latest global data available and contain no known major uncertainties. However, data for the oceanic circulation and energy budget are less well known for the present and almost unknown for the past. Hence the proposed imbalances must be treated as part of a speculative hypothesis, but one which eventually may be subject to observational test as no solar variability is invoked.

  14. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    OpenAIRE

    Li, Xian-Xiang; Koh, Tieh-Yong; Britter, Rex E; Norford, Leslie Keith; Entekhabi, Dara

    2010-01-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street ca...

  15. Nanoscale phase engineering of thermal transport with a Josephson heat modulator

    Science.gov (United States)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  16. Unified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation

    Science.gov (United States)

    Zhang, Chuang; Guo, Zhaoli; Chen, Songze

    2017-12-01

    An implicit kinetic scheme is proposed to solve the stationary phonon Boltzmann transport equation (BTE) for multiscale heat transfer problem. Compared to the conventional discrete ordinate method, the present method employs a macroscopic equation to accelerate the convergence in the diffusive regime. The macroscopic equation can be taken as a moment equation for phonon BTE. The heat flux in the macroscopic equation is evaluated from the nonequilibrium distribution function in the BTE, while the equilibrium state in BTE is determined by the macroscopic equation. These two processes exchange information from different scales, such that the method is applicable to the problems with a wide range of Knudsen numbers. Implicit discretization is implemented to solve both the macroscopic equation and the BTE. In addition, a memory reduction technique, which is originally developed for the stationary kinetic equation, is also extended to phonon BTE. Numerical comparisons show that the present scheme can predict reasonable results both in ballistic and diffusive regimes with high efficiency, while the memory requirement is on the same order as solving the Fourier law of heat conduction. The excellent agreement with benchmark and the rapid converging history prove that the proposed macro-micro coupling is a feasible solution to multiscale heat transfer problems.

  17. Changes in extratropical storm track cloudiness 1983-2008: observational support for a poleward shift

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Frida A.M.; Ramanathan, V. [University of California, Center for Clouds, Chemistry and Climate (C4), Scripps Institution of Oceanography, San Diego, La Jolla, CA (United States); Tselioudis, George [Columbia University, NASA Goddard Institute for Space Studies, New York, NY (United States)

    2012-05-15

    Climate model simulations suggest that the extratropical storm tracks will shift poleward as a consequence of global warming. In this study the northern and southern hemisphere storm tracks over the Pacific and Atlantic ocean basins are studied using observational data, primarily from the International Satellite Cloud Climatology Project, ISCCP. Potential shifts in the storm tracks are examined using the observed cloud structures as proxies for cyclone activity. Different data analysis methods are employed, with the objective to address difficulties and uncertainties in using ISCCP data for regional trend analysis. In particular, three data filtering techniques are explored; excluding specific problematic regions from the analysis, regressing out a spurious viewing geometry effect, and excluding specific cloud types from the analysis. These adjustments all, to varying degree, moderate the cloud trends in the original data but leave the qualitative aspects of those trends largely unaffected. Therefore, our analysis suggests that ISCCP data can be used to interpret regional trends in cloudiness, provided that data and instrumental artefacts are recognized and accounted for. The variation in magnitude between trends emerging from application of different data correction methods, allows us to estimate possible ranges for the observational changes. It is found that the storm tracks, here represented by the extent of the midlatitude-centered band of maximum cloud cover over the studied ocean basins, experience a poleward shift as well as a narrowing over the 25 year period covered by ISCCP. The observed magnitudes of these effects are larger than in current generation climate models (CMIP3). The magnitude of the shift is particularly large in the northern hemisphere Atlantic. This is also the one of the four regions in which imperfect data primarily prevents us from drawing firm conclusions. The shifted path and reduced extent of the storm track cloudiness is accompanied

  18. Changes in Extratropical Storm Track Cloudiness 1983-2008: Observational Support for a Poleward Shift

    Science.gov (United States)

    Bender, Frida A-M.; Rananathan, V.; Tselioudis, G.

    2012-01-01

    Climate model simulations suggest that the extratropical storm tracks will shift poleward as a consequence of global warming. In this study the northern and southern hemisphere storm tracks over the Pacific and Atlantic ocean basins are studied using observational data, primarily from the International Satellite Cloud Climatology Project, ISCCP. Potential shifts in the storm tracks are examined using the observed cloud structures as proxies for cyclone activity. Different data analysis methods are employed, with the objective to address difficulties and uncertainties in using ISCCP data for regional trend analysis. In particular, three data filtering techniques are explored; excluding specific problematic regions from the analysis, regressing out a spurious viewing geometry effect, and excluding specific cloud types from the analysis. These adjustments all, to varying degree, moderate the cloud trends in the original data but leave the qualitative aspects of those trends largely unaffected. Therefore, our analysis suggests that ISCCP data can be used to interpret regional trends in cloudiness, provided that data and instrumental artefacts are recognized and accounted for. The variation in magnitude between trends emerging from application of different data correction methods, allows us to estimate possible ranges for the observational changes. It is found that the storm tracks, here represented by the extent of the midlatitude-centered band of maximum cloud cover over the studied ocean basins, experience a poleward shift as well as a narrowing over the 25 year period covered by ISCCP. The observed magnitudes of these effects are larger than in current generation climate models (CMIP3). The magnitude of the shift is particularly large in the northern hemisphere Atlantic. This is also the one of the four regions in which imperfect data primarily prevents us from drawing firm conclusions. The shifted path and reduced extent of the storm track cloudiness is accompanied

  19. Interpretation of heat and density pulse measurements in JET in terms of coupled transport

    International Nuclear Information System (INIS)

    Haas, J.C.M. de; O'Rourke, J.; Sips, A.C.C.; Lopes Cardozo, N.J.

    1990-01-01

    The perturbations of electron density and temperature profiles in a tokamak following a sawtooth collapse are considered. An analytic model for the interpretation of such perturbations is presented. It is shown that the perturbation can be decomposed into two contributions, which are eigenmodes of the linearised coupled diffusion equations for particle and energy. The approximations made in the analytical treatment are checked using computer simulations. Measurements of heat and density pulses in Joint European Torus are used to illustrate the power of the new approach. It is shown that using the coupled equations, an improved description of the heat and density pulses is obtained. The analysis yields the four diffusion coefficients in the linearised transport matrix. The non-zero off-diagonal elements explain certain salient features of the measurements, notably a marked decrease of the local density which occurs during the maximum of the temperature pulse. (author)

  20. ELECTRON TEMPERATURE FLUCTUATIONS AND CROSS-FIELD HEAT TRANSPORT IN THE EDGE OF DIII-D

    International Nuclear Information System (INIS)

    RUDAKOV, DL; BOEDO, JA; MOYER, RA; KRASENINNIKOV, S; MAHDAVI, MA; McKEE, GR; PORTER, GD; STANGEBY, PC; WATKINS, JG; WEST, WP; WHYTE, DG.

    2003-01-01

    OAK-B135 The fluctuating E x B velocity due to electrostatic turbulence is widely accepted as a major contributor to the anomalous cross-field transport of particles and heat in the tokamak edge and scrape-off layer (SOL) plasmas. This has been confirmed by direct measurements of the turbulent E x B transport in a number of experiments. Correlated fluctuations of the plasma radial velocity v r , density n, and temperature T e result in time-average fluxes of particles and heat given by (for electrons): Equation 1--Λ r ES = r > = 1/B varφ θ ; Equation 2--Q r ES = e (tilde v) r > ∼ 3/2 kT e Λ r ES + 3 n e /2 B varφ e (tilde E) θ > Q conv + Q cond . The first term in Equation 2 is referred to as convective and the second term as conductive heat flux. Experimental determination of fluxes given by Equations 1 and 2 requires simultaneous measurements of the density, temperature and poloidal electric field fluctuations with high spatial and temporal resolution. Langmuir probes provide most readily available (if not the only) tool for such measurements. However, fast measurements of electron temperature using probes are non-trivial and are not always performed. Thus, the contribution of the T e fluctuations to the turbulent fluxes is usually neglected. Here they report results of the studies of T e fluctuations and their effect on the cross-field transport in the SOL of DIII-D

  1. Poleward propagation of boreal summer intraseasonal oscillations in a coupled model: role of internal processes

    Energy Technology Data Exchange (ETDEWEB)

    Ajayamohan, R.S. [University of Victoria, Canadian Centre for Climate Modelling and Analysis, P.O. Box 3065, Victoria, BC (Canada); Annamalai, H.; Hafner, Jan [University of Hawaii, International Pacific Research Center, Honolulu (United States); Luo, Jing-Jia [Japan Agency for Marine-Earth Science and Technology, Frontier Research Centre for Global Change, Yokohama (Japan); Yamagata, Toshio [Japan Agency for Marine-Earth Science and Technology, Frontier Research Centre for Global Change, Yokohama (Japan); The University of Tokyo, Department of Earth and Planetary Science, Tokyo (Japan)

    2011-09-15

    The study compares the simulated poleward migration characteristics of boreal summer intraseasonal oscillations (BSISO) in a suite of coupled ocean-atmospheric model sensitivity integrations. The sensitivity experiments are designed in such a manner to allow full coupling in specific ocean basins but forced by temporally varying monthly climatological sea surface temperature (SST) adopted from the fully coupled model control runs (ES10). While the local air-sea interaction is suppressed in the tropical Indian Ocean and allowed in the other oceans in the ESdI run, it is suppressed in the tropical Pacific and allowed in the other oceans in the ESdP run. Our diagnostics show that the basic mean state in precipitation and easterly vertical shear as well as the BSISO properties remain unchanged due to either inclusion or exclusion of local air-sea interaction. In the presence of realistic easterly vertical shear, the continuous emanation of Rossby waves from the equatorial convection is trapped over the monsoon region that enables the poleward propagation of BSISO anomalies in all the model sensitivity experiments. To explore the internal processes that maintain the tropospheric moisture anomalies ahead of BSISO precipitation anomalies, moisture and moist static energy budgets are performed. In all model experiments, advection of anomalous moisture by climatological winds anchors the moisture anomalies that in turn promote the northward migration of BSISO precipitation. While the results indicate the need for realistic simulation of all aspects of the basic state, our model results need to be taken with caution because in the ECHAM family of coupled models the internal variance at intraseasonal timescales is indeed very high, and therefore local air-sea interactions may not play a pivotal role. (orig.)

  2. Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye

    Science.gov (United States)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.

    2001-01-01

    A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.

  3. Events leading to foreign material being left in the primary heat transport system

    International Nuclear Information System (INIS)

    Groom, S.H.; Benton, A.J.

    1996-01-01

    On October 6,1995, following an extensive maintenance outage which had included boiler primary side cleaning, a Primary Heat Transport (PHT) system pump run was started in preparation for ultrasonic feeder flow measurements. Wooden debris in the system resulted in failure of the shaft seals of the PHT Pump 1. The subsequent investigation and assessment of this event provided an understanding of both the pump shaft failure mechanism and the origin of the debris in the PHT system. The pump shaft failed as a result of friction-generated heat resulting from contact between the rotating shaft and the stationary seal housing. This contact was initiated by mechanical and hydraulic imbalance in the pump impeller caused by wooden debris lodged in the impeller. The origin of the wooden debris was a temporary plywood cover which was inadvertently left in a boiler following maintenance. This cover moved from the boiler to the pump impeller when the PHT pumps were started. The cover was not accounted for and verified as being removed prior to boiler closure, although a visual inspection was conducted. A detailed institutional process for component accounting and verification of removal of materials did not exist at the time of this event. Details of the methods used to establish alternative heat sinks, provide debris recovery facilities and to assess the fitness for duty of the heat transport system and fuel channels prior to reactor startup are discussed in detail elsewhere. This report will concentrate on the events leading up to and following the events which ultimately resulted in failure of the PHT pump shaft

  4. Stochastic Impact Assessment of the Heating and Transportation Systems Electrification on LV grids

    DEFF Research Database (Denmark)

    Mendaza, Iker Diaz de Cerio; Bak-Jensen, Birgitte; Chen, Zhe

    2014-01-01

    According to the new energy policy agreements, a conceptual and technological re-structuration of the Danish energy sector is expected. One of the key points for its successful implementation is the partial electrification of the heating and transportation systems. This fact, which reflects an en....... As a case study, a typical Danish low voltage grid is considered. The results obtained, using DIgSILENT PowerFactory, show that sometimes the hosting capability of these networks may be poor for the integration levels expected....

  5. Practical examples of how knowledge management is addressed in Point Lepreau heat transport ageing management programs

    International Nuclear Information System (INIS)

    Slade, J.; Gendron, T.; Greenlaw, G.

    2009-01-01

    In the mid-1990s, New Brunswick Power Nuclear implemented a Management System Process Model at the Point Lepreau Generating Station that provides the basic elements of a knowledge management program. As noted by the IAEA, the challenge facing the nuclear industry now is to make improvements in knowledge management in areas that are more difficult to implement. Two of these areas are: increasing the value of existing knowledge, and converting tacit knowledge to explicit knowledge (knowledge acquisition). This paper describes some practical examples of knowledge management improvements in the Point Lepreau heat transport system ageing management program. (author)

  6. Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures

    Science.gov (United States)

    Savin, Alexander V.; Kosevich, Yuriy A.; Cantarero, Andres

    2012-08-01

    We present a detailed description of semiquantum molecular dynamics simulation of stochastic dynamics of a system of interacting particles. Within this approach, the dynamics of the system is described with the use of classical Newtonian equations of motion in which the effects of phonon quantum statistics are introduced through random Langevin-like forces with a specific power spectral density (the color noise). The color noise describes the interaction of the molecular system with the thermostat. We apply this technique to the simulation of thermal properties and heat transport in different low-dimensional nanostructures. We describe the determination of temperature in quantum lattice systems, to which the equipartition limit is not applied. We show that one can determine the temperature of such a system from the measured power spectrum and temperature- and relaxation-rate-independent density of vibrational (phonon) states. We simulate the specific heat and heat transport in carbon nanotubes, as well as the heat transport in molecular nanoribbons with perfect (atomically smooth) and rough (porous) edges, and in nanoribbons with strongly anharmonic periodic interatomic potentials. We show that the effects of quantum statistics of phonons are essential for the carbon nanotube in the whole temperature range T<500K, in which the values of the specific heat and thermal conductivity of the nanotube are considerably less than that obtained within the description based on classical statistics of phonons. This conclusion is also applicable to other carbon-based materials and systems with high Debye temperature like graphene, graphene nanoribbons, fullerene, diamond, diamond nanowires, etc. We show that the existence of rough edges and quantum statistics of phonons change drastically the low-temperature thermal conductivity of the nanoribbon in comparison with that of the nanoribbon with perfect edges and classical phonon dynamics and statistics. The semiquantum molecular

  7. Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties

    International Nuclear Information System (INIS)

    London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C.; Jacques, S.L.

    1995-01-01

    The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered

  8. Impact of nonlocal electron heat transport on the high temperature plasmas of LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Inagaki, S.; Tokuzawa, T.

    2006-10-01

    Edge cooling experiments with a tracer-encapsulated solid pellet in the Large Helical Device (LHD) show a significant rise of core electron temperature (the maximum rise is around 1 keV) as well as in many tokamaks. This experimental result indicates the possible presence of the nonlocality of electron heat transport in plasmas where turbulence as a cause of anomalous transport is dominated. The nonlocal electron temperature rise in the LHD takes place in almost the same parametric domain (e.g. in a low density) as in the tokamaks. Meanwhile, the experimental results of LHD show some new aspects of nonlocal electron temperature rise, for example the delay of the nonlocal rise of core electron temperature relative to the pellet penetration time increases with the increase in collisionality in the core plasma and the decrease in electron temperature gradient scale length in the outer region of the plasma. (author)

  9. SWIFT, 3-D Fluid Flow, Heat Transfer, Decay Chain Transport in Geological Media

    International Nuclear Information System (INIS)

    Cranwell, R.M.; Reeves, M.

    2003-01-01

    1 - Description of problem or function: SWIFT solves the coupled or individual equations governing fluid flow, heat transport, brine displacement, and radionuclide displacement in geologic media. Fluid flow may be transient or steady-state. One, two, or three dimensions are available and transport of radionuclides chains is possible. 4. Method of solution: Finite differencing is used to discretize the partial differential equations in space and time. The user may choose centered or backward spatial differencing, coupled with either central or backward temporal differencing. The matrix equations may be solved iteratively (two line successive-over-relaxation) or directly (special matrix banding and Gaussian elimination). 5. Restrictions on the complexity of the problem: On the CDC7600 in direct solution mode, the maximum number of grid blocks allowed is approximately 1400

  10. Impact of nonlocal electron heat transport on the high temperature plasmas of LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Inagaki, S.; Tanaka, K.; Michael, C.; Tokuzawa, T.; Shimozuma, T.; Kubo, S.; Sakamoto, R.; Ida, K.; Itoh, K.; Kalinina, D.; Sudo, S.; Nagayama, Y.; Kawahata, K.; Komori, A.

    2007-01-01

    Edge cooling experiments with a tracer-encapsulated solid pellet in the large helical device (LHD) show a significant rise in core electron temperature (the maximum rise is around 1 keV) as well as in many tokamaks. This experimental result indicates the possible presence of the nonlocality of electron heat transport in plasmas where turbulence as a cause of anomalous transport dominates. The nonlocal electron temperature rise in the LHD takes place in almost the same parametric domain (e.g. in a low density) as in the tokamaks. Meanwhile, the experimental results of LHD show some new aspects of nonlocal electron temperature rise, for example the delay in the nonlocal rise of core electron temperature relative to the pellet penetration time increases with the increase both in the collisionality in the core plasma and the electron temperature gradient scale length in the outer region of the plasma

  11. Waste heat recovery for transport trucks using thermally regenerative fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Carrier, A.; Wechsler, D.; Whitney, R.; Jessop, P. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry; Davis, B.R. [Queen' s-RMC Fuel Cell Research Centre, Kingston, ON (Canada)

    2009-07-01

    Carbon emissions associated with transportation can be reduced by increasing the fuel efficiency of transport trucks. This can be achieved with thermally regenerative fuel cells that transform the waste heat from the engine block into electricity. In order to operate such a fuel cell, one needs a fluid which rapidly, reversibly, and selectively undergoes dehydrogenation. Potential fluids have been screened for their ability to dehydrogenate and then rehydrogenate at the appropriate temperatures. An examination of the thermodynamics, kinetics, and selectivities of these processes have shown that the challenge involving hydrogenolysis at high temperature must be addressed. This paper discussed the economics of thermally regenerative fuel cells and the advantages and disadvantages of the identified fluids, and of such systems in general.

  12. Angular momentum transport by heat-driven g-modes in slowly pulsating B stars

    Science.gov (United States)

    Townsend, R. H. D.; Goldstein, J.; Zweibel, E. G.

    2018-03-01

    Motivated by recent interest in the phenomenon of waves transport in massive stars, we examine whether the heat-driven gravity (g) modes excited in slowly pulsating B (SPB) stars can significantly modify the stars' internal rotation. We develop a formalism for the differential torque exerted by g modes, and implement this formalism using the GYRE oscillation code and the MESASTAR stellar evolution code. Focusing first on a 4.21M⊙ model, we simulate 1 000 yr of stellar evolution under the combined effects of the torque due to a single unstable prograde g mode (with an amplitude chosen on the basis of observational constraints), and diffusive angular momentum transport due to convection, overshooting, and rotational instabilities. We find that the g mode rapidly extracts angular momentum from the surface layers, depositing it deeper in the stellar interior. The angular momentum transport is so efficient that by the end of the simulation, the initially non-rotating surface layers are spun in the retrograde direction to ≈ 30 per cent of the critical rate. However, the additional inclusion of magnetic stresses in our simulations almost completely inhibits this spin-up. Expanding our simulations to cover the whole instability strip, we show that the same general behaviour is seen in all SPB stars. After providing some caveats to contextualize our results, we hypothesize that the observed slower surface rotation of SPB stars (as compared to other B-type stars) may be the direct consequence of the angular momentum transport that our simulations demonstrate.

  13. An Assessment of Transport Property Estimation Methods for Ammonia–Water Mixtures and Their Influence on Heat Exchanger Size

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Modi, Anish; Jensen, Jonas Kjær

    2015-01-01

    Transport properties of fluids are indispensable for heat exchanger design. The methods for estimating the transport properties of ammonia–water mixtures are not well established in the literature. The few existent methods are developed from none or limited, sometimes inconsistent experimental...... of ammonia–water mixtures. Firstly, the different methods are introduced and compared at various temperatures and pressures. Secondly, their individual influence on the required heat exchanger size (surface area) is investigated. For this purpose, two case studies related to the use of the Kalina cycle...... the interpolative methods in contrast to the corresponding state methods. Nevertheless, all possible mixture transport property combinations used herein resulted in a heat exchanger size within 4.3 % difference for the flue-gas heat recovery boiler, and within 12.3 % difference for the oil-based boiler....

  14. Numerical Simulation of Density-Driven Flow and Heat Transport Processes in Porous Media Using the Network Method

    Directory of Open Access Journals (Sweden)

    Manuel Cánovas

    2017-09-01

    Full Text Available Density-driven flow and heat transport processes in 2-D porous media scenarios are governed by coupled, non-linear, partial differential equations that normally have to be solved numerically. In the present work, a model based on the network method simulation is designed and applied to simulate these processes, providing steady state patterns that demonstrate its computational power and reliability. The design is relatively simple and needs very few rules. Two applications in which heat is transported by natural convection in confined and saturated media are studied: slender boxes heated from below (a kind of Bénard problem and partially heated horizontal plates in rectangular domains (the Elder problem. The streamfunction and temperature patterns show that the results are coherent with those of other authors: steady state patterns and heat transfer depend both on the Rayleigh number and on the characteristic Darcy velocity derived from the values of the hydrological, thermal and geometrical parameters of the problems.

  15. Primary heat transport pump trip by ground fault (deterioration of insulation in the cable quick disconnect)

    International Nuclear Information System (INIS)

    Chun, C.-Y.

    1991-01-01

    At 08:29 Sept. 1, 1988, Wolsong unit 1 was operating at 100% full power when a primary heat transport pump was suddenly tripped by breaker trip due to ground fault in the power distribution connector assembly. Soon after the pump trip, the reactor was shut down automatically on low heat transport flow. Operators tried to restart the pump twice but failed. A field operator reported to the shift supervisor that he found an electrical spark and smoke at the vicinity of the pump when the pump started to run. Inspection showed that a power distribution connector assembly for making fast and easy power connections to the PHT pump motor, 3312-PM2, was damaged severely by thermal shock. Particularly, broken parts of the insulating plug flew away across the boiler room and dropped to the floor. Direct causes of the failure were bad contact and deterioration of integrity along the creep paths between the insulating plug and the connector housing. The failed connector assembly had been used for more than 7 years. Its status had been checked infrequently during the in-service period. The standard torque value was not applied to the installation of connectors. Therefore, we concluded that long term inservice in combinations of application of improper torque value induced failure of insulation. This paper describes the scenarios, causes of the event and corrective actions to prevent recurrence of this event. (author)

  16. Primary heat transport pump trip by ground fault (deterioration of insulation in the cable quick disconnect)

    Energy Technology Data Exchange (ETDEWEB)

    Chun, C -Y [Wolsong Nuclear Power Plant, Korea Electric Power Corporation, Wolsong (Korea, Republic of)

    1991-04-01

    At 08:29 Sept. 1, 1988, Wolsong unit 1 was operating at 100% full power when a primary heat transport pump was suddenly tripped by breaker trip due to ground fault in the power distribution connector assembly. Soon after the pump trip, the reactor was shut down automatically on low heat transport flow. Operators tried to restart the pump twice but failed. A field operator reported to the shift supervisor that he found an electrical spark and smoke at the vicinity of the pump when the pump started to run. Inspection showed that a power distribution connector assembly for making fast and easy power connections to the PHT pump motor, 3312-PM2, was damaged severely by thermal shock. Particularly, broken parts of the insulating plug flew away across the boiler room and dropped to the floor. Direct causes of the failure were bad contact and deterioration of integrity along the creep paths between the insulating plug and the connector housing. The failed connector assembly had been used for more than 7 years. Its status had been checked infrequently during the in-service period. The standard torque value was not applied to the installation of connectors. Therefore, we concluded that long term inservice in combinations of application of improper torque value induced failure of insulation. This paper describes the scenarios, causes of the event and corrective actions to prevent recurrence of this event. (author)

  17. Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates

    Directory of Open Access Journals (Sweden)

    V. Romanova

    2006-01-01

    Full Text Available Using an atmospheric general circulation model of intermediate complexity coupled to a sea ice – slab ocean model, we perform a number of sensitivity experiments under present-day orbital conditions and geographical distribution to assess the possibility that land albedo, atmospheric CO2, orography and oceanic heat transport may cause an ice-covered Earth. Changing only one boundary or initial condition, the model produces solutions with at least some ice-free oceans in the low latitudes. Using some combination of these forcing parameters, a full Earth's glaciation is obtained. We find that the most significant factor leading to an ice-covered Earth is the high land albedo in combination with initial temperatures set equal to the freezing point. Oceanic heat transport and orography play only a minor role for the climate state. Extremely low concentrations of CO2 also appear to be insufficient to provoke a runaway ice-albedo feedback, but the strong deviations in surface air temperatures in the Northern Hemisphere point to the existence of a strong nonlinearity in the system. Finally, we argue that the initial condition determines whether the system can go into a completely ice covered state, indicating multiple equilibria, a feature known from simple energy balance models.

  18. Reactive transport modelling of a heating and radiation experiment in the Boom clay (Belgium)

    International Nuclear Information System (INIS)

    Montenegro, L.; Samper, J.; Delgado, J.

    2003-01-01

    Most countries around the world consider Deep Geological Repositories (DGR) as the most safe option for the final disposal of high level radioactive waste (HLW). DGR is based on adopting a system of multiple barriers between the HLW and the biosphere. Underground laboratories provide information about the behaviour of these barriers at real conditions. Here we present a reactive transport model for the CERBERUS experiment performed at the HADES underground laboratory at Mol (Belgium) in order to characterize the thermal (T), hydrodynamic (H) and geochemical (G) behaviour of the Boon clay. This experiment is unique because it addresses the combined effect of heat and radiation produced by the storage of HLW in a DGR. Reactive transport models which are solved with CORE, are used to perform quantitative predictions of Boom clay thermo-hydro-geochemical (THG) behaviour. Numerical results indicate that heat and radiation cause a slight oxidation near of the radioactive source, pyrite dissolution, a pH decrease and slight changes in the pore water chemical composition of the Boom clay. (Author) 33 refs

  19. Acoustic characterization of a CANDU primary heat transport pump at the blade-passing frequency

    International Nuclear Information System (INIS)

    Rzentkowski, G.; Zbroja, S.

    2000-01-01

    In this paper, we examine the acoustics of a single-stage, double-volute CANDU heat transport pump based on a full-scale experimental investigation. We estimate the strength of source variables (acoustic pressure and velocity) and establish the pump characteristics as an acoustic source at the blade-passing frequency. We conduct this analysis by first assessing the resonance effects in the test loop, and then decomposing the measured signal into the components associated with pump action and loop acoustics with the use of a simple pump model. The pump model is based on a linear superposition of pressure wave transmission and excitation. The results of this analysis indicate that the pump source variables are nearly free of acoustic resonance effects in the test loop. The source pressure and velocity are each estimated at approximately 10 kPa (zero-to-peak). The results also indicate that the pump may act as both a pressure and a velocity source. At the loop resonance, the pump acoustic behavior is exclusively governed by the pressure term. This observation leads to the conclusion that the maximum amplification of pressure pulsations in a reactor heat transport system may be predicted by modeling the pump as a pressure source. (orig.)

  20. Current & Heat Transport in Graphene Nanoribbons: Role of Non-Equilibrium Phonons

    Science.gov (United States)

    Pennington, Gary; Finkenstadt, Daniel

    2010-03-01

    The conducting channel of a graphitic nanoscale device is expected to experience a larger degree of thermal isolation when compared to traditional inversion channels of electronic devices. This leads to enhanced non-equilibrium phonon populations which are likely to adversely affect the mobility of graphene-based nanoribbons due to enhanced phonon scattering. Recent reports indicating the importance of carrier scattering with substrate surface polar optical phonons in carbon nanotubes^1 and graphene^2,3 show that this mechanism may allow enhanced heat removal from the nanoribbon channel. To investigate the effects of hot phonon populations on current and heat conduction, we solve the graphene nanoribbon multiband Boltzmann transport equation. Monte Carlo transport techniques are used since phonon populations may be tracked and updated temporally.^4 The electronic structure is solved using the NRL Tight-Binding method,^5 where carriers are scattered by confined acoustic, optical, edge and substrate polar optical phonons. [1] S. V. Rotkin et al., Nano Lett. 9, 1850 (2009). [2] J. H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhrer, Nature Nanotech. 3, 206 (2008). [3] V. Perebeinos and P. Avouris, arXiv:0910.4665v1 [cond-mat.mes-hall] (2009). [4] P. Lugli et al., Appl. Phys. Lett. 50, 1251 (1987). [5] D. Finkenstadt, G. Pennington & M.J. Mehl, Phys. Rev. B 76, 121405(R) (2007).

  1. Gyrokinetic analyses of core heat transport in JT-60U plasmas with different toroidal rotation direction

    International Nuclear Information System (INIS)

    Narita, Emi; Fukuda, Takeshi; Honda, Mitsuru; Hayashi, Nobuhiko; Urano, Hajime; Ide, Shunsuke

    2015-01-01

    Tokamak plasmas with an internal transport barrier (ITB) are capable of maintaining improved confinement performance. The ITBs formed in plasmas with the weak magnetic shear and the weak radial electric field shear are often observed to be modest. In these ITB plasmas, it has been found that the electron temperature ITB is steeper when toroidal rotation is in a co-direction with respect to the plasma current than when toroidal rotation is in a counter-direction. To clarify the relationship between the direction of toroidal rotation and heat transport in the ITB region, we examine dominant instabilities using the flux-tube gyrokinetic code GS2. The linear calculations show a difference in the real frequencies; the counter-rotation case has a more trapped electron mode than the co-rotation case. In addition, the nonlinear calculations show that with this difference, the ratio of the electron heat diffusivity χ_e to the ion's χ_i is higher for the counter-rotation case than for the co-rotation case. The difference in χ_e /χ_i agrees with the experiment. We also find that the effect of the difference in the flow shear between the two cases due to the toroidal rotation direction on the linear growth rate is not significant. (author)

  2. Bounds on heat transport in rapidly rotating Rayleigh–Bénard convection

    International Nuclear Information System (INIS)

    Grooms, Ian; Whitehead, Jared P

    2015-01-01

    The heat transport in rotating Rayleigh–Bénard convection is considered in the limit of rapid rotation (small Ekman number E) and strong thermal forcing (large Rayleigh number Ra). The analysis proceeds from a set of asymptotically reduced equations appropriate for rotationally constrained dynamics; the conjectured range of validity for these equations is Ra ≲ E −8/5 . A rigorous bound on heat transport of Nu ⩽ 20.56Ra 3 E 4 is derived in the limit of infinite Prandtl number using the background method. We demonstrate that the exponent in this bound cannot be improved on using a piece-wise monotonic background temperature profile like the one used here. This is true for finite Prandtl numbers as well, i.e. Nu ≲ Ra 3 is the best upper bound for this particular setup of the background method. The feature that obstructs the availability of a better bound in this case is the appearance of small-scale thermal plumes emanating from (or entering) the thermal boundary layer. The derived upper bound is consistent with, although significantly higher than the observed behaviour in simulations of the reduced equations, which find at most Nu ∼ Ra 2 E 8/3 . (paper)

  3. The effect of centrifugal buoyancy on the heat transport in rotating Rayleigh-Bénard convection

    Science.gov (United States)

    Horn, Susanne; Aurnou, Jonathan

    2017-11-01

    In a rapidly rotating and differentially heated fluid, the centrifugal acceleration can play a similar role to that of gravity in generating convective motion. However, in the paradigm system of rotating Rayleigh-Bénard convection, centrifugal buoyancy is typically not considered in theoretical studies and, thus, usually undesired in laboratory experiments, despite being unavoidable. How centrifugal buoyancy affects the turbulent flow, including the heat transport, is still largely unknown, in particular, when it can be considered negligible. We study this problem by means of direct numerical simulations. Unlike in experiments, we are able to systematically vary the Froude number Fr (ratio of centrifugal to gravitational acceleration) and the Rossby number Ro (dimensionless rotation rate) independently, and even set each to zero exactly. We show that the centrifugal acceleration simultaneously leads to contending phenomena, e.g. reflected by an increase and a decrease of the center temperature, or a suppression and an enhancement of the heat transfer efficiency. Which one prevails as net effect strongly depends on the combination of Fr and Ro. Furthermore, we discuss implications for experiments of rapidly rotating convection. SH acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) under Grant HO 5890/1-1, JA by the NSF Geophysics Program.

  4. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie K.; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.

    2010-11-01

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier-Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers ( Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.

  5. Demonstrating Hybrid Heat Transport and Energy Conversion System Performance Characterization Using Intelligent Control Systems

    International Nuclear Information System (INIS)

    Ostrum, Lee; Manic, Milos

    2017-01-01

    The debate continues on the magnitude and validity of climate change caused by human activities. However, there is no debate about the need to make buildings, modes of transportation, factories, and homes as energy efficient as possible. Given that climate change could occur with the wasteful use of fossil fuel and the fact that fossil energy costs could and will swing wildly, it is imperative that every effort be made to utilize energy sources to their fullest. Hybrid energy systems (HES) are two or more separate energy producers used together to produce energy commodities. The HES this report focuses on is the use of nuclear reactor waste heat as a source of further energy utilization. Nuclear reactors use a fluid to cool the core and produce the steam needed for the production of electricity. Traditionally this steam, or coolant, is used to convert the energy then cooled elsewhere. The heat is released into the environment without being used further. By adding technologies to nuclear reactors to use the wasted heat, a system can be developed to make more than just electricity and allow for loading following capabilities.

  6. Effects of molecular structure on microscopic heat transport in chain polymer liquids

    International Nuclear Information System (INIS)

    Matsubara, Hiroki; Kikugawa, Gota; Ohara, Taku; Bessho, Takeshi; Yamashita, Seiji

    2015-01-01

    In this paper, we discuss the molecular mechanism of the heat conduction in a liquid, based on nonequilibrium molecular dynamics simulations of a systematic series of linear- and branched alkane liquids, as a continuation of our previous study on linear alkane [T. Ohara et al., J. Chem. Phys. 135, 034507 (2011)]. The thermal conductivities for these alkanes in a saturated liquid state at the same reduced temperature (0.7T c ) obtained from the simulations are compared in relation to the structural difference of the liquids. In order to connect the thermal energy transport characteristics with molecular structures, we introduce the new concept of the interatomic path of heat transfer (atomistic heat path, AHP), which is defined for each type of inter- and intramolecular interaction. It is found that the efficiency of intermolecular AHP is sensitive to the structure of the first neighbor shell, whereas that of intramolecular AHP is similar for different alkane species. The dependence of thermal conductivity on different lengths of the main and side chain can be understood from the natures of these inter- and intramolecular AHPs

  7. Effects of molecular structure on microscopic heat transport in chain polymer liquids

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Hiroki, E-mail: matsubara@microheat.ifs.tohoku.ac.jp; Kikugawa, Gota; Ohara, Taku [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Bessho, Takeshi; Yamashita, Seiji [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan)

    2015-04-28

    In this paper, we discuss the molecular mechanism of the heat conduction in a liquid, based on nonequilibrium molecular dynamics simulations of a systematic series of linear- and branched alkane liquids, as a continuation of our previous study on linear alkane [T. Ohara et al., J. Chem. Phys. 135, 034507 (2011)]. The thermal conductivities for these alkanes in a saturated liquid state at the same reduced temperature (0.7T{sub c}) obtained from the simulations are compared in relation to the structural difference of the liquids. In order to connect the thermal energy transport characteristics with molecular structures, we introduce the new concept of the interatomic path of heat transfer (atomistic heat path, AHP), which is defined for each type of inter- and intramolecular interaction. It is found that the efficiency of intermolecular AHP is sensitive to the structure of the first neighbor shell, whereas that of intramolecular AHP is similar for different alkane species. The dependence of thermal conductivity on different lengths of the main and side chain can be understood from the natures of these inter- and intramolecular AHPs.

  8. Transport of laser accelerated proton beams and isochoric heating of matter

    International Nuclear Information System (INIS)

    Roth, M; Alber, I; Guenther, M; Harres, K; Bagnoud, V; Brown, C; Gregori, G; Clarke, R; Heathcote, R; Li, B; Daido, H; Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C; Glenzer, S; Kritcher, A; Kugland, N; LePape, S; Makita, M

    2010-01-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  9. Transport of laser accelerated proton beams and isochoric heating of matter

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Inst. fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum f. Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C; Gregori, G [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Makita, M, E-mail: markus.roth@physik.tu-darmstadt.d [School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2010-08-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  10. Demonstrating Hybrid Heat Transport and Energy Conversion System Performance Characterization Using Intelligent Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ostrum, Lee [Univ. of Idaho and Idaho Falls Center, Idaho Falls, ID (United States); Manic, Milos [Virginia Commonwealth Univ., Richmond, VA (United States)

    2017-09-28

    The debate continues on the magnitude and validity of climate change caused by human activities. However, there is no debate about the need to make buildings, modes of transportation, factories, and homes as energy efficient as possible. Given that climate change could occur with the wasteful use of fossil fuel and the fact that fossil energy costs could and will swing wildly, it is imperative that every effort be made to utilize energy sources to their fullest. Hybrid energy systems (HES) are two or more separate energy producers used together to produce energy commodities. The HES this report focuses on is the use of nuclear reactor waste heat as a source of further energy utilization. Nuclear reactors use a fluid to cool the core and produce the steam needed for the production of electricity. Traditionally this steam, or coolant, is used to convert the energy then cooled elsewhere. The heat is released into the environment without being used further. By adding technologies to nuclear reactors to use the wasted heat, a system can be developed to make more than just electricity and allow for loading following capabilities.

  11. Influence of fission product transport on delayed neutron precursors and decay heat sources in LMFBR accidents

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.

    1981-01-01

    A method is presented for studying the influence of fission product transpot on delayed neutron precursors and decay heat sources during Liquid Metal Fast Breeder Reactor (LMFBR) unprotected accidents. The model represents the LMFBR core as a closed homogeneous cell. Thermodynamic phase equilibrium theory is used to predict fission product mobility. Reactor kinetics behavior is analyzed by an extension of point kinetics theory. Group dependent delayed neutron precursor and decay heat source retention factors, which represent the fraction of each group retained in the fuel, are developed to link the kinetics and thermodynamics analysis. Application of the method to a highly simplified model of an unprotected loss-of-flow accident shows a time delay on the order of 10 ms is introduced in the predisassembly power history if fission product motion is considered when compared to the traditional transient solution. The post-transient influence of fission product transport calculated by the present model is a 24 percent reduction in the decay heat level in the fuel material which is similar to traditional approximations. Isotopes of the noble gases, Kr and Xe, and the elements I and Br are shown to be very mobile and are responsible for a major part of the observed effects. Isotopes of the elements Cs, Se, Rb, and Te were found to be moderately mobile and contribute to a lesser extent to the observed phenomena. These results obtained from the application of the described model confirm the initial hypothesis that sufficient fission product transport can occur to influence a transient. For these reasons, it is concluded that extension of this model into a multi-cell transient analysis code is warranted

  12. Effect of heat stress on protein utilization and nutrient transporters in meat-type chickens

    Science.gov (United States)

    Habashy, Walid S.; Milfort, Marie C.; Fuller, Alberta L.; Attia, Youssef A.; Rekaya, Romdhane; Aggrey, Samuel E.

    2017-12-01

    The aim of this study was to investigate the effect of heat stress (HS) on digestibility of protein and fat and the expression of nutrient transporters in broilers. Forty-eight male Cobb500 chicks were used in this study. At day 14, birds were randomly divided into two groups and kept under either constant normal temperature (25 °C) or high temperature (35 °C) in individual cages. Five birds per treatment at 1 and 12 days post-treatment were euthanized, and Pectoralis major ( P. major) and ileum were sampled for gene expression analysis. At day 33, ileal contents were collected and used for digestibility analysis. The total consumption and retention of protein and fat were significantly lower in the HS group compared to the control group. Meanwhile, the retention of crude protein per BWG was significantly higher in the HS group compared to the control group. In P. major and ileum tissues at day 1, transporters FATP1 and SGLT1 were down-regulated in the HS group. Meanwhile, FABP1 and PepT1 were down-regulated only in the ileum of the HS group. The converse was shown in P. major. The nutrient transporter FABP1 at day 12 post-HS was down-regulated in the P. major and ileum, but GLUT1 and PepT2 were down-regulated only in the ileum, and PepT1 was down-regulated only in the P. major compared with the control group. These changes in nutrient transporters suggest that high ambient temperature might change the ileum and P. major lipids, glucose, and oligopeptide transporters.

  13. Changing transport processes in the stratosphere by radiative heating of sulfate aerosols

    Directory of Open Access Journals (Sweden)

    U. Niemeier

    2017-12-01

    Full Text Available The injection of sulfur dioxide (SO2 into the stratosphere to form an artificial stratospheric aerosol layer is discussed as an option for solar radiation management. Sulfate aerosol scatters solar radiation and absorbs infrared radiation, which warms the stratospheric sulfur layer. Simulations with the general circulation model ECHAM5-HAM, including aerosol microphysics, show consequences of this warming, including changes of the quasi-biennial oscillation (QBO in the tropics. The QBO slows down after an injection of 4 Tg(S yr−1 and completely shuts down after an injection of 8 Tg(S yr−1. Transport of species in the tropics and sub-tropics depends on the phase of the QBO. Consequently, the heated aerosol layer not only impacts the oscillation of the QBO but also the meridional transport of the sulfate aerosols. The stronger the injection, the stronger the heating and the simulated impact on the QBO and equatorial wind systems. With increasing injection rate the velocity of the equatorial jet streams increases, and the less sulfate is transported out of the tropics. This reduces the global distribution of sulfate and decreases the radiative forcing efficiency of the aerosol layer by 10 to 14 % compared to simulations with low vertical resolution and without generated QBO. Increasing the height of the injection increases the radiative forcing only for injection rates below 10 Tg(S yr−1 (8–18 %, a much smaller value than the 50 % calculated previously. Stronger injection rates at higher levels even result in smaller forcing than the injections at lower levels.

  14. The relationship between turbulence measurements and transport in different heating regimes in TFTR

    International Nuclear Information System (INIS)

    Bretz, N.L.; Mazzucato, E.; Nazikian, R.; Paul, S.F.; Hammett, G.; Rewoldt, G.; Tang, W.M.; Zarnstorff, M.C.

    1992-01-01

    The scaling of broad band density fluctuations in the confinement zone of TFTR measured by microwave scattering, beam emission spectroscopy (BES), and reflectometry show a relationship between these fluctuations and energy transport measured from power balance calculations. In L-mode plasmas scattering and BES indicates that the density fluctuation level, δn 2 , in the confinement zone for 0.2 aux and I p in a way that is consistent with variations in energy transport. Fluctuation levels measured with all systems increase strongly toward the edge in all heating regimes following increases in energy transport coefficients. Measurements using BES have shown that poloidal and radial correlation lengths in the confinement zone of L-mode and supershot plasmas fall in the range of 1 to 2 cm. with a wave structure which has k max ∼ 1 cm -1 (k perpendicular ps ∼ 0.2) in the poloidal direction and k max approaching zero in the radial direction. A simple estimate of the diffusion coefficient based on a measured radial correlation length and correlation time indicates good agreement with power balance calculations. Similar estimates using reflectometry give radial coherence lengths at 10 to 20 kHz in low density ohmic and supershot plasmas of between I and 2 cm

  15. Influence of low-order rational magnetic surfaces on heat transport in TJ-II heliac ECRH plasmas

    International Nuclear Information System (INIS)

    Castejon, F.; Lopez-Bruna, D.; Estrada, T.; Ascasibar, E.; Zurro, B.; Baciero, A.

    2004-01-01

    We study the effect of low-order rational surfaces on electron heat transport in plasmas confined in the TJ-II stellarator (Alejaldre et al 1990 Fusion Technol. 17 131) and heated by electron cyclotron waves. Enhancement of core electron heat confinement is observed when the rational surface is placed in the vicinity of the power deposition zone, either by performing a magnetic configuration scan or by inducing Ohmic current in a single discharge. The key to improving heat confinement seems to be a locally strong positive radial electric field, which is made possible by a synergistic effect between enhanced electron heat fluxes through radial positions around low-order rationals and pump out mechanisms in the heat deposition zone. (author)

  16. What is the most energy efficient route for biogas utilization: Heat, electricity or transport?

    International Nuclear Information System (INIS)

    Hakawati, Rawan; Smyth, Beatrice M.; McCullough, Geoffrey; De Rosa, Fabio; Rooney, David

    2017-01-01

    Highlights: •The paper developed an assessment tool for analyzing biogas utilization routes. •The LCA methodology was used to allow a uniform assessment of the biogas system. •“% energy efficiency” was used as the functional unit for assessment. •49 biogas-to-energy routes were assessed based on their final useful energy form. •The framework aids policy makers in the decision process for biogas exploitation. -- Abstract: Biogas is a renewable energy source that can be used either directly or through various pathways (e.g. upgrading to bio-methane, use in a fuel cell or conversion to liquid fuels) for heat, electricity generation or mechanical energy for transport. However, although there are various options for biogas utilization, there is limited guidance in the literature on the selection of the optimum route, and comparison between studies is difficult due to the use of different analytical frameworks. The aim of this paper was to fill that knowledge gap and to develop a consistent framework for analysing biogas-to-energy exploitation routes. The paper evaluated 49 biogas-to-energy routes using a consistent life cycle analysis method focusing on energy efficiency as the chosen crtierion. Energy efficiencies varied between 8% and 54% for electricity generation; 16% and 83% for heat; 18% and 90% for electricity and heat; and 4% and 18% for transport. Direct use of biogas has the highest efficiencies, but the use of this fuel is typically limited to sites co-located with the anaerobic digestion facility, limiting available markets and applications. Liquid fuels have the advantage of versatility, but the results show consistently low efficiencies across all routes and applications. The energy efficiency of bio-methane routes competes well with biogas and comes with the advantage that it is more easily transported and used in a wide variety of applications. The results were also compared with fossil fuels and discussed in the context of national

  17. Influence of Aerosol Heating on the Stratospheric Transport of the Mt. Pinatubo Eruption

    Science.gov (United States)

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.

    2011-01-01

    On June 15th, 1991 the eruption of Mt. Pinatubo (15.1 deg. N, 120.3 Deg. E) in the Philippines injected about 20 Tg of sulfur dioxide in the stratosphere, which was transformed into sulfuric acid aerosol. The large perturbation of the background aerosol caused an increase in temperature in the lower stratosphere of 2-3 K. Even though stratospheric winds climatological]y tend to hinder the air mixing between the two hemispheres, observations have shown that a large part of the SO2 emitted by Mt. Pinatubo have been transported from the Northern to the Southern Hemisphere. We simulate the eruption of Mt. Pinatubo with the Goddard Earth Observing System (GEOS) version 5 global climate model, coupled to the aerosol module GOCART and the stratospheric chemistry module StratChem, to investigate the influence of the eruption of Mt. Pinatubo on the stratospheric transport pattern. We perform two ensembles of simulations: the first ensemble consists of runs without coupling between aerosol and radiation. In these simulations the plume of aerosols is treated as a passive tracer and the atmosphere is unperturbed. In the second ensemble of simulations aerosols and radiation are coupled. We show that the set of runs with interactive aerosol produces a larger cross-equatorial transport of the Pinatubo cloud. In our simulations the local heating perturbation caused by the sudden injection of volcanic aerosol changes the pattern of the stratospheric winds causing more intrusion of air from the Northern into the Southern Hemisphere. Furthermore, we perform simulations changing the injection height of the cloud, and study the transport of the plume resulting from the different scenarios. Comparisons of model results with SAGE II and AVHRR satellite observations will be shown.

  18. Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink

    Science.gov (United States)

    Ruiz, Maritza

    Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well

  19. A minimization procedure for estimating the power deposition and heat transport from the temperature response to auxiliary power modulation

    International Nuclear Information System (INIS)

    Eester, Dirk van

    2004-01-01

    A method commonly used for determining where externally launched power is absorbed inside a tokamak plasma is to examine the temperature response to modulation of the launched power. Strictly speaking, this response merely provides a first good guess of the actual power deposition rather than the deposition profile itself: not only local heat sources but also heat losses and heat wave propagation affect the temperature response at a given position. Making use of this, at first sight non-desirable, effect modulation becomes a useful tool for conducting transport studies. In this paper a minimization method based on a simple conduction-convection model is proposed for deducing the power deposition and transport characteristics from the experimentally measured (electron) energy density response to a modulation of the auxiliary heating power. An L-mode JET example illustrates the potential of the technique

  20. Assessment of alternate ion exchange resins for improved antimony removal from the primary heat transport system

    Energy Technology Data Exchange (ETDEWEB)

    Burany, R.; Suryanarayan, S.; Husain, A. [Kinectrics, Inc., Toronto, ON (Canada)

    2015-07-01

    Radiation fields around the CANDU heat transport system are a major contributor to worker dose during inspection, maintenance and refurbishment activities. While Co-60 is typically the dominant contributor to radiation fields in CANDU reactors, Sb-124, an activation product of antimony, is also a significant contributor, accounting for 5-20% of the radiation fields. The goal of this research project was to investigate resins for improved removal of antimony under both oxidizing and reducing conditions.Several candidate resins were tested and short-listed through a sequence of iterative testing. The results of the laboratory testing have identified potential candidates for improved antimony removal. Further testing is required to ensure compatibility with existing station resin specifications. (author)

  1. Output feedback control of heat transport mechanisms in parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2016-08-05

    This paper presents an output feedback control for distributed parabolic solar collectors. The controller aims at forcing the outlet temperature to track a desired reference in order to manage the produced heat despite the external disturbances. The proposed control strategy is derived using the distributed physical model of the system to avoid the loss of information due to model approximation schemes. The system dynamics are driven to follow reference dynamics defined by a transport equation with a constant velocity, which allows to control the transient behavior and the response time of the closed loop. The designed controller depends only on the accessible measured variables which makes it easy for real time implementation and useful for industrial plants. Simulation results show the efficiency of the reference tracking closed loop under different working conditions.

  2. Single-phase pump model for analysis of LMFBR heat transport systems

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.

    1978-05-01

    A single-phase pump model for transient and steady-state analysis of LMFBR heat transport systems is presented. Fundamental equations of the model are angular momentum balance to determine transient impeller speed and mass balance (including thermal expansion effects) to determine the level of sodium in the pump tank. Pump characteristics are modeled by homologous head and torque relations. All regions of pump operation are represented with reverse rotation allowed. The model also includes option for enthalpy rise calculations and pony motor operation. During steady state, the pump operating speed is determined by matching required head with total load in the circuit. Calculated transient results are presented for pump coastdown and double-ended pipe break accidents. The report examines the influence of frictional torque and specific speed on predicted response for the pump coastdown to natural circulation transient. The results for a double-ended pipe break accident indicate the necessity of including all regions of operation for pump characteristics

  3. Analysis of data obtained in two-phase flow tests of primary heat transport pumps

    International Nuclear Information System (INIS)

    Currie, T.C.

    1986-06-01

    This report analyzes data obtained in two-phase flow tests of primary heat transport pumps performed during the period 1980-1983. Phenomena which have been known to cause pump-induced flow oscillations in pressurized piping systems under two-phase conditions are reviewed and the data analyzed to determine whether any of the identified phenomena could have been responsible for the instabilities observed in those tests. Tentative explanations for the most severe instabilities are given based on those analyses. It is shown that suction pipe geometry probably plays an important role in promoting instabilities, so additional experiments to investigate the effect of suction pipe geometry on the stability of flow in a closed pipe loop under two-phase conditions are recommended

  4. Primary heat transport pump mechanical seal replacement strategy for Pickering B

    International Nuclear Information System (INIS)

    Chacinsi, V.

    1995-01-01

    Pickering Nuclear Generating Station is a CANDU PHWR eight unit station located on Lake Ontario. The station is divided into Pickering A (Units 1 to 4) and Pickering B (Units 5 to 8). Pickering B is the focus of this paper. Each unit is rated at 540 MWe. The Primary Heat Transport (PHT) system, which is used to cool the fuel, is divided into four quadrants. Each quadrant has four vertical Byron Jackson PHT main circulation pumps. Three pumps in each quadrant are required for normal operation, leaving one pump in each quadrant as a spare. Each Pickering PHT pump has a Byron Jackson Type SU two stage mechanical seal. The typical pressure breakdown across the seal is 8.7-4.5-1.0 MPa. Certain features of seal operation and the PHT system which influence seal replacement are discussed below. (author)

  5. Magnetic heat transport in Sr{sub 2}IrO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Steckel, Frank [Leibniz Institute for Solid State and Materials Research, IFW Dresden (Germany); Takagi, Hidenori [Max-Planck-Institute for Solid State Research, Stuttgart (Germany); Buechner, Bernd; Hess, Christian [Leibniz Institute for Solid State and Materials Research, IFW Dresden (Germany); Center for Transport and Devices, TU Dresden (Germany)

    2015-07-01

    The layered perovskite Sr{sub 2}IrO{sub 4} is a 5d transition metal oxide with an enhanced spin-orbit coupling leading to a Mott insulating ground state with J{sub eff}=(1)/(2). It exhibits canted antiferromagnetism below T{sub N}=240 K with an antiferromagnetic coupling constant of about J=0.1 eV. Thermal conductivity measurements along the ab plane of a Sr{sub 2}IrO{sub 4} single crystal provide evidence for a contribution of magnons (below T{sub N}) to the thermal conductivity, similar to that of the isostructural 2D S=(1)/(2) Heisenberg antiferromagnet La{sub 2}CuO{sub 4}, where a significant magnonic contribution to the heat transport is known.

  6. Study of the electron heat transport in Tore-Supra tokamak; Etude du transport de la chaleur electronique dans le Tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Harauchamps, E

    2004-07-01

    This work presents analytical solutions to the electron heat transport equation involving a damping term and a convection term in a cylindrical geometry. These solutions, processed by Matlab, allow the determination of the evolution of the radial profile of electron temperature in tokamaks during heating. The modulated injection of waves around the electron cyclotron frequency is an efficient tool to study heat transport experimentally in tokamaks. The comparison of these analytical solutions with experimental results from Tore-Supra during 2 discharges (30550 and 31165) shows the presence of a sudden change for the diffusion and damping coefficients. The hypothesis of the presence of a pinch spread all along the plasma might explain the shape of the experimental temperature profiles. These analytical solutions could be used to determine the time evolution of plasma density as well or of any parameter whose evolution is governed by a diffusion-convection equation. (A.C.)

  7. Formation and sustainment of internal transport barriers in the International Thermonuclear Experimental Reactor with the baseline heating mix

    Energy Technology Data Exchange (ETDEWEB)

    Poli, Francesca M.; Kessel, Charles E. [Princeton Plasma Physics laboratory, Princeton, New Jersey 08543 (United States)

    2013-05-15

    Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.

  8. Formation and sustainment of internal transport barriers in the International Thermonuclear Experimental Reactor with the baseline heating mixa)

    Science.gov (United States)

    Poli, Francesca M.; Kessel, Charles E.

    2013-05-01

    Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.

  9. Thermal conductivity and heat transport properties of nitrogen-doped graphene.

    Science.gov (United States)

    Goharshadi, Elaheh K; Mahdizadeh, Sayyed Jalil

    2015-11-01

    In the present study, the thermal conductivity (TC) and heat transport properties of nitrogen doped graphene (N-graphene) were investigated as a function of temperature (107-400K) and N-doped concentration (0.0-7.0%) using equilibrium molecular dynamics simulation based on Green-Kubo method. According to the results, a drastic decline in TC of graphene observed at very low N-doped concentration (0.5 and 1.0%). Substitution of just 1.0% of carbon atoms with nitrogens causes a 77.2, 65.4, 59.2, and 53.7% reduction in TC at 107, 200, 300, and 400K, respectively. The values of TC of N-graphene at different temperatures approach to each other as N-doped concentration increases. The results also indicate that TC of N-graphene is much less sensitive to temperature compared with pristine graphene and the sensitivity decreases as N-doped concentration increases. The phonon-phonon scattering relaxation times and the phonon mean free path of phonons were also calculated. The contribution of high frequency optical phonons for pristine graphene and N-graphene with 7.0% N-doped concentration is 0-2% and 4-8%, respectively. These findings imply that it is potentially feasible to control heat transfer on the nanoscale when designing N-graphene based thermal devices. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Water, solute and heat transport in the soil: the Australian connection

    Science.gov (United States)

    Knight, John

    2016-04-01

    The interest of Peter Raats in water, solute and heat transport in the soil has led to scientific and/or personal interactions with several Australian scientists such as John Philip, David Smiles, Greg Davis and John Knight. Along with John Philip and Robin Wooding, Peter was an early user of the Gardner (1958) linearised model of soil water flow, which brought him into competition with John Philip. I will discuss some of Peter's solutions relevant to infiltration from line and point sources, cavities and basins. A visit to Canberra, Australia in the early 1980s led to joint work on soil water flow, and on combined water and solute movement with David Smiles and others. In 1983 Peter was on the PhD committee for Greg Davis at the University of Wollongong, and some of the methods in his thesis 'Mathematical modelling of rate-limiting mechanisms of pyritic oxidation in overburden dumps' were later used by Peter's student Sjoerd van der Zee. David Smiles and Peter wrote a survey article 'Hydrology of swelling clay soils' in 2005. In the last decade Peter has been investigating the history of groundwater and vadose zone hydrology, and recently he and I have been bringing to light the largely forgotten work of Lewis Fry Richardson on finite difference solution of the heat equation, drainage theory, soil physics, and the soil-plant-atmosphere continuum.

  11. Internal transport barrier and β limit in ohmically heated plasma in TUMAN-3M

    International Nuclear Information System (INIS)

    Andreiko, M.V.; Askinazi, L.G.; Golant, V.E.

    2001-01-01

    An Internal Transport Barrier (ITB) was found in ohmically heated plasma in TUMAN-3M (R 0 =53 cm, a l =22 cm - circular limiter configuration, B t ≤0.7T, I p ≤175 kA, ≤6.0·10 19 m -3 ). The barrier reveals itself as a formation of a steep gradient on electron temperature and density radial profiles. The regions with reduced diffusion and electron thermal diffusivity are in between r=0.5a and r=0.7a. The ITB appears more frequently in the shots with higher plasma current. At lower currents (I p N limit in the ohmically heated plasma are presented. Stored energy was measured using diamagnetic loops and compared with W calculated from kinetic data obtained by Thomson scattering and microwave interferometry. Measurements of the stored energy and of the β were performed in the ohmic H-mode before and after boronization and in the scenario with the fast Current Ramp-Down in the ohmic H-mode. Maximum value of β T of 2.0 % and β N of 2 were achieved. The β N limit achieved is 'soft' (nondisruptive) limit. The stored energy slowly decays after the Current Ramp-Down. No correlation was found between beta restriction and MHD phenomena. (author)

  12. Internal transport barrier and β limit in ohmically heated plasma in TUMAN-3M

    International Nuclear Information System (INIS)

    Andreiko, M.V.; Askinazi, L.G.; Golant, V.E.

    1999-01-01

    An Internal Transport Barrier (ITB) was found in ohmically heated plasma in TUMAN-3M (R 0 = 53 cm, a l = 22 cm - circular limiter configuration, B t ≤ 0.7 T, I p ≤ 175 kA, ≤ 6.0·10 19 m -3 ). The barrier reveals itself as a formation of a steep gradient on electron temperature and density radial profiles. The regions with reduced diffusion and electron thermal diffusivity are in between r = 0.5a and r = 0.7a. The ITB appears more frequently in the shots with higher plasma current. At lower currents (I p N limit in the ohmically heated plasma are presented. Stored energy was measured using diamagnetic loops and compared with W calculated from kinetic data obtained by Thomson scattering and microwave interferometry. Measurements of the stored energy and of the β were performed in the ohmic H-mode before and after boronization and in the scenario with the fast Current Ramp-Down in the ohmic H-mode. Maximum value of β T of 2.0% and β N of 2 were achieved. The β N limit achieved is 'soft' (non-disruptive) limit. The stored energy slowly decays after the Current Ramp-Down. No correlation was found between beta restriction and MHD phenomena. (author)

  13. Microwave-mediated heat transport in a quantum dot attached to leads

    International Nuclear Information System (INIS)

    Chi Feng; Dubi, Yonatan

    2012-01-01

    The thermoelectric effect in a quantum dot (QD) attached to two leads in the presence of microwave fields is studied by using the Keldysh nonequilibrium Green function technique. When the microwave is applied only on the QD and in the linear response regime, the main peaks in the thermoelectric figure of merit and the thermopower are found to decrease, with the emergence of a set of photon-induced peaks. Under this condition the microwave field cannot generate heat current or electrical bias voltage. Surprisingly, when the microwave field is applied only to one (bright) lead and not to the other (dark) lead or the QD, heat flows mostly from the dark to the bright lead, almost irrespective of the direction of the thermal gradient. We attribute this effect to microwave-induced opening of additional transport channels below the Fermi energy. The microwave field can change both the magnitude and the sign of the electrical bias voltage induced by the temperature gradient. (paper)

  14. Modeling of radiation heat transport in complex ladder-like structures placed in rectangular enclosures

    International Nuclear Information System (INIS)

    Unal, C.; Bohl, W.R.; Pasamehmetoglu, K.O.

    1999-01-01

    Complex ladder-like structures recently have been considered as the target design for accelerator applications. The decay heat, during a postulated beyond design-basis loss-of-coolant accident in the target where all normal and emergency cooling fails, is removed mainly by radiation heat transfer. Modeling of the radiation transport in complex ladder-like structures has several challenges and limitations when the standard net-radiation model is used. This paper proposes a simplified lumped, or 'hot-rung' model, that considers the worst elements and utilizes the standard net-radiation method. The net-radiation model would under-predict structure temperatures if surfaces were subject to non-uniform radiosity. The proposed model was assessed to suggest corrections to account for the non-uniform radiosity. The non-uniform radiosity effect causes the proposed hot-rung model to under-predict the center-rung temperatures by ∼4-74 C when all parametrics, including temperatures up to 1500 C, were considered. These temperatures are small. The proposed model predicted that an important effect of decreasing the emissivity was smoothing of non-isothermal effects. The radiosity effects are more pronounced when there are strong temperature gradients. Uniform rung temperatures tend to decrease the radiosity effects. We concluded that a relatively simple model that is conservative with respect to radiosity effects could be developed. (orig.)

  15. Benefits of flexibility from smart electrified transportation and heating in the future UK electricity system

    International Nuclear Information System (INIS)

    Teng, Fei; Aunedi, Marko; Strbac, Goran

    2016-01-01

    Highlights: • The economic and environmental benefits of smart EVs/HPs are quantified. • This paper implements an advanced stochastic analytical framework. • Operating patterns and potential flexibility of EVs/HPs are sourced from UK trials. • A comprehensive set of case studies across UK future scenarios are carried out. - Abstract: This paper presents an advanced stochastic analytical framework to quantify the benefits of smart electric vehicles (EVs) and heat pumps (HPs) on the carbon emission and the integration cost of renewable energy sources (RES) in the future UK electricity system. The typical operating patterns of EVs/HPs as well as the potential flexibility to perform demand shifting and frequency response are sourced from recent UK trials. A comprehensive range of case studies across several future UK scenarios suggest that smart EVs/HPs could deliver measurable carbon reductions by enabling a more efficient operation of the electricity system, while at the same time making the integration of electrified transport and heating demand significantly less carbon intensive. The second set of case studies establish that smart EVs/HPs have significant potential to support cost-efficient RES integration by reducing: (a) RES balancing cost, (b) cost of required back-up generation capacity, and (c) cost of additional low-carbon capacity required to offset lower fuel efficiency and curtailed RES output while achieving the same emission target. Frequency response provision from EVs/HPs could significantly enhance both the carbon benefit and the RES integration benefit of smart EVs/HPs.

  16. TEM heat transport and fluctuations in the HSX stellarator: experiments and comparison with gyrokinetic simulation

    Science.gov (United States)

    Smoniewski, J.; Faber, B. J.; Sánchez, E.; Calvo, I.; Pueschel, M. J.; Likin, K. M.; Deng, C. B.; Talmadge, J. N.

    2017-10-01

    The Helically Symmetric eXperiment (HSX) has demonstrated reduced neoclassical transport in the plasma core with quasi-symmetry [Lore Thesis 2010], while outside this region the electron thermal diffusivity is well above the neoclassical level, likely due to the Trapped Electron Mode (TEM) [Weir PoP 2015, Faber PoP 2015]. We compare gyrokinetic simulations of the TEM to experimental heat flux and density fluctuation measurements for two configurations: Quasi-Helical Symmetry (QHS) and broken symmetry (Mirror). Both experiment and simulation show that the heat flux for Mirror is larger than for QHS by about a factor of two. Initial interferometer measurements provide evidence that density-gradient-driven TEMs are driving turbulence. Calculations of the collisionless damping of zonal flows provide another perspective into the difference between geometries. Similar to other stellarators [Monreal PPCF 2016], the zonal flow residual goes to zero at long wavelengths in both configurations. Additionally, the very short time decay of the zonal flow due to neoclassical polarization is constant between configurations. However, the collisionless damping time is longer and the zonal flow oscillation frequency is smaller in QHS than Mirror, consistent with reduced radial particle drifts. Work supported by the US DOE under Grant DE-FG02-93ER54222.

  17. Thermal relaxation and heat transport in spin ice Dy{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Klemke, Bastian; Meissner, M.; Tennant, D.A. [Helmholtz-Zentrum Berlin (Germany); Technische Universitaet Berlin (Germany); Strehlow, P. [Technische Universitaet Berlin (Germany); Physikalisch Technische Bundesanstalt, Institut Berlin (Germany); Kiefer, K. [Helmholtz-Zentrum Berlin (Germany); Grigera, S.A. [School of Physics and Astronomy, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, La Plata (Argentina)

    2011-07-01

    The thermal properties of single crystalline Dy{sub 2}Ti{sub 2}O{sub 7} have been studied at temperature below 30 K and magnetic fields applied along [110] direction up to 1.5 T. Based on a thermodynamic field theory (TFT) various heat relaxation and thermal transport measurements were analysed. So we were able to present not only the heat capacity of Dy{sub 2}Ti{sub 2}O{sub 7}, but also for the first time the different contributions of the magnetic excitations and their corresponding relaxation times in the spin ice phase. In addition, the thermal conductivity and the shortest relaxation time were determined by thermodynamic analysis of steady state heat transport measurements. Finally, we were able to reproduce the temperature profiles recorded in heat pulse experiments on the basis of TFT using the previously determined heat capacity and thermal conductivity data without additional parameters. Thus, TFT has been proved to be thermodynamically consistent in describing three thermal transport experiments on different time scales. The observed temperature and field dependencies of heat capacity contributions and relaxation times indicate the magnetic excitations in the spin ice Dy{sub 2}Ti{sub 2}O{sub 7} as thermally activated monopole-antimonopole defects.

  18. Climate of Earth-Like Planets With and Without Ocean Heat Transport Orbiting a Range of M and K Stars

    Science.gov (United States)

    Kiang, N. Y.; Jablonski, Emma R.; Way, Michael J.; Del Genio, Anthony; Roberge, Aki

    2015-01-01

    The mean surface temperature of a planet is now acknowledged as insufficient to surmise its full potential habitability. Advancing our understanding requires exploration with 3D general circulation models (GCMs), which can take into account how gradients and fluxes across a planet's surface influence the distribution of heat, clouds, and the potential for heterogeneous distribution of liquid water. Here we present 3D GCM simulations of the effects of alternative stellar spectra, instellation, model resolution, and ocean heat transport, on the simulated distribution of heat and moisture of an Earth-like planet (ELP).

  19. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials, APPENDIX A: Energy Use and Emissions from the Lifecycle of Diesel-Like Fuels Derived From Biomass

    OpenAIRE

    Delucchi, Mark; Lipman, Timothy

    2003-01-01

    An Appendix to the Report, “A Lifecycle Emissions Model (LEM): Lifecycle Emissions From Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materialsâ€

  20. Local Agenda 21. Settlement pattern and energy for transportation and heating

    International Nuclear Information System (INIS)

    Orderud, Geir Inge

    1998-01-01

    This document deals with Local Agenda 21 (LA21) and the relationship between settlement pattern and the consumption of energy in transportation and heating of houses. Local Agenda 21 originates from the Earth Summit held in Rio in 1992 and draws up the strategies by which the local communities should participate in realizing the recommendations of the summit. So far much of the research around LA21 has examined how well the individual countries that ratified the Rio document have fulfilled the recommendations of Article 28 on local responsibility. From the point of view of research, however, the challenge is rather to investigate the conditions for realizing the broad participation of the people. From the administrative point of view, the important issue is the relationship between the representative channels and the direct participation of local people in the decision processes, as well as the delegation of decision-making authority from national to regional or local level. One recommendation in Agenda 21 is to emit less greenhouse gases. In this connection, a central issue is transportation, which is affected by the settlement pattern. A denser settlement within an urban area is supposed to reduce the transportation and the use of private cars. Thus the local development and area policy is a topic of current interest in the study of how LA21 works locally, especially so because sparsely built-up areas with single family houses are considered as the good way of living. Densely populated urban areas may conflict with the need for arable land and green space. LA 21 and the settlement pattern are both parts of a larger social environment and it is important know these relationships when local measures and actions are analysed. The possibility of a sustainable development must be assessed in relation to the fact that more power is gathered in the global flow of capital. 26 refs

  1. Zeff measurements and low-Z impurity transport for NBI and ICRF heated plasma in JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Ida, K.; Amano, T.; Kawahata, K.; Kaneko, O.

    1988-12-01

    A visible bremsstrahlung detector array system for Z eff measurements and a charge exchange recombination spectroscopy (CXRS) system for fully ionized impurity profile measurements were installed on JIPP TII-U to study impurity transport for NBI and ICRF heated plasma. More impurities are sputtered by ICRF heating than by NBI and/or ohmic heatings. The carbon contribution to Z eff is 80-90 % for NBI heated plasmas, and 60 % for NBI + ICRF heated plasmas. With a carbon coating of vacuum vessel, the Z eff value decreases 2.4 to 1.7 and the carbon contribution to Z eff increases up to 80-90 %. We obtain the diffusion coefficient D a = 1.0 m 2 /s and the convective velocity V a (a) = 13 m/s at the plasma edge for carbon impurity from the radial profile and time evolution of fully ionized carbon after the ICRF pulse is turned on. (author)

  2. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists.

    Science.gov (United States)

    Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V; Aschan, Michaela

    2015-09-07

    Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning. © 2015 The Authors.

  3. Neoclassical transport of energetic minority tail ions generated by ion-cyclotron resonance heating in tokamak geometry

    International Nuclear Information System (INIS)

    Chang, C.S.; Hammett, G.W.; Goldston, R.J.

    1990-01-01

    Neoclassical transport of energetic minority tail ions, which are generated by high powered electromagnetic waves of the Ion Cyclotron Range of Frequencies (ICRF) at the fundamental harmonic resonance, is studied analytically in tokamak geometry. The effect of Coulomb collisions on the tail ion transport is investigated in the present work. The total tail ion transport will be the sum of the present collision-driven transport and the wave-driven transport, which is due to the ICRF-wave scattering of the tail particles as reported in the literature. The transport coefficients have been calculated kinetically, and it is found that the large tail ion viscosity, driven by the localized ICRF-heating and Coulomb slowing-down collisions, induces purely convective particle transport of the tail species, while the energy transport is both convective and diffusive. The rate of radial particle transport is shown to be usually small, but the rate of radial energy transport is larger and may not be negligible compared to the Coulomb slowing-down rate. 18 refs., 2 figs

  4. Results from a CFD reference study into the modelling of heat and smoke transport by different CFD-practitioners

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Lemaire, A.D.; Plas, van der M.

    2009-01-01

    The paper describes results from a reference study that focuses on the application of the Computational Fluid Dynamics (CFD-) technique for heat and smoke transport in practice. Goal of the study is to obtain insight into the amount and causes of the spread of CFD-results when applied by different

  5. Characterization of ion heat conduction in JET and ASDEX Upgrade plasmas with and without internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, R C [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM/FZJ, Trilateral Euregio Cluster, D-52425 Juelich (Germany); Baranov, Y [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Garbet, X [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Hawkes, N [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Peeters, A G [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Challis, C [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Baar, M de [FOM Instituut voor Plasmafyisica Rijnhuizen, Association EURATO-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Giroud, C [FOM Instituut voor Plasmafyisica Rijnhuizen, Association EURATO-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Joffrin, E [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Mantsinen, M [Helsinki University of Technology, Association-EURATOM Tekes, FIN-02015 HUT (Finland); Mazon, D [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Meister, H [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Suttrop, W [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Zastrow, K-D [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2003-09-01

    In ASDEX Upgrade and JET, the ion temperature profiles can be described by R/L{sub Ti} which exhibits only little variations, both locally, when comparing different discharges, and radially over a wide range of the poloidal cross-section. Considering a change of the local ion heat flux of more than a factor of two, this behaviour indicates some degree of profile stiffness. In JET, covering a large ion temperature range from 1 to 25 keV, the normalized ion temperature gradient, R/L{sub Ti}, shows a dependence on the electron to ion temperature ratio or toroidal rotational shear. In particular, in hot ion plasmas, produced predominantly by neutral beam heating at low densities, in which large T{sub i}/T{sub e} is coupled to strong toroidal rotation, the effect of the two quantities cannot be distinguished. Both in ASDEX Upgrade and JET, plasmas with internal transport barriers (ITBs), including the PEP mode in JET, are characterized by a significant increase of R/L{sub Ti} above the value of L- and H-mode plasmas. In agreement with previous ASDEX Upgrade results, no increase of the ion heat transport in reversed magnetic shear ITB plasmas is found in JET when raising the electron heating. Evidence is presented that magnetic shear directly influences R/L{sub Ti}, namely decreasing the ion heat transport when going from weakly positive to negative magnetic shear.

  6. Modeling Coupled Water and Heat Transport in the Root Zone of Winter Wheat under Non-Isothermal Conditions

    Directory of Open Access Journals (Sweden)

    Rong Ren

    2017-04-01

    Full Text Available Temperature is an integral part of soil quality in terms of moisture content; coupling between water and heat can render a soil fertile, and plays a role in water conservation. Although it is widely recognized that both water and heat transport are fundamental factors in the quantification of soil mass and energy balance, their computation is still limited in most models or practical applications in the root zone under non-isothermal conditions. This research was conducted to: (a implement a fully coupled mathematical model that contains the full coupled process of soil water and heat transport with plants focused on the influence of temperature gradient on soil water redistribution and on the influence of change in soil water movement on soil heat flux transport; (b verify the mathematical model with detailed field monitoring data; and (c analyze the accuracy of the model. Results show the high accuracy of the model in predicting the actual changes in soil water content and temperature as a function of time and soil depth. Moreover, the model can accurately reflect changes in soil moisture and heat transfer in different periods. With only a few empirical parameters, the proposed model will serve as guide in the field of surface irrigation.

  7. The heating rate in the tropical tropopause region; Die Erwaermungsrate in der tropischen Tropopausenregion

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Ulrich

    2010-07-01

    The major part of the movement of air masses from the troposphere to the stratosphere takes place in the tropics. The conveyed air mass is transported with the Brewer-Dobson circulation poleward and therefore influences the global stratospheric composition. An important cause variable for the transport of air through the tropical tropopause layer (TTL) is the radiative heating, which is investigated in this work. The influence of trace gases, temperature, and cloudiness on the heating rate is quantified, especially the effect of the overlap of several cloud layers is discussed. The heating rate in the tropics is simulated for one year. Regional differences of the heating rate profile appear between convective and stably stratified regions. By means of trace gas concentrations, temperature, and heating rates it is determined that an enhanced transport of air through the TTL took place between January and April 2007. The comparison with previous works shows that accurate input data sets of trace gases, temperature, and cloudiness and exact methods for the simulation of the radiative transfer are indispensable for modeling of the heating rate with the required accuracy. (orig.)

  8. Magnetic Field Enhancement of Heat Transport in the 2D Heisenberg Antiferromagnet K_2V_3O_8

    Science.gov (United States)

    Sales, B. C.; Lumsden, M. D.; Nagler, S. E.; Mandrus, D.; Jin, R.

    2002-03-01

    The thermal conductivity and heat capacity of single crystals of the spin 1/2 quasi-2D Heisenberg antiferromagnet K_2V_3O8 have been measured from 1.9 to 300 K in magnetic fields from 0 to 8T. The data are consistent with resonant scattering of phonons by magnons near the zone boundary and heat transport by long wavelength magnons. The magnon heat transport only occurs after the small anisotropic gap at k=0 is closed by the application of a magnetic field. The low temperature thermal conductivity increases linearly with magnetic field after the gap has been closed. Oak Ridge National Laboratory is managed by UT-Battelle LLC for the U.S. Department of Energy under Contract No. DE-AC05-00R22725.

  9. Revisiting the Energy Budget of WASP-43b: Enhanced Day–Night Heat Transport

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Dylan; Cowan, Nicolas B. [Department of Physics, McGill University, 3600 rue University, Montréal, QC H3A 2T8 (Canada)

    2017-11-01

    The large day–night temperature contrast of WASP-43b has so far eluded explanation. We revisit the energy budget of this planet by considering the impact of reflected light on dayside measurements and the physicality of implied nightside temperatures. Previous analyses of the infrared eclipses of WASP-43b have assumed reflected light from the planet is negligible and can be ignored. We develop a phenomenological eclipse model including reflected light, thermal emission, and water absorption, and we use it to fit published Hubble and Spitzer eclipse data. We infer a near-infrared geometric albedo of 24% ± 1% and a cooler dayside temperature of 1483 ± 10 K. Additionally, we perform light curve inversion on the three published orbital phase curves of WASP-43b and find that each suggests unphysical, negative flux on the nightside. By requiring non-negative brightnesses at all longitudes, we correct the unphysical parts of the maps and obtain a much hotter nightside effective temperature of 1076 ± 11 K. The cooler dayside and hotter nightside suggest a heat recirculation efficiency of 51% for WASP-43b, essentially the same as for HD 209458b, another hot Jupiter with nearly the same temperature. Our analysis therefore reaffirms the trend that planets with lower irradiation temperatures have more efficient day–night heat transport. Moreover, we note that (1) reflected light may be significant for many near-IR eclipse measurements of hot Jupiters, and (2) phase curves should be fit with physically possible longitudinal brightness profiles—it is insufficient to only require that the disk-integrated light curve be non-negative.

  10. Weak oceanic heat transport as a cause of the instability of glacial climates

    Energy Technology Data Exchange (ETDEWEB)

    Colin de Verdiere, Alain [Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans, Alain Colin de Verdiere, Brest 3 (France); Te Raa, L. [Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht (Netherlands); Netherlands Organisation for Applied Scientific Research TNO, The Hague (Netherlands)

    2010-12-15

    The stability of the thermohaline circulation of modern and glacial climates is compared with the help of a two dimensional ocean - atmosphere - sea ice coupled model. It turns out to be more unstable as less freshwater forcing is required to induce a polar halocline catastrophy in glacial climates. The large insulation of the ocean by the extensive sea ice cover changes the temperature boundary condition and the deepwater formation regions moves much further South. The nature of the instability is of oceanic origin, identical to that found in ocean models under mixed boundary conditions. With similar strengths of the oceanic circulation and rates of deep water formation for warm and cold climates, the loss of stability of the cold climate is due to the weak thermal stratification caused by the cooling of surface waters, the deep water temperatures being regulated by the temperature of freezing. Weaker stratification with similar overturning leads to a weakening of the meridional oceanic heat transport which is the major negative feedback stabilizing the oceanic circulation. Within the unstable regime periodic millennial oscillations occur spontaneously. The climate oscillates between a strong convective thermally driven oceanic state and a weak one driven by large salinity gradients. Both states are unstable. The atmosphere of low thermal inertia is carried along by the oceanic overturning while the variation of sea ice is out of phase with the oceanic heat content. During the abrupt warming events that punctuate the course of a millennial oscillation, sea ice variations are shown respectively to damp (amplify) the amplitude of the oceanic (atmospheric) response. This sensitivity of the oceanic circulation to a reduced concentration of greenhouse gases and to freshwater forcing adds support to the hypothesis that the millennial oscillations of the last glacial period, the so called Dansgaard - Oeschger events, may be internal instabilities of the climate system

  11. Exact harmonic solutions to Guyer-Krumhansl-type equation and application to heat transport in thin films

    Science.gov (United States)

    Zhukovsky, K.; Oskolkov, D.

    2018-03-01

    A system of hyperbolic-type inhomogeneous differential equations (DE) is considered for non-Fourier heat transfer in thin films. Exact harmonic solutions to Guyer-Krumhansl-type heat equation and to the system of inhomogeneous DE are obtained in Cauchy- and Dirichlet-type conditions. The contribution of the ballistic-type heat transport, of the Cattaneo heat waves and of the Fourier heat diffusion is discussed and compared with each other in various conditions. The application of the study to the ballistic heat transport in thin films is performed. Rapid evolution of the ballistic quasi-temperature component in low-dimensional systems is elucidated and compared with slow evolution of its diffusive counterpart. The effect of the ballistic quasi-temperature component on the evolution of the complete quasi-temperature is explored. In this context, the influence of the Knudsen number and of Cauchy- and Dirichlet-type conditions on the evolution of the temperature distribution is explored. The comparative analysis of the obtained solutions is performed.

  12. Development of suitability maps for ground-coupled heat pump systems using groundwater and heat transport models

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Hikari; Itoi, Ryuichi [Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395 (Japan); Inatomi, Tadasuke [YBM Co. Ltd., Kishiyama 589-10 Kitahata, Karatsu 847-1211 (Japan); Uchida, Youhei [Geological Survey of Japan, AIST Tsukuba Central 7, Tsukuba 305-8567 (Japan)

    2007-10-15

    The thermophysical properties of subsurface materials (soils, sediments and rocks) and groundwater flow strongly affect the heat exchange rates of ground heat exchangers (GHEs). These rates can be maximized and the installation costs of the ground-coupled heat pump (GCHP) systems reduced by developing suitability maps based on local geological and hydrological information. Such maps were generated for the Chikushi Plain (western Japan) using field-survey data and a numerical modeling study. First, a field-wide groundwater model was developed for the area and the results matched against measured groundwater levels and vertical temperature profiles. Single GHE models were then constructed to simulate the heat exchange performance at different locations in the plain. Finally, suitability maps for GCHP systems were prepared using the results from the single GHE models. Variations in the heat exchange rates of over 40% revealed by the map were ascribed to differences in the GHE locations, confirming how important it is to use appropriate thermophysical data when designing GCHP systems. (author)

  13. Associations between serotonin transporter gene polymorphisms and heat pain perception in adults with chronic pain

    Science.gov (United States)

    2013-01-01

    Background The triallelic serotonin transporter gene linked polymorphic region (5-HTTLPR) has been associated with alterations in thermal pain perception. The primary aim of this study was to investigate the associations between heat pain (HP) perception and the triallelic 5-HTTLPR in a large cohort of adults with chronic pain. Methods The cohort included 277 adults with chronic pain who met inclusion criteria, and were consecutively admitted to an outpatient pain rehabilitation program from March 2009 through March 2010. Individuals were genotyped for the triallelic 5-HTTLPR (including rs25531) and categorized as high, intermediate, or low expressors of the serotonin transporter. Standardized measures of HP perception were obtained using a validated quantitative sensory test method of levels. Results The distribution of the high, intermediate, and low expressing genotypes was 61 (22%), 149 (54%) and 67 (24%), respectively. The Hardy-Weinberg P-value was 0.204 which indicated no departure from equilibrium. A significant effect of genotype was observed for values of HP threshold (P = 0.029). Individual group comparisons showed that values of HP threshold were significantly greater in the intermediate compared to the high expressing group (P = 0.009) but not the low expressing group (P > 0.1). In a multiple variable linear regression model, the intermediate group (P = 0.034) and male sex (P = 0.021) were associated with significantly greater values of HP 0.5, but no significant genotype-by-sex interaction effect was observed. Conclusions In this study that involved adults with chronic pain, the intermediate triallelic 5-HTTLPR expressing group, but not the low expressing group, was associated with greater HP thresholds compared to the high expressing group. PMID:23895108

  14. Impact of electro-magnetic stabilization, small- scale turbulence and multi-scale interactions on heat transport in JET

    Science.gov (United States)

    Mantica, Paola

    2016-10-01

    Heat transport experiments in JET, based on ICRH heat flux scans and temperature modulation, have confirmed the importance of two transport mechanisms that are often neglected in modeling experimental results, but are crucial to reach agreement between theory and experiment and may be significant in ITER. The first mechanism is the stabilizing effect of the total pressure gradient (including fast ions) on ITG driven ion heat transport. Such stabilization is found in non-linear gyro-kinetic electro-magnetic simulations using GENE and GYRO, and is the explanation for the observed loss of ion stiffness in the core of high NBI-power JET plasmas. The effect was recently observed also in JET plasmas with dominant ICRH heating and small rotation, due to ICRH fast ions, which is promising for ITER. Such mechanism dominates over ExB flow shear in the core and needs to be included in quasi-linear models to increase their ability to capture the relevant physics. The second mechanism is the capability of small- scale ETG instabilities to carry a significant fraction of electron heat. A decrease in Te peaking is observed when decreasing Zeff Te/Ti, which cannot be ascribed to TEMs but is in line with ETGs. Non-linear GENE single-scale simulations of ETGs and ITG/TEMs show that the ITG/TEM electron heat flux is not enough to match experiment. TEM stiffness is also much lower than measured. In the ETG single scale simulations the external flow shear is used to saturate the ETG streamers. Multi-scale simulations are ongoing, in which the ion zonal flows are the main saturating mechanism for ETGs. These costly simulations should provide the final answer on the importance of ETG-driven electron heat flux in JET. with JET contributors [F.Romanelli, Proc.25thIAEA FEC]. Supported by EUROfusion Grant 633053.

  15. A preliminary design study of a pool-type FBR 'ARES' eliminating intermediate heat transport systems

    International Nuclear Information System (INIS)

    Ueda, N.; Nishi, Y.; Kinoshita, I.; Yoshida, K.

    2001-01-01

    An innovative reactor concept 'ARES' (Advanced Reactor Eliminating Secondary system) is proposed to aim at reducing the construction cost of a liquid metal cooled fast breeder reactor (LMFBR). This concept is developed to show the ultimate cost down potential of LMFBR's at their commercial stage. The electrical output is 1500 MW, while the thermal output is 3900 MW. Main components of the primary cooling system are four electromagnetic pumps (EMP) and eight double-wall-tube steam generators (SG). Both of them are installed in a reactor vessel like pool type LMFBR's. An intermediate heat transport system which a previous LMFBR has it eliminated, main components of which are intermediate heat exchangers (IHX), secondary pumps and secondary piping. Further, a high reliable SG could decrease the occurrence of water leak accidents and reduce the related mitigation systems. In this study, structure concept, approach to embody a high reliable SG and accidents analyses are carried out. Flow path configuration is mainly discussed in investigation of the structure concept. In case of a water leak accident in a SG, the fault SG must be isolated to prevent a reaction production from flowing into the core. The measure to cut both inlet and outlet coolant flow paths by siphon-break mechanism is adopted to be consistent with the decay heat removal operation. The safety design approach of the double-wall-tube SG is investigated to limit the accident occurrence below 10 -7 (1/ry). A tube-to-tube weld is excluded from the reference design, because the welding process is too difficult and complicated to prevent adhesion of the double-wall-tube effectively. The reliability of the tube-to-tube-sheet was evaluated as 10 -10 (1/hr) for an inner tube and 10 -9 (1/hr) for an outer tube with reference to the failure experience of previous SG's. The failure must be detected within 60 to 120 minutes. Finally, a seamless U tube type of double-wall-tube SG is adopted. Transient events due to

  16. Modeling transverse heating and outflow of ionospheric ions from the dayside cusp/cleft. 1 A parametric study

    Directory of Open Access Journals (Sweden)

    M. Bouhram

    2003-08-01

    Full Text Available The transport patterns of non-thermal H + and O + field-aligned flows from the dayside cusp/cleft, associated with transverse heating by means of wave-particle interactions and in combination with the poleward motion due to the magnetospheric convection are investigated. This has been accomplished by developing a steady-state, two-dimensional, trajectory-based code. The ion heating is modelled by means of a Monte Carlo technique, via the process of ion cyclotron resonance (ICR, with the electromagnetic left-hand circular polarized component of a broad-band, extremely low-frequency (BBELF turbulence. The altitude dependence of ICR heating from 1000 km to 3 Earth radii (RE is modelled by a power law spectrum, with an index a, and a parameter w0 that is proportional to the spectral density at a referenced gyrofrequency. Because of the finite latitudinal extent of the cusp/cleft, the incorporation of the horizontal convection drift leads to a maximum residence time tD of the ions when being energized. A large set of simulations has been computed so as to study the transport patterns of the H + and O + bulk parameters as a function of tD , a, and w0. Residence time effects are significant in O + density patterns while negligible for H +. When comparing the results with analytical one-dimensional theories (Chang et al., 1986; Crew et al., 1990, we find that mean ion energies and pitch angles at the poleward edge of the heating region are slightly influenced by tD and may be used as a probe of ICR parameters ( a, w0. Conversely, poleward of the heating region, upward velocity and mean energy dispersive patterns depend mainly on tD (e.g. the magnitude of the convection drift with latitudinal profiles varying versus tD . In short, the main conclusion of the paper is that any triplet (tD , a, w0 leads to a unique transport-pattern feature of ion flows associated with a cusp/cleft ionospheric source. In a companion paper, by using high-altitude (1.5–3 RE

  17. A non-equilibrium model for soil heating and moisture transport during extreme surface heating: The soil (heat-moisture-vapor) HMV-Model Version

    Science.gov (United States)

    William Massman

    2015-01-01

    Increased use of prescribed fire by land managers and the increasing likelihood of wildfires due to climate change require an improved modeling capability of extreme heating of soils during fires. This issue is addressed here by developing and testing the soil (heat-moisture-vapor) HMVmodel, a 1-D (one-dimensional) non-equilibrium (liquid- vapor phase change)...

  18. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3

    Science.gov (United States)

    Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.

    2008-01-01

    The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined

  19. Technology data for energy plants. Individual heating plants and energy transport

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    The present technology catalogue is published in co-operation between the Danish Energy Agency and Energinet.dk and includes technology descriptions for a number of technologies for individual heat production and energy transport. The primary objective of the technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for the work with energy planning and the development of the energy sector, including future outlooks, scenario analyses and technical/economic analyses. The technology catalogue is thus a valuable tool in connection with energy planning and assessment of climate projects and for evaluating the development opportunities for the energy sector's many technologies, which can be used for the preparation of different support programmes for energy research and development. The publication of the technology catalogue should also be viewed in the light of renewed focus on strategic energy planning in municipalities etc. In that respect, the technology catalogue is considered to be an important tool for the municipalities in their planning efforts. (LN)

  20. Development Characteristics of Velocity Transports in An Isothermal Heated Drag-Reducing Surfactant Solution Flow

    Science.gov (United States)

    Zhang, Hongxia; Wang, Dezhong; Chen, Hanping; Wang, Yanping

    2007-06-01

    The development characteristics, turbulence transports for stresses and kinetic energy of a cetyltrimethyl ammonium chloride (CTAC) surfactant solution for a two-dimensional channel flow have been experimentally investigated. Time mean velocity and fluctuating velocity are measured using a Phase Doppler Anemometry (PDA) at the Reynolds number 1.78×104 and isothermal heated temperature 31°C. Although mean velocity profiles at three cross sections show that the fluid is almost fully developed, the peak location of fluctuating intensity for the CTAC solution is slightly away from the wall downstream from the fluid and the peak location of fluctuating intensity is observed at far away from the wall than that of water. The location where the velocity gradient has its maximum, the fluctuating intensity does not get the high value. The elastic shear stress contribution to the total shear stress is 15 percents to 36 percents and it gets to the maximum near to the wall. The surfactant elastic shear stress is almost a liner function of the height of the channel, which means that the elastic stress contribution of the different cross locations is approximately the same. The fluctuating surfactant stress work is negative and the fluctuating elastic shear stresses produce rather than dissipate kinetic energy.

  1. Magnons coherent transmission and its heat transport at ultrathin insulating ferromagnetic nanojunctions

    Directory of Open Access Journals (Sweden)

    Ghantous M. Abou

    2012-06-01

    Full Text Available A model calculation is presented for the magnons coherent transmission and corresponding heat transport at magnetic insulating nanojunctions. The system consists of a ferromagnetically ordered ultrathin insulating junction between two semi-infinite ferromagnetically ordered leads. Spin dynamics are analyzed using the equations of motion for the spin precession displacements, valid for the range of temperatures of interest. Coherent scattering cross-sections at the junction boundary are calculated using the phase field matching theory, for all the incidence angles on the boundary from the lead bands, for arbitrary angles of incidence, at variable temperatures, and for different nano thicknesses of the ultrathin junction. The model is general; it is applied in particular to the Fe/Gd/Fe system with a sandwiched ferromagnetic Gd junction. It yields also the thermal conductivity due to the magnons coherent transmission between the two leads when these are maintained at slightly different temperatures. The calculation is carried out for state of the art values of the exchange constants, and elucidates the relation between the coherent scattering transmission of magnons and their thermal conductivity, for different thicknesses.

  2. Impacts of Wind Stress Changes on the Global Heat Transport, Baroclinic Instability, and the Thermohaline Circulation

    Directory of Open Access Journals (Sweden)

    Jeferson Prietsch Machado

    2016-01-01

    Full Text Available The wind stress is a measure of momentum transfer due to the relative motion between the atmosphere and the ocean. This study aims to investigate the anomalous pattern of atmospheric and oceanic circulations due to 50% increase in the wind stress over the equatorial region and the Southern Ocean. In this paper we use a coupled climate model of intermediate complexity (SPEEDO. The results show that the intensification of equatorial wind stress causes a decrease in sea surface temperature in the tropical region due to increased upwelling and evaporative cooling. On the other hand, the intensification of wind stress over the Southern Ocean induces a regional increase in the air and sea surface temperatures which in turn leads to a reduction in Antarctic sea ice thickness. This occurs in association with changes in the global thermohaline circulation strengthening the rate of Antarctic Bottom Water formation and a weakening of the North Atlantic Deep Water. Moreover, changes in the Southern Hemisphere thermal gradient lead to modified atmospheric and oceanic heat transports reducing the storm tracks and baroclinic activity.

  3. Critical temperature gradient length signatures in heat wave propagation across internal transport barriers in the Joint European Torus

    International Nuclear Information System (INIS)

    Casati, Alessandro; Mantica, P.; Eester, D. van; Hawkes, N.; De Vries, P.; Imbeaux, F.; Joffrin, E.; Marinoni, A.; Ryter, F.; Salmi, A.; Tala, T.

    2007-01-01

    New results on electron heat wave propagation using ion cyclotron resonance heating power modulation in the Joint European Torus (JET) [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)] plasmas characterized by internal transport barriers (ITBs) are presented. The heat wave generated outside the ITB, and traveling across it, always experiences a strong damping in the ITB layer, demonstrating a low level of transport and loss of stiffness. In some cases, however, the heat wave is strongly inflated in the region just outside the ITB, showing features of convective-like behavior. In other cases, a second maximum in the perturbation amplitude is generated close to the ITB foot. Such peculiar types of behavior can be explained on the basis of the existence of a critical temperature gradient length for the onset of turbulent transport. Convective-like features appear close to the threshold (i.e., just outside the ITB foot) when the value of the threshold is sufficiently high, with a good match with the theoretical predictions for the trapped electron mode threshold. The appearance of a second maximum is due to the oscillation of the temperature profile across the threshold in the case of a weak ITB. Simulations with an empirical critical gradient length model and with the theory based GLF23 [R. E. Waltz et al., Phys. Plasmas, 4, 2482 (1997)] model are presented. The difference with respect to previous results of cold pulse propagation across JET ITBs is also discussed

  4. Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Wang, Zhiqiang

    2014-01-01

    Highlights: • Using local thermal non-equilibrium model to solve heat transfer of porous media. • CH 4 /H 2 O mixture is adopted as feeding gas of porous media receiver. • Radiative transfer equation between porous strut is solved by Rosseland approximation. • Transport and thermophysical models not included in Fluent are programmed by UDFs. • Variations of model on thermal performance of porous media receiver are studied. - Abstract: The local thermal non-equilibrium model is adopted to solve the steady state heat and mass transfer problems of porous media solar receiver. The fluid entrance surface is subjected to concentrated solar radiation, and CH 4 /H 2 O mixture is adopted as feeding gas. The radiative heat transfer equation between porous strut is solved by Rosseland approximation. The impacts of variation in transport and thermophysical characteristics model of gas mixture on thermal performance of porous media receiver are investigated. The transport and thermophysical characteristics models which are not included in software Fluent are programmed by user defined functions (UDFs). The numerical results indicate that models of momentum source term for porous media receiver have significant impact on pressure drop and static pressure distribution, and the radiative heat transfer cannot be omitted during the thermal performance analysis of porous media receiver

  5. Effects of heat and water transport on the performance of polymer electrolyte membrane fuel cell under high current density operation

    International Nuclear Information System (INIS)

    Tabuchi, Yuichiro; Shiomi, Takeshi; Aoki, Osamu; Kubo, Norio; Shinohara, Kazuhiko

    2010-01-01

    Key challenges to the acceptance of polymer electrolyte membrane fuel cells (PEMFCs) for automobiles are the cost reduction and improvement in its power density for compactness. In order to get the solution, the further improvement in a fuel cell performance is required. In particular, under higher current density operation, water and heat transport in PEMFCs has considerable effects on the cell performance. In this study, the impact of heat and water transport on the cell performance under high current density was investigated by experimental evaluation of liquid water distribution and numerical validation. Liquid water distribution in MEA between rib and channel area is evaluated by neutron radiography. In order to neglect the effect of liquid water in gas channels and reactant species concentration distribution in the flow direction, the differential cell was used in this study. Experimental results suggested that liquid water under the channel was dramatically changed with rib/channel width. From the numerical study, it is found that the change of liquid water distribution was significantly affected by temperature distribution in MEA between rib and channel area. In addition, not only heat transport but also water transport through the membrane also significantly affected the cell performance under high current density operation.

  6. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    Science.gov (United States)

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; McKee, G. R.; Holland, C.; Austin, M.; Marinoni, A.; Schmitz, L.; Pinsker, R. I.; DIII-D Team

    2018-02-01

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changes in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. For a range of E × B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.

  7. MAGNUM-2D, Heat Transport and Groundwater Flow in Fractured Porous Media

    International Nuclear Information System (INIS)

    Langford, D.W.; Baca, R.G.

    2001-01-01

    1 - Description of program or function: MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water-rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and inter- connecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, non- isothermal Darcy flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER post-processor interpolates non-regularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH post-processor plots flow paths and computes the corresponding travel times. 2 - Method of solution: MAGNUM2

  8. Heat insulating structure for use in transporting and handling gas of high temperature and pressure

    International Nuclear Information System (INIS)

    Mathusima, T.; Sato, T.; Uenishi, A.

    1980-01-01

    A heat insulating structure is described that has a heat-resistant tube disposed in a tubular cylindrical body and defining a passage for a high temperature gas, a heat insulating material disposed between the tube and the tubular cylindrical body and adapted to prevent the heat possessed by the gas from being transmitted to the tubular cylindrical body, and a spring adapted to bias the heat insulating material toward the inner surface of the tubular cylindrical body, so as to prevent the formation of a bypass passage for the gas including the gap between the tubular cylindrical body and the heat insulating material. The heat insulating material consists of a plurality of fibrous heat insulating materials mainly consisting of bulky fibrous materials and a plurality of shaped fibrous heat insulating materials. These fibrous heat insulating materials and the shaped fibrous heat insulating materials are arranged alternatingly and independently in the axial direction. In each of the bulky fibrous heat insulating material, disposed is a spring for biasing the shaped fibrous heat insulating material in the axial direction

  9. NON-LINEAR TRANSIENT HEAT CONDUCTION ANALYSIS OF INSULATION WALL OF TANK FOR TRANSPORTATION OF LIQUID ALUMINUM

    Directory of Open Access Journals (Sweden)

    Miroslav M Živković

    2010-01-01

    Full Text Available This paper deals with transient nonlinear heat conduction through the insulation wall of the tank for transportation of liquid aluminum. Tanks designed for this purpose must satisfy certain requirements regarding temperature of loading and unloading, during transport. Basic theoretical equations are presented, which describe the problem of heat conduction finite element (FE analysis, starting from the differential equation of energy balance, taking into account the initial and boundary conditions of the problem. General 3D problem for heat conduction is considered, from which solutions for two- and one-dimensional heat conduction can be obtained, as special cases. Forming of the finite element matrices using Galerkin method is briefly described. The procedure for solving equations of energy balance is discussed, by methods of resolving iterative processes of nonlinear transient heat conduction. Solution of this problem illustrates possibilities of PAK-T software package, such as materials properties, given as tabular data, or analytical functions. Software also offers the possibility to solve nonlinear and transient problems with incremental methods. Obtained results for different thicknesses of the tank wall insulation materials enable its comparison in regards to given conditions

  10. Heat and mass transport during microwave heating of mashed potato in domestic oven--model development, validation, and sensitivity analysis.

    Science.gov (United States)

    Chen, Jiajia; Pitchai, Krishnamoorthy; Birla, Sohan; Negahban, Mehrdad; Jones, David; Subbiah, Jeyamkondan

    2014-10-01

    A 3-dimensional finite-element model coupling electromagnetics and heat and mass transfer was developed to understand the interactions between the microwaves and fresh mashed potato in a 500 mL tray. The model was validated by performing heating of mashed potato from 25 °C on a rotating turntable in a microwave oven, rated at 1200 W, for 3 min. The simulated spatial temperature profiles on the top and bottom layer of the mashed potato showed similar hot and cold spots when compared to the thermal images acquired by an infrared camera. Transient temperature profiles at 6 locations collected by fiber-optic sensors showed good agreement with predicted results, with the root mean square error ranging from 1.6 to 11.7 °C. The predicted total moisture loss matched well with the observed result. Several input parameters, such as the evaporation rate constant, the intrinsic permeability of water and gas, and the diffusion coefficient of water and gas, are not readily available for mashed potato, and they cannot be easily measured experimentally. Reported values for raw potato were used as baseline values. A sensitivity analysis of these input parameters on the temperature profiles and the total moisture loss was evaluated by changing the baseline values to their 10% and 1000%. The sensitivity analysis showed that the gas diffusion coefficient, intrinsic water permeability, and the evaporation rate constant greatly influenced the predicted temperature and total moisture loss, while the intrinsic gas permeability and the water diffusion coefficient had little influence. This model can be used by the food product developers to understand microwave heating of food products spatially and temporally. This tool will allow food product developers to design food package systems that would heat more uniformly in various microwave ovens. The sensitivity analysis of this study will help us determine the most significant parameters that need to be measured accurately for reliable

  11. Electronic contributions to the transport properties and specific heat of solid UO2: an empirical, self-consistent analysis

    International Nuclear Information System (INIS)

    Hyland, G.J.; Ralph, J.

    1982-07-01

    From an empirical, self-consistent analysis of new high temperature data on the thermo-electric Seebeck coefficient and d.c. electrical conductivity, the value of the free energy controlling the equilibrium of the thermally induced reaction, 2U 4+ reversible U 3+ + U 5+ is determined (treating the U 3+ and U 5+ as small polarons) and used to calculate the contribution of the process to the high temperature thermal conductivity and specific heat of UO 2 . It is found that the transport properties can be completely accounted for in this way, but not the anomalous rise in specific heat - the origin of which remains obscure. (U.K.)

  12. Investigation of thermal energy transport from an anisotropic central heating element to the adjacent channels: A multipoint flux approximation

    KAUST Repository

    Salama, Amgad

    2015-02-01

    The problem of heat transfer from a central heating element pressed between two clad plates to cooling channels adjacent and outboard of the plates is investigated numerically. The aim of this work is to highlight the role of thermal conductivity anisotropy of the heating element and/or the encompassing plates on thermal energy transport to the fluid passing through the two channels. When the medium is anisotropic with respect to thermal conductivity; energy transport to the neighboring channels is no longer symmetric. This asymmetry in energy fluxes influence heat transfer to the coolant resulting in different patterns of temperature fields. In particular, it is found that the temperature fields are skewed towards the principal direction of anisotropy. In addition, the heat flux distributions along the edges of the heating element are also different as a manifestation of thermal conductivity anisotropy. Furthermore, the peak temperature at the channel walls change location and magnitude depending on the principal direction of anisotropy. Based on scaling arguments, it is found that, the ratio of width to the height of the heating system is a key parameter which can suggest when one may ignore the effect of the cross-diagonal terms of the full conductivity tensor. To account for anisotropy in thermal conductivity, the method of multipoint flux approximation (MPFA) is employed. Using this technique, it is possible to find a finite difference stencil which can handle full thermal conductivity tensor and in the same time enjoys the simplicity of finite difference approximation. Although the finite difference stencil based on MPFA is quite complex, in this work we apply the recently introduced experimenting field approach which construct the global problem automatically.

  13. Radio-frequency heating and neutral atom transport in a fluid-magnetohydrodynamic treatment of burning tokamak plasmas

    International Nuclear Information System (INIS)

    Conn, R.W.; Mau, T.K.; Prinja, A.K.

    1983-01-01

    A physical model for the space and time evolution of the primary parameters of ordinary and burning tokamak plasmas is described by employing a fluid plasma treatment coupled to a magnetohydrodynamic equilibrium description, the solution to the appropriate Maxwell equations, and the solution of the linear transport equation describing neutral atom transport in plasmas. The specific problems of plasma heating by ion cyclotron radiofrequency (ICRF) waves and neutral atom transport in the plasma edge and in complicated geometrical components such as divertor channels or pumped limiter structures are analyzed. A theoretical, onedimensional slab model of ICRF heating at ω = 2ω/SUB cD/ is developed and applied to determine the space-time response of tokamak plasmas. Generally, strong single-pass absorption is found for high-density, high (β) plasmas using a low k 11 spectrum (0.05 to 0.1 cm -1 ) although for (β > 1%, electron Landau damping becomes important. Deterministic and Monte Carlo methods to solve the neutral atom transport problem are described. Specific application to determine the spectrum of neutral atoms emerging from the duct of a pump limiter shows it to be hard (mean energy > 20 eV), indicating very incomplete energy thermalization. Uncertainties are identified in the overall problem of dynamic burning plasma analysis caused by the complexity of the problem itself and by uncertainties in fundamental areas such as plasma transport coefficients, stability, and plasma edge physics

  14. Fission products distributions in Candu primary heat transport and Candu containment systems during a severe accident

    International Nuclear Information System (INIS)

    Constantin, Marin; Rizoiu, Andrei

    2005-01-01

    The paper is intended to analyse the distribution of the fission products (FPs) in CANDU Primary Heat Transport (PHT) and CANDU Containment Systems by using the ASTEC code (Accident Source Term Evaluation Code). The complexity of the data required by ASTEC and the complexity both of CANDU PHT and Containment System were strong motivations to begin with a simplified geometry in order to avoid the introducing of unmanageable errors at the level of input deck. Thus only 1/4 of the PHT circuit was simulated and a simplified FPs inventory, some simplifications in the feeders geometry and containment were used. The circuit consists of 95 horizontal fuel channels connected to 95 horizontal out-feeders, then through vertical feeders to the outlet-header (a big pipe that collects the water from feeders); the circuit continues from the outlet-header with a riser and then with the steam generator and a pump. After this pump, the circuit was broken; in this point the FPs are transferred to the containment. The containment model consists of 4 rooms connected between by 6 links. The data related to the nodes' definitions, temperatures and pressure conditions were chosen as possible as real data from CANDU NPP loss of coolant accident sequence. Temperature and pressure conditions in the time of the accident were calculated by the CATHENA code and the source term of FPs introduced into the PHT was estimated by the ORIGEN code. The FPs distribution in the nodes of the circuit and the FPs mass transfer per isotope and chemical species are obtained by using SOPHAEROS module of ASTEC code. The distributions into the containment are obtained by the CPA module of ASTEC code (thermalhydraulics calculations in the containment and FPs aerosol transport). The results consist of mass distributions in the nodes of the circuit and the transferred mass to the containment through the break for different species (FPs and chemical species) and mass distributions in the different parts and

  15. Body size, growth and life span: implications for the polewards range shift of Octopus tetricus in south-eastern Australia.

    Science.gov (United States)

    Ramos, Jorge E; Pecl, Gretta T; Moltschaniwskyj, Natalie A; Strugnell, Jan M; León, Rafael I; Semmens, Jayson M

    2014-01-01

    Understanding the response of any species to climate change can be challenging. However, in short-lived species the faster turnover of generations may facilitate the examination of responses associated with longer-term environmental change. Octopus tetricus, a commercially important species, has undergone a recent polewards range shift in the coastal waters of south-eastern Australia, thought to be associated with the southerly extension of the warm East Australian Current. At the cooler temperatures of a polewards distribution limit, growth of a species could be slower, potentially leading to a bigger body size and resulting in a slower population turnover, affecting population viability at the extreme of the distribution. Growth rates, body size, and life span of O. tetricus were examined at the leading edge of a polewards range shift in Tasmanian waters (40°S and 147°E) throughout 2011. Octopus tetricus had a relatively small body size and short lifespan of approximately 11 months that, despite cooler temperatures, would allow a high rate of population turnover and may facilitate the population increase necessary for successful establishment in the new extended area of the range. Temperature, food availability and gender appear to influence growth rate. Individuals that hatched during cooler and more productive conditions, but grew during warming conditions, exhibited faster growth rates and reached smaller body sizes than individuals that hatched into warmer waters but grew during cooling conditions. This study suggests that fast growth, small body size and associated rapid population turnover may facilitate the range shift of O. tetricus into Tasmanian waters.

  16. Tensile and fracture properties of primary heat transport system piping material

    International Nuclear Information System (INIS)

    Singh, P.K.; Chattopadhyay, J.; Kushwaha, H.S.

    1997-07-01

    The fracture mechanics calculations in leak-before-break analysis of nuclear piping system require material tensile data and fracture resistance properties in the form of J-R curve. There are large variations in fracture parameters due to variation in chemical composition and process used in making the steel components. Keeping this in view, a comprehensive program has been planned to generate the material data base for primary heat transport system piping using the specimens machined from actual pipes used in service. The material under study are SA333 Gr.6 (base as well as weld) and SA350 LF2 (base). Since the operating temperatures of 500 MWe Indian PHWR PHT system piping range from 260 degC to 304 degC the test temperature chosen are 28 degC, 200 degC, 250 degC and 300 degC. Tensile and compact tension specimens have been fabricated from actual pipe according to ASTM standard. Fracture toughness of base metal has been observed to be higher compared to weld metal in SA333 Gr.6 material for the temperature under consideration. Fracture toughness has been observed to be higher for LC orientation (notch in circumferential direction) compared to CL orientation (notch is in longitudinal direction) for the temperature range under study. Fracture toughness value decreases with increase in temperature for the materials under study. Finally, chemical analysis has been carried out to investigate the reason for high toughness of the material. It has been concluded that low percentage of carbon and nitrogen, low inclusion rating and fine grain size has enhanced the fracture toughness value

  17. Thermal hydraulic studies for passive heat transport systems relevant to advanced reactors

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Sharma, M.; Borgohain, A.; Srivastava, A.K.; Pilkhwal, D.S.; Maheshwari, N.K.

    2014-01-01

    Nuclear is the only non-green house gas generating power source that can replace fossil fuels and can be commercially deployed in large scale. However, the enormous developmental efforts and safety upgrades during the past six decades have somewhat eroded the economic competitiveness of water-cooled reactors which form the mainstay of the current nuclear power programme. Further, the introduction of the supercritical Rankine cycle and the gas turbine based advanced fuel cycles have enhanced the efficiency of fossil fired power plants (FPP) thereby reducing its greenhouse gas emissions. The ongoing development of ultra-supercritical and advanced ultra-supercritical turbines aims to further reduce the greenhouse gas emissions and economic competitiveness of FPPs. In the backdrop of these developments, the nuclear industry also initiated development of advanced nuclear power plants (NPP) with improved efficiency, sustainability and enhanced safety as the main goals. A review of the advanced reactor concepts being investigated currently reveals that excepting the SCWR, all other concepts use coolants other than water. The coolants used are lead, lead bismuth eutectic, liquid sodium, molten salts, helium and supercritical water. Besides, some of these are employing passive systems to transport heat from the core under normal operating conditions. In view of this, a study is in progress at BARC to examine the performance of simple passive systems using SC CO 2 , SCW, LBE and molten salts as the coolant. This paper deals with some of the recent results of these studies. The study focuses on the steady state, transient and stability behaviour of the passive systems with these coolants. (author)

  18. Albedo and heat transport in 3-D model simulations of the early Archean climate

    Directory of Open Access Journals (Sweden)

    H. Kienert

    2013-08-01

    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion years ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun paradox" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-D model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. In order to do so, we have appropriately modified an intermediate complexity climate model that couples a statistical-dynamical atmosphere model (involving parameterizations of the dynamics to an ocean general circulation model and a thermodynamic-dynamic sea-ice model. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today, which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterization of the ice-albedo feedback for 1-D model simulations of the early Archean and thus the faint young Sun problem.

  19. Ab-initio quantum transport simulation of self-heating in single-layer 2-D materials

    Science.gov (United States)

    Stieger, Christian; Szabo, Aron; Bunjaku, Teutë; Luisier, Mathieu

    2017-07-01

    Through advanced quantum mechanical simulations combining electron transport and phonon transport from first-principles, self-heating effects are investigated in n-type transistors with single-layer MoS2, WS2, and black phosphorus as channel materials. The selected 2-D crystals all exhibit different phonon-limited mobility values, as well as electron and phonon properties, which have a direct influence on the increase in their lattice temperature and on the power dissipated inside their channel as a function of the applied gate voltage and electrical current magnitude. This computational study reveals (i) that self-heating plays a much more important role in 2-D materials than in Si nanowires, (ii) that it could severely limit the performance of 2-D devices at high current densities, and (iii) that black phosphorus appears less sensitive to this phenomenon than transition metal dichalcogenides.

  20. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  1. Numerical study of the influence of the convective heat transport on acoustic streaming in a standing wave.

    Science.gov (United States)

    Červenka, Milan; Bednařík, Michal

    2018-02-01

    Within this work, acoustic streaming in an air-filled cylindrical resonator with walls supporting a temperature gradient is studied by means of numerical simulations. A set of equations based on successive approximations is derived from the Navier-Stokes equations. The equations take into account the acoustic-streaming-driven convective heat transport; as time-averaged secondary-field quantities are directly calculated, the equations are much easier to integrate than the original fluid-dynamics equations. The model equations are implemented and integrated employing commercial software COMSOL Multiphysics. Numerical calculations are conducted for the case of a resonator with a wall-temperature gradient corresponding to the action of a thermoacoustic effect. It is shown that due to the convective heat transport, the streaming profile is considerably distorted even in the case of weak wall-temperature gradients. The numerical results are consistent with available experimental data.

  2. Simulation of the fusion materials irradiation test facility lithium and heat transport systems for abnormal events study

    International Nuclear Information System (INIS)

    Carlson, W.F.; Elyashar, N.N.

    1981-01-01

    A digital computer model of Fusion Materials Irradiation Test Facility's heat transport system has been developed. The model utilizes a set of coupled differential equations to simulate the dynamic behavior of the primary and secondary heat transport loop systems. The model has been used to investigate the stability of the proposed control schemes for lithium temperature and flow rate and for an extensive study of equipment failures and malfunction analysis. It was determined that certain equipment failures and malfunctions in the primary loop require a response from the control system within less than one second of the occurrence of the failure. The effects of equipment failures in the secondary loop were found to be less dramatic than the equivalent failures in the primary loop. The failures in the secondary loop generally required control action in time frames of the order of minutes

  3. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex E.; Norford, Leslie K.; Koh, Tieh-Yong; Entekhabi, Dara

    2012-02-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.

  4. JOYO MK-III modification work on heat transport system. Working plan and plant control

    International Nuclear Information System (INIS)

    Isozaki, K.; Ichige, S.; Ohshima, J.

    2002-07-01

    The MK-III project to improve the irradiation capability of the experimental fast reactor JOYO have been in underway since 1987. The increase of fast neutron flux and the enlargement of that field increase the reactor thermal rate from 100 MWt to 140 MWt. To increase cooling capacity of heat transport system, intermediate heat exchangers (IHXs), dump heat exchangers (DHXs), piping connecting to IHXs and DHXs, main motors on primary and secondary main circulation pumps were replaced. The replacement of these large components was carried out under following hard conditions. 1) Limitation of work space, 2) Fuel subassembly and molten sodium in the reactor vessel, 3) high radiation circumstances for primary cooling system, 4) treatment of radioactive sodium (radioactive sodium and corrosion product such as 60 Co, 54 Mn). There are little experiences of this kind of work in the world. Therefore the organization, working plan and safety management points were carefully examined and established, based on the previous experience of JOYO operation and maintenance, research and development results of safety treatment of sodium, experience of previous work on sodium facilities. Followings results were obtained and effectiveness was confirmed in the work. (1) Development of most suitable working plan derived from elements and full size mock up experiments, reduction of exposure time by workers training, reduction of radiation dose by installation of temporal radiation shielding were useful to reduce radiation dose. The usage of seal bag was useful to prevent the contamination spreading over. (2) The usage of seal bag, oxygen concentration monitoring in the seal bag, nitrogen concentration monitoring in the cooling system cover gas, low pressure control of cover gas were useful to reduce the inflow of oxygen to cooling system. (3) The bite cutting method for piping in air and press down cutting by roller cutter in the seal bag to prevent inflow of cutting piece, stopper

  5. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    International Nuclear Information System (INIS)

    Lee, Dew Hey; Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong

    2002-03-01

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology

  6. Analysis technology in the thick plate free drop impact, heat and thermal stress of the cask for radioactive material transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dew Hey [Korea Institute of Nuclear and Safety, Taejon (Korea, Republic of); Lee, Young Shin; Ryu, Chung Hyun; Kim, Hyun Su; Choi, Kyung Joo; Choi, Young Jin; Lee, Jae Hyung; Na, Jae Yun; Kim, Seong Jong [Chungnam National Univ., Taejon (Korea, Republic of)

    2002-03-15

    In this study, The regulatory condition and analysis condition is analyzed for thick plate free drop, heat and thermal stress analysis to develop the safety assessment technology. Analysis is performed with finite element method which is one of the many analysis methods of the shipping cask. ANSYS, LS-DYNA3D and ABAQUS is suitable for thick plate free drop, heat and thermal stress analysis of the shipping cask. For the analysis model, the KSC-4 that is the shipping cask to transport spent nuclear fuel is investigated. The results of both LS-DYNA3D and ABAQUS for thick plate free drop and the results of ANSYS, LS-DYNA3D and ABAQUS for heat and thermal stress analysis is completely corresponded. And the integrity of the shipping cask is verified. Using this study, the reliable safety assessment technology is supplied to the staff. The efficient and reliable regulatory tasks is performed using the standard safety assessment technology.

  7. Time-dependent photon heat transport through a mesoscopic Josephson device

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wen-Ting; Zhao, Hong-Kang, E-mail: zhaohonk@bit.edu.cn

    2017-02-15

    The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green’s function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heat branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction. - Highlights: • The time-oscillating photon heat current through a mesoscopic Josephson Junction has been investigated. • The Landauer-like formula of photon heat current has been derived by the nonequilibrium Green’s function approach. • Nonlinear behaviors are exhibited in the photon heat current resulting from the self inductance and Coulomb interaction. • The oscillation structure of heat current is composed of the superposition of oscillations with different periods.

  8. Time-dependent photon heat transport through a mesoscopic Josephson device

    International Nuclear Information System (INIS)

    Lu, Wen-Ting; Zhao, Hong-Kang

    2017-01-01

    The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green’s function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heat branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction. - Highlights: • The time-oscillating photon heat current through a mesoscopic Josephson Junction has been investigated. • The Landauer-like formula of photon heat current has been derived by the nonequilibrium Green’s function approach. • Nonlinear behaviors are exhibited in the photon heat current resulting from the self inductance and Coulomb interaction. • The oscillation structure of heat current is composed of the superposition of oscillations with different periods.

  9. Investigation of diffusional transport of heat and its enhancement in phase-change thermal energy storage systems

    International Nuclear Information System (INIS)

    Saraswat, Amit; Bhattacharjee, Rajdeep; Verma, Ankit; Das, Malay K.; Khandekar, Sameer

    2017-01-01

    Thermal energy storage in general, and phase-change materials (PCMs) in particular, have been a major topic of research for the last thirty years. Due to their favorable thermo-dynamical characteristics, such as high density, specific heat and latent heat of fusion, PCMs are usually employed as working fluids for thermal storage. However, low thermal conductivities of organic PCMs have posed a continuous challenge in its large scale deployment. This study focuses on experimental and numerical investigation of the melting process of industrial grade paraffin wax inside a semi-cylindrical enclosure with a heating strip attached axially along the center of semi-cylinder. During the first part of the study, the solid-liquid interface location, the liquid flow patterns in the melt pool, and the spatial and temporal variation of PCM temperature were recorded. For numerical simulation of the system, open source library OpenFOAM® was used in order to solve the coupled Navier-Stokes and energy equations in the considered system. It is seen that the enthalpy-porosity technique implemented on OpenFOAM® is reasonably well suited for handling melting/solidification problems and can be employed for system level design. Next, to overcome the inherent thermal limitations of PCM storage material, the study further explored the potential of coupling the existing heat source with copper-water heat pipes, so as to help augment the rate of heat dissipation within the medium by increasing the effective system-level thermal conductivity. Integration of heat pipes led to enhanced transport, and hence, a substantial decrease in the total required melting time. The study provides a framework for designing of large systems with integration of heat pipes with PCM based thermal storage systems.

  10. A New Scheme for Considering Soil Water-Heat Transport Coupling Based on Community Land Model: Model Description and Preliminary Validation

    Science.gov (United States)

    Wang, Chenghai; Yang, Kai

    2018-04-01

    Land surface models (LSMs) have developed significantly over the past few decades, with the result that most LSMs can generally reproduce the characteristics of the land surface. However, LSMs fail to reproduce some details of soil water and heat transport during seasonal transition periods because they neglect the effects of interactions between water movement and heat transfer in the soil. Such effects are critical for a complete understanding of water-heat transport within a soil thermohydraulic regime. In this study, a fully coupled water-heat transport scheme (FCS) is incorporated into the Community Land Model (version 4.5) to replaces its original isothermal scheme, which is more complete in theory. Observational data from five sites are used to validate the performance of the FCS. The simulation results at both single-point and global scale show that the FCS improved the simulation of soil moisture and temperature. FCS better reproduced the characteristics of drier and colder surface layers in arid regions by considering the diffusion of soil water vapor, which is a nonnegligible process in soil, especially for soil surface layers, while its effects in cold regions are generally inverse. It also accounted for the sensible heat fluxes caused by liquid water flow, which can contribute to heat transfer in both surface and deep layers. The FCS affects the estimation of surface sensible heat (SH) and latent heat (LH) and provides the details of soil heat and water transportation, which benefits to understand the inner physical process of soil water-heat migration.

  11. INDUCTION HEATING IN HISTORY AND DEVELOPMENT. APPLICATION IN MODERN TRANSPORT REPAIRING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Yu. Batyhin

    2017-06-01

    Full Text Available The technologies used in repair of vehicles were analyzed in the given paper. The shortcomings of the mechanical repair methods in question can be solved by using induction heating. Analysis of the stages of development and implementation of induction heating in industries showed effective performance of this technology and its opportunities for further improvement. An alternative repair technique, which consists in using induction heating, was proposed.

  12. Radiation and gas conduction heat transport across a helium dewer multilayer insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  13. Heat transport and solar transmission through a window system with low-emitting coatings

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, B; Ribbing, C G

    1977-12-01

    Heat transfer processes through a double-glazed window system are examined. Network calculations show the good insulation properties of a double-glazed window system including at least one low-emitting film. When the insolation is taken into consideration, absorption in the panes change the heat-balance and a heat-transfer coefficient can not be defined. The thermal and optical properties of windows with low-emitting metallic films are investigated. These windows depress the heat-losses but show a relatively low solar transmission. They are suitable for reducing intense sunlight during the summer period, together with good thermal insulation during periods with low insolation.

  14. Heat and Water Transport in Soils and Across the Soil-Atmosphere Interface: Comparison of Model Concepts

    DEFF Research Database (Denmark)

    Vanderborght, Jan; Smits, Kathleen; Mosthaf, Klaus

    Evaporation from the soil surface represents a water flow and transport process in a porous medium that is coupled with free air flow and with heat fluxes in the system. We give an overview of different model concepts that are used to describe this process. These range from non-isothermal two......-phase flow two-component transport in the porous medium that is coupled with one-phase flow two-component transport in the free air to isothermal water flow in the porous with upper boundary conditions defined by a potential evaporation flux when available energy and transfer to the free air flow...... models were found. The effect of vapor flow in the porous medium on cumulative evaporation could be evaluated using the desorptivity, Sevap, which represents a weighted average of liquid and vapor diffusivity over the range of soil water contents between the soil surface water content and the initial...

  15. Formation of core transport barrier and CH-Mode by ion Bernstein wave heating in PBX-M

    International Nuclear Information System (INIS)

    Ono, M.; Bell, R.; Bernabei, S.; Gettelfinger, G.; Hatcher, R.; Kaita, R.; Kaye, S.; Kugel, H.; LeBlanc, B.; Manickam, J.

    1995-01-01

    Observation of core transport barrier formation (for particles, ion and electron energies, and toroidal momentum) by ion Bernstein wave heating (IBWH) in PBX-M plasma is reported. The formation of a transport barrier leads to a strong peaking and significant increase of the core pressure (70%) and toroidal momentum (20%), and has been termed the core-high confinement mode (CH-Mode). This formation of a transport barrier is consistent, in terms of the expected barrier location as well as the required threshold power, with a theoretical model based on the poloidal sheared flow generation by the ion Bernstein wave power. The use of ion Bernstein wave (IBW) induced sheared flow as a tool to control plasma pressure and bootstrap current profiles shows a favorable scaling for the use in future reactor grade tokamak plasmas

  16. Probing liquation cracking and solidification through modeling of momentum, heat, and solute transport during welding of aluminum alloys

    International Nuclear Information System (INIS)

    Mishra, S.; Chakraborty, S.; DebRoy, T.

    2005-01-01

    A transport phenomena-based mathematical model is developed to understand liquation cracking in weldments during fusion welding. Equations of conservation of mass, momentum, heat, and solute transport are numerically solved considering nonequilibrium solidification and filler metal addition to determine the solid and liquid phase fractions in the solidifying region and the solute distribution in the weld pool. An effective partition coefficient that considers the local interface velocity and the undercooling is used to simulate solidification during welding. The calculations show that convection plays a dominant role in the solute transport inside the weld pool. The predicted weld-metal solute content agreed well with the independent experimental observations. The liquation cracking susceptibility in Al-Cu alloy weldments could be reliably predicted by the model based on the computed solidifying weld-metal composition and solid fraction considering nonequilibrium solidification

  17. Impurity transport studies by means of tracer-encapsulated solid pellet injection in neutral beam heated plasmas on LHD

    International Nuclear Information System (INIS)

    Tamura, N; Sudo, S; Khlopenkov, K V; Kato, S; Sergeev, V Yu; Muto, S; Sato, K; Funaba, H; Tanaka, K; Tokuzawa, T; Yamada, I; Narihara, K; Nakamura, Y; Kawahata, K; Ohyabu, N; Motojima, O

    2003-01-01

    The quantitative properties of impurity transport in large helical device (LHD) plasmas heated by neutral beam injection have been investigated by means of tracer-encapsulated solid pellet (TESPEL) injection. In the case of a titanium (Ti) tracer, the behaviour of the emission lines from the highly ionized Ti impurity, Ti Kα(E He-like ∼ 4.7 keV) and Ti XIX (λ = 16.959 nm), has been observed clearly by a soft x-ray pulse height analyzer and a vacuum ultraviolet spectrometer, respectively. A fairly longer decay time of the Ti Kα emission lines is obtained above the value of a line-averaged electron density, 3.0x10 19 m -3 . The dependence of the behaviour of the Ti tracer impurity on the line-averaged electron density below the value of that, 3.5x10 19 m -3 is in qualitative agreement with the characteristics obtained from the observation of the behaviour of an intrinsic metallic impurity in neutral beam heated plasmas on LHD. In order to estimate the properties of the Ti impurity transport quantitatively, the one-dimensional impurity transport code, MIST has been used. As a result of the transport analysis with the MIST code, even an small inward convection should be necessary to account for the experimental results with the value of the line-averaged electron density, 3.5x10 19 m -3 . In order to examine the experimentally obtained transport coefficients, neoclassical analysis with respect to the radial impurity flux has been performed. The inferred rise of the inward convection cannot be explained solely by neoclassical impurity transport. Therefore, in order to account for the inward convection, the effect of a radial electric field and/or some other effect must be taken into account additionally

  18. Lithium Hideout and Return in the CANDU Heat Transport System during Shutdown and Start-up

    International Nuclear Information System (INIS)

    Qiu, L.; Snaglewski, A.P.

    2012-09-01

    Lithium hydroxide is used to control the pH a (pH apparent) of the Heat Transport System (HTS) coolant in CANDU R reactors. The recommended range of the lithium concentration in the coolant is between 0.38 ppm (5.5x10 -5 m) and 0.60 ppm (8.7x10 -5 m) to minimize carbon steel corrosion in the HTS and magnetite deposition in the core during normal operation; this corresponds to pH a values between 10.2 and 10.4. Similar pH a and lithium concentrations should be maintained during shutdown and start-up. However, maintaining the pH a of the HTS coolant within specification during shutdown and start-up has been difficult for some CANDU stations, especially when the HTS is taken to a Low Level Drain State (LLDS), because of lithium hideout and return. This paper presents the results from lithium adsorption and desorption studies on iron oxides under relevant shutdown and start-up chemistry conditions performed to elucidate the mechanisms of the observed lithium hideout and return. The results show that lithium hideout and return are driven largely by changes in the solubility of magnetite as the HTS coolant chemistry changes during shutdown; changes in lithium concentration were inversely correlated with the solubility of magnetite. When the HTS system is de-pressurized and drained to a low coolant level, the ingress of air rapidly oxidizes the dissolved Fe (II) in the coolant, 2Fe +2 + 1 / 2 O 2 + 3 H 2 = 2FEOOH + 4 H + , resulting in the formation of lepidocrocite or maghemite, which have much lower solubilities but larger surface areas than does magnetite. The large surface area of the Fe (III) oxides can adsorb significant quantities of lithium from the coolant, leading to lithium hideout and a pH a decrease. During start-up, the chemistry of the coolant changes from oxidizing to reducing, and lepidocrocite and other Fe (III) oxides are reduced to Fe (II), gradually dissolving as their solubility increases with increasing temperature. The adsorbed lithium is released

  19. A lead-before-break strategy for primary heat transport piping of 500 MWe Indian PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01

    Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work related to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300{degrees}C. Two important observations of the experiments are - appreciable drop in maximum load at 300{degrees}C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis.

  20. A lead-before-break strategy for primary heat transport piping of 500 MWe Indian PHWR

    International Nuclear Information System (INIS)

    Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S.

    1997-01-01

    Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work related to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300 degrees C. Two important observations of the experiments are - appreciable drop in maximum load at 300 degrees C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis

  1. Evaluation of Energy Efficient Options to Heat Ohio Department of Transportation (ODOT) Maintenance Facilities

    Science.gov (United States)

    2018-01-01

    This project was initiated by the ODOT District 2 staff who were looking for more efficient ways to heat and operate their maintenance facilities. This especially applied to the idea of using radiant floor heating as an alternative to todays stand...

  2. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    Science.gov (United States)

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  3. Fluid and heat transport at the Torres del Paine laccolith (Patagonia/Chile)

    International Nuclear Information System (INIS)

    Putliz, B; Baumgartner, L.P; Oberhansli, R; Diamond, L; Altenberger, U

    2001-01-01

    The 12 Ma old Torres del Paine laccolith (TPL) is part of a chain of isolated Miocene plutons and subvolcanic rocks which intruded the foothills of the southern Andes of Chile and Argentina (Halpern, 1973; Michael, 1984). The 12x12 km big laccolith, an I-type granite, intruded mudstones, sandstones, carbonates and conglomerates of the Cretaceous Cerro Torre and Punta Barrosa formation (Wilson, 1991) creating a well defined, but small contact aureole of 200-400m width. The TPL contains abundant textural evidence of fluid exsolution and eutectic crystallisation. It hence represents a good example for the transport of large quantities of magmatic aqueous fluids to the uppermost level of the crust. The pluton is well exposed and its rugged topography allows the investigation of the roof, the lateral rims and the base of the intrusion. Field and textural observations, phase petrological constraints, oxygen isotope and fluid inclusion data are used to unravel mechanism and patterns of fluid and heat transport in the intrusion and the contact aureole. The Torres del Paine Intrusives form a calcalkaline suite, ranging from gabbros through diorites to leucogranites. The intrusive body has the general shape of a laccolith (Skarmeta and Castelli, 1997). Gabbroic and dioritic rocks are only exposed at the lower levels. Granites are clearly predominant - the main body of the laccolith is composed of a fine to medium grained biotite-orthoclase granite. The TPL is remarkable for its abundance of miarolitic cavities. Locally, at the margins of the pluton, a microgranitic phase is found with up to 15% of cavities. While some miaroles are isolated, others are interconnected, forming tube-like structures. Open miaroles contain euhedral crystals of quartz and feldspar. Other important phases are biotite, tourmaline, fayalite and late chlorite and carbonate. Individual crystals are typically between < 1cm up to a few cm in length. Some miaroles are completely filled with coarse quartz

  4. A simple theoretical model of heat and moisture transport in multi-layer garments in cool ambient air.

    Science.gov (United States)

    Wissler, Eugene H; Havenith, George

    2009-03-01

    Overall resistances for heat and vapor transport in a multilayer garment depend on the properties of individual layers and the thickness of any air space between layers. Under uncomplicated, steady-state conditions, thermal and mass fluxes are uniform within the garment, and the rate of transport is simply computed as the overall temperature or water concentration difference divided by the appropriate resistance. However, that simple computation is not valid under cool ambient conditions when the vapor permeability of the garment is low, and condensation occurs within the garment. Several recent studies have measured heat and vapor transport when condensation occurs within the garment (Richards et al. in Report on Project ThermProject, Contract No. G6RD-CT-2002-00846, 2002; Havenith et al. in J Appl Physiol 104:142-149, 2008). In addition to measuring cooling rates for ensembles when the skin was either wet or dry, both studies employed a flat-plate apparatus to measure resistances of individual layers. Those data provide information required to define the properties of an ensemble in terms of its individual layers. We have extended the work of previous investigators by developing a rather simple technique for analyzing heat and water vapor transport when condensation occurs within a garment. Computed results agree well with experimental results reported by Richards et al. (Report on Project ThermProject, Contract No. G6RD-CT-2002-00846, 2002) and Havenith et al. (J Appl Physiol 104:142-149, 2008). We discuss application of the method to human subjects for whom the rate of sweat secretion, instead of the partial pressure of water on the skin, is specified. Analysis of a more complicated five-layer system studied by Yoo and Kim (Text Res J 78:189-197, 2008) required an iterative computation based on principles defined in this paper.

  5. Cooperative program to analyze heat and particle transport at high beta in DIII-D

    International Nuclear Information System (INIS)

    Fowler, T.K.

    1990-01-01

    The objective is to collaborate with the General Atomics staff and the LLNL staff at General Atomics in the analysis of transport data from DIII-D. The Berkeley effort is integrated into the ongoing efforts at GA to help expedite progress in the fundamental understanding of transport phenomena in tokamaks

  6. ICRF heating and transport of deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    Murakami, M.; Batchelor, D.B.; Bush, C.E.

    1994-01-01

    This paper describes results of the first experiments utilizing high-power ion cyclotron range of frequency (ICRF) to heat deuterium-tritium (D-T) plasmas in reactor-relevant regimes on the Tokamak Fusion Test Reactor (TFTR). Results from these experiments have demonstrated efficient core, second harmonic, tritium heating of D-T supershot plasmas with tritium concentrations ranging from 6%--40%. Significant direct ion heating on the order of 60% of the input radio frequency (rf) power has been observed. The measured deposition profiles are in good agreement with two-dimensional modeling code predictions. Confinement in an rf-heated supershot is at least similar to that without rf, and possibly better in the electron channel. Efficient electron heating via mode conversion of fast waves to ion Bernstein waves (IBW) has been demonstrated in ohmic, deuterium-deuterium and DT-neutral beam injection plasmas with high concentrations of minority 3 He (n 3 He /n e > 10%). By changing the 3 He concentration or the toroidal field strength, the location of the mode-conversion radius was varied. The power deposition profile measured with rf power modulation showed that up to 70% of the power can be deposited on electrons at an off-axis position. Preliminary results with up to 4 MW coupled into the plasma by 90-degree phased antennas showed directional propagation of the mode-converted IBW. Heat wave propagation showed no strong inward thermal pinch in off-axis heating of an ohmically-heated (OH) target plasma in TFIR

  7. Identification of Tropical-Extratropical Interactions and Extreme Precipitation Events in the Middle East based on Potential Vorticity and Moisture Transport

    KAUST Repository

    de Vries, A. J.; Ouwersloot, H. G.; Feldstein, S. B.; Riemer, M.; El Kenawy, A. M.; McCabe, Matthew; Lelieveld, J.

    2017-01-01

    ) intrusion reaches deep into the subtropics and forces an incursion of high poleward vertically integrated water vapor transport (IVT) into the Middle East. This study presents an object-based identification method for extreme precipitation events based

  8. Numerical simulation of heat and mass transport during hydration of Portland cement mortar in semi-adiabatic and steam curing conditions

    OpenAIRE

    Hernandez-Bautista, E.; Bentz, D. P.; Sandoval-Torres, S.; de Cano-Barrita, P. F. J.

    2016-01-01

    A model that describes hydration and heat-mass transport in Portland cement mortar during steam curing was developed. The hydration reactions are described by a maturity function that uses the equivalent age concept, coupled to a heat and mass balance. The thermal conductivity and specific heat of mortar with water-to-cement mass ratio of 0.30 was measured during hydration, using the Transient Plane Source method. The parameters for the maturity equation and the activation energy were obtaine...

  9. LLE-LLNL progress report on studies in nonlocal heat transport in spherical plasmas using the Fokker-Planck code SPARK

    International Nuclear Information System (INIS)

    Epperlein, E.M.

    1992-01-01

    Preliminary 1-D studies of nonlocal heat transport in spherical plasmas based on the Fokker-Planck code SPARK indicate significant levels of electron preheat and radial heat flux across a spherical heat sink surface kept at fixed temperature. However, the diffusive approximation to the Fokker-Planck equation is shown to be particularly sensitive to the nature of the inner surface boundary condition chosen. A suggested remedy is the inclusion of a target capsule in future simulations studies with SPARK

  10. Multiple zonal jets and convective heat transport barriers in a quasi-geostrophic model of planetary cores

    Science.gov (United States)

    Guervilly, C.; Cardin, P.

    2017-10-01

    We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere. We use a numerical model based on the quasi-geostrophic approximation for the velocity field, whereas the temperature field is 3-D. This approximation allows us to perform simulations for Ekman numbers down to 10-8, Prandtl numbers relevant for liquid metals (˜10-1) and Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed, the zonal velocity is larger than the convective velocity despite the presence of boundary friction. The convective structures and the zonal jets widen when the thermal forcing increases. Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which correspond to weak potential vorticity gradients) the convection transports heat efficiently and the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated by the propagation of Rossby waves, resulting in the formation of steep mean temperature gradients and the dominance of conduction in the heat transfer process. Consequently, in quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the heat transfer.

  11. Applicability of heat and gas trans-port models in biocover design based on a case study from Denmark

    DEFF Research Database (Denmark)

    Nielsen, A. A. F.; Binning, Philip John; Kjeldsen, Peter

    2015-01-01

    Biocovers — layers of mature compost — can oxidise a considerable amount of methane emitted from landfi Different factors can affect oxidation, particularly tempera- ture. For better understanding of the processes and for future biocover designs, two models (analytic and numerical) were developed......) was 0.95 for the analytic model and 0.91 for the numerical model. The models can be used for different design scenarios (e.g. varying methane infl thickness or start of operation), and can also help understand the processes that take place in the system, e.g. how oxygen penetration depends on ambient....... Both models used the heat equation for heat transfer, and the numerical model used advection-diffusion model with dual Monod kinetics for gas transport. The results were validated with data from a Danish landfi The models correlated well with the observed data: the coefficient of determination (R2...

  12. Improved HYLIFE-II heat transport system and steam power plant: Impact on performance and cost of electricity

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Lee, Ying T.

