WorldWideScience

Sample records for polarized th1 cells

  1. TH1 and TH2 cell polarization increases with aging and is modulated by zinc supplementation

    OpenAIRE

    2008-01-01

    TH1 and TH2 cell polarization increases with aging and is modulated by zinc supplementation correspondence: Corresponding author. Tel.: +49 241 8080208; fax: +49 241 8082613. (Rink, Lothar) (Rink, Lothar) Institute of Immunology, University Hospital, RWTH Aachen University - Aachen--> - GERMANY (Uciechowski, Peter) Institute of Immunology, University Hospital, RWTH Aachen University - Aachen--> - GERMAN...

  2. Galectin-7 promotes proliferation and Th1/2 cells polarization toward Th1 in activated CD4+ T cells by inhibiting The TGFβ/Smad3 pathway.

    Science.gov (United States)

    Luo, Zhenlong; Ji, Yudong; Tian, Dean; Zhang, Yong; Chang, Sheng; Yang, Chao; Zhou, Hongmin; Chen, Zhonghua Klaus

    2018-06-08

    Galectin-7 (Gal-7) has been associated with cell proliferation and apoptosis. It is known that Gal-7 antagonises TGFβ-mediated effects in hepatocytes by interacting with Smad3. Previously, we have demonstrated that Gal-7 is related to CD4+ T cells responses; nevertheless, its effect and functional mechanism on CD4+ T cells responses remain unclear. The murine CD4+ T cells were respectively cultured with Gal-7, anti-CD3/CD28 mAbs, or with anti-CD3/CD28 mAbs & Gal-7. The effects of Gal-7 on proliferation and the phenotypic changes in CD4+ T cells were assessed by flow cytometry. The cytokines from CD4+ T cells were analysed by quantitative real-time PCR. Subcellular localisation and expression of Smad3 were determined by immunofluorescence staining and Western blot, respectively. Gal-7 enhanced the proliferation of activated CD4+ T cells in a dose- and β-galactoside-dependent manner. Additionally, Gal-7 treatment did not change the ratio of Th2 cells in activated CD4+ T cells, while it increased the ratio of Th1 cells. Gal-7 also induced activated CD4+ T cells to produce a higher level of IFN-γ and TNF-α and a lower level of IL-10. Moreover, Gal-7 treatment significantly accelerated nuclear export of Smad3 in activated CD4+ T cells. These results revealed a novel role of Gal-7 in promoting proliferation and Th1/2 cells polarization toward Th1 in activated CD4+ T cells by inhibiting the TGFβ/Smad3 pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Mycobacterium tuberculosislpdC, Rv0462, induces dendritic cell maturation and Th1 polarization

    International Nuclear Information System (INIS)

    Heo, Deok Rim; Shin, Sung Jae; Kim, Woo Sik; Noh, Kyung Tae; Park, Jin Wook; Son, Kwang Hee; Park, Won Sun; Lee, Min-Goo; Kim, Daejin; Shin, Yong Kyoo; Jung, In Duk; Park, Yeong-Min

    2011-01-01

    Highlights: → Treatment with Rv0462 induces the expression of surface molecules and the production of cytokines in DCs. → Rv0462 induces the activation of MAPKs. → Rv0462-treated DCs enhances the proliferation of CD4 + T cells. -- Abstract: Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naive T cells, polarized CD4 + and CD8 + T cells to secrete IFN-γ in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.

  4. Mycobacterium tuberculosislpdC, Rv0462, induces dendritic cell maturation and Th1 polarization

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Deok Rim [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Shin, Sung Jae; Kim, Woo Sik [Department of Microbiology, College of Medicine, Chungnam National University, Munwha-Dong, Jung-Ku, Daejeon 301-747 (Korea, Republic of); Noh, Kyung Tae; Park, Jin Wