WorldWideScience

Sample records for poleward energy transport

  1. Poleward energy transport: is the standard definition physically relevant at all time scales?

    Science.gov (United States)

    Liang, Minyi; Czaja, Arnaud; Graversen, Rune; Tailleux, Remi

    2018-03-01

    Poleward energy transport in the atmosphere and oceans constitutes an important branch of the global energy budget, and its role in the climate system has been the subject of many studies. In the atmosphere, the transport is affected by "eddies" and large scale meridional cells, both with zero net mass transport across latitude circles, but also partly by processes associated with a net transport of mass across latitude circles. The latter must cease to operate in steady state, but they may be significant when time variability of the heat budget is considered. Indeed, examination of reanalysis data on short (daily to monthly) timescales shows that mass variations on these timescales result in surprisingly large fluctuations (in excess of 10^{15} W = 1 PW) in the poleward heat transport. These fluctuations are referred to as "extensive", for they primarily alter the mass integrated energy of the region considered, but not its averaged value. It is suggested that extensive fluctuations mask more meaningful climate signals present in the heat transport variability on monthly and interannual timescales, and a new formulation is proposed to isolate the latter. This new formulation is applied successfully to reanalysis data and climate model simulations.

  2. On the pattern of CO2 radiative forcing and poleward energy transport

    Science.gov (United States)

    Huang, Yi; Xia, Yan; Tan, Xiaoxiao

    2017-10-01

    A set of general circulation model experiments are conducted to analyze how the poleward energy transport (PET) is related to the spatial pattern of CO2 radiative forcing. The effects of forcing pattern are affirmed by comparing the conventional doubling CO2 experiment, in which the forcing pattern is inhomogeneous, to a set of forcing homogenization experiments, in which the top of atmosphere (TOA), surface, or atmospheric forcing distribution is homogenized respectively. In addition, we separate and compare the effects of CO2 forcing to various feedbacks on atmospheric and oceanic PETs, by using a set of radiative kernels that we have developed for both TOA and surface radiation fluxes. The results here show that both the enhancement of atmospheric PET and weakening of oceanic PET during global warming are directly driven by the meridional gradients of the CO2 forcing. Interestingly, the overall feedback effect is to reinforce the forcing effect, mainly through the cloud feedback in the case of atmospheric PET and the albedo feedback in the case of the oceanic PET. Contrary to previous studies, we find that the water vapor feedback only has a weak effect on atmospheric PET. The Arctic warming amplification, which strongly affects atmospheric PET, is sensitive to the CO2 forcing pattern.

  3. Role of extratropical cyclones in the recently observed increase in poleward moisture transport into the Arctic Ocean

    Science.gov (United States)

    Villamil-Otero, Gian A.; Zhang, Jing; He, Juanxiong; Zhang, Xiangdong

    2018-01-01

    Poleward atmospheric moisture transport (AMT) into the Arctic Ocean can change atmospheric moisture or water vapor content and cause cloud formation and redistribution, which may change downward longwave radiation and, in turn, surface energy budgets, air temperatures, and sea-ice production and melt. In this study, we found a consistently enhanced poleward AMT across 60°N since 1959 based on the NCAR-NCEP reanalysis. Regional analysis demonstrates that the poleward AMT predominantly occurs over the North Atlantic and North Pacific regions, contributing about 57% and 32%, respectively, to the total transport. To improve our understanding of the driving force for this enhanced poleward AMT, we explored the role that extratropical cyclone activity may play. Climatologically, about 207 extratropical cyclones move across 60°N into the Arctic Ocean each year, among which about 66 (32% of the total) and 47 (23%) originate from the North Atlantic and North Pacific Ocean, respectively. When analyzing the linear trends of the time series constructed by using a 20-year running window, we found a positive correlation of 0.70 between poleward yearly AMT and the integrated cyclone activity index (measurement of cyclone intensity, number, and duration). This shows the consistent multidecadal changes between these two parameters and may suggest cyclone activity plays a driving role in the enhanced poleward AMT. Furthermore, a composite analysis indicates that intensification and poleward extension of the Icelandic low and accompanying strengthened cyclone activity play an important role in enhancing poleward AMT over the North Atlantic region.

  4. Changing storm track diffusivity and the upper limit to poleward latent heat transport

    Science.gov (United States)

    Caballero, R.

    2010-12-01

    Poleward atmospheric energy transport plays a key role in the climate system by helping set the mean equator-pole temperature gradient. The mechanisms controlling the response of poleward heat flux to climate change are still poorly understood. Recent work shows that midlatitude poleward latent heat flux in atmospheric GCMs generally increases as the climate warms but reaches an upper limit at sufficiently high temperature and decreases with further warming. The reasons for this non-monotonic behavior have remained unclear. Simple arguments suggests that the latent heat flux Fl should scale as Fl ˜ vref qs, where vref is a typical meridional velocity in the baroclinic zone and qs is saturation humidity. While vref decreases with temperature, qs increases much more rapidly, so this scaling implies monotonically increasing moisture flux. We study this problem using a series of simulations employing NCAR’s CAM3 GCM coupled to a slab-ocean aquaplanet and spanning a wide range of atmospheric CO2 concentrations. We find that a modified scaling, Fl ˜ vref2 qs, describes the changes in moisture flux much more accurately. Using Lagrangian trajectory analysis, we explain the success of this scaling in terms of changes in the mixing length, which contracts proportionally to vref.

  5. Lagrangian transport in poleward breaking Rossby waves in the North Atlantic - Europe tropopause region

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Peters, D. [Rostock Univ. (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    The poleward advection of upper-tropospheric air is investigated for poleward Rossby wave breaking events. During boreal winter months the isentropic deformations of the tropopause are examined using maps of Ertel`s potential vorticity (EPV) and contour advection (CA) calculations. The role of ambient baro-tropic flow is further examined by idealized numerical models. In the vicinity of the tropopause the characteristic Lagrangian transport of air masses for ECMWF-analysis data are compared with high resolution (T106) ECHAM4 experiments. (author) 3 refs.

  6. The effect of the low-level jet on the poleward water vapour transport in the central region of South America

    Science.gov (United States)

    Berri, Guillermo J.; Inzunza, Juan B.

    The low-level jet (LLJ) in the central region of South America is studied. This LLJ is generated by the daily cycle of convergence and divergence east of the Andes Mountains. We use the 1973-1974 radiosonde and pilot balloon data set from the upper air weather stations, Salta and Resistencia, in northern Argentina to select 10 LLJ cases and another 10 NoLLJ cases (when the LLJ is not present). We use the University of Utah Mesoscale Model to simulate these situations in order to obtain a high-resolution low-level wind field. These model predictions are then used to calculate the meridional water vapour transport across a vertical cross-section, along 26°S in central South America. The results reveal that the LLJs are a very effective mechanism for the poleward water vapour transport.

  7. Energy transport, polar amplification, and ITCZ shifts in the GeoMIP G1 ensemble

    Directory of Open Access Journals (Sweden)

    R. D. Russotto

    2018-02-01

    Full Text Available The polar amplification of warming and the ability of the Intertropical Convergence Zone (ITCZ to shift to the north or south are two very important problems in climate science. Examining these behaviors in global climate models (GCMs running solar geoengineering experiments is helpful not only for predicting the effects of solar geoengineering but also for understanding how these processes work under increased carbon dioxide (CO2. Both polar amplification and ITCZ shifts are closely related to the meridional transport of moist static energy (MSE by the atmosphere. This study examines changes in MSE transport in 10 fully coupled GCMs in experiment G1 of the Geoengineering Model Intercomparison Project (GeoMIP, in which the solar constant is reduced to compensate for the radiative forcing from abruptly quadrupled CO2 concentrations. In G1, poleward MSE transport decreases relative to preindustrial conditions in all models, in contrast to the Coupled Model Intercomparison Project phase 5 (CMIP5 abrupt4xCO2 experiment, in which poleward MSE transport increases. We show that since poleward energy transport decreases rather than increases, and local feedbacks cannot change the sign of an initial temperature change, the residual polar amplification in the G1 experiment must be due to the net positive forcing in the polar regions and net negative forcing in the tropics, which arise from the different spatial patterns of the simultaneously imposed solar and CO2 forcings. However, the reduction in poleward energy transport likely plays a role in limiting the polar warming in G1. An attribution study with a moist energy balance model shows that cloud feedbacks are the largest source of uncertainty regarding changes in poleward energy transport in midlatitudes in G1, as well as for changes in cross-equatorial energy transport, which are anticorrelated with ITCZ shifts.

  8. Energy transport, polar amplification, and ITCZ shifts in the GeoMIP G1 ensemble

    Science.gov (United States)

    Russotto, Rick D.; Ackerman, Thomas P.

    2018-02-01

    The polar amplification of warming and the ability of the Intertropical Convergence Zone (ITCZ) to shift to the north or south are two very important problems in climate science. Examining these behaviors in global climate models (GCMs) running solar geoengineering experiments is helpful not only for predicting the effects of solar geoengineering but also for understanding how these processes work under increased carbon dioxide (CO2). Both polar amplification and ITCZ shifts are closely related to the meridional transport of moist static energy (MSE) by the atmosphere. This study examines changes in MSE transport in 10 fully coupled GCMs in experiment G1 of the Geoengineering Model Intercomparison Project (GeoMIP), in which the solar constant is reduced to compensate for the radiative forcing from abruptly quadrupled CO2 concentrations. In G1, poleward MSE transport decreases relative to preindustrial conditions in all models, in contrast to the Coupled Model Intercomparison Project phase 5 (CMIP5) abrupt4xCO2 experiment, in which poleward MSE transport increases. We show that since poleward energy transport decreases rather than increases, and local feedbacks cannot change the sign of an initial temperature change, the residual polar amplification in the G1 experiment must be due to the net positive forcing in the polar regions and net negative forcing in the tropics, which arise from the different spatial patterns of the simultaneously imposed solar and CO2 forcings. However, the reduction in poleward energy transport likely plays a role in limiting the polar warming in G1. An attribution study with a moist energy balance model shows that cloud feedbacks are the largest source of uncertainty regarding changes in poleward energy transport in midlatitudes in G1, as well as for changes in cross-equatorial energy transport, which are anticorrelated with ITCZ shifts.

  9. Transport Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Transport is the sector with the highest final energy consumption and, without any significant policy changes, is forecast to remain so. In 2008, the IEA published 25 energy efficiency recommendations, among which four are for the transport sector. The recommendations focus on road transport and include policies on improving tyre energy efficiency, fuel economy standards for both light-duty vehicles and heavy-duty vehicles, and eco-driving. Implementation of the recommendations has been weaker in the transport sector than others. This paper updates the progress that has been made in implementing the transport energy efficiency recommendations in IEA countries since March 2009. Many countries have in the last year moved from 'planning to implement' to 'implementation underway', but none have fully implemented all transport energy efficiency recommendations. The IEA calls therefore for full and immediate implementation of the recommendations.

  10. Transport, energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    Transportation demands a large and increasing share of total energy consumption in Europe. At the same time many European countries are facing difficult decisions in achieving their long term environmental goals. Therefore energy policy, environmental policy and transport policy should be seen and discussed in a common perspective. In particular the relative contribution from the transport sector and the energy sector involves a number of important and difficult issues. The aim of the conference was to bring together economists, scientists, manufactures, energy planners, transport planners, and decision makers in order to discuss the importance of the transport sector in relation to energy demand and long term environmental goals. General conference sessions covered. Trends in Transport Energy Demand and Environmental constraints, Technological Development and New Transport Systems, Lifestyle Changes and the Transport Sector, Megacities: Solutions to the Transport and Air Pollution Problems, Effectiveness of Public Policies, Transport and Energy sector, and Methods, Models and Data. The conference took place at Hotel Marienlyst, Elsinore, Denmark and attracted wide interest. The participants represented 14 different countries covering international organisations, ministries, universities, research centres, consulting firms, industry etc. (EG)

  11. Energy and transport.

    Science.gov (United States)

    Woodcock, James; Banister, David; Edwards, Phil; Prentice, Andrew M; Roberts, Ian

    2007-09-22

    We examine the links between fossil-fuel-based transportation, greenhouse-gas emissions, and health. Transport-related carbon emissions are rising and there is increasing consensus that the growth in motorised land vehicles and aviation is incompatible with averting serious climate change. The energy intensity of land transport correlates with its adverse health effects. Adverse health effects occur through climate change, road-traffic injuries, physical inactivity, urban air pollution, energy-related conflict, and environmental degradation. For the world's poor people, walking is the main mode of transport, but such populations often experience the most from the harms of energy-intensive transport. New energy sources and improvements in vehicle design and in information technology are necessary but not sufficient to reduce transport-related carbon emissions without accompanying behavioural change. By contrast, active transport has the potential to improve health and equity, and reduce emissions. Cities require safe and pleasant environments for active transport with destinations in easy reach and, for longer journeys, public transport that is powered by renewable energy, thus providing high levels of accessibility without car use. Much investment in major road projects does not meet the transport needs of poor people, especially women whose trips are primarily local and off road. Sustainable development is better promoted through improving walking and cycling infrastructures, increasing access to cycles, and investment in transport services for essential needs. Our model of London shows how increased active transport could help achieve substantial reductions in emissions by 2030 while improving population health. There exists the potential for a global contraction and convergence in use of fossil-fuel energy for transport to benefit health and achieve sustainability.

  12. Energy for Transport

    DEFF Research Database (Denmark)

    Figueroa, Maria; Lah, Oliver; Fulton, Lewis M.

    2014-01-01

    , cost, distribution, infrastructure, storage, and public acceptability. The transition to low-carbon equitable and sustainable transport will take time but can be fostered by numerous short- and medium-term strategies that would benefit energy security, health, productivity, and sustainability.......Global transportation energy use is steeply rising, mainly as a result of increasing population and economic activity. Petroleum fuels remain the dominant energy source, reflecting advantages such as high energy density, low cost, and market availability. The movement of people and freight makes...... and the Environment) by Lee Schipper, we examine current trends and potential futures, revising several major global transport/energy reports. There are significant opportunities to slow travel growth and improve efficiency. Alternatives to petroleum exist but have different characteristics in terms of availability...

  13. Water transport and energy.

    Science.gov (United States)

    Fricke, Wieland

    2017-06-01

    Water transport in plants occurs along various paths and is driven by gradients in its free energy. It is generally considered that the mode of transport, being either diffusion or bulk flow, is a passive process, although energy may be required to sustain the forces driving water flow. This review aims at putting water flow at the various organisational levels (cell, organ, plant) in the context of the energy that is required to maintain these flows. In addition, the question is addressed (1) whether water can be transported against a difference in its chemical free energy, 'water potential' (Ψ), through, directly or indirectly, active processes; and (2) whether the energy released when water is flowing down a gradient in its energy, for example during day-time transpiration and cell expansive growth, is significant compared to the energy budget of plant and cell. The overall aim of review is not so much to provide a definite 'Yes' and 'No' to these questions, but rather to stimulate discussion and raise awareness that water transport in plants has its real, associated, energy costs and potential energy gains. © 2016 John Wiley & Sons Ltd.

  14. Energy use in transport

    Energy Technology Data Exchange (ETDEWEB)

    Allan, R.R.

    1977-10-15

    Brief data and information on consumption of oil-based fuels in New Zealand transport are presented. Then the role of the private car, conservation attitudes and behavior, social impacts of energy conservation are discussed. Apart from the methanol and LP-gas options which do not conserve energy, but only substitute energy sources by local supplies, noticeable fuel savings without sacrificing mobility and changing living patterns can be achieved only by concerted implementation of a package of measures.

  15. Energy and transportation(*)

    Science.gov (United States)

    Hermans, J.

    2015-08-01

    Transportation takes a considerable and increasing fraction of the energy use worldwide, and more than half the oil consumption. By far the largest part is used by cars powered by internal combustion engines. The advantage of using internal combustion engines is that the energy density of liquid fuels is extremely high. The disadvantage is that gasoline and diesel engines have a poor performance: 20 to 25% only. How does this compare with electric cars? What are the alternative transportation systems and their efficiencies anyway? In this lecture we analyse the efficiency of various transport systems, using elementary physics principles. We will look at cars, buses, trains and TGVs, ships and aircraft. In addition, the efficiency of human powered vehicles will be considered. New and promising developments in the field of Intelligent Transportation Systems, like Cooperative Adaptive Cruise Control, are also discussed.

  16. Energy and transportation(*

    Directory of Open Access Journals (Sweden)

    Hermans J.

    2015-01-01

    Full Text Available Transportation takes a considerable and increasing fraction of the energy use worldwide, and more than half the oil consumption. By far the largest part is used by cars powered by internal combustion engines. The advantage of using internal combustion engines is that the energy density of liquid fuels is extremely high. The disadvantage is that gasoline and diesel engines have a poor performance: 20 to 25% only. How does this compare with electric cars? What are the alternative transportation systems and their efficiencies anyway? In this lecture we analyse the efficiency of various transport systems, using elementary physics principles. We will look at cars, buses, trains and TGVs, ships and aircraft. In addition, the efficiency of human powered vehicles will be considered. New and promising developments in the field of Intelligent Transportation Systems, like Cooperative Adaptive Cruise Control, are also discussed.

  17. Effects of Solar Geoengineering on Meridional Energy Transport and the ITCZ

    Science.gov (United States)

    Russotto, R. D.; Ackerman, T. P.; Frierson, D. M.

    2016-12-01

    The polar amplification of warming and the ability of the intertropical convergence zone (ITCZ) to shift to the north or south are two very important problems in climate science. Examining these behaviors in global climate models (GCMs) running solar geoengineering experiments is helpful not only for predicting the effects of solar geoengineering, but also for understanding how these processes work under increased CO2. Both polar amplification and ITCZ shifts are closely related to the meridional transport of moist static energy (MSE) by the atmosphere. In this study we examine changes in MSE transport in 10 fully coupled GCMs in Experiment G1 of the Geoengineering Model Intercomparison Project, in which the solar constant is reduced to compensate for abruptly quadrupled CO2 concentrations. In this experiment, poleward MSE transport decreases relative to preindustrial conditions in all models, in contrast to the CMIP5 abrupt4xCO2 experiment, in which poleward MSE transport increases. The increase in poleward MSE transport under increased CO2 is due to latent heat transport, as specific humidity increases faster in the tropics than at the poles; this mechanism is not present under G1 conditions, so the reduction in dry static energy transport due to a weakened equator-to-pole temperature gradient leads to weaker energy transport overall. Changes in cross-equatorial MSE transport in G1, meanwhile, are anticorrelated with shifts in the ITCZ. The northward ITCZ shift in G1 is 0.14 degrees in the multi-model mean and ranges from -0.33 to 0.89 degrees between the models. We examine the specific forcing and feedback terms responsible for changes in MSE transport in G1 by running experiments with a moist energy balance model. This work will help identify the largest sources of uncertainty regarding ITCZ shifts under solar geoengineering, and will help improve our understanding of the reasons for the residual polar amplification that occurs in the G1 experiment.

  18. Energy use in Ground Transportation

    Science.gov (United States)

    1983-06-01

    Transportation systems account for approximately twenty-five percent of the country's total energy consumption. Such a large fraction on the Nation's energy resources has prompted increased awareness of the role which transportation technology plays ...

  19. Transportation energy use in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum, C.; Meyers, S.; Sathaye, J.

    1994-07-01

    This report presents data on passenger travel and freight transport and analysis of the consequent energy use in Mexico during the 1970--1971 period. We describe changes in modal shares for passenger travel and freight transport, and analyze trends in the energy intensity of different modes. We look in more detail at transportation patterns, energy use, and the related environmental problems in the Mexico City Metropolitan Area, and also discuss policies that have been implemented there to reduce emissions from vehicles.

  20. Europe of energy and transports

    International Nuclear Information System (INIS)

    Ruete, M.

    2006-01-01

    The Directorate-General for Energy and Transport (DG TREN), based in Brussels, reports to Jacques Barrot, Vice-President of the European Commission, Commissioner for Transport and Andris Piebalgs, Commissioner for Energy. The Directorate-General for Energy and Transport is headed by Matthias Ruete and has a staff of over 1000 people in ten Directorates located in Brussels and Luxembourg. In addition to the development of Community transport and energy policies, including dealing with State aid, the Directorate-General is responsible for managing the financial support programmes for the trans-European networks, technological development and innovation. In this paper, M. Ruete tells us more about these missions

  1. Transportation energy conservation data book

    Energy Technology Data Exchange (ETDEWEB)

    Loebl, A. S.; Bjornstad, D. J.; Burch, D. F.; Howard, E. B.; Hull, J. F.; Madewell, D. G.; Malthouse, N. S.; Ogle, M. C.

    1976-10-01

    Statistics which characterize the major transportation modes are assembled and displayed, and data on other factors which influence the transportation sector in the nation are presented. Statistical data on energy use in the transportation sector are presented in the form of tables, graphs, and charts. The following topics are covered in six chapters: Characteristics of Transportation Modes; Energy Characteristics, including energy consumption by source and by sector and energy intensiveness; Conservation Alternatives; Government Impacts, including expenditures, regulations and research, development, and demonstration spending; Energy Supply, including domestic petroleum production, prices, and projections; and Transportation Demand, including population characteristics and economic determinants. A bibliography of data sources is provided at the end of each chapter. A more general bibliography glossary, and subject index are included at the end of the book.

  2. Energy policy in transport and transport policy

    International Nuclear Information System (INIS)

    Van Dender, Kurt

    2009-01-01

    Explanations for, and indirect evidence of, imperfections in the market for private passenger vehicle fuel economy suggest there is a reasonable case for combining fuel economy standards and fuel or carbon taxes to contribute to an energy policy that aims to reduce greenhouse gas emissions and improve energy security. Estimates of key elasticities, including the rebound effect, indicate that the positive and negative side-effects of fuel economy measures on transport activities and external costs are limited. However, an energy policy for transport does not replace a transport policy that aims to manage the main transport externalities including congestion and local pollution. Conventional marginal cost estimates and standard cost-benefit reasoning suggest that policies that address congestion and local pollution likely bring benefits at least as large as those from fuel economy measures. But the large uncertainty on the possible effects of greenhouse gas emissions constitutes a strong challenge for standard cost-benefit reasoning. Emerging results from methods to cope with this uncertainty suggest that policies to stimulate the widespread adoption of low-carbon technologies in transport are justified.

  3. Poleward intrusion in the northern Galician shelf

    Science.gov (United States)

    Alvarez, I.; Ospina-Alvarez, N.; deCastro, M.; Varela, M.; Gomez-Gesteira, M.; Prego, R.

    2010-05-01

    The evolution of a warm water mass related to the Iberian Poleward Current (IPC) was characterized along the northern Galician shelf in November 2008 by means of Sea Surface Temperature and wind data. It was observed that under upwelling favorable conditions water temperature decreased along the northern coast and a temperature break appeared between Cape Vilano and Cape Ortegal showing a relaxation of the poleward intrusion. The effect of the IPC was also analyzed inside the Northern Galician Rias taking into account the hydrographical and biogeochemical properties measured on November 18. Water driven by the IPC was observed close to the mouth of the rias, around Cape Estaca de Bares, causing a nutrient salts decrease. Inside the rias a slight biological activity was found near surface resulting from fluvial contributions.

  4. Transportation economics and energy

    Science.gov (United States)

    Soltani Sobh, Ali

    The overall objective of this research is to study the impacts of technology improvement including fuel efficiency increment, extending the use of natural gas vehicle and electric vehicles on key parameters of transportation. In the first chapter, a simple economic analysis is used in order to demonstrate the adoption rate of natural gas vehicles as an alternative fuel vehicle. The effect of different factors on adoption rate of commuters is calculated in sensitivity analysis. In second chapter the VMT is modeled and forecasted under influence of CNG vehicles in different scenarios. The VMT modeling is based on the time series data for Washington State. In order to investigate the effect of population growth on VMT, the per capita model is also developed. In third chapter the effect of fuel efficiency improvement on fuel tax revenue and greenhouse emission is examined. The model is developed based on time series data of Washington State. The rebound effect resulted from fuel efficiency improvement is estimated and is considered in fuel consumption forecasting. The reduction in fuel tax revenue and greenhouse gas (GHG) emissions as two outcomes of lower fuel consumption are computed. In addition, the proper fuel tax rate to restitute the revenue is suggested. In the fourth chapter effective factors on electric vehicles (EV) adoption is discussed. The constructed model is aggregated binomial logit share model that estimates the modal split between EV and conventional vehicles for different states over time. Various factors are incorporated in the utility function as explanatory variables in order to quantify their effect on EV adoption choices. The explanatory variables include income, VMT, electricity price, gasoline price, urban area and number of EV stations.

  5. Thermal energy storage and transport

    Science.gov (United States)

    Hausz, W.

    1980-01-01

    The extraction of thermal energy from large LWR and coal fired plants for long distance transport to industrial and residential/commercial users is analyzed. Transport of thermal energy as high temperature water is shown to be considerably cheaper than transport as steam, hot oil, or molten salt over a wide temperature range. The delivered heat is competitive with user-generated heat from oil, coal, or electrode boilers at distances well over 50 km when the pipeline operates at high capacity factor. Results indicate that thermal energy storage makes meeting of even very low capacity factor heat demands economic and feasible and gives the utility flexibility to meet coincident electricity and heat demands effectively.

  6. Transportation Energy Pathways LDRD.

    Energy Technology Data Exchange (ETDEWEB)

    Barter, Garrett. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reichmuth, David. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Westbrook, Jessica [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yoshimura, Ann S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Meghan B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); West, Todd H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manley, Dawn Kataoka [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guzman, Katherine Dunphy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Edwards, Donna M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hines, Valerie Ann-Peters [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-09-01

    This report presents a system dynamics based model of the supply-demand interactions between the US light-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year 2050. An important capability of our model is the ability to conduct parametric analyses. Others have relied upon scenario-based analysis, where one discrete set of values is assigned to the input variables and used to generate one possible realization of the future. While these scenarios can be illustrative of dominant trends and tradeoffs under certain circumstances, changes in input values or assumptions can have a significant impact on results, especially when output metrics are associated with projections far into the future. This type of uncertainty can be addressed by using a parametric study to examine a range of values for the input variables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors that influence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction of petroleum consumption within the US LDV fleet. The underlying model emphasizes competition between 13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technological development for the electric powertrain, battery performance, as well as the efficiency improvements in conventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. The consumer effective payback period, in particular, can significantly increase the market penetration rates if extended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and

  7. Crop pests and pathogens move polewards in a warming world

    Science.gov (United States)

    Bebber, Daniel P.; Ramotowski, Mark A. T.; Gurr, Sarah J.

    2013-11-01

    Global food security is threatened by the emergence and spread of crop pests and pathogens. Spread is facilitated primarily by human transportation, but there is increasing concern that climate change allows establishment in hitherto unsuitable regions. However, interactions between climate change, crops and pests are complex, and the extent to which crop pests and pathogens have altered their latitudinal ranges in response to global warming is largely unknown. Here, we demonstrate an average poleward shift of 2.7+/-0.8kmyr-1 since 1960, in observations of hundreds of pests and pathogens, but with significant variation in trends among taxonomic groups. Observational bias, where developed countries at high latitudes detect pests earlier than developing countries at low latitudes, would result in an apparent shift towards the Equator. The observed positive latitudinal trends in many taxa support the hypothesis of global warming-driven pest movement.

  8. Transportation fuels from energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, V.K.; Kulsrestha, G.N.; Padmaja, K.V.; Kamra, S.; Bhagat, S.D. (Indian Inst. of Petroleum, Dehra Dun (India))

    1993-01-01

    Biomass constituents in the form of energy crops can be used as starting materials in the production of transportation fuels. The potential of biocrudes obtained from laticiferous species belonging to the families of Euphorbiaceae, Asclepiadaceae, Apocynaceae, Moraceae and Convolvulaceae for the production of hydrocarbon fuels has been explored. Results of studies carried out on upgrading these biocrudes by catalytic cracking using a commercial catalyst are presented. (author)

  9. Transportation Energy Efficiency Trends, 1972--1992

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L. [Oak Ridge National Lab., TN (United States); Fan, Y. [Oak Ridge Associated Universities, Inc., TN (United States)

    1994-12-01

    The US transportation sector, which remains 97% dependent on petroleum, used a record 22.8 quads of energy in 1993. Though growing much more slowly than the economy from 1975 to 1985, energy use for transportation is now growing at nearly the same rate as GDP. This report describes the analysis of trends in energy use and energy intensity in transportation into components due to, (1) growth in transportation activity, (2) changes in energy intensity, and (3) changes in the modal structure of transportation activities.

  10. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Lund, H.; Nørgård, Per Bromand

    2007-01-01

    Governments worldwide aim at reducing CO2 emissions and expanding renewable energy. A key element in achieving such a goal is to use renewable energy in transport such as biofuels. However, efforts to promote single transport technologies and single fuels only represent a partial solution...... transport. It is concluded that a 100 per cent renewable energy transport system is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production. The integration of the transport with the remaining energy....... No single technology can solve the problem of ever increasing CO2 emissions from transport. Transport must be integrated into energy planning, as electricity and heating. In this paper, a coherent effort to integrate transport into energy planning is proposed, using multiple means promoting sustainable...

  11. Environmental friendly energy transport media

    International Nuclear Information System (INIS)

    Wan Nik, W.B.

    2002-01-01

    Rational self-interest and good environmental citizenship are forcing the development of renewable and environmentally, acceptable working fluids. Fluids that are at least equivalent in performance plus biodegradable have been formulated in Europe and USA rising vegetable oils as base stocks and as innovative additive packages. While much of the research has been made in the field of alternative environmentally, friendly energy, transport media, the thermal stability of vegetable based stock is still a challenging area. This work concentrates more in improving the oxidation stability of the vegetable based stocks. Oven and oil bath test methods were employed in this study. This paper tabled mineral and vegetable oil physical test results and presents thermal stability of oil blends. (Author)

  12. ADVANCES IN ZERO ENERGY TRANSPORTATION SYSTEMS

    OpenAIRE

    Ahmad, Othman

    2017-01-01

    Hyperloop mass transportation systems are activelydeveloped at the moment. They represent the forefront development of the ZeroEnergy Transportation systems where air drag is minimized by travelling in avacuum and friction is reduced by non-contact bearings. Hyperloop supportersare confident that the cost of their transportation systems would be lowcompared to existing transportation systems because of the low loss andtherefore low energy consumption as well as other cost-saving techniquesdoc...

  13. Bibliography for transportation energy conservation. [578 citations

    Energy Technology Data Exchange (ETDEWEB)

    LaBelle, Sarah J.

    1976-05-01

    A listing is given of 578 reports, books, articles, and conference papers on transportation and energy. Coverage is primarily on U. S. developments and research from 1970 to 1975. Following a section of citations of general works on energy, the bibliography contains two main parts: ''Energy for Transportation'' and ''Transportation of Energy.'' Within each of these topics the arrangement is multimodal (at the urban, regional, national, or international level), then by mode. Selected information sources are listed in the last part. Within each section, entries are arranged alphabetically by author or, lacking an author, by title. References were drawn from the Transportation Center Library collection and other libraries in the Northwestern University system. An earlier bibliography, Transportation and Energy, compiled by the Transportation Center Library in March 1974, forms the basis for the arrangement and provides coverage from 1970 to 1973.

  14. Transport Energy Impact Analysis; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.

    2015-05-13

    Presented at the Sustainable Transportation Energy Pathways Spring 2015 Symposium on May 13, 2015, this presentation by Jeff Gonder of the National Renewable Energy Laboratory (NREL) provides information about NREL's transportation energy impact analysis of connected and automated vehicles.

  15. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Nørgaard, P.

    2008-01-01

    No single technology can solve the problem of ever increasing CO2 emissions from transport. Here, a coherent effort to integrate transport into energyplanning is proposed, using multiple means promoting sustainable transport. It is concluded that a 100 per cent renewable energy transport system...... is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production of food. The integration of the transport with the energy system is crucial as is a multi-pronged strategy. Short term solutions have to consider...

  16. Transportation Energy Data Book, Edition 19

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.C.

    1999-09-01

    The Transportation Energy Data Book: Edition 19 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (http://www-cta.ornl.gov/data/tedb.htm).

  17. Transportation Energy Data Book, Edition 18

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy C.

    1998-09-01

    The Transportation Energy Data Book: Edition 18 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. This edition of the Data Book has 11 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy Chapter 3 - emissions; Chapter 4 - transportation and the economy; Chapter 5 - highway vehicles; Chapter 6 - Light vehicles; Chapter 7 - heavy vehicles; Chapter 8 - alternative fuel vehicles; Chapter 9 - fleet vehicles; Chapter 10 - household vehicles; and Chapter 11 - nonhighway modes. The sources used represent the latest available data.

  18. Energy Chain Analysis of Passenger Car Transport

    Directory of Open Access Journals (Sweden)

    Hans Jakob Walnum

    2011-02-01

    Full Text Available Transport makes up 20 percent of the World’s energy use; in OECD countries this has exceeded 30 percent. The International Energy Agency (IEA estimates that the global energy consumption will increase by 2.1 percent annually, a growth rate that is higher than for any other sector. The high energy consumption means that transportation accounts for nearly 30 percent of CO2 emission in OECD countries and is also one of the main sources of regional and local air pollution. In this article, we analyze energy consumption and greenhouse gas emissions from passenger car transport using an energy chain analysis. The energy chain analysis consists of three parts: the net direct energy use, the energy required for vehicle propulsion; the gross direct chain, which includes the net direct energy consumption plus the energy required to produce it; and, finally, the indirect energy chain, which includes the energy consumption for production, maintenance and operation of infrastructure plus manufacturing of the vehicle itself. In addition to energy consumption, we also analyze emissions of greenhouse gases measured by CO2-equivalents. We look at the trade-offs between energy use and greenhouse gas emissions to see whether some drivetrains and fuels perform favourable on both indicators. Except for the case of electric cars, where hydropower is the only energy source in the Norwegian context, no single car scores favourably on both energy consumption and greenhouse gas emissions.

  19. Deflagration wave with radiative energy transport

    International Nuclear Information System (INIS)

    Tamba, Moritake; Niu, Keishiro.

    1981-02-01

    Numerical calculations are carried out to analyze spatial structures of stationary deflagration waves formed in slab targets. In the analysis, radiative energy transport is taken into account. Profiles of radiative energy flux differ depending on the states of the outer-layer material of the target (solid or plasma). However radiative energy transport plays a negligible role in deflagration-wave structures formed by light-ion beam. (author)

  20. Transportation energy data book: edition 16

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.C. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); McFarlin, D.N. [Tennessee Univ., Knoxville, TN (United States)

    1996-07-01

    The Transportation Energy Data Book: Edition 16 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

  1. Ballistic energy transport in PEG oligomers

    Directory of Open Access Journals (Sweden)

    Kireev Victor V.

    2013-03-01

    Full Text Available Energy transport between the terminal groups of the azido-PEG-succinimide ester compounds with a number of repeating PEG units of 0, 4, 8, and 12 was studied using relaxation-assisted two-dimensional infrared spectroscopy. The through-bond energy transport time, evaluated as the waiting time at which the cross peak maximum is reached, Tmax, was found to be linearly dependent on the chain length for chain lengths up to 60 Å suggesting a ballistic energy transport regime. The through-bond energy transport speed is found to be ca. 500 m/s. The cross-peak amplitude at the maximum decays exponentially with the chain length with a characteristic decay distance of 15.7 ± 1 Å. Substantial mode delocalization across the PEG bridge is found, which can support the energy propagation as a wavepacket.

  2. Moving around efficiently: Energy and transportation

    Directory of Open Access Journals (Sweden)

    Hermans L. J. F.

    2013-06-01

    Full Text Available Worldwide, transportation takes almost 20% of the total energy use, and more than half of the oil consumption. By far the largest part is used by cars powered by internal combustion engines. The reason is simple: oil and gasoline are ideal energy carriers for transportation, since their energy density is extremely high. However, in terms of energy efficiency the internal combustion engine has a poor performance: about 25% only. How does this compare with electric cars? What are the alternative transportation systems and their efficiencies anyway? In this lecture we will analyse the efficiency of various transport systems, using elementary physics principles. We will look at cars, buses, trains and TGVs, ships, aircraft and zeppelins. Also the efficiency of human powered vehicles will be considered. Special attention is given to future mobile energy carriers like hydrogen, batteries and super capacitors.

  3. Transportation energy data book: Edition 12

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.C.; Morris, M.D.

    1992-03-01

    The Transportation Energy Data Book: Edition 12 is a statistical compendium prepared and published by Oak Ridge National Laboratory under contract with the Office of Transportation Technologies in the Department of Energy. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes--highway, air, water, rail, pipeline--is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  4. Plasma thermal energy transport: theory and experiments

    International Nuclear Information System (INIS)

    Coppi, B.

    Experiments on the transport across the magnetic field of electron thermal energy are reviewed (Alcator, Frascati Torus). In order to explain the experimental results, a transport model is described that reconfirmed the need to have an expression for the local diffusion coefficient with a negative exponent of the electron temperature

  5. Transportation: Environment, energy and the economy

    Energy Technology Data Exchange (ETDEWEB)

    Petrakis, L.

    1993-01-11

    In the US, the transportation sector consumes over one quarter of the entire energy used, almost in its entirety as petroleum products, and in quantities greater than the total US domestic oil production. The transportation sector is responsible for a significant fraction of all emissions that either prevent US cities from achieving compliance with EPA air quality standards or have serious global change implications. Finally, the GDP (Gross Domestic Product) and employment due to the sector are low and incommensurate with the high fraction of energy that the transportation sector consumes. We examine below this situation in some detail and make recommendations for improvements.

  6. Improving energy efficiency in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  7. Energy transport velocity in bidispersed magnetic colloids.

    Science.gov (United States)

    Bhatt, Hem; Patel, Rajesh; Mehta, R V

    2012-07-01

    Study of energy transport velocity of light is an effective background for slow, fast, and diffuse light and exhibits the photonic property of the material. We report a theoretical analysis of magnetic field dependent resonant behavior in forward-backward anisotropy factor, light diffusion constant, and energy transport velocity for bidispersed magnetic colloids. A bidispersed magnetic colloid is composed of micrometer size magnetic spheres dispersed in a magnetic nanofluid consisting of magnetic nanoparticles in a nonmagnetic liquid carrier. Magnetic Mie resonances and reduction in energy transport velocity accounts for the possible delay (longer dwell time) by field dependent resonant light transport. This resonant behavior of light in bidispersed magnetic colloids suggests a novel magnetophotonic material.

  8. Energy transition in the transport sector

    International Nuclear Information System (INIS)

    Duchemin, Bruno; Genest, Sebastien

    2013-01-01

    Within the European framework, France has committed to a 20% reduction of its GHG emission by 2020 compared with 1990, and reaching the 'factor 4' by 2050. The 2005 POPE Act (the French Energy Policy Guidance Act) makes climate change a priority of the energy policy, setting out a 3% yearly reduction of our country's GHG emissions. This means combining energy efficiency and restraint, as is highlighted by the first chapter of the 'energy transition road-map'. Energy is a major component of transport. Designing its transition requires us to question the very organisation of our society: materials and their usage, the means of transport to favour and the infrastructures to implement, costs for competitiveness, the organisation of work and commuting... At a global scale, needs for mobility are increasing, as is the urgent need to deal with environmental problems. There are huge emerging markets for public transport, increasingly efficient and smart cars, information and transmission networks, infrastructures, the organisation of transport... However, France has all the assets to become a world leader in carbon-free transport. Succeeding in this change means organising the service to meet the needs of all, people, businesses, transport operators and industry, starting this transition right away. Policies must clearly define objectives and the means of achieving them through coordinated actions within a long term approach. The ESEC formulates a set of proposals in this direction

  9. Energy efficiency in industry and transportation

    International Nuclear Information System (INIS)

    Ruscoe, J.

    1990-01-01

    The discussion of energy issues has changed since the 1970s as improvements have been made in energy efficiency. The present capacity for surplus energy production in economically advanced countries reflects a decrease in energy requirements as well as new production sources. At the same time, the energy crisis can be seen as having discouraged improvements in energy efficiency because of its negative impact on growth. And the centrally planned economies remain highly inefficient energy users. Economic growth encourages the use of new technologies which are likely to be less energy-intensive than those they replace. Permanent gains in energy efficiency are derived from structural changes in the economy and from the introduction of energy-efficient technologies. This article addresses the prospect of increased energy conservation, particularly in industry (the end-use which consumes the most energy) and transportation. Although investments in projects to promote energy conservation are more cost-effective and environment-friendly than investments in energy supply, there is still widespread support for the latter. Developing countries naturally give preference to quantitative growth, with an increasing consumption of energy, but in these countries, too, more efficient use of energy could greatly reduce demand. The policies of international development agencies which still favour increasing energy supply over conservation need to change. Awareness of the need to reduce energy demand is, however, growing worldwide. (author)

  10. Transportation Energy Data Book: Edition 26

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

    2007-07-01

    The Transportation Energy Data Book: Edition 26 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  11. Transportation Energy Data Book: Edition 36

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-01

    The Transportation Energy Data Book: Edition 36 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 – energy; Chapter 3 – highway vehicles; Chapter 4 – light vehicles; Chapter 5 – heavy vehicles; Chapter 6 – alternative fuel vehicles; Chapter 7 – fleet vehicles; Chapter 8 – household vehicles; Chapter 9 – nonhighway modes; Chapter 10 – transportation and the economy; Chapter 11 – greenhouse gas emissions; and Chapter 12 – criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms is also included for the reader’s convenience.

  12. Transportation Energy Data Book: Edition 24

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.C.

    2005-03-08

    The ''Transportation Energy Data Book: Edition 24'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  13. Transportation Energy Data Book: Edition 23

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.C.

    2003-10-24

    The ''Transportation Energy Data Book: Edition 23'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  14. Transportation Energy Data Book: Edition 27

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2008-06-01

    The Transportation Energy Data Book: Edition 27 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  15. Transportation Energy Data Book: Edition 28

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2009-06-01

    The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  16. Transportation Energy Data Book: Edition 31

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2012-08-01

    The Transportation Energy Data Book: Edition 31 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  17. Transportation Energy Data Book: Edition 30

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2011-07-01

    The Transportation Energy Data Book: Edition 30 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  18. Transportation Energy Data Book: Edition 29

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2010-07-01

    The Transportation Energy Data Book: Edition 29 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  19. Transportation Energy Data Book: Edition 32

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2013-08-01

    The Transportation Energy Data Book: Edition 32 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  20. Transportation Energy Data Book: Edition 22

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy C.; Diegel, Susan W.

    2002-12-04

    The Transportation Energy Data Book: Edition 22 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www.cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - greenhouse gas emissions; Chapter 4 - criteria pollutant emissions; Chapter 5 - transportation and the economy; Chapter 6 - highway vehicles; Chapter 7 - light vehicles; Chapter 8 - heavy vehicles; Chapter 9 - alternative fuel vehicles; Chapter 10 - fleet vehicles; Chapter 11 - household vehicles; and Chapter 12- nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  1. Transportation Energy Data Book: Edition 25

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

    2006-06-01

    The Transportation Energy Data Book: Edition 25 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  2. Transportation Energy Data Book. Edition 33

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-07-01

    The Transportation Energy Data Book: Edition 33 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  3. Transportation Energy Data Book: Edition 34

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Roltek, Inc., Clinton, TN (United States)

    2015-08-01

    The Transportation Energy Data Book: Edition 34 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  4. Transportation Energy Data Book: Edition 35

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    The Transportation Energy Data Book: Edition 35 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  5. Which energy for the 21 century transports

    International Nuclear Information System (INIS)

    Bauquis, P.R.; Lovelock, J.

    2005-01-01

    With more than 95% of the energy consumption realized by the petroleum, the transportation sector represents 20% of the world energy consumption. How will be assure the energy need of this sector for the 21 century? How control the greenhouse gases emissions and in particular the CO 2 by the control of the transportation sector? This paper aims to answer the first question taking into account the bond second one. It analyzes the today situation and scenario for 2020 and 2050, the possible substitution fuels, the hybrid vehicles, the hydrogen fuel and the electric power vehicles. (A.L.B.)

  6. Enhanced poleward propagation of storms under climate change

    Science.gov (United States)

    Tamarin-Brodsky, Talia; Kaspi, Yohai

    2017-12-01

    Earth's midlatitudes are dominated by regions of large atmospheric weather variability—often referred to as storm tracks— which influence the distribution of temperature, precipitation and wind in the extratropics. Comprehensive climate models forced by increased greenhouse gas emissions suggest that under global warming the storm tracks shift poleward. While the poleward shift is a robust response across most models, there is currently no consensus on what the underlying dynamical mechanism is. Here we present a new perspective on the poleward shift, which is based on a Lagrangian view of the storm tracks. We show that in addition to a poleward shift in the genesis latitude of the storms, associated with the shift in baroclinicity, the latitudinal displacement of cyclonic storms increases under global warming. This is achieved by applying a storm-tracking algorithm to an ensemble of CMIP5 models. The increased latitudinal propagation in a warmer climate is shown to be a result of stronger upper-level winds and increased atmospheric water vapour. These changes in the propagation characteristics of the storms can have a significant impact on midlatitude climate.

  7. Is Climate Change Shifting the Poleward Limit of Mangroves?

    KAUST Repository

    Hickey, Sharyn M.

    2017-02-01

    Ecological (poleward) regime shifts are a predicted response to climate change and have been well documented in terrestrial and more recently ocean species. Coastal zones are amongst the most susceptible ecosystems to the impacts of climate change, yet studies particularly focused on mangroves are lacking. Recent studies have highlighted the critical ecosystem services mangroves provide, yet there is a lack of data on temporal global population response. This study tests the notion that mangroves are migrating poleward at their biogeographical limits across the globe in line with climate change. A coupled systematic approach utilising literature and land surface and air temperature data was used to determine and validate the global poleward extent of the mangrove population. Our findings indicate that whilst temperature (land and air) have both increased across the analysed time periods, the data we located showed that mangroves were not consistently extending their latitudinal range across the globe. Mangroves, unlike other marine and terrestrial taxa, do not appear to be experiencing a poleward range expansion despite warming occurring at the present distributional limits. Understanding failure for mangroves to realise the global expansion facilitated by climate warming may require a focus on local constraints, including local anthropogenic pressures and impacts, oceanographic, hydrological, and topographical conditions.

  8. Transportation Energy Data Book: Edition 21; TOPICAL

    International Nuclear Information System (INIS)

    Davis, SC

    2001-01-01

    The Transportation Energy Data Book: Edition 21 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2-energy; Chapter 3-greenhouse gas emissions; Chapter 4-criteria pollutant emissions; Chapter 5-transportation and the economy; Chapter 6-highway vehicles; Chapter 7-light vehicles; Chapter 8-heavy vehicles; Chapter 9-alternative fuel vehicles; Chapter 10-fleet vehicles; Chapter 11-household vehicles; and Chapter 12-nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience

  9. Transportation Energy Data Book: Edition 14

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.C.

    1994-05-01

    Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

  10. Transportation Energy Data Book: Edition 21

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.C.

    2001-09-13

    The ''Transportation Energy Data Book: Edition 21'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  11. Transportation Energy Data Book (Edition 20)

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.C.

    2000-10-09

    The ''Transportation Energy Data Book: Edition 20'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  12. Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?

    Science.gov (United States)

    Daloz, Anne Sophie; Camargo, Suzana J.

    2018-01-01

    A recent study showed that the global average latitude where tropical cyclones achieve their lifetime-maximum intensity has been migrating poleward at a rate of about one-half degree of latitude per decade over the last 30 years in each hemisphere. However, it does not answer a critical question: is the poleward migration of tropical cyclone lifetime-maximum intensity associated with a poleward migration of tropical cyclone genesis? In this study we will examine this question. First we analyze changes in the environmental variables associated with tropical cyclone genesis, namely entropy deficit, potential intensity, vertical wind shear, vorticity, skin temperature and specific humidity at 500 hPa in reanalysis datasets between 1980 and 2013. Then, a selection of these variables is combined into two tropical cyclone genesis indices that empirically relate tropical cyclone genesis to large-scale variables. We find a shift toward greater (smaller) average potential number of genesis at higher (lower) latitudes over most regions of the Pacific Ocean, which is consistent with a migration of tropical cyclone genesis towards higher latitudes. We then examine the global best track archive and find coherent and significant poleward shifts in mean genesis position over the Pacific Ocean basins.

  13. Continuous Energy Photon Transport Implementation in MCATK

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Terry R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trahan, Travis John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sweezy, Jeremy Ed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nolen, Steven Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pritchett-Sheats, Lori A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Werner, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-31

    The Monte Carlo Application ToolKit (MCATK) code development team has implemented Monte Carlo photon transport into the MCATK software suite. The current particle transport capabilities in MCATK, which process the tracking and collision physics, have been extended to enable tracking of photons using the same continuous energy approximation. We describe the four photoatomic processes implemented, which are coherent scattering, incoherent scattering, pair-production, and photoelectric absorption. The accompanying background, implementation, and verification of these processes will be presented.

  14. Urban transport energy consumption: Belgrade case study

    Directory of Open Access Journals (Sweden)

    Jovanović Miomir M.

    2015-01-01

    Full Text Available More than half of the global population now lives in towns and cities. At the same time, transport has become the highest single energy-consuming human activity. Hence, one of the major topics today is the reduction of urban transport demand and of energy consumption in cities. In this article we focused on the whole package of instruments that can reduce energy consumption and transport demand in Belgrade, a city that is currently at a major crossroad. Belgrade can prevent a dramatic increase in energy consumption and CO2 emissions (and mitigate the negative local environmental effects of traffic congestion, traffic accidents and air pollution, only if it: 1 implements a more decisive strategy to limit private vehicles use while its level of car passenger km (PKT is still relatively low; 2 does not try to solve its transport problems only by trying to build urban road infrastructure (bridges and ring roads; and 3 if it continues to provide priority movement for buses (a dominant form of public transport, while 4 at the same time developing urban rail systems (metro or LRT with exclusive tracks, immune to the traffic congestion on urban streets. [Projekat Ministarstva nauke Republike Srbije, br. 37010

  15. Panorama 2009 - transport energies: advantages and disadvantages

    International Nuclear Information System (INIS)

    2008-01-01

    More than 98% of all transport fuels are petroleum-based, but there has been a multiplication of alternative energies driven by high motor fuel prices and the need to mitigate greenhouse gas emissions. Many pathways are contenders in the quest to choose replacements for petroleum-based motor fuels. What are the pros and cons of the energy sources under consideration for use in the near or distant future?

  16. Carbonless Transportation and Energy Storage in Future Energy Systems

    Science.gov (United States)

    Berry, G. D.; Lamont, A. D.

    2001-01-01

    Electricity is the highest quality energy carrier, increasingly dominant throughout the world's energy infrastructure. Ultimately electricity use can expand to efficiently meet virtually all stationary energy applications, eliminating stationary end-use carbon emissions. This approach is unlikely to work in transportation, however, due to the high cost and low energy density of electricity storage. Chemical energy carriers, such as hydrogen, can more effectively serve transportation fuel and energy storage applications, offering much higher energy density at lower cost. Electrolytic hydrogen, extracted from steam with renewable energy, stored as a high pressure gas or cryogenic liquid, and reconverted to electricity in fuel cells and or used to power hydrogen vehicles, will reduce emissions from both transportation and electric generation. Renewable resources and modular electrolytic technology also permit decentralized hydrogen production, circumventing distribution issues and barriers to market entry. In contrast, sequestration-based fossil-fueled systems must achieve economies of scale by relying on centralized production and hierarchical transmission and distribution of electricity, hydrogen fuel, and carbon (dioxide).

  17. Transportation Energy Data Book. Sixth edition

    Energy Technology Data Exchange (ETDEWEB)

    Kulp, G.; Holcomb, M. C.

    1982-01-01

    Designed for use as a desk-top reference, the data book represents an assembly and display of statistics that characterize transportation activity and presents data on other factors that influence transportation energy use. The purpose of this publication is to present a large amount of relevant data in an easily retrievable and usable format with the statistical data shown in the form of tables and graphs. Each of the major transportation modes (highway, air, water, rail, and pipeline) is treated separately, and aggregate energy use and energy supply data for all modes are presented. The highway mode, accounting for over 77% of total transportation energy consumption, is dealt with. Topics in this include vehicle stock characteristics, fuel efficiency, household vehicle ownership and use, fleet automobiles, buses, and trucks. Data are presented on each of the nonhighway modes: air, water, pipeline, and rail, respectively. Trends in vehicle and engine characteristics related to fuel economy are summarized. Emphasis is placed on vehicles and engines for highway use.

  18. Energy and transport policy for the eighties

    International Nuclear Information System (INIS)

    Schlumpf, L.

    1981-01-01

    The author emphasises the role of financing research for the rational usage of energy. Independence of the industry from imports and nuclear power programme to cover the envisaged needs are considered before tackling the subject of financial aid to the railways. The future policy of transport development is also outlined. (I.G.)

  19. Energy transition in transport sector from energy substitution perspective

    Science.gov (United States)

    Sun, Wangmin; Yang, Xiaoguang; Han, Song; Sun, Xiaoyang

    2017-10-01

    Power and heating generation sector and transport sector contribute a highest GHG emissions and even air pollutions. This paper seeks to investigate life cycle costs and emissions in both the power sector and transport sector, and evaluate the cost-emission efficient (costs for one unit GHG emissions) of the substitution between new energy vehicles and conventional gasoline based vehicles under two electricity mix scenarios. In power sector, wind power and PV power will be cost comparative in 2030 forecasted with learning curve method. With high subsidies, new energy cars could be comparative now, but it still has high costs to lower GHG emissions. When the government subsidy policy is reversible, the emission reduction cost for new energy vehicle consumer will be 900/ton. According to the sensitive analysis, the paper suggests that the government implement policies that allocate the cost to the whole life cycle of energy production and consumption related to transport sector energy transition and policies that are in favor of new energy vehicle consumers but not the new energy car producers.

  20. Risoe energy report 5. Renewable energy for power and transport

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L. (eds.)

    2006-11-15

    The global energy policy scene today is dominated by three concerns, namely security of supply, climate change and energy for development and poverty alleviation. This is the starting point for Risoe Energy Report 5 that addresses status and trends in renewable energy, and gives an overview of global driving forces for transformation of the energy systems in the light of security of supply, climate change and economic growth. More specifically status and trends in renewable energy technologies, for broader applications in off grid power production (and heat) will be discussed. Furthermore the report will address wider introduction of renewable energy in the transport sector, for example renewable based fuels, hybrid vehicles, electric vehicles and fuel cell driven vehicles. (au)

  1. Risoe energy report 5. Renewable energy for power and transport

    International Nuclear Information System (INIS)

    Larsen, Hans; Soenderberg Petersen, L.

    2006-11-01

    The global energy policy scene today is dominated by three concerns, namely security of supply, climate change and energy for development and poverty alleviation. This is the starting point for Risoe Energy Report 5 that addresses status and trends in renewable energy, and gives an overview of global driving forces for transformation of the energy systems in the light of security of supply, climate change and economic growth. More specifically status and trends in renewable energy technologies, for broader applications in off grid power production (and heat) will be discussed. Furthermore the report will address wider introduction of renewable energy in the transport sector, for example renewable based fuels, hybrid vehicles, electric vehicles and fuel cell driven vehicles. (au)

  2. 76 FR 59186 - Renewal of Rail Energy Transportation Advisory Committee

    Science.gov (United States)

    2011-09-23

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. EP 670 (Sub-No. 3)] Renewal of Rail Energy Transportation Advisory Committee AGENCY: Surface Transportation Board. ACTION: Notice...) intends to renew the charter of the Rail Energy Transportation Advisory Committee (RETAC). ADDRESSES: A...

  3. 78 FR 58383 - Renewal of Rail Energy Transportation Advisory Committee

    Science.gov (United States)

    2013-09-23

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. EP 670 (Sub-No. 3)] Renewal of Rail Energy Transportation Advisory Committee AGENCY: Surface Transportation Board, DOT. ACTION...) intends to renew the charter of the Rail Energy Transportation Advisory Committee (RETAC). ADDRESSES: A...

  4. Consumer Views on Transportation and Energy

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, E.

    2003-08-01

    This report has been assembled to provide the Office of Energy Efficiency and Renewable Energy (EERE) with an idea of how the American public views various transportation, energy, and environmental issues. An issue that still needs attention from EERE is the finding that the public tends to lack information about hybrid vehicles, hydrogen, and alternative fuels for passenger vehicles. Also, the public seems to want fuel-efficiency improvements and cleaner fuels, but is not very willing to pay for these benefits. The public also says that it supports initiatives to promote energy conservation over increased production and that it is willing to make changes such as driving less in an effort to reduce oil consumption.

  5. Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air.

    Science.gov (United States)

    Komatsu, Kensuke K; Alexeev, Vladimir A; Repina, Irina A; Tachibana, Yoshihiro

    2018-02-13

    We carried out upper air measurements with radiosondes during the summer over the Arctic Ocean from an icebreaker moving poleward from an ice-free region, through the ice edge, and into a region of thick ice. Rapid warming of the Arctic is a significant environmental issue that occurs not only at the surface but also throughout the troposphere. In addition to the widely accepted mechanisms responsible for the increase of tropospheric warming during the summer over the Arctic, we showed a new potential contributing process to the increase, based on our direct observations and supporting numerical simulations and statistical analyses using a long-term reanalysis dataset. We refer to this new process as "Siberian Atmospheric Rivers (SARs)". Poleward upglides of SARs over cold air domes overlying sea ice provide the upper atmosphere with extra heat via condensation of water vapour. This heating drives increased buoyancy and further strengthens the ascent and heating of the mid-troposphere. This process requires the combination of SARs and sea ice as a land-ocean-atmosphere system, the implication being that large-scale heat and moisture transport from the lower latitudes can remotely amplify the warming of the Arctic troposphere in the summer.

  6. Energy Ontologies: Wind, Biomass, and Fossil Transportation

    Directory of Open Access Journals (Sweden)

    Heidi Scott

    2016-06-01

    Full Text Available This article uses literary sources to draw ontological distinctions among three distinct energy sources: wind power, biomass, and fossil fuels. The primary aim is to demonstrate how radically our fossil fuel regime has changed human ontology in the last two centuries during which we have entered the Anthropocene. Because this radical transformation contains myriad elements, this article will focus on transportation: the speed, quality, and quantity of travel permitted by successive energy sources. To consider the comparative literatures of energy as they relate to transportation, we will begin with wind, then consider muscle-driven biomass giving way to coal locomotion, and conclude with the highest octane fuel, petroleum. The central interest is in how the fuel depicted in literature illuminates historical moments in which the interfaces between self, society, and nature are configured by specific energy regimes. By using literature as a source text, we may arrive at an emotionally and philosophically more robust synthesis of energy history than the social and natural sciences, relying upon objective accounts and statistics, are able to provide. By re-reading literature through the lens of the Anthropocene, we gain perspective on how earlier insights into the relationship between energy and experience can inform our explorations of today’s ontological reality. Energy literature instructs us out of the fossil fuel mindset of world domination and back to a physical realm in which we are small actors in a world guided by capricious forces. Such a reality requires hard muscular work and emotional immersion to restore an ethic of care and sustainability.

  7. Which energy for the 21 century transports; Quelles energies pour les transports au 21. siecle?

    Energy Technology Data Exchange (ETDEWEB)

    Bauquis, P.R.; Lovelock, J

    2005-07-01

    With more than 95% of the energy consumption realized by the petroleum, the transportation sector represents 20% of the world energy consumption. How will be assure the energy need of this sector for the 21 century? How control the greenhouse gases emissions and in particular the CO{sub 2} by the control of the transportation sector? This paper aims to answer the first question taking into account the bond second one. It analyzes the today situation and scenario for 2020 and 2050, the possible substitution fuels, the hybrid vehicles, the hydrogen fuel and the electric power vehicles. (A.L.B.)

  8. Selected legal and regulatory concerns affecting domestic energy transportation systems

    International Nuclear Information System (INIS)

    Schuller, C.R.

    1979-07-01

    This report provides assessments of eight legal and regulatory concerns that may affect energy material transportation in the US during the rest of the century: state authority to regulate nuclear materials transport, divestiture of petroleum pipelines from major integrated oil companies, problems affecting the natural gas transportation system, capabilities of energy transportation systems during emergencies, Federal coal pipeline legislation, ability of Federal agencies to anticipate railroad difficulties, abandonment of uneconomic railroad lines, and impact of the Panama Canal treaty upon US energy transportation

  9. Transportation energy conservation data book: edition I. 5

    Energy Technology Data Exchange (ETDEWEB)

    Shonka, D B; Loebl, A S; Ogle, M C; Johnson, M L; Howard, E B

    1977-01-01

    This document contains statistical information on the major transportation modes, their respective energy consumption patterns, and other pertinent factors influencing performance in the transportation sector. Data relating to past, present, and projected energy use and conservation in the transportation sector are presented under seven chapter headings. These focus on (1) modal transportation characteristics, (2) energy characteristics of the transportation sector, (3) energy conservation alternatives involving the transportation sector, (4) government impacts on the transportation sector, (5) the supply of energy to the transportation sector, (6) characteristics of transportation demand, and (7) miscellaneous reference materials such as energy conversion factors and geographical maps. References are included for each set of data presented, and a more general bibliography is included at the end of the book. In addition, a glossary of key terms and a subject index is provided for the user. A second edition of this document is scheduled for publication in September 1977.

  10. 2nd Annual European Energy and Transport Conference. Building energy and transport infrastructures for tomorrow's Europe

    International Nuclear Information System (INIS)

    2003-01-01

    This is already the second in a series of Annual Energy and Transport Conferences launched last year on the initiative of the Directorate-General for Energy and Transport and dedicated to combining a number of formerly scattered Europe-wide events into a single event with the aim of raising the profile of the two sectors and improving coherence. The theme chosen in 2001 was safety and security. The 2002 conference provided the forum for a debate on Europe's major infrastructure networks. The main targeted objectives are Firstly, practical, in-depth discussion of the future shape of the major trans-European energy and transport networks by 2010-2020 and, secondly, dissemination of the results of European research and technological development (RTD) programmes. The conference also provided a platform to float ideas and present programmes, approaches and results obtained at European or national level in these sectors. (Author)

  11. Energy consumption and air emissions from domestic transport; Energiforbruk og utslipp til luft fra innenlandsk transport

    Energy Technology Data Exchange (ETDEWEB)

    Toutain, Jun Elin Wiik; Taarneby, Gaute; Selvig, Eivind

    2008-07-01

    Energy for transport purposes account for a growing proportion of our total energy consumption. The increased transport of both people and goods is a consequence of prosperity development in Norway. We travel more, both privately and at work, and good purchasing power means that more goods must be transported from production site to the users' site. In 2006 the energy used to transport was more than a quarter of the total Norwegian energy consumption. (AG)

  12. Energy Consumption of Fast Ferries in Danish Domestic Transport

    DEFF Research Database (Denmark)

    Petersen, Morten Steen; Jørgensen, Kaj

    1997-01-01

    Analysis of energy consumption in connection with selected passenger transport trip chains. In particular the publication aims to evaluate the energy consumption of fast ferries in Denmark.......Analysis of energy consumption in connection with selected passenger transport trip chains. In particular the publication aims to evaluate the energy consumption of fast ferries in Denmark....

  13. International bioenergy transport costs and energy balance

    International Nuclear Information System (INIS)

    Hamelinck, Carlo N.; Suurs, Roald A.A.; Faaij, Andre P.C.

    2005-01-01

    To supply biomass from production areas to energy importing regions, long-distance international transport is necessary, implying additional logistics, costs, energy consumption and material losses compared to local utilisation. A broad variety of bioenergy chains can be envisioned, comprising different biomass feedstock production systems, pre-treatment and conversion operations, and transport of raw and refined solid biomass and liquid bio-derived fuels. A tool was developed to consistently compare the possible bioenergy supply chains and assess the influence of key parameters, such as distance, timing and scale on performance. Chains of European and Latin American bioenergy carriers delivered to Western Europe were analysed using generic data. European biomass residues and crops can be delivered at 90 and 70 euros/tonne dry (4.7 and 3.7 euros/GJ HHV ) when shipped as pellets. South American crops are produced against much lower costs. Despite the long shipping distance, the costs in the receiving harbour can be as low as 40 euros/tonne dry or 2.1 euros/GJ HHV ; the crop's costs account for 25-40% of the delivered costs. The relatively expensive truck transport from production site to gathering point restricts the size of the production area; therefore, a high biomass yield per hectare is vital to enable large-scale systems. In all, 300 MW HHV Latin American biomass in biomass integrated gasification/combined cycle plants may result in cost of electricity as little as 3.5 euros cent/kWh, competitive with fossil electricity. Methanol produced in Latin America and delivered to Europe may cost 8-10 euros/GJ HHV , when the pellets to methanol conversion is done in Europe the delivered methanol costs are higher. The energy requirement to deliver solid biomass from both crops and residues from the different production countries is 1.2-1.3 MJ primary /MJ delivered (coal ∼ 1.1 MJ/MJ). International bioenergy trade is possible against low costs and modest energy loss

  14. Mangrove expansion and saltmarsh decline at mangrove poleward limits

    Science.gov (United States)

    Saintilan, Neil; Wilson, Nicholas C.; Rogers, Kerrylee; Rajkaran, Anusha; Krauss, Ken W.

    2014-01-01

    Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the US Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the pole-ward extension of temperature thresholds co-incident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation.

  15. Long-term Energy Efficiency Improvement for Transport, Technology Assessments

    NARCIS (Netherlands)

    Van Binsbergen, A.J.; Erkens, A.; Hamel, B.

    1994-01-01

    In part one of this report, general transport and transport-flow measures are described. By using other modes of transport than road-vehicles, it is possible to save energy. An advanced park-and-ride system can lead to a 27% reduction in energy use per passengerkilometre; in 2040 at most 10% of the

  16. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists

    Science.gov (United States)

    Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V.; Aschan, Michaela

    2015-01-01

    Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning. PMID:26336179

  17. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists.

    Science.gov (United States)

    Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V; Aschan, Michaela

    2015-09-07

    Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning. © 2015 The Authors.

  18. Integrated transportation and energy sector CO2 emission control strategies

    DEFF Research Database (Denmark)

    Lund, Henrik; Münster, Ebbe

    2006-01-01

    This paper analyses the mutual benefits of integrating strategies for future energy and transport CO2 emissions control. The paper illustrates and quantifies the mutual benefits of integrating the transport and the energy sector in the case of Denmark. Today this issue is very relevant in Denmark...... due to the high share of fluctuating renewable energy produced in the country. In the future, such issue will apply to other countries who plan to use a high share of renewable energy. In short, the energy sector can help the transport sector to replace oil by renewable energy and combined heat...... and power production (CHP), while the transport sector can assist the energy system in integrating a higher degree of intermittent energy and CHP. Two scenarios for partial conversion of the transport fleet have been considered. One is battery cars combined with hydrogen fuel cell cars, while the other...

  19. Energy efficiency and rebound effect in European road freight transport.

    OpenAIRE

    Llorca, M.; Jamasb, T.

    2017-01-01

    Energy efficiency has become a primary energy policy goal in Europe and many countries and has conditioned the policies towards energy-intensive sectors such as road freight transport. However, energy efficiency improvements can lead to changes in the demand for energy services that offset some of the achieved energy savings in the form of rebound effects. Consequently, forecasts of energy savings can be overstated. This paper analyses the energy efficiency and rebound effects for road freigh...

  20. Energy efficiency and rebound effect in European road freight transport

    OpenAIRE

    Llorca, M.; Jamasb, T.

    2016-01-01

    Energy efficiency has become a primary energy policy goal in Europe and many other countries and has conditioned the policies towards energy-intensive sectors such as road freight transport. However, energy efficiency improvements can lead to changes in the demand for energy services that offset some of the expected energy savings in the form of rebound effects. Consequently, forecasts of energy savings can be overstated. This paper analyses the energy efficiency and rebound effects for road ...

  1. Estimating Energy Consumption of Transport Modes in China Using DEA

    Directory of Open Access Journals (Sweden)

    Weibin Lin

    2015-04-01

    Full Text Available The rapid growth of transport requirements in China will incur increasing transport energy demands and associated environmental pressures. In this paper, we employ a generalized data envelopment analysis (DEA to evaluate the relative energy efficiency of rail, road, aviation and water transport from 1971 to 2011 by considering the energy input and passenger-kilometers (PKM and freight ton-kilometers (TKM outputs. The results show that the optimal energy efficiencies observed in 2011 are for rail and water transport, with the opposite observed for the energy efficiencies of aviation and road transport. In addition, we extend the DEA model to estimate future transport energy consumption in China. If each transport mode in 2020 is optimized throughout the observed period, the national transport energy consumption in 2020 will reach 497,701 kilotons coal equivalent (ktce, whereas the annual growth rate from 2011 to 2020 will be 5.7%. Assuming that efficiency improvements occur in this period, the estimated national transport energy consumption in 2020 will be 443,126 ktce, whereas the annual growth rate from 2011 to 2020 will be 4.4%, which is still higher than that of the national total energy consumption (3.8%.

  2. Poleward propagation of boreal summer intraseasonal oscillations in a coupled model: role of internal processes

    Science.gov (United States)

    Ajayamohan, R. S.; Annamalai, H.; Luo, Jing-Jia; Hafner, Jan; Yamagata, Toshio

    2011-09-01

    The study compares the simulated poleward migration characteristics of boreal summer intraseasonal oscillations (BSISO) in a suite of coupled ocean-atmospheric model sensitivity integrations. The sensitivity experiments are designed in such a manner to allow full coupling in specific ocean basins but forced by temporally varying monthly climatological sea surface temperature (SST) adopted from the fully coupled model control runs (ES10). While the local air-sea interaction is suppressed in the tropical Indian Ocean and allowed in the other oceans in the ESdI run, it is suppressed in the tropical Pacific and allowed in the other oceans in the ESdP run. Our diagnostics show that the basic mean state in precipitation and easterly vertical shear as well as the BSISO properties remain unchanged due to either inclusion or exclusion of local air-sea interaction. In the presence of realistic easterly vertical shear, the continuous emanation of Rossby waves from the equatorial convection is trapped over the monsoon region that enables the poleward propagation of BSISO anomalies in all the model sensitivity experiments. To explore the internal processes that maintain the tropospheric moisture anomalies ahead of BSISO precipitation anomalies, moisture and moist static energy budgets are performed. In all model experiments, advection of anomalous moisture by climatological winds anchors the moisture anomalies that in turn promote the northward migration of BSISO precipitation. While the results indicate the need for realistic simulation of all aspects of the basic state, our model results need to be taken with caution because in the ECHAM family of coupled models the internal variance at intraseasonal timescales is indeed very high, and therefore local air-sea interactions may not play a pivotal role.

  3. Environmental Development Plan for Transportation Energy Conservation. FY 79 update

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. K.; Bernard, III, M. J.

    1978-12-15

    This is the first annual update of the Environment Development Plan (EDP) for the DOE Division of Transportation Energy Conservation program. It identifies the ecosystem, resource, physical environment, health, safety, and socioeconomic concerns associated with the division's transportation programs. These programs include the research, development, demonstration and assessment (RDD and A) of seventeen transportation technologies and several strategy and policy development and implementation projects. The transportation technologies projects deal with highway transport including electric vehicles, marine transport and pipeline transport. This EDP presents a research and assessment plan for resolving any potentially adverse environmental concerns stemming from these programs.

  4. Energy consumption in the transport sector

    International Nuclear Information System (INIS)

    Plouchart, G.

    2004-01-01

    During the 20. century, transport sector demand in the OECD countries boomed. The main drivers for growth were road transport and, more recently, air transport. As emerging countries continue to develop and the world faces the threat of climate change, this sector represents a major long-term challenge

  5. Energy, enterprises and transports: how conciliate competitiveness and responsibility; Energie, entreprises et transports: comment concilier competitivite et responsabilite?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    The meeting on the enterprises and transports competitiveness in a context of energy conservation, organized in Nice the 15 april 2003, took place three topics: are the competitiveness of enterprises and the energy consumptions mastership reconcilable? What are the solutions to answer the market demands with a decrease of the energy consumption? Concerning the goods transport, must we leave the road transport? The whole texts of the round tables and the open and exit allocution are also provided. (A.L.B.)

  6. Nuclear Energy and Synthetic Liquid Transportation Fuels

    Science.gov (United States)

    McDonald, Richard

    2012-10-01

    This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.

  7. Use of artificial neural networks for transport energy demand modeling

    International Nuclear Information System (INIS)

    Murat, Yetis Sazi; Ceylan, Halim

    2006-01-01

    The paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem

  8. Trends in passenger transport energy use in South Korea

    International Nuclear Information System (INIS)

    Eom, Jiyong; Schipper, Lee

    2010-01-01

    Having a clear understanding of transport energy use trends is crucial to identifying opportunities and challenges for efficient energy use for the transport sector. To this date, however, no detailed analysis has been conducted with regard to rapidly growing passenger transport energy use in South Korea. Using bottom-up data developed from a variety of recent sources, we described the trends of transport activity, energy use, and CO 2 emissions from South Korea's transport sector since 1986 with a particular focus on its passenger transport. By decomposing the trends in passenger transport energy use into activity, modal structure, and energy intensity, we showed that while travel activity has been the major driver of the increase in passenger transport energy use in South Korea, the increase was to some extent offset by the recent favorable structural shift toward bus travel and away from car travel. We also demonstrated that while bus travel has become less energy intensive since the Asian Financial Crisis, car travel has become increasingly energy intensive.

  9. Paracellular transport and energy utilization in the renal tubule.

    Science.gov (United States)

    Yu, Alan S L

    2017-09-01

    Paracellular transport across the tight junction is a general mechanism for transepithelial transport of solutes in epithelia, including the renal tubule. However, why paracellular transport evolved, given the existence of a highly versatile system for transcellular transport, is unknown. Recent studies have identified the paracellular channel, claudin-2, that is responsible for paracellular reabsorption of sodium in the proximal renal tubule. Knockout of claudin-2 in mice impairs proximal sodium and fluid reabsorption but is compensated by upregulation of sodium reabsorption in the loop of Henle. This occurs at the expense of increased renal oxygen consumption, hypoxia of the outer medulla and increased susceptibility to ischemic kidney injury. Paracellular transport can be viewed as a mechanism to exploit the potential energy in existing electrochemical gradients to drive passive transepithelial transport without consuming additional energy. In this way, it enhances the efficiency of energy utilization by transporting epithelia.

  10. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  11. The poleward shift of storm tracks under global warming: A Lagrangian perspective

    Science.gov (United States)

    Tamarin, T.; Kaspi, Y.

    2017-10-01

    Comprehensive models of climate change projections have shown that the latitudinal band of extratropical storms will likely shift poleward under global warming. Here we study this poleward shift from a Lagrangian storm perspective, through simulations with an idealized general circulation model. By employing a feature tracking technique to identify the storms, we demonstrate that the poleward motion of individual cyclones increases with increasing global mean temperature. A potential vorticity tendency analysis of the cyclone composites highlights two leading mechanisms responsible for enhanced poleward motion: nonlinear horizontal advection and diabatic heating associated with latent heat release. Our results imply that for a 4 K rise in the global mean surface temperature, the mean poleward displacement of cyclones increases by about 0.85° of latitude, and this occurs in addition to a poleward shift of about 0.6° in their mean genesis latitude. Changes in cyclone tracks may have a significant impact on midlatitude climate, especially in localized storm tracks such as the Atlantic and Pacific storm tracks, which may exhibit a more poleward deflected shape.

  12. The Poleward Shift of Storm Tracks Under Climate Change: Tracking Cyclones in CMIP5

    Science.gov (United States)

    Kaspi, Y.; Tamarin, T.

    2017-12-01

    Extratropical cyclones dominate the distribution of precipitation and wind in the midlatitudes, and therefore their frequency, intensity, and paths have a significant effect on weather and climate. Comprehensive climate models forced by enhanced greenhouse gas emissions suggest that under a climate change scenario, the latitudinal band of storm tracks would shift poleward. While the poleward shift is a robust response across most models, there is currently no consensus on what is the dominant dynamical mechanism. Here we use a Lagrangian approach to study the poleward shift, by employing a storm-tracking algorithm on an ensemble of CMIP5 models forced by increased CO2 emissions. We demonstrate that in addition to a poleward shift in the latitude of storm genesis, associated with the expansion of the Hadley cell, the averaged cyclonic storm also propagates more poleward until it reaches its maximum intensity. A mechanism for enhanced poleward motion of cyclones in a warmer climate is proposed, supported by idealized global warming experiments, and relates the shift to changes in upper level jet and atmospheric water vapour content. Our results imply that under the RCP8.5 climate change scenario, the averaged latitude of peak cyclone intensity shifts poleward by about 1.2○ (1.0○) in the Atlantic (Pacific) storm track in the Northern Hemisphere (NH), and by about 1.6○ in the Southern Hemisphere (SH) storm track. These changes in cyclone tracks can have a significant impact on midlatitude climate.

  13. Kinetochore-independent chromosome poleward movement during anaphase of meiosis II in mouse eggs.

    Directory of Open Access Journals (Sweden)

    Manqi Deng

    Full Text Available Kinetochores are considered to be the key structures that physically connect spindle microtubules to the chromosomes and play an important role in chromosome segregation during mitosis. Due to different mechanisms of spindle assembly between centrosome-containing mitotic cells and acentrosomal meiotic oocytes, it is unclear how a meiotic spindle generates the poleward forces to drive two rounds of meiotic chromosome segregation to achieve genome haploidization. We took advantage of the fact that DNA beads are able to induce bipolar spindle formation without kinetochores and studied the behavior of DNA beads in the induced spindle in mouse eggs during meiosis II. Interestingly, DNA beads underwent poleward movements that were similar in timing and speed to the meiotic chromosomes, although all the beads moved together to the same spindle pole. Disruption of dynein function abolished the poleward movements of DNA beads but not of the meiotic chromosomes, suggesting the existence of different dynein-dependent and dynein-independent force generation mechanisms for the chromosome poleward movement, and the latter may be dependent on the presence of kinetochores. Consistent with the observed DNA bead poleward movement, sperm haploid chromatin (which also induced bipolar spindle formation after injection to a metaphase egg without forming detectable kinetochore structures also underwent similar poleward movement at anaphase as DNA beads. The results suggest that in the chromatin-induced meiotic spindles, kinetochore attachments to spindle microtubules are not absolutely required for chromatin poleward movements at anaphase.

  14. Long term energy demand projections for croatian transport sector

    DEFF Research Database (Denmark)

    Puksec, Tomislav; Mathiesen, Brian Vad; Duic, Neven

    2011-01-01

    Transport sector in Croatia represents one of the largest consumers of energy today with a share of almost one third of final energy demand. That is why improving energy efficiency and implementing different mechanisms that would lead to energy savings in this sector would be relevant. Through...... this paper long term energy demand projections for Croatian transport sector will be shown with a special emphasis on different mechanisms, both financial, legal but also technological that will influence future energy demand scenarios. It was important to see how these mechanisms can influence, positive...... or negative, on future energy demand and which mechanism would be most influential. Energy demand predictions are based upon end-use simulation model developed and tested with Croatia as a case study. Model combines detailed modal structure of Croatian transport sector including road, rail, air and water...

  15. Transport energy consumption achievement based on indicator analysis

    Science.gov (United States)

    Jiang, Jian

    2017-06-01

    In order to evaluate the transport sustainability level for regions, the concept of achievement efficiency in transport energy consumption is initially suggested in this paper. The research object is not only for the energy consumption by transport operation but also the whole life of the transport procedure, which is the thought of life cycle assessment. And then, on the quantitative analysis to calculate the transport energy achievement efficiency of the regions, the indicators that can represent the achievement of transport energy consumption are convincingly found out by indicator theory. Next, concentration is focused on the transport related indicators and proper indicators are picked up from the candidate indicators, which were the affecting factors to this issue. After that, using the selected indicators, we introduce the method of data envelopment analysis to do quantitative analysis, which helps to get the achievement efficiency of transport energy among cities all over the world. The analysis result shows the efficient regions and the inefficient regions respectively. Furthermore, the detailed efficiency value of each region is also laid out clearly. For the improvement, the inadequate output or input variables of the inefficient regions were listed compared with the efficient regions so that corresponding transport policy implications can be resulted for the inefficient regions to reach high level sustainability.

  16. Anisotropy Enhancement of Thermal Energy Transport in Supported Black Phosphorene.

    Science.gov (United States)

    Chen, Jige; Chen, Shunda; Gao, Yi

    2016-07-07

    Thermal anisotropy along the basal plane of materials possesses both theoretical importance and application value in thermal transport and thermoelectricity. Though common two-dimensional materials may exhibit in-plane thermal anisotropy when suspended, thermal anisotropy would often disappear when supported on a substrate. In this Letter, we find a strong anisotropy enhancement of thermal energy transport in supported black phosphorene. The chiral preference of energy transport in the zigzag rather than the armchair direction is greatly enhanced by coupling to the substrate, up to a factor of approximately 2-fold compared to the suspended one. The enhancement originates from its puckered lattice structure, where the nonplanar armchair energy transport relies on the out-of-plane corrugation and thus would be hindered by the flexural suppression due to the substrate, while the planar zigzag energy transport is not. As a result, thermal conductivity of supported black phosphorene shows a consistent anisotropy enhancement under different temperatures and substrate coupling strengths.

  17. Global energy transports and the influence of clouds on transport requirements - A satellite analysis

    Science.gov (United States)

    Sohn, Byung-Ju; Smith, Eric A.

    1992-01-01

    This report investigates the impact of differential net radiative heating on 2D energy transports within the atmosphere ocean system and the role of clouds on this process. The 2D mean energy transports, in answer to zonal and meridional gradients in the net radiation field, show an east-west coupled dipole structure in which the Pacific acts as the major energy source and North Africa as the major energy sink. It is demonstrated that the dipole is embedded in the secondary energy transports arising mainly from the differential heating between land and oceans in the tropics in which the tropical east-west (zonal) transports are up to 30 percent of the tropical north-south (meridional) transports.

  18. Forecasting long-term energy demand of Croatian transport sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Krajačić, Goran; Lulić, Zoran

    2013-01-01

    The transport sector in Croatia represents one of the largest consumers of energy today, with a share of almost one third of the country's final energy demand. Considering this fact, it is very challenging to assess future trends influencing that demand. In this paper, long-term energy demand...... predictions for the Croatian transport sector are presented. Special emphasis is given to different influencing mechanisms, both legal and financial. The energy demand predictions presented in this paper are based on an end-use simulation model developed and tested with Croatia as a case study. The model...... incorporates the detailed modal structure of the Croatian transport sector, including road, rail, air, public and water transport modes. Four long-term energy demand scenarios were analysed till the year 2050; frozen efficiency, implementation of EU legislation, electrification and modal split. Based...

  19. Why does the energy intensity of freight transport rise?

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, D. [Scientific Council for Government Policy (Netherlands)

    1996-12-01

    In advanced economies it is normal to observe declining energy intensities. Both improvements in conversion efficiency and in organisational efficiency of energy use cause energy demand to grow at a slower pace than the economy. In this context it is somewhat particular that in the vital sector of freight transport the energy intensity does not decline, but instead increases. The energy demand of this sector only takes a small share of the total energy demand. According to the World Energy Council the transport sector takes 30 percent of world energy demand and freight transport again takes 30 percent of the transport sector share, maritime transport excluded. Despite this small share some explanation is needed why the increase in energy demand form the volume growth of freight demand is not at least partly countered by a decline in the energy intensity. The purpose of this paper is to review some of the explanations that are given in the literature and to support these explanations with empirical evidence on the case of the Netherlands. (EG)

  20. Energy transport in cooling device by magnetic fluid

    Science.gov (United States)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-06-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.

  1. Energy transport in cooling device by magnetic fluid

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Iwamoto, Yuhiro

    2017-01-01

    Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering. - Highlights: • Temperature-sensitive magnetic fluid (TSMF) has a great heat transport ability. • Magnetically-driven heat transport device using binary TSMF is proposed. • The basic heat transport characteristics are investigated. • Boiling of the organic mixture effectively enhances the heat transfer. • A long-distance heat transport of 5 m is experimentally confirmed.

  2. Decarbonizing Sweden’s energy and transportation system by 2050

    DEFF Research Database (Denmark)

    Bramstoft, Rasmus; Skytte, Klaus

    2017-01-01

    Decarbonizing Sweden’s transportation sector is necessary to realize its long-term vision of eliminating net greenhouse gas (GHG) emissions from the energy system by 2050. Within this context, this study develops two scenarios for the transportation sector: one with high electrification (EVS......) and the other with high biofuel and biomethane utilization (BIOS). The energy system model STREAM is utilized to compute the socioeconomic system cost and simulate an integrated transportation, electricity, gas, fuel refinery, and heat system. The results show that electrifying a high share of Sweden’s road...... transportation yields the least systems cost. However, in the least-cost scenario (EVS), bioenergy resources account for 57% of the final energy use in the transportation sector. Further, a sensitivity analysis shows that the costs of different types of cars are the most sensitive parameters in the comparative...

  3. Decarbonizing Sweden’s energy and transportation system by 2050

    Directory of Open Access Journals (Sweden)

    Rasmus Bramstoft

    2017-01-01

    Full Text Available Decarbonizing Sweden’s transportation sector is necessary to realize its long-term vision of eliminating net greenhouse gas (GHG emissions from the energy system by 2050. Within this context, this study develops two scenarios for the transportation sector: one with high electrification (EVS and the other with high biofuel and biomethane utilization (BIOS. The energy system model STREAM is utilized to compute the socioeconomic system cost and simulate an integrated transportation, electricity, gas, fuel refinery, and heat system. The results show that electrifying a high share of Sweden’s road transportation yields the least systems cost. However, in the least-cost scenario (EVS, bioenergy resources account for 57% of the final energy use in the transportation sector. Further, a sensitivity analysis shows that the costs of different types of cars are the most sensitive parameters in the comparative analysis of the scenarios.

  4. Gyrokinetic theory for particle and energy transport in fusion plasmas

    Science.gov (United States)

    Falessi, Matteo Valerio; Zonca, Fulvio

    2018-03-01

    A set of equations is derived describing the macroscopic transport of particles and energy in a thermonuclear plasma on the energy confinement time. The equations thus derived allow studying collisional and turbulent transport self-consistently, retaining the effect of magnetic field geometry without postulating any scale separation between the reference state and fluctuations. Previously, assuming scale separation, transport equations have been derived from kinetic equations by means of multiple-scale perturbation analysis and spatio-temporal averaging. In this work, the evolution equations for the moments of the distribution function are obtained following the standard approach; meanwhile, gyrokinetic theory has been used to explicitly express the fluctuation induced fluxes. In this way, equations for the transport of particles and energy up to the transport time scale can be derived using standard first order gyrokinetics.

  5. Quality of renewable energy utilization in transport in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2015-04-01

    Renewable energy utilization in transportation (RES-T) is a long way behind its utilization in power (RES-E) and heat (RES-H) sectors. International and national environmental policies have recently given a lot of emphasis on this problem. For that reason information is sought on how to implement solutions both politically and technologically. As Sweden is a global leader in this area, it can provide valuable examples. In 2012 Sweden became the first country to reach the binding requirement of the European Union for at least 10 % share for renewable energy in transport energy consumption. But qualitative development has been even stronger than quantitative. Among the success stories behind qualitative progress, most noteworthy are those created by innovative municipal policies. By 2030 Sweden aims to achieve fossil fuel independent road transport system and by 2050 completely carbon neutral transport system in all modes of transport.

  6. Decarbonizing Sweden’s energy and transportation system by 2050

    DEFF Research Database (Denmark)

    Bramstoft, Rasmus; Skytte, Klaus

    2017-01-01

    ) and the other with high biofuel and biomethane utilization (BIOS). The energy system model STREAM is utilized to compute the socioeconomic system cost and simulate an integrated transportation, electricity, gas, fuel refinery, and heat system. The results show that electrifying a high share of Sweden’s road......Decarbonizing Sweden’s transportation sector is necessary to realize its long-term vision of eliminating net greenhouse gas (GHG) emissions from the energy system by 2050. Within this context, this study develops two scenarios for the transportation sector: one with high electrification (EVS...... transportation yields the least systems cost. However, in the least-cost scenario (EVS), bioenergy resources account for 57% of the final energy use in the transportation sector. Further, a sensitivity analysis shows that the costs of different types of cars are the most sensitive parameters in the comparative...

  7. Urban form and energy use for transport. A Nordic experience

    Energy Technology Data Exchange (ETDEWEB)

    Naess, P.

    1995-02-10

    The main research problem addressed in this thesis is the possible influence of several urban form variables on the amount of transportation, on the modal split between different means of transport, and on energy use for transportation. This problem is elucidated through five empirical investigations covering different geographic levels in a Nordic context, from individual employees and households to commuting regions. A main feature of the study is the combination of socioeconomic and urban form variables in empirical investigations, employing techniques of multivariate analysis. The investigations of residential areas and job sites have been based on travel surveys, while the investigations where the units of analysis are towns or regions have been based on fuel sales. The socioeconomic data have been collected from official statistics and from questionnaires. It is found that urban form variables exert important influences on transportation energy use. Urban density affects energy use for transportation. A central location of residences as well as workplaces is favourable with respect to energy conservation on an intra-urban scale, but not in a wider geographical context, where decentralization into several dense, relatively self-contained local communities distributed over the region is the most energy-saving pattern of regional development. Urban form characteristics favourable for minimizing transport energy requirements also seem favourable for energy conservation in buildings. 160 refs., 39 figs., 46 tabs.

  8. Essentials of energy technology sources, transport, storage, conservation

    CERN Document Server

    Fricke, Jochen

    2013-01-01

    An in-depth understanding of energy technology, sources, conversion, storage, transport and conservation is crucial for developing a sustainable and economically viable energy infrastructure. This need, for example, is addressed in university courses with a special focus on the energy mix of renewable and depletable energy resources. Energy makes our lives comfortable, and the existence of amenities such as heaters, cars, warm water, household appliances and electrical light is characteristic for a developed economy. Supplying the industrial or individual energy consumer with energy 24 hours

  9. Forecast of transportation energy demand through the year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Mintz, M.M.; Vyas, A.D.

    1991-04-01

    Since 1979, the Center for Transportation Research (CTR) at Argonne National Laboratory (ANL) has produced baseline projections of US transportation activity and energy demand. These projections and the methodologies used to compute them are documented in a series of reports and research papers. As the lastest in this series of projections, this report documents the assumptions, methodologies, and results of the most recent projection -- termed ANL-90N -- and compares those results with other forecasts from the current literature, as well as with the selection of earlier Argonne forecasts. This current forecast may be used as a baseline against which to analyze trends and evaluate existing and proposed energy conservation programs and as an illustration of how the Transportation Energy and Emission Modeling System (TEEMS) works. (TEEMS links disaggregate models to produce an aggregate forecast of transportation activity, energy use, and emissions). This report and the projections it contains were developed for the US Department of Energy's Office of Transportation Technologies (OTT). The projections are not completely comprehensive. Time and modeling effort have been focused on the major energy consumers -- automobiles, trucks, commercial aircraft, rail and waterborne freight carriers, and pipelines. Because buses, rail passengers services, and general aviation consume relatively little energy, they are projected in the aggregate, as other'' modes, and used primarily as scaling factors. These projections are also limited to direct energy consumption. Projections of indirect energy consumption, such as energy consumed in vehicle and equipment manufacturing, infrastructure, fuel refining, etc., were judged outside the scope of this effort. The document is organized into two complementary sections -- one discussing passenger transportation modes, and the other discussing freight transportation modes. 99 refs., 10 figs., 43 tabs.

  10. Texas transportation planning for future renewable energy projects : final report.

    Science.gov (United States)

    2017-03-01

    There will be a significant increase in the number of renewable energy production facilities in Texas. The : construction of wind farms requires the transport of wind turbine components that create increased loads on : rural roads and bridges. These ...

  11. 2010 Transportation Research Board Environment and Energy Research Conference

    Science.gov (United States)

    2010-05-01

    The Transportation Research Boards (TRB) 2010 Environment and Energy Workshop: Better Delivery of Better Solutions, which will be held June 6-10, 2010 in Raleigh, North Carolina, will commence with a session to discuss research needs in the worksh...

  12. IFPEN Transports Energy Carnot Institute. Annual report 2016. Innovating mobility

    International Nuclear Information System (INIS)

    2017-01-01

    Under the authority of IFP Energies nouvelles, the IFPEN Transports Energie Carnot Institute develops efficient, clean and sustainable technological innovations in the fields of power-train and propulsion systems, energy sectors and industrial thermal processes with CO 2 capture. IFPEN Transports Energie Carnot Institute is a R and D center serving industry, leader in the fields of transport and energy: - Innovative solutions to address technological challenges and market needs (high-efficiency, low-emission power-trains, power-train electrification, energy optimization and onboard control, alternative fuels with low CO 2 emissions, energy generation based on chemical looping combustion); - High-performance experimental resources and digital tools resulting in innovations with reduced costs and development times; - A proactive industrial protection policy; - Support for industrial sectors, covering a very broad range of technological readiness levels; - Transfer of R and D results via joint product development with licensing out operations, strategic partnerships and collaborative research agreements; - An innovation support policy, aimed particularly at micro-companies, SMEs and intermediate-sized companies. IFPEN Transports Energie Carnot Institute has close ties with industry: from micro-companies, SMEs and intermediate-sized companies to major industrial groups; A strong commitment within competitiveness clusters (Mov'eo, LUTB, Systematic, Astech, etc.); A leadership of the automobile sector and the Transport Alliance within the Carnot Institutes; A synergy with networks of academic partners and R and D laboratories with an international influence

  13. Energy use for transport in 22 Nordic towns; Energibruk til transport i 22 nordiske byer

    Energy Technology Data Exchange (ETDEWEB)

    Naess, Petter; Larsen, Synnoeve Lyssand; Roee, Per Gunnar

    1994-07-01

    This report presents the methods used and the results obtained from an investigation of relationships between energy use for transport and the physical urban structure of 22 towns in Denmark, Iceland, Norway and Sweden. It is found that urban planning is very important for the inhabitants' average energy use for transport. High population density in the inner and central areas of a town tends to reduce the energy use. The composition of trades and the commuting frequency between the town and its surroundings affect the energy use to the same degree as does the urban planning. The energy data are based on the oil companies' information on the sales of gasoline and auto diesel oil from the filling stations in each town and on the public transport companies' information on the energy use of their vehicles. The energy data are combined with physical and socio economical characteristics of each town.

  14. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  15. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C. D. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States); Brown, A. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States); Dunphy, R. T. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States); Vimmerstedt, L. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States)

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  16. Simulation of a low energy beam transport line

    International Nuclear Information System (INIS)

    Yang Yao; Liu Zhanwen; Zhang Wenhui; Ma Hongyi; Zhang Xuezhen; Zhao Hongwei; Yao Ze'en

    2012-01-01

    A 2.45 GHz electron cyclotron resonance intense proton source and a low energy beam transport line with dual-Glaser lens were designed and fabricated by Institute of Modern Physics for a compact pulsed hadron source at Tsinghua. The intense proton beams extracted from the ion source are transported through the transport line to match the downstream radio frequency quadrupole accelerator. Particle-in-cell code BEAMPATH was used to carry out the beam transport simulations and optimize the magnetic field structures of the transport line. Emittance growth due to space charge and spherical aberrations of the Glaser lens were studied in both theory and simulation. The results show that narrow beam has smaller aberrations and better beam quality through the transport line. To better match the radio frequency quadrupole accelerator, a shorter transport line is desired with sufficient space charge neutralization. (authors)

  17. Transition strategy of the transportation energy and powertrain in China

    International Nuclear Information System (INIS)

    Wang Hewu; Ouyang Minggao

    2007-01-01

    The problems of the transportation energy and environment are the major challenges faced globally in the 21st century and are especially serious for China. The future 20 years is the strategic opportunity period of the transition of the transportation energy and powertrain system for China. The greatest characteristics of hydrogen economy lie in its diversity of the primary energy source, the unification of energy carrier and the greening of energy transformation. Development of hydrogen energy transportation powertrain system is suitable for China from the views of the situation of Chinese resources and energy sources, the urban and rural layouts, the superiority of later development and the successful practices of clean cars and electric vehicle development projects. The transition of the transportation energy powertrain system includes three parts: the transition of the energy structure, the transition of the powertrain system and the transition of the fuel infrastructure. The technical pathways of energy powertrain system transition includes expending the use of gaseous fuel to prompt the multiform of the transportation energy and to prepare for the transition of the infrastructure simultaneously, developing and promoting the hybrid technology to solve the current energy and environment problems and to prepare for the transition of powertrain system, and focusing on the research and development and demonstration of fuel cell vehicles and the hydrogen energy technology to prompt the earlier formation of the market of fuel cell vehicles. The goal in the near and medium term of transition is to reduce the fuel consumption by 100 million ton in 2020 by substituting and saving, and the long-term goal is to setup the infrastructure of hydrogen and fuel cell vehicle as the main one replacing the petroleum internal combustion engine vehicle. In order to realize the strategic goals of the transition, the four-phases strategic periods and research and development

  18. Calculation of transportation energy for biomass collection

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, G.; Takekura, K.; Kato, H.; Kobayashi, Y.; Yakushido, K. [National Agricultural Research Center, Tsukuba, Ibaraki (Japan)

    2010-07-01

    This paper reported on a study at a rice straw facility in Japan that produces bioethanol. Simulation modeling and calculations methods were used to examine the characteristics of field-to-facility transportation. Fuel consumption was found to be influenced by the conversion rate from straw to ethanol, the quantity of straw collected, and the ratio of the field area to that around the facility. Standard conditions were assumed based on reported data and actual observations for 15 ML/yr ethanol production, 0.3 kL output of ethanol from 1 t dry straw, 53.6 day/yr working days, 2.7 t truck load capacity, and 0.128 as the ratio of field to the area around the facility. According to calculations, a quantity of 50 kt dry straw requires 2.78 L of fuel to transport 1 t of dry straw, 109.5 trucks, and a 19.1 km collection area radius. The fuel consumption for transportation was found to be proportional to the quantity of straw to the 0.5 power, but inversely proportional to the ratio of field to the 0.5 power. The rate of increase in the number of trucks needed to collect straw increases with the decrease in the ratio of the field to area surface around the facility.

  19. Decarbonizing Sweden’s energy and transportation system by 2050

    DEFF Research Database (Denmark)

    Bramstoft, Rasmus; Skytte, Klaus

    2017-01-01

    ) and the other with high biofuel and biomethane utilization (BIOS). The energy system model STREAM is utilized to compute the socioeconomic system cost and simulate an integrated transportation, electricity, gas, fuel refinery, and heat system. The results show that electrifying a high share of Sweden’s road......Decarbonizing Sweden’s transportation sector is necessary to realize its long-term vision of eliminating net greenhouse gas (GHG) emissions from the energy system by 2050. Within this context, this study develops two scenarios for the transportation sector: one with high electrification (EVS...

  20. Mechanism of active transport: free energy dissipation and free energy transduction.

    OpenAIRE

    Tanford, C

    1982-01-01

    The thermodynamic pathway for "chemiosmotic" free energy transduction in active transport is discussed with an ATP-driven Ca2+ pump as an illustrative example. Two innovations are made in the analysis. (i) Free energy dissipated as heat is rigorously excluded from overall free energy bookkeeping by focusing on the dynamic equilibrium state of the chemiosmotic process. (ii) Separate chemical potential terms for free energy donor and transported ions are used to keep track of the thermodynamic ...

  1. A method for evaluating transport energy consumption in suburban areas

    Energy Technology Data Exchange (ETDEWEB)

    Marique, Anne-Francoise, E-mail: afmarique@ulg.ac.be; Reiter, Sigrid, E-mail: Sigrid.Reiter@ulg.ac.be

    2012-02-15

    Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by

  2. Energy policies for low carbon sustainable transport in Asia

    DEFF Research Database (Denmark)

    Shukla, P.R.; Dhar, Subash

    2015-01-01

    equivalent to 2 °C stabilization. Accounting for heterogeneity of national transport systems, these papers use diverse methods, frameworks and models to assess the response of the transport system to environmental policy, such as a carbon tax, as well as to a cluster of policies aimed at diverse development......Transformation of Asia's transport sector has vital implications for climate change, sustainable development and energy indicators. Papers in this special issue show how transport transitions in Asia may play out in different socio-economic and policy scenarios, including a low carbon scenario...... measures. Authors therefore advocate policies that target multiple dividends vis-à-vis carbon mitigation, energy security and local air quality. Whereas four papers focus on emissions mitigation policies, one paper examines challenges to adapt fast growing transport infrastructures to future climate change...

  3. Anomalous Transport of High Energy Cosmic Rays in Galactic Superbubbles

    Science.gov (United States)

    Barghouty, Nasser F.

    2014-01-01

    High-energy cosmic rays may exhibit anomalous transport as they traverse and are accelerated by a collection of supernovae explosions in a galactic superbubble. Signatures of this anomalous transport can show up in the particles' evolution and their spectra. In a continuous-time-random- walk (CTRW) model assuming standard diffusive shock acceleration theory (DSA) for each shock encounter, and where the superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks, acceleration and transport in the superbubble can be shown to be sub-diffusive. While the sub-diffusive transport can be attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These CTRW simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high energy cosmic rays in galactic superbubbles.

  4. The efficiency of convective energy transport in the sun

    Science.gov (United States)

    Schatten, Kenneth H.

    1988-01-01

    Mixing length theory (MLT) utilizes adiabatic expansion (as well as radiative transport) to diminish the energy content of rising convective elements. Thus in MLT, the rising elements lose their energy to the environment most efficiently and consequently transport heat with the least efficiency. On the other hand Malkus proposed that convection would maximize the efficiency of energy transport. A new stellar envelope code is developed to first examine this other extreme, wherein rising turbulent elements transport heat with the greatest possible efficiency. This other extreme model differs from MLT by providing a small reduction in the upper convection zone temperatures but greatly diminished turbulent velocities below the top few hundred kilometers. Using the findings of deep atmospheric models with the Navier-Stokes equation allows the calculation of an intermediate solar envelope model. Consideration is given to solar observations, including recent helioseismology, to examine the position of the solar envelope compared with the envelope models.

  5. Current status of high energy nucleon-meson transport code

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi; Sasa, Toshinobu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Current status of design code of accelerator (NMTC/JAERI code), outline of physical model and evaluation of accuracy of code were reported. To evaluate the nuclear performance of accelerator and strong spallation neutron origin, the nuclear reaction between high energy proton and target nuclide and behaviors of various produced particles are necessary. The nuclear design of spallation neutron system used a calculation code system connected the high energy nucleon{center_dot}meson transport code and the neutron{center_dot}photon transport code. NMTC/JAERI is described by the particle evaporation process under consideration of competition reaction of intranuclear cascade and fission process. Particle transport calculation was carried out for proton, neutron, {pi}- and {mu}-meson. To verify and improve accuracy of high energy nucleon-meson transport code, data of spallation and spallation neutron fragment by the integral experiment were collected. (S.Y.)

  6. Inclusive planning in transport and energy STI-policies

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Hansen, Meiken; Selin, Cynthia Lea

    2017-01-01

    Transition to a more sustainable and fossil-free energy system is of global interest, and implies social challenges for the developed world including the European Union. In particular, the energy consumption related to transport constitutes a significant challenge. If not serious changes are made...... of securing a more sustainable and fossil-free energy system. Furthermore, responsible research and innovation should take into account both the required changes in all citizens’ daily life due to this transition as well as the driving force of grassroot innovation movements.......Transition to a more sustainable and fossil-free energy system is of global interest, and implies social challenges for the developed world including the European Union. In particular, the energy consumption related to transport constitutes a significant challenge. If not serious changes are made...... the transport sector can lead to more than a doubling of CO2 emissions by 2050 (Edenhofer et al., 2014). Transport in this context includes transport of both people and goods, and it includes transport on land, sea and air. Responsible research and innovation should take into account this large social challenge...

  7. Structure of a bacterial energy-coupling factor transporter.

    Science.gov (United States)

    Wang, Tingliang; Fu, Guobin; Pan, Xiaojing; Wu, Jianping; Gong, Xinqi; Wang, Jiawei; Shi, Yigong

    2013-05-09

    The energy-coupling factor (ECF) transporters constitute a novel family of conserved membrane transporters in prokaryotes that have a similar domain organization to the ATP-binding cassette transporters. Each ECF transporter comprises a pair of cytosolic ATPases (the A and A' components, or EcfA and EcfA'), a membrane-embedded substrate-binding protein (the S component, or EcfS) and a transmembrane energy-coupling component (the T component, or EcfT) that links the EcfA-EcfA' subcomplex to EcfS. The structure and transport mechanism of the quaternary ECF transporter remain largely unknown. Here we report the crystal structure of a nucleotide-free ECF transporter from Lactobacillus brevis at a resolution of 3.5 Å. The T component has a horseshoe-shaped open architecture, with five α-helices as transmembrane segments and two cytoplasmic α-helices as coupling modules connecting to the A and A' components. Strikingly, the S component, thought to be specific for hydroxymethyl pyrimidine, lies horizontally along the lipid membrane and is bound exclusively by the five transmembrane segments and the two cytoplasmic helices of the T component. These structural features suggest a plausible working model for the transport cycle of the ECF transporters.

  8. Energy use reduction potential of passenger transport in Europe

    NARCIS (Netherlands)

    Bouwman, ME; Moll, HC

    2000-01-01

    To contribute to a sustainable society, considerable reduction in energy use and CO2 emissions should be achieved. This paper presents the results of calculations exploring the energy use reduction potential of passenger transport for Western Europe (OECD Europe minus Turkey). For these

  9. Solar energy applications in transportation facilities : a literature review.

    Science.gov (United States)

    1978-01-01

    This report presents the results of a survey of the literature and other sources to determine the types of application that have been made of solar energy in the transportation field. The use of solar energy for powering automatic traffic counters, v...

  10. Influence of embodied energy in the energy efficiency of optical transport networks

    DEFF Research Database (Denmark)

    Mata, Javier; Ye, Yabin; Lopez, Jorge

    2013-01-01

    An energy model including both operational and embodied energy is proposed to evaluate the performance evolution of optical transport networks in a multi-period study up to 15 years. Significant improvements in energy efficiency per GHz and energy reductions can be achieved for flexi-grid OFDM......-based networks with respect to fixed-grid WDM ones....

  11. Invisible transportation infrastructure technology to mitigate energy and environment.

    Science.gov (United States)

    Hossain, Md Faruque

    2017-01-01

    Traditional transportation infrastructure built by heat trapping products and the transportation vehiles run by fossil fuel, both causing deadly climate change. Thus, a new technology of invisible Flying Transportation system has been proposed to mitigate energy and environmental crisis caused by traditional infrastructure system. Underground Maglev system has been modeled to be constructed for all transportation systems to run the vehicle smoothly just over two feet over the earth surface by propulsive and impulsive force at flying stage. A wind energy modeling has also been added to meet the vehicle's energy demand when it runs on a non-maglev area. Naturally, all maglev infrastructures network to be covered by evergreen herb except pedestrian walkways to absorb CO 2 , ambient heat, and moisture (vapor) from the surrounding environment to make it cool. The research revealed that the vehicle will not require any energy since it will run by superconducting electromagnetic force while it runs on a maglev infrastructure area and directed by wind energy while it runs on non-maglev area. The proposed maglev transportation infrastructure technology will indeed be an innovative discovery in modern engineering science which will reduce fossil fuel energy consumption and climate change dramatically.

  12. Trends in onroad transportation energy and emissions.

    Science.gov (United States)

    Frey, H Christopher

    2018-03-28

    Globally, 1.3 billion onroad vehicles consume 79 quadrillion BTU of energy, mostly gasoline and diesel fuels, emit 5.7 gigatonnes of CO 2 , and emit other pollutants to which approximately 200,000 annual premature deaths are attributed. Improved vehicle energy efficiency and emission controls have helped offset growth in vehicle activity. New technologies are diffusing into the vehicle fleet in response to fuel efficiency and emission standards. Empirical assessment of vehicle emissions is challenging because of myriad fuels and technologies, inter-vehicle variability, multiple emission processes, variability in operating conditions, and varying capabilities of measurement methods. Fuel economy and emissions regulations have been effective in reducing total emissions of key pollutants. Real-world fuel use and emissions are consistent with official values in the U.S. but not in Europe or countries that adopt European standards. Portable emission measurements systems, which uncovered a recent emissions cheating scandal, have a key role in regulatory programs to ensure conformity between "real driving emissions" and emission standards. The global vehicle fleet will experience tremendous growth, especially in Asia. Although existing data and modeling tools are useful, they are often based on convenience samples, small sample sizes, large variability and unquantified uncertainty. Vehicles emit precursors to several important secondary pollutants, including ozone and secondary organic aerosols, which requires a multipollutant emissions and air quality management strategy. Gasoline and diesel are likely to persist as key energy sources to mid-century. Adoption of electric vehicles is not a panacea with regard to greenhouse gas emissions unless coupled with policies to change the power generation mix. Depending on how they are actually implemented and used, autonomous vehicles could lead to very large reductions or increases in energy consumption. Numerous other trends are

  13. Measurement of magnetic fluctuation induced energy transport

    International Nuclear Information System (INIS)

    Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.

    1993-11-01

    The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range r/a > 0.75). The flux, produced by electrons traveling parallel to a fluctuating magnetic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm 2 ) in the ''core'' (r/a 2 ) in the edge

  14. United States Department of Energy Automated Transportation Management System

    International Nuclear Information System (INIS)

    Portsmouth, J.H.

    1992-01-01

    At the US Department of Energy (DOE) 80 transportation facilities, each contractor's transportation management operation has different internal and site specific procedures, and reports to a DOE regional Field Office Traffic Manager (FOTM). The DOE Transportation Management Program (TMP) has the responsibility to manage a transportation program for safe, efficient, and economical transportation of DOE-owned materials. The TMP develops and administers transportation/traffic operations management policies and programs for materials; including radioactive materials, other hazardous materials, hazardous substances, and hazardous wastes, pursuant to applicable federal regulations, such as the Code of Federal Register, Sections 40 and 49. Transportation management has become an increasingly critical primarily because of transportation issues regarding the shipment of radioactive materials and hazardous wastes that are frequently the focus of public concerns. A large shipments and requiring millions of business transactions necessitates the establishment of automated systems, programs, procedures, and controls to ensure that the transportation management process in being handled in a safe, efficient, and economical manner. As the mission of many DOE facilities changes from production of special nuclear materials for defense purposes to environmental restoration and waste management, the role of transportation management will become even more important to the safe and efficient movement of waste materials to prescribed locations. In support of this role, the Automated Transportation Management System (ATMS) was conceived to assist the DOE and its contractors in the performance of their day-to-day transportation management activities. The ATMS utilizes the latest in technology and will supply state-of-the-art automated transportation management for current and future DOE transportation requirements

  15. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  16. The role of transporters in supplying energy to plant plastids.

    Science.gov (United States)

    Flügge, Ulf-Ingo; Häusler, Rainer E; Ludewig, Frank; Gierth, Markus

    2011-04-01

    The energy status of plant cells strongly depends on the energy metabolism in chloroplasts and mitochondria, which are capable of generating ATP either by photosynthetic or oxidative phosphorylation, respectively. Another energy-rich metabolite inside plastids is the glycolytic intermediate phosphoenolpyruvate (PEP). However, chloroplasts and most non-green plastids lack the ability to generate PEP via a complete glycolytic pathway. Hence, PEP import mediated by the plastidic PEP/phosphate translocator or PEP provided by the plastidic enolase are vital for plant growth and development. In contrast to chloroplasts, metabolism in non-green plastids (amyloplasts) of starch-storing tissues strongly depends on both the import of ATP mediated by the plastidic nucleotide transporter NTT and of carbon (glucose 6-phosphate, Glc6P) mediated by the plastidic Glc6P/phosphate translocator (GPT). Both transporters have been shown to co-limit starch biosynthesis in potato plants. In addition, non-photosynthetic plastids as well as chloroplasts during the night rely on the import of energy in the form of ATP via the NTT. During energy starvation such as prolonged darkness, chloroplasts strongly depend on the supply of ATP which can be provided by lipid respiration, a process involving chloroplasts, peroxisomes, and mitochondria and the transport of intermediates, i.e. fatty acids, ATP, citrate, and oxaloacetate across their membranes. The role of transporters involved in the provision of energy-rich metabolites and in pathways supplying plastids with metabolic energy is summarized here.

  17. Risks in U.S. energy material transportation

    International Nuclear Information System (INIS)

    Franklin, A.L.; Rhoads, R.E.; Andrews, W.B.

    1982-01-01

    For the past five years, the Pacific Northwest Laboratory has been conducting a programme to study the safety of transporting energy materials. The overall objectives of the programme are to develop information on the safety of transporting hazardous materials required to support the major energy cycles in the USA. This information was developed for use in making energy policy decisions; in designing and developing new or improved transportation systems for these materials; to help establish research priorities; and as an aid in developing effective transportation safety regulations. Risk analysis was selected as the methodology for performing these studies. This methodology has been applied to rail and highway shipments of nuclear fuel cycle materials and liquid and gaseous fossil fuels. Studies of the risks of transporting spent nuclear fuel by train and uranium ore concentrates (yellow cake) by truck were expected to be issued early in 1981. Analyses of the risks of transporting reactor waste and transuranic wastes are in progress. The work completed to date for nuclear material transportation makes it possible to estimate the transportation risks for the entire fuel cycle in the USA. Results of the assessment are presented in this paper. Because the risk analysis studies for the transportation of gasoline, propane and chlorine have been performed using a methodology, basic assumptions and data that are consistent with the studies that have been performed for nuclear materials, comparisons between the risks for nuclear materials and these materials can also be made. It should be noted that it is not the intention of these comparisons to judge the safety of one industry in comparison with another. These comparisons can, however, provide some insights into the regulatory philosophy for hazardous materials transportation. The remaining sections of the paper briefly review the risk-analysis methodology used in these studies, provide an overview of the systems

  18. Simultaneous FPI and TMA Measurements of the Lower Thermospheric Wind in the Vicinity of the Poleward Expanding Aurora After Substorm Onset

    Science.gov (United States)

    Oyama, Shin-ichiro; Kubota, Ken; Morinaga, Takatoshi; Tsuda, Takuo T.; Kurihara, Junichi; Larsen, Miguel F.; Yamamoto, Masayuki; Cai, Lei

    2017-10-01

    Lower thermospheric wind fluctuations in the vicinity of an auroral arc immediately before and after a substorm onset were examined by analyzing data from a ground-based green line Fabry-Perot interferometer (FPI; optical wavelength of 557.7 nm) at Tromsø, Norway, and in situ measurements from a trimethyl aluminum (TMA) trail released from a sounding rocket launched during the Dynamics and Energetics of the Lower Thermosphere in Aurora 2 (DELTA-2) campaign on 26 January 2009. Soon after the rocket launch but before disappearance of the TMA trail, a substorm onset occurred. The DELTA-2 TMA experiment appears to be the first case in which the substorm onset occurred during the TMA wind measurement. It is known that energy dissipation induced by the ionospheric closure current is compacted at the poleward side of the discrete arc in the ionospheric morning cell. Both FPI and TMA measurements were made at the poleward side, but the FPI measured winds nearer to the poleward edge of the arc than the TMA by 110-130 km. The FPI winds at distance of 53-74 km relative to the arc edge showed clear fluctuations immediately after the substorm onset, but there was no obvious similar fluctuation in the TMA-measured winds. The difference in the response at the two locations suggests that energy dissipation sufficient to be detected as the FPI/TMA wind perturbations was confined to the area from the poleward edge of the arc to a relative distance shorter than 163-203 km but longer than 53-74 km in this event.

  19. High Energy Density Nastic Structures Using Biological Transport Mechanisms

    Science.gov (United States)

    2007-02-28

    DATES COVERED Final Progress Report; 9/27/04 to 11/30/06 4. TITLE AND SUBTITLE High Energy Density Nastic Structures Using Biological Transport...permeable membranes. This concept is based on the pressurization of cells similar to the process that plants use to maintain homeostasis and regulate...cell function. In all plant systems, the transport of ions and fluid produce localized pressure changes (called turgor pressure) that perform many

  20. Transportation and energy efficiency: Promised potentials, serious roadblocks

    Energy Technology Data Exchange (ETDEWEB)

    Kraft-Oliver, T.V.

    1995-12-31

    Transportation is both a critical element of achieving national economic development goals and a major consumer of scarce and expensive energy resources. Improvements in access and mobility from reduced congestion, higher speeds, additional non motorized and pedestrian options, and better mass transit will result in reductions in energy use in most cases. Additional improvements in vehicle efficiency are possible but will not meet the needs of the region for transportation and energy efficiency improvements in the absence of these other improvements. The barriers to success in the transport sector are obvious on a superficial level. They include lack of road space, inadequate or incomplete road networks, insufficient mass transit capacity, predation of pedestrian and nonmotorized vehicle space by motor vehicles, and financing. The lack of progress in solving many of these problems over the past ten to twenty years indicates that there are underlying issues not yet addressed. Perceptions of these problems have changed since the middle 1970s and early 1980s as international lending and technical assistance began to focus on transportation. In those early years the problems were described as financial, and `meeting demand` challenges. The World Bank is now conducting a review of their Transport Sector Policy. While the review has not progressed to a final document and certainly not to articulation or transformation of Bank policy, early drafts reflect a view that past failures to improve transportation circumstances are human resource and institutional problems.

  1. A quantum energy transport model for semiconductor device simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sho, Shohiro, E-mail: shoshohiro@gmail.com [Graduate School of Information Science and Technology, Osaka University, Osaka (Japan); Odanaka, Shinji [Computer Assisted Science Division, Cybermedia Center, Osaka University, Osaka (Japan)

    2013-02-15

    This paper describes numerical methods for a quantum energy transport (QET) model in semiconductors, which is derived by using a diffusion scaling in the quantum hydrodynamic (QHD) model. We newly drive a four-moments QET model similar with a classical ET model. Space discretization is performed by a new set of unknown variables. Numerical stability and convergence are obtained by developing numerical schemes and an iterative solution method with a relaxation method. Numerical simulations of electron transport in a scaled MOSFET device are discussed. The QET model allows simulations of quantum confinement transport, and nonlocal and hot-carrier effects in scaled MOSFETs.

  2. Energy efficiency and steam coal transport over long distances

    Directory of Open Access Journals (Sweden)

    Stala-Szlugaj Katarzyna

    2016-01-01

    Full Text Available Coal is one of the most important energy sources in the world. Its main consumers are the energy sector (with a 37-46% share in the years 1990-2014; 1.12-2.34 billion toe and industry (24-27%; 0.78-1.38 billion toe. Diversified distribution of coal deposits in the world in relation to its consumers means that it has to be transported over often very long distances. The global coal trade is dominated by maritime transport (90-94% in the years 2004-2014, and the share of transport by land is relatively smaller. The aim of the article was to calculate the index describing what part of the energy contained in the coal transported on a particular route is consumed by the train carrying it. Due to the dominant position of the Russian Federation in imports of coal to Poland, it was assumed that coal will be imported by rail from Kuzbass (Russia's largest coal basin. As a result of the calculation, it was found that the rate of energy consumption for transport of imported coal will be somewhere in the range of 9.22-15.26%. In the case of deliveries of hard coal from Polish producers to the power plants the calculated rate changes within the range of 0.55-0.58%.

  3. LDRD project 151362 : low energy electron-photon transport.

    Energy Technology Data Exchange (ETDEWEB)

    Kensek, Ronald Patrick; Hjalmarson, Harold Paul; Magyar, Rudolph J.; Bondi, Robert James; Crawford, Martin James

    2013-09-01

    At sufficiently high energies, the wavelengths of electrons and photons are short enough to only interact with one atom at time, leading to the popular %E2%80%9Cindependent-atom approximation%E2%80%9D. We attempted to incorporate atomic structure in the generation of cross sections (which embody the modeled physics) to improve transport at lower energies. We document our successes and failures. This was a three-year LDRD project. The core team consisted of a radiation-transport expert, a solid-state physicist, and two DFT experts.

  4. Modelling transport energy demand: A socio-technical approach

    International Nuclear Information System (INIS)

    Anable, Jillian; Brand, Christian; Tran, Martino; Eyre, Nick

    2012-01-01

    Despite an emerging consensus that societal energy consumption and related emissions are not only influenced by technical efficiency but also by lifestyles and socio-cultural factors, few attempts have been made to operationalise these insights in models of energy demand. This paper addresses that gap by presenting a scenario exercise using an integrated suite of sectoral and whole systems models to explore potential energy pathways in the UK transport sector. Techno-economic driven scenarios are contrasted with one in which social change is strongly influenced by concerns about energy use, the environment and well-being. The ‘what if’ Lifestyle scenario reveals a future in which distance travelled by car is reduced by 74% by 2050 and final energy demand from transport is halved compared to the reference case. Despite the more rapid uptake of electric vehicles and the larger share of electricity in final energy demand, it shows a future where electricity decarbonisation could be delayed. The paper illustrates the key trade-off between the more aggressive pursuit of purely technological fixes and demand reduction in the transport sector and concludes there are strong arguments for pursuing both demand and supply side solutions in the pursuit of emissions reduction and energy security.

  5. Thermodynamics of transport through the ammonium transporter Amt-1 investigated with free energy calculations.

    Science.gov (United States)

    Ullmann, R Thomas; Andrade, Susana L A; Ullmann, G Matthias

    2012-08-16

    Amt-1 from Archaeoglobus fulgidus (AfAmt-1) belongs to the Amt/Rh family of ammonium/ammonia transporting membrane proteins. The transport mode and the precise microscopic permeation mechanism utilized by these proteins are intensely debated. Open questions concern the identity of the transported substrate (ammonia and/or ammonium) and whether the transport is passive or active. To address these questions, we studied the overall thermodynamics of the different transport modes as a function of the environmental conditions. Then, we investigated the thermodynamics of the underlying microscopic transport mechanisms with free energy calculations within a continuum electrostatics model. The formalism developed for this purpose is of general utility in the calculation of binding free energies for ligands with multiple protonation forms or other binding forms. The results of our calculations are compared to the available experimental and theoretical data on Amt/Rh proteins and discussed in light of the current knowledge on the physiological conditions experienced by microorganisms and plants. We found that microscopic models of electroneutral and electrogenic transport modes are in principle thermodynamically viable. However, only the electrogenic variants have a net thermodynamic driving force under the physiological conditions experienced by microorganisms and plants. Thus, the transport mechanism of AfAmt-1 is most likely electrogenic.

  6. Transportation energy in global cities: Sustainable transportation comes in from the cold?

    International Nuclear Information System (INIS)

    Newman, Peter; Kenworthy, Jeffery

    2001-01-01

    The energy, environmental and social benefits of sustainable transportation, i.e, public transit, biking and walking, have long been recognized but are now mainstream in global and local transportation policy debates. However, the economic value of sustainable transportation has always been seen as secondary, unless many external costs were included. The results of a new global study show that cities with significant sustainable transportation systems have reduced costs on road construction and maintenance; better operating cost recovery and fuel-efficiency; fewer road accidents and less air pollution. In overall terms, the percentage of city funds going to transportation is reduced. The data show that cities with the most roads have the highest transportation costs and the most rail-oriented cities have the lowest. Further, the most sprawling cities have the highest direct and indirect costs for transportation. Thus, strategies to contain sprawl, to reurbanize, to build new rail systems info car-dependent suburbs with focussed sub-centers, and to facilitate biking and walking, not only will improve energy efficiency but will reduce costs to the economy of a city. Strategies that build freeways and add to sprawl will do the opposite. Trends indicate that moves toward sustainable urban patterns are beginning. The need to operationalize sustainable transportation strategies in planning and engineering practice and in the politics of infrastructure funding remains a major challenge. Some cities are showing how this can be done. (author)

  7. Solar energy in the context of energy use, energy transportation and energy storage.

    Science.gov (United States)

    MacKay, David J C

    2013-08-13

    Taking the UK as a case study, this paper describes current energy use and a range of sustainable energy options for the future, including solar power and other renewables. I focus on the area involved in collecting, converting and delivering sustainable energy, looking in particular detail at the potential role of solar power. Britain consumes energy at a rate of about 5000 watts per person, and its population density is about 250 people per square kilometre. If we multiply the per capita energy consumption by the population density, then we obtain the average primary energy consumption per unit area, which for the UK is 1.25 watts per square metre. This areal power density is uncomfortably similar to the average power density that could be supplied by many renewables: the gravitational potential energy of rainfall in the Scottish highlands has a raw power per unit area of roughly 0.24 watts per square metre; energy crops in Europe deliver about 0.5 watts per square metre; wind farms deliver roughly 2.5 watts per square metre; solar photovoltaic farms in Bavaria, Germany, and Vermont, USA, deliver 4 watts per square metre; in sunnier locations, solar photovoltaic farms can deliver 10 watts per square metre; concentrating solar power stations in deserts might deliver 20 watts per square metre. In a decarbonized world that is renewable-powered, the land area required to maintain today's British energy consumption would have to be similar to the area of Britain. Several other high-density, high-consuming countries are in the same boat as Britain, and many other countries are rushing to join us. Decarbonizing such countries will only be possible through some combination of the following options: the embracing of country-sized renewable power-generation facilities; large-scale energy imports from country-sized renewable facilities in other countries; population reduction; radical efficiency improvements and lifestyle changes; and the growth of non-renewable low

  8. Power electronics for renewable energy systems, transportation and industrial applications

    CERN Document Server

    Malinowski, Mariusz; Al-Haddad, Kamal

    2014-01-01

    Power Electronics for Renewable Energy, Transportation, and Industrial Applications combines state-of-the-art global expertise to present the latest research on power electronics and its application in transportation, renewable energy, and different industrial applications. This timely book aims to facilitate the implementation of cutting-edge techniques to design problems offering innovative solutions to the growing power demands in small- and large-size industries. Application areas in the book range from smart homes and electric and plug-in hybrid electrical vehicles (PHEVs), to smart distribution and intelligence operation centers where significant energy efficiency improvements can be achieved through the appropriate use and design of power electronics and energy storage devices.

  9. Trends in passenger transport and freight energy use in Spain

    International Nuclear Information System (INIS)

    Mendiluce, Maria; Schipper, Lee

    2011-01-01

    This paper provides for the first time a complete analysis of recent trends in activity, carbon emissions, modal shares, energy intensities, vehicle use and fuels in the Spanish transport system from 1990 to 2008 and discusses policy options. Passenger and freight activities have increased in Spain and are projected to continue, presenting a challenge for sustainable mobility efforts; emissions have increased, mainly fueled by the rise in activity; modal shares have pulled away from public transport, with a decrease in bus and rail, towards an increase in car and air travel; energy intensities, though initially decreasing, are currently increasing; and fuel use has taken over 37% of Spanish final energy consumption. To target these issues the Spanish government has focused its efforts in targeting energy efficiency through dieselization, which has not led to positive results. More recently policies and measures have been directed towards redirecting modal shares and diversifying the fuel mix. Little has been done to reduce activity besides some anecdotic public awareness campaigns. Activity reduction may be achieved with regulations, restrictions and mobility plans; by increasing high speed rail and rail freight transport; by improving intermodality and tying the Spanish rail network with the EU; and with more urban transport planning at local level. - Highlights: → Complete analysis of recent trends in Spanish transport system from 1990 to 2008. → Passenger and freight activities have driven GHG emissions increase. → Modal shares have pulled away from public transport. → Policy efforts targeted energy efficiency and redirecting modal shares and diversifying the fuel mix. → Little has been done to reduce activity.

  10. US Department of Energy Automated Transportation Management System

    International Nuclear Information System (INIS)

    Portsmouth, J.H.

    1994-01-01

    The U.S. Department of Energy (DOE) Transportation Management Division (TMD) is responsible for managing its various programs via a diverse combination of Government-Owned/Contractor-Operated facilities. TMD is seeking to update it automation capabilities in capturing and processing DOE transportation information. TMD's Transportation Information Network (TIN) is an attempt to bring together transportation management, shipment tracking, research activities and software products in various stages of development. The TMD's Automated Transportation Management System (ATMS) proposes to assist the DOE and its contractors in performing their daily transportation management activities and to assist the DOE Environmental Management Division in its waste management responsibilities throughout the DOE complex. The ATMS system will center about the storage, handling and documentation involved in the environmental clean-up of DOE sites. Waste shipments will be moved to approved Treatment, Storage and Disposal (TSD) facilities and/or nuclear material repositories. An additional investment in shipping samples to analytical laboratories also involves packaging and documentation according to all applicable U.S. Department of Transportation (DOT) or International Air Transport Association (IATA) regulations. The most immediate goal of effectively managing DOE transportation management functions during the 1990's is an increase in automation capabilities of the DOE and its contractors. Subject-matter experts from various DOE site locations will be brought together to develop and refine these capabilities through the maximum use of computer applications. A major part of this effort will be the identification of the most economical modes of transportation and enhanced management reporting capabilities for transportation analysis. The ATMS system will also provide for increased strategic and shipment analysis during the 1990's and beyond in support of the DOE environmental mission

  11. Decoupling the link between economic growth, transport growth and transport energy consumption in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Stead, Dominic [Delft Univ. of Technology (Netherlands). OTB Research Inst.; Banister, David [Univ. College London (United Kingdom). Bartlett School of Planning

    2003-07-01

    In the past, it has always been assumed that there is a close relationship between the growth in freight and passenger transport, transport energy consumption and economic growth, at least as measured by Gross Domestic Product (GDP). This raises questions about the underlying rationale for this statistical relationship (if it exists) and, more importantly for sustainable development, whether the relationship will (or should) continue into the future. The strong premise in this paper is that decoupling economic growth from transport growth is a necessary condition for sustainable development - we need to encourage economic growth (in the widest sense), but with less transport (at least in terms of resource use and environmental impacts). This requirement has now been recognised in a series of policy documents. In the UK, for example, the Standing Advisory Committee on Trunk Road Assessment have examined the issue of transport intensity, the prospects for future improvements and the potential for decoupling transport volumes and economic activity. At the European level, the 2001 White Paper on Transport states that breaking the link between economic growth and transport growth is central in its proposals, and the EU's sustainable development strategy identifies decoupling transport growth from the growth in Gross Domestic Product as one of its main objectives. We begin by examining transport and economic trends in Europe and looking at EU policy statements on decoupling. We then discuss the nature of travel and how decoupling can usefully be measured through volumes, distance and efficiency. Possible approaches and strategies for decoupling are then presented, together with a discussion of how these measures might help to decouple transport growth and economic growth. We conclude that, whilst there are a number of strategies which are likely to help to decouple transport growth and economic growth, there are also a number of factors which are hindering the

  12. Perspectives of Use of Alternative Energy Sources in Air Transport

    Directory of Open Access Journals (Sweden)

    Luboš Socha

    2017-01-01

    Full Text Available The problem of environmental load is also reflected in air transport. Usage of fossil fuels, which are dominant nowadays, has a negative impact on the environment and also its resources are limited. Therefore, the article focuses on the prospective of use of other energy sources in aviation, such as alternative fuels (synthetic fuels, biofuels, alcohol, methane, hydrogen, solar energy and the use of fuel cells. Also, the paper briefly summarizes the approach of aircraft manufacturers to the use alternative sources.

  13. End use energy consumption data base: transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  14. Structure of the poleward wall of the trough and the inclination of the geomagnetic field above the EISCAT radar

    Directory of Open Access Journals (Sweden)

    D. G. Jones

    Full Text Available A special high-resolution routine of the EISCAT radar has been used to investigate the structure and development of the poleward wall of a deep trough in electron density. The feature was tracked by the radar during a 7-hour period under very quiet geomagnetic conditions. The field-aligned nature of the structure enabled an estimate to be made of the inclination of the geomagnetic field above EISCAT that was in good agreement with the current model. Observations of narrow field-aligned enhancements in electron temperature demonstrated that the wall of this trough is a dynamic feature, reforming regularly as the electron density responds on a time scale of tens of minutes to energy input from soft-particle precipitation.

  15. Structure of the poleward wall of the trough and the inclination of the geomagnetic field above the EISCAT radar

    Directory of Open Access Journals (Sweden)

    D. G. Jones

    1997-06-01

    Full Text Available A special high-resolution routine of the EISCAT radar has been used to investigate the structure and development of the poleward wall of a deep trough in electron density. The feature was tracked by the radar during a 7-hour period under very quiet geomagnetic conditions. The field-aligned nature of the structure enabled an estimate to be made of the inclination of the geomagnetic field above EISCAT that was in good agreement with the current model. Observations of narrow field-aligned enhancements in electron temperature demonstrated that the wall of this trough is a dynamic feature, reforming regularly as the electron density responds on a time scale of tens of minutes to energy input from soft-particle precipitation.

  16. Continuous energy adjoint transport for photons in PHITS

    Directory of Open Access Journals (Sweden)

    Malins Alex

    2017-01-01

    Full Text Available Adjoint Monte Carlo can be an effcient algorithm for solving photon transport problems where the size of the tally is relatively small compared to the source. Such problems are typical in environmental radioactivity calculations, where natural or fallout radionuclides spread over a large area contribute to the air dose rate at a particular location. Moreover photon transport with continuous energy representation is vital for accurately calculating radiation protection quantities. Here we describe the incorporation of an adjoint Monte Carlo capability for continuous energy photon transport into the Particle and Heavy Ion Transport code System (PHITS. An adjoint cross section library for photon interactions was developed based on the JENDL- 4.0 library, by adding cross sections for adjoint incoherent scattering and pair production. PHITS reads in the library and implements the adjoint transport algorithm by Hoogenboom. Adjoint pseudo-photons are spawned within the forward tally volume and transported through space. Currently pseudo-photons can undergo coherent and incoherent scattering within the PHITS adjoint function. Photoelectric absorption is treated implicitly. The calculation result is recovered from the pseudo-photon flux calculated over the true source volume. A new adjoint tally function facilitates this conversion. This paper gives an overview of the new function and discusses potential future developments.

  17. Continuous energy adjoint transport for photons in PHITS

    Science.gov (United States)

    Malins, Alex; Machida, Masahiko; Niita, Koji

    2017-09-01

    Adjoint Monte Carlo can be an effcient algorithm for solving photon transport problems where the size of the tally is relatively small compared to the source. Such problems are typical in environmental radioactivity calculations, where natural or fallout radionuclides spread over a large area contribute to the air dose rate at a particular location. Moreover photon transport with continuous energy representation is vital for accurately calculating radiation protection quantities. Here we describe the incorporation of an adjoint Monte Carlo capability for continuous energy photon transport into the Particle and Heavy Ion Transport code System (PHITS). An adjoint cross section library for photon interactions was developed based on the JENDL- 4.0 library, by adding cross sections for adjoint incoherent scattering and pair production. PHITS reads in the library and implements the adjoint transport algorithm by Hoogenboom. Adjoint pseudo-photons are spawned within the forward tally volume and transported through space. Currently pseudo-photons can undergo coherent and incoherent scattering within the PHITS adjoint function. Photoelectric absorption is treated implicitly. The calculation result is recovered from the pseudo-photon flux calculated over the true source volume. A new adjoint tally function facilitates this conversion. This paper gives an overview of the new function and discusses potential future developments.

  18. CEESA 100% Renewable Energy Transport Scenarios towards 2050

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Connolly, David; Lund, Henrik

    the availability of sustainable resources. The results indicate that electricity should be prioritised as much as is economically possible in the transport sector, which is primarily for cars and rail. Other modes, such as trucks, ships, and aeroplanes will require fuels with a high energy density. Replacing oil...

  19. Transport theory and low energy properties of colour superconductors

    CERN Document Server

    Litim, Daniel F

    2002-01-01

    The one-loop polarisation tensor and the propagation of ``in-medium'' photons of colour superconductors in the 2SC and CFL phase is discussed. For a study of thermal corrections to the low energy effective theory in the 2SC phase, a classical transport theory for fermionic quasiparticles is invoked.

  20. Transportation. Teacher's Guide and Student Guide. Net Energy Unit. Draft.

    Science.gov (United States)

    Treagust, David F.

    This module is intended to increase the students' comprehension of costs, in terms of money and in energy, involved in various modes of transportation. Four main inquiries are covered in the module: (1) money saved by car pooling to school; (2) reductions in fuel consumption possible without car pooling; (3) comparisons of inter-city and urban…

  1. Decline and poleward shift in Indian summer monsoon synoptic activity in a warming climate.

    Science.gov (United States)

    Sandeep, S; Ajayamohan, R S; Boos, William R; Sabin, T P; Praveen, V

    2018-03-13

    Cyclonic atmospheric vortices of varying intensity, collectively known as low-pressure systems (LPS), travel northwest across central India and produce more than half of the precipitation received by that fertile region and its ∼600 million inhabitants. Yet, future changes in LPS activity are poorly understood, due in part to inadequate representation of these storms in current climate models. Using a high-resolution atmospheric general circulation model that realistically simulates the genesis distribution of LPS, here we show that Indian monsoon LPS activity declines about 45% by the late 21st century in simulations of a business-as-usual emission scenario. The distribution of LPS genesis shifts poleward as it weakens, with oceanic genesis decreasing by ∼60% and continental genesis increasing by ∼10%; over land the increase in storm counts is accompanied by a shift toward lower storm wind speeds. The weakening and poleward shift of the genesis distribution in a warmer climate are confirmed and attributed, via a statistical model, to the reduction and poleward shift of low-level absolute vorticity over the monsoon region, which in turn are robust features of most coupled model projections. The poleward shift in LPS activity results in an increased frequency of extreme precipitation events over northern India. Copyright © 2018 the Author(s). Published by PNAS.

  2. Poleward propagating subinertial alongshore surface currents off the U.S. West Coast

    KAUST Repository

    Kim, Sung Yong

    2013-12-01

    The network comprising 61 high-frequency radar systems along the U.S. West Coast (USWC) provides a unique, high resolution, and broad scale view of ocean surface circulation. Subinertial alongshore surface currents show poleward propagating signals with phase speeds of O(10) and O(100-300) km d -1 that are consistent with historical in situ observations off the USWC and that can be possibly interpreted as coastally trapped waves (CTWs). The propagating signals in the slow mode are partly observed in southern California, which may result from scattering and reflection of higher-mode CTWs due to curvature of shoreline and bathymetry near Point Conception, California. On the other hand, considering the order of the phase speed in the slow mode, the poleward propagating signals may be attributed to alongshore advection or pressure-driven flows. A statistical regression of coastal winds at National Data Buoy Center buoys on the observed surface currents partitions locally and remotely wind-forced components, isolates footprints of the equatorward propagating storm events in winter off the USWC, and shows the poleward propagating signals year round. Key Points A unique resource to examine synoptic-scale alongshore variability Isolation of equatorward wind events in winter using a statistical model Poleward propagating surface signals year-round © 2013. American Geophysical Union. All Rights Reserved.

  3. Decline and poleward shift in Indian summer monsoon synoptic activity in a warming climate

    Science.gov (United States)

    Sandeep, S.; Ajayamohan, R. S.; Boos, William R.; Sabin, T. P.; Praveen, V.

    2018-03-01

    Cyclonic atmospheric vortices of varying intensity, collectively known as low-pressure systems (LPS), travel northwest across central India and produce more than half of the precipitation received by that fertile region and its ˜600 million inhabitants. Yet, future changes in LPS activity are poorly understood, due in part to inadequate representation of these storms in current climate models. Using a high-resolution atmospheric general circulation model that realistically simulates the genesis distribution of LPS, here we show that Indian monsoon LPS activity declines about 45% by the late 21st century in simulations of a business-as-usual emission scenario. The distribution of LPS genesis shifts poleward as it weakens, with oceanic genesis decreasing by ˜60% and continental genesis increasing by ˜10%; over land the increase in storm counts is accompanied by a shift toward lower storm wind speeds. The weakening and poleward shift of the genesis distribution in a warmer climate are confirmed and attributed, via a statistical model, to the reduction and poleward shift of low-level absolute vorticity over the monsoon region, which in turn are robust features of most coupled model projections. The poleward shift in LPS activity results in an increased frequency of extreme precipitation events over northern India.

  4. Plants on the move: plant-soil interactions in poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.

    2008-01-01

    As a result of recent global climate change, areas that have previously been climatically unsuitable for species have now become suitable new habitats. Many plant-species are expanding their range polewards, colonizing these newly available areas. If these species are able to expand their range

  5. Energy and particle core transport in tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, Marc; Angioni, Clemente; Beidler, Craig; Dinklage, Andreas; Fuchert, Golo; Hirsch, Matthias; Puetterich, Thomas; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik, Greifswald/Garching (Germany)

    2016-07-01

    The paper discusses expectations for core transport in the Wendelstein 7-X stellarator (W7-X) and presents a comparison to tokamaks. In tokamaks, the neoclassical trapped-particle-driven losses are small and turbulence dominates the energy and particle transport. At reactor relevant low collisionality, the heat transport is limited by ion temperature gradient limited turbulence, clamping the temperature gradient. The particle transport is set by an anomalous inward pinch, yielding peaked profiles. A strong edge pedestal adds to the good confinement properties. In traditional stellarators the 3D geometry cause increased trapped orbit losses. At reactor relevant low collisionality and high temperatures, these neoclassical losses would be well above the turbulent transport losses. The W7-X design minimizes neoclassical losses and turbulent transport can become dominant. Moreover, the separation of regions of bad curvature and that of trapped particle orbits in W7-X may have favourable implications on the turbulent electron heat transport. The neoclassical particle thermodiffusion is outward. Without core particle sources the density profile is flat or even hollow. The presence of a turbulence driven inward anomalous particle pinch in W7-X (like in tokamaks) is an open topic of research.

  6. Macomb College Transportation and Energy Technology 126.09

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-12-31

    The objectives for this project were to create the laboratory facilities to deliver recently created and amended curriculum in the areas of energy creation, storage, and delivery in the transportation and stationary power sectors. The project scope was to define the modules, courses and programs in the emerging energy sectors of the stationary power and transportation industries, and then to determine the best equipment to support instruction, and procure it and install it in the laboratories where courses will be taught. Macomb Community College had a curriculum development grant through the Department of Education that ran parallel to this one where the energy curriculum at the school was revised to better permit students to gain comprehensive education in a targeted area of the renewable energy realm, as well as enhance the breadth of jobs addressed by curriculum in the transportation sector. The curriculum development and experiment and equipment definition ran in parallel, and resulted in what we believe to be a cogent and comprehensive curriculum supported with great hands-on experiments in modern labs. The project has been completed, and this report will show how the equipment purchases under the Department of Energy Grant support the courses and programs developed and amended under the Department of Education Grant. Also completed is the tagging documentation and audit tracking process required by the DOE. All materials are tagged, and the documentation is complete as required.

  7. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  8. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.

    Science.gov (United States)

    Solis, David; Willingham, Britain; Nauert, Scott L; Slaughter, Liane S; Olson, Jana; Swanglap, Pattanawit; Paul, Aniruddha; Chang, Wei-Shun; Link, Stephan

    2012-03-14

    Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices. © 2012 American Chemical Society

  9. Indirect Energy for Road and Railway Transportation in Sweden; Indirekt energi foer svenska vaeg- och jaernvaegstransporter

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Daniel K.

    2005-02-01

    Besides energy for propulsion, there are a number of considerable indirect energy categories in the life-cycle of transport systems, e.g. construction and maintenance of infrastructure, and manufacture and service of vehicles. Indirect energy represents 64-66% of the total amount of energy used in the railway sector, while the corresponding share in the road sector is 42-45%. Consequently, decision-making and planning processes regarding transport infrastructure and environmental impacts should also consider indirect energy-use. Two energy case studies have been carried through; the railroad project Botniabanan in the north of Sweden, and the motorway tunnel Soedra Laenken in Stockholm. The result for Botniabanan corresponds with the Swedish railroad average, but Botniabanan contributes to decreased energy use in the transport sector as a whole. The infra structural energy use for Soedra Laenken is considerably higher than the Swedish road average. Soedra Laenken also contributes to an increase of the energy use in the transport sector as a whole.

  10. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    Grenzeback, L. R. [Cambridge Systematics Inc., Cambridge, MA (United States); Brown, A. [Cambridge Systematics Inc., Cambridge, MA (United States); Fischer, M. J. [Cambridge Systematics Inc., Cambridge, MA (United States); Hutson, N. [Cambridge Systematics Inc., Cambridge, MA (United States); Lamm, C. R. [Cambridge Systematics Inc., Cambridge, MA (United States); Pei, Y. L. [Cambridge Systematics Inc., Cambridge, MA (United States); Vimmerstedt, L. [Cambridge Systematics Inc., Cambridge, MA (United States); Vyas, A. D. [Cambridge Systematics Inc., Cambridge, MA (United States); Winebrake, J. J. [Cambridge Systematics Inc., Cambridge, MA (United States)

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use. After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  11. Energy, Transport, & the Environment Addressing the Sustainable Mobility Paradigm

    CERN Document Server

    King, Sir

    2012-01-01

    Sustainable mobility is a highly complex problem as it is affected by the interactions between socio-economic, environmental, technological and political issues. Energy, Transport, & the Environment: Addressing the Sustainable Mobility Paradigm brings together leading figures from business, academia and governments to address the challenges and opportunities involved in working towards sustainable mobility. Key thinkers and decision makers approach topics and debates including:   ·         energy security and resource scarcity ·         greenhouse gas and pollutant emissions ·         urban planning, transport systems and their management ·         governance and finance of transformation ·         the threats of terrorism and climate change to our transport systems.   Introduced by a preface from U.S. Secretary Steven Chu and an outline by the editors, Dr Oliver Inderwildi and Sir David King, Energy, Transport, & the Environment is divided into six secti...

  12. Food transport refrigeration - Approaches to reduce energy consumption and environmental impacts of road transport

    International Nuclear Information System (INIS)

    Tassou, S.A.; De-Lille, G.; Ge, Y.T.

    2009-01-01

    Food transport refrigeration is a critical link in the food chain not only in terms of maintaining the temperature integrity of the transported products but also its impact on energy consumption and CO 2 emissions. This paper provides a review of (a) current approaches in road food transport refrigeration, (b) estimates of their environmental impacts, and (c) research on the development and application of alternative technologies to vapour compression refrigeration systems that have the potential to reduce the overall energy consumption and environmental impacts. The review and analysis indicate that greenhouse gas emissions from conventional diesel engine driven vapour compression refrigeration systems commonly employed in food transport refrigeration can be as high as 40% of the greenhouse gas emissions from the vehicle's engine. For articulated vehicles over 33 ton, which are responsible for over 80% of refrigerated food transportation in the UK, the reject heat available form the engine is sufficient to drive sorption refrigeration systems and satisfy most of the refrigeration requirements of the vehicle. Other promising technologies that can lead to a reduction in CO 2 emissions are air cycle refrigeration and hybrid systems in which conventional refrigeration technologies are integrated with thermal energy storage. For these systems, however, to effectively compete with diesel driven vapour compression systems, further research and development work is needed to improve their efficiency and reduce their weight

  13. High energy particle transport code NMTC/JAM

    International Nuclear Information System (INIS)

    Niita, Koji; Meigo, Shin-ichiro; Takada, Hiroshi; Ikeda, Yujiro

    2001-03-01

    We have developed a high energy particle transport code NMTC/JAM, which is an upgraded version of NMTC/JAERI97. The applicable energy range of NMTC/JAM is extended in principle up to 200 GeV for nucleons and mesons by introducing the high energy nuclear reaction code JAM for the intra-nuclear cascade part. For the evaporation and fission process, we have also implemented a new model, GEM, by which the light nucleus production from the excited residual nucleus can be described. According to the extension of the applicable energy, we have upgraded the nucleon-nucleus non-elastic, elastic and differential elastic cross section data by employing new systematics. In addition, the particle transport in a magnetic field has been implemented for the beam transport calculations. In this upgrade, some new tally functions are added and the format of input of data has been improved very much in a user friendly manner. Due to the implementation of these new calculation functions and utilities, consequently, NMTC/JAM enables us to carry out reliable neutronics study of a large scale target system with complex geometry more accurately and easily than before. This report serves as a user manual of the code. (author)

  14. Tracking Photospheric Energy Transport in Active Regions with SDO

    Science.gov (United States)

    Attié, R.; Thompson, B. J.

    2017-12-01

    The solar photosphere presents flow fields at all observable scales. Where energy-bearing magnetic active regions break through the photosphere these flows are particularly strong, as sheared and twisted magnetic fields come into equilibrium with their surroundings while transporting magnetic energy into the corona. A part of this magnetic energy - the so-called `free energy' stored in the magnetic field in the form of "twisted" and shear of the field - is released in flares and eruptions. We can quantify the energy arrival and build-up in the corona by tracking flow fields and magnetic features at the photosphere as magnetic flux emerges and evolves before and after a flare or eruption.To do this reliably requires two things: a long series of photospheric observations at high sensitivity, spatial and temporal resolution, and an efficient, reliable and robust framework that tracks the photospheric plasma flows and magnetic evolution in both the quiet sun and active regions. SDO/HMI provides the observations, and we present here an innovative high resolution tracking framework that involves the `Balltracking' and `Magnetic Balltracking' algorithms. We show the first results of a systematic, quantitative and comprehensive measurements of the flows and transport of magnetic energy into the solar atmosphere and investigate whether this dynamic view can improve predictions of flares and Coronal Mass Ejections (CMEs).

  15. Natural Gas Container Transportation: the Alternative Way to Solve the World’s Energy Transportation Problems

    Directory of Open Access Journals (Sweden)

    A.M. Shendrik

    2014-03-01

    Full Text Available The container gas transportation for low and medium level consumers as an alternative to pipelines is considered. The options for gas supply schemes, based on road and rail transport are given. The advantages and disadvantages of both types of gas transporting are described, the areas of their effective using are separated in the article. Promising implementations of technology in environment of economic crisis and also considering world trends of energy development are presented. The most advanced organization of compressed gas condensate transportation of unprepared gas fields in large diameter universal cylindrical balloons (up to 1000 mm are reasoned. The problem of compressed gas sea transportation are well disclosed, but the alternative ways of gas transportation by land are not investigated enough. Compressed Natural Gas (CNG Technology - is new promising technology for natural gas transportation by specially designed vessels – CNG-vessels. The feature of this technology is that natural gas can be downloaded directly near gas deposits and unloaded - directly into the customer's network. This eliminates significant capital investments in underwater pipelining or gas liquefaction plants. The main objects of investment are CNG-vessels themselves. The most attractive places for implementation of CNG-technology are sea (offshore natural gas deposits. Numerous international experts estimate the natural gas transportation by CNG-vessels in 1.5-2.0 times more cost-beneficial in comparison with offshore pipelines transportation, or in comparison with LNG (Liquefied Natural Gas shipping with natural gas transportation volume between 0.5 and 4.0 billion cubic meters per year on the route from 250 to 2,500 sea miles. This technology makes possible to provide gas supplement to the mountain and abounding in water areas, remote and weakly gasified regions. Described technology deserves special attention in the case of depleted and low-power oil and

  16. Energy, Transportation, Air Quality, Climate Change, Health Nexus: Sustainable Energy is Good for Our Health

    Directory of Open Access Journals (Sweden)

    Larry E. Erickson

    2017-02-01

    Full Text Available The Paris Agreement on Climate Change has the potential to improve air quality and human health by encouraging the electrification of transportation and a transition from coal to sustainable energy. There will be human health benefits from reducing combustion emissions in all parts of the world. Solar powered charging infrastructure for electric vehicles adds renewable energy to generate electricity, shaded parking, and a needed charging infrastructure for electric vehicles that will reduce range anxiety. The costs of wind power, solar panels, and batteries are falling because of technological progress, magnitude of commercial activity, production experience, and competition associated with new trillion dollar markets. These energy and transportation transitions can have a very positive impact on health. The energy, transportation, air quality, climate change, health nexus may benefit from additional progress in developing solar powered charging infrastructure.

  17. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  18. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C. D. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States); Brown, A. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States); DeFlorio, J. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States); McKenzie, E. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States); Tao, W. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States); Vimmerstedt, L. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States)

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  19. An energy dependent spatial approximation for transport deflection calculations

    International Nuclear Information System (INIS)

    Stankovski, Z.; Sanchez, R.; Roy, R.

    1989-01-01

    A model for transport depletion calculations based on an energy-dependent spatial representation of the fluxes has been developed. In the case of thermal absorbers, this model allows for regions in the fast range to be less discretized than in the thermal range. When depletion calculations are done to obtain the variation of the isotopic concentration vs. the burnup, the media where several spatial flux representations are used become heterogeneous. In the fast range, prehomogenization of the physical properties is done prior to each transport step. Even when taking into account this prehomogenization step, the computational cost of transport depleted calculations has been cut down significantly, while preserving the overall accuracy. Numerical results are given for a slab core and for a PWR poisoned assembly

  20. Nonlinearly-enhanced energy transport in many dimensional quantum chaos

    KAUST Repository

    Brambila, D. S.

    2013-08-05

    By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior. We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory, demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system, which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our results show that solitons can form the building block for the realization of new systems for the enhanced transport of matter.

  1. Transport and energy policy. Looking to the future

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T. [European Commission (Belgium)

    1996-12-01

    In the quest of filling human needs, transport and energy do not appear to be the most exciting territories. They come in only later in the vast chain of commodities and services necessary in the smooth operation of a modern market economy. However, current concerns about pollution and the future of our planet have lifted these issues to the top of the agenda. The objective of this paper is to give a glance at the complexity of possible futures facing us. Indeed, one of the main objectives is to show that there are different paths to be taken and we can influence our future. Furthermore, it will be shown that a key element in planning for different futures is the proper choice of energy policy objectives and instruments. An even bigger impact could be expected from the changing paradigms in transport demand patterns. (au)

  2. Baseline projections of transportation energy consumption by mode: 1981 update

    Energy Technology Data Exchange (ETDEWEB)

    Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

    1982-04-01

    A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

  3. US Department of Energy fuel cell program for transportation applications

    Science.gov (United States)

    Patil, Pandit G.

    1992-01-01

    Fuel cells of offer promise as the best future replacement for internal combustion engines in transportation applications. Fuel cells operate more efficiently than internal combustion engines, and are capable of running on non-petroleum fuels such as methanol, ethanol, natural gas or hydrogen. Fuel cells can also have a major impact on improving air quality. They virtually eliminate particulates, NO(x) and sulfur oxide emissions, and significantly reduce hydrocarbons and carbon monoxide. The U.S. Department of Energy program on fuel cells for transportation applications is structured to advance fuel cells technologies from the R&D phase, through engineering design and scale-tip, to demonstration in cars, trucks, buses and locomotives, in order to provide energy savings, fuel flexibility and air quality improvements. This paper describes the present status of the U.S. program.

  4. Transport code and nuclear data in intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Akira; Odama, Naomitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Maekawa, F.; Ueki, K.; Kosaka, K.; Oyama, Y.

    1998-11-01

    We briefly reviewed the problems of intermediate energy nuclear data file and transport codes in connection with processing of the data. This is a summary of our group in the task force on JENDL High Energy File Integral Evaluation (JHEFIE). In this article we stress the necessity of the production of intermediate evaluated nuclear data file up to 3 GeV for the application of accelerator driven transmutation (ADT) system. And also we state the necessity of having our own transport code system to calculate the radiation fields using these evaluated files from the strategic points of view to keep our development of the ADT technology completely free from other conditions outside of our own such as imported codes and data with poor maintenance or unknown accuracy. (author)

  5. Working group report on energy, transportation and recreation

    International Nuclear Information System (INIS)

    Hengeveld, H.

    1991-01-01

    A working group was held to discuss the sensitivities of ecosystems and socio-economic activities relating to energy and recreation to climate change and variability, and the state and deficiencies of knowledge concerning these topics. It was concluded that the ecological integrity of national parks is at risk. Aggregate yields of fish in the Great Plains should improve with rising temperature, however extinction in southerly rivers is likely. Net reduction in hydro power generation appears probable due to decreased runoff and more frequent and severe drought. Total energy demand will be impacted by increased space cooling demands, up to 30% reduction in space heating demands, changing demands in agriculture for irrigation, water management and crop cultivation, and changing energy demands for road transport. Alternative strategies for displacement of fossil fuel use include low head hydro development, nuclear, wind energy, photovoltaics, ethanol from wood fibre, and hydrogen generated from surplus hydro power

  6. Hydrogen Energy Storage: Grid and Transportation Services (Technical Report)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eichman, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    Proceedings of an expert workshop convened by the U.S. Department of Energy and Industry Canada, and hosted by the National Renewable Energy Laboratory and the California Air Resources Board, May 14-15, 2014, in Sacramento, California, to address the topic of hydrogen energy storage (HES). HES systems provide multiple opportunities to increase the resilience and improve the economics of energy sup supply systems underlying the electric grid, gas pipeline systems, and transportation fuels. This is especially the case when considering particular social goals and market drivers, such as reducing carbon emissions, increasing reliability of supply, and reducing consumption of conventional petroleum fuels. This report compiles feedback collected during the workshop, which focused on policy and regulatory issues related to HES systems. Report sections include an introduction to HES pathways, market demand, and the "smart gas" concept; an overview of the workshop structure; and summary results from panel presentations and breakout groups.

  7. Alternative energy sources for non-highway transportation. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. Volume III contains all of the references for the data used in the preliminary screening and is presented in 4 subvolumes. Volume IIIA covers the background information on the various prime movers used in the non-highway transportation area, the physical property data, the fuel-prime mover interaction and a review of some alternate energy forms. Volume IIIB covers the economics of producing, tranporting, and distributing the various fuels. Volume IIIC is concerned with the environment issues in production and use of the fuels, the energy efficiency in use and production, the fuel logistics considerations, and the overall ratings and selection of the fuels and prime movers for the detailed evaluation. Volume IIID covers the demand-related issues.

  8. Energy transport by convection in the common envelope evolution

    Science.gov (United States)

    Sabach, Efrat; Hillel, Shlomi; Schreier, Ron; Soker, Noam

    2017-12-01

    We argue that outward transport of energy by convection and photon diffusion in a common envelope evolution (CEE) of giant stars substantially reduces the fraction of the recombination energy of hydrogen and helium that is available for envelope removal. We base our estimate on the properties of an unperturbed asymptotic giant branch spherical model, and on some simple arguments. Since during the CEE the envelope expands and energy removal by photon diffusion becomes more efficient, our arguments underestimate the escape of recombination energy. We hence strengthen earlier claims that recombination energy does not contribute much to common envelope removal. A large fraction of the energy that jets deposit to the envelope, on the other hand, might be in the form of kinetic energy of the expanding and buoyantly rising hot bubbles. These rapidly rising bubbles remove mass from the envelope. We demonstrate this process by conducting a three-dimensional hydrodynamical simulation where we deposit hot gas in the location of a secondary star that orbits inside the envelope of a giant star. Despite the fact that we do not include the large amount of gravitational energy that is released by the in-spiralling secondary star, the hot bubbles alone remove mass at a rate of about 0.1 M⊙ yr- 1, which is much above the regular mass-loss rate.

  9. Biomass-based energy carriers in the transportation sector

    International Nuclear Information System (INIS)

    Johansson, Bengt.

    1995-03-01

    The purpose of this report is to study the technical and economic prerequisites to attain reduced carbon dioxide emissions through the use of biomass-based energy carriers in the transportation sector, and to study other environmental impacts resulting from an increased use of biomass-based energy carriers. CO 2 emission reduction per unit arable and forest land used for biomass production (kg CO 2 /ha,year) and costs for CO 2 emission reduction (SEK/kg CO 2 ) are estimated for the substitution of gasoline and diesel with rape methyl ester, biogas from lucerne, ethanol from wheat and ethanol, methanol, hydrogen and electricity from Salix and logging residues. Of the studied energy carriers, those based on Salix provide the largest CO 2 emission reduction. In a medium long perspective, the costs for CO 2 emission reduction seem to be lowest for methanol from Salix and logging residues. The use of fuel cell vehicles, using methanol or hydrogen as energy carriers, can in a longer perspective provide more energy efficient utilization of biomass for transportation than the use of internal combustion engine vehicles. 136 refs, 12 figs, 25 tabs

  10. Hydrogen tube vehicle for supersonic transport: 2. Speed and energy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects Inc and Supersonic Tubevehicle LLC, 200 Violet St, Suite 100, Golden, CO 80401 (United States)

    2010-06-15

    The central concept of a new idea in high-speed transport is that operation of a vehicle in a hydrogen atmosphere, because of the low density of hydrogen, would increase sonic speed by a factor of 3.8 and decrease drag by 15 relative to air. A hydrogen atmosphere requires that the vehicle operate within a hydrogen-filled tube or pipeline, which serves as a phase separator. The supersonic tube vehicle (STV) can be supersonic with respect to air outside the tube while remaining subsonic inside. It breathes hydrogen fuel for its propulsion fuel cells from the tube itself. This paper, second in a series on the scientific foundations of the supersonic tube vehicle, tests the hypothesis that the STV will be simultaneously fast and energy efficient by comparing its predicted speed and energy consumption with that of four long-haul passenger transport modes: road, rail, maglev, and air. The study establishes the speed ranking STV >> airplane > maglev > train > coach (intercity bus) and the normalized energy consumption ranking Airplane >> coach > maglev > train > STV. Consistent with the hypothesis, the concept vehicle is both the fastest and lowest energy consuming mode. In theory, the vehicle can cruise at Mach 2.8 while consuming less than half the energy per passenger of a Boeing 747 at a cruise speed of Mach 0.81. (author)

  11. Future Transportation with Smart Grids and Sustainable Energy

    Directory of Open Access Journals (Sweden)

    Gustav R. Grob

    2009-10-01

    Full Text Available Transportation is facing fundamental change due to the rapid depletion of fossil fuels, environmental and health problems, the growing world population, rising standards of living with more individual mobility and the globalization of trade with its increasing international transport volume. To cope with these serious problems benign, renewable energy systems and much more efficient drives must be multiplied as rapidly as possible to replace the polluting combustion engines with their much too low efficiency and high fuel logistics cost. Consequently the vehicles of the future must be non-polluting and super-efficient, i.e. electric. The energy supply must come via smart grids from clean energy sources not affecting the health, climate and biosphere. It is shown how this transition to the clean, sustainable energy age is possible, feasible and why it is urgent. The important role of international ISO, IEC and ITU standards and the need for better legislation by means of the Global Energy Charter for Sustainable Development are also highlighted.

  12. Energy demand and emissions from road transportation vehicles in China

    International Nuclear Information System (INIS)

    Yan, Xiaoyu; Crookes, Roy J.

    2010-01-01

    Rapidly growing energy demand and emissions from China's road transportation vehicles in the last two decades have raised concerns over oil security, urban air pollution and global warming. This rapid growth will be likely to continue in the next two to three decades as the vehicle ownership level in China is still very low. The current status of China's road transport sector in terms of vehicles, infrastructure, energy use and emissions is presented. Mitigation measures implemented and those that can reasonably be expected to be adopted in the near future are analysed. Recent studies exploring the future trends of road vehicle energy demand and emissions under various strategies are reviewed. Moreover, those studies which assessed various fuel/propulsion options in China from a life cycle perspective are examined to present an overview of the potential for reducing energy use and emissions. Recommendations for further developments are also made. It is concluded that comprehensive and appropriate strategies will be needed to minimise the adverse impacts of China's road vehicles on energy resources and the environment. Fortunately, China appears to be heading in this direction. (author)

  13. Solar Energy for Transportation Fuel (LBNL Science at the Theater)

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nate

    2008-05-12

    Nate Lewis' talk looks at the challenge of capturing solar energy and storing it as an affordable transportation fuel - all on a scale necessary to reduce global warming. Overcoming this challenge will require developing new materials that can use abundant and inexpensive elements rather than costly and rare materials. He discusses the promise of new materials in the development of carbon-free alternatives to fossil fuel.

  14. A reverse energy cascade for crustal magma transport

    Science.gov (United States)

    Karlstrom, Leif; Paterson, Scott R.; Jellinek, A. Mark

    2017-08-01

    Direct constraints on the ascent, storage and eruption of mantle melts come primarily from exhumed, long-frozen intrusions. These structures, relics of a dynamic magma transport network, encode how Earth's crust grows and differentiates over time. Furthermore, they connect mantle melting to an evolving distribution of surface volcanism. Disentangling magma transport processes from the plutonic record is consequently a seminal but unsolved problem. Here we use field data analyses, scaling theory and numerical simulations to show that the size distribution of intrusions preserved as plutonic complexes in the North American Cordillera suggests a transition in the mechanical response of crustal rocks to protracted episodes of magmatism. Intrusion sizes larger than about 100 m follow a power-law scaling expected if energy delivered from the mantle to open very thin dykes and sills is transferred to intrusions of increasing size. Merging, assimilation and mixing of small intrusions into larger ones occurs until irreversible deformation and solidification dissipate available energy. Mantle magma supply over tens to hundreds of thousands of years will trigger this regime, a type of reverse energy cascade, depending on the influx rate and efficiency of crustal heating by intrusions. Identifying regimes of magma transport provides a framework for inferring subsurface magmatic processes from surface patterns of volcanism, information preservation in the plutonic record, and related effects including climate.

  15. Transportation Energy Futures: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    Energy Technology Data Exchange (ETDEWEB)

    Brogan, J. J. [Cambridge Systematics Inc., Cambridge, MA (United States); Aeppli, A. E. [Cambridge Systematics Inc., Cambridge, MA (United States); Brown, D. F. [Cambridge Systematics Inc., Cambridge, MA (United States); Fischer, M. J. [Cambridge Systematics Inc., Cambridge, MA (United States); Grenzeback, L. R. [Cambridge Systematics Inc., Cambridge, MA (United States); McKenzie, E. [Cambridge Systematics Inc., Cambridge, MA (United States); Vimmerstedt, L. [Cambridge Systematics Inc., Cambridge, MA (United States); Vyas, A. D. [Cambridge Systematics Inc., Cambridge, MA (United States); Witzke, E. [Cambridge Systematics Inc., Cambridge, MA (United States)

    2013-03-01

    Freight transportation modes—truck, rail, water, air, and pipeline—each serve a distinct share of the freight transportation market. A variety of factors influence the modes chosen by shippers, carriers, and others involved in freight supply chains. Analytical methods can be used to project future modal shares, and federal policy actions could influence future freight mode choices. This report considers how these topics have been addressed in existing literature and offers insights on federal policy decisions with the potential to prompt mode choices that reduce energy use and greenhouse gas emissions.

  16. Santa Elena. Ready to reshape its transport energy matrix

    Energy Technology Data Exchange (ETDEWEB)

    Moreano, Hernan [Universidad Estatal Peninsula de Santa Elena (Ecuador). Inst. de Investigacion Cientifica y Desarrollo Tecnologico (INCYT)

    2012-07-01

    The renewable energy issue opens the door to an ambient of opportunities. Santa Elena, one of the coastal provinces of Ecuador has the chance to go from a fossil fuel energy culture to a new energy scheme based on the use of environmental friendly fuels like natural gas and other renewable energy carriers like hydrogen. The marginal production of oil and natural gas from the Gustavo Galindo Velasco field and the updated gas reserves from the Gulf of Guayaquil make it possible. Infrastructure for natural gas production and distribution for vehicles is almost ready and any of the three refineries can generate hydrogen from natural gas. This provides the opportunity to reshape the Santa Elena transport energy matrix, where vehicles can burn natural gas and inter country buses can work with hydrogen. Traditional Fishing boats can be fitted with hydrogen storage and fuel systems later on. Santa Elena should face this challenge through a joint effort of public and private parties. Santa Elena State University and its partners as a focus point to create: The Campus of Energy Knowledge, where research, science and technology will serve companies that work in the energy business with a strong synergy, which will create jobs for the Santa Elena people. (orig.)

  17. Interpreting the implied meridional oceanic energy transport in AMIP

    International Nuclear Information System (INIS)

    Randall, D.A.; Gleckler, P.J.

    1993-09-01

    The Atmospheric Model Intercomparison Project (AMIP) was outlined in Paper No. CLIM VAR 2.3 (entitled open-quote The validation of ocean surface heat fluxes in AMIP') of these proceedings. Preliminary results of AMIP subproject No. 5 were also summarized. In particular, zonally averaged ocean surface heat fluxes resulting from various AMIP simulations were intercompared, and to the extent possible they were validated with uncertainties in observationally-based estimates of surface heat fluxes. The intercomparison is continued in this paper by examining the Oceanic Meridional Energy Transport (OMET) implied by the net surface heat fluxes of the AMIP simulations. As with the surface heat fluxes of the AMIP simulations. As with the surface heat fluxes, the perspective here will be very cursory. The annual mean implied ocean heat transport can be estimated by integrating the zonally averaged net ocean surface heat flux, N sfc , from one pole to the other. In AGCM simulations (and perhaps reality), the global mean N sfc is typically not in exact balance when averaged over one or more years. Because of this, an important assumption must be made about changes in the distribution of energy in the oceans. Otherwise, the integration will yield a non-zero transport at the endpoint of integration (pole) which is not physically realistic. Here the authors will only look at 10-year means of the AMIP runs, and for simplicity they assume that any long term imbalance in the global averaged N sfc will be sequestered (or released) over the global ocean. Tests have demonstrated that the treatment of how the global average energy imbalance is assumed to be distributed is important, especially when the long term imbalances are in excess of 10 W m -2 . However, this has not had a substantial impact on the qualitative features of the implied heat transport of the AMIP simulations examined thus far

  18. A note on poleward undercurrent along the southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; RameshKumar, M.R.; Rao, L.V.G.

    . The climatological data supports this observation but the wind stress further south contradicts the climatological picture. Similarly the trend of the northerly wind from Cochin to Marmagao appears to be far from reality when compared to the climatological wind... and SALAT, 1981). If the narrowing of surface currents at Quilon is associated with the topography of the sea floor which could funnel or constrict the longshore current, it might augment the intensity of upwelling close to the coast• The poleward...

  19. Photosynthetic antennae systems: energy transport and optical absorption

    International Nuclear Information System (INIS)

    Reineker, P.; Supritz, Ch.; Warns, Ch.; Barvik, I.

    2004-01-01

    The energy transport and the optical line shape of molecular aggregates, modeling bacteria photosynthetic light-harvesting systems (chlorosomes in the case of Chlorobium tepidum or Chloroflexus aurantiacus and LH2 in the case of Rhodopseudomonas acidophila) is investigated theoretically. The molecular units are described by two-level systems with an average excitation energy ε and interacting with each other through nearest-neighbor interactions. For LH2 an elliptical deformation of the ring is also allowed. Furthermore, dynamic and in the case of LH2 also quasi-static fluctuations of the local excitation energies are taken into account, simulating fast molecular vibrations and slow motions of the protein backbone, respectively. The fluctuations are described by Gaussian Markov processes in the case of the chlorosomes and by colored dichotomic Markov processes, with exponentially decaying correlation functions, with small (λ s ) and large (λ) decay constants, in the case of LH2

  20. Testing the transport energy-environmental Kuznets curve hypothesis in the EU27 countries

    International Nuclear Information System (INIS)

    Pablo-Romero, M.P.; Cruz, L.; Barata, E.

    2017-01-01

    Transport activities are essential for economic and social development. Nevertheless, the transport sector has also shown the fastest growth in energy consumption in the European Union and its contribution to increasing greenhouse gas emissions merits the thorough attention of academics and policy makers. In this paper we analyze the relationship of economic growth and transport activities with transport final energy consumption. Energy Kuznets curves are estimated for a panel data set covering the EU27 countries in the period 1995–2009 for total transport energy use, household transport energy use, and productive transport energy use (all three in absolute and per capita energy use terms). The productive transport energy use and gross value added relationship are further considered as per hour worked. Finally, the control variables of energy prices and differences in the economic structures are tested. Empirical results show that the elasticity of transport energy use with respect to gross value added in per capita terms decreases from a threshold for the three transport energy consumption variables, but the turning point of improved environmental quality is not reached in any instance. - Highlights: • Transport EKCs are estimated for the EU countries in the 1995–2009 period. • Total, household and production activity transport energy uses are analyzed. • Data support a concave shape, but the turning point is not reached. • Richer countries have more limited potential for energy efficiency policies. • EKCs elasticity values are considered to support policy interpretations.

  1. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    Science.gov (United States)

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions.

  2. Transport coefficients from energy loss studies in an expanding QGP

    Science.gov (United States)

    Ayala, Alejandro; Dominguez, Isabel; Jalilian-Marian, Jamal; Tejeda-Yeomans, Maria Elena

    2017-08-01

    We use linear viscous hydrodynamics to describe the energy and momentum deposited by a fast moving parton in a quark gluon plasma. This energy-momentum is used to compute the probability density for the production of soft partons by means of the Cooper-Frye formula. Using this probability density, we render manifest a relation between the average transverse momentum given to the fast moving parton from the medium, q̂, the shear viscosity to entropy density ratio, η/s, and the energy lost by the fast moving parton, ΔE, in an expanding medium under similar conditions to those generated in nucleus-nucleus collisions at the LHC and RHIC energies. We find that q̂ increases with ΔE. On the other hand, η/s is more stable with ΔE. The behavior of q̂, with ΔE is understood as arising from the length of medium the parton traverses from the point where it is produced. However, since η/s is proportional to the ratio of the length of medium traversed by the fast parton and the average number of scatterings it experiences, it has a milder dependence on the energy it loses. This study represents a tool to obtain a direct connection between transport coefficients and the description of in-medium energy loss within a linear viscous hydrodynamical evolution of the bulk.

  3. Charge and energy transport at the nanoscale: A DFT perspective

    Science.gov (United States)

    Eich, Florian; Covito, Fabio; Rubio, Angel

    Understanding the interplay between charge and energy transport at the nanoscale paves the way for novel thermoelectric devices, which may prove useful for the development for sustainable energy sources. However, concepts, such as heat flow, temperature and entropy are only well-established at the macroscopic level for slow dynamics. This raises the question about whether these concepts can be employed for small length and short time scales. We will present our recent efforts to use a time-dependent density-functional theory framework, dubbed thermal DFT, in order to generalize temperature and heat or energy flow to the microscopic regime. To this end we will highlight the analogy of the formally exact microscopic equations of motion for charge density and energy density in thermal DFT to the macroscopic equations of motion of hydrodynamics. Furthermore, we will present first result using our approach to compute transient energy energy currents induced by a temperature gradient and show that in the steady-state limit persistent temperature oscillations develop. This project has received funding from the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Skłodowska-Curie Grant Agreement No. 701796.

  4. The design of Smart Energy Systems for 100% renewable energy and transport solutions

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Connolly, David

    2013-01-01

    , heating and transport sectors, and on using the flexibility in demands and various short term and longer term storage in the different sectors. Such a redesign also entails that the Smart Energy System is comprised of a number of smart grid infrastructures for different sectors in the energy system, i......In this paper we launch the design of Smart Energy Systems through the 100% renewable energy system analyses and research behind the CEESA research project. The transition from fossil fuels towards the integration of more and more renewable energy requires rethinking and redesign of the energy...... system. Traditionally a lot of focus internationally is put on the electricity sector to solve the integration puzzle focusing on electricity storage technologies e.g. batteries, hydrogen storage and on (electricity) smart grids. In Smart Energy Systems the focus is integration of the electricity...

  5. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Patel, D. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Bertram, K. M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  6. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  7. US Department of Energy Transportation Programs: computerized techniques

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.; Fore, C.S.; Peterson, B.E.

    1984-01-01

    The US Department of Energy is currently sponsoring the development of four specialized transportation programs at Oak Ridge National Laboratory. The programs function as research tools that provide unique computerized techniques for planning the safe shipment of radioactive and hazardous materials. Major achievements include the development of rail and highway routing models, an emergency response assistance program, a data base focusing on legislative requirements, and a resource file identifying key state and local contacts. A discussion of each program and data base is presented, and several examples reflecting each project's applications to the overall DOE transportation program are provided. The interface of these programs offers a dynamic resource of data for use during preshipment planning stages. 9 references, 10 figures, 2 tables

  8. Energy, Transportation, Air Quality, Climate Change, Health Nexus: Sustainable Energy is Good for Our Health

    OpenAIRE

    Larry E. Erickson; Merrisa Jennings

    2017-01-01

    The Paris Agreement on Climate Change has the potential to improve air quality and human health by encouraging the electrification of transportation and a transition from coal to sustainable energy. There will be human health benefits from reducing combustion emissions in all parts of the world. Solar powered charging infrastructure for electric vehicles adds renewable energy to generate electricity, shaded parking, and a needed charging infrastructure for electric vehicles that will reduce r...

  9. Modern Transportation and Photovoltaic Energy for Urban Ecotourism

    Directory of Open Access Journals (Sweden)

    Raffaella AVERSA

    2017-12-01

    Full Text Available This study proposes an innovative integrated transportation/photovoltaic energy system that will enable the Pompeii Municipality to develop a set of urban ecotourism policies and instruments for the preparation and adoption of an environmental sustainable mobility strategy to be applied in their future municipality urban plan. The innovative character of the study resides in two principal aspects: the technologies applied, namely, the use of thin fi lm photovoltaic (hereafter PV panels (copper-indium-gallium-(diselenide cells on a fl exible support, and the way these technologies are applied. A combined energy/mobility approach based on ‘Zero km and zero emission energy production for zero emission electric transportation strategy’ to be implemented in the Public Urban Plan (Piano Urbanistico Comunale of the town of Pompeii is presented. According to the technology to be adopted (thin PV fi lm on fl exible supports integrated in the parking shelters roofs, to the foreseen PV plant of 700 sqm parking lots, and to an innovative multifunctional design approach (bio-mimicking sun track roof, an improved yearly power production of 100.0 MWh is foreseen with a 20- 25% increase of power production with respect to standard fi xed PV panels of the same type.

  10. Indicator system for the environmental assessment of energy transport systems

    International Nuclear Information System (INIS)

    Knoepfel, I.

    1995-01-01

    The aim of this dissertation is to define a consistent set of indicators for the environmental assessment of different energy transport systems: high-voltage alternating and direct current transmission lines, electric cables, pipelines for gas and oil, inland waterway, road and rail transportation, according to state-of-the-art technologies. The indicator system is used for comparative analysis and identification of environmental hot-spots of the different systems. The environmental performance of power plants close to production or unloading terminals with subsequent power transmission and the transport of fossil fuels with power production close to the end-users is compared. Quantitative indicators are defined for different impact categories: fossil energy depletion, impacts from emissions, land use, noise impacts and visibility. A further aggregation of the different indicators to obtain a universal environmental score was not envisaged. It was not possible to define a quantitative indicator for possible electric and magnetic field effects because of insufficient knowledge of the involved dose-response metrics. The proposed indicators quantify dose-response relationships also below emission or immission limits imposed by law, which was one of the main requirements in this work. By reducing all information to an equivalent impacted area, a high level of consistency was achieved for land use, noise impacts and visibility indicators. Other indicators refer to the energy content of fossil resources and to equivalent emissions of reference substances. The calculation of an equivalent impacted area was not considered an efficient approach in these cases. The performance of the proposed indicator system and its applicability to infrastructure and regional planning is tested in two practical examples. (author) figs., tabs., refs

  11. Effective Potential Energies and Transport Properties for Nitrogen and Oxygen

    Science.gov (United States)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The results of recent theoretical studies for N--N2, O--O2, N2--N2 interactions are applied to the transport properties of nitrogen and oxygen gases. The theoretical results are used to select suitable oxygen interaction energies from previous work for determining the diffusion and viscosity coefficients at high temperatures. A universal formulation is applied to determine the collision integrals for O2--O2 interactions at high temperatures and to calculate certain ratios for determining higher-order collision integrals.

  12. The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo; Bačeković, Ivan; Pedersen, Allan Schrøder

    2017-01-01

    and energy resources. Especially challenging transition is envisaged for heavy-weight, long-range vehicles and airplanes. A detailed literature review was carried out in order to detect the current state of the research on clean transport sector, as well as to point out the gaps in the research. In order...

  13. Smart Energy Systems for coherent 100% renewable energy and transport solutions

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Conolly, David

    2015-01-01

    , significant focus is put on the electricity sector alone to solve the renewable energy integration puzzle. Smart grid research traditionally focuses on ICT, smart meters, electricity storage technologies, and local (electric) smart grids. In contrast, the Smart Energy System focuses on merging the electricity......The hypothesis of this paper is that in order to identify least cost solutions of the integration of fluctuating renewable energy sources into current or future 100% renewable energy supplies one has to take a Smart Energy Systems approach. This paper outline why and how to do so. Traditionally......, heating and transport sectors, in combination with various intra-hour, hourly, daily, seasonal and biannual storage options, to create the flexibility necessary to integrate large penetrations of fluctuating renewable energy. However, in this paper we present the development and design of coherent Smart...

  14. Poleward Transport Variability in the Northern Hemisphere during Final Stratospheric Warmings simulated by CESM(WACCM)

    Science.gov (United States)

    Thiéblemont, Rémi; Matthes, Katja; Orsolini, Yvan; Hauchecorne, Alain; Huret, Nathalie

    2017-04-01

    Observational studies of Arctic stratospheric final warmings have shown that tropical/subtropical air masses can be advected to high latitudes and remain confined within a long-lived "frozen-in" anticyclone (FrIAC) for several months. It was suggested that the frequency of FrIACs may have increased since 2000 and that their interannual variability may be modulated by (i) the occurrence of major stratospheric warmings (mSSWs) in the preceding winter and (ii) the phase of the Quasi-Biennial Oscillation (QBO). In this study, we tested these observational-based hypotheses for the first time using a chemistry-climate model. Three 145-year sensitivity experiments were performed with the National Center of Atmospheric Research's Community Earth System Model (CESM): one control experiment including only natural variability, one with an extreme greenhouse gas emission scenario, and one without the QBO in the tropical stratosphere. In comparison with reanalysis, the model simulates a realistic frequency and characteristics of FrIACs, which occur under an abrupt and early winter-to-summer stratospheric circulation transition, driven by enhanced planetary wave activity. Furthermore, the model results support the suggestion that the development of FrIACs is favored by an easterly QBO in the middle stratosphere and by the absence of mSSWs during the preceding winter. The lower stratospheric persistence of background dynamical state anomalies induced by deep mSSWs leads to less favorable conditions for planetary waves to enter the high-latitude stratosphere in April, which in turn decreases the probability of FrIAC development. Our model results do not suggest that climate change conditions (RCP8.5 scenario) influence FrIAC occurrences.

  15. The Suppression of Energy Discretization Errors in Multigroup Transport Calculations

    International Nuclear Information System (INIS)

    Larsen, Edward

    2013-01-01

    The Objective of this project is to develop, implement, and test new deterministric methods to solve, as efficiently as possible, multigroup neutron transport problems having an extremely large number of groups. Our approach was to (i) use the standard CMFD method to 'coarsen' the space-angle grid, yielding a multigroup diffusion equation, and (ii) use a new multigrid-in-space-and-energy technique to efficiently solve the multigroup diffusion problem. The overall strategy of (i) how to coarsen the spatial an energy grids, and (ii) how to navigate through the various grids, has the goal of minimizing the overall computational effort. This approach yields not only the fine-grid solution, but also coarse-group flux-weighted cross sections that can be used for other related problems.

  16. Economizing energies in urban public transportation; Como economizar energias en el transporte publico urbano

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Arellano, Ignacio [Universidad Autonoma del Estado de Mexico, Toluca (Mexico)

    1998-12-31

    In the transportation sector one of the questions that we should keep on asking on the subject of energy saving is: What objective should be set for reducing the energy consumption (particularly in oil derivatives). Must it be a moderate or a strong measure? In the past years this question was very much related to the oil availability that is a non-renewable resource, nevertheless, with the elapsing of time it can be said that the available oil resources are still very large, the problem is now in function of the energy prices in the mid term and this is what will take us to establish a type of policy for the reduction of the use of fuels in transportation. The purpose of this paper, is to have the support of the transportation users informing and persuading them on the need of reducing the fuel consumption rationalizing its utilization, to ensure in our cities a relatively fluid circulation, a breathable air, a better landscape and a protection to the urban sites. Although these proposals belong in a direct way to our governments, the base of their definition will be the perspectives for the country`s development, the amount of oil reserves, the international situation and the technological advances. [Espanol] En el sector de los transportes una de las preguntas que nos deberiamos seguir haciendo, sobre el tema de ahorro de energia es que objetivo debera fijarse para reducir los consumos de energia (en particular de los derivados del petroleo) debe ser una medida fuerte o moderada. En anos pasados esta pregunta estaba muy relacionada con la disponibilidad del petroleo que es un recurso no renovable, sin embargo con el transcurso del tiempo se puede decir que los recursos disponibles de petroleo son aun muy grandes, el problema ahora esta en funcion de los precios de la energia en el mediano plazo, y es esto lo que nos llevara a fijar un tipo de politica para la reduccion de combustibles en los transportes. El proposito de este trabajo es contar con el apoyo de los

  17. Transport Emissions and Energy Consumption Impacts of Private Capital Investment in Public Transport

    Directory of Open Access Journals (Sweden)

    Yunqiang Xue

    2017-10-01

    Full Text Available Introducing private capital into the public transport system for its sustainable development has been increasing around the world. However, previous research ignores emissions and energy consumption impacts, which are important for private capital investment policy-making. To address this problem, the system dynamic (SD approach was used to quantitatively analyze the cumulative effects of different private capital investment models in public transport from the environmental perspective. The SD model validity was verified in the case study of Jinan public traffic. Simulation results show that the fuel consumption and emission reductions are obvious when the private capital considering passenger value invests in public transport compared with the no private capital investment and traditional investment models. There are obvious cumulative reductions for fuel consumption, CO2, CO, SO2, and PM10 emissions for 100 months compared with no private capital investment. This research verifies the superiority of the passenger value investment model in public transport from the environmental point of view, and supplies a theoretical tool for administrators to evaluate the private capital investment effects systematically.

  18. Modelling of transport processes in porous media for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Kangas, M.

    1996-12-31

    Flows in porous media are encountered in many branches of technology. In these phenomena, a fluid of some sort is flowing through porous matrix of a solid medium. Examples of the fluid are water, air, gas and oil. The solid matrix can be soil, fissured rock, ceramics, filter paper, etc. The flow is in many cases accompanied by transfer of heat or solute within the fluid or between the fluid and the surrounding solid matrix. Chemical reactions or microbiological processes may also be taking place in the system. In this thesis, a 3-dimensional computer simulation model THETA for the coupled transport of fluid, heat, and solute in porous media has been developed and applied to various problems in the field of energy research. Although also applicable to porous medium applications in general, the version of the model described and used in this work is intended for studying the transport processes in aquifers, which are geological formations containing groundwater. The model highlights include versatile input and output routines, as well as modularity which, for example, enables an easy adaptation of the model for use as a subroutine in large energy system simulations. Special attention in the model development has been attached to high flow conditions, which may be present in Nordic esker aquifers located close to the ground surface. The simulation model has been written with FORTRAN 77 programming language, enabling a seamless operation both in PC and main frame environments. For PC simulation, a special graphic user interface has been developed. The model has been used with success in a wide variety of applications, ranging from basic thermal analyses to thermal energy storage system evaluations and nuclear waste disposal simulations. The studies have shown that thermal energy storage is feasible also in Nordic high flow aquifers, although at the cost of lower recovery temperature level, usually necessitating the use of heat pumps. In the nuclear waste studies, it

  19. Inter-dependence not Over-dependence: Reducing Urban Transport Energy Dependence

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Michael James; Rodrigues da Silva, Antonio Nelson

    2007-07-01

    A major issue of concern in today's world is urban transport energy dependence and energy supply security. In an energy inter-dependent world, energy over-dependence brings risks to urban transport systems. Many urban areas are over-dependent on finite petroleum resources for transport. New technology and the development and integration of renewable resources into transport energy systems may reduce some of the current transport energy dependence of urban areas. However, the most effective means of reducing energy dependence is to first design urban areas for this condition. An urban policy framework is proposed that requires transport energy dependence to be measured and controlled in the urban development process. A new tool has been created for this purpose, the Transport Energy Specification (TES), which measures transport energy dependence of urban areas. This creates the possibility for cities to regulate urban development with respect to energy dependence. Trial assessments were performed in Germany, New Zealand and Brazil; initial analysis by transport and government professionals shows promise of this tool being included into urban policy. The TES combined with a regulatory framework has the potential to significantly reduce transport energy consumption and dependence in urban areas in the future. (auth)

  20. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach

    KAUST Repository

    Chust, Guillem

    2013-09-16

    In the last decade, the analysis based on Continuous Plankton Recorder survey in the eastern North Atlantic Ocean detected one of the most striking examples of marine poleward migration related to sea warming. The main objective of this study is to verify the poleward shift of zooplankton species (Calanus finmarchicus, C. glacialis, C. helgolandicus, C. hyperboreus) for which distributional changes have been recorded in the North Atlantic Ocean and to assess how much of this shift was triggered by sea warming, using Generalized Additive Models. To this end, the population gravity centre of observed data was compared with that of a series of simulation experiments: (i) a model using only climate factors (i.e. niche-based model) to simulate species habitat suitability, (ii) a model using only temporal and spatial terms to reconstruct the population distribution, and (iii) a model using both factors combined, using a subset of observations as independent dataset for validation. Our findings show that only C. finmarchicus had a consistent poleward shift, triggered by sea warming, estimated in 8.1 km per decade in the North Atlantic (16.5 per decade for the northeast), which is substantially lower than previous works at the assemblage level and restricted to the Northeast Atlantic. On the contrary, C. helgolandicus is expanding in all directions, although its northern distribution limit in the North Sea has shifted northward. Calanus glacialis and C. hyperboreus, which have the geographic centres of populations mainly in the NW Atlantic, showed a slight southward shift, probably responding to cool water penetrating southward in the Labrador Current. Our approach, supported by high model accuracy, shows its power in detecting species latitudinal shifts and identifying its causes, since the trend of occurrence observed data is influenced by the sampling frequency, which has progressively concentrated to lower latitudes with time. © 2013 © 2013 International Council for

  1. Key ratios for energy and climate 2012 - Buildings and transportation of municipal and county; Nyckeltal energi och klimat 2012 - Byggnader och transporter i kommun och landsting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    This is the second report that presents key ratios on energy and climate for municipalities, county councils and regions. It has been developed through a collaboration between SKL and Energy Agency. The key ratios show inter alia a sharply increased share of renewable fuels in public transport and some reduction in energy in both commercial and residential premises. The main content is derived from the data on energy use in their own premises and transport in 2012 reported by those who sought support for energy efficiency improvement in municipalities and county from the Swedish Energy Agency.

  2. Energy study of railroad freight transportation. Volume 2. Industry description

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-08-01

    The United States railroad industry plays a key role in transporting materials to support our industrial economy. One of the oldest industries in the US, the railroads have developed over 150 years into their present physical and operational configuration. Energy conservation proposals to change industry facilities, equipment, or operating practices must be evaluated in terms of their cost impact. A current, comprehensive and accurate data baseline of railroad economic activity and energy consumption is presented. Descriptions of the history of railroad construction in the US and current equipment, facilities, and operation practices follow. Economic models that relate cost and energy of railroad service to the volume of railroad output and to physical and operational parameters are provided. The analyses and descriptions should provide not only an analytical baseline for evaluating the impact of proposed conservation measures, but they should also provide a measure of understanding of the system and its operations to analysts and policy makers who are involved in proposing, analyzing, and implementing such changes.

  3. Energy analysis and break-even distance for transportation for biofuels in comparison to fossil fuels

    Science.gov (United States)

    In the present analysis various forms fuel from biomass and fossil sources, their mass and energy densities, and their break-even transportation distances to transport them effectively were analyzed. This study gives an insight on how many times more energy spent on transporting the fuels to differe...

  4. Three essays in transportation energy and environmental policy

    Science.gov (United States)

    Hajiamiri, Sara

    technologies instead of a similar-sized conventional gasoline-powered vehicle (CV). The electric vehicle technologies considered are gasoline-powered hybrid and plug-in hybrid electric vehicles and battery electric vehicles. It is found that the private benefits are positive, but smaller than the expected short-term cost premiums on these technologies, which suggest the need for government support if a large-scale adoption of electric vehicles is desired. Also, it is found that the net present values of the societal benefits that are not internalized by the vehicle purchaser are not likely to exceed $1,700. This estimate accounts for changes in GHG emissions, criteria air pollutants, gasoline consumption and the driver's contribution to congestion. The third essay explores the implications of a large-scale adoption of electric vehicles on transportation finance. While fuel efficiency improvements are desirable with respect to goals for achieving energy security and environmental improvement, it has adverse implications for the current system of transportation finance. Reductions in gasoline consumption relative to the amount of driving that takes place would result in a decline in fuel tax revenues that are needed to fund planning, construction, maintenance, and operation of highways and public transit systems. In this paper the forgone fuel tax revenue that results when an electric vehicle replaces a similar-sized CV is estimated. It is found that under several vehicle electrification scenarios, the combined federal and state trust funds could decline by as much as 5 percent by 2020 and as much as 12.5 percent by 2030. Alternative fee systems that tie more directly to transportation system use rather then to fuel consumption could reconcile energy security, environmental, and transportation finance goals.

  5. Technology data for energy plants. Individual heating plants and energy transport

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-15

    The present technology catalogue is published in co-operation between the Danish Energy Agency and Energinet.dk and includes technology descriptions for a number of technologies for individual heat production and energy transport. The primary objective of the technology catalogue is to establish a uniform, commonly accepted and up-to-date basis for the work with energy planning and the development of the energy sector, including future outlooks, scenario analyses and technical/economic analyses. The technology catalogue is thus a valuable tool in connection with energy planning and assessment of climate projects and for evaluating the development opportunities for the energy sector's many technologies, which can be used for the preparation of different support programmes for energy research and development. The publication of the technology catalogue should also be viewed in the light of renewed focus on strategic energy planning in municipalities etc. In that respect, the technology catalogue is considered to be an important tool for the municipalities in their planning efforts. (LN)

  6. Parallelism in continuous energy Monte Carlo method for neutron transport

    Energy Technology Data Exchange (ETDEWEB)

    Uenohara, Yuji (Nuclear Engineering Lab., Toshiba Corp. (Japan))

    1993-04-01

    The continuous energy Monte Carlo code VIM was implemented on a prototype highly parallel computer called PRODIGY developed by TOSHIBA Corporation. The author tried to distribute nuclear data to the processing elements (PEs) for the purpose of studying domain decompositon for the velocity space. Eigenvalue problems for a 1-D plate-cell infinite lattice mockup of ZPR-6-7 wa examined. For the geometrical space, the PEs were assigned to domains corresponding to nuclear fuel bundles in a typical boiling water reactor. The author estimated the parallelization efficiencies for both highly parallel and a massively parallel computer. Negligible communication overhead derived from neutron transports resulted from the heavy computing loads of Monte Carlo simulations. In the case of highly parallel computers, the communication overheads scarcely contributed to the parallelization efficiency. In the case of massively parallel computers, the control of PEs resulted in considerable communication overheads. (orig.)

  7. Parallelism in continuous energy Monte Carlo method for neutron transport

    International Nuclear Information System (INIS)

    Uenohara, Yuji

    1993-01-01

    The continuous energy Monte Carlo code VIM was implemented on a prototype highly parallel computer called PRODIGY developed by TOSHIBA Corporation. The author tried to distribute nuclear data to the processing elements (PEs) for the purpose of studying domain decompositon for the velocity space. Eigenvalue problems for a 1-D plate-cell infinite lattice mockup of ZPR-6-7 wa examined. For the geometrical space, the PEs were assigned to domains corresponding to nuclear fuel bundles in a typical boiling water reactor. The author estimated the parallelization efficiencies for both highly parallel and a massively parallel computer. Negligible communication overhead derived from neutron transports resulted from the heavy computing loads of Monte Carlo simulations. In the case of highly parallel computers, the communication overheads scarcely contributed to the parallelization efficiency. In the case of massively parallel computers, the control of PEs resulted in considerable communication overheads. (orig.)

  8. Transportable high-energy high-power generator

    Science.gov (United States)

    Novac, B. M.; Smith, I. R.; Senior, P.; Parker, M.; Louverdis, G.

    2010-05-01

    High-power applications sometimes require a transportable, simple, and robust gigawatt pulsed power generator, and an analysis of various possible approaches shows that one based on a twin exploding wire array is extremely advantageous. A generator based on this technology and used with a high-energy capacitor bank has recently been developed at Loughborough University. An H-configuration circuit is used, with one pair of diagonally opposite arms each comprising a high-voltage ballast inductor and the other pair exploding wire arrays capable of generating voltages up to 300 kV. The two center points of the H configuration provide the output to the load, which is coupled through a high-voltage self-breakdown spark gap, with the entire autonomous source being housed in a metallic container. Experimentally, a load resistance of a few tens of Ohms is provided with an impulse of more than 300 kV, having a rise time of about 140 ns and a peak power of over 1.7 GW. Details of the experimental arrangement and typical results are presented and diagnostic measurements of the current and voltage output are shown to compare well with theoretical predictions based on detailed numerical modeling. Finally, the next stage toward developing a more powerful and energetic transportable source is outlined.

  9. Anomalous energy transport in hot plasmas: solar corona and Tokamak

    International Nuclear Information System (INIS)

    Beaufume, P.

    1992-04-01

    Anomalous energy transport is studied in two hot plasmas and appears to be associated with a heating of the solar corona and with a plasma deconfining process in tokamaks. The magnetic structure is shown to play a fundamental role in this phenomenon through small scale instabilities which are modelized by means of a nonlinear dynamical system: the Beasts' Model. Four behavior classes are found for this system, which are automatically classified in the parameter space thanks to a neural network. We use a compilation of experimental results relative to the solar corona to discuss current-based heating processes. We find that a simple Joule effect cannot provide the required heating rates, and therefore propose a dimensional model involving a resistive reconnective instability which leads to an efficient and discontinuous heating mechanism. Results are in good agreement with the observations. We give an analytical expression for a diffusion coefficient in tokamaks when magnetic turbulence is perturbing the topology, which we validate thanks to the standard mapping. A realistic version of the Beasts' Model allows to test a candidate to anomalous transport: the thermal filamentation instability

  10. High energy electromagnetic particle transportation on the GPU

    Energy Technology Data Exchange (ETDEWEB)

    Canal, P. [Fermilab; Elvira, D. [Fermilab; Jun, S. Y. [Fermilab; Kowalkowski, J. [Fermilab; Paterno, M. [Fermilab; Apostolakis, J. [CERN

    2014-01-01

    We present massively parallel high energy electromagnetic particle transportation through a finely segmented detector on a Graphics Processing Unit (GPU). Simulating events of energetic particle decay in a general-purpose high energy physics (HEP) detector requires intensive computing resources, due to the complexity of the geometry as well as physics processes applied to particles copiously produced by primary collisions and secondary interactions. The recent advent of hardware architectures of many-core or accelerated processors provides the variety of concurrent programming models applicable not only for the high performance parallel computing, but also for the conventional computing intensive application such as the HEP detector simulation. The components of our prototype are a transportation process under a non-uniform magnetic field, geometry navigation with a set of solid shapes and materials, electromagnetic physics processes for electrons and photons, and an interface to a framework that dispatches bundles of tracks in a highly vectorized manner optimizing for spatial locality and throughput. Core algorithms and methods are excerpted from the Geant4 toolkit, and are modified and optimized for the GPU application. Program kernels written in C/C++ are designed to be compatible with CUDA and OpenCL and with the aim to be generic enough for easy porting to future programming models and hardware architectures. To improve throughput by overlapping data transfers with kernel execution, multiple CUDA streams are used. Issues with floating point accuracy, random numbers generation, data structure, kernel divergences and register spills are also considered. Performance evaluation for the relative speedup compared to the corresponding sequential execution on CPU is presented as well.

  11. The poleward migration of the location of tropical cyclone maximum intensity.

    Science.gov (United States)

    Kossin, James P; Emanuel, Kerry A; Vecchi, Gabriel A

    2014-05-15

    Temporally inconsistent and potentially unreliable global historical data hinder the detection of trends in tropical cyclone activity. This limits our confidence in evaluating proposed linkages between observed trends in tropical cyclones and in the environment. Here we mitigate this difficulty by focusing on a metric that is comparatively insensitive to past data uncertainty, and identify a pronounced poleward migration in the average latitude at which tropical cyclones have achieved their lifetime-maximum intensity over the past 30 years. The poleward trends are evident in the global historical data in both the Northern and the Southern hemispheres, with rates of 53 and 62 kilometres per decade, respectively, and are statistically significant. When considered together, the trends in each hemisphere depict a global-average migration of tropical cyclone activity away from the tropics at a rate of about one degree of latitude per decade, which lies within the range of estimates of the observed expansion of the tropics over the same period. The global migration remains evident and statistically significant under a formal data homogenization procedure, and is unlikely to be a data artefact. The migration away from the tropics is apparently linked to marked changes in the mean meridional structure of environmental vertical wind shear and potential intensity, and can plausibly be linked to tropical expansion, which is thought to have anthropogenic contributions.

  12. Energy consumption and environmental effects of passenger transport modes. A life cycle study on passenger transport modes

    International Nuclear Information System (INIS)

    Kalenoja, H.

    1996-01-01

    Energy consumption and environmental effects of different passenger transport modes vary on the different stages of the fuel chain and during the production and maintenance of vehicles and infrastructure. Energy consumption and the environmental effects calculated per passenger mileage depend strongly on the vehicle occupancy. The properties of transport modes on urban areas and on the long distance transport have been evaluated in this study. The energy consumption and environmental effects calculated per passenger mileage have been assessed for passenger car, bus, tram, train, airplane and ferry. The emissions have been evaluated during the whole fuel chain. In this study only the airborne emissions have been taken into account. In the energy consumption calculations the energy content of vehicles and the infrastructure, energy consumption during the fuel chain and during the end use have been taken into consideration. (au)

  13. Effects of energy constraints on transportation systems. [Twenty-six papers

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, R. K. [ed.

    1977-12-01

    Twenty-six papers are presented on a variety of topics including: energy and transportaton facts and figures; long-range planning under energy constraints; technology assessment of alternative fuels; energy efficiency of intercity passenger and freight movement; energy efficiency of intracity passenger movement; federal role; electrification of railroads; energy impact of the electric car in an urban enviroment; research needs and projects in progress--federal viewpoint; research needs in transportation energy conservation--data needs; and energy intensity of various transportation modes--an overview. A separate abstract was prepared for each of the papers for inclusion in Energy Research Abstracts (ERA) and in Energy Abstracts for Policy Analysis (EAPA).

  14. Conclusions and recommendations. [for problems in energy situation, air transportation, and hydrogen fuel

    Science.gov (United States)

    1973-01-01

    Conclusions and recommendations are presented for an analysis of the total energy situation; the effect of the energy problem on air transportation; and hydrogen fuel for aircraft. Properties and production costs of fuels, future prediction for energy and transportation, and economic aspects of hydrogen production are appended.

  15. Options for Energy Conservation and Emission Reductions in Transportation Means for Goods Distribution

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1996-01-01

    The report contains an analysis of the technological options and potentials for development of transportation means with low energy consumption and emissions. The main focus is on transportation means utilised in the distribution of groceries.......The report contains an analysis of the technological options and potentials for development of transportation means with low energy consumption and emissions. The main focus is on transportation means utilised in the distribution of groceries....

  16. The EU-Africa Energy Partnership: Towards a mutually beneficial renewable transport energy alliance?

    Energy Technology Data Exchange (ETDEWEB)

    Charles, Michael B., E-mail: michael.charles@scu.edu.a [Graduate College of Management, Faculty of Business and Law, Southern Cross University, PO Box 42, Tweed Heads, NSW 2485 (Australia); Ryan, Rachel [School of Commerce and Management, Faculty of Business and Law, Southern Cross University, PO Box 42, Tweed Heads, NSW 2485 (Australia); Oloruntoba, Richard [Newcastle Business School, Faculty of Business and Law, University of Newcastle, 1 University Drive, Callaghan, NSW 2324 (Australia); Heidt, Tania von der [School of Commerce and Management, Faculty of Business and Law, Southern Cross University, PO Box 157, Lismore, NSW 2480 (Australia); Ryan, Neal [Pro Vice-Chancellor, Southern Cross University, PO Box 157, Lismore, NSW 2480 (Australia)

    2009-12-15

    The European Union's EU-Africa Energy Partnership, with respect to its emphasis on transport fuels, aims to ensure that Member States can fulfil agreed upon commitments to sustainable energy via the importation of biomass grown in sub-Saharan Africa. This policy aims to reduce the dependence of developing sub-Saharan nations on fossil-fuels, while ensuring the global proliferation of alternative transport energy generation as a means to combat climate change. Though the policy seems equitable in theory, and indeed mutually beneficial, several important issues arise. The paper examines the EU-Africa Energy Policy in the context of biofuels in particular, with a view to identifying potential flaws and imbalances and making policy recommendations. Aside from establishing critical uncertainties, the study adduces environmental science, historical comparanda and economic theory in order to assess the various threats associated with aspects of the policy, especially in light of previous policies that have stifled the development of sub-Saharan economies. In addition, the paper has substantial relevance to developing and newly industrialized nations in Asia and South America also seeking to invest in biomass cultivation and production.

  17. The EU-Africa Energy Partnership. Towards a mutually beneficial renewable transport energy alliance?

    Energy Technology Data Exchange (ETDEWEB)

    Charles, Michael B. [Graduate College of Management, Faculty of Business and Law, Southern Cross University, PO Box 42, Tweed Heads, NSW 2485 (Australia); Ryan, Rachel [School of Commerce and Management, Faculty of Business and Law, Southern Cross University, PO Box 42, Tweed Heads, NSW 2485 (Australia); Oloruntoba, Richard [Newcastle Business School, Faculty of Business and Law, University of Newcastle, 1 University Drive, Callaghan, NSW 2324 (Australia); Heidt, Tania von der [School of Commerce and Management, Faculty of Business and Law, Southern Cross University, PO Box 157, Lismore, NSW 2480 (Australia); Ryan, Neal [Pro Vice-Chancellor, Southern Cross University, PO Box 157, Lismore, NSW 2480 (Australia)

    2009-12-15

    The European Union's EU-Africa Energy Partnership, with respect to its emphasis on transport fuels, aims to ensure that Member States can fulfil agreed upon commitments to sustainable energy via the importation of biomass grown in sub-Saharan Africa. This policy aims to reduce the dependence of developing sub-Saharan nations on fossil-fuels, while ensuring the global proliferation of alternative transport energy generation as a means to combat climate change. Though the policy seems equitable in theory, and indeed mutually beneficial, several important issues arise. The paper examines the EU-Africa Energy Policy in the context of biofuels in particular, with a view to identifying potential flaws and imbalances and making policy recommendations. Aside from establishing critical uncertainties, the study adduces environmental science, historical comparanda and economic theory in order to assess the various threats associated with aspects of the policy, especially in light of previous policies that have stifled the development of sub-Saharan economies. In addition, the paper has substantial relevance to developing and newly industrialized nations in Asia and South America also seeking to invest in biomass cultivation and production. (author)

  18. The EU-Africa Energy Partnership: Towards a mutually beneficial renewable transport energy alliance?

    International Nuclear Information System (INIS)

    Charles, Michael B.; Ryan, Rachel; Oloruntoba, Richard; Heidt, Tania von der; Ryan, Neal

    2009-01-01

    The European Union's EU-Africa Energy Partnership, with respect to its emphasis on transport fuels, aims to ensure that Member States can fulfil agreed upon commitments to sustainable energy via the importation of biomass grown in sub-Saharan Africa. This policy aims to reduce the dependence of developing sub-Saharan nations on fossil-fuels, while ensuring the global proliferation of alternative transport energy generation as a means to combat climate change. Though the policy seems equitable in theory, and indeed mutually beneficial, several important issues arise. The paper examines the EU-Africa Energy Policy in the context of biofuels in particular, with a view to identifying potential flaws and imbalances and making policy recommendations. Aside from establishing critical uncertainties, the study adduces environmental science, historical comparanda and economic theory in order to assess the various threats associated with aspects of the policy, especially in light of previous policies that have stifled the development of sub-Saharan economies. In addition, the paper has substantial relevance to developing and newly industrialized nations in Asia and South America also seeking to invest in biomass cultivation and production.

  19. Separate experiments and theoretical analyses on X-ray energy transport in cylinder cavity targets

    International Nuclear Information System (INIS)

    Jiang Shaoen; Zheng Zhijian; Cheng Jinxiu; Sun Kexu; Yang Jiamin; Miao Wenyong

    1999-12-01

    X-ray radiation transport in cylinder cavity targets is studied. For X-ray radiation energy transport, three kinds of targets, which are source, transport and slit targets, are investigated separately. From source target, the initial condition for transport is obtained. From transport target, the transport result is obtained. From slit target, the attenuation change along transport path is obtained. The simple radiation transport model is used to calculate and analyse the results for three kinds of targets. From experimental and calculated results, X-ray transport attenuation changes in exponential function, and scaling law for radiation transport is obtained. Three kinds of free path relative to transport are advanced. Using X-ray ablative self-similar solution, the scaling law for plasma expansion effect on transport is obtained

  20. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  1. The transport sector's energy usage in 2011; Transportsektorns energianvaendning 2011

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Ellen; Kadic, Zinaida; Lindblom, Helen

    2012-11-01

    Today, the transport sector accounts for a quarter of the Sweden's energy consumption. As the transport sector is almost exclusively using fossil fuels, its conversion to other fuel-/energy types have a major impact in the coming years with the increasing requirements for reduced emissions of greenhouse gases. This situation is expected to change and expand requirements for statistics on the transport sector's energy use. Since 2008, as a result of the increased interest, the Swedish Energy Agency publish an annual collection of statistics for the transport sector.

  2. Energy and sustainable urban transport development in China: Challenges and solutions

    International Nuclear Information System (INIS)

    Zhang, Xilang; Hu, Xiaojun

    2002-01-01

    This paper presents an overview of urban road transport development and challenges in energy consumption in China. It relates sustainable urban road transport development with energy consumption and environmental management. It analyzes the main challenges related to urban road transport development: energy security, low efficiency in energy utilization, and unsustainable environmental management. It also discusses necessary technological and policy initiatives to deal with these challenges: e.g., promoting the development and dissemination of cleaner vehicle technologies, substitution of LPG, CNG, LNG and bio fuels for gasoline and diesel, strengthening regulations on vehicle emissions, expediting public transport development, and the effective management of the soaring private cars. (author)

  3. Energy and sustainable urban transport development in China: Challenges and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xilang; Hu, Xiaojun

    2002-07-01

    This paper presents an overview of urban road transport development and challenges in energy consumption in China. It relates sustainable urban road transport development with energy consumption and environmental management. It analyzes the main challenges related to urban road transport development: energy security, low efficiency in energy utilization, and unsustainable environmental management. It also discusses necessary technological and policy initiatives to deal with these challenges: e.g., promoting the development and dissemination of cleaner vehicle technologies, substitution of LPG, CNG, LNG and bio fuels for gasoline and diesel, strengthening regulations on vehicle emissions, expediting public transport development, and the effective management of the soaring private cars. (author)

  4. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1992-01-01

    Particle and energy transport in tokamak plasmas have long been subjects of vigorous investigation. Present-day measurement techniques permit radially resolved studies of the transport of electron perturbations, low- and high-Z impurities, and energy. In addition, developments in transport theory provide tools that can be brought to bear on transport issues. Here, we examine local particle transport measurements of electrons, fully-stripped thermal helium, and helium-like iron in balanced-injection L-mode and enhanced confinement deuterium plasmas on TFTR of the same plasma current, toroidal field, and auxiliary heating power. He 2+ and Fe 24+ transport has been studied with charge exchange recombination spectroscopy, while electron transport has been studied by analyzing the perturbed electron flux following the same helium puff used for the He 2+ studies. By examining the electron and He 2+ responses following the same gas puff in the same plasmas, an unambiguous comparison of the transport of the two species has been made. The local energy transport has been examined with power balance analysis, allowing for comparisons to the local thermal fluxes. Some particle and energy transport results from the Supershot have been compared to a transport model based on a quasilinear picture of electrostatic toroidal drift-type microinstabilities. Finally, implications for future fusion reactors of the observed correlation between thermal transport and helium particle transport is discussed

  5. Graphical User Interface for High Energy Multi-Particle Transport Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Computer codes such as MCNPX now have the capability to transport most high energy particle types (34 particle types now supported in MCNPX) with energies extending...

  6. Graphical User Interface for High Energy Multi-Particle Transport, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Computer codes such as MCNPX now have the capability to transport most high energy particle types (34 particle types now supported in MCNPX) with energies extending...

  7. Integrated framework to capture the interdependencies between transportation and energy sectors due to policy decisions.

    Science.gov (United States)

    2014-05-01

    Currently, transportation and energy sectors are developed, managed, and operated independently of : one another. Due to the non-renewable nature of fossil fuels, energy security has evolved into a : strategic goal for the United States. The transpor...

  8. Graphical User Interface for High Energy Multi-Particle Transport, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Computer codes such as MCNPX now have the capability to transport most high energy particle types (34 particle types now supported in MCNPX) with energies extending...

  9. Non-linear absorption for concentrated solar energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es

  10. Efficiency and sufficiency. Towards sustainable energy and transport

    International Nuclear Information System (INIS)

    Bleijenberg, A.N.; Van Swigchem, J.

    1997-03-01

    A crucial question today is whether the development of clean technology can reduce environmental pollution to an acceptable level, or whether the growth of polluting activities must be stemmed as a complementary measure. This is the key issue addressed in the title discussion paper, which focuses specifically on the CO2 emissions of the energy and transport sectors. A systems analysis of these two sectors shows that the required improvements in efficiency can only be achieved - through technological improvements - if there is also slightly less growth in polluting activities. The underlying reason is that improvements in technological efficiency also lead to a drop in the price of polluting activities, leading in turn to an increase in demand. Only by means of strong government policy can an absolute reduction in CO2 emissions be achieved, thus countering this negative feedback. Effective policy to this end inevitably leads to extra costs and/or to lower growth in comfort enhancement. This is the price tag associated with abatement of CO2 emissions. 29 refs

  11. Study of a conceptual nuclear-energy center at Green River, Utah: site-specific transportation

    International Nuclear Information System (INIS)

    1981-10-01

    The objective of the following report is to assess the adequacy of the local and regional transportation network for handling traffic, logistics, and the transport of major power plant components to the Utah Nuclear Energy Center (UNEC) Horse Bench site. The discussion is divided into four parts: (1) system requirements; (2) description of the existing transportation network; (3) evaluation; (4) summary and conclusions

  12. Energy Coupling Factor-Type ABC Transporters for Vitamin Uptake in Prokaryotes

    NARCIS (Netherlands)

    Erkens, Guus B.; Dosz-Majsnerowska, Maria; ter Beek, Josy; Slotboom, Dirk Jan

    2012-01-01

    Energy coupling factor (ECF) transporters are a subgroup of ATP-binding cassette (ABC) transporters involved in the uptake of vitamins and micronutrients in prokaryotes. In contrast to classical ABC importers, ECF transporters do not make use of water-soluble substrate binding proteins or domains

  13. Long distance bioenergy logistics. An assessment of costs and energy consumption for various biomass energy transport chains

    International Nuclear Information System (INIS)

    Suurs, R.

    2002-01-01

    In order to create the possibility of obtaining an insight in the key factors of the title system, a model has been developed, taking into account different production systems, pretreatment operations and transport options. Various transport chains were constructed, which were subjected to a sensitivity analysis with respect to factors like transport distance, fuel prices and equipment operation times. Scenarios are analysed for Latin-America and Europe for which the distinguishing parameters were assumed to be the transport distances and biomass prices. For both regions the analysis concerns a situation where ship transports are applied for a coastal and for an inland biomass supply. For European biomass a train transport was considered as well. In order to explore possibilities for improvement, the effects of these variables on costs and energy consumption within a chain, were assessed. Delivered biomass can be converted to power or methanol. Model results are as follows: Total costs for European bioenergy range from 11.2-21.2 euro/GJ MeOH for methanol and 17.4-28.0 euro/GJ e for electricity. For Latin-America, costs ranges are 11.3-21.8 euro/GJ MeOH for methanol and 17.4-28.7 euro/GJ e for electricity. The lower end of these ranges is represented by transport chains that are characterised by the use of high density energy carriers such as logs, pellets or liquid fuels (these are the most attractive for all scenarios considered). The transport of chips should be avoided categorically due to their low density and high production costs. Transport chains based on the early production of liquid energy carriers such as methanol or pyrolysis oil seem to be promising alternatives as well. With respect to energy consumption, the transport of chips is highly unfavourable for the same reasons as stated above. The use of pelletizing operations implies a high energy input, however due to energy savings as a result of more efficient transport operations, this energy loss is

  14. Energy budgets and resistances to energy transport in sparsely vegetated rangeland

    Science.gov (United States)

    Nichols, W.D.

    1992-01-01

    Partitioning available energy between plants and bare soil in sparsely vegetated rangelands will allow hydrologists and others to gain a greater understanding of water use by native vegetation, especially phreatophytes. Standard methods of conducting energy budget studies result in measurements of latent and sensible heat fluxes above the plant canopy which therefore include the energy fluxes from both the canopy and the soil. One-dimensional theoretical numerical models have been proposed recently for the partitioning of energy in sparse crops. Bowen ratio and other micrometeorological data collected over phreatophytes growing in areas of shallow ground water in central Nevada were used to evaluate the feasibility of using these models, which are based on surface and within-canopy aerodynamic resistances, to determine heat and water vapor transport in sparsely vegetated rangelands. The models appear to provide reasonably good estimates of sensible heat flux from the soil and latent heat flux from the canopy. Estimates of latent heat flux from the soil were less satisfactory. Sensible heat flux from the canopy was not well predicted by the present resistance formulations. Also, estimates of total above-canopy fluxes were not satisfactory when using a single value for above-canopy bulk aerodynamic resistance. ?? 1992.

  15. 48 CFR 970.5223-6 - Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management.

    Science.gov (United States)

    2010-10-01

    ..., Strengthening Federal Environmental, Energy, and Transportation Management. 970.5223-6 Section 970.5223-6... FEDERAL ENVIRONMENTAL, ENERGY, AND TRANSPORTATION MANAGEMENT (OCT 2010) Since this contract involves... MANAGEMENT AND OPERATING CONTRACTS Solicitation Provisions and Contract Clauses for Management and Operating...

  16. Design of medium energy beam transport line between the RFQ and ...

    Indian Academy of Sciences (India)

    Abstract. The design of a medium energy beam transport (MEBT) line comprising of a re-buncher and four quadrupoles, two upstream and the other two downstream of the re-buncher, has been presented. The design was done to ensure almost 100% transport of heavy-ion beams of about 99 keV/u energy from RFQ having ...

  17. Socio-technical change: Developing narratives for the Danish energy and transport sector

    DEFF Research Database (Denmark)

    Hansen, Meiken

    has the past years done much to increase the amount in of renewable energy in the energy system, the transport sector has not yet been included in the greening process (Sovacool 2013). The transport sector is responsible for almost a quarter of greenhouse emissions in EU, whereof two thirds originate...... from road transports (EU, 2014). Thus it is important to focus on political actors and processes within socio-technical transitions on this area. The paper is based on the COMETS project, which main focus is policy advice in the Danish energy and transport sector to achieve a fossil-fuel free energy...... scenarios. Different actors can be enrolled into a coalition of change through narratives which include and organise visions and expectations (Smith, Stirling, and Berkhout 2005). Central to this study is the question of how different actors in the Danish energy and transport sector envision possible...

  18. Assessing links between energy consumption, freight transport, and economic growth: evidence from dynamic simultaneous equation models.

    Science.gov (United States)

    Nasreen, Samia; Saidi, Samir; Ozturk, Ilhan

    2018-04-04

    We investigate this study to examine the relationship between economic growth, freight transport, and energy consumption for 63 developing countries over the period of 1990-2016. In order to make the panel data analysis more homogeneous, we apply the income level of countries to divide the global panel into three sub-panels, namely, lower-middle income countries (LMIC), upper-middle income countries (UMIC), and high-income countries (HIC). Using the generalized method of moments (GMM), the results prove evidence of bidirectional causal relationship between economic growth and freight transport for all selected panels and between economic growth and energy consumption for the high- and upper-middle income panels. For the lower-middle income panel, the causality is unidirectional running from energy consumption to economic growth. Also, the results indicate that the relationship between freight transport and energy use is bidirectional for the high-income countries and unidirectional from freight transport to energy consumption for the upper-middle and lower-middle income countries. Empirical evidence demonstrates the importance of energy for economic activity and rejects the neo-classical assumption that energy is neutral for growth. An important policy recommendation is that there is need of advancements in vehicle technology which can reduce energy intensity from transport sector and improve the energy efficiency in transport activity which in turn allows a greater positive role of transport in global economic activity.

  19. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy: Energy and Transportation, Grade 3. Draft Copy.

    Science.gov (United States)

    National Science Teachers Association, Washington, DC.

    This publication is part of a series of instructional units produced by NSTA's Project for an Energy-Enriched Curriculum. This unit presents the variety of transportation modes and tries to assist students in understanding the effects of transportation on their world. The main concern of the unit is with fossil fuel consumption. The seven…

  20. The Influence of Rain Sensible Heat and Subsurface Energy Transport on the Energy Balance at the Land Surface

    NARCIS (Netherlands)

    Kollet, S.J.; Cvijanovic, I.; Schüttemeyer, D.; Maxwell, R.M.; Moene, A.F.; Bayer, P.

    2009-01-01

    In land surface models, which account for the energy balance at the land surface, subsurface heat transport is an important component that reciprocally influences ground, sensible, and latent heat fluxes and net radiation. In most models, subsurface heat transport parameterizations are commonly

  1. Energy for road passenger transport and sustainable development: assessing policies and goals interactions

    DEFF Research Database (Denmark)

    Meza, Maria Josefina Figueroa; Ribeiro, Suzana Kahn

    2013-01-01

    environmental problems, energy security concerns and dangerous climate change. This review explores a systematic approach to describe interactions documented in the literature, between policies targeting energy use in road passenger transport to reduce petroleum consumption and greenhouse gas emissions......Development that is sustainable requires an operational, efficient and safe transportation system fueled by clean, low-carbon, secure and affordable energy. The energy used in road passenger transport enables social and economic development and is the target of interventions to fight pressing urban...

  2. Energy transition and transport networks, the Danish example. Breakfast-debate of 4 April 2013

    International Nuclear Information System (INIS)

    Boucly, Philippe; Dorte Riggelsen, Anne; Lambert, Francois-Michel; Brabo, Torben; Bornard, Pierre

    2013-01-01

    This document contains contributions presented by the GRTgaz general manager, the Danish ambassador, an expert in circular economy, the vice-chairman of the Danish gas and electricity utility, and a high representative of RTE about the role of energy transport networks in energy transition. It appears that energy transition raises several issues for energy transport operators: technical challenges due to the growth of renewable energies (notably in terms of grid steering and of production and consumption peak management), the introduction of flexibility and development of energy storage means, mechanisms of solidarity between regions and countries, political and economic dimensions with exchanges on good practices

  3. The Impact of Increased Efficiency in the Transport Sectors‟ Energy ...

    African Journals Online (AJOL)

    Energy efficiency is viewed as a tool for achieving both sustainable development and environmental sustainability in Botswana and world-wide. This is premised on the standard wisdom that energy-augmenting technical progress reduces aggregate energy consumption. In the energy economics literature, there is ...

  4. Energy intensity in road freight transport of heavy goods vehicles in Spain

    International Nuclear Information System (INIS)

    Andrés, Lidia; Padilla, Emilio

    2015-01-01

    This paper examines the factors that have influenced the energy intensity trend of the Spanish road freight transport of heavy goods vehicles over the period 1996–2012. This article aims to contribute to a better understanding of these factors and to inform the design of measures to improve energy efficiency in road freight transport. The paper uses both annual single-period and chained multi-period multiplicative LMDI-II decomposition analysis. The results suggest that the decrease in the energy intensity of Spanish road freight in the period is explained by the change in the real energy intensity index (lower energy consumption per tonne-kilometre transported), which is partially offset by the behaviour of the structural index (greater share in freight transport of those commodities the transportation of which is more energy intensive). The change in energy intensity is analysed in more depth by quantifying the contribution of each commodity through the attribution of changes in Divisia indices. -- Highlights: •We examine energy intensity of Spanish road freight transport over 1996–2012. •We employ single-period and chained multi-period multiplicative LMDI-II decomposition. •Energy intensity reduction is explained by the change in real energy intensity index. •This is partially offset by the behaviour of the structural index. •The attribution of Divisia indices changes gives the contribution of each commodity

  5. Frequency Selective Energy Transport of the Copper Nanowire Driven by External Force

    Science.gov (United States)

    Zhong, Wei-Rong; Ai, Bao-Quan; Shao, Yuan-Zhi

    2011-07-01

    We study the energy transport in the copper nanowire driven by a Z-direction periodic vibration through nonequilibrium molecular-dynamics simulations. It is observed that the energy transport is dependence on the frequency of the periodic vibration. This phenomenon can be explained by the matches between the phonon spectra of the particle and the external vibration. It is suggested that the energy flux flowing through the copper nanowire can be controlled by applying high frequency external driven forces.

  6. International comparisons of energy and environmental efficiency in the road transport sector

    International Nuclear Information System (INIS)

    Ben Abdallah, Khaled; Belloumi, Mounir; De Wolf, Daniel

    2015-01-01

    The present work provides an international comparison of the energy intensity and the carbon dioxide intensity in road transport for a group of 90 countries over the period 1980–2012. This paper attempts to perform a comparative analysis to find the most appropriate mapping of the energy performance in road transport taking into account the three dimensions of sustainable energy development, namely road transport-related energy consumption, economic growth and carbon dioxide emissions. An important result of the study is the inverse relationship between energy efficiency and environmental efficiency. Through the calculated Theil coefficient, our empirical findings highlight the existence of spatial and temporal disparities between countries. In 2012, Tunisia occupies the 48th and the 38th rank respectively in terms of energy and environmental efficiency. Based on a general index of energy performance in the road transport sector, it is deemed to have a medium–high energy performance by occupying the 34th rank. The study shows the importance of enhancing a number of policies for the road transport system through the joint improvement of the fuel price policy, of the road infrastructure policy and of the fuel-efficient road vehicles policy, in order to maintain sustainable energy road transport. - Highlights: • The paper presents an international comparative analysis of the energy performance. • The road transport is analyzed for a group of 90 countries over the period 1980–2012. • There is no convergence between energy and environmental efficiencies. • Tunisia has a medium-high energy performance by occupying the 34th rank in 2012. • The findings show the importance of enhancing some policies for the road transport.

  7. Addressing transportation energy and environmental impacts: technical and policy research directions

    Energy Technology Data Exchange (ETDEWEB)

    Weissenberger, S.; Pasternak, A.; Smith, J.R.; Wallman, H.

    1995-08-01

    The Lawrence Livermore National Laboratory (LLNL) is establishing a local chapter of the University of California Energy Institute (UCEI). In order to most effectively contribute to the Institute, LLNL sponsored a workshop on energy and environmental issues in transportation. This workshop took place in Livermore on August 10 and brought together researchers from throughout the UC systems in order to establish a joint LLNL-UC research program in transportation, with a focus on energy and environmental impacts.

  8. An estimation of the energy and exergy efficiencies for the energy resources consumption in the transportation sector in Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Sattar, M.A.; Masjuki, H.H.; Ahmed, S.; Hashim, U.

    2007-01-01

    The purpose of this work is to apply the useful energy and exergy analysis models for different modes of transport in Malaysia and to compare the result with a few countries. In this paper, energy and exergy efficiencies of the various sub-sectors are presented by considering the energy and exergy flows from 1995 to 2003. Respective flow diagrams to find the overall energy and exergy efficiencies of Malaysian transportation sector are also presented. The estimated overall energy efficiency ranges from 22.74% (1999) to 22.98% (1998) with a mean of 22.82+/-0.06% and that of overall exergy efficiency ranges from 22.44% (2000) to 22.82% (1998) with a mean of 22.55+/-0.12%. The results are compared with respect to present energy and exergy efficiencies in each sub-sector. The transportation sector used about 40% of the total energy consumed in 2002. Therefore, it is important to identify the energy and exergy flows and the pertinent losses. The road sub-sector has appeared to be the most efficient one compared to the air and marine sub-sectors. Also found that the energy and exergy efficiencies of Malaysian transportation sector are lower than that of Turkey but higher than Norway

  9. A direct estimate of poleward volume, heat and fresh water flux at 59.5°N between Greenland and Scotland

    Science.gov (United States)

    Rossby, Thomas; Reverdin, Gilles; Chafik, Leon; Søiland, Henrik

    2017-04-01

    The meridional overturning circulation (MOC) in the North Atlantic plays a major role in the transport of heat from low latitudes to high. In this study we combine recent measurements of currents from the surface to >700 m from a shipboard acoustic Doppler current profiler on the Nuka Arctica, a freighter in regular service between Greenland and Denmark with Argo profiles (to 2000 m) to estimate poleward volume, heat and freshwater flux at 59.5°N between Greenland and Scotland. For the period late 2012 to early 2016 the de-seasoned mean meridional overturning circulation reaches a 14.9±1.7 Sv maximum at the σθ = 27.55 kg m-3 isopycnal, which varies in depth from near the surface in the western Irminger Sea to 1000 m in Rockall Trough. The surface to bottom transport has a -0.44 Sv (southward) residual, which is not significantly different from zero. The total heat and fresh water fluxes across 59.5°N = 307 PW and 0.15 Sv, both with a 12% uncertainty principally due to uncertainties of the MOC. Comparing this ADCP dataset with an earlier one of comparable size from 1999-2002 (to 400 m depth only) shows strikingly similar transports in both west and east of the Reykjanes Ridge suggesting at least for these two periods 13 years apart very little difference in the strength of the MOC.

  10. The Vermont transportation energy report : Vermont Clean Cities Coalition.

    Science.gov (United States)

    2010-08-01

    The mission of the Vermont Clean Cities Coalition (VCCC) is to reduce the states reliance on : fossil fuels for transportation. This annual report provides policy makers with relevant and : timely data on the status of fuel consumption, vehicle pu...

  11. Social organization and transportation energy: an annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Watts, W. W.

    1974-07-01

    This annotated bibliography lists items organized according to the following themes: (1) fuel consumption and modal split, (2) economics, (3) public decision-making, (4) transportation planning, and (5) effectiveness of municipal services.

  12. Energy and Environmental Effects of Grocery Distribution: Transportation Means Catalogue

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1996-01-01

    The report serves as a background report for the project "Energy and Environmental Effects of Grocery Distribution". It contains a systematic overview of physical characteristics of the typical technologies, including energy and environmental effects....

  13. Alternative energy resources for the Missouri Department of Transportation.

    Science.gov (United States)

    2011-01-01

    This research investigates environmentally friendly alternative energy sources that could be used by MoDOT in various areas, and develops applicable and sustainable strategies to implement those energy sources.

  14. Road transport-related energy consumption: Analysis of driving factors in Tunisia

    International Nuclear Information System (INIS)

    Mraihi, Rafaa; Abdallah, Khaled ben; Abid, Mehdi

    2013-01-01

    The rapid growth of urban population and the development of road infrastructures in Tunisian cities have brought about many environmental and economic problems, including the rise scored in energy consumption and the increase in the quantity of gas emissions arising from road transport. Despite the critical nature of such problems, no policies have yet been adopted to improve energy efficiency in the transport sector. This paper aims to determine driving factors of energy consumption change for the road mode. It uses decomposition analysis to discuss the effects of economic, demographic and urban factors on the evolution of transport energy consumption. The main result highlighted in the present work is that vehicle fuel intensity, vehicle intensity, GDP per capita, urbanized kilometers and national road network are found to be the main drivers of energy consumption change in the road transport sector during 1990–2006 period. Consequently, several strategies can be elaborated to reduce road transport energy. Economic, fiscal and regulatory instruments can be applied in order to make road transport more sustainable. -- Highlights: •We are interested in determining driving factors of transport energy consumption growth in Tunisia. •We use decomposition analysis approach. •Vehicle fuel and road vehicle intensities are found to be principal factors. •Motorization and urbanization are also found to be responsible

  15. Denton, Texas: Using Transportation Data to Reduce Fuel Consumption (City Energy: From Data to Decisions)

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-09-29

    This fact sheet "Denton, Texas: Using Transportation Data to Reduce Fuel Consumption" explains how the City of Denton used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  16. Thermal performance and heat transport in aquifer thermal energy storage

    NARCIS (Netherlands)

    Sommer, W.T.; Doornenbal, P.J.; Drijver, B.C.; Gaans, van P.F.M.; Leusbrock, I.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as

  17. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  18. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  19. The Integration of Sustainable Transport into Future Renewable Energy Systems in China

    DEFF Research Database (Denmark)

    Liu, Wen

    use are largely lost in the current fossil fuel dominated energy systems. Sustainable transport development requires solutions from an overall renewable energy system in which integration of large-scale intermittent renewable energy needs assistance. Technologies of alternative vehicle fuels...... in transport may play a role in furthering such integration. The objective of this research is to make a contribution to the development of methodologies to identify and develop future sustainable transport systems as well as to apply such methodologies to the case of China. In particular, the methodological...... development focuses on 1) identifying suitable transport technologies and strategies based on renewable energy and 2) evaluating such technologies from the perspective of overall renewable energy system integration. For this purpose, a methodological framework involving the research fields of both...

  20. The evolution of the energy demand in France in the industrial, residential and transportation sectors

    International Nuclear Information System (INIS)

    2006-01-01

    This document provides information, from 1970 to 2005, on the evolution of the energy intensity (ratio between the primary energy consumption and the gross domestic product in volume) and the actions of energy control for the industrial, residential and transportation sectors. (A.L.B.)

  1. Transporting hydraulic energy in the pre-electric era (1830-1890); Transporter l'energie hydraulique a distance, avant l'electricite (1830-1890)

    Energy Technology Data Exchange (ETDEWEB)

    Ducluzaux, A. [Association pour le Patrimoine et l' Histoire de l' Industrie en Dauphine, APHID, 38 - Grenoble (France)

    2002-07-01

    The invention of the hydraulic turbine (1827) provided industrialists with abundant and economical energy, but one which could only be exploited at the bottom of a waterfall. For 60 years, all the possible means of transporting this energy at a greater distance were invented, with varying degrees of success. Examples of installation facilities describe the three systems most often used during this period: mechanical transport through cables in Bellegarde sur Rhone - pneumatic means using compressed air for the first trans-Alpine tunnel in Mont Cenis - hydraulic means using pressurized water in Geneva. After a decade of continuous attempts (1881-1891), the discovery of electricity resolved this major problem. (author)

  2. Supply chain cost analysis of long-distance transportation of energy wood in Finland

    International Nuclear Information System (INIS)

    Tahvanainen, Timo; Anttila, Perttu

    2011-01-01

    The increasing use of bioenergy has resulted in a growing demand for long-distance transportation of energy wood. For both biofuels and traditional forest products, the importance of energy efficiency and rail use is growing. A GIS-based model for energy wood supply chains was created and used to simulate the costs for several supply chains in a study area in eastern Finland. Cost curves of ten supply chains for logging residues and full trees based on roadside, terminal and end-facility chipping were analyzed. The average procurement costs from forest to roadside storage were included. Railway transportation was compared to the most commonly used truck transportation options in long-distance transport. The potential for the development of supply chains was analyzed using a sensitivity analysis of 11 modified supply chain scenarios. For distances shorter than 60 km, truck transportation of loose residues and end-facility comminution was the most cost-competitive chain. Over longer distances, roadside chipping with chip truck transportation was the most cost-efficient option. When the transportation distance went from 135 to 165 km, depending on the fuel source, train-based transportation offered the lowest costs. The most cost-competitive alternative for long-distance transport included a combination of roadside chipping, truck transportation to the terminal and train transportation to the plant. Due to the low payload, the energy wood bundle chain with train transportation was not cost-competitive. Reduction of maximum truck weight increased the relative competitiveness of loose residue chains and train-based transportation, while reduction of fuel moisture increased competitiveness, especially of chip trucks.

  3. Life cycle energy and greenhouse gas emissions from transportation of Canadian oil sands to future markets

    International Nuclear Information System (INIS)

    Tarnoczi, Tyler

    2013-01-01

    Oil sands transportation diversification is important for preventing discounted crude pricing. Current life cycle assessment (LCA) models that assess greenhouse gas (GHG) emissions from crude oil transportation are linearly-scale and fail to account for project specific details. This research sets out to develop a detailed LCA model to compare the energy inputs and GHG emissions of pipeline and rail transportation for oil sands products. The model is applied to several proposed oils sands transportation routes that may serve as future markets. Comparison between transportation projects suggest that energy inputs and GHG emissions show a high degree of variation. For both rail and pipeline transportation, the distance over which the product is transported has a large impact on total emissions. The regional electricity grid and pump efficiency have the largest impact on pipeline emissions, while train engine efficiency and bitumen blending ratios have the largest impact on rail transportation emissions. LCA-based GHG regulations should refine models to account for the range of product pathways and focus efforts on cost-effective emission reductions. As the climate-change impacts of new oil sands transportation projects are considered, GHG emission boundaries should be defined according to operation control. -- Highlights: •A life cycle model is developed to compare transportation of oil sands products. •The model is applied to several potential future oil sands markets. •Energy inputs and GHG emissions are compared. •Model inputs are explored using sensitivity analysis. •Policy recommendations are provided

  4. Feasibility Study of Cargo Airship Transportation Systems Powered by New Green Energy Technologies

    Science.gov (United States)

    Skuza, Jonathan R.; Park, Yeonjoon; Kim, Hyun Jung; Seaman, Shane T.; King, Glen C.; Choi, Sang H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Kunik

    2014-01-01

    The development of transportation systems that use new and sustainable energy technologies is of utmost importance due to the possible future shortfalls that current transportation modes will encounter because of increased volume and costs. The introduction and further research and development of new transportation and energy systems by materials researchers at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) and the Department of Transportation are discussed in this Technical Memorandum. In this preliminary study, airship concepts were assessed for cargo transportation using various green energy technologies capable of 24-hour operation (i.e., night and day). Two prototype airships were successfully constructed and tested at LaRC to demonstrate their feasibility: one with commercially available solar cells for operation during the daytime and one with microwave rectennas (i.e., rectifying antennas) developed in-house for night-time operation. The test results indicate the feasibility of a cargo transportation airship powered by new green energy sources and wireless power technology. Future applications will exploit new green energy sources that use materials and devices recently developed or are in the process of being developed at LaRC. These include quantum well SiGe solar cells; low, mid-, and high temperature thermoelectric modules; and wireless microwave and optical rectenna devices. This study examines the need and development of new energy sources for transportation, including the current status of research, materials, and potential applications.

  5. Impacts of energy subsidy reform on the Malaysian economy and transportation sector

    International Nuclear Information System (INIS)

    Solaymani, Saeed; Kari, Fatimah

    2014-01-01

    Malaysia is paying a high level of subsidies on the consumption of energy (about 5% of its GDP). Therefore, reforming the energy subsidies, as planned by the government, will have a significant impact on household welfare and energy-intensive sectors, such as the transport sector. This study employs a computable general equilibrium (CGE) model to highlight the transmission channels through which the removal of energy subsidies affects the domestic economy. The findings show that the shock increases real GDP and real investment, while decreasing Malaysian total exports and imports. The removal of energy subsidies also decreases the aggregate energy demand, and, consequently, decreases the level of carbon emissions in the Malaysian economy. In addition, households experience significant falls in their consumption and welfare. The transport sector is significantly influenced through an increase in production costs due to an increase in the prices of intermediate inputs. The total output and total exports of the whole transport sector decrease while its imports increase. In addition, the use of all kinds of transport by households decreases significantly. The Malaysian energy subsidy reform, leads to an initial decrease in CO 2 emissions and demand for electricity, gas, and petroleum products in the entire transport sector. - Highlights: • Malaysia pays a high level of subsidy on consumption of energy. • The transportation sector in this country is the highest energy consumer among others. • A general equilibrium model used to analyse the effects of energy subsidy reform. • The shock increases real GDP and decreases energy and carbon emission in this sector. • It is not beneficial for the transport sector as decreases the output of this sector

  6. Energy conversion, storage and transportation by means of hydrogen

    International Nuclear Information System (INIS)

    Friedlmeier, G; Mateos, P; Bolcich, J.C.

    1988-01-01

    Data concerning the present consumption of energy indicate that the industrialized countries (representing 25% of the world's population) consume almost 75% of the world's energy production, while the need for energy aimed at maintaining the growth of non-industrialized countries increases day after day. Since estimations indicate that the fossil reverses will exhaust within frightening terms, the production of hydrogen from fossil fuels and, fundamentally, from renewable sources constitute a response to future energy demand. The production of hydrogen from water is performed by four different methods: direct thermal, thermochemical, electrolysis and photolysis. Finally, different ways of storaging and using hydrogen are proposed. (Author)

  7. Worldwide transportation/energy demand, 1975-2000. Revised Variflex model projections

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, R.U.; Ayres, L.W.

    1980-03-01

    The salient features of the transportation-energy relationships that characterize the world of 1975 are reviewed, and worldwide (34 countries) long-range transportation demand by mode to the year 2000 is reviewed. A worldwide model is used to estimate future energy demand for transportation. Projections made by the forecasting model indicate that in the year 2000, every region will be more dependent on petroleum for the transportation sector than it was in 1975. This report is intended to highlight certain trends and to suggest areas for further investigation. Forecast methodology and model output are described in detail in the appendices. The report is one of a series addressing transportation energy consumption; it supplants and replaces an earlier version published in October 1978 (ORNL/Sub-78/13536/1).

  8. Alternative energy sources for non-highway transportation: technical section

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Eighteen different alternative fuels were considered in the preliminary screening, from three basic resource bases. Coal can be used to provide 13 of the fuels; oil shale was the source for three of the fuels; and biomass provided the resource base for two fuels not provided from coal. In the case of biomass, six different fuels were considered. Nuclear power and direct solar radiation were also considered. The eight prime movers that were considered in the preliminary screening are boiler/steam turbine; open and closed cycle gas turbines; low and medium speed diesels; spark ignited and stratified charge Otto cycles; electric motor; Stirling engine; free piston; and fuel cell/electric motor. Modes of transport considered are pipeline, marine, railroad, and aircraft. Section 2 gives the overall summary and conclusions, the future outlook for each mode of transportation, and the R and D suggestions by mode of transportation. Section 3 covers the preliminary screening phase and includes a summary of the data base used. Section 4 presents the methodology used to select the fuels and prime movers for the detailed study. Sections 5 through 8 cover the detailed evaluation of the pipeline, marine, railroad, and aircraft modes of transportation. Section 9 covers the demand related issues.

  9. The integration of transportation with the energy system in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Beella, Satish Kumar

    were carried out in sequence. Firstly, a Chinese transport model has been created and approach reliability has been examined. Secondly, two scenarios, continued improvement (CI) scenario and accelerated improvement (AI) scenario, have been designed and evaluated. The results indicate that evident fuel...

  10. Nanoscale energy transport and harvesting a computational study

    CERN Document Server

    Gang, Zhang

    2014-01-01

    Molecular Dynamics Simulations for Computing Thermal Conductivity of Nano MaterialsNonequilibrium Phonon Green's Function Simulation and Its Application to Carbon NanotubesThermal Conduction of GrapheneBallistic Thermal Transport by Phonons at Low Temperatures in Low-Dimensional Quantum StructuresSurface functionalization induced thermal conductivity attenuation in silicon nanowires: A molecular dynamics study

  11. The Impact of Increased Efficiency in the Transport Sectors‟ Energy ...

    African Journals Online (AJOL)

    None

    (iv) The household sector was reduced to three components, namely, non-citizen, citizen-rural and citizen-urban households. ... citizen labour and capital – 3 household accounts, which are rural-citizen, urban-citizen and non- ...... (1993), Botswana Energy Master Plan, Energy Affairs Division, Ministry of Mineral. Resources ...

  12. Determination of the transport of thermal energy by conduction in perfused tissue

    International Nuclear Information System (INIS)

    Waterman, F.M.; Tupchong, L.; Matthews, J.; Nerlinger, R.E.

    1987-01-01

    A limitation of the thermal clearance method for determination of the blood flow rate during local hyperthermia is its inability to distinguish between thermal energy transport by perfusion and thermal conduction. A method is described for determination of the thermal energy transport by conduction at the point where thermal clearance is measured. Three profiles of the tissue temperature are measured in mutually orthogonal directions about this point. The conduction term of the bioheat equation is evaluated from the temperature profiles by the method of finite differences. The ability to determine the rate of thermal energy transport by conduction from orthogonal temperature profiles is demonstrated in a static phantom where conduction is the only mode of thermal energy transport. The implementation of this method in the clinic is described

  13. Integrating U.S. climate, energy, and transportation policies : RAND workshops address challenges and potential solutions

    Science.gov (United States)

    2009-01-01

    There is growing consensus among policymakers that bold government action is needed : to mitigate climate change, particularly through integrated climate, energy, and transportation : policy initiatives. In an effort to share different perspectives o...

  14. Energy Policy Act transportation rate study: Interim report on coal transportation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  15. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L. R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  16. Managing energy demand through transport policy. What can South Africa learn from Europe?

    Energy Technology Data Exchange (ETDEWEB)

    Vanderschuren, Marianne [Centre for Transport Studies, Faculty of Engineering and the Built Environment, University of Cape Town, Private Bag, 7701 Rondebosch (South Africa); Lane, T.E. [Centre for Transport Studies, University of Cape Town (South Africa); Korver, W. [Goudappel Coffeng BV (Netherlands)

    2010-02-15

    For years, the world has enjoyed the luxury of inexpensive transport fuels, resulting in the continuous expansion of transport demand and vast improvements in mobility levels. The threat of peak oil and other environmental concerns, however, are forcing a paradigm shift in terms of transport planning. In recent times, many developed nations have been investigating alternative ways and means of weaning themselves off oil as the main transport energy source and managing transport energy demand. South Africa is a developing nation that, in terms of transportation technology and policy, lags behind developed countries. This presents South Africa with the opportunity to learn from other countries' triumphs and mistakes and to skip over obsolete investment patterns and in effective policy. It needs to be determined what South Africa can do to bend the stream of continuously growing transport (energy) demand, without hampering growth in mobility. Solutions can potentially be found by looking at the European Union's past and present situation and responses. This paper summarises various European energy management transport policies. These policies are translated into a South African context - pros, cons and implementation viability are identified. (author)

  17. Managing energy demand through transport policy: What can South Africa learn from Europe?

    Energy Technology Data Exchange (ETDEWEB)

    Vanderschuren, Marianne, E-mail: marianne.vanderschuren@uct.ac.z [Centre for Transport Studies, Faculty of Engineering and the Built Environment, University of Cape Town, Private Bag, 7701 Rondebosch (South Africa); Lane, T.E., E-mail: lane.tanya@gmail.co [Centre for Transport Studies, University of Cape Town (South Africa); Korver, W., E-mail: WKorver@goudappel.n [Goudappel Coffeng BV (Netherlands)

    2010-02-15

    For years, the world has enjoyed the luxury of inexpensive transport fuels, resulting in the continuous expansion of transport demand and vast improvements in mobility levels. The threat of peak oil and other environmental concerns, however, are forcing a paradigm shift in terms of transport planning. In recent times, many developed nations have been investigating alternative ways and means of weaning themselves off oil as the main transport energy source and managing transport energy demand. South Africa is a developing nation that, in terms of transportation technology and policy, lags behind developed countries. This presents South Africa with the opportunity to learn from other countries' triumphs and mistakes and to skip over obsolete investment patterns and ineffective policy. It needs to be determined what South Africa can do to bend the stream of continuously growing transport (energy) demand, without hampering growth in mobility. Solutions can potentially be found by looking at the European Union's past and present situation and responses. This paper summarises various European energy management transport policies. These policies are translated into a South African context-pros, cons and implementation viability are identified.

  18. Dynamics of transport and energy systems: history of development and a scenario for the future

    Energy Technology Data Exchange (ETDEWEB)

    Gruebler, A.; Nakicenovic, N.; Schaefer, A. (International Institute for Applied Systems Analysis, Laxenburg (Austria))

    1992-01-01

    This paper provides a quantitative history of the transport system and draws some conclusions concerning possible future developments and implications for energy use and carbon emissions. Evidence of long-term regulations in the evolution diffusion and replacement of several families of technologies that constitute our transport systems emerge. 13 refs., 11 figs., 1 tab.

  19. Production and cost of harvesting, processing, and transporting small-diameter (< 5 inches) trees for energy

    Science.gov (United States)

    Fei Pan; Han-Sup Han; Leonard R. Johnson; William J. Elliot

    2008-01-01

    Dense, small-diameter stands generally require thinning from below to improve fire-tolerance. The resulting forest biomass can be used for energy production. The cost of harvesting, processing, and transporting small-diameter trees often exceeds revenues due to high costs associated with harvesting and transportation and low market values for forest biomass....

  20. PROSPECTS FOR TRANSPORT ENERGY CONSUMPTION: METHODOLOGICAL APPROACHES AND RESULTS OF FORECASTING

    Directory of Open Access Journals (Sweden)

    Eder L.V.

    2016-03-01

    Full Text Available The direction and effectiveness of the using mineral resources, as well as the development trend of the mineral markets, especially energy markets - is one of the central topics of the development of relevant industries. The article discusses the consumption of mineral energy resources in transport with the differentiation by the countries of the world. It proposed to improve the methods of forecasting of energy consumption in the transport sector in the medium and long term. Relevance of the work associated with the leading role of the transport sector in the formation of oil demand in the world. In most developed and developing countries vehicle transport accounts for 60-70% of the total domestic oil consumption. Forecasting of energy demand is particular important to ensure energy security of the countries in the transport sector in the medium and long term. Predicting energy consumption by road vehicles includes two main areas: the forecast of specific energy consumption vehicle and the forecast of the number of cars. The authors examined historical data of specific energy consumption of road vehicle with the differentiation by the countries of Europe and Russia. The analysis revealed a steady decline in energy intensity in most advanced countries. However, this process is different in intensity decrease specific energy consumption and the time of occurrence of the trend. An analysis of the specific energy consumption in the past 25 years has shown that the dynamics of the index most accurately described by an exponential function: the initial stage of reduction of energy consumption is more intensive than in subsequent periods. As a result, the general pattern was derived convergence of energy consumption and the parameters depending on the speed of lowering the energy intensity of its initial value. On basis of trend models and identified reducing energy consumption depending on the speed of its entry-level may carry out the forecast of

  1. Prospects for transport energy consumption: methodological approaches and results of forecasting companies.

    Directory of Open Access Journals (Sweden)

    Nemov V. Yu.

    2016-03-01

    Full Text Available The direction and effectiveness of the using mineral resources, as well as the development trend of the mineral markets, especially energy markets – is one of the central topics of the development of relevant industries. The article discusses the consumption of mineral energy resources in transport with the differentiation by the countries of the world. It proposed to improve the methods of forecasting of energy consumption in the transport sector in the medium and long term. Relevance of the work associated with the leading role of the transport sector in the formation of oil demand in the world. In most developed and developing countries vehicle transport accounts for 60-70% of the total domestic oil consumption. Forecasting of energy demand is particular important to ensure energy security of the countries in the transport sector in the medium and long term. Predicting energy consumption by road vehicles includes two main areas: the forecast of specific energy consumption vehicle and the forecast of the number of cars. The authors examined historical data of specific energy consumption of road vehicle with the differentiation by the countries of Europe and Russia. The analysis revealed a steady decline in energy intensity in most advanced countries. However, this process is different in intensity decrease specific energy consumption and the time of occurrence of the trend. An analysis of the specific energy consumption in the past 25 years has shown that the dynamics of the index most accurately described by an exponential function: the initial stage of reduction of energy consumption is more intensive than in subsequent periods. As a result, the general pattern was derived convergence of energy consumption and the parameters depending on the speed of lowering the energy intensity of its initial value. On basis of trend models and identified reducing energy consumption depending on the speed of its entry-level may carry out the forecast of

  2. Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model

    Energy Technology Data Exchange (ETDEWEB)

    Shabbir, Rabia; Ahmad, Sheikh Saeed [Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi (Pakistan)

    2010-05-15

    A research associated with urban transportation was carried out in Rawalpindi and Islamabad to analyze the status of emission of air pollutants and energy demands. The study included a discussion of past trends and future scenarios in order to reduce the future emissions. A simple model of passenger transport has been developed using computer based software called Long-Range Energy Alternatives Planning System (LEAP). The LEAP model was used to estimate total energy demand and the vehicular emissions for the base year 2000 and extrapolated till 2030 for the future predictions. Transport database in Rawalpindi and Islamabad, together with fuel consumption values for the vehicle types and emission factors of NO{sub x}, SO{sub 2} and PM{sub 10} corresponding to the actual vehicle types, formed the basis of the transport demand, energy consumption and total emission calculations. Apart from base scenario, the model was run under three alternative scenarios to study the impact of different urban transport policy initiatives that would reduce energy demand and emissions in transport sector of Rawalpindi and Islamabad. The prime objective was to arrive at an optimal transport policy, which limits the future growth of fuel consumption as well as air pollution. (author)

  3. The long-term development of the energy input in transportation, 1970-2020

    Energy Technology Data Exchange (ETDEWEB)

    Meiren, P.B. [E.F.C.E.E., Mechelen (Belgium)

    1996-12-01

    This paper is a - modest - statistical and economic analysis of the energy input in the transportation sector over the past twenty-five years (1970 - 1995) and an attempt at looking ahead over the next twenty-five years (1995 - 2020). After World War II passenger cars and trucks became the means of transportation par excellence and are still the main vehicle for moving around, both men and freight. Energy input statistics were born. Let us see what they teach us. (EG)

  4. Electrical energy conversion and transport an interactive computer-based approach

    CERN Document Server

    Karady, George G

    2013-01-01

    Provides relevant material for engineering students and practicing engineers who want to learn the basics of electrical power transmission, generation, and usage This Second Edition of Electrical Energy Conversion and Transport is thoroughly updated to address the recent environmental effects of electric power generation and transmission, which have become more important in conjunction with the deregulation of the industry. The maintenance and development of the electrical energy generation and transport industry requires well-trained engineers who are able to use mode

  5. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  6. Current and future energy and exergy efficiencies in the Iran’s transportation sector

    International Nuclear Information System (INIS)

    Zarifi, F.; Mahlia, T.M.I.; Motasemi, F.; Shekarchian, M.; Moghavvemi, M.

    2013-01-01

    Highlights: • The overall energy and exergy efficiencies of the sector were calculated. • The overall efficiencies were compared to other countries. • The overall energy and exergy efficiencies have been predicted by scenario approach. • A summary of recommendations to improve the sector is provided. - Abstract: Transportation is the second largest energy consumer sector in Iran which accounts for 24% of total energy consumption in 2009. This large percentage (almost a quarter) of energy consumption necessitates the determination of energy and exergy flows and their respective losses, which will enable the reduction of both energy growth and its consequent environmental impacts in the near future. This paper attempts to analyze and investigate the energy and exergy utilization of the transportation sector in Iran for the period of 1998–2009. Additionally, the total energy consumption in each subsector and the overall energy and exergy efficiencies are predicted via scenario approach. A comparison of the overall energy and exergy efficiencies of Iran with six other countries is also presented. The results show that the overall energy and exergy efficiencies of transportation sector in Iran is higher than China and Norway, while it is lower than Saudi Arabia, Jordan, Turkey, and Malaysia for the year 2000. Road appears to be the most efficient subsector. The overall energy efficiency is determined to be in the range of 22.02% in 1998, to 21.49% in 2009, while the overall exergy efficiency is determine to be in the range of 21.47% in 1998, to 21.19% in 2009. The energy consumption in each subsector is predicted from 2010 to 2035. It was discovered that the overall energy and exergy efficiencies possesses an upward trend during this time period. Finally, some recommendations vis-à-vis the improvement of the energy and exergy efficiencies in Iranian transportation sector in the future was provided and duly discussed

  7. Dynamic linkages among transport energy consumption, income and CO2 emission in Malaysia

    International Nuclear Information System (INIS)

    Azlina, A.A.; Law, Siong Hook; Nik Mustapha, Nik Hashim

    2014-01-01

    This paper examines the dynamic relationship between income, energy use and carbon dioxide (CO 2 ) emissions in Malaysia using time-series data during 1975 to 2011. This study also attempts to validate the environmental Kuznet curve (EKC) hypothesis. Applying a multivariate model of income, energy consumption in the transportation sector, carbon emissions, structural change in the economy and renewable energy use, the empirical evidence confirmed that there is a long-run relationship between the variables as shown by the result of co-integration analysis. The results indicate that the inverted U-shape EKC hypothesis does not fully agree with the theory. The coefficient of squared GDP is not statistically different from zero. The time duration and the annual data used for the present study do not seem to strongly validate the existence of EKC hypothesis in the case of Malaysia. Causality test shows that the relationship between GDP and CO 2 is unidirectional. The Granger causality test results reveal that emissions Granger-cause income, energy consumption and renewable energy use. Moreover, we find that income Granger-causes energy consumption and renewable energy use, and both structural change and renewable energy use Granger-cause energy consumption in road transportation. - Highlights: • We examine the dynamic relationship among energy consumption in transportation sector, income and CO 2 and also attempts to validate the environmental Kuznet curve (EKC) hypothesis. • We used a multivariate approach based on VECM. • The inverted U-shape EKC hypothesis is not valid in the case of Malaysia. • Uni-directional causality exists from emission to income, energy consumption and renewable energy use. • Income Granger-causes energy consumption and renewable energy use, and both structural change and renewable energy use Granger-cause energy consumption in road transportation

  8. Long-term energy consumptions of urban transportation: A prospective simulation of 'transport-land uses' policies in Bangalore

    International Nuclear Information System (INIS)

    Lefevre, Benoit

    2009-01-01

    The current trends of urban dynamics in the Third World are alarming with regard to climate change, because they are giving an increasingly important role to cars-to the detriment of public and non-motorized transportation. Yet this is the type of energy consumption that is expected to grow the fastest, in business-as-usual scenarios. How can these market-based urban trends be influenced? What level of emissions reduction can be achieved? This article shows that first, there is a relevant and urgent need to tackle the urban dynamics of cities in developing countries focusing on the 'transport-land uses' couple, and second, that existing transport technologies and decision-helping tools are already available to take up the climate change challenge. Through the application of an integrated 'transport-land uses' model, TRANUS, this study demonstrates that transit technologies affordable to an emerging city like Bangalore can significantly curb the trajectories of energy consumption and the ensuing carbon dioxide emissions, if and only if they are implemented in the framework of appropriate urban planning. Furthermore, this study establishes that there are tools which are available to facilitate the necessary policy-making processes. These tools allow stakeholders to discuss different political alternatives integrating energy issues, based on quantitative assessments

  9. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kai [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Institute for Theoretical Physics, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Dai, Wei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Xu, Nu [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Zhuang, Pengfei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China)

    2016-12-15

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  10. The Factors Influencing Transport Energy Consumption in Urban Areas: a Review

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2014-05-01

    Full Text Available Transport energy consumption accounts for about one third of total energy consumption in EU. Despite significant advances in transport technology and fuel formulation, transport energy consumption has increased in most EU countries over the last three decades. This increase in consumption occurred as a result of factors such as higher car ownership, a growth in automobile use and an increase in vehicle distances traveled. As travel and land-use are a function of one another, it is often hypothesized that changing urban structure can result in changes in energy consumption. Understanding how different land use characteristics may influence travel behaviour and the corresponding energy consumption is crucial for planners and policy makers in order to develop strategic actions to shrink the environmental footprint of the urban transportation sector. The aim of this article is to review the current literature on the connections between land use, travel behavior and energy consumption. In particular, this paper seeks to identify the determinants of transport energy consumption in urban areas by reviewing evidence from empirical studies. To this aim, nine characteristics of land use are presented and their effects on both travel behaviour and energy use are discussed Our review shown that, in contrast to the focus on the effect of the built environment on travel, only few researchers have empirically investigated the linkage between the built environment and transportation energy use. The research described in this paper has been developed within the PON04a2_E Smart Energy Master project. It represents part of a much broader research project aimed at the development of an integrated model of urban energy efficiency.

  11. Transportation energy consumption and conservation policy options in the Northeast. [1972 profile

    Energy Technology Data Exchange (ETDEWEB)

    1976-04-01

    This report presents a profile of 1972 transportation energy consumption in the Northeast region. Transportation energy projections for the region are given by mode for the years 1985 and 2000. Conservation actions which could significantly affect future transportation energy demand levels are described and their impacts evaluated. It is estimated that while the demand for energy in the transportation sector might increase by as much as 88% by the year 2000, strong conservation actions could reduce the projected level of demand by over 30%. Recent changes in the growth and distribution of population and industrial and commercial activities are reviewed. Both the factors that affect these growth and distribution patterns and the implications of changes in existing patterns on energy use in the transportation sector are discussed. It is shown, for example, that land-use controls could substantially reduce the growth of energy demand in the transportation sector. Finally, conservation actions are discussed within the context of how they might be implemented by Federal, State, or local governments. Interactions between actions are discussed and groupings of actions that minimize the disadvantages of individual actions while taking advantage of complementary effects between actions are presented.

  12. A multiobjective optimization approach to the operation and investment of the national energy and transportation systems

    Science.gov (United States)

    Ibanez, Eduardo

    Most U.S. energy usage is for electricity production and vehicle transportation, two interdependent infrastructures. The strength and number of the interdependencies will increase rapidly as hybrid electric transportation systems, including plug-in hybrid electric vehicles and hybrid electric trains, become more prominent. There are several new energy supply technologies reaching maturity, accelerated by public concern over global warming. The National Energy and Transportation Planning Tool (NETPLAN) is the implementation of the long-term investment and operation model for the transportation and energy networks. An evolutionary approach with underlying fast linear optimization are in place to determine the solutions with the best investment portfolios in terms of cost, resiliency and sustainability, i.e., the solutions that form the Pareto front. The popular NSGA-II algorithm is used as the base for the multiobjective optimization and metrics are developed for to evaluate the energy and transportation portfolios. An integrating approach to resiliency is presented, allowing the evaluation of high-consequence events, like hurricanes or widespread blackouts. A scheme to parallelize the multiobjective solver is presented, along with a decomposition method for the cost minimization program. The modular and data-driven design of the software is presented. The modeling tool is applied in a numerical example to optimize the national investment in energy and transportation in the next 40 years.

  13. Application research on big data in energy conservation and emission reduction of transportation industry

    Science.gov (United States)

    Bai, Bingdong; Chen, Jing; Wang, Mei; Yao, Jingjing

    2017-06-01

    In the context of big data age, the energy conservation and emission reduction of transportation is a natural big data industry. The planning, management, decision-making of energy conservation and emission reduction of transportation and other aspects should be supported by the analysis and forecasting of large amounts of data. Now, with the development of information technology, such as intelligent city, sensor road and so on, information collection technology in the direction of the Internet of things gradually become popular. The 3G/4G network transmission technology develop rapidly, and a large number of energy conservation and emission reduction of transportation data is growing into a series with different ways. The government not only should be able to make good use of big data to solve the problem of energy conservation and emission reduction of transportation, but also to explore and use a large amount of data behind the hidden value. Based on the analysis of the basic characteristics and application technology of energy conservation and emission reduction of transportation data, this paper carries out its application research in energy conservation and emission reduction of transportation industry, so as to provide theoretical basis and reference value for low carbon management.

  14. Trends in transportation energy use, 1970--1988: An international perspective

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, L.; Steiner, R.; Meyers, S.

    1992-05-01

    Personal mobility and timely movement of goods have become increasingly important around the world, and energy use for transportation has grown rapidly as a consequence. Energy is used in transportation for two rather different activities: moving people, which we refer to as passenger travel, and moving freight. While freight transport is closely connected to economic activity, much of travel is conducted for personal reasons. In the OECD countries, travel accounts for around 70% of total transportation energy use. In contrast, freight transport accounts for the larger share in the Former East Bloc and the developing countries (LDCs). In our analysis, we focus on three elements that shape transportation energy use: activity, which we measure in passenger-km (p-km) or tonne-km (t-km), modal structure (the share of total activity accounted for by various modes), and modal energy intensities (energy use per p-km or t-km). The modal structure of travel and freight transport is important because there are often considerable differences in energy intensity among modes. The average 1988 average energy use per p-km of different travel modes in the United States (US), West Germany, and Japan are illustrated. With the exception of rail in the US, bus and rail travel had much lower intensity than automobile and air travel. What is perhaps surprising is that the intensity of air travel is only slightly higher than that of automobile travel. This reflects the much higher utilization of vehicle capacity in air travel and the large share of automobile travel that takes place in urban traffic (automobile energy intensity in long-distance driving is much lower than the average over types of driving).

  15. Transport Coefficients for Holographic Hydrodynamics at Finite Energy Scale

    Directory of Open Access Journals (Sweden)

    Xian-Hui Ge

    2014-01-01

    Full Text Available We investigate the relations between black hole thermodynamics and holographic transport coefficients in this paper. The formulae for DC conductivity and diffusion coefficient are verified for electrically single-charged black holes. We examine the correctness of the proposed expressions by taking charged dilatonic and single-charged STU black holes as two concrete examples, and compute the flows of conductivity and diffusion coefficient by solving the linear order perturbation equations. We then check the consistence by evaluating the Brown-York tensor at a finite radial position. Finally, we find that the retarded Green functions for the shear modes can be expressed easily in terms of black hole thermodynamic quantities and transport coefficients.

  16. An Interactive Energy System with Grid, Heating and Transportation Systems

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker

    , flexibility definition and quantification, stochastic impact assessment of LV networks and control of the demand response in LV networks. In a first stage, different residential and non-residential loads are modelled with system analysis purposes. The active loads considered can be categorized as...... of this research work the control of the demand response in LV networks is tackled. The hierarchical structure presented aims to control the operation of heat pumps and plug-in electric vehicles to satisfy technical and commercial aspects of LV grids. This strategy allows system operators to perform their energy......The environmental consciousness and the fact of achieving greater energy independency have led many countries to apply important changes in their energy systems. The intensive renewable energy growth of the last decades represents the most notorious example at this moment. However, this is not only...

  17. Functionally graded biomimetic energy absorption concept development for transportation systems.

    Science.gov (United States)

    2014-02-01

    Mechanics of a functionally graded cylinder subject to static or dynamic axial loading is considered, including a potential application as energy absorber. The mass density and stiffness are power functions of the radial coordinate as may be the case...

  18. Coordinated Cluster, ground-based instrumentation and low-altitude satellite observations of transient poleward-moving events in the ionosphere and in the tail lobe

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    Full Text Available During the interval between 8:00–9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EISCAT Svalbard Radar (ESR at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches", with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( ± 5 min, the interplanetary magnetic field (IMF had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event, was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10–20 eV and the topside ionospheric enhancements seen by the ESR (at 400–700 km. We suggest that a potential barrier at the

  19. Coordinated Cluster, ground-based instrumentation and low-altitude satellite observations of transient poleward-moving events in the ionosphere and in the tail lobe

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2001-09-01

    Full Text Available During the interval between 8:00–9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EISCAT Svalbard Radar (ESR at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches", with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( ± 5 min, the interplanetary magnetic field (IMF had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event, was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10–20 eV and the topside ionospheric enhancements seen by the ESR (at 400–700 km. We suggest that a potential barrier at the

  20. Forecasting household transport energy demand in South African cities

    CSIR Research Space (South Africa)

    Mokonyama, Mathetha T

    2009-11-01

    Full Text Available the estimation of parking and travel demand, the transport infrastructure is planned to cater for the estimated demand, and where required, the developer pays the municipality monetary contributions for bulk infrastructure provision such as arterial roads... arterial roads. It should however be acknowledged that that the density proposal were subject to a number of practical constraints, for example the ease of interventions in already established areas versus and non-established areas. Nonetheless...

  1. Transportation data base for the US Department of Energy

    International Nuclear Information System (INIS)

    Arrowood, L.F.

    1983-01-01

    In addition to providing rapid retrieval of large amounts of shipping and receiving data in response to inquiries and allowing remote access to the data from dial-up terminals, shipment mobility/accountability collection system (SMAC) is a central accounting system for DOE transportation activities. This facilitates the analysis of site, regional, or national traffic flow patterns thereby allowing DOE to identify frequently utilized routes and negotiate more favorable shipping contracts using the results. The data on radioactive shipments can be used for risk assessment and other research and development activities as well as to answer questions concerning such shipments. The accessibility of transportation data to traffic managers allows DOE to be more responsive to congressional, agency, and public requests for traffic information. It also assists DOE efforts to find more economical and safer methods of moving material by supplying research institutes with shipping and receiving data for participating contractors. SMAC is an example of the computer's growing importance as a managerial tool in the area of transporting both radioactive and nonradioactive materials

  2. Thin film separators with ion transport properties for energy applications

    Science.gov (United States)

    Li, Zhongyuan

    2017-09-01

    Recent years, along with the increasing need of energy, energy storage also becomes a challenging problem which we need to deal with. The batterieshave a good developing prospect among energy storage system in storing energy such as wind, solar and geothermal energy. One hurdle between the lab-scale experiment and industry-scale application of the advanced batteries is the urgent need for limiting charging capacity degradation and improving cycling stability, known as the shuttle effect in lithium-sulfur batteries or electroosmotic drag coefficient in fuel-cell batteries. The microporous separator between the cathode and anode could be molecular engineered to possessesion selective permeation properties, which can greatly improves the energy efficiency and extends application range of the battery. The present review offers the fundamental fabrication methods of separator film with different material. The review also contains the chemical or physical structure of different materials which are used in making separator film. A table offers the reader a summary of properties such as ionic conductivity, ionic exchange capacity and current density etc.

  3. Dynamic habitat suitability modelling reveals rapid poleward distribution shift in a mobile apex predator.

    Science.gov (United States)

    Hill, Nicholas J; Tobin, Andrew J; Reside, April E; Pepperell, Julian G; Bridge, Tom C L

    2016-03-01

    Many taxa are undergoing distribution shifts in response to anthropogenic climate change. However, detecting a climate signal in mobile species is difficult due to their wide-ranging, patchy distributions, often driven by natural climate variability. For example, difficulties associated with assessing pelagic fish distributions have rendered fisheries management ill-equipped to adapt to the challenges posed by climate change, leaving pelagic species and ecosystems vulnerable. Here, we demonstrate the value of citizen science data for modelling the dynamic habitat suitability of a mobile pelagic predator (black marlin, Istiompax indica) within the south-west Pacific Ocean. The extensive spatial and temporal coverage of our occurrence data set (n = 18 717), collected at high resolution (~1.85 km(2) ), enabled identification of suitable habitat at monthly time steps over a 16-year period (1998-2013). We identified considerable monthly, seasonal and interannual variability in the extent and distribution of suitable habitat, predominately driven by chlorophyll a and sea surface height. Interannual variability correlated with El Nino Southern Oscillation (ENSO) events, with suitable habitat extending up to ~300 km further south during La Nina events. Despite the strong influence of ENSO, our model revealed a rapid poleward shift in the geometric mean of black marlin habitat, occurring at 88.2 km decade(-1) . By incorporating multiple environmental factors at monthly time steps, we were able to demonstrate a rapid distribution shift in a mobile pelagic species. Our findings suggest that the rapid velocity of climate change in the south-west Pacific Ocean is likely affecting mobile pelagic species, indicating that they may be more vulnerable to climate change than previously thought. © 2015 John Wiley & Sons Ltd.

  4. Direct energy rebound effect for road passenger transport in China: A dynamic panel quantile regression approach

    International Nuclear Information System (INIS)

    Zhang, Yue-Jun; Peng, Hua-Rong; Liu, Zhao; Tan, Weiping

    2015-01-01

    The transport sector appears a main energy consumer in China and plays a significant role in energy conservation. Improving energy efficiency proves an effective way to reduce energy consumption in transport sector, whereas its effectiveness may be affected by the rebound effect. This paper proposes a dynamic panel quantile regression model to estimate the direct energy rebound effect for road passenger transport in the whole country, eastern, central and western China, respectively, based on the data of 30 provinces from 2003 to 2012. The empirical results reveal that, first of all, the direct rebound effect does exist for road passenger transport and on the whole country, the short-term and long-term direct rebound effects are 25.53% and 26.56% on average, respectively. Second, the direct rebound effect for road passenger transport in central and eastern China tends to decrease, increase and then decrease again, whereas that in western China decreases and then increases, with the increasing passenger kilometers. Finally, when implementing energy efficiency policy in road passenger transport sector, the effectiveness of energy conservation in western China proves much better than that in central China overall, while the effectiveness in central China is relatively better than that in eastern China. - Highlights: • The direct rebound effect (RE) for road passenger transport in China is estimated. • The direct RE in the whole country, eastern, central, and western China is analyzed. • The short and long-term direct REs are 25.53% and 26.56% within the sample period. • Western China has better energy-saving performance than central and eastern China.

  5. Comparative assessment of five potential sites for hydrothermal-magma systems: energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Hardee, H.C.

    1980-09-01

    A comparative assessment of five sites is being prepared as part of a Continental Scientific Drilling Program (CSDP) review of thermal regimes for the purpose of scoping areas for future research and drilling activities. This background report: discusses the various energy transport processes likely to be encountered in a hydrothermal-magma system, reviews related literature, discusses research and field data needs, and reviews the sites from an energy transport viewpoint. At least three major zones exist in the magma-hydrothermal transport system: the magma zone, the hydrothermal zone, and the transition zone between the two. Major energy transport questions relate to the nature and existence of these zones and their evolution with time. Additional energy transport questions are concerned with the possible existence of critical state and super-critical state permeable convection in deep geothermal systems. A review of thermal transport models emphasizes the fact that present transport models and computational techniques far outweigh the scarcity and quality of deep field data.

  6. Directing energy transport in organic photovoltaic cells using interfacial exciton gates.

    Science.gov (United States)

    Menke, S Matthew; Mullenbach, Tyler K; Holmes, Russell J

    2015-04-28

    Exciton transport in organic semiconductors is a critical, mediating process in many optoelectronic devices. Often, the diffusive and subdiffusive nature of excitons in these systems can limit device performance, motivating the development of strategies to direct exciton transport. In this work, directed exciton transport is achieved with the incorporation of exciton permeable interfaces. These interfaces introduce a symmetry-breaking imbalance in exciton energy transfer, leading to directed motion. Despite their obvious utility for enhanced exciton harvesting in organic photovoltaic cells (OPVs), the emergent properties of these interfaces are as yet uncharacterized. Here, directed exciton transport is conclusively demonstrated in both dilute donor and energy-cascade OPVs where judicious optimization of the interface allows exciton transport to the donor-acceptor heterojunction to occur considerably faster than when relying on simple diffusion. Generalized systems incorporating multiple exciton permeable interfaces are also explored, demonstrating the ability to further harness this phenomenon and expeditiously direct exciton motion, overcoming the diffusive limit.

  7. Energy transport in mirror machine LISA at electron cyclotron resonance

    International Nuclear Information System (INIS)

    Cunha Rapozo, C. da; Serbeto, A.; Torres-Silva, H.

    1993-01-01

    It is shown that a classical transport calculation is adequate to predict the steady state temperature of the RF produced plasma in LISA machine for both large and small resonant volumes. Temperature anisotropy ranging from 55 to 305 was found which was larger for small resonant volume, and the temperature relaxation was larger at large resonant one. This agrees with the fact that there is a Coulomb relaxation ν c which is proportional to T e -3/2 . It is also shown that the fitting parameter alpha is larger for large resonant volume than for small resonant one. (L.C.J.A.)

  8. Towards greener environment: Energy efficient pathways for the transportation sector in Malaysia

    Science.gov (United States)

    Indati, M. S.; Ghate, A. T.; Leong, Y. P.

    2013-06-01

    Transportation sector is the second most energy consuming sector after industrial sector, accounting for 40% of total energy consumption in Malaysia. The transportation sector is one of the most energy intensive sectors in the country and relies primarily on petroleum products, which in total account for nearly 98% of the total consumption in the sector. Since it is heavily reliant on petroleum based fuels, the sector contributes significantly to the greenhouse gas (GHG) emissions. The need to reduce the greenhouse gas emission is paramount as Malaysia at Conference of the Parties (COP15) pledged to reduce its carbon intensity by 40% by 2020 from 2005 level subject to availability of technology and finance. Transport sector will be among the first sectors that need to be addressed to achieve this goal, as two-thirds of the emissions come from fuel combustion in transport sector. This paper will analyse the factors influencing the transport sector's growth and energy consumption trends and discuss the key issues and challenges for greener environment and sustainable transportation in Malaysia. The paper will also discuss the policy and strategic options aimed towards energy efficient pathways in Malaysia.

  9. Towards greener environment: Energy efficient pathways for the transportation sector in Malaysia

    International Nuclear Information System (INIS)

    Indati, M S; Leong, Y P; Ghate, A T

    2013-01-01

    Transportation sector is the second most energy consuming sector after industrial sector, accounting for 40% of total energy consumption in Malaysia. The transportation sector is one of the most energy intensive sectors in the country and relies primarily on petroleum products, which in total account for nearly 98% of the total consumption in the sector. Since it is heavily reliant on petroleum based fuels, the sector contributes significantly to the greenhouse gas (GHG) emissions. The need to reduce the greenhouse gas emission is paramount as Malaysia at Conference of the Parties (COP15) pledged to reduce its carbon intensity by 40% by 2020 from 2005 level subject to availability of technology and finance. Transport sector will be among the first sectors that need to be addressed to achieve this goal, as two-thirds of the emissions come from fuel combustion in transport sector. This paper will analyse the factors influencing the transport sector's growth and energy consumption trends and discuss the key issues and challenges for greener environment and sustainable transportation in Malaysia. The paper will also discuss the policy and strategic options aimed towards energy efficient pathways in Malaysia.

  10. Energy Efficiency Analysis for Dynamic Routing in Optical Transport Networks

    DEFF Research Database (Denmark)

    Vizcaíno, Jorge López; Ye, Yabin; Tafur Monroy, Idelfonso

    2012-01-01

    The energy efficiency in telecommunication networks is gaining more relevance as the Internet traffic is growing. The introduction of OFDM and dynamic operation opens new horizons in the operation of optical networks, improving the network flexibility and its efficiency. In this paper, we compare...... the performance in terms of energy efficiency of a flexible-grid OFDM-based solution with a fixed-grid WDM network in a dynamic scenario with time-varying connections. We highlight the benefits that the bandwidth elasticity and the flexibility of selecting different modulation formats can offer compared...

  11. Broken symmetries and directed collective energy transport in spatially extended systems

    DEFF Research Database (Denmark)

    Flach, S.; Zolotaryuk, Yaroslav; Miroshnichenko, A. E.

    2002-01-01

    (t) and obtain directed energy transport for systems with a nonzero topological charge Q . We demonstrate that the symmetry properties of motion of topological solitons (kinks and antikinks) are equivalent to the ones for the energy current. Numerical simulations confirm the predictions of the symmetry analysis...

  12. Transportation Energy Conservation Data Book: A Selected Bibliography. Edition 3,

    Science.gov (United States)

    1978-11-01

    HDemand for Gasoline: Application of Commodity Hierarchy Theory* 000116 #Driving and Energy Conservation. Highlight Report. Volume XXI * 000686 of a...8217 Ponoreid litilitv Trno:h in Two Years o t ’ a service Test Programa 000415 of Soli,! commollti’s ,ii Prr, flj pi ir . Volsens U- V* ITransport 000776

  13. Communication Maps: Exploring Energy Transport through Proteins and Water

    Czech Academy of Sciences Publication Activity Database

    Agbo, J. K.; Gnanasekaran, Ramachandran; Leitner, D. M.

    2014-01-01

    Roč. 54, 8/9 (2014), s. 1065-1073 ISSN 0021-2148 Institutional support: RVO:61388963 Keywords : energy transfer * heme proteins * hydrogen bonds * molecular modeling * protein models Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.221, year: 2014

  14. Planning Strategies for Transportation Fuel Consumption Reduction: An Evaluation of the Hawaii Clean Energy Initiative’s Transportation Plan

    Science.gov (United States)

    2014-04-01

    trips and only need cars for occasional trips, i.e., grocery or other shopping , as a taxi, or if their final destination is beyond walking distance...Lovaas. 2012. Fighting Oil Addiction : Ranking States’ Gasoline Price Vulnerability and Solutions for Change. NDRC Issue Paper. Natural Resources...Transportation Strategies Study- Phase I. Hawaii Energy Policy Forum. College of Social Sciences Tenth Annual HEPF Legislative Briefing on Clean

  15. Energy and exergy efficiencies in Turkish transportation sector, 1988-2004

    International Nuclear Information System (INIS)

    Ediger, Volkan S.; Camdali, Unal

    2007-01-01

    This study aims at examining energy and exergy efficiencies in Turkish transportation sector. Unlike the previous studies, historical data is used to investigate the development of efficiencies of 17 years period from 1988 to 2004. The energy consumption values in tons-of-oil equivalent for eight transport modes of four transportation subsectors of the Turkish transportation sector, including hard coal, lignite, oil, and electricity for railways, oil for seaways and airways, and oil and natural gas for highways, are used. The weighted mean energy and exergy efficiencies are calculated for each mode of transport by multiplying weighting factors with efficiency values of that mode. They are then summed up to calculate the weighted mean overall efficiencies for a particular year. Although the energy and exergy efficiencies in Turkish transport sector are slightly improved from 1988 to 2004, the historical pattern is cyclic. The energy efficieny is found to range from 22.16% (2002) to 22.62% (1998 and 2004) with a mean of 22.42±0.14% and exergy efficiency to range from 22.39% (2002) to 22.85% (1998 and 2004) with a mean of 22.65±0.15%. Overall energy and exergy efficiencies of the transport sector consist mostly of energy and exergy efficiencies of the highways subsector in percentages varying from 81.5% in 2004 to 91.7% in 2002. The rest of them are consisted of other subsectors such as railways, seaways, and airways. The overall efficiency patterns are basically controlled by the fuel consumption in airways in spite of this subsector's consisting only a small fraction of total. The major reasons for this are that airways efficiencies and the rate of change in fuel consumption in airways are greater than those of the others. This study shows that airway transportation should be increased to improve the energy and exergy efficiencies of the Turkish transport sectors. However, it should also be noted that no innovations and other advances in transport technologies are

  16. Economic and Environmental Considerations for Zero-emission Transport and Thermal Energy Generation on an Energy Autonomous Island

    Directory of Open Access Journals (Sweden)

    Fontina Petrakopoulou

    2018-01-01

    Full Text Available The high cost and environmental impact of fossil-fuel energy generation in remote regions can make renewable energy applications more competitive than business-as-usual scenarios. Furthermore, energy and transport are two of the main sectors that significantly contribute to global greenhouse gas emissions. This paper focuses on the generation of thermal energy and the transport sector of a fossil fuel-based energy independent island in Greece. We evaluate (1 technologies for fully renewable thermal energy generation using building-specific solar thermal systems and (2 the replacement of the vehicle fleet of the island with electric and hydrogen-fueled vehicles. The analysis, based on economic and environmental criteria, shows that although solar thermal decreases greenhouse gases by 83%, when compared to the current diesel-based situation, it only becomes economically attractive with subsidy scenarios equal to or higher than 50%. However, in the transport sector, the sum of fuel and maintenance costs of fuel-cell and electric vehicles is found to be 45% lower than that of the current fleet, due to their approximately seven times lower fuel cost. Lastly, it will take approximately six years of use of the new vehicles to balance out the emissions of their manufacturing phase.

  17. Evaluation of regional trends in power plant siting and energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, R.R.; Wolsko, T.D.; Mueller, R.O.; Dauzvardis, P.A.; Senew, M.J.; Gamauf, K.; Seymour, D.A.

    1977-07-01

    This study reviews trends in power plant siting and energy transport. The perspective is regional and covers the contiguous United States. A review of the methodologies used by utilities in siting power plants is given, as well as a detailed summary of state and Federal siting legislation. Air quality management programs that impact on siting are discussed, and trends in the inter-regional transport of energy in the form of fuel and electricity are evaluated. The review of siting trends presented is based on an empirical analysis of data submitted to the Federal Power Commission. For each region, alternative patterns of energy transport are analyzed, with particular emphasis on environmental impacts. A discussion of the movement toward development of energy parks concludes the report. 63 refs., 72 figs., 122 tables.

  18. Energy and Environmental Issues, 1991. Transportation research record

    International Nuclear Information System (INIS)

    1991-01-01

    Partial Contents: Mitigation of Traffic Mortality of Endangered Brown Pelicans on Coastal Bridges; Cooperation Between State Highway and Environmental Agencies in Dealing With Hazardous Waste in the Right-of-Way; Comparison of Intersection Air Quality Models' Ability to Simulate Carbon Monoxide Concentrations in an Urban Area; Model Calculation of Environment-Friendly Traffic Flows in Urban Networks; Sensitivity Analysis for Land Use, Transportation, and Air Quality; Special Events and Carbon Monoxide Violations: TSM, Crowd Control, Economics, and Solutions to Adverse Air Quality Impacts; Mode Split at Large Special Events and Effects on Air Quality; Internal Consistency and Stability of Measurements of Community Reaction to Noise; Impact and Potential Use of Attitude and Other Modifying Variables in Reducing Community Reaction to Noise; Techniques for Aesthetic Design of Freeway Noise Barriers; Effects of Road Surface Texture on Traffic and Vehicle Noise; Electrokinetic Soil Processing in Waste Remediation and Treatment: Synthesis of Available Data; Site Remediation by In Situ Vitrification

  19. Towards Terabit Carrier Ethernet and Energy Efficient Optical Transport Networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders

    ). Therefore, in order to support a single 100 Gigabit Ethernet link, the routing mechanism must be able to support address lookup and output scheduling of over 148 million packets per second (pps) leaving only a few nanoseconds for each packet. With the emerging standards for 400Gbps (400GE and OTU5...... requirements. Forward Error Correction (FEC) is already a standard component of the Optical Transport Network (OTN) protocol as a means of increasing the bitrate-length product of optical links. However, the requirements for higher bitrates also drive a requirement for higher spectral efficiency in order......This thesis focuses on the challenges of scaling current network node technology to support connection speeds of 100Gbps and beyond. Out of the many exiting aspects of reaching this goal, the main scope of this thesis is to investigate packet processing (address lookup and scheduling), forward...

  20. Energy distributions and radiation transport in uranium plasmas

    International Nuclear Information System (INIS)

    Miley, G.; Bathke, C.; Maceda, E.; Choi, C.

    1976-01-01

    Electron energy distribution functions have been calculated in a 235 U-plasma at 1 atmosphere for various plasma temperatures (5000 to 8000 0 K) and neutron fluxes (2 x 10 12 to 2 x 10 16 neutrons/(cm 2 -sec)). Two sources of energetic electrons are included; namely fission-fragment and electron-impact ionization, resulting in a high-energy tail superimposed on the thermalized electron distribution. Consequential derivations from equilibrium collision rates are of interest relative to direct pumping of lasers and radiation emission. Results suggest that non-equilibrium excitation can best be achieved with an additive gas such as helium or in lower temperature plasmas requiring UF 6 . An approximate analytic model, based on continuous electron slowing, has been used for survey calculations. Where more accuracy is required, a Monte Carlo technique is used which combines an analytic representation of Coulombic collisions with a random-walk treatment of inelastic collisions

  1. Energy efficiency of urban transportation system in Xiamen, China. An integrated approach

    International Nuclear Information System (INIS)

    Meng, Fanxin; Liu, Gengyuan; Yang, Zhifeng; Casazza, Marco; Cui, Shenghui; Ulgiati, Sergio

    2017-01-01

    Highlights: • An integrated life cycle approach is used to study Urban Transport Metabolism (UTM). • A selection of different material, energy and environmental assessment methods is synergically applied. • The study is based on an accurate inventory of infrastructure, machinery and operative resource costs. • Results show that the different methods provide much needed insight into different aspects of UTM. • Innovative Bus Rapid Transport shows better resource and environmental performance than Normal Bus Transport system. - Abstract: An integrated life cycle approach framework, including material flow analysis (MFA), Cumulative Energy Demand (CED), exergy analysis (EXA), Emergy Assessment (EMA), and emissions (EMI) has been constructed and applied to examine the energy efficiency of high speed urban bus transportation systems compared to conventional bus transport in the city of Xiamen, Fujian province, China. This paper explores the consistency of the results achieved by means of several evaluation methods, and explores the sustainability of innovation in urban public transportation systems. The case study dealt with in this paper is a Bus Rapid Transit (BRT) system compared to Normal Bus Transit (NBT). All the analyses have been performed based on a common yearly database of natural resources, material, labor, energy and fuel input flows used in all life cycle phases (resource extraction, processing and manufacturing, use and end of life) of the infrastructure, vehicle and vehicle fuel. Cumulative energy, material and environmental support demands of transport are accounted for. Selected pressure indicators are compared to yield a comprehensive picture of the public transportation system. Results show that Bus Rapid Transit system (BRT) shows much better energy and environmental performance than NBT, as indicated by the set of sustainability indicators calculated by means of our integrated approach. This is because of the higher efficiency of such

  2. High energy lithium-oxygen batteries - Transport barriers and thermodynamics

    KAUST Repository

    Das, Shyamal K.

    2012-01-01

    We show that it is possible to achieve higher energy density lithium-oxygen batteries by simultaneously lowering the discharge overpotential and increasing the discharge capacity via thermodynamic variables alone. By assessing the relative effects of temperature and pressure on the cell discharge profiles, we characterize and diagnose the critical roles played by multiple dynamic processes that have hindered implementation of the lithium-oxygen battery. © 2012 The Royal Society of Chemistry.

  3. Energy efficiency in the transport sector in the EU-27: A dynamic dematerialization analysis

    International Nuclear Information System (INIS)

    Ziolkowska, Jadwiga R.; Ziolkowski, Bozydar

    2015-01-01

    Energy use in the European Union's (EU) transport sector amounted to 340 Mtoe in 1999 with the following increasing trend up to 379 Mtoe in 2007 and a decrease from 2008 on, down to 365 Mtoe in 2010. This changing pattern posed several fundamental questions and uncertainties regarding the broader picture of energy efficiency and environmental protection. One of them refers to absolute changes in energy use efficiency in the transport sector over time and the ways of measuring efficiency. Traditional scientific approaches conceptualized to measure efficiency of energy use do not address annual dynamics of changes in the energy use in a given sector per capita. Thus, they are not precise enough for political and methodological purposes as they do not reflect the exact amount of energy consumed in the respective countries and societies. This paper shows a possible solution to this problem and a new perspective on measuring energy efficiency by using the product generational dematerialization (PGD) indicator. The PGD indicator allows for measuring energy efficiency as a dynamic change of consumption and population occurring simultaneously. Thus, it provides an extension to the traditional methodology commonly used for measuring efficiency. To visualize a practical application of this approach, the paper provides an example of evaluating energy efficiency in the transport sector in the EU-27 in 2000–2010. The results of the analysis show a clear materialization tendency in the transport sector (the energy consumption change exceeded the population growth) until 2007 and a reverse tendency (dematerialization) between 2008 and 2010. As energy consumption has a direct impact on environmental quality and exhaustion of natural resources, the paper points out the necessity of extending sustainable resource management policies by new methodologies and providing more efficient solutions for energy consumption in the transport sector. - Highlights: • PGD indicator

  4. A Quantitative and Systematic Methodology to Investigate Energy Consumption Issues in Multimodal Intercity Transportation Systems

    Directory of Open Access Journals (Sweden)

    Lili Du

    2015-09-01

    Full Text Available Energy issues in transportation systems have garnered increasing attention recently. This study proposes a systematic methodology for policy-makers to minimize energy consumption in multimodal intercity transportation systems considering suppliers’ operational constraints and travelers’ mobility requirements. A bi-level optimization model is developed for this purpose and considers the air, rail, private auto, and transit modes. The upper-level model is a mixed integer nonlinear program aiming to minimize energy consumption subject to transportation suppliers’ operational constraints and traffic demand distribution to paths resulting from the lower-level model. The lower-level model is a linear program seeking to maximize the trip utilities of travelers. The interactions between the multimodal transportation suppliers and intercity traffic demand are considered under the goal of minimizing system energy consumption. The proposed bi-level mixed integer model is relaxed and transformed into a mathematical program with complementarity constraints, and solved using a customized branch-and-bound algorithm. Numerical experiments, conducted using multimodal travel options between Lafayette, Indiana and Washington, D.C. reiterate that shifting traffic demand from private cars to the transit and rail modes significantly reduce energy consumption. Moreover, the proposed methodology provides tools to quantitatively analyze system energy consumption and traffic demand distribution among transportation modes under specific policy instruments. The results illustrate the need to systematically incorporate the interactions among traveler preferences, network structure, and supplier operational schemes to provide policy-makers insights for developing traffic demand shift mechanisms to minimize system energy consumption. Hence, the proposed methodology provide policy-makers the capability to analyze energy consumption in the transportation sector by a

  5. Biological Ion Transporters as Gating Devices for Chemomechanical and Chemoelectrical Energy Conversion

    OpenAIRE

    Sundaresan, Vishnu Baba

    2007-01-01

    This dissertation presents a new class of engineered devices, fabricated from synthetic materials and protein transporters extracted from cell membranes of plants, that use chemomechanical and chemoelectrical energy conversion processes to perform mechanical and electrical work. The chemomechanical energy conversion concept is implemented in a protein based actuator. The chemical energy is applied as an electrochemical gradient of protons across a membrane assembly formed from phospholip...

  6. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    Science.gov (United States)

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  7. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor

  8. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M.W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  9. Transport energy demand modeling of South Korea using artificial neural network

    International Nuclear Information System (INIS)

    Geem, Zong Woo

    2011-01-01

    Artificial neural network models were developed to forecast South Korea's transport energy demand. Various independent variables, such as GDP, population, oil price, number of vehicle registrations, and passenger transport amount, were considered and several good models (Model 1 with GDP, population, and passenger transport amount; Model 2 with GDP, number of vehicle registrations, and passenger transport amount; and Model 3 with oil price, number of vehicle registrations, and passenger transport amount) were selected by comparing with multiple linear regression models. Although certain regression models obtained better R-squared values than neural network models, this does not guarantee the fact that the former is better than the latter because root mean squared errors of the former were much inferior to those of the latter. Also, certain regression model had structural weakness based on P-value. Instead, neural network models produced more robust results. Forecasted results using the neural network models show that South Korea will consume around 37 MTOE of transport energy in 2025. - Highlights: → Transport energy demand of South Korea was forecasted using artificial neural network. → Various variables (GDP, population, oil price, number of registrations, etc.) were considered. → Results of artificial neural network were compared with those of multiple linear regression.

  10. Energy policy act transportation study: Interim report on natural gas flows and rates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-17

    This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

  11. Energy use in the marine transportation industry: Task II. Regulations and Tariffs. Final report, Volume III

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    The evaluation of the energy impacts of regulations and tariffs is structured around three sequential steps: identification of agencies and organizations that impact the commercial marine transportation industry; identification of existing or proposed regulations that were perceived to have a significant energy impact; and quantification of the energy impacts. Following the introductory chapter, Chapter II describes the regulatory structure of the commercial marine transportation industry and includes a description of the role of each organization and the legislative basis for their jurisdiction and an identification of major areas of regulation and those areas that have an energy impact. Chapters III through IX each address one of the 7 existing or proposed regulatory or legislative actions that have an energy impact. Energy impacts of the state of Washington's tanker regulations, of tanker segregated ballast requirements, of inland waterway user charges, of cargo pooling and service rationalization, of the availability of intermodal container transportation services, of capacity limitations at lock and dam 26 on the Mississippi River and the energy implications of the transportation alternatives available for the West Coast crude oil supplies are discussed. (MCW)

  12. Energy efficiency in transport and mobility from an eco-efficiency viewpoint

    International Nuclear Information System (INIS)

    Uson, Alfonso Aranda; Capilla, Antonio Valero; Bribian, Ignacio Zabalza; Scarpellini, Sabina; Sastresa, Eva Llera

    2011-01-01

    European Union countries' current energy policies for the transport sector promote, amongst other initiatives; urban mobility plans, the renewal of fleets of cars and industrial vehicles and the introduction of biofuel. From the point of view of eco-efficiency and Life Cycle Assessment (LCA), energy policies must go further. The objective of this paper is to analyse the current transport model and the policies on energy efficiency being promoted in the EU from a LCA point of view. Special attention has been paid to private vehicles, in assessing the environmental impact of the various stages of manufacture, their use and disposal, and the consequences of plans to renew fleets. How old should a vehicle ideally be so that when it is changed, the embodied energy in the materials of the vehicle is less than the gain in energy efficiency due to changing the model for example? In addition the paper analyses the different means of transport in the energy consumption-time ratio from a LCA viewpoint. The fact that reducing transport times leads to greater energy consumption gives rise to the question: how long does nature take to repair the environmental damage caused?

  13. A direct estimate of poleward volume, heat, and freshwater fluxes at 59.5°N between Greenland and Scotland

    Science.gov (United States)

    Rossby, T.; Reverdin, Gilles; Chafik, Leon; Søiland, Henrik

    2017-07-01

    The meridional overturning circulation (MOC) in the North Atlantic plays a major role in the transport of heat from low to high latitudes. In this study, we combine recent measurements of currents from the surface to >700 m from a shipboard acoustic Doppler current profiler with Argo profiles (to 2000 m) to estimate poleward volume, heat, and freshwater flux at 59.5°N between Greenland and Scotland. This is made possible thanks to the vessel Nuka Arctica that operates on a 3 week schedule between Greenland and Denmark. For the period late 2012 to early 2016, the deseasoned mean meridional overturning circulation reaches a 18.4 ± 3.4 Sv maximum at the σθ = 27.55 kg m-3 isopycnal, which varies in depth from near the surface in the western Irminger Sea to 1000 m in Rockall Trough. The total heat and freshwater fluxes across 59.5°N = 399 ± 74 TW and -0.20 ± 0.04 Sv, where the uncertainties are principally due to that of the MOC. Analysis of altimetric sea surface height variations along exactly the same route reveals a somewhat stronger geostrophic flow north during this period compared to the 23 year mean suggesting that for a long-term mean the above flux estimates should be reduced slightly to 17.4 Sv, 377 TW, and -0.19 Sv, respectively, with the same estimate uncertainties. The ADCP program is ongoing.

  14. Estimation of Energy Consumption and Greenhouse Gas Emissions of Transportation in Beef Cattle Production

    Directory of Open Access Journals (Sweden)

    Narayanan Kannan

    2016-11-01

    Full Text Available Accounting for transportation is an important part of the life cycle analysis (LCA of beef cattle production because it is associated with energy consumption and greenhouse gas emissions. This paper describes the development and application of a model that estimates energy consumption and greenhouse gas emissions of transport in beef cattle production. The animal transport model is based on the weight and number of animals in each weight category, type of trailer, vehicle, and fuel used. The energy consumption and greenhouse gas emission estimates of animal feed transportation are based on the weight of a truckload and the number of truckloads of feed transported. Our results indicate that a truckload is travelling approximately 326 km in connection with beef cattle production in the study region. The fuel consumption amounts to 24 L of fossil fuel per 1000 kg of boneless beef. The corresponding greenhouse gas emission is 83 kg. It appears from our results that the majority of energy consumption and greenhouse gas emissions are associated with sending the finished cattle to slaughterhouses and bringing feeder cattle to feedlots. Our results point out appreciable reductions in energy consumption and greenhouse gas emissions by changing from conventional fuel to bio-fuel.

  15. Trends of energy efficiency in Finnish road freight transport 1995-2009 and forecast to 2016

    International Nuclear Information System (INIS)

    Liimatainen, Heikki; Poellaenen, Markus

    2010-01-01

    A framework for modeling and analyzing the energy efficiency of road freight transport is presented in this paper. This framework is tested by using the data from the Finnish Goods Transport by Road statistics. The data was enhanced by calculating the fuel consumption for each trip in the data. To calculate this, weight-fuel consumption functions were estimated for each Euro-class vehicles and road type. This is a new method for analyzing the energy efficiency of road freight transport and it could be applied also in other countries gathering freight transport data with continuous company surveys. The analysis show that the energy efficiency of road freight transport in Finland improved during 1995-2002, but has declined since. The major drivers in the development have been the changes in the level of empty running and vehicle fuel efficiency. Extrapolating current statistical trends of factors that influence the energy efficiency show that the target set by the Finnish government for improving energy efficiency by 9% until 2016 will not be achieved. However, the target is possible to be achieved by a combination of small changes to some determinants. - Research highlights: →A new method for analyzing energy efficiency by adding fuel data to national freight statistics. →Energy efficiency improved in Finland from 1995 to 2002 but has declined since. →Energy efficiency in Finland is still on a good level internationally. →Target of the Finnish energy efficiency agreement was quantified for the first time in this study. →The target will not be achieved if the past trends continue.

  16. Superdiffusive transport and energy localization in disordered granular crystals

    Science.gov (United States)

    Martínez, Alejandro J.; Kevrekidis, P. G.; Porter, Mason A.

    2016-02-01

    We study the spreading of initially localized excitations in one-dimensional disordered granular crystals. We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to differ fundamentally from localization in linear and weakly nonlinear systems. We conduct a thorough comparison of wave dynamics in chains with three different types of disorder—an uncorrelated (Anderson-like) disorder and two types of correlated disorders (which are produced by random dimer arrangements)—and for two types of initial conditions (displacement excitations and velocity excitations). We find for strongly precompressed (i.e., weakly nonlinear) chains that the dynamics depend strongly on the type of initial condition. In particular, for displacement excitations, the long-time asymptotic behavior of the second moment m˜2 of the energy has oscillations that depend on the type of disorder, with a complex trend that differs markedly from a power law and which is particularly evident for an Anderson-like disorder. By contrast, for velocity excitations, we find that a standard scaling m˜2˜tγ (for some constant γ ) applies for all three types of disorder. For weakly precompressed (i.e., strongly nonlinear) chains, m˜2 and the inverse participation ratio P-1 satisfy scaling relations m˜2˜tγ and P-1˜t-η , and the dynamics is superdiffusive for all of the cases that we consider. Additionally, when precompression is strong, the inverse participation ratio decreases slowly (with η disorder, and the dynamics leads to a partial localization around the core and the leading edge of a propagating wave packet. For an Anderson-like disorder, displacement perturbations lead to localization of energy primarily in the core, and velocity perturbations cause the energy to be divided between the core and the leading edge. This localization phenomenon does not occur in the sonic-vacuum regime, which yields the surprising result that the energy is no longer

  17. Adaptive Forward Error Correction for Energy Efficient Optical Transport Networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Ruepp, Sarah Renée; Berger, Michael Stübert

    2013-01-01

    In this paper we propose a novel scheme for on the fly code rate adjustment for forward error correcting (FEC) codes on optical links. The proposed scheme makes it possible to adjust the code rate independently for each optical frame. This allows for seamless rate adaption based on the link state...... of the optical light path and the required amount of throughput going towards the destination node. The result is a dynamic FEC, which can be used to optimize the connections for throughput and/or energy efficiency, depending on the current demand....

  18. Low-energy beam transport using space-charge lenses

    International Nuclear Information System (INIS)

    Meusel, O.; Bechtold, A.; Pozimski, J.; Ratzinger, U.; Schempp, A.; Klein, H.

    2005-01-01

    Space-charge lenses (SCL) of the Gabor type provide strong cylinder symmetric focusing for low-energy ion beams using a confined nonneutral plasma. They need modest magnetic and electrostatic field strength and provide a short installation length when compared to conventional LEBT-lenses like quadrupoles and magnetic solenoids. The density distribution of the enclosed space charge within the Gabor lens is given by the confinement in transverse and longitudinal directions. In the case of a positive ion beam, the space charge of the confined electron cloud may cause an overcompensation of the ion beam space-charge force and consequently focuses the beam. To investigate the capabilities of an SCL double-lens system for ion beam into an RFQ, a test injector was installed at IAP and put into operation successfully. Furthermore, to study the focusing capabilities of this lens at beam energies up to 500 keV, a high-field Gabor lens was built and installed downstream of the RFQ. Experimental results of the beam injection into the RFQ are presented as well as those of these first bunched beam-focusing tests with the 110 A keV He + beam

  19. Transporting nuclear wastes from energy production sites: What can terrorists do and how?

    International Nuclear Information System (INIS)

    Pattee-Ballard, D.R.; Ballard, J.D.; Dilger, F.

    2005-01-01

    Full text: Recent discussions in the United States and among NATO allies have debated the vulnerability of nuclear waste shipments, their transports, and the engineered packaging they transport within to terrorist attack. These debates generally focus on the regulatory and engineered controls necessary to protect such shipments, but in the post-September 11, 2001 reality of a potential mass suicide attack using asymmetrical weapons and tactics, can the underlying 'safe' assumptions of regulators and security personnel be questioned? This paper will offer a history of the debates surrounding how safe such shipments from energy faculties are to dedicated terrorist attack and then focus on recent research that looks at several transportation related scenarios that may bring into question heretofore un-assessed vulnerabilities for highway and railway transports, routes, and cargoes of highly radioactive wastes that come from such energy production sites. (author)

  20. Continuous energy Neutron Transport Monte Carlo Simulator Project: Decomposition of the neutron energy spectrum by target nuclei tagging

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos, Luiz Felipe F.C.; Bodmann, Bardo E.J.; Vilhena, Marco T.M.B., E-mail: luizfelipe.fcb@gmail.com, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Nucleares; Leite, Sergio Q. Bogado, E-mail: sbogado@ibest.com.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this work a Monte Carlo simulator with continuous energy is used. This simulator distinguishes itself by using the sum of three probability distributions to represent the neutron spectrum. Two distributions have known shape, but have varying population of neutrons in time, and these are the fission neutron spectrum (for high energy neutrons) and the Maxwell-Boltzmann distribution (for thermal neutrons). The third distribution has an a priori unknown and possibly variable shape with time and is determined from parametrizations of Monte Carlo simulation. It is common practice in neutron transport calculations, e.g. multi-group transport, to consider that the neutrons only lose energy with each scattering reaction and then to use a thermal group with a Maxwellian distribution. Such an approximation is valid due to the fact that for fast neutrons up-scattering occurrence is irrelevant, being only appreciable at low energies, i.e. in the thermal energy region, in which it can be regarded as a Maxwell-Boltzmann distribution for thermal equilibrium. In this work the possible neutron-matter interactions are simulated with exception of the up-scattering of neutrons. In order to preserve the thermal spectrum, neutrons are selected stochastically as being part of the thermal population and have an energy attributed to them taken from a Maxwellian distribution. It is then shown how this procedure can emulate the up-scattering effect by the increase in the neutron population kinetic energy. Since the simulator uses tags to identify the reactions it is possible not only to plot the distributions by neutron energy, but also by the type of interaction with matter and with the identification of the target nuclei involved in the process. This work contains some preliminary results obtained from a Monte Carlo simulator for neutron transport that is being developed at Federal University of Rio Grande do Sul. (author)

  1. Environmental emissions and socioeconomic considerations in the production, storage, and transportation of biomass energy feedstocks

    International Nuclear Information System (INIS)

    Perlack, R.D.; Ranney, J.W.; Wright, L.L.

    1992-07-01

    An analysis was conducted to identify major sources and approximate levels of emissions to land, air, and water, that may result, in the year 2010, from supplying biofuel conversion facilities with energy crops. Land, fuel, and chemicals are all used in the establishment, maintenance, harvest, handling and transport of energy crops. The operations involved create soil erosion and compaction, particulate releases, air emissions from fuel use and chemical applications, and runoff or leachate. The analysis considered five different energy facility locations (each in a different major crop growing region) and three classes of energy crops -- woody crops, perennial herbaceous grasses, and an annual herbaceous crop (sorghum). All projections had to be based on reasonable assumptions regarding probable species used, type of land used, equipment requirements, chemical input requirements, and transportation fuel types. Emissions were summarized by location and class of energy crop

  2. A Hierarchical Energy Efficient Reliable Transport Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Prabhudutta Mohanty

    2014-12-01

    Full Text Available The two important requirements for many Wireless Senor Networks (WSNs are prolonged network lifetime and end-to-end reliability. The sensor nodes consume more energy during data transmission than the data sensing. In WSN, the redundant data increase the energy consumption, latency and reduce reliability during data transmission. Therefore, it is important to support energy efficient reliable data transport in WSNs. In this paper, we present a Hierarchical Energy Efficient Reliable Transport Protocol (HEERTP for the data transmission within the WSN. This protocol maximises the network lifetime by controlling the redundant data transmission with the co-ordination of Base Station (BS. The proposed protocol also achieves end-to-end reliability using a hop-by-hop acknowledgement scheme. We evaluate the performance of the proposed protocol through simulation. The simulation results reveal that our proposed protocol achieves better performance in terms of energy efficiency, latency and reliability than the existing protocols.

  3. Environmental emissions and socioeconomic considerations in the production, storage, and transportation of biomass energy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Perlack, R.D.; Ranney, J.W.; Wright, L.L.

    1992-07-01

    An analysis was conducted to identify major sources and approximate levels of emissions to land, air, and water, that may result, in the year 2010, from supplying biofuel conversion facilities with energy crops. Land, fuel, and chemicals are all used in the establishment, maintenance, harvest, handling and transport of energy crops. The operations involved create soil erosion and compaction, particulate releases, air emissions from fuel use and chemical applications, and runoff or leachate. The analysis considered five different energy facility locations (each in a different major crop growing region) and three classes of energy crops -- woody crops, perennial herbaceous grasses, and an annual herbaceous crop (sorghum). All projections had to be based on reasonable assumptions regarding probable species used, type of land used, equipment requirements, chemical input requirements, and transportation fuel types. Emissions were summarized by location and class of energy crop.

  4. Effective Potential Energies and Transport Cross Sections for Interactions of Hydrogen and Nitrogen

    Science.gov (United States)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Arnold, James R. (Technical Monitor)

    2000-01-01

    The interaction energies for N2-He and N2-H2 are calculated by accurate ab initio methods. The virial coefficient and differential scattering cross section for N2-H2 are calculated; the theoretical results are compared with experimental data. The transport collision integrals for N2-H2 and N2-N2 interactions are calculated and tabulated; the results yield transport coefficients that compare well with measured data. Transport coefficients are found to be determined accurately from the interaction energies for a specific configuration of the molecule formed from the interaction partners. Comparisons with results of measurement and accurate calculations demonstrate that the transport properties of complex molecular interactions can be determined rapidly and fairly accurately from the interaction energies of simpler system using combination rules for the short-range parameters of effective interaction energies and the coefficients for the long-range forces. The coefficients for a two-parameter temperature expansion of diffusion and viscosity are tabulated for a realistic universal potential energy that is based primarily on the results of very accurate calculations of the He-He interaction energy.

  5. Energy system aspects of hydrogen as an alternative fuel in transport

    International Nuclear Information System (INIS)

    Ramesohl, Stephan; Merten, Frank

    2006-01-01

    Considering the enormous ecological and economic importance of the transport sector the introduction of alternative fuels-together with drastic energy efficiency gains-will be a key to sustainable mobility, nationally as well as globally. However, the future role of alternative fuels cannot be examined from the isolated perspective of the transport sector. Interactions with the energy system as a whole have to be taken into account. This holds both for the issue of availability of energy sources as well as for allocation effects, resulting from the shift of renewable energy from the stationary sector to mobile applications. With emphasis on hydrogen as a transport fuel for private passenger cars, this paper discusses the energy systems impacts of various scenarios introducing hydrogen fueled vehicles in Germany. It identifies clear restrictions to an enhanced growth of clean hydrogen production from renewable energy sources (RES). Furthermore, it points at systems interdependencies that call for a priority use of RES electricity in stationary applications. Whereas hydrogen can play an increasing role in transport after 2030 the most important challenge is to exploit short-mid-term potentials of boosting car efficiency

  6. Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, M. [Google Research, Venice, California 90291 (United States); Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shabani, A. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Department of Chemistry, University of California at Berkeley, Berkeley, California 94720 (United States); Lloyd, S. [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Rabitz, H. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-01-21

    Underlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to estimate energy transfer efficiency of such complex excitonic systems. We observe that the dynamics of the Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport due to a convergence of energy scales among all important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimum and stable with respect to important parameters of environmental interactions including reorganization energy λ, bath frequency cutoff γ, temperature T, and bath spatial correlations. We identify the ratio of k{sub B}λT/ℏγ⁢g as a single key parameter governing quantum transport efficiency, where g is the average excitonic energy gap.

  7. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  8. Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes

    International Nuclear Information System (INIS)

    Mohseni, M.; Shabani, A.; Lloyd, S.; Rabitz, H.

    2014-01-01

    Underlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to estimate energy transfer efficiency of such complex excitonic systems. We observe that the dynamics of the Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport due to a convergence of energy scales among all important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimum and stable with respect to important parameters of environmental interactions including reorganization energy λ, bath frequency cutoff γ, temperature T, and bath spatial correlations. We identify the ratio of k B λT/ℏγ⁢g as a single key parameter governing quantum transport efficiency, where g is the average excitonic energy gap

  9. Forecasting of Energy and Petroleum Consumption by Motor Transport in the Regions of the Russian Federation

    Directory of Open Access Journals (Sweden)

    Leontiy Viktorovich Eder

    2017-09-01

    Full Text Available The paper offers the directions for the improvement of methodological approach to forecasting the energy consumption in transport, taking into account special features of Russian regions. The authors developed a multivariate model allowing to predict the motor vehicle rate specified for the regions of the Russian Federation depending on the economic, social and institutional features. We formalized the dynamic (trend model for predicting the effectiveness of energy consumption per unit of the vehicle in Russia with details on Federal districts. In the study, in predicting the number of motor transport, the authors applied the methods of economic and mathematical simulation modelling based on the results of the econometric analysis for the calculation of the population having motor transport. In determining the potential specific energy consumption, we have aggregated trending patterns and convergence. The study has shown that by 2040, the number of passenger cars in Russia will grow to 57.1 million, and the total number of all types of road transport will grow by 14.9 million units to 66.2 million. The highest growth rates are predicted in the Central regions of Russia and in some areas of Siberia. The smallest growth rates are expected in the Chukotka Autonomous District, Kamchatka and Primorsky regions. Energy efficiency in transport and active introduction of alternative motor fuels, primarily methane, will reduce the consumption of gasoline and diesel fuel by motor transport. Thus, in the forecast period of 2018–2040, the consumption of petroleum products by motor transport will be reduced by 8.9 million tons: from 61,9 million tons of oil to 51.7 million tons of oil. The results of the study can be applied for the formulation of proposals on the creation of scientific and methodological apparatus to predict the development of transport sector and oil products supply in of the regions of Russia.

  10. Transportation Sector Model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  11. Beamline for low-energy transport of highly charged ions at HITRAP

    Energy Technology Data Exchange (ETDEWEB)

    Andelkovic, Z., E-mail: z.andelkovic@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Herfurth, F.; Kotovskiy, N. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); König, K.; Maaß, B.; Murböck, T. [Technische Universität Darmstadt (Germany); Neidherr, D. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Schmidt, S. [Technische Universität Darmstadt (Germany); Johannes Gutenberg-Universität Mainz (Germany); Steinmann, J. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Hochschule Darmstadt (Germany); Vogel, M.; Vorobjev, G. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany)

    2015-09-21

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency.

  12. Driving forces: Motor vehicle trends and their implications for global warming, energy strategies, and transportation planning

    International Nuclear Information System (INIS)

    MacKenzie, J.J.; Walsh, M.P.

    1990-01-01

    Cars, trucks, and other vehicles have long been linked to smog and other urban pollution, but the part they play in the larger complex of atmospheric and energy ills that we now face is often overlooked. In Driving Forces: Motor Vehicle Trends and Their Implications for Global Warming, Energy Strategies, and Transportation Planning, James J. MacKenzie, senior associate in World Resources Institute's Program in Climate, Energy, and Pollution, and Michael P. Walsh, an international consultant on transportation and environmental issues, fill in this knowledge gap with new data and analyses. They spell out four policy shifts that can help hold the line on global warming: improve new-vehicle efficiency; make transportation more efficient; cut other greenhouse gas emissions; create the green car of the future. The report focuses especially on the US, which pioneered the automotive revolution and leads the world in oil imports and emissions

  13. Transport Schemes for Fiber-Wireless Technology: Transmission Performance and Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Christina Lim

    2014-04-01

    Full Text Available Fiber-wireless technology has been actively researched as a potential candidate for next generation broadband wireless signal distribution. Despite the popularity, this hybrid scheme has many technical challenges that impede the uptake and commercial deployment. One of the inherent issues is the transport of the wireless signals over a predominantly digital optical network in today’s telecommunication infrastructure. Many different approaches have been introduced and demonstrated with digitized RF transport of the wireless signals being the most compatible with the existing optical fiber networks. In this paper, we review our work in the area of digitized RF transport to address the inherent issues related to analog transport in the fiber-wireless links and compare the transmission performance and energy efficiency with the other transport strategies.

  14. Capital requirements for the transportation of energy materials: 1979 arc estimates

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-29

    Summaries of transportation investment requirements through 1990 are given for the low, medium and high scenarios. Total investment requirements for the three modes and the three energy commodities can accumulate to a $46.3 to $47.0 billion range depending on the scenario. The high price of oil, following the evidence of the last year, is projected to hold demand for oil below the recent past. Despite the overall decrease in traffic some investment in crude oil and LPG pipelines is necessary to reach new sources of supply. Although natural gas production and consumption is projected to decline through 1990, new investments in carrying capacity also are required due to locational shifts in supply. The Alaska Natural Gas Transportation System is the dominant investment for energy transportation in the next ten years. This year's report focuses attention on waterborne coal transportation to the northeast states in keeping with a return to significant coal consumption projected for this area. A resumption of such shipments will require a completely new fleet. The investment estimates given in this report identify capital required to transport projected energy supplies to market. The requirement is strategic in the sense that other reasonable alternatives do not exist or that a shared load of new growth can be expected. Not analyzed or forecasted are investments in transportation facilities made in response to local conditions. The total investment figures, therefore, represent a minimum necessary capital improvement to respond to changes in interregional supply conditions.

  15. Environmentally-friendly and energy-efficient road transport and its infrastructure

    Directory of Open Access Journals (Sweden)

    Argun Sch.

    2016-08-01

    Full Text Available The transport sector rapid development has led to the number of serious problems, such as: deterioration of the ecological situation in the world, shortage of energy resources, large accident rate, etc. Therefore, the application and implementation of energy-efficient technologies in transport is an urgent problem, the solution of which begins with the analysis and structuring of all its components. The paper was proposed to divide the energy-saving technologies in transport into two areas: transport and infrastructure. Particular attention is paid to urban bus transport. Comparative analysis of different types of one-class buses utilization was conducted: diesel, hybrid and electrobus for one of the intercity lines. The operating cost calculation for these types of buses was performed, which is shown that electrobuses have a substantial advantage over other buses. It was proposed to use an ultracapacitor electrobus as a small class bus in urban environment and also we presented a schematic diagram of an ultracapacitor electrobus. As for the development of transport infrastructure, the authors offered design of smart roads, which consist of multifunctional pavement slabs.

  16. Body size, growth and life span: implications for the polewards range shift of Octopus tetricus in south-eastern Australia.

    Directory of Open Access Journals (Sweden)

    Jorge E Ramos

    Full Text Available Understanding the response of any species to climate change can be challenging. However, in short-lived species the faster turnover of generations may facilitate the examination of responses associated with longer-term environmental change. Octopus tetricus, a commercially important species, has undergone a recent polewards range shift in the coastal waters of south-eastern Australia, thought to be associated with the southerly extension of the warm East Australian Current. At the cooler temperatures of a polewards distribution limit, growth of a species could be slower, potentially leading to a bigger body size and resulting in a slower population turnover, affecting population viability at the extreme of the distribution. Growth rates, body size, and life span of O. tetricus were examined at the leading edge of a polewards range shift in Tasmanian waters (40°S and 147°E throughout 2011. Octopus tetricus had a relatively small body size and short lifespan of approximately 11 months that, despite cooler temperatures, would allow a high rate of population turnover and may facilitate the population increase necessary for successful establishment in the new extended area of the range. Temperature, food availability and gender appear to influence growth rate. Individuals that hatched during cooler and more productive conditions, but grew during warming conditions, exhibited faster growth rates and reached smaller body sizes than individuals that hatched into warmer waters but grew during cooling conditions. This study suggests that fast growth, small body size and associated rapid population turnover may facilitate the range shift of O. tetricus into Tasmanian waters.

  17. Body size, growth and life span: implications for the polewards range shift of Octopus tetricus in south-eastern Australia.

    Science.gov (United States)

    Ramos, Jorge E; Pecl, Gretta T; Moltschaniwskyj, Natalie A; Strugnell, Jan M; León, Rafael I; Semmens, Jayson M

    2014-01-01

    Understanding the response of any species to climate change can be challenging. However, in short-lived species the faster turnover of generations may facilitate the examination of responses associated with longer-term environmental change. Octopus tetricus, a commercially important species, has undergone a recent polewards range shift in the coastal waters of south-eastern Australia, thought to be associated with the southerly extension of the warm East Australian Current. At the cooler temperatures of a polewards distribution limit, growth of a species could be slower, potentially leading to a bigger body size and resulting in a slower population turnover, affecting population viability at the extreme of the distribution. Growth rates, body size, and life span of O. tetricus were examined at the leading edge of a polewards range shift in Tasmanian waters (40°S and 147°E) throughout 2011. Octopus tetricus had a relatively small body size and short lifespan of approximately 11 months that, despite cooler temperatures, would allow a high rate of population turnover and may facilitate the population increase necessary for successful establishment in the new extended area of the range. Temperature, food availability and gender appear to influence growth rate. Individuals that hatched during cooler and more productive conditions, but grew during warming conditions, exhibited faster growth rates and reached smaller body sizes than individuals that hatched into warmer waters but grew during cooling conditions. This study suggests that fast growth, small body size and associated rapid population turnover may facilitate the range shift of O. tetricus into Tasmanian waters.

  18. Numerical model for two-dimensional hydrodynamics and energy transport. [VECTRA code

    Energy Technology Data Exchange (ETDEWEB)

    Trent, D.S.

    1973-06-01

    The theoretical basis and computational procedure of the VECTRA computer program are presented. VECTRA (Vorticity-Energy Code for TRansport Analysis) is designed for applying numerical simulation to a broad range of intake/discharge flows in conjunction with power plant hydrological evaluation. The code computational procedure is based on finite-difference approximation of the vorticity-stream function partial differential equations which govern steady flow momentum transport of two-dimensional, incompressible, viscous fluids in conjunction with the transport of heat and other constituents.

  19. Reduction potentials of energy demand and GHG emissions in China's road transport sector

    International Nuclear Information System (INIS)

    Yan Xiaoyu; Crookes, Roy J.

    2009-01-01

    Rapid growth of road vehicles, private vehicles in particular, has resulted in continuing growth in China's oil demand and imports, which has been widely accepted as a major factor effecting future oil availability and prices, and a major contributor to China's GHG emission increase. This paper is intended to analyze the future trends of energy demand and GHG emissions in China's road transport sector and to assess the effectiveness of possible reduction measures. A detailed model has been developed to derive a reliable historical trend of energy demand and GHG emissions in China's road transport sector between 2000 and 2005 and to project future trends. Two scenarios have been designed to describe the future strategies relating to the development of China's road transport sector. The 'Business as Usual' scenario is used as a baseline reference scenario, in which the government is assumed to do nothing to influence the long-term trends of road transport energy demand. The 'Best Case' scenario is considered to be the most optimized case where a series of available reduction measures such as private vehicle control, fuel economy regulation, promoting diesel and gas vehicles, fuel tax and biofuel promotion, are assumed to be implemented. Energy demand and GHG emissions in China's road transport sector up to 2030 are estimated in these two scenarios. The total reduction potentials in the 'Best Case' scenario and the relative reduction potentials of each measure have been estimated

  20. Energy Coupling Efficiency in the Type I ABC Transporter GlnPQ.

    Science.gov (United States)

    Lycklama A Nijeholt, Jelger A; Vietrov, Ruslan; Schuurman-Wolters, Gea K; Poolman, Bert

    2018-03-16

    Solute transport via ATP binding cassette (ABC) importers involves receptor-mediated substrate binding, which is followed by ATP-driven translocation of the substrate across the membrane. How these steps are exactly initiated and coupled, and how much ATP it takes to complete a full transport cycle, are subject of debate. Here, we reconstitute the ABC importer GlnPQ in nanodiscs and in proteoliposomes and determine substrate-(in)dependent ATP hydrolysis and transmembrane transport. We determined the conformational states of the substrate-binding domains (SBDs) by single-molecule Förster resonance energy transfer measurements. We find that the basal ATPase activity (ATP hydrolysis in the absence of substrate) is mainly caused by the docking of the closed-unliganded state of the SBDs onto the transporter domain of GlnPQ and that, unlike glutamine, arginine binds both SBDs but does not trigger their closing. Furthermore, comparison of the ATPase activity in nanodiscs with glutamine transport in proteoliposomes shows that the stoichiometry of ATP per substrate is close to two. These findings help understand the mechanism of transport and the energy coupling efficiency in ABC transporters with covalently linked SBDs, which may aid our understanding of Type I ABC importers in general. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. HETFIS: High-Energy Nucleon-Meson Transport Code with Fission

    Energy Technology Data Exchange (ETDEWEB)

    Barish, J.; Gabriel, T.A.; Alsmiller, F.S.; Alsmiller, R.G. Jr.

    1981-07-01

    A model that includes fission for predicting particle production spectra from medium-energy nucleon and pion collisions with nuclei (Z greater than or equal to 91) has been incorporated into the nucleon-meson transport code, HETC. This report is primarily concerned with the programming aspects of HETFIS (High-Energy Nucleon-Meson Transport Code with Fission). A description of the program data and instructions for operating the code are given. HETFIS is written in FORTRAN IV for the IBM computers and is readily adaptable to other systems.

  2. A Green's function method for high charge and energy ion transport

    Science.gov (United States)

    Chun, S. Y.; Khandelwal, G. S.; Wilson, J. W.

    1996-01-01

    A heavy-ion transport code using Green's function methods is developed. The low-order perturbation terms exhibiting the greatest energy variation are used as dominant energy-dependent terms, and the higher order collision terms are evaluated using nonperturbative methods. The recently revised NUCFRG database is used to evaluate the solution for comparison with experimental data for 625A MeV 20Ne and 517A MeV 40Ar ion beams. Improved agreements with the attenuation characteristics for neon ions are found, and reasonable agreement is obtained for the transport of argon ions in water.

  3. Momentum-energy transport from turbulence driven by parallel flow shear

    International Nuclear Information System (INIS)

    Dong, J.Q.; Horton, W.; Bengtson, R.D.; Li, G.X.

    1994-04-01

    The low frequency E x B turbulence driven by the shear in the mass flow velocity parallel to the magnetic field is studied using the fluid theory in a slab configuration with magnetic shear. Ion temperature gradient effects are taken into account. The eigenfunctions of the linear instability are asymmetric about the mode rational surfaces. Quasilinear Reynolds stress induced by such asymmetric fluctuations produces momentum and energy transport across the magnetic field. Analytic formulas for the parallel and perpendicular Reynolds stress, viscosity and energy transport coefficients are given. Experimental observations of the parallel and poloidal plasma flows on TEXT-U are presented and compared with the theoretical models

  4. Energy and exergy utilization efficiencies and emission performance of Canadian transportation sector, 1990–2035

    International Nuclear Information System (INIS)

    Motasemi, F.; Afzal, Muhammad T.; Salema, Arshad Adam; Moghavvemi, M.; Shekarchian, M.; Zarifi, F.; Mohsin, R.

    2014-01-01

    Transportation sector of Canada is the second largest energy consuming sector which accounts for 30% of the total energy consumption of the country in 2009. The purpose of this work was to analyze the energy, exergy, and emission performance for four different modes of transport (road, air, rail, and marine) from the year 1990–2035. For historical period, the estimated overall energy efficiency ranges from 22.41% (1991) to 22.55% (2006) with a mean of 22.48 ± 0.07% and the overall exergy efficiency ranges from 21.61% (2001) to 21.87 (2006) with a mean of 21.74 ± 0.13%. Energy and exergy efficiencies may reach 20.95% and 20.97% in the year 2035 respectively based on the forecasted data. In comparison with other countries, we found that in the year 2000 the overall energy and exergy efficiencies for Canadian transportation sector were higher than Jordan, China, Norway, and Saudi Arabia but lower than Turkey and Malaysia. Between the year 1990–2009, the highest amount of emission produced in each subsector was: road CO 2 (80%), NO x (72%), and CO (carbon monoxide) (96%); air SO 2 (86%); rail NO x (6%) and marine NO x (7%). The road subsector produced the highest amount of emissions. - Highlights: • Energy, exergy and emission performance for Canadian transport was analyzed. • Maximum energy and exergy efficiencies were 22.55% and 21.87% in 2006 respectively. • Energy and exergy efficiencies may decrease in the year 2035. • CO 2 was the largest pollutant emitted followed by CO, NO x , and SO 2 . • Utilization of green fuels can improve exergy and emission performance

  5. Energy saving opportunities in the refrigerated transport sector through Phase Change Materials (PCMs) application

    Science.gov (United States)

    Principi, P.; Fioretti, R.; Copertaro, B.

    2017-11-01

    Transportation of food products at controlled temperature is a critical task in the transport sector. In fact, whilst there is a need of ensuring both food quality and safety to the global population, its impact in terms of energy consumption and related CO2 emissions into the atmosphere is becoming increasingly evident. In this regard, Thermal Energy Storage (TES) using Phase Change Materials (PCMs) can be considered as a potential way of reducing the cooling load, energy consumption and related greenhouse gas emissions in refrigerated transport sector. In this paper two different PCM applications are investigated. Specifically, in the first study a PCM (35 °C melting temperature) layer was added to the external side of a refrigerated enclosure wall with the aim of managing the cooling peak (shifting and reducing) and reducing the daily energy rate. Outdoor experimental results showed that the added PCM layer helps to reduce (between 5.55% and 8.57%) and delay (between 4.30 h and 3.30 h) the peak load of incoming heat compared to the reference one. In the second study, the energy performance of a refrigerated chamber with an air heat exchanger containing PCM (5°C melting temperature) was investigated. The study purpose was to reduce the cooling energy consumption during steady state operating conditions and the rate of temperature increase throughout the course of a power failure event. Test results showed that using a PCM air heat exchanger addition, up to 16% of energy can be saved.

  6. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  7. China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective

    Directory of Open Access Journals (Sweden)

    Shangfeng Han

    2017-04-01

    Full Text Available Facing heavy air pollution, China needs to transition to a clean and sustainable energy system, especially in the power and transport sectors, which contribute the highest greenhouse gas (GHG emissions. The core of an energy transition is energy substitution and energy technology improvement. In this paper, we forecast the levelized cost of electricity (LCOE for power generation in 2030 in China. Cost-emission effectiveness of the substitution between new energy vehicles and conventional vehicles is also calculated in this study. The results indicate that solar photovoltaic (PV and wind power will be cost comparative in the future. New energy vehicles are more expensive than conventional vehicles due to their higher manufacturer suggested retail price (MSRP. The cost-emission effectiveness of the substitution between new energy vehicles and conventional vehicles would be $96.7/ton or $114.8/ton. Gasoline prices, taxes, and vehicle insurance will be good directions for policy implementation after the ending of subsidies.

  8. Issues of geothermal and biomass energy efficiency in agriculture, industry, transports and domestic consumption

    Directory of Open Access Journals (Sweden)

    Cornelia Nistor

    2014-12-01

    Full Text Available Increasing energy efficiency should be a concern for both the firm managers and any leader at any level, given that energy efficiency significantly reduce production costs. An important aspect of this is the use of renewable energy sources, in different types of activities, depending on the possibilities to produce it on favorable terms, to supply at relatively low costs and to efficiently consume it both in the producing units and the households. A skilful and powerful leader will seek and support, through its influence, all the means that determine the reduction of the production costs and obtain a profit as high as possible. Wider use of renewable energy promotes concern for the environment through clean energy, for reducing pollution and for facilitate, in some cases, even the increase of the production with the same costs or lower costs. In agriculture, industry, transports and household consumption, a high importance presents the geothermal energy and the biomass as source of energy.

  9. Center for Electrocatalysis, Transport Phenomena, and Materials (CETM) for Innovative Energy Storage - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Soloveichik, Grigorii [GE Global Research, Niskayuna, New York (United States)

    2015-11-30

    EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power and energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of

  10. Effective Potential Energies and Transport Cross Sections for Atom-Molecule Interactions of Nitrogen and Nitrogen

    Science.gov (United States)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Arnold, Jim (Technical Monitor)

    2001-01-01

    The potential energy surfaces for H2-N and N2-N interactions are calculated by accurate ab initio methods and applied to determine transport data. The results confirm that an effective potential energy for accurately determining transport properties can be calculated using a single orientation. A simple method is developed to determine the dispersion coefficients of effective potential energies Effective potential energies required for O2-O collisions are determ=ined. The H2-N, N2-N, O2-H, and O2-O collision integrals are calculated and tabulated for a large range of temperatures. The theoretical values of the N2-N and O2-O diffusion coefficients compare well with measured data available at room temperature.

  11. Water-mediated energy transport and structure across a protein-protein interface

    Science.gov (United States)

    Leitner, David

    2010-03-01

    Water molecules embedded within proteins or at the interface between globules play a central role in folding and function. We discuss the influence of interfacial water molecules on energy transport and structure, specifically the role of water at the interface between the two globules of the homodimeric hemoglobin from Scapharca inaequivalvis, which binds oxygen cooperatively. We have studied the water-mediated energy transport in this protein with communication maps and nonequilibrium molecular simulations of energy flow, which reveal the disproportionate amount of energy carried by the water molecules, particularly across the interface, i.e., a larger thermal conductivity of the interfacial waters compared with other parts of the protein, promoting hydrogen bond rearrangements at the interface.

  12. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  13. Low energy transport coefficients and cross sections for electrons in deuterium

    International Nuclear Information System (INIS)

    Petrovic, Z.L.; Crompton, R.W.

    1985-01-01

    For the design of negative ion sources the reliable cross section data of electron swarms in deuterium are necessary. Earlier theoretical calucations could not reproduce the experimental data. This paper presents new experimental data for drift velocities and mobility in the energy range above the treshold of 2.5 eV where vibrational excitation is the dominant inelastic process. The low energy cross sections are derived from the transport data and are compared with results of other experiments. (D.Gy.)

  14. Update on the Transportable Plasma Waste to Energy System at Hurlburt Field

    Science.gov (United States)

    2010-06-01

    Produces Inert Aggregate Plasma Arc Gasification & Recycling PRRS: Plasma Waste to Energy System Jenbacher JCS 312 Syngas Electricity Recyclables...resource recovery system (PRRS) that turns waste 1nto syngas , v1tr1fied rock and metal Syngas can be used to generate eJectnoty and heat wh1le the...AIR FORCE SPECIAL OPERATIONS COMMAND Air Commandos – Quiet Professionals Update on the Transportable Plasma Waste to Energy System at Hurlburt

  15. Effect of flow oscillations on axial energy transport in a porous material

    Science.gov (United States)

    Siegel, R.

    1987-01-01

    The effects of flow oscillations on axial energy diffusion in a porous medium, in which the flow is continuously disrupted by the irregularities of the porous structure, are analyzed. The formulation employs an internal heat transfer coefficient that couples the fluid and solid temperatures. The final relationship shows that the axial energy transport per unit cross-sectional area and time is directly proportional to the axial temperature gradient and the square of the maximum fluid displacement.

  16. Transport of chemically bonded nuclear energy in a closed cycle with special consideration to energy disconnection

    International Nuclear Information System (INIS)

    Ossami, S.

    1976-01-01

    The article describes the utilisation of nuclear energy in the form of 'nuclear long-distance energy'. Heat produced by nuclear fission is bonded to a reversible chemical reaction (cracking gas) which release the heat again at the place of comsumption by catalytic transformation. The article deals in particular with the process of methane cracking/methanisation, the disconnection of the energy (heat) by the methanisation process and the decisive role of the methanisation catalyzers. (orig.) [de

  17. Highly-resolved modeling of personal transportation energy consumption in the United States

    International Nuclear Information System (INIS)

    Muratori, Matteo; Moran, Michael J.; Serra, Emmanuele; Rizzoni, Giorgio

    2013-01-01

    This paper centers on the estimation of the total primary energy consumption for personal transportation in the United States, to include gasoline and/or electricity consumption, depending on vehicle type. The bottom-up sector-based estimation method introduced here contributes to a computational tool under development at The Ohio State University for assisting decision making in energy policy, pricing, and investment. In order to simulate highly-resolved consumption profiles three main modeling steps are needed: modeling the behavior of drivers, generating realistic driving profiles, and simulating energy consumption of different kinds of vehicles. The modeling proposed allows for evaluating the impact of plug-in electric vehicles on the electric grid – especially at the distribution level. It can serve as a tool to compare different vehicle types and assist policy-makers in estimating their impact on primary energy consumption and the role transportation can play to reduce oil dependency. - Highlights: • Modeling primary energy consumption for personal transportation in the United States. • Behavior of drivers has been simulated in order to establish when driving events occur and the length of each event. • Realistic driving profiles for each driving event are generated using a stochastic model. • The model allows for comparing the initial cost of different vehicles and their expected energy-use operating cost. • Evaluation of the impact of PEVs on the electric grid – especially at the distribution level – can be performed

  18. Energy use in the Marine Transportation Industry. Task II. Regulations and tariffs

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-30

    The regulatory framework of the commercial marine transportation industry is defined and these regulations are evaluated in terms of their energy impact. The approach used in the evaluation of the energy impacts of regulations and tariffs was structured around three sequential steps: identification of agencies and organizations that impact the commercial marine transportation industry; identification of existing or proposed regulations that were perceived to have a significant energy impact; and quantification of the energy impacts. Each of these three steps is described in detail. The report is organized around nine chapters. Chapter I contains an introduction and summary of the results and conclusions. Chapter II describes the regulatory structure of the commercial marine transportation industry and includes: a description of the role of each organization and the legislative basis for their jurisdiction; and an identification of major areas of regulation and those areas that have an energy impact. Chapters III through IX each address one of the seven existing or proposed regulatory or legislative actions that have an energy impact. The results of each of these seven case studies are summarized. (MCW)

  19. Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence.

    Science.gov (United States)

    Pang, Xiaofeng; Chen, Shude; Wang, Xianghui; Zhong, Lisheng

    2016-07-25

    The influences of electromagnetic fields (EMFs) on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole-dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge-Kutta method and Pang's soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs) depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the corresponding theory are

  20. The potassium battery: a mobile energy source for transport processes in plant vascular tissues.

    Science.gov (United States)

    Dreyer, Ingo; Gomez-Porras, Judith Lucia; Riedelsberger, Janin

    2017-12-01

    Contents 1049 I. 1049 II. 1050 III. 1050 IV. 1050 V. 1051 VI. 1051 VII. 1052 VIII. 1052 1053 References 1053 SUMMARY: Plant roots absorb potassium ions from the soil and transport them in the xylem via the transpiration stream to the shoots. There, in source tissues where sufficient chemical energy (ATP) is available, K + is loaded into the phloem and then transported with the phloem stream to other parts of the plant; in part, transport is also back to the roots. This, at first sight, futile cycling of K + has been uncovered to be part of a sophisticated mechanism that (1) enables the shoot to communicate its nutrient demand to the root, (2) contributes to the K + nutrition of transport phloem tissues and (3) transports energy stored in the K + gradient between phloem cytosol and the apoplast. This potassium battery can be tapped by opening AKT2-like potassium channels and then enables the ATP-independent energization of other transport processes, such as the reloading of sucrose. Insights into these mechanisms have only been possible by combining wet-lab and dry-lab experiments by means of computational cell biology modeling and simulations. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Color graphics display of low-high energy electron-photon transport using EGS4

    International Nuclear Information System (INIS)

    Kloepping, R.J.; Huntzinger, C.J.; Benson, E.; Nelson, W.R.

    1988-01-01

    Visual presentations are widely accepted and are a dynamic tool in education. The technique of visual presentations of Monte Carlo simulated interaction and transport using the EGS4 code system via SLAC Unified Graphics, connected to an IBM-5080 high resolution color monitor, has been previously demonstrated. EGS was originally developed by the Stanford Linear Accelerator Center (SLAC) and the High Energy Physics Laboratory (HEPL) at Stanford University as an analytical tool for engineering and physics. The EGS4 version released in 1985 is capable of simulating radiation transport from several TeV down to 1 KeV (photons) and 10 KeV (electrons and positrons). EGS can not only transport monoenergetic particles, but also particles generated from an energy distribution. This paper demonstrates the graphics capability as a teaching tool. The EGS code has been thoroughly verified by comparison with experiment and theory

  2. The use of symbolic computation in radiative, energy, and neutron transport calculations

    Science.gov (United States)

    Frankel, J. I.

    This investigation uses symbolic computation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular, integral and integro-differential equations which appear in radiative and combined mode energy transport. This technical report summarizes the research conducted during the first nine months of the present investigation. The use of Chebyshev polynomials augmented with symbolic computation has clearly been demonstrated in problems involving radiative (or neutron) transport, and mixed-mode energy transport. Theoretical issues related to convergence, errors, and accuracy have also been pursued. Three manuscripts have resulted from the funded research. These manuscripts have been submitted to archival journals. At the present time, an investigation involving a conductive and radiative medium is underway. The mathematical formulation leads to a system of nonlinear, weakly-singular integral equations involving the unknown temperature and various Legendre moments of the radiative intensity in a participating medium. Some preliminary results are presented illustrating the direction of the proposed research.

  3. PIP-II Injector Test’s Low Energy Beam Transport: Commissioning and Selected Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermilab; Alvarez, M. [Fermilab; Andrews, R. [Fermilab; Carneiro, J.-P. [Fermilab; Chen, A. [Fermilab; Hanna, B. [Fermilab; Prost, L. [Fermilab; Scarpine, V. [Fermilab; D' Arcy, R. [University Coll. London; Wiesner, C. [Goethe U., Frankfurt (main)

    2016-09-16

    The PIP2IT test accelerator is under construction at Fermilab. Its ion source and Low Energy Beam Transport (LEBT) in its initial (straight) configuration have been commissioned to full specification parameters. This paper introduces the LEBT design and summarizes the outcome of the commissioning activities.

  4. Use of orthonormal polynomials to fit energy spectrum data for water transported through membrane

    International Nuclear Information System (INIS)

    Bogdanova, N.; Todorova, L.

    2001-01-01

    A new application of our approach with orthonormal polynomials to curve fitting is given when both variables have errors. We approximate and describe data of a new effect due to change of water energy spectrum as a result of water transport in a porous membrane

  5. The use of symbolic computation in radiative, energy, and neutron transport calculations. Final report

    International Nuclear Information System (INIS)

    Frankel, J.I.

    1997-01-01

    This investigation used sysmbolic manipulation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular integral and integro-differential equations which appear in radiative and mixed-mode energy transport. Contained in this report are seven papers which present the technical results as individual modules

  6. Long Distance Bioenergy Logistics: An assessment of costs and energy consumption for various biomass transport chains

    NARCIS (Netherlands)

    Suurs, R.A.A.

    2002-01-01

    This study gives an analysis of costs and energy consumption, associated with long distance bioenergy transport systems. In order to create the possibility of obtaining an insight in the system’s key factors, a model has been developed, taking into account different production systems,

  7. Transport of radioactive material. 1994-2002. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    2002-10-01

    This document lists all sales publications, IAEA-TECDOC Series, Training Course Series and National Competent Authorities Lists of the International Atomic Energy Agency dealing with the transport of radioactive materials during the period 1994-2002. It gives a short abstract and contents of these issues along with their costs in EURO

  8. Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

    Energy Technology Data Exchange (ETDEWEB)

    T. Downar

    2009-03-31

    The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system.

  9. InnoDemo Survey Report: Aims and results of demonstration projects in renewable energy and transport

    OpenAIRE

    Olsen, Dorothy Sutherland

    2014-01-01

    This report summarises the findings of a survey of demonstration projects related to energy and transport. The survey was designed to develop an overview of the aims of these projects and the results they have achieved. The projects were carried out in Norway, Sweden and Denmark in the period between 2002 and 2012 and all of them received public funding.

  10. Design of medium energy beam transport line between the RFQ and ...

    Indian Academy of Sciences (India)

    Design of medium energy beam transport line between the RFQ and the Linac in the radioactive ion beam facility at VECC, Kolkata. S Dechoudhury Vaishali Naik Manas Mondal Hemendra Kumar Pandey Avik Chatterjee Dirtha Sanyal Debasis Bhowmick Alok Chakrabarti. Research Articles Volume 75 Issue 3 September ...

  11. Recent progress in process engineering: mixture-microgeometry, transport/energy transfer

    International Nuclear Information System (INIS)

    Antonini, G.; Ben Aim, R.

    1991-01-01

    This congress on process engineering is divided into six parts: 1 Agitation, mixing and fluids handling; 2 Microgeometry and microstructures in porous media; 3 Heat exchangers, multifunction exchangers; 4 Cold and heat production, using, energy conversion, furnaces, thermal treatments; 5 Materials handling and treatments: crushing, fluidization, pneumatic transport; 6 Formulation. 62 papers are presented

  12. Analysis of the energy efficiency of the transport system in Algeria; Analyse de l'efficacite energetique du systeme de transport en Algerie

    Energy Technology Data Exchange (ETDEWEB)

    Hamdani, Sid Ahmed

    2010-09-15

    The objective of this communication is analyze the energy efficiency of the transport system in Algeria and to show the areas of possible rationalization in this sector. Our approach is to analyze the existing configuration of the sector and its impact on energy consumption, by developing a sectional model Bottom Up, where the transport park has been modified by the means used. We have shown that the potential to improve the transport system energy efficiency is important and have recommended some options aimed at the sector organisation and aimed at increasing the relative part of transport systems to make it more energy efficient. [French] L'objectif de cette communication est d'analyser l'efficacite energetique du systeme de transport algerien et de montrer les gisements de rationalisation possibles dans ce secteur. Notre approche consiste a analyser la configuration existante du secteur et son impact sur la consommation d'energie, en elaborant un modele sectoriel Bottom Up, ou le parc de transport a ete desagrege par moyen utilise. Nous avons montre que le potentiel d'amelioration de la performance energetique du systeme de transport est important et avons recommande quelques options ciblant l'organisation du secteur et visant a augmenter la part relative de moyens de transport plus efficace energetiquement.

  13. Systematic studies on transport process of heavy-ion collisions at INDRA energies and detection of symmetry energy

    International Nuclear Information System (INIS)

    Li Qingfeng; Guo Chenchen; Li Yongjia

    2013-01-01

    The terms of initialization, equation of state (EoS), and two-body collision in the updated ultrarelativistic quantum molecular dynamics (UrQMD) model are examined in details so as to systematically study the collective flows and the nuclear stopping of free nucleons and light clusters from heavy-ion collisions at INDRA energies. It is seen that at INDRA energies the dynamic transport with a soft EoS with momentum dependence and with the momentum-modified density-dependent nucleon-nucleon elastic cross sections describes the directed flow exhibited by hydrogen isotopes (Z = 1) emitted at midrapidity fairly well. The sensitivity of the balance energy (E bal ) of the directed flow to the strength parameter of the density dependence of symmetry potential energy is further studied with the same parameter set. It is found that the E bal of neutrons from HICs is particularly sensitive to the density dependence of the symmetry potential energy, while that of protons is not. And, the initial neutron/proton ratio dependence of the balance energy of neutrons from Sn isotopes can be taken as a useful probe to constrain the stiffness of the nuclear symmetry energy. (authors)

  14. A calculation program for harvesting and transportation costs of energy wood; Energiapuun korjuun ja kuljetuksen kustannuslaskentaohjelmisto

    Energy Technology Data Exchange (ETDEWEB)

    Kuitto, P.J.

    1996-12-31

    VTT Energy is compiling a large and versatile calculation program for harvesting and transportation costs of energy wood. The work has been designed and will be carried out in cooperation with Metsaeteho and Finntech Ltd. The program has been realised in Windows surroundings using SQLWindows graphical database application development system, using the SQLBase relational database management system. The objective of the research is to intensify and create new possibilities for comparison of the utilization costs and the profitability of integrated energy wood production chains with each other inside the chains

  15. The contribution to the energy balance and transport in an advanced-fuel tokamak reactor

    International Nuclear Information System (INIS)

    Atzeni, S.; Vlad, G.

    1985-01-01

    The influence of synchrotron radiation emission on the energy balance of an advanced-fuel (such as D- 3 He, or catalyzed-D) tokamak plasma is considered. It is shown that a region in the β-T space exists, where the fusion energy delivered to the plasma overcomes synchrotron and bremsstrahlung energy losses, and which could then allow for ignited operation. 1-Dimensional codes results are also presented, which illustrate the main features of radial transport in a ignited, D- 3 He tokamak plasma

  16. Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems

    Science.gov (United States)

    Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana

    2017-12-01

    At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.

  17. Creating prospective value chains for renewable road transport energy sources up to 2050 in Nordic Countries

    DEFF Research Database (Denmark)

    Wessberg, Nina; Leinonen, Anna; Tuominen, Anu

    2013-01-01

    alternative, but partly overlapping technology platforms, namely electricity, biofuels and hydrogen. The approach outlined in the paper combines elements from the fields of system level changes (transitions), value chain analysis and forward looking policy design. It presents a novel, policy relevant......If the Nordic energy and transport sectors are to meet the 2050 energy and climate policy targets, major systemic changes are necessary. Along with new technologies, changes are required also in other societal functions such as business models and consumer habits. The transition requires...... cooperation between public and private actors. This paper discusses the paradigm change towards 2050 Nordic road transport system based on renewable energy. More precisely, it proposes an approach for creation and analysis of prospective value networks up to the year 2050. The value networks arise from three...

  18. Multiple criteria decision making for sustainable energy and transportation systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ehrgott, Matthias [Auckland Univ. (New Zealand). Dept. of Engineering Science; Naujoks, Boris [Login GmbH, Schwelm (Germany).; Stewart, Theodor J. [Cape Town Univ., Rondebosch (South Africa). Dept. of Statistical Sciences; Wallenius, Jyrki (eds.) [Helsinki School of Economics (Finland). Dept. of Business Technology

    2010-07-01

    In the twenty-first century the sustainability of energy and transportation systems is on the top of the political agenda in many countries around the world and governments are establishing policies towards a sustainable, low emissions energy future. Environmental impacts of human economic activity necessitate the consideration of conflicting goals in decision making processes to develop sustainable systems. Any sustainable development has to reconcile conflicting economic and environmental objectives and criteria. The science of multiple criteria decision making has a lot to offer in addressing this need. Decision making with multiple (conflicting) criteria is the topic of research that is at the heart of the International Society of Multiple Criteria Decision Making. This book is based on selected papers presented at the societies 19th International Conference, held at The University of Auckland, New Zealand, from 7th to 12th January 2008 under the theme ''MCDM for Sustainable Energy and Transportation Systems''. (orig.)