    1992-12-01

    The HYLIFE-II conceptual design has evolved and improved continually over the past four years to its present form. This paper describes the latest FY92 versions, Reference Case H1 (nominally 1 GWe net output) and the Enhanced Case HE (nominally 2 GWe net output), which take advantage of improvements in the tritium management system to eliminate the intermediate loop and the intermediate heat exchangers (IHX's). The improvements in the heat transport system and the steam power plant are described and the resulting cost reductions are evaluated. The new estimated cost of electricity (in 1990 dollars) is 6.6 cents/kWh for Reference Case H1 and 4.7 cents/kWh for the Enhanced Case

  13. ICRF heating and transport of deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    Rogers, J.H.; Schilling, G.; Stevens, J.E.; Taylor, G.; Wilson, J.R.; Bell, M.G.; Budny, R.V.; Bretz, N.L.; Darrow, D.; Fredrickson, E.

    1995-02-01

    This paper describes results of the first experiments utilizing high-power ion cyclotron range of frequency (ICRF) to heat deuterium-tritium (D-T) plasmas in reactor-relevant regimes on the Tokamak Fusion Test Reactor (TFTR). Results from these experiments have demonstrated efficient core, second harmonic, tritium beating of D-T supershot plasmas with tritium concentrations ranging from 6%-40%. Significant direct ion heating on the order of 60% of the input radio frequency (rf) power has been observed. The measured deposition profiles are in good agreement with two-dimensional modeling code predictions. Energy confinement in an rf-heated supershot is at least similar to that without rf, and possibly better in the electron channel. Efficient electron heating via mode conversion of fast waves to ion Bernstein waves (IBW) has been demonstrated in ohmic, deuterium-deuterium and DT-neutral beam injection plasmas with high concentrations of minority 3 He (n 3He /n e = 15% - 30%). By changing the 3 He concentration or the toroidal field strength, the location of the mode-conversion radius was varied. The power deposition profile measured with rf power modulation indicated that up to 70% of the power can be deposited on electrons at an off-axis position. Preliminary results with up to 4 MW coupled into the plasma by 90-degree phased antennas showed directional propagation of the mode-converted IBW. Analysis of heat wave propagation showed no strong inward thermal pinch in off-axis heating of an ohmically-heated target plasma in TFTR

  14. Overview of improvements in work practices and instrumentation for CANDU primary heat transport feeders in-service inspections

    Energy Technology Data Exchange (ETDEWEB)

    Marcotte, O., E-mail: olivier@nucleom.ca [Nucleom Inc., Quebec, Quebec (Canada); Rousseau, G., E-mail: rousseau.gilles.a@hydro.qc.ca [Hydro Quebec, Becancour, Quebec (Canada); Rochefort, E., E-mail: erochfort@zetec.com [Zetec Canada, Quebec, Quebec (Canada)

    2013-01-15

    The Canadian nuclear industry has developed many advanced non-destructive inspection techniques to be applied safely in hazardous environments in recent years. Automated systems, manual tooling and specialized software modules have been designed since early 2000s to provide complete and very efficient fitness for service inspection of primary heat transport system carbon steel feeder pipes. These techniques deal with complex geometries, difficult access and, radioactive environment. Complementary NDE techniques, namely Ultrasounds, eddy current, phased-array UT and automated scanners are used. This presentation describes the improvements in inspection practices and the advanced data analysis features. (author)

  15. Dimensionless scalings of confinement, heat transport and pedestal stability in JET-ILW and comparison with JET-C

    Czech Academy of Sciences Publication Activity Database

    Frassinetti, L.; Saarelma, S.; Lomas, P.; Nunes, I.; Rimini, F.; Beurskens, M.N.A.; Bílková, Petra; Boom, J.E.; De La Luna, E.; Delabie, E.; Drewelow, P.; Flanagan, J.; Garzotti, L.; Giroud, C.; Hawks, N.; Joffrin, E.; Kempenaars, M.; Kim, H.-T.; Kruezi, U.; Loarte, A.; Lomanowski, B.; Lupelli, I.; Meneses, L.; Maggi, C.F.; Menmuir, S.; Peterka, Matěj; Rachlew, E.; Romanelli, M.; Stefanikova, E.

    2017-01-01

    Roč. 59, č. 1 (2017), č. článku 014014. ISSN 0741-3335. [EPS 2016: Conference on Plasma Physics/43./. Leuven, 04.07.2016-08.07.2016] EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : JET-ILW * dimensionless scaling * pedestal * confinement * pedestal stability * heat transport Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016 http://dx.doi.org/10.1088/0741-3335/59/1/014014

  16. Valve stem packing seal test results for primary heat transport system conditions in Canadian nuclear generating stations

    International Nuclear Information System (INIS)

    Dixon, D.F.; Farrell, J.M.; Coutinho, R.F.

    1978-06-01

    Valve stem packing tests were done to obtain performance data on packing already in CANDU-PHW reactor service and on alternative packings. Most of the tests were replicated. Results are presented for ten packings tested under two stem cycle modes; leakage, packing consolidation and packing friction were the main responses. Packing tests were performed with water at close to CANDU-PHW reactor primary heat transport (PHT) system conditions (288 deg C and 10 MPa), but without ionizing radiation. The test rigs had rising, rotating stems. Stuffing box dimensions were typical of a standard Velan valve; packings were spring loaded to control applied packing stress

  17. Heat and water transport in soils and across the soil-atmosphere interface: 1. Theory and different model concepts

    DEFF Research Database (Denmark)

    Vanderborght, Jan; Fetzer, Thomas; Mosthaf, Klaus

    2017-01-01

    on a theoretical level by identifying the underlying simplifications that are made for the different compartments of the system: porous medium, free flow and their interface, and by discussing how processes not explicitly considered are parameterized. Simplifications can be grouped into three sets depending......Evaporation is an important component of the soil water balance. It is composed of water flow and transport processes in a porous medium that are coupled with heat fluxes and free air flow. This work provides a comprehensive review of model concepts used in different research fields to describe...

  18. The future demographic niche of a declining grassland bird fails to shift poleward in response to climate change

    Science.gov (United States)

    McCauley, Lisa A.; Ribic, Christine; Pomara, Lars Y.; Zuckerberg, Benjamin

    2017-01-01

    ContextTemperate grasslands and their dependent species are exposed to high variability in weather and climate due to the lack of natural buffers such as forests. Grassland birds are particularly vulnerable to this variability, yet have failed to shift poleward in response to recent climate change like other bird species in North America. However, there have been few studies examining the effect of weather on grassland bird demography and consequent influence of climate change on population persistence and distributional shifts.ObjectivesThe goal of this study was to estimate the vulnerability of Henslow’s Sparrow (Ammodramus henslowii), an obligate grassland bird that has been declining throughout much of its range, to past and future climatic variability.MethodsWe conducted a demographic meta-analysis from published studies and quantified the relationship between nest success rates and variability in breeding season climate. We projected the climate-demography relationships spatially, throughout the breeding range, and temporally, from 1981 to 2050. These projections were used to evaluate population dynamics by implementing a spatially explicit population model.ResultsWe uncovered a climate-demography linkage for Henslow’s Sparrow with summer precipitation, and to a lesser degree, temperature positively affecting nest success. We found that future climatic conditions—primarily changes in precipitation—will likely contribute to reduced population persistence and a southwestward range contraction.ConclusionsFuture distributional shifts in response to climate change may not always be poleward and assessing projected changes in precipitation is critical for grassland bird conservation and climate change adaptation.

  19. A Visual Analytics Technique for Identifying Heat Spots in Transportation Networks

    Directory of Open Access Journals (Sweden)

    Marian Sorin Nistor

    2016-12-01

    Full Text Available The decision takers of the public transportation system, as part of urban critical infrastructures, need to increase the system resilience. For doing so, we identified analysis tools for biological networks as an adequate basis for visual analytics in that domain. In the paper at hand we therefore translate such methods for transportation systems and show the benefits by applying them on the Munich subway network. Here, visual analytics is used to identify vulnerable stations from different perspectives. The applied technique is presented step by step. Furthermore, the key challenges in applying this technique on transportation systems are identified. Finally, we propose the implementation of the presented features in a management cockpit to integrate the visual analytics mantra for an adequate decision support on transportation systems.

  20. CASTOR registered HAW28M - a high heat load cask for transport and storage of vitrified high level waste containers

    International Nuclear Information System (INIS)

    Vossnacke, A.; Klein, K.; Kuehne, B.

    2004-01-01

    Within the German return programme for vitrified high level waste (HLW) from reprocessing at COGEMA and BNFL up to now 39 casks loaded with 28 containers each were transported back to Germany and are stored in the Interim Storage Facility Gorleben (TBL-G) for up to 40 years. For transport and storage in all but one case the GNB casks CASTOR registered HAW 20/28 CG have been used. This cask type is designed to accommodate 20 or 28 HLW containers with a total thermal power of 45 kW maximum. In the near future, among the high level waste, which has to be returned to Germany, there will be an increasing number of containers of which the heat capacity and radioactive inventory will exceed the technical limits of the CASTOR registered HAW 20/28 CG. Therefore GNB has started the development of a new cask generation, named CASTOR registered HAW28M, meeting these future requirements. The CASTOR registered HAW28M is especially developed for the transport of vitrified residues from France and Great Britain to Germany. It complies with the international regulations for type B packages according to IAEA (International Atomic Energy Agency). It is thus guaranteed that even in case of any accident the cask body and the lid system remain functional and the safe confinement of the radioactive contents remains intact during transport. The CASTOR registered HAW28M fulfills not only the requirements for transport but also the acceptance criteria of interim storage: radiation shielding, heat dissipation, safe confinement under both normal and hypothetical accident conditions. Storage buildings such as the TBL-G simply support the safety functions of the cask. The challenge for the development results from higher requirements of the technical specification, particularly related to fuel which is reprocessed. As a consequence of the reprocessing of fuel with increased enrichment and burn up, higher heat capacity and sophisticated shielding measures have to be considered. For the CASTOR

  1. Expression of heat shock protein 70 in transport-stressed broiler pectoralis major muscle and its relationship with meat quality.

    Science.gov (United States)

    Xing, T; Wang, M F; Han, M Y; Zhu, X S; Xu, X L; Zhou, G H

    2017-09-01

    Omics research has indicated that heat shock protein 70 (HSP70) is a potential biomarker of meat quality. However, the specific changes and the potential role of HSP70 in postmortem meat quality development need to be further defined. In this study, Arbor Acres broiler chickens (n=126) were randomly categorized into three treatment groups of unstressed control (C), 0.5-h transport (T) and subsequent water shower spray following transport (T/W). Each treatment consisted of six replicates with seven birds each. The birds were transported according to a designed protocol. The pectoralis major (PM) muscles of the transport-stressed broilers were categorized as normal and pale, soft and exudative (PSE)-like muscle samples according to L* and pH24 h values to test the expression and location of HSP70. Results revealed that the activities of plasma creatine kinase and lactate dehydrogenase increased significantly (Pmeat quality and stress indicators. In conclusion, this research suggests that the variation in HSP70 expression may provide a novel insight into the pathways underlying meat quality development.

  2. Poloidal electric field and variation of radial transport during ICRF heating in the JET scrape-off layer

    International Nuclear Information System (INIS)

    Clement, S.; Tagle, J.A.; Bures, M.; Vince, J.; Kock, L. de; Stangeby, P.C.

    1989-01-01

    The highly anomalous perpendicular transport in the plasma edge of a tokamak is generally attributed to plasma turbulence, primarily to density and electrostatic potential fluctuations. The edge transport could be modified by changing the geometry of objects in contact with the plasma (limiters, radio frequency antennae ...) and during additional heating experiments. Poloidal asymmetries in the scrape-off layer (SOL) in tokamaks using poloidal limiters (eg. ALCATOR-C) have been recently reported, indicating a poloidal asymmetry in cross-field transport. A poloidal ring limiter obstructs communications between different flux tubes in the SOL, thus permitting poloidal asymmetries in n e and T e to develop if D perpendicular is θ-dependent. When JET was operated with discrete limiters, equivalent to a single toroidal limiter at the outside mid-plane, little poloidal variation in the SOL plasma properties was observed. Currently JET is operated with two complete toroidal belt limiters located approximately one meter above and below the outside mid-plane. This configuration breaks the SOL into two regions: the low field side SOL (LFS), between the limiters, and the rest of the SOL on the high field side (HFS). Differences on the scrape-off lengths in the two SOLs are reported here, indicating that cross-field transport is faster on the LFS-SOL, in agreement with observations made on ASDEX and T-10. (author) 8 refs., 6 figs

  3. The influence of episodic shallow magma degassing on heat and chemical transport in volcanic hydrothermal systems

    Science.gov (United States)

    Chen, Kewei; Zhan, Hongbin; Burns, Erick; Ingebritsen, Steven E.; Agrinier, Pierre

    2018-01-01

    Springs at La Soufrière of Guadeloupe have been monitored for nearly four decades since the phreatic eruption and associated seismic activity in 1976. We conceptualize degassing vapor/gas mixtures as square‐wave sources of chloride and heat and apply a new semianalytic solution to demonstrate that chloride and heat pulses with the same timing and duration result in good matches between measured and simulated spring temperatures and concentrations. While the concentration of chloride pulses is variable, the local boiling temperature of 96°C was assigned to all thermal pulses. Because chloride is a conservative tracer, chloride breakthrough is only affected by one‐dimensional advection and dispersion. The thermal tracer is damped and lagged relative to chloride due to conductive heat exchange with the overlying and underlying strata. Joint analysis of temperature and chloride allows estimation of the onset and duration of degassing pulses, refining the chronology of recent magmatic intrusion.

  4. Numerical simulation of seasonal heat storage in a contaminated shallow aquifer - Temperature influence on flow, transport and reaction processes

    Science.gov (United States)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2015-04-01

    The energy market in Germany currently faces a rapid transition from nuclear power and fossil fuels towards an increased production of energy from renewable resources like wind or solar power. In this context, seasonal heat storage in the shallow subsurface is becoming more and more important, particularly in urban regions with high population densities and thus high energy and heat demand. Besides the effects of increased or decreased groundwater and sediment temperatures on local and large-scale groundwater flow, transport, geochemistry and microbiology, an influence on subsurface contaminations, which may be present in the urban surbsurface, can be expected. Currently, concerns about negative impacts of temperature changes on groundwater quality are the main barrier for the approval of heat storage at or close to contaminated sites. The possible impacts of heat storage on subsurface contamination, however, have not been investigated in detail yet. Therefore, this work investigates the effects of a shallow seasonal heat storage on subsurface groundwater flow, transport and reaction processes in the presence of an organic contamination using numerical scenario simulations. A shallow groundwater aquifer is assumed, which consists of Pleistoscene sandy sediments typical for Northern Germany. The seasonal heat storage in these scenarios is performed through arrays of borehole heat exchangers (BHE), where different setups with 6 and 72 BHE, and temperatures during storage between 2°C and 70°C are analyzed. The developing heat plume in the aquifer interacts with a residual phase of a trichloroethene (TCE) contamination. The plume of dissolved TCE emitted from this source zone is degraded by reductive dechlorination through microbes present in the aquifer, which degrade TCE under anaerobic redox conditions to the degradation products dichloroethene, vinyl chloride and ethene. The temperature dependence of the microbial degradation activity of each degradation step is

  5. Transport stress induces heart damage in newly hatched chicks via blocking the cytoprotective heat shock response and augmenting nitric oxide production.

    Science.gov (United States)

    Sun, F; Zuo, Y-Z; Ge, J; Xia, J; Li, X-N; Lin, J; Zhang, C; Xu, H-L; Li, J-L

    2018-04-20

    Transport stress affects the animal's metabolism and psychological state. As a pro-survival pathway, the heat shock response (HSR) protects healthy cells from stressors. However, it is unclear whether the HSR plays a role in transport stress-induced heart damage. To evaluate the effects of transport stress on heart damage and HSR protection, newly hatched chicks were treated with transport stress for 2 h, 4 h and 8 h. Transport stress caused decreases in body weight and increases in serum creatine kinase (CK) activity, nitric oxide (NO) content in heart tissue, cardiac nitric oxide syntheses (NOS) activity and NOS isoforms transcription. The mRNA expression of heat shock factors (HSFs, including HSF1-3) and heat shock proteins (HSPs, including HSP25, HSP40, HSP47, HSP60, HSP70, HSP90 and HSP110) in the heart of 2 h transport-treated chicks was upregulated. After 8 h of transport stress in chicks, the transcription levels of the same HSPs and HSF2 were reduced in the heart. It was also found that the changes in the HSP60, HSP70 and HSP90 protein levels had similar tendencies. These results suggested that transport stress augmented NO generation through enhancing the activity of NOS and the transcription of NOS isoforms. Therefore, this study provides new evidence that transport stress induces heart damage in the newly hatched chicks by blocking the cytoprotective HSR and augmenting NO production.

  6. Simulation of ballistic and non-Fourier thermal transport in ultra-fast laser heating

    International Nuclear Information System (INIS)

    Xu Jun; Wang Xinwei

    2004-01-01

    In this work, the lattice Boltzmann method (LBM) is developed to simulate pico- and femtosecond laser heating of silicon. The temperature fields calculated by the LBM are compared with those obtained from the parabolic heat conduction equation (PHCE) and the hyperbolic heat conduction equation (HHCE). Although the HHCE overcomes the dilemma of infinite thermal propagation speed of the PHCE, it cannot be applied to length scales comparable to the mean free path of energy carriers because of the breakdown of continuum approaches under severe nonequilibrium conditions. The LBM, considering both effects, can be used in both short temporal and spatial scales. From the results of the LBM, it is found that the speed of thermal wave at the ballistic limit is equal to the speed of sound, instead of the value predicted by the HHCE, which is valid only in the diffuse limit. It is also demonstrated that the traditional way of calculating heat flux using the temperature gradient gives rise to physically unreasonable results at the thermal wave front, while the LBM has no such drawback

  7. Modeling soil heating and moisture transport under extreme conditions: Forest fires and slash pile burns

    Science.gov (United States)

    W. J. Massman

    2012-01-01

    Heating any soil during a sufficiently intense wildfire or prescribed burn can alter it irreversibly, causing many significant, long-term biological, chemical, and hydrological effects. Given the climate-change-driven increasing probability of wildfires and the increasing use of prescribed burns by land managers, it is important to better understand the dynamics of the...

  8. Numerical modelling of convective heat transport by air flow in permafrost talus slopes

    Directory of Open Access Journals (Sweden)

    J. Wicky

    2017-06-01

    Full Text Available Talus slopes are a widespread geomorphic feature in the Alps. Due to their high porosity a gravity-driven internal air circulation can be established which is forced by the gradient between external (air and internal (talus temperature. The thermal regime is different from the surrounding environment, leading to the occurrence of permafrost below the typical permafrost zone. This phenomenon has mainly been analysed by field studies and only few explicit numerical modelling studies exist. Numerical simulations of permafrost sometimes use parameterisations for the effects of convection but mostly neglect the influence of convective heat transfer in air on the thermal regime. In contrast, in civil engineering many studies have been carried out to investigate the thermal behaviour of blocky layers and to improve their passive cooling effect. The present study further develops and applies these concepts to model heat transfer in air flows in a natural-scale talus slope. Modelling results show that convective heat transfer has the potential to develop a significant temperature difference between the lower and the upper parts of the talus slope. A seasonally alternating chimney-effect type of circulation develops. Modelling results also show that this convective heat transfer leads to the formation of a cold reservoir in the lower part of the talus slope, which can be crucial for maintaining the frozen ground conditions despite increasing air temperatures caused by climate change.

  9. Numerical modelling of transient heat and moisture transport in protective clothing

    International Nuclear Information System (INIS)

    Łapka, P; Furmański, P; Wisniewski, T S

    2016-01-01

    The paper presents a complex model of heat and mass transfer in a multi-layer protective clothing exposed to a flash fire and interacting with the human skin. The clothing was made of porous fabric layers separated by air gaps. The fabrics contained bound water in the fibres and moist air in the pores. The moist air was also present in the gaps between fabric layers or internal fabric layer and the skin. Three skin sublayers were considered. The model accounted for coupled heat transfer by conduction, thermal radiation and associated with diffusion of water vapour in the clothing layers and air gaps. Heat exchange due to phase transition of the bound water were also included in the model. Complex thermal and mass transfer conditions at internal or external boundaries between fabric layers and air gaps as well as air gap and skin were assumed. Special attention was paid to modelling of thermal radiation which was coming from the fire, penetrated through protective clothing and absorbed by the skin. For the first time non-grey properties as well as optical phenomena at internal or external boundaries between fabric layers and air gaps as well as air gap and skin were accounted for. A series of numerical simulations were carried out and the risk of heat injures was estimated. (paper)

  10. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  11. Implications of Thermal Diffusity being Inversely Proportional to Temperature Times Thermal Expansivity on Lower Mantle Heat Transport

    Science.gov (United States)

    Hofmeister, A.

    2010-12-01

    Many measurements and models of heat transport in lower mantle candidate phases contain systematic errors: (1) conventional methods of insulators involve thermal losses that are pressure (P) and temperature (T) dependent due to physical contact with metal thermocouples, (2) measurements frequently contain unwanted ballistic radiative transfer which hugely increases with T, (3) spectroscopic measurements of dense samples in diamond anvil cells involve strong refraction by which has not been accounted for in analyzing transmission data, (4) the role of grain boundary scattering in impeding heat and light transfer has largely been overlooked, and (5) essentially harmonic physical properties have been used to predict anharmonic behavior. Improving our understanding of the physics of heat transport requires accurate data, especially as a function of temperature, where anharmonicity is the key factor. My laboratory provides thermal diffusivity (D) at T from laser flash analysis, which lacks the above experimental errors. Measuring a plethora of chemical compositions in diverse dense structures (most recently, perovskites, B1, B2, and glasses) as a function of temperature provides a firm basis for understanding microscopic behavior. Given accurate measurements for all quantities: (1) D is inversely proportional to [T x alpha(T)] from ~0 K to melting, where alpha is thermal expansivity, and (2) the damped harmonic oscillator model matches measured D(T), using only two parameters (average infrared dielectric peak width and compressional velocity), both acquired at temperature. These discoveries pertain to the anharmonic aspects of heat transport. I have previously discussed the easily understood quasi-harmonic pressure dependence of D. Universal behavior makes application to the Earth straightforward: due to the stiffness and slow motions of the plates and interior, and present-day, slow planetary cooling rates, Earth can be approximated as being in quasi

  12. Phonon-magnon interaction in low dimensional quantum magnets observed by dynamic heat transport measurements.

    Science.gov (United States)

    Montagnese, Matteo; Otter, Marian; Zotos, Xenophon; Fishman, Dmitry A; Hlubek, Nikolai; Mityashkin, Oleg; Hess, Christian; Saint-Martin, Romuald; Singh, Surjeet; Revcolevschi, Alexandre; van Loosdrecht, Paul H M

    2013-04-05

    Thirty-five years ago, Sanders and Walton [Phys. Rev. B 15, 1489 (1977)] proposed a method to measure the phonon-magnon interaction in antiferromagnets through thermal transport which so far has not been verified experimentally. We show that a dynamical variant of this approach allows direct extraction of the phonon-magnon equilibration time, yielding 400 μs for the cuprate spin-ladder system Ca(9)La(5)Cu(24)O(41). The present work provides a general method to directly address the spin-phonon interaction by means of dynamical transport experiments.

  13. Heat Transport upon River-Water Infiltration investigated by Fiber-Optic High-Resolution Temperature Profiling

    Science.gov (United States)

    Vogt, T.; Schirmer, M.; Cirpka, O. A.

    2010-12-01

    Infiltrating river water is of high relevance for drinking water supply by river bank filtration as well as for riparian groundwater ecology. Quantifying flow patterns and velocities, however, is hampered by temporal and spatial variations of exchange fluxes. In recent years, heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. Nevertheless, field investigations are often limited by insufficient sensors spacing or simplifying assumptions such as one-dimensional flow. Our interest lies in a detailed local survey of river water infiltration at a restored river section at the losing river Thur in northeast Switzerland. Here, we measured three high-resolution temperature profiles along an assumed flow path by means of distributed temperature sensing (DTS) using fiber optic cables wrapped around poles. Moreover, piezometers were equipped with standard temperature sensors for a comparison to the DTS data. Diurnal temperature oscillations were tracked in the river bed and the riparian groundwater and analyzed by means of dynamic harmonic regression and subsequent modeling of heat transport with sinusoidal boundary conditions to quantify seepage velocities and thermal diffusivities. Compared to the standard temperature sensors, the DTS data give a higher vertical resolution, facilitating the detection of process- and structure-dependent patterns of the spatiotemporal temperature field. This advantage overcompensates the scatter in the data due to instrument noise. In particular, we could demonstrate the impact of heat conduction through the unsaturated zone on the riparian groundwater by the high resolution temperature profiles.

  14. Applications of Bayesian temperature profile reconstruction to automated comparison with heat transport models and uncertainty quantification of current diffusion

    International Nuclear Information System (INIS)

    Irishkin, M.; Imbeaux, F.; Aniel, T.; Artaud, J.F.

    2015-01-01

    Highlights: • We developed a method for automated comparison of experimental data with models. • A unique platform implements Bayesian analysis and integrated modelling tools. • The method is tokamak-generic and is applied to Tore Supra and JET pulses. • Validation of a heat transport model is carried out. • We quantified the uncertainties due to Te profiles in current diffusion simulations. - Abstract: In the context of present and future long pulse tokamak experiments yielding a growing size of measured data per pulse, automating data consistency analysis and comparisons of measurements with models is a critical matter. To address these issues, the present work describes an expert system that carries out in an integrated and fully automated way (i) a reconstruction of plasma profiles from the measurements, using Bayesian analysis (ii) a prediction of the reconstructed quantities, according to some models and (iii) a comparison of the first two steps. The first application shown is devoted to the development of an automated comparison method between the experimental plasma profiles reconstructed using Bayesian methods and time dependent solutions of the transport equations. The method was applied to model validation of a simple heat transport model with three radial shape options. It has been tested on a database of 21 Tore Supra and 14 JET shots. The second application aims at quantifying uncertainties due to the electron temperature profile in current diffusion simulations. A systematic reconstruction of the Ne, Te, Ti profiles was first carried out for all time slices of the pulse. The Bayesian 95% highest probability intervals on the Te profile reconstruction were then used for (i) data consistency check of the flux consumption and (ii) defining a confidence interval for the current profile simulation. The method has been applied to one Tore Supra pulse and one JET pulse.

  15. Output feedback control of heat transport mechanisms in parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed; Kirati, Taous Meriem Laleg

    2016-01-01

    . The proposed control strategy is derived using the distributed physical model of the system to avoid the loss of information due to model approximation schemes. The system dynamics are driven to follow reference dynamics defined by a transport equation with a

  16. Heat and water transport in soils and across the soil-atmosphere interface: 2. Numerical analysis

    DEFF Research Database (Denmark)

    Fetzer, Thomas; Vanderborght, Jan; Mosthaf, Klaus

    2017-01-01

    evaporation decreases from parts of the heterogeneous soil surface, lateral flow and transport processes in the free flow and in the porous medium generate feedbacks that enhance evaporation from wet surface areas. In the second set of simulations, we assume that the vertical fluxes do not vary considerably...

  17. Transport phenomena in solid oxide fuel cell electrodes focusing on heat transfer related to chemical reactions

    International Nuclear Information System (INIS)

    Navasa, M; Andersson, M; Yuan, J; Sundén, B

    2012-01-01

    Solid oxide fuel cells (SOFCs) are widely studied for their advantages especially at high temperatures. However, operating at high temperatures represents a high cost due to the strict requirements the materials are expected to fulfill. Thus, the main goal in SOFC research has been to decrease the operating temperature so that the range of available materials is widened and hence, the operating cost can be reduced. In this paper, the different heat sources that contribute to the cell energy balance are presented with strong emphasis on the chemical reactions that take place in SOFCs. The knowledge of which heat sources or sinks taking place and their locations within the SOFC can provide useful information for further design and efficiency improvements.

  18. Deposition of aerosols formed by HCDA due to decay heat transport in inner containment atmospheres

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1976-01-01

    Coupling of decay heat transfer by aerosol-laden inner containment atmospheres with aerosol deposition from such atmospheres leads to useful and simple models for calculation of the time dependence of the aerosol mass concentration. Special attention is given to thermophoretic deposition (dry case) and condensation followed by gravitational deposition (wet case). Attractive features of the models are: 1) coagulation can be omitted and therefore complicated and doubtful calculations on coagulation are avoided, 2) material and particle size of the aerosol are not important for the aerosol decay rate, 3) the aerosol decay rate is related to the decay heat production which is known function of time, and the relevant part of it must be assessed usually for other purposes as well. (orig.) [de

  19. Study of Transient Heat Transport Mechanisms in Superfluid Helium Cooled Rutherford-Cables

    CERN Document Server

    AUTHOR|(CDS)2100615

    The Large Hadron Collider leverages superconducting magnets to focus the particle beam or keep it in its circular track. These superconducting magnets are composed of NbTi-cables with a special insulation that allows superfluid helium to enter and cool the superconducting cable. Loss mechanisms, e.g. continuous random loss of particles escaping the collimation system heating up the magnets. Hence, a local temperature increase can occur and lead to a quench of the magnets when the superconductor warms up above the critical temperature. A detailed knowledge about the temperature increases in the superconducting cable (Rutherford type) ensures a secure operation of the LHC. A sample of the Rutherford cable has been instrumented with temperature sensors. Experiments with this sample have been performed within this study to investigate the cooling performance of the helium in the cable due to heat deposition. The experiment uses a superconducting coil, placed in a cryostat, to couple with the magnetic field loss m...

  20. Two-dimensional model of coupled heat and moisture transport in frost-heaving soils

    International Nuclear Information System (INIS)

    Guymon, G.L.; Berg, R.L.; Hromadka, T.V.

    1984-01-01

    A two-dimensional model of coupled heat and moisture flow in frost-heaving soils is developed based upon well known equations of heat and moisture flow in soils. Numerical solution is by the nodal domain integration method which includes the integrated finite difference and the Galerkin finite element methods. Solution of the phase change process is approximated by an isothermal approach and phenomenological equations are assumed for processes occurring in freezing or thawing zones. The model has been verified against experimental one-dimensional freezing soil column data and experimental two-dimensional soil thawing tank data as well as two-dimensional soil seepage data. The model has been applied to several simple but useful field problems such as roadway embankment freezing and frost heaving

  1. Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions

    International Nuclear Information System (INIS)

    Kawabata, Shiro; Vasenko, Andrey S.; Ozaeta, Asier; Bergeret, Sebastian F.; Hekking, Frank W.J.

    2015-01-01

    We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits

  2. Heat transport and electron cooling in ballistic normal-metal/spin-filter/superconductor junctions

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Shiro, E-mail: s-kawabata@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Vasenko, Andrey S. [LPMMC, Université Joseph Fourier and CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble (France); Ozaeta, Asier [Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Bergeret, Sebastian F. [Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Donostia International Physics Center (DIPC), Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Hekking, Frank W.J. [LPMMC, Université Joseph Fourier and CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble (France)

    2015-06-01

    We investigate electron cooling based on a clean normal-metal/spin-filter/superconductor junction. Due to the suppression of the Andreev reflection by the spin-filter effect, the cooling power of the system is found to be extremely higher than that for conventional normal-metal/nonmagnetic-insulator/superconductor coolers. Therefore we can extract large amount of heat from normal metals. Our results strongly indicate the practical usefulness of the spin-filter effect for cooling detectors, sensors, and quantum bits.

  3. Phonon and electron temperature and non-Fourier heat transport in thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Carlomagno, I.; Cimmelli, V.A. [Department of Mathematics, Computer Science and Economics, University of Basilicata, Campus Macchia Romana, Viale dell' Ateneo Lucano 10, 85100 Potenza (Italy); Sellitto, A. [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Italy)

    2017-04-15

    We present a thermodynamic model of heat conductor which allows for different temperatures of phonons and electrons. This model is applied to calculate the steady-state radial temperature profile in a circular thin layer. The compatibility of the obtained temperature profiles with the second law of thermodynamics is investigated in view of the requirement of positive entropy production and of a nonlocal constitutive equation for the entropy flux.

  4. Winter and summer monsoon water mass, heat and freshwater transport changes in the Arabian Sea near 8°N

    Science.gov (United States)

    Stramma, Lothar; Brandt, Peter; Schott, Friedrich; Quadfasel, Detlef; Fischer, Jürgen

    The differences in the water mass distributions and transports in the Arabian Sea between the summer monsoon of August 1993 and the winter monsoon of January 1998 are investigated, based on two hydrographic sections along approximately 8°N. At the western end the sections were closed by a northward leg towards the African continent at about 55°E. In the central basin along 8°N the monsoon anomalies of the temperature and density below the surface-mixed layer were dominated by annual Rossby waves propagating westward across the Arabian Sea. In the northwestern part of the basin the annual Rossby waves have much smaller impact, and the density anomalies observed there were mostly associated with the Socotra Gyre. Salinity and oxygen differences along the section reflect local processes such as the spreading of water masses originating in the Bay of Bengal, northward transport of Indian Central Water, or slightly stronger southward spreading of Red Sea Water in August than in January. The anomalous wind conditions of 1997/98 influenced only the upper 50-100 m with warmer surface waters in January 1998, and Bay of Bengal Water covered the surface layer of the section in the eastern Arabian Sea. Estimates of the overturning circulation of the Arabian Sea were carried out despite the fact that many uncertainties are involved. For both cruises a vertical overturning cell of about 4-6 Sv was determined, with inflow below 2500 m and outflow between about 300 and 2500 m. In the upper 300-450 m a seasonally reversing shallow meridional overturning cell appears to exist in which the Ekman transport is balanced by a geostrophic transport. The heat flux across 8°N is dominated by the Ekman transport, yielding about -0.6 PW for August 1993, and 0.24 PW for January 1998. These values are comparable to climatological and model derived heat flux estimates. Freshwater fluxes across 8°N also were computed, yielding northward freshwater fluxes of 0.07 Sv in January 1998 and 0

  5. Heat transport in McMurdo Sound first-year fast ice

    Science.gov (United States)

    Trodahl, H. J.; McGuinness, M. J.; Langhorne, P. J.; Collins, K.; Pantoja, A. E.; Smith, I. J.; Haskell, T. G.

    2000-05-01

    We have monitored the temperature field within first-year sea ice in McMurdo Sound over two winter seasons, with sufficient resolution to determine the thermal conductivity from the thermal waves propagating down through the ice. Data reduction has been accomplished by direct reference to energy conservation, relating the rate of change of the internal energy density to the divergence of the heat current density. Use of this procedure, rather than the wave attenuation predicted by the thermal diffusion equation, avoids difficulties arising from a strongly temperature dependent thermal diffusivity. The thermal conductivity is an input parameter for ice growth and climate models, and the values commonly used in the models are predicted to depend on temperature, salinity, and the volume fraction of air. The present measurements were performed at depths in the ice where the air volume is small and the salinity is nearly constant, and they permit the determination of the absolute magnitude of the thermal conductivity and its temperature dependence. The weak temperature dependence is similar to that predicted by the models in the literature, but the magnitude is smaller by ˜10% than the predicted value most commonly used in climate and sea ice models. In the first season we find an additional scatter in the results at driving temperature gradients larger than ˜10-15 °C/m. We suggest that the scatter arises from a nonlinear contribution to the heat current, possibly associated with the onset of convective motion in brine inclusions. Episodic convective events are also observed. We have further determined the growth rate of the ice and compared it with the rate explained by the heat flux from the ice-water interface. The data show a sudden rise of growth rate, without a rise in heat flux through the ice, which coincides in time and depth with the appearance of platelet ice. Finally, we discuss the observation of radiative solar heating at depth in the ice and

  6. Crossover from ballistic to normal heat transport in the ϕ4 lattice: If nonconservation of momentum is the reason, what is the mechanism?

    Science.gov (United States)

    Xiong, Daxing; Saadatmand, Danial; Dmitriev, Sergey V.

    2017-10-01

    Anomalous (non-Fourier) heat transport is no longer just a theoretical issue since it has been observed experimentally in a number of low-dimensional nanomaterials, such as SiGe nanowires, carbon nanotubes, and others. To understand these anomalous behaviors, exploring the microscopic origin of normal (Fourier) heat transport is a fascinating theoretical topic. However, this issue has not yet been fully understood even for one-dimensional (1D) model chains, in spite of a great amount of thorough studies done to date. From those studies, it has been widely accepted that the conservation of momentum is a key ingredient to induce anomalous heat transport, while momentum-nonconserving systems usually support normal heat transport where Fourier's law is valid. But if the nonconservation of momentum is the reason, what is the underlying microscopic mechanism for the observed normal heat transport? Here we carefully revisit a typical 1D momentum-nonconserving ϕ4 model, and we present evidence that the mobile discrete breathers, or, in other words, the moving intrinsic localized modes with frequency components above the linear phonon band, can be responsible for that.

  7. Local Agenda 21. Settlement pattern and energy for transportation and heating; Lokal agenda 21. Bebyggelsesmoenster og energi til transport og oppvarming

    Energy Technology Data Exchange (ETDEWEB)

    Orderud, Geir Inge

    1998-09-01

    This document deals with Local Agenda 21 (LA21) and the relationship between settlement pattern and the consumption of energy in transportation and heating of houses. Local Agenda 21 originates from the Earth Summit held in Rio in 1992 and draws up the strategies by which the local communities should participate in realizing the recommendations of the summit. So far much of the research around LA21 has examined how well the individual countries that ratified the Rio document have fulfilled the recommendations of Article 28 on local responsibility. From the point of view of research, however, the challenge is rather to investigate the conditions for realizing the broad participation of the people. From the administrative point of view, the important issue is the relationship between the representative channels and the direct participation of local people in the decision processes, as well as the delegation of decision-making authority from national to regional or local level. One recommendation in Agenda 21 is to emit less greenhouse gases. In this connection, a central issue is transportation, which is affected by the settlement pattern. A denser settlement within an urban area is supposed to reduce the transportation and the use of private cars. Thus the local development and area policy is a topic of current interest in the study of how LA21 works locally, especially so because sparsely built-up areas with single family houses are considered as the good way of living. Densely populated urban areas may conflict with the need for arable land and green space. LA 21 and the settlement pattern are both parts of a larger social environment and it is important know these relationships when local measures and actions are analysed. The possibility of a sustainable development must be assessed in relation to the fact that more power is gathered in the global flow of capital. 26 refs.

  8. Numerical simulation for a vortex street near the poleward boundary of the nighttime auroral oval

    Science.gov (United States)

    Yamamoto, T.

    2012-02-01

    The formation of a vortex street is numerically studied as an aftermath of a transient (≈1 min) depression of the energy density of injected particles. It is basically assumed that the kinetic energies of auroral particles are substantially provided by nonadiabatic acceleration in the tail current sheet. One of the causes of such energy density depression is an outward (away from the Earth) movement of the neutral line because in such situation, a particle passes the acceleration zone for a shorter time interval while it is inwardly transported in the current sheet. The numerical simulation shows that a long chain of many (≥5) vortices can be formed in the nighttime high-latitude auroral oval as a result of the hybrid Kelvin-Helmholtz/Rayleigh-Taylor (KH/RT) instability. The main characteristics of long vortex chains in the simulation such as the short lifetime (≲2 min) and the correlation between wavelength, λ, and arc system width, A, compare well with those of the periodic auroral distortions observed primarily in the high-latitude auroral oval. Specifically, either λ-A relationship from simulation or observation shows a positive correlation between λ and A but with considerable dispersion in λ. Since auroral vortices arising from the hybrid KH/RT instability are not accompanied by significant rotational motions, the magnetic shear instability caused by undulations in the field-aligned current (FAC) sheet could turn the vortices into spirals which wind or unwind in response to increase or decrease of FACs, respectively.

  9. Control of alpha-particle transport by ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P.

    1990-01-01

    In this paper control of radial alpha-particle transport by using ion cyclotron range of frequency (ICRF) waves is investigated in a large-aspect-ratio tokamak geometry. Spatially inhomogeneous ICRF wave energy with properly selected frequencies and wave numbers can induce fast convective transports of alpha particles at the speed of order v α ∼ (P RF /n α ε 0 )ρ p , where R RF is the ICRF wave power density, n α is the alpha-particle density, ε 0 is the alpha-particle birth energy, and ρ p is the poloidal gyroradius of alpha particles at the birth energy. Application to International Thermonuclear Experimental Reactor (ITER) plasma is studied and possible antenna designs to control alpha-particle flux are discussed

  10. Relativistic electron transport in a solid target: study of heating in the framework of inertial fusion

    International Nuclear Information System (INIS)

    Martinolli, E.

    2003-04-01

    This work is dedicated to the study of the energy deposition of fast electrons in matter. This topic is of prime importance for inertial fusion driven by laser since relativistic electrons are produced in laser-matter interaction for a laser operating in ultra-intense regime. This thesis is made up of: a theoretical chapter dealing with the generation and transport of fast electrons, of 2 chapters reporting experimental data obtained with optical and X-rays diagnostics at the laser facilities of LULI in France and RAL in U.K., and of a chapter dedicated to the simulation of electron transport by using a Monte-Carlo code combined to a hybrid collisional-electromagnetic PIC code. A new spectrometer has been designed: the detection of Kα rays coming from a fluorescent layer embedded in the target has allowed us to assess the size of the electron beam and the level of ionisation. (A.C.)

  11. Control of alpha particle transport by spatially inhomogeneous ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P.

    1990-02-01

    Control of the radial alpha particle transport by using Ion Cyclotron Range of Frequency waves is investigated in a large-aspect-ratio tokamak geometry. It is shown that spatially inhomogeneous ICRF-wave energy with properly selected frequencies and wave numbers can induce fast convective transport of alpha particles at the speed of order υ alpha ∼ (P RF /n α ε 0 ) ρ p , where P RF is the ICRF-wave power density, n α is the alpha density, ε 0 is the alpha birth energy, and ρ p is the poloidal gyroradius of alpha particles at the birth energy. Application to ITER plasmas is studied and possible antenna designs to control alpha particle flux are discussed. 8 refs., 3 figs

  12. Physiological effects and transport of 24-epibrassinolide in heat-stressed barley

    Czech Academy of Sciences Publication Activity Database

    Janeczko, A.; Oklešťková, Jana; Pociecha, E.; Koscielniak, J.; Mirek, M.

    2011-01-01

    Roč. 33, č. 4 (2011), s. 1249-1259 ISSN 0137-5881 R&D Projects: GA AV ČR IAA400550801; GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Brassinosteroid transport * Dark respiration * Hordeum vulgare L * PSII efficiency * Metabolic activity Subject RIV: EF - Botanics Impact factor: 1.639, year: 2011

  13. Heat transport in PBX-M high βp plasmas

    International Nuclear Information System (INIS)

    LeBlanc, B.; Kaye, S.; Bell, R.; Fishman, H.; Hatcher, R.; Kaita, R.; Kessel, C.; Kugel, H.; Okabayashi, M.; Paul, S.; Sauthoff, N.; Sesnic, S.; Takahashi, H.; Duperrex, P.; Gammel, G.; Holland, A.; Levinton, F.

    1992-04-01

    PBX-M high beta poloidal discharges routinely transition into the H-mode regime: typically, a quiescent phase followed by an MHD active phase characterize the H-mode period. An analysis of the energy transport during these phases is conducted using the experimental data and the TRANSP code; effective diffusivities are computed to quantify the energy transport of the thermal component of the plasma. Compared to the L-mode, the quiescent H-phase is characterized by a decrease of the thermal ion energy transport and a flattening of the associated effective diffusivity profile. An error analysis is presented. Enhanced fast-ion losses are observed during the MHD active phase: particles in the lower end of the fast-ion energy spectrum with large perpendicular velocity component are predominantly affected. These losses must be taken into account in the analysis in order to reproduce the measured stored energy and time evolution of the neutron production rate during the MHD active phase

  14. Groundwater-Surface Water Interactions and Downstream Transport of Water, Heat, and Solutes in a Hydropeaked River

    Science.gov (United States)

    Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Watson, J.

    2017-12-01

    A majority of the world's largest river systems are regulated by dams. In addition to being used for water resources management and flood prevention, many large dams are also used for hydroelectric power generation. In the United States, dams account for 7% of domestic electricity, and hydropower accounts for 16% of worldwide electricity production. To help meet electricity demand during peak usage times, hydropower utilities often increase their releases of water during high demand periods. This practice, termed hydropeaking, can cause large transient flow regimes downstream of hydroelectric dams. These transient flow increases can result in order of magnitude daily fluctuations in discharge, and the released water can have different thermal and chemical properties than ambient river water. As hydropeaking releases travel downstream, the temporary rise in stage and increase in discharge can enhance surface water-groundwater (SW-GW) exchange between the river and its alluvial aquifer. This dam-induced SW-GW exchange, combined with hydrodynamic attenuation and heat exchange processes, result in complex responses downstream. The dam-regulated Lower Colorado River downstream of Austin, TX was used as a natural laboratory to observe SW-GW interactions and downstream transport of water, heat, and solutes under hydropeaking conditions. To characterize SW-GW interactions, well transects were installed in the banks of the river to observe exchanges between the river and alluvial aquifer. The well transects were installed at three different distances from the dam (15km, 35km, and 80km). At each well transect conductivity, temperature, and pressure sensors were deployed in the monitoring wells and in the channel. Additional conductivity and temperature sensors were deployed along the study reach to provide a more detailed record of heat and solute transport during hydropeaking releases. The field data spans over two months of daily dam releases that were punctuated by two

  15. Tokamak local transport model and scaling relations under high power heating

    International Nuclear Information System (INIS)

    Shi Bingren

    1997-05-01

    A simple, phenomenologically determined thermal conductivity model is suggested which will suit for L-mode and H-mode confinement analysis for high auxiliary heatings. By assuming that the central conductivity is proportional to the central temperature, the resultant energy confinement time will be automatically proportional to P tot -1/2 . The sawtooth effect, edge H-mode and central thermal barrier situations are discussed. This model can be extended to discuss the D, T burning process to greatly improve the usually used zero-dimensional POPC on analysis. (9 figs.)

  16. Building physics. Heat transport - humidity - sound. 4. new rev. ed. Bauphysik. Waermetransport - Feuchtigkeit - Schall

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J. (Fachhochschule Coburg (Germany))

    1994-01-01

    Numerous factors must be considered when planning buildings. While the buildings must be protected from fire, from the penetration of moisture, and from vibrations, the occupants must be protected from extreme temperature variations, insalubrious room air conditions, and undesirable noises. Certain matter constants, layer thicknesses, component sizes, room and building dimensions must be known for establishment of the required heat, moisture and sound protection rules. This manual discusses the relevant physical aspects based on fundamental knowledge. Application-oriented examples and problem definitions facilitate access to the practice of building construction. (BWI)

  17. Electronic heat, charge and spin transport in superconductor-ferromagnetic insulator structures

    Energy Technology Data Exchange (ETDEWEB)

    Bergeret, Sebastian [Materials Physics Center (CFM-CSIC), San Sebastian (Spain); Donostia International Physics Center (DIPC), San Sebastian (Spain)

    2015-07-01

    It is known for some time that a superconducting (S) film in contact with a ferromagnetic insulator (FI) exhibits a spin-splitting in the density of states (DoS). Recently we have explored different S-FI hybrid structures and predicted novel effects exploiting such spin-splitting of the DoS. In this talk I will briefly discuss (i) a heat valve based on a FI-S-I-S-FI Josephson junction; (ii) a thermoelectric transistor and (iii) the occurrence of a giant thermophase in a thermally-biased Josephson junction.

  18. Key role of asymmetric interactions in low-dimensional heat transport

    International Nuclear Information System (INIS)

    Chen, Shunda; Zhang, Yong; Wang, Jiao; Zhao, Hong

    2016-01-01

    We study the heat current autocorrelation function (HCAF) in one-dimensional, momentum-conserving lattices. In particular, we explore if there is any link between the decaying characteristics of the HCAF and asymmetric interparticle interactions. The Lennard-Jones model is investigated intensively in view of its significance to applications. It is found that, in the time range accessible to numerical simulations, the HCAF decays faster than power-law manners, and in some cases it decays even exponentially. Following the Green–Kubo formula, fast decay of the HCAF implies convergence of the heat conductivity, which is also corroborated by simulations. In addition, with a comparison to the Fermi–Pasta–Ulam-β model of symmetric interactions, the HCAF of the Fermi–Pasta–Ulam-α–β model of asymmetric interactions is also investigated. The results of all these studies lead to that, in certain ranges of parameters, fast decaying of the HCAF can be observed and correlated to the asymmetry degree of interactions. (paper: classical statistical mechanics, equilibrium and non-equilibrium)

  19. Effect of particle shape and slip mechanism on buoyancy induced convective heat transport with nanofluids

    Science.gov (United States)

    Joshi, Pranit Satish; Mahapatra, Pallab Sinha; Pattamatta, Arvind

    2017-12-01

    Experiments and numerical simulation of natural convection heat transfer with nanosuspensions are presented in this work. The investigations are carried out for three different types of nanosuspensions: namely, spherical-based (alumina/water), tubular-based (multi-walled carbon nanotube/water), and flake-based (graphene/water). A comparison with in-house experiments is made for all the three nanosuspensions at different volume fractions and for the Rayleigh numbers in the range of 7 × 105-1 × 107. Different models such as single component homogeneous, single component non-homogeneous, and multicomponent non-homogeneous are used in the present study. From the present numerical investigation, it is observed that for lower volume fractions (˜0.1%) of nanosuspensions considered, single component models are in close agreement with the experimental results. Single component models which are based on the effective properties of the nanosuspensions alone can predict heat transfer characteristics very well within the experimental uncertainty. Whereas for higher volume fractions (˜0.5%), the multi-component model predicts closer results to the experimental observation as it incorporates drag-based slip force which becomes prominent. The enhancement observed at lower volume fractions for non-spherical particles is attributed to the percolation chain formation, which perturbs the boundary layer and thereby increases the local Nusselt number values.

  20. Transportation fuel production from gasified biomass integrated with a pulp and paper mill – Part A: Heat integration and system performance

    International Nuclear Information System (INIS)

    Isaksson, Johan; Jansson, Mikael; Åsblad, Anders; Berntsson, Thore

    2016-01-01

    Production of transportation fuels from biorefineries via biomass gasification has been suggested as a way of introducing renewable alternatives in the transportation system with an aim to reduce greenhouse gas emissions to the atmosphere. By co-locating gasification-based processes within heat demanding industries, excess heat from the gasification process can replace fossil or renewable fuels. The objective of this study was to compare the heat integration potential of four different gasification-based biorefinery concepts with a chemical pulp and paper mill. The results showed that the choice of end-product which was either methanol, Fischer-Tropsch crude, synthetic natural gas or electricity, can have significant impact on the heat integration potential with a pulp and paper mill and that the heat saving measures implemented in the mill in connection to integration of a gasification process can increase the biomass resource efficiency by up to 3%-points. Heat saving measures can reduce the necessary biomass input to the biorefinery by 50% if the sizing constraint is to replace the bark boiler with excess heat from the biorefinery. A large integrated gasification process with excess steam utilisation in a condensing turbine was beneficial only if grid electricity is produced at below 30% electrical efficiency. - Highlights: • Biomass gasification integrated with a pulp and paper mill. • Different sizing constraints of integrated biofuel production. • The biofuel product largely influence the heat integration potential. • An oversized gasifier for increased power production could be favourable.

  1. Modeling the cool down of the primary heat transport system using shut down cooling system in normal operation and after events such as LOCA

    International Nuclear Information System (INIS)

    Icleanu, D.L.; Prisecaru, I.

    2015-01-01

    This paper aims at modeling the cooling of the primary heat transport system using shutdown cooling system (SDCS), for a CANDU 6 NPP in all operating modes, normal and abnormal (particularly in case of LOCA accident), using the Flowmaster calculation code. The modelling of heavy water flow through the shutdown cooling system and primary heat transport system was performed to determine the distribution of flows, pressure in various areas of the hydraulic circuit and the pressure loss corresponding to the components but also for the heat calculation of the heat exchangers related to the system. The results of the thermo-hydraulic analysis show that in all cases analyzed, normal operation and for LOCA accident regime, the performance requirements are confirmed by analysis

  2. ITER SAFETY TASK NID-5D: Operational tritium loss and accident investigation for heat transport and water detritiation systems

    International Nuclear Information System (INIS)

    Kalyanam, K.M.; Fong, C.; Moledina, M.; Natalizio, A.

    1995-02-01

    The task objectives are to: a) determine major pathways for tritium loss during normal operation of the cooling systems and water detritiation system, b) estimate operational losses and environmental tritium releases from the heat transport and water detritiation systems of ITER, and c) prepare a preliminary Failure Modes and Effects Analysis (FMEA) for the ITER Water Detritiation System. The analysis will be used to estimate chronic environmental tritium releases (airborne and waterborne) for the ITER Cooling Systems and Water Detritiation System. The assessment will form the basis for demonstrating the acceptability of ITER for siting in the Early Safety and Environmental Characterization Study (ESECS), to be issued in early 1995. (author). 7 refs., 10 tabs., 11 figs

  3. Development of ANC-type empirical two-phase pump model for full size CANDU primary heat transport pump

    International Nuclear Information System (INIS)

    Chan, A.M.C.; Huynh, H.M.

    2004-01-01

    The development of an ANC-type empirical two-phase pump model for CANDU (Canadian Deuterium) reactor primary heat transport pumps is described in the present paper. The model was developed based on Ontario Hydro Technologies' full scale Darlington pump first quadrant test data. The functional form of the ANC model which is widely used was chosen to facilitate the implementation of the model into existing computer codes. The work is part of a bigger test program with the aims: (1) to produce high quality pump performance data under off-normal operating conditions using both full-size and model scale pumps; (2) to advance our basic understanding of the dominant mechanisms affecting pump performance based on more detailed local measurements; and (3) to develop a 'best-estimate' or improved pump model for use in reactor licensing and safety analyses. (author)

  4. Temporally resolved characterization of shock-heated foam target with Al absorption spectroscopy for fast electron transport study

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, T.; Sawada, H.; Wei, M. S.; Beg, F. N. [Center for Energy Research, University of California, San Diego, La Jolla, California 92093 (United States); Regan, S. P.; Anderson, K.; Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Hund, J.; Paguio, R. R.; Saito, K. M.; Stephens, R. B. [General Atomics, San Diego, California 92186 (United States); Key, M. H.; Mackinnon, A. J.; McLean, H. S.; Patel, P. K.; Wilks, S. C. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2012-09-15

    The CH foam plasma produced by a laser-driven shock wave has been characterized by a temporally resolved Al 1s-2p absorption spectroscopy technique. A 200 mg/cm{sup 3} foam target with Al dopant was developed for this experiment, which used an OMEGA EP [D. D. Meyerhofer et al., J. Phys.: Conf. Ser. 244, 032010 (2010)] long pulse beam with an energy of 1.2 kJ and 3.5 ns pulselength. The plasma temperatures were inferred with the accuracy of 5 eV from the fits to the measurements using an atomic physics code. The results show that the inferred temperature is sustained at 40-45 eV between 6 and 7 ns and decreases to 25 eV at 8 ns. 2-D radiation hydrodynamic simulations show a good agreement with the measurements. Application of the shock-heated foam plasma platform toward fast electron transport experiments is discussed.

  5. Study of heat and salt transport processes in the Espinheiro Channel (Ria de Aveiro)

    Science.gov (United States)

    Vaz, Nuno Alexandre Firmino

    O principal objectivo deste trabalho consistiu no estudo da dinâmica termohalina do Canal do Espinheiro em funcao de dois forcamentos principais: mare e caudal fluvial, usando duas abordagens distintas: trabalho experimental e modelacao numerica. A propagacao da mare e o caudal fluvial do Rio Vouga sao determinantes no estabelecimento da estrutura horizontal da salinidade ao longo do canal. A estrutura termica horizontal ao longo do canal e, em grande parte, determinada pela variacao sazonal da temperatura da agua do Rio Vouga, bem como, pela variacao sazonal das condicoes meteorologicas devido a reduzida profundidade. Foi observada a formacao de fortes gradientes de salinidade (relacionados com a formacao de frentes estuarinas) numa regiao a cerca de 7-8 km da embocadura do canal, observando-se a sua migracao numa regiao de aproximadamente 1 km, dependendo do regime de mare. O balanco entre o transporte de sal de natureza advectiva e difusiva foi calculado, revelando que junto a embocadura os processos fisicos que mais contribuem para o transporte de sal sao a circulacao residual e o aprisionamento da agua em canais secundarios. Junto a foz do Rio Vouga os termos devidos a descarga fluvial e a circulacao gravitacional dominam o transporte de sal. Foi calibrado e validado um modelo numerico (Mohid, em modo 2D e 3D), sendo posteriormente utilizado para estudar a hidrologia do canal. Foi concedida particular atencao ao estudo da hidrologia em condicoes extremas de caudal fluvial e de mare. Os resultados da modelacao numerica permitiram numa primeira fase avaliar o bom desempenho do Mohid na reproducao dos escoamentos barotropicos na Ria de Aveiro, bem como na evolucao temporal das propriedades termohalinas da agua. Sob condicoes de caudal fluvial reduzido, a dinâmica do canal e essencialmente dominada pela mare. Com o aumento do caudal fluvial, a influencia da agua doce estende-se para jusante, estratificando a coluna de agua. As simulacoes 3D do Canal do

  6. Resistor-network anomalies in the heat transport of random harmonic chains.

    Science.gov (United States)

    Weinberg, Isaac; de Leeuw, Yaron; Kottos, Tsampikos; Cohen, Doron

    2016-06-01

    We consider thermal transport in low-dimensional disordered harmonic networks of coupled masses. Utilizing known results regarding Anderson localization, we derive the actual dependence of the thermal conductance G on the length L of the sample. This is required by nanotechnology implementations because for such networks Fourier's law G∝1/L^{α} with α=1 is violated. In particular we consider "glassy" disorder in the coupling constants and find an anomaly which is related by duality to the Lifshitz-tail regime in the standard Anderson model.