  19. Implications of transportation policies on energy and environment in Kathmandu Valley, Nepal

    International Nuclear Information System (INIS)

    Dhakal, Shobhakar

    2003-01-01

    This paper estimates and analyzes the historical and future trends of energy demand and environmental emissions from passenger transportation of the Kathmandu Valley covering CO 2 , CO, HC, NO x , SO 2 , total suspended particles (TSP) and lead (Pb). It uses the Long-range Energy Alternatives Planning System framework for constructing future scenarios up to year 2020 and analyzing their implications; these scenarios mainly deal with the traffic improvement measures, promotion of public transportation and electric vehicles. The results estimate over a four-fold increase in energy demand in 1988-2000. TSP increase of 4.5 times in this period is the major concern since high particulate concentration is already above World Health Organization guidelines. Under the non-intervention scenario, energy demand in 2020 is estimated to be 2.7 times that in the year 2000. Similarly, 2.5 times increase of TSP in 2020 from the year 2000 is estimated that would further increase the TSP concentrations. The scenario analyses suggest that increasing vehicle speed, promoting public transportation and promoting electric vehicles could reduce energy demand by 28%, 28% and 18%, respectively, while promoting a reasonably comfortable condition on overcrowded public transportation could increase energy demand by 10% from non-intervention scenario. For TSP, any future measures would not be enough unless the attention is not paid to in-use vehicle stock. A mix of all the policies mentioned above has potentials to cut down CO 2 emissions to over 60% from the non-intervention case in 2020

  20. Shared Freight Transportation and Energy Commodities Phase One: Coal, Crude Petroleum, & Natural Gas Flows

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Shih-Miao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hwang, Ho-Ling [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davidson, Diane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    The Freight Analysis Framework (FAF) integrates data from a variety of sources to create a comprehensive picture of nationwide freight movements among states and major metropolitan areas for all modes of transportation. It provides a national picture of current freight flows to, from, and within the United States, assigns selected flows to the transportation network, and projects freight flow patterns into the future. The latest release of FAF is known as FAF4 with a base year of 2012. The FAF4 origin-destination-commodity-mode (ODCM) matrix is provided at national, state, major metropolitan areas, and major gateways with significant freight activities (e.g., El Paso, Texas). The U.S. Department of Energy (DOE) is interested in using FAF4 database for its strategic planning and policy analysis, particularly in association with the transportation of energy commodities. However, the geographic specification that DOE requires is a county-level ODCM matrix. Unfortunately, the geographic regions in the FAF4 database were not available at the DOE desired detail. Due to this limitation, DOE tasked Oak Ridge National Laboratory (ORNL) to assist in generating estimates of county-level flows for selected energy commodities by mode of transportation.

  1. Dynamic linkages between road transport energy consumption, economic growth, and environmental quality: evidence from Pakistan.

    Science.gov (United States)

    Danish; Baloch, Muhammad Awais

    2018-03-01

    The focus of the present research work is to investigate the dynamic relationship between economic growth, road transport energy consumption, and environmental quality. To this end, we rely on time series data for the period 1971 to 2014 in the context of Pakistan. To use sulfur dioxide (SO 2 ) emission from transport sector as a new proxy for measuring environmental quality, the present work employs time series technique ARDL which allows energy consumption from the transport sector, urbanization, and road infrastructure to be knotted by symmetric relationships with SO 2 emissions and economic growth. From the statistical results, we confirm that road infrastructure boosts economic growth. Simultaneously, road infrastructure and urbanization hampers environmental quality and causes to accelerate emission of SO 2 in the atmosphere. Furthermore, economic growth has a diminishing negative impact on total SO 2 emission. Moreover, we did not find any proof of the expected role of transport energy consumption in SO 2 emission. The acquired results directed that care should be taken in the expansion of road infrastructure and green city policies and planning are required in the country.

  2. Transport of energy and momentum due to spatial Landau damping and growth of electrostatic waves

    International Nuclear Information System (INIS)

    Lacina, J.

    1994-01-01

    It is shown that Landau damping in space (LDS), occuring for time-periodic electrostatic waves, does not lead to any deposition of energy in plasmas. A steady-state balance and a steady-state transport of energy, momentum and particles take place both for damped and growing waves. Because of the phase interference of coherent free and forced particle oscillations, the oscillatory energy of particles increases in the direction of wave propagation; the time-averaged flow of plasma kinetic energy being constant in space for these waves, the LDS must take place for a Maxwellian plasma in order to compensate for the growth of the particle oscillatory energy in space. (Author)

  3. The Bavarian State Minister of Economic Affairs and Transportation: Answers in energy policy

    International Nuclear Information System (INIS)

    For a detailed discussion in parliament of the problems of energy supply in Bavaria, the committees for economic affairs and transportation and for regional development and environmental problems reported on the various aspects of power supply in Bavaria in a hearing at the Bavarian Land parliament on June 20-22, 1977. The answers of the ministers to questions raised in parliament are compiled in this documentation which of course, cannot give a full picture of the very detailed material. Part 1 discusses all major problems of energy policy in Bavaria with sections on energy consumption, economic growth, and energy supply from all available energy sources. (UA) 891 UA/UA 892 MKO [de

  4. Using Grey Relational Analysis to Evaluate Energy Consumption, CO₂ Emissions and Growth Patterns in China's Provincial Transportation Sectors.

    Science.gov (United States)

    Yuan, Changwei; Wu, Dayong; Liu, Hongchao

    2017-12-08

    The transportation sector is a complex system. Collecting transportation activity and the associated emissions data is extremely expensive and time-consuming. Grey Relational Analysis provides a viable alternative to overcome data insufficiency and gives insights for decision makers into such a complex system. In this paper, we achieved three major goals: (i) we explored the inter-relationships among transportation development, energy consumption and CO₂ emissions for 30 provincial units in China; (ii) we identified the transportation development mode for each individual province; and (iii) we revealed policy implications regarding the sustainable transportation development at the provincial level. We can classify the 30 provinces into eight development modes according to the calculated Grey Relational Grades. Results also indicated that energy consumption has the largest influence on CO₂ emission changes. Lastly, sustainable transportation policies were discussed at the province level according to the level of economy, urbanization and transportation energy structure.

  5. Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries

    International Nuclear Information System (INIS)

    Poumanyvong, Phetkeo; Kaneko, Shinji; Dhakal, Shobhakar

    2012-01-01

    Few attempts have been made to investigate quantitatively and systematically the impact of urbanization on transport energy use for countries of different stages of economic development. This paper examines the influence of urbanization on national transport and road energy use for low, middle and high income countries during 1975–2005, using the Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT) model. After controlling for population size, income per capita and the share of services in the economy, the main results suggest that urbanization influences national transport and road energy use positively. However, the magnitude of its influence varies among the three income groups. Changes in urbanization appear to have a greater impact on transport and road energy use in the high income group than in the other groups. Surprisingly, the urbanization elasticities of transport and road energy use in the middle income group are smaller than those of the low income group. This study not only sheds further light on the existing literature, but also provides policy makers with insightful information on the link between urbanization and transport energy use at the three different stages of development. - Highlights: ► Overall, urbanization increases national transport and road energy use. ► Urbanization elasticities of transport energy use differ across development stages. ► Urbanization elasticities in high-income group are higher than in other groups.

  6. Exploring a potential energy surface by machine learning for characterizing atomic transport

    Science.gov (United States)

    Kanamori, Kenta; Toyoura, Kazuaki; Honda, Junya; Hattori, Kazuki; Seko, Atsuto; Karasuyama, Masayuki; Shitara, Kazuki; Shiga, Motoki; Kuwabara, Akihide; Takeuchi, Ichiro

    2018-03-01

    We propose a machine-learning method for evaluating the potential barrier governing atomic transport based on the preferential selection of dominant points for atomic transport. The proposed method generates numerous random samples of the entire potential energy surface (PES) from a probabilistic Gaussian process model of the PES, which enables defining the likelihood of the dominant points. The robustness and efficiency of the method are demonstrated on a dozen model cases for proton diffusion in oxides, in comparison with a conventional nudge elastic band method.

  7. Numerical Simulation of the Anomalous Transport of High-Energy Cosmic Rays in Galactic Superbubble

    Science.gov (United States)

    Barghouty, A. F.; Price, E. M.; MeWaldt, R. A.

    2013-01-01

    A continuous-time random-walk (CTRW) model to simulate the transport and acceleration of high-energy cosmic rays in galactic superbubbles has recently been put forward (Barghouty & Schnee 2102). The new model has been developed to simulate and highlight signatures of anomalous transport on particles' evolution and their spectra in a multi-shock, collective acceleration context. The superbubble is idealized as a heterogeneous region of particle sources and sinks bounded by a random surface. This work concentrates on the effects of the bubble's assumed astrophysical characteristics (cf. geometry and roughness) on the particles' spectra.

  8. Hydrogen Production from Sea Wave for Alternative Energy Vehicles for Public Transport in Trapani (Italy

    Directory of Open Access Journals (Sweden)

    Vincenzo Franzitta

    2016-10-01

    Full Text Available The coupling of renewable energy and hydrogen technologies represents in the mid-term a very interesting way to match the tasks of increasing the reliable exploitation of wind and sea wave energy and introducing clean technologies in the transportation sector. This paper presents two different feasibility studies: the first proposes two plants based on wind and sea wave resource for the production, storage and distribution of hydrogen for public transportation facilities in the West Sicily; the second applies the same approach to Pantelleria (a smaller island, including also some indications about solar resource. In both cases, all buses will be equipped with fuel-cells. A first economic analysis is presented together with the assessment of the avoidable greenhouse gas emissions during the operation phase. The scenarios addressed permit to correlate the demand of urban transport to renewable resources present in the territories and to the modern technologies available for the production of hydrogen from renewable energies. The study focuses on the possibility of tapping the renewable energy potential (wind and sea wave for the hydrogen production by electrolysis. The use of hydrogen would significantly reduce emissions of particulate matter and greenhouse gases in urban districts under analysis. The procedures applied in the present article, as well as the main equations used, are the result of previous applications made in different technical fields that show a good replicability.

  9. Integration of renewable energy into the transport and electricity sectors through V2G

    International Nuclear Information System (INIS)

    Lund, Henrik; Kempton, Willett

    2008-01-01

    Large-scale sustainable energy systems will be necessary for substantial reduction of CO 2 . However, large-scale implementation faces two major problems: (1) we must replace oil in the transportation sector, and (2) since today's inexpensive and abundant renewable energy resources have fluctuating output, to increase the fraction of electricity from them, we must learn to maintain a balance between demand and supply. Plug-in electric vehicles (EVs) could reduce or eliminate oil for the light vehicle fleet. Adding 'vehicle-to-grid' (V2G) technology to EVs can provide storage, matching the time of generation to time of load. Two national energy systems are modelled, one for Denmark, including combined heat and power (CHP) and the other a similarly sized country without CHP (the latter being more typical of other industrialized countries). The model (EnergyPLAN) integrates energy for electricity, transport and heat, includes hourly fluctuations in human needs and the environment (wind resource and weather-driven need for heat). Four types of vehicle fleets are modelled, under levels of wind penetration varying from 0% to 100%. EVs were assumed to have high power (10 kW) connections, which provide important flexibility in time and duration of charging. We find that adding EVs and V2G to these national energy systems allows integration of much higher levels of wind electricity without excess electric production, and also greatly reduces national CO 2 emissions

  10. Energy and transport in comparison: Immaterialisation, dematerialisation and decarbonisation in the EU15 between 1970 and 2000

    International Nuclear Information System (INIS)

    Tapio, Petri; Banister, David; Luukkanen, Jyrki; Vehmas, Jarmo; Willamo, Risto

    2007-01-01

    This article compares the development of transport and energy use with a focus on carbon dioxide (CO 2 ) emissions in the EU15 countries between 1960 and 2000, and separately by each individual EU country between 1970 and 2000. Based on a review on the literature, immaterialisation can be defined as the reduction of energy intensity and transport intensity; dematerialisation can be defined as the reduction in carbon intensity of energy production and the carbon intensity of transport; decarbonisation can be defined as the reduction in (total and transport) carbon intensity of the whole economy. Although there is a clear pattern of reduction in energy intensity of the economy and carbon intensity of energy production, a similar pattern cannot be found in transport. Neither the transport intensity of the economy nor the carbon intensity of transport has been reduced. In particular, freight transport intensity has grown between 1985 and 2000. Data presented by country have shown even more variation. The EU15 countries were aggregated into six groups by cluster analysis to establish the different patterns on each of the three measures. It is concluded that the EU15 countries will have problems in achieving the EU White Paper target of decoupling transport growth from economic growth and the Kyoto target of reducing total CO 2 emissions by 8% from the 1990 level between 2008 and 2012. However, there are some weak signals suggesting a more sustainable passenger transport system

  11. Energy conservation in urban areas in the framework of a sustainable transportation concept

    Energy Technology Data Exchange (ETDEWEB)

    Shahin, M.

    2001-07-01

    The widespread of transport is recognized as a major contributor to an extensive range of undesirable side effects, covering all stages, from production to use and disposal. The transport sector is one of the major consumers of energy mainly fossil fuels and therefore contributes adverse emissions with local direct health effects as well as a significant share of 'greenhouse gases' (GHGs), which play a crucial role in determining the earth's climate. Moreover, the transportation sector is implicated in causing some social problems such as intensive use of public space. Present growth in vehicle ownership and use in urban areas, is unsustainable. Petroleum fuels, which are the main energy source for the transport sector, are essentially non-renewable. In short, the transportation system is unsustainable and is becoming more unsustainable. Measures need to be taken at a number of levels to mitigate the negative effects of transport and to reduce the increasing dependence on the fossil fuels as a main transportation energy soruce. The main objectives of this study are: (a) analyzing the transportation's role in the energy markets and its related environmental problems and defining the sustainable transport in urban areas, (b) analyzing alternative urban planning philosophies, (c) presenting a suggested procedure for sustainable develop ment of urban transport and energy consumption, (d) identifying the potential impacts of this procedure by being applied to Alexandria city, as a case study. The identification is based on evaluating four different scenarios for the year 2015 which are compared to each other, as well as with a business-as usual scenario (Do-Nothing Solution). These scenarios are based on the proposed sustainable transport and energy systems started from (Do-Minimum Solution) until (Do-Maximum Solution). To facilitate the calculations, an interactive computer program called 'TraEnergy' is developed in the framework of this

  12. Competition of energy between active transport and vesicle fusion at the origin of intracellular gradient fields.

    Science.gov (United States)

    Pelcé, Pierre

    2018-02-07

    It has been reported that the ionic patterns of hyphal growth can be explained by a weakening of the active transport at the tip at the expense of other biosynthesis processes, from which results energy transport from the proximal cells to the apical ones (Potapova et al. 1988). We present here a theory to support this hypothesis, whose extent is much more general than the initial frame where it has been formulated. It can be summarized in two basics mechanisms, one coupling active transport of the plasma membrane, electric potential and vesicle fusion, the other coupling the Ca 2+ -ATPase of the endoplasmic reticulum and vesicle fusion. For some values of parameters introduced in the theory, the uniform state of the cell becomes unstable, at the origin of intracellular gradient fields. Theoretical ionic patterns are spontaneously produced, which can be satisfactorily compared to several observed in and around tip-growing cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Multi-dimensional relativistic simulations of core-collapse supernovae with energy-dependent neutrino transport

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Bernhard

    2009-05-07

    In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)

  14. Higher-fidelity yet efficient modeling of radiation energy transport through three-dimensional clouds

    International Nuclear Information System (INIS)

    Hall, M.L.; Davis, A.B.

    2005-01-01

    Accurate modeling of radiative energy transport through cloudy atmospheres is necessary for both climate modeling with GCMs (Global Climate Models) and remote sensing. Previous modeling efforts have taken advantage of extreme aspect ratios (cells that are very wide horizontally) by assuming a 1-D treatment vertically - the Independent Column Approximation (ICA). Recent attempts to resolve radiation transport through the clouds have drastically changed the aspect ratios of the cells, moving them closer to unity, such that the ICA model is no longer valid. We aim to provide a higher-fidelity atmospheric radiation transport model which increases accuracy while maintaining efficiency. To that end, this paper describes the development of an efficient 3-D-capable radiation code that can be easily integrated into cloud resolving models as an alternative to the resident 1-D model. Applications to test cases from the Intercomparison of 3-D Radiation Codes (I3RC) protocol are shown

  15. Multi-dimensional relativistic simulations of core-collapse supernovae with energy-dependent neutrino transport

    International Nuclear Information System (INIS)

    Mueller, Bernhard

    2009-01-01

    In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)

  16. The future demographic niche of a declining grassland bird fails to shift poleward in response to climate change

    Science.gov (United States)

    McCauley, Lisa A.; Ribic, Christine; Pomara, Lars Y.; Zuckerberg, Benjamin

    2017-01-01

    ContextTemperate grasslands and their dependent species are exposed to high variability in weather and climate due to the lack of natural buffers such as forests. Grassland birds are particularly vulnerable to this variability, yet have failed to shift poleward in response to recent climate change like other bird species in North America. However, there have been few studies examining the effect of weather on grassland bird demography and consequent influence of climate change on population persistence and distributional shifts.ObjectivesThe goal of this study was to estimate the vulnerability of Henslow’s Sparrow (Ammodramus henslowii), an obligate grassland bird that has been declining throughout much of its range, to past and future climatic variability.MethodsWe conducted a demographic meta-analysis from published studies and quantified the relationship between nest success rates and variability in breeding season climate. We projected the climate-demography relationships spatially, throughout the breeding range, and temporally, from 1981 to 2050. These projections were used to evaluate population dynamics by implementing a spatially explicit population model.ResultsWe uncovered a climate-demography linkage for Henslow’s Sparrow with summer precipitation, and to a lesser degree, temperature positively affecting nest success. We found that future climatic conditions—primarily changes in precipitation—will likely contribute to reduced population persistence and a southwestward range contraction.ConclusionsFuture distributional shifts in response to climate change may not always be poleward and assessing projected changes in precipitation is critical for grassland bird conservation and climate change adaptation.

  17. Long term energy and emission implications of a global shift to electricity-based public rail transportation system

    International Nuclear Information System (INIS)

    Chaturvedi, Vaibhav; Kim, Son H.

    2015-01-01

    With high reliance on light-duty vehicles in the present, the future of global transportation system is also geared towards private modes, which has significant energy and emission implications. Public transportation has been argued as an alternative strategy for meeting the rising transportation demands of the growing world, especially the poor, in a sustainable and energy efficient way. The present study analyzes an important yet under-researched question – what are the long-term energy and emission implications of an electric rail based passenger transportation system for meeting both long and short distance passenter transportation needs? We analyze a suite of electric rail share scenarios with and without climate policy. In the reference scenario, the transportation system will evolve towards dominance of fossil based light-duty vehicles. We find that an electric rail policy is more successful than an economy wide climate policy in reducing transport sector energy demand and emissions. Economy wide emissions however can only be reduced through a broader climate policy, the cost of which can be reduced by hundreds of billions of dollars across the century when implemented in combination with the transport sector focused electric rail policy. Moreover, higher share of electric rail enhances energy security for oil importing nations and reduces vehicular congestion and road infrastructure requirement as well. -- Highlights: •Economy wide carbon price policy will have little impact on transportation emissions. •Focused energy and emission mitigation policies required for transportation sector. •Large global shift towards electric rail based public transport is one possible option. •Transport sector focused policy will have marginal impact on total global emissions. •A combined transport sector and economy wide policy can reduce costs significantly

  18. US Department of Energy, Westinghouse Hanford Company ARECO cesium transportation plan

    Energy Technology Data Exchange (ETDEWEB)

    Clements, E.P., Westinghouse Hanford

    1996-07-15

    The U.S. Department of Energy (DOE) is committed to the safe, efficient, and cost-effective transportation of all materials that support its various programs and activities. DOE strives to ensure that hazardous materials (particularly radioactive),hazardous substances, and hazardous mixed waste are handled and transported in compliance with all applicable federal, state,tribal, and local rules and regulations. This plan outlines the activities and responsibilities of DOE and other agencies that will be followed to conclude a significant movement of radioactive cesium (Cs) chloride capsules in a safe and uneventful manner. DOE-Headquarters (DOE-HQ) has directed that Cs capsules manufactured at the Waste Encapsulation and Storage Facility (WESF) be returned to WESF, located at DOE`s Hanford Site in southeast Washington State. Currently, there are 25 Cs capsules at the Applied Radiant Energy Corporation (ARECO)facility utilized for the polymerization of wood products in Lynchburg, Virginia, that requires removal as part of the overall Cs capsule return effort. This plan has been prepared in cooperation with member states of the Western Governors` Association (WGA) and the Southern States Energy Board (SSEB);the Council of State Governments Midwestern Office; and the Confederated Tribes of the Umatilla Indian Reservations, through whose jurisdictions these shipments will pass, and is an example of DOE-HQ`s commitment to early coordination and substantive involvement in its decision-making processes. This transportation plan identifies responsibilities, requirements,and procedures to ensure the success of the capsule return program. The plan summarizes transportation activities,organizational responsibilities, emergency preparedness guidelines, and other methods for achieving safe transport.

  19. Energy use in the marine transportation industry. Task I. Industry summary. Draft report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-11

    Task 1 of an energy study of ship transportation systems to identify the various operating or service sectors of the marine transportation industry and determine the numbers and types of vessels, their operating characteristics and energy consumption, is presented. The analysis includes all powered water-borne craft with the exception of those owned or operated by a government and fixed offshore production platforms. The approach is described. The broad sectors covered are: the ocean shipping, the Great Lakes, the coastal shipping, offshore, inland waterways, and the fishing and miscellaneous sectors. Recreational boats are covered. Information in the appendices covers marine fuel consumption calculations, essential trade routes, conversion factors, and merchant vessels of the US. (MCW)

  20. A novel modelling approach to energy transport in a respiratory system.

    Science.gov (United States)

    Nithiarasu, Perumal; Sazonov, Igor

    2017-10-01

    In this paper, energy transport in a respiratory tract is modelled using the finite element method for the first time. The upper and lower respiratory tracts are approximated as a 1-dimensional domain with varying cross-sectional and surface areas, and the radial heat conduction in the tissue is approximated using the 1-dimensional cylindrical coordinate system. The governing equations are solved using 1-dimensional linear finite elements with convective and evaporative boundary conditions on the wall. The results obtained for the exhalation temperature of the respiratory system have been compared with the available animal experiments. The study of a full breathing cycle indicates that evaporation is the main mode of heat transfer, and convection plays almost negligible role in the energy transport. This is in-line with the results obtained from animal experiments. Copyright © 2016 John Wiley & Sons, Ltd.

  1. The importance of anisotropic scattering in high energy neutron transport problems

    International Nuclear Information System (INIS)

    Prillinger, G.; Mattes, M.

    1984-01-01

    To describe the highly anisotropic scattering of very fast neutrons adequately the transport code ANISN has been improved. Fokker-Planck terms have been introduced into the transport equation which accurately describe the small changes in energy and angle. The new code has been tested for a d(50)-Be neutron source in a deep penetration iron problem. The influence of the forward peaked elastic scattering on the fast neutron spectrum is shown to be significant and can be handled efficiently in the new ANISN version. Since common cross-section libraries are limited by Legendre expansion, or by their upper energy boundary, or exclude elastic scattering above 20 MeV a special library has been created. (Auth.)

  2. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production

    Science.gov (United States)

    An, L.; Zhao, T. S.

    2017-02-01

    Alkaline direct ethanol fuel cells (DEFC), which convert the chemical energy stored in ethanol directly into electricity, are one of the most promising energy-conversion devices for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a carbon-neutral, sustainable fuel and the electrocatalytic and membrane materials that constitute the cell are relatively inexpensive. As a result, the alkaline DEFC technology has undergone a rapid progress over the last decade. This article provides a comprehensive review of transport phenomena of various species in this fuel cell system. The past investigations into how the design and structural parameters of membrane electrode assemblies and the operating parameters affect the fuel cell performance are discussed. In addition, future perspectives and challenges with regard to transport phenomena in this fuel cell system are also highlighted.

  3. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.

    Science.gov (United States)

    Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2012-02-01

    The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  4. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  5. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    International Nuclear Information System (INIS)

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, Øystein

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H − beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree

  6. Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models

    Science.gov (United States)

    Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.

    1995-01-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.

  7. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  8. Review of energy confinement and local transport scaling results in neutral-beam-heated tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S.M.

    1985-05-01

    Over the past several years, tokamak neutral beam injection experiments have evolved from the brute force study of the effects of global discharge characteristics (I/sub p/, anti n/sub e/, P/sub heat/, etc.) on energy confinement to the appreciation that there are effects more subtle, yet controllable, that may influence confinement dramatically. While this evolution from first to second generation experiments is derived from an empirical understanding of low and high energy confinement modes and how to achieve them operationally, the underlying physics is still unknown. Several theories with different physical bases appear to describe the global scaling of the low confinement mode discharges quite well. On the other hand, little agreement has been found between theoretical and experimentally deduced values of local transport coefficients. While it is known operationally how to achieve any one of several types of high confinement mode discharges, here too, the underlying physics of the transport associated with these modes is poorly understood.

  9. Review of energy confinement and local transport scaling results in neutral-beam-heated tokamaks

    International Nuclear Information System (INIS)

    Kaye, S.M.

    1985-05-01

    Over the past several years, tokamak neutral beam injection experiments have evolved from the brute force study of the effects of global discharge characteristics (I/sub p/, anti n/sub e/, P/sub heat/, etc.) on energy confinement to the appreciation that there are effects more subtle, yet controllable, that may influence confinement dramatically. While this evolution from first to second generation experiments is derived from an empirical understanding of low and high energy confinement modes and how to achieve them operationally, the underlying physics is still unknown. Several theories with different physical bases appear to describe the global scaling of the low confinement mode discharges quite well. On the other hand, little agreement has been found between theoretical and experimentally deduced values of local transport coefficients. While it is known operationally how to achieve any one of several types of high confinement mode discharges, here too, the underlying physics of the transport associated with these modes is poorly understood

  10. Energy use in the marine transportation industry. Task III. Efficiency improvements. Draft report

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-02

    Research and development areas that hold promise for maritime energy conservation are identified and evaluated. The methodology used is discussed in Chapter II. The technology base of the commercial marine transportation industry relating to energy usage is made up of: main propulsion plants, propulsors, hydrodynamics, vessel operations, and fuels. Fifteen specific program areas in the first four generic technologies are identified and are evaluated. An economic and energy impact analysis and technological risk assessment was performed on the specific program areas and the results are summarized in Chapter III. The first five appendices address the generic technologies. The sixth appendix contains the baseline operating and cost parameters against which the 15 program areas were evaluated, and the last appendix contains sample printouts of the MTEM model used to evaluate the energy consumption and economic impacts associated with the candidate technology areas. (MCW)

  11. Transport and energy selection of laser generated protons for postacceleration with a compact linac

    Science.gov (United States)

    Sinigardi, Stefano; Turchetti, Giorgio; Londrillo, Pasquale; Rossi, Francesco; Giove, Dario; De Martinis, Carlo; Sumini, Marco

    2013-03-01

    Laser accelerated proton beams have a considerable potential for various applications including oncological therapy. However, the most consolidated target normal sheath acceleration regime based on irradiation of solid targets provides an exponential energy spectrum with a significant divergence. The low count number at the cutoff energy seriously limits at present its possible use. One realistic scenario for the near future is offered by hybrid schemes. The use of transport lines for collimation and energy selection has been considered. We present here a scheme based on a high field pulsed solenoid and collimators which allows one to select a beam suitable for injection at 30 MeV into a compact linac in order to double its energy while preserving a significant intensity. The results are based on a fully 3D simulation starting from laser acceleration.

  12. Transport and energy selection of laser generated protons for postacceleration with a compact linac

    Directory of Open Access Journals (Sweden)

    Stefano Sinigardi

    2013-03-01

    Full Text Available Laser accelerated proton beams have a considerable potential for various applications including oncological therapy. However, the most consolidated target normal sheath acceleration regime based on irradiation of solid targets provides an exponential energy spectrum with a significant divergence. The low count number at the cutoff energy seriously limits at present its possible use. One realistic scenario for the near future is offered by hybrid schemes. The use of transport lines for collimation and energy selection has been considered. We present here a scheme based on a high field pulsed solenoid and collimators which allows one to select a beam suitable for injection at 30 MeV into a compact linac in order to double its energy while preserving a significant intensity. The results are based on a fully 3D simulation starting from laser acceleration.

  13. The interaction between intermittent renewable energy and the electricity, heating and transport sectors

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Duić, Neven; Stadler, Ingo

    2012-01-01

    in a context characterized by a continuously increasing demand. Even in the current financial crisis, renewable energy is expanding heavily . The most used renewable energy is biomass; however there has been a significant increase in wind power and in photovoltaic in the last ten years. Such development....... The conference was dedicated to research concerning methods, policies and technologies for increasing the sustainable development as well as methods for assessing and measuring sustainability of development, regarding energy, transport, water and environment systems and their many combinations. At the conference...... 418 scientists from 55 countries representing six continents participated. In this Special Issue the interaction between sectors and renewable energy systems through selected papers from this conference is addressed from a range of technical system analyses to environmental and economic feasibility....

  14. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  15. Transport coefficients for the plasma thermal energy and empirical scaling ''laws''

    International Nuclear Information System (INIS)

    Coppi, B.

    1989-01-01

    A set of transport coefficients has been identified for the electron and nuclei thermal energy of plasmas with temperatures in the multi-keV range, taking into account the available experimental information including the temperature spatial profiles and the inferred scaling ''laws'' for the measured energy replacement times. The specific form of these coefficients is suggested by the theory of a mode, so-called ''ubiquitous,'' that can be excited when a significant fraction of the electron population has magnetically trapped orbits. (author)

  16. Case study; Paper on the energy efficiency evolution in the European road freight transport sector

    OpenAIRE

    Riccardo Basosi; Franco Ruzzenenti

    2014-01-01

    One of the goals of WP7 is that of analyzing the energy crisis within the global economic crisis and assess to what extent fuel prices can promote the transition towards a more sustainable and efficient energy regime. This paper addresses the European freight transport system, national and cross-boarder, and assesses the evolution of its efficiency and intensity during the period 1998-2011, when oil prices globally increased, up the hike of the 2008. It will also be investigated the rebound e...

  17. A model for the estimation of energy consumption and air pollutant emissions from rail transport

    DEFF Research Database (Denmark)

    Lindgreen, Erik Bjørn Grønning; Sorenson, Spencer C

    2003-01-01

    A model is presented for the calculation of energy consumption and air pollutant emissions from rail transport. It is based on the estimation of energy consumption from a matirx describing the distribution of speeds and accelerations for operation. It is shown that calculations can be performed...... on a spatial or temporal distribution of operating conditions. CO2 and NOx emissions are generally predicted within 20 % of experimental values. The influence of matrix size is determined. Typical results are presented indicating the effects of operating speed, number of stops and covering goods wagons...

  18. Demonstrating Hybrid Heat Transport and Energy Conversion System Performance Characterization Using Intelligent Control Systems

    International Nuclear Information System (INIS)

    Ostrum, Lee; Manic, Milos

    2017-01-01

    The debate continues on the magnitude and validity of climate change caused by human activities. However, there is no debate about the need to make buildings, modes of transportation, factories, and homes as energy efficient as possible. Given that climate change could occur with the wasteful use of fossil fuel and the fact that fossil energy costs could and will swing wildly, it is imperative that every effort be made to utilize energy sources to their fullest. Hybrid energy systems (HES) are two or more separate energy producers used together to produce energy commodities. The HES this report focuses on is the use of nuclear reactor waste heat as a source of further energy utilization. Nuclear reactors use a fluid to cool the core and produce the steam needed for the production of electricity. Traditionally this steam, or coolant, is used to convert the energy then cooled elsewhere. The heat is released into the environment without being used further. By adding technologies to nuclear reactors to use the wasted heat, a system can be developed to make more than just electricity and allow for loading following capabilities.

  19. Demonstrating Hybrid Heat Transport and Energy Conversion System Performance Characterization Using Intelligent Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ostrum, Lee [Univ. of Idaho and Idaho Falls Center, Idaho Falls, ID (United States); Manic, Milos [Virginia Commonwealth Univ., Richmond, VA (United States)

    2017-09-28

    The debate continues on the magnitude and validity of climate change caused by human activities. However, there is no debate about the need to make buildings, modes of transportation, factories, and homes as energy efficient as possible. Given that climate change could occur with the wasteful use of fossil fuel and the fact that fossil energy costs could and will swing wildly, it is imperative that every effort be made to utilize energy sources to their fullest. Hybrid energy systems (HES) are two or more separate energy producers used together to produce energy commodities. The HES this report focuses on is the use of nuclear reactor waste heat as a source of further energy utilization. Nuclear reactors use a fluid to cool the core and produce the steam needed for the production of electricity. Traditionally this steam, or coolant, is used to convert the energy then cooled elsewhere. The heat is released into the environment without being used further. By adding technologies to nuclear reactors to use the wasted heat, a system can be developed to make more than just electricity and allow for loading following capabilities.

  20. Technical advances and energy substitutions in the transportation sector; Progres techniques et substitutions energetiques dans le secteur des transports

    Energy Technology Data Exchange (ETDEWEB)

    Tromenschlager-Philippe, F.

    2002-11-01

    Alternative motorization technologies have been proposed in order to achieve energy diversification and a reduction in pollutant emissions. Fuel cell vehicles are, among others, at the centre of research carried out by car manufacturers and oil companies. The use of fuel cell vehicles could contribute, first to a less stringent long-term energy dependence of oil importing countries and, second, to pollutant reduction in the transport sector. First of all, we propose the definition of 'innovation' and its treatment in the frame of mainstream economic theories. Then we proceed to a retrospective analysis of diesel motorization of the car market. In the second part of our work, we conduct a survey among French households aiming to obtain up-to-date information about their degree of acceptance of fuel cell technology. We are concerned about highlighting the determining factors of fuel cell vehicle adoption by consumers. For this, we set up a discrete choice model linking the individual decision to the whole group of technical or socio-economical factors and characteristics. Finally, we develop patterns of fuel cell equipment of passenger cars which differ according to type of vehicle and possible purchase assistance. These patterns lead us to the analysis of long-term fuel cell vehicle development on the French car market. (authors)

  1. Low energy D+ beam transportation for the production of D- by double electron capture

    International Nuclear Information System (INIS)

    Geller, R.; Jacquot, C.; Ludwig, P.; Sermet, P.; Gustavson, H.G.; Pauli, R.; Rocco, J.C.

    1980-04-01

    In order to produce negative deuterium ions at high energy (300 KeV) for neutral injector heating, based on double charge exchange in alcali-metals (Cs, Na), the main problem to solve is the transportation of the low energy D - ion beam with an average current density of a few tens of mA/cm 2 until the entrance of the accelerator. To produce D - ions (J D - =20 mA/cm 2 ) by double charge exchange of low energy D + (1 KeV) on a supersonic jet of cesium with a minimum divergence of the D - ions, the positive ion source, the collision chamber with cesium and the drift space of the D - ions are immersed in a homogeneous axial magnetic field. The qualities of the low energy D - beam will be improved for two reasons: 1) The presence of a homogeneous magnetic field contributes to a better compensation of the D + space charge due to an efficient confinement of the background electrons. 2) With the conservation of the azimutal momentum in an axysymmetric magnetic field and some precautions taken in the positive ion extraction, the transport of D + or D - low energy beams could be assumed with a small divergence

  2. Integrating Building Energy Efficiency with Land Use and Transportation Planning in Jinan, China

    Directory of Open Access Journals (Sweden)

    Nicolae Duduta

    2013-02-01

    Full Text Available With the rapid growth occurring in the urban regions of China, it is critical to address issues of sustainability through practices that engender holistic energy efficient solutions. In this paper, we present results from a collaborative design project carried out with planning officials from the city of Jinan (population 3.4 million, for the Luokou district, a 3.1 km2 (1.2 mi2 area to the north of the CBD that is expected to house 100,000–130,000 people by 2020. By integrating sustainable building design, land use, urban design, and transportation, our proposal identified opportunities for improving energy efficiency that might have been overlooked by considering buildings and transportation separately. Mixed land uses and walkable neighborhoods were proposed along with highly differentiated street designs, intended to carry different traffic loads and prioritize diverse travel modes. Street widths and building heights were adjusted to maximize the potential for passive solar heating and daylight use within buildings. The district’s environmental performance, analyzed using building energy evaluation and traffic micro simulation models, showed that the design would reduce energy loads by over 25% compared to business as usual. While the proposal complied with national and local policies, and had far better energy performance than conventional designs, the proposal ultimately was not accepted by local officials because initial costs to the developers were higher than for conventional designs.

  3. Conception and development of an adaptive energy mesher for multigroup library generation of the transport codes

    International Nuclear Information System (INIS)

    Mosca, P.

    2009-12-01

    The deterministic transport codes solve the stationary Boltzmann equation in a discretized energy formalism called multigroup. The transformation of continuous data in a multigroup form is obtained by averaging the highly variable cross sections of the resonant isotopes with the solution of the self-shielding models and the remaining ones with the coarse energy spectrum of the reactor type. So far the error of such an approach could only be evaluated retrospectively. To remedy this, we studied in this thesis a set of methods to control a priori the accuracy and the cost of the multigroup transport computation. The energy mesh optimisation is achieved using a two step process: the creation of a reference mesh and its optimized condensation. In the first stage, by refining locally and globally the energy mesh, we seek, on a fine energy mesh with subgroup self-shielding, a solution equivalent to a reference solver (Monte Carlo or pointwise deterministic solver). In the second step, once fixed the number of groups, depending on the acceptable computational cost, and chosen the most appropriate self-shielding models to the reactor type, we look for the best bounds of the reference mesh minimizing reaction rate errors by the particle swarm optimization algorithm. This new approach allows us to define new meshes for fast reactors as accurate as the currently used ones, but with fewer groups. (author)

  4. Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute

    Energy Technology Data Exchange (ETDEWEB)

    Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

    2008-01-18

    Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low

  5. 2005 Tour de Sol: The Sustainable Energy and Transportation Festival and Competition

    Energy Technology Data Exchange (ETDEWEB)

    Nancy Hazard

    2005-05-07

    This report gives a summary of the 2005Tour de Sol: The Sustainable Energy and Transportation Festival and Competition. It lists our objectives, what we did, and an analysis of how we met our objectives. An 80-page report with a list of verified print, radio and TV media coverage, and copies of selected news clips and web media coverage is available at the NESEA office for review.

  6. Krylov subspace method for evaluating the self-energy matrices in electron transport calculations

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg; Hansen, Per Christian; Petersen, D. E.

    2008-01-01

    We present a Krylov subspace method for evaluating the self-energy matrices used in the Green's function formulation of electron transport in nanoscale devices. A procedure based on the Arnoldi method is employed to obtain solutions of the quadratic eigenvalue problem associated with the infinite...... calculations. Numerical tests within a density functional theory framework are provided to validate the accuracy and robustness of the proposed method, which in most cases is an order of magnitude faster than conventional methods....

  7. Nickel-hydrogen battery design for the Transporter Energy Storage Subsystem (TESS)

    Science.gov (United States)

    Lapinski, John R.; Bourland, Deborah S.

    1992-01-01

    Information is given in viewgraph form on nickel hydrogen battery design for the transporter energy storage subsystem (TESS). Information is given on use in the Space Station Freedom, the launch configuration, use in the Mobile Servicing Center, battery design requirements, TESS subassembley design, proof of principle testing of a 6-cell battery, possible downsizing of TESS to support the Mobile Rocket Servicer Base System (MBS) redesign, TESS output capacity, and cell testing.

  8. A robust and energy-efficient transport protocol for cognitive radio sensor networks.

    Science.gov (United States)

    Salim, Shelly; Moh, Sangman

    2014-10-20

    A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. CRSNs benefit from cognitive radio capabilities such as dynamic spectrum access and transmission parameters reconfigurability; but cognitive radio also brings additional challenges and leads to higher energy consumption. Motivated to improve the energy efficiency in CRSNs, we propose a robust and energy-efficient transport protocol (RETP). The novelties of RETP are two-fold: (I) it combines distributed channel sensing and channel decision with centralized schedule-based data transmission; and (II) it differentiates the types of data transmission on the basis of data content and adopts different acknowledgment methods for different transmission types. To the best of our knowledge, no transport layer protocols have yet been designed for CRSNs. Simulation results show that the proposed protocol achieves remarkably longer network lifetime and shorter event-detection delay compared to those achieved with a conventional transport protocol, while simultaneously preserving event-detection reliability.

  9. Construction of transport and energy networks in the Baltic region as an impetus for regional development

    Directory of Open Access Journals (Sweden)

    Kuznetsov Alexey

    2013-11-01

    Full Text Available In light of some new aspects of the EU functioning, particularly, the recovery from the 2008-2009 global crisis, transportation and energy development projects are coming to the forefront in the Baltic region. At the same time, there is a need to consider EU’s recent adoption of a common seven-year financial program (2014—2020, which serves, in effect, as the Union’s budget. Given that, one may conclude that the countries of the Baltic region are entering a new stage of development. We look at the role and significance of transportation and energy projects as an instrument of economic development. Having studied the largest transport and energy projects in the Baltic region, we were able to show that the new infrastructure networks supported the investment expansion of Swedish and Finnish companies into the post-communist countries of the Baltic Region. Which, in its turn, allowed the Nordic investors to expand their domestic markets. The analysis also shows that the experience of private businesses proves a recent theoretical concept — the pyramid of regional development factors. As a result, the actual regional policy of the EU cannot be considered in the narrow sense of the Cohesion Policy alone.

  10. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aden, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Uriarte, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Inman, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Argo, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  11. Energy saving and CO2 mitigation through restructuring Jordan's transportation sector: The diesel passenger cars scenario

    International Nuclear Information System (INIS)

    Al-Hinti, I.; Al-Ghandoor, A.; Akash, B.; Abu-Nada, E.

    2007-01-01

    The transportation sector is responsible for 37% of the total final energy consumption in Jordan, with passenger cars taking a share of 57% in this sector. Improvement of the energy efficiency of the transportation sector can help in alleviating socio-economic pressures resulting from the inflating fuel bill and in lowering the relatively high CO 2 emission intensity. Current legislations mandate that all passenger cars operating in Jordan are to be powered with spark ignition engines using gasoline fuel. This paper examines potential benefits that can be achieved through the introduction of diesel cars to the passenger cars market in Jordan. Three scenarios are suggested for implementation and investigated with a forecasting model on the basis of local and global trends over the period 2007-2027. It is demonstrated that introducing diesel passenger cars can slow down the growth of energy consumption in the transportation sector resulting in significant savings in the national fuel bill. It is also shown that this is an effective and feasible option for cutting down CO 2 emissions

  12. Design study of low-energy beam transport for multi-charge beams at RAON

    Science.gov (United States)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  13. Construction of transport and energy networks in the Baltic region as an impetus for regional development

    Directory of Open Access Journals (Sweden)

    Kuznetsov Alexey

    2013-01-01

    Full Text Available In light of some new aspects of the EU functioning, particularly, the recovery from the 2008-2009 global crisis, transportation and energy development projects are coming to the forefront in the Baltic region. At the same time, there is a need to consider EU’s recent adoption of a common seven-year financial program (2014—2020, which serves, in effect, as the Union’s budget. Given that, one may conclude that the countries of the Baltic region are entering a new stage of development. We look at the role and significance of transportation and energy projects as an instrument of economic development. Having studied the largest transport and energy projects in the Baltic region, we were able to show that the new infrastructure networks supported the investment expansion of Swedish and Finnish companies into the post-communist countries of the Baltic Region. Which, in its turn, allowed the Nordic investors to expand their domestic markets. The analysis also shows that the experience of private businesses proves a recent theoretical concept — the pyramid of regional development factors. As a result, the actual regional policy of the EU cannot be considered in the narrow sense of the Cohesion Policy alone.

  14. Construction of transport and energy networks in the Baltic region as an impetus for regional development

    Directory of Open Access Journals (Sweden)

    Kuznetsov Alexey

    2013-12-01

    Full Text Available In light of some new aspects of the EU functioning, particularly, the recovery from the 2008-2009 global crisis, transportation and energy development projects are coming to the forefront in the Baltic region. At the same time, there is a need to consider EU’s recent adoption of a common seven-year financial program (2014—2020, which serves, in effect, as the Union’s budget. Given that, one may conclude that the countries of the Baltic region are entering a new stage of development. We look at the role and significance of transportation and energy projects as an instrument of economic development. Having studied the largest transport and energy projects in the Baltic region, we were able to show that the new infrastructure networks supported the investment expansion of Swedish and Finnish companies into the post-communist countries of the Baltic Region. Which, in its turn, allowed the Nordic investors to expand their domestic markets. The analysis also shows that the experience of private businesses proves a recent theoretical concept — the pyramid of regional development factors. As a result, the actual regional policy of the EU cannot be considered in the narrow sense of the Cohesion Policy alone.

  15. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  16. Packaging and transportation of radioactive liquid at the U.S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Smith, R.J.

    1995-02-01

    Beginning in the 1940's, radioactive liquid waste has been generated at the US Department of Energy (DOE) Hanford Site as a result of defense material production. The liquid waste is currently stored in 177 underground storage tanks. As part of the tank remediation efforts, Type B quantity packagings for the transport of large volumes of radioactive liquids are required. There are very few Type B liquid packagings in existence because of the rarity of large-volume radioactive liquid payloads in the commercial nuclear industry. Development of aboveground transport systems for large volumes of radioactive liquids involves institutional, economic, and technical issues. Although liquid shipments have taken place under DOE-approved controlled conditions within the boundaries of the Hanford Site for many years, offsite shipment requires compliance with DOE, US Nuclear Regulatory Commission (NRC), and US Department of Transportation (DOT) directives and regulations. At the present time, no domestic DOE nor NRC-certified Type B packagings with the appropriate level of shielding are available for DOT-compliant transport of radioactive liquids in bulk volumes. This paper will provide technical details regarding current methods used to transport such liquids on and off the Hanford Site, and will provide a status of packaging development programs for future liquid shipments

  17. Local Agenda 21. Settlement pattern and energy for transportation and heating; Lokal agenda 21. Bebyggelsesmoenster og energi til transport og oppvarming

    Energy Technology Data Exchange (ETDEWEB)

    Orderud, Geir Inge

    1998-09-01

    This document deals with Local Agenda 21 (LA21) and the relationship between settlement pattern and the consumption of energy in transportation and heating of houses. Local Agenda 21 originates from the Earth Summit held in Rio in 1992 and draws up the strategies by which the local communities should participate in realizing the recommendations of the summit. So far much of the research around LA21 has examined how well the individual countries that ratified the Rio document have fulfilled the recommendations of Article 28 on local responsibility. From the point of view of research, however, the challenge is rather to investigate the conditions for realizing the broad participation of the people. From the administrative point of view, the important issue is the relationship between the representative channels and the direct participation of local people in the decision processes, as well as the delegation of decision-making authority from national to regional or local level. One recommendation in Agenda 21 is to emit less greenhouse gases. In this connection, a central issue is transportation, which is affected by the settlement pattern. A denser settlement within an urban area is supposed to reduce the transportation and the use of private cars. Thus the local development and area policy is a topic of current interest in the study of how LA21 works locally, especially so because sparsely built-up areas with single family houses are considered as the good way of living. Densely populated urban areas may conflict with the need for arable land and green space. LA 21 and the settlement pattern are both parts of a larger social environment and it is important know these relationships when local measures and actions are analysed. The possibility of a sustainable development must be assessed in relation to the fact that more power is gathered in the global flow of capital. 26 refs.

  18. An indole derivative as a high triplet energy hole transport material for blue phosphorescent organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Su; Lee, Jun Yeob, E-mail: leej17@dankook.ac.kr

    2013-12-02

    A thermally stable high triplet energy material derived from an indoloacridine core and indole hole transport units, 8,8-bis(4-(1H-indol-1-yl)phenyl)-8H-indolo[3,2,1-de]acridine (BIPIA), was synthesized as the hole transport material for deep blue phosphorescent organic light-emitting diodes. The BIPIA hole transport material showed a high triplet energy of 2.95 eV and high glass transition temperature of 142 °C. A high quantum efficiency of 19.3% was obtained in the deep blue device using BIPIA as the high triplet energy hole transport material. - Highlights: • A high triplet energy hole transport material derived from an indole • High quantum efficiency of 19.3% in deep blue phosphorescent organic light-emitting diodes • Good thermal stability with a high glass transition temperature of 142 °C.

  19. Using Sdo's AIA to Investigate Energy Transport from a Flare's Energy Release Site to the Chromosphere

    Science.gov (United States)

    Brosius, Jeffrey W.; Holman, Gordon D.

    2012-01-01

    Coordinated observations of a GOES B4.8 microflare with SDOs Atmospheric Imaging Assembly (AIA) and the RamatyHigh Energy Solar Spectroscopic Imager (RHESSI) on 2010 July 31 show that emission in all seven of AIAs EUV channels brightened simultaneously nearly 6 min before RHESSI or GOES detected emission from plasma at temperatures around 10 MK. Aims. To help interpret these and AIA flare observations in general, we characterized the expected temporal responses of AIAs 94, 131, 171, 193, 211, and 335 channels to solar flare brightenings by combining (1) AIAs nominal temperature response functions available through SSWIDL with (2) EUV spectral line data observed in a flare loop Coordinated observations of a GOES B4.8 microflare with SDOs Atmospheric Imaging Assembly (AIA) and the RamatyHigh Energy Solar Spectroscopic Imager (RHESSI) on 2010 July 31 show that emission in all seven of AIAs EUV channels brightenedsimultaneously nearly 6 min before RHESSI or GOES detected emission from plasma at temperatures around 10 MK.Aims. To help interpret these and AIA flare observations in general, we characterized the expected temporal responses of AIAs 94,131, 171, 193, 211, and 335 channels to solar flare brightenings by combining (1) AIAs nominal temperature response functionsavailable through SSWIDL with (2) EUV spectral line data observed in a flare loop

  20. Passenger transport modal split based on budgets and implication for energy consumption: Approach and application in China

    International Nuclear Information System (INIS)

    Zhang, Shuwei; Liu, Deshun; Jiang, Kejun

    2007-01-01

    Transport will be the strongest growing energy demand sector in the future, especially in developing countries like China, and it needs more attention. The evolution of transport structure is very important in the dynamic of transport development, and therefore worth emphasis. In this study, a modal split model maximizing spatial welfare and constrained by travel money budget and time budget is developed. This approach differs from the general econometric-based approach used in most existing macro transport studies and deals with the cost and speed of transport modes as important variables explicitly. The model is then applied to China's transport sector together with sensitivity test despite many data problems. The decomposition of energy consumption generated from bottom-up model based on this modal split identified the importance of modal split and turnover expansion in the next 30 years, which should be a stronger area of focus in transportation studies. (author)