  7. Transportation

    National Research Council Canada - National Science Library

    Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter

    2006-01-01

    ...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...

  8. Coherent heat transport in 2D phononic crystals with acoustic impedance mismatch

    International Nuclear Information System (INIS)

    Arantes, A; Anjos, V

    2016-01-01

    In this work we have calculated the cumulative thermal conductivities of micro-phononic crystals formed by different combinations of inclusions and matrices at a sub-Kelvin temperature regime. The low-frequency phonon spectra (up to tens of GHz) were obtained by solving the generalized wave equation for inhomogeneous media with the plane wave expansion method. The thermal conductivity was calculated from Boltzmann transport theory highlighting the role of the low-frequency thermal phonons and neglecting phonon–phonon scattering. A purely coherent thermal transport regime was assumed throughout the structures. Our findings show that the cumulative thermal conductivity drops dramatically when compared with their bulk counterpart. Depending on the structural composition this reduction may be attributed to the phonon group velocity due to a flattening of the phonon dispersion relation, the extinction of phonon modes in the density of states or due to the presence of complete band gaps. According to the contrast between the inclusions and the matrices, three types of two dimensional phononic crystals were considered: carbon/epoxy, carbon/polyethylene and tungsten/silicon, which correspond respectively to a moderate, strong and very strong mismatch in the mechanical properties of these materials. (paper)

  9. Turbulence and transport during electron cyclotron heating in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Rhodes, T.L.; Peebles, W.A.; DeBoo, J.C.; Prater, R.; Kinsey, J.E.; de Grassie, J.S.; Bravenec, R.V.; Burrell, K.H.; Lohr, J.; Petty, C.C.; Nguyen, X.V.; Doyle, E.J.; Greenfield, C.M.; Zeng, L.; Zeeland, M.A.; Wang, G.; Makowski, M.A.; Staebler, G.M.; St John, H.E.; Solomon, W.M.

    2007-01-01

    The response of plasma parameters and broad wavenumber turbulence (1--40 cm -1 , kρ s = 0.1--8) to auxiliary electron cyclotron heating (ECH) is reported on. In these plasmas the electron temperature responds most strongly to the ECH while the electron density and ion temperature are kept approximately constant. Thermal fluxes and diffusivities increase appreciably with ECH for both electron and ion channels. Significant changes to the density fluctuations over the full range of measured wavenumbers are observed. This range of wavenumbers encompasses that typically associated with ion temperature gradient, trapped electron mode, and electron temperature gradient modes. Changes in linear growth rates calculated using a gyrokinetic code show consistency with observed fluctuation increases over the whole range of wavenumbers.

  10. Detailed kinetic and heat transport model for the hydrolysis of lignocellulose by anhydrous hydrogen fluoride vapor

    Energy Technology Data Exchange (ETDEWEB)

    Rorrer, G.L.; Mohring, W.R.; Lamport, D.T.A.; Hawley, M.C.

    1988-01-01

    Anhydrous Hydrogen Fluoride (HF) vapor at ambient conditions efficiently and rapidly hydrolyzed lignocellulose to glucose and lignin. The unsteady-state reaction of HF vapor with a single lignocellulose chip was mathematically modeled under conditions where external and internal mass-transfer resistances were minimized. The model incorporated physical adsorption of HF vapor onto the lignocellulosic matrix and solvolysis of cellulose to glucosyl fluoride by adsorbed HF into the differential material and energy balance expressions. Model predictions for the temperature distribution and global glucose yield in the HF-reacting lignocellulose chip as a function of reaction time and HF vapor stream temperature agreed reasonably with the complimentary experimental data. The model correctly predicted that even when mass-transfer resistances for the reaction of HF vapor with a single lignocellulose chip are minimized, external and internal heat-transfer resistances are still significant.

  11. Upscaling the Coupled Water and Heat Transport in the Shallow Subsurface

    Science.gov (United States)

    Sviercoski, R. F.; Efendiev, Y.; Mohanty, B. P.

    2018-02-01

    Predicting simultaneous movement of liquid water, water vapor, and heat in the shallow subsurface has many practical interests. The demand for multidimensional multiscale models for this region is important given: (a) the critical role that these processes play in the global water and energy balances, (b) that more data from air-borne and space-borne sensors are becoming available for parameterizations of modeling efforts. On the other hand, numerical models that consider spatial variations of the soil properties, termed here as multiscale, are prohibitively expensive. Thus, there is a need for upscaled models that take into consideration these features, and be computationally affordable. In this paper, a multidimensional multiscale model coupling the water flow and heat transfer and its respective upscaled version are proposed. The formulation is novel as it describes the multidimensional and multiscale tensorial versions of the hydraulic conductivity and the vapor diffusivity, taking into account the tortuosity and porosity properties of the medium. It also includes the coupling with the energy balance equation as a boundary describing atmospheric influences at the shallow subsurface. To demonstrate the accuracy of both models, comparisons were made between simulation and field experiments for soil moisture and temperature at 2, 7, and 12 cm deep, during 11 days. The root-mean-square errors showed that the upscaled version of the system captured the multiscale features with similar accuracy. Given the good matching between simulated and field data for near-surface soil temperature, the results suggest that it can be regarded as a 1-D variable.

  12. STAR: The Secure Transportable Autonomous Reactor System - Encapsulated Fission Heat Source

    International Nuclear Information System (INIS)

    Ehud Greenspan

    2003-01-01

    OAK-B135 The Encapsulated Nuclear Heat Source (ENHS) is a novel 125 MWth fast spectrum reactor concept that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor. It uses Pb-Bi or other liquid-metal coolant and is intended to be factory manufactured in large numbers to be economically competitive. It is anticipated to be most useful to developing countries. The US team studying the feasibility of the ENHS reactor concept consisted of the University of California, Berkeley, Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL) and Westinghouse. Collaborating with the US team were three Korean organizations: Korean Atomic Energy Research Institute (KAERI), Korean Advanced Institute for Science and Technology (KAIST) and the University of Seoul, as well as the Central Research Institute of the Electrical Power Industry (CRIEPI) of Japan. Unique features of the ENHS include at least 20 years of operation without refueling; no fuel handling in the host country; no pumps and valves; excess reactivity does not exceed 1$; fully passive removal of the decay heat; very small probability of core damaging accidents; autonomous operation and capability of load-following over a wide range; very long plant life. In addition it offers a close match between demand and supply, large tolerance to human errors, is likely to get public acceptance via demonstration of superb safety, lack of need for offsite response, and very good proliferation resistance. The ENHS reactor is designed to meet the requirements of Generation IV reactors including sustainable energy supply, low waste, high level of proliferation resistance, high level of safety and reliability, acceptable risk to capital and, hopefully, also competitive busbar cost of electricity

  13. Modelling of radionuclide migration and heat transport from an High-Level-Radioactive-Waste-repository (HLW) in Boom clay

    International Nuclear Information System (INIS)

    Put, M.; Henrion, P.

    1992-01-01

    For the modelling of the migration of radionuclides in the Boom clay formation, the analytical code MICOF has been updated with a 3-dimensional analytical solution for discrete sources. the MICOF program is used for the calculation of the release of α and β emitters from the HIGH LEVEL RADIOACTIVE WASTES (HLW). A coherent conceptual model is developed which describes all the major physico-chemical phenomena influencing the migration of radionuclides in the Boom clay. The concept of the diffusion accessible porosity is introduced and included in the MICOF code. Different types of migration experiments are described with their advantages and disadvantages. The thermal impact of the HLW disposal in the stratified Boom clay formation has been evaluated by a finite element simulation of the coupled heat and mass transport equation. The results of the simulations show that under certain conditions thermal convection cells may form, but the convective heat transfer in the clay formation is negligible. 6 refs., 19 figs., 2 tabs., 5 appendices

  14. A thermodynamic and heat transfer model for LNG ageing during ship transportation. Towards an efficient boil-off gas management

    Science.gov (United States)

    Krikkis, Rizos N.

    2018-06-01

    A non-equilibrium thermodynamic and heat transfer model for LNG ageing during ship transportation has been developed based on experimental data. The measurements reveal that the liquid temperature remains nearly constant, whereas significant variations are observed for the gas temperature. The measurement of the liquid temperature along the tank height suggests that a small scale rollover phenomenon may have taken place in one cargo tank. A time dependent heat transfer mechanism has been considered by taking into account the temperature variations of the atmospheric air, the seawater and the cofferdam environment which affect the cargo tanks. An important finding is that the evaporation rate (boil-of rate) is forced to follow the fuel flow consumption profile imposed by the vessel's propulsion system in order to match the tank pressure and volume constraints. The theoretical model is favorably compared to a comprehensive set on per hour basis of on board measurements of cargo temperatures and pressures, recorded during laden voyages, providing a better understanding of the underlying processes involved. The dominant role of the fuel consumption on the evaporation rate may be utilized in order to devise an efficient cargo management strategy during the laden voyage.

  15. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  16. Isotope distributions in primary heat transport and containment systems during a severe accident in CANDU type reactor

    International Nuclear Information System (INIS)

    Constantin, M.

    2005-01-01

    The paper is intended to analyse the distribution of the fission products (FPs) in CANDU Primary Heat Transport (PHT) and CANDU Containment Systems by using the ASTEC code. The complexity of the data required by ASTEC and the complexity both of CANDU PHT and Containment System were strong motivation to begin with a simplified model. The data related to the nodes' definitions, temperatures and pressure conditions were chosen as possible as real data from CANDU loss of coolant accident sequence (CATHENA code results). The source term of FPs introduced into the PHT was estimated by ORIGEN code. The FPs distribution in the nodes of the circuit and the FPs mass transfer per isotope and chemical species were obtained by using SOPHAEROS module. The distributions within the containment are obtained by the CPA module (thermalhydraulic calculations in the containment and FPs aerosol transport). The results consist of mass distributions in the nodes of the circuit and the transferred mass to the containment through the break for different species (FPs and chemical species) and mass distributions in the different parts of the containment and different hosts. (authors)

  17. Heat transport in two-dimensional materials by directly solving the phonon Boltzmann equation under Callaway's dual relaxation model

    Science.gov (United States)

    Guo, Yangyu; Wang, Moran

    2017-10-01

    The single mode relaxation time approximation has been demonstrated to greatly underestimate the lattice thermal conductivity of two-dimensional materials due to the collective effect of phonon normal scattering. Callaway's dual relaxation model represents a good approximation to the otherwise ab initio solution of the phonon Boltzmann equation. In this work we develop a discrete-ordinate-method (DOM) scheme for the numerical solution of the phonon Boltzmann equation under Callaway's model. Heat transport in a graphene ribbon with different geometries is modeled by our scheme, which produces results quite consistent with the available molecular dynamics, Monte Carlo simulations, and experimental measurements. Callaway's lattice thermal conductivity model with empirical boundary scattering rates is examined and shown to overestimate or underestimate the direct DOM solution. The length convergence of the lattice thermal conductivity of a rectangular graphene ribbon is explored and found to depend appreciably on the ribbon width, with a semiquantitative correlation provided between the convergence length and the width. Finally, we predict the existence of a phonon Knudsen minimum in a graphene ribbon only at a low system temperature and isotope concentration so that the average normal scattering rate is two orders of magnitude stronger than the intrinsic resistive one. The present work will promote not only the methodology for the solution of the phonon Boltzmann equation but also the theoretical modeling and experimental detection of hydrodynamic phonon transport in two-dimensional materials.

  18. Porous media fluid flow, heat, and mass transport model with rock stress coupling

    International Nuclear Information System (INIS)

    Runchal, A.K.

    1980-01-01

    This paper describes the physical and mathematical basis of a general purpose porous media flow model, GWTHERM. The mathematical basis of the model is obtained from the coupled set of the classical governing equations for the mass, momentum and energy balance. These equations are embodied in a computational model which is then coupled externally to a linearly elastic rock-stress model. This coupling is rather exploratory and based upon empirical correlations. The coupled model is able to take account of time-dependent, inhomogeneous and anisotropic features of the hydrogeologic, thermal and transport phenomena. A number of applications of the model have been made. Illustrations from the application of the model to nuclear waste repositories are included

  19. Heat resistant materials and their feasibility issues for a space nuclear transportation system

    International Nuclear Information System (INIS)

    Olsen, C.S.

    1991-01-01

    A number of nuclear propulsion concepts based on solid-core nuclear propulsion are being evaluated for a nuclear propulsion transportation system to support the Space Exploration Initiative (SEI) involving the reestablishment of a manned lunar base and the subsequent exploration of Mars. These systems will require high-temperature materials to meet the operating conditions with appropriate reliability and safety built into these systems through the selection and testing of appropriate materials. The application of materials for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems and the feasibility issues identified for their use will be discussed. Some mechanical property measurements have been obtained, and compatibility tests were conducted to help identify feasibility issues. 3 refs., 1 fig., 4 tabs

  20. Extension of ANISN and DOT 3.5 transport computer codes to calculate heat generation by radiation and temperature distribution in nuclear reactors

    International Nuclear Information System (INIS)

    Torres, L.M.R.; Gomes, I.C.; Maiorino, J.R.

    1986-01-01

    The ANISN and DOT 3.5 codes solve the transport equation using the discrete ordinate method, in one and two-dimensions, respectively. The objectives of the study were to modify these two codes, frequently used in reactor shielding problems, to include nuclear heating calculations due to the interaction of neutrons and gamma-rays with matter. In order to etermine the temperature distribution, a numerical algorithm was developed using the finite difference method to solve the heat conduction equation, in one and two-dimensions, considering the nuclear heating from neutron and gamma-rays, as the source term. (Author) [pt

  1. Thermal transport properties of helium, helium--air mixtures, water, and tubing steel used in the CACHE program to compute HTGR auxiliary heat exchanger performance

    International Nuclear Information System (INIS)

    Tallackson, J.R.

    1976-02-01

    A description is presented of the thermal transport properties of the materials involved in digital computer calculations of heat transfer rates by the core auxiliary heat exchangers in large HTGR nuclear steam supply systems. These materials are pure helium, mixtures of helium with common gases having molecular weights in the range of 28 to 32, alloy steel tubing, and water. For use in programmed computations the viscosity, thermal conductivity, and specific heat are represented primarily by equations augmented by curves and tabulations. Materials supporting the development and selection of the property equations are included

  2. Two-level system in spin baths: Non-adiabatic dynamics and heat transport

    Science.gov (United States)

    Segal, Dvira

    2014-04-01

    We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.

  3. Two-level system in spin baths: Non-adiabatic dynamics and heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Segal, Dvira [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6 (Canada)

    2014-04-28

    We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.

  4. Effect of heat stress on the gene expression of ion transporters/channels in the uterus of laying hens during eggshell formation.

    Science.gov (United States)

    Bahadoran, Shahab; Dehghani Samani, Amir; Hassanpour, Hossein

    2018-01-01

    Heat stress is a problem in laying hens as it decreases egg quality by decreasing eggshell mineralization. Heat stress alters gene expression, hence our aim was to investigate effects of heat stress on gene expression of ion transport elements involving in uterine mineralization (TRPV6, CALB1, ITPR3, SCNN1G, SLC4A4, KCNJ15, SLC4A9, and CLCN2) by real time quantitative PCR. Forty 23-week-old White Leghorn laying hens were housed in two rooms. The control group (n = 20) was maintained at 21-23 °C, and the heat stress group (n = 20) was exposed to 36-38 °C for 8 weeks. All parameters of egg quality including egg weight, surface area, volume, and eggshell weight, thickness, ash weight, and calcium content were decreased in the heat stress group compared to the control group (by 26.9%, 32.7%, 44.1%, 38.4%, 31.7%, 39.4%, and 11.1%, respectively). Total plasma calcium was decreased by 13.4%. Levels of ITPR3, SLC4A4, and SLC4A9 transcripts in the uterine lining were decreased in the heat stress group compared to the control group (by 61.4%, 66.1%, and 66.1%, respectively). CALB1 transcript level was increased (by 34.2 fold) in the heat stress group of hens compared to controls. TRPV6, SCNN1G, KCNJ15, and CLCN2 transcript levels did not significantly differ between control and heat stress groups of laying hens. It is concluded that the down-expression of ITPR3, SLC4A4, and SLC4A9 genes may impair transportation of Cl - , HCO 3 - , and Na + in eggshell mineralization during heat stress. Increased CALB1 gene expression may increase resistance of uterine cells to detrimental effects of heat stress.

  5. Radiation, impurity effects, instability characteristics and transport in Ohmically heated plasmas in the PLT tokamak

    International Nuclear Information System (INIS)

    Bol, K.; Arunasalam, V.; Bitter, M.

    1979-01-01

    Titanium-gettered deuterium plasmas, with graphite or steel limiters to define the plasma minor radius, have Zsub(eff) approximately 1 for 3x10 13 14 cm -3 . In ungettered discharges the density limit set by disruptions is about half the value in gettered discharges. The bolometrically measured energy flux from the whole plasma volume is 80-100% of the Ohmic input power for ungettered discharges and 50-70% for gettered ones. The strucutre of MHD modes continues to be intensively studied by means of soft X-ray detector arrays; however, the connection with the disruptive instability remains unclear. Microinstabilities, studied by means of a 2-mm homodyne scattering system, appear to be of sufficient magnitude to influence energy and particle transport. Ion energy confinement times in the central region of the plasma have been estimated to be 50-100ms. Gross electron energy confinement time increases linearly with density at constant temperature. The longest electron energy confinement times observed are approximately >40ms in dense gettered discharges, giving total energy confinement times approximately 80ms. (author)

  6. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  7. Characterisation of girth pipe weld for primary heat transport system of pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Singh, P.K.; Vaze, K.K.; Kushwaha, H.S.

    2002-01-01

    The weld and heat affected zone (HAZ) associated with the girth weld are most vulnerable regions of the piping system. The different regions of the weld joint such as the weld metal, HAZ and base metal lead to heterogeneous mechanical and metallurgical properties of the joints. Due to their different metallurgical and mechanical properties, the amounts of damage produced in these regions are different when the component is subjected to service condition. Thus, it is imperative to know the characteristics of these regions of a pipe weld in order to identify the weakest zone for safe designing of high energy piping components. In view of this necessity the present study has been planned to carry out complete characterisation of the weld joint of SA 333 Gr.6 steel pipe, in terms of its metallurgical, mechanical and fracture properties. The mechanical and fracture mechanics properties of the base metal, weld deposit and HAZ have been compared and correlated with reference to their microstructures. Weld joints of SA 333 Gr.6 steel pipe have been prepared by using GTAW root pass and SMAW filling of V-grove as per recommended welding procedure specifications (WPS) conforming to ASME Sec IX commonly used to fabricate nuclear piping system components. The emphasis of the study is to characterise base, weld and HAZ of the pipe weld in terms of chemical, metallurgical, mechanical and fracture mechanics properties. The fracture toughness behaviour of the welds and HAZ has been characterised by J-integral parameters. The fatigue crack growth rate has been characterised by Paris Law. Stretched zone width (SZW) has been measured under SEM to evaluate initiation fracture toughness. The estimated initiation fracture toughness based on SZW and blunting line given by EGF recommendation have been compared. The fracture mechanics properties of base, weld and HAZ has been determined and compared. The fracture mechanics properties of the weld and HAZ have been correlated to their

  8. Plasma structure within poleward-moving cusp/cleft auroral transients: EISCAT Svalbard radar observations and an explanation in terms of large local time extent of events

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2000-09-01

    Full Text Available We report high-resolution observations of the southward-IMF cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter Svalbard radar (ESR, and compare them with observations of dayside auroral luminosity, as seen at a wavelength of 630 nm by a meridian scanning photometer at Ny Ålesund, and of plasma flows, as seen by the CUTLASS (co-operative UK twin location auroral sounding system Finland HF radar. The optical data reveal a series of poleward-moving transient red-line (630 nm enhancements, events that have been associated with bursts in the rate of magnetopause reconnection generating new open flux. The combined observations at this time have strong similarities to predictions of the effects of soft electron precipitation modulated by pulsed reconnection, as made by Davis and Lockwood (1996; however, the effects of rapid zonal flow in the ionosphere, caused by the magnetic curvature force on the newly opened field lines, are found to be a significant additional factor. In particular, it is shown how enhanced plasma loss rates induced by the rapid convection can explain two outstanding anomalies of the 630 nm transients, namely how minima in luminosity form between the poleward-moving events and how events can re-brighten as they move poleward. The observations show how cusp/cleft aurora and transient poleward-moving auroral forms appear in the ESR data and the conditions which cause enhanced 630 nm emission in the transients: they are an important first step in enabling the ESR to identify these features away from the winter solstice when supporting auroral observations are not available.Key words: Ionosphere (polar ionosphere - Magnetospheric physics (magnetopause; cusp and boundary layers; solar wind-magnetosphere interactions

  9. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, D. W; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  10. Early life thermal stress: Impact on future thermotolerance, stress response, behavior, and intestinal morphology in piglets exposed to a heat stress challenge during simulated transport

    Science.gov (United States)

    Study objectives were to evaluate the impact of early life thermal stress (ELTS) on thermoregulation, stress, and intestinal health of piglets subjected to a future heat stress (HS) challenge during simulated transport. Approximately 7 d after farrowing, 12 first parity gilts and their litters were ...

  11. Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye

    Science.gov (United States)

    Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC. (Technical Monitor)

    2001-01-01

    The mechanism for the formation and intensification of the hurricane warm core is not well understood. The generally accepted explanation is that the warm core forms as a result of gentle subsidence of air within the eye that warms as a result of adiabatic compression. Malkus suggested that this subsidence is part of a deep circulation in which air begins descent at high levels in the eye, acquires cyclonic angular momentum as it descends to lower levels, and then diverges at low levels, where it is entrained back into the eyewall. Inward mixing from the eyewall is hypothesized to force the subsidence and maintain the moisture and momentum budgets of the subsiding air. Willoughby suggested that air within the eye has remained so since it was first enclosed during the formation of the eyewall and that it subsides at most only a few kilometers rather than through the depth of the troposphere. He relates the subsidence to the low-level divergence and entrainment into the eyewall noted by Malkus, but suggests that shrinkage of the eye's volume is more than adequate to account for the air lost to the eyewall or converted to cloudy air by turbulent mixing across the eye boundary. Smith offered an alternative view of the subsidence forcing, suggesting that vertical motion in a mature hurricane eye is generated largely by imbalances between the downward vertical pressure gradient force and the upward buoyancy force. The vertical pressure gradient force is associated with the decay and/or radial spread of the tangential wind field with height at those levels were the winds are in approximate gradient wind balance. The rate of subsidence is just that required to warm the air sufficiently such that the buoyancy remains in close hydrostatic balance with an increasing vertical pressure gradient force. In this study, a very high-resolution simulation of Hurricane Bob using a cloud-resolving grid scale of 1.3 km is used to examine the heat budget within the storm with particular

  12. A heat transport benchmark problem for predicting the impact of measurements on experimental facility design

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel

    2016-01-01

    Highlights: • Predictive Modeling of Coupled Multi-Physics Systems (PM_CMPS) methodology is used. • Impact of measurements for reducing predicted uncertainties is highlighted. • Presented thermal-hydraulics benchmark illustrates generally applicable concepts. - Abstract: This work presents the application of the “Predictive Modeling of Coupled Multi-Physics Systems” (PM_CMPS) methodology conceived by Cacuci (2014) to a “test-section benchmark” problem in order to quantify the impact of measurements for reducing the uncertainties in the conceptual design of a proposed experimental facility aimed at investigating the thermal-hydraulics characteristics expected in the conceptual design of the G4M reactor (GEN4ENERGY, 2012). This “test-section benchmark” simulates the conditions experienced by the hottest rod within the conceptual design of the facility's test section, modeling the steady-state conduction in a rod heated internally by a cosinus-like heat source, as typically encountered in nuclear reactors, and cooled by forced convection to a surrounding coolant flowing along the rod. The PM_CMPS methodology constructs a prior distribution using all of the available computational and experimental information, by relying on the maximum entropy principle to maximize the impact of all available information and minimize the impact of ignorance. The PM_CMPS methodology then constructs the posterior distribution using Bayes’ theorem, and subsequently evaluates it via saddle-point methods to obtain explicit formulas for the predicted optimal temperature distributions and predicted optimal values for the thermal-hydraulics model parameters that characterized the test-section benchmark. In addition, the PM_CMPS methodology also yields reduced uncertainties for both the model parameters and responses. As a general rule, it is important to measure a quantity consistently with, and more accurately than, the information extant prior to the measurement. For

  13. Seasonal and mesoscale variability of oceanic transport of anthropogenic CO2

    Directory of Open Access Journals (Sweden)

    J.-C. Dutay

    2009-11-01

    Full Text Available Estimates of the ocean's large-scale transport of anthropogenic CO2 are based on one-time hydrographic sections, but the temporal variability of this transport has not been investigated. The aim of this study is to evaluate how the seasonal and mesoscale variability affect data-based estimates of anthropogenic CO2 transport. To diagnose this variability, we made a global anthropogenic CO2 simulation using an eddy-permitting version of the coupled ocean sea-ice model ORCA-LIM. As for heat transport, the seasonally varying transport of anthropogenic CO2 is largest within 20° of the equator and shows secondary maxima in the subtropics. Ekman transport generally drives most of the seasonal variability, but the contribution of the vertical shear becomes important near the equator and in the Southern Ocean. Mesoscale variabilty contributes to the annual-mean transport of both heat and anthropogenic CO2 with strong poleward transport in the Southern Ocean and equatorward transport in the tropics. This "rectified" eddy transport is largely baroclinic in the tropics and barotropic in the Southern Ocean due to a larger contribution from standing eddies. Our analysis revealed that most previous hydrographic estimates of meridional transport of anthropogenic CO2 are severely biased because they neglect temporal fluctuations due to non-Ekman velocity variations. In each of the three major ocean basins, this bias is largest near the equator and in the high southern latitudes. In the subtropical North Atlantic, where most of the hydrographic-based estimates have been focused, this uncertainty represents up to 20% and 30% of total meridional transport of heat and CO2. Generally though, outside the tropics and Southern Ocean, there are only small variations in meridional transport due to seasonal variations in tracer fields and time variations in eddy transport. For the North Atlantic, eddy variability accounts for up to 10% and 15% of the total transport of

  14. Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

    2007-01-01

    When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However

  15. Modeling of coupled heat transfer and reactive transport processes in porous media: Application to seepage studies at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

    2007-01-01

    When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO 2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However

  16. Degradation of energy confinement or degradation of plasma-heating. What is the main definite process for Plasma transport in stellarator?

    International Nuclear Information System (INIS)

    Fedynin, O.I.; Andryuklina, E.D.

    1995-01-01

    The analysis of plasma energy balance in stellarators and tokamaks depends on the different assumptions made and may give different and even contradictory results. When assuming full power absorption by thermal plasmas, paradoxical results can be obtained: degradation of the energy confinement time with heating power as well as degradation of plasma thermal conductivity in very short times (t<< tau:E) during power modulation experiments are deduced. On the other hand, assuming that plasma transport characteristics do not change while pain plasma parameters (density and temperature, their gradients, etc.) are kept constant, leads to conclude that heating efficiency is not unity and that it depends on both, plasma parameters and heating power. In this case no contradiction is found when analyzing plasma energy balances. In this paper the results of ECRH experiments on L-2M will be presented. The experiments were aimed to try to answer this important question. Analyses of the fast processes occurring during the switch off phase of the ECR heating, modulation of the heating power, and specific plasma decay phase, have lead to the conclusion that plasma transport characteristics remaining unchanged during fast variations of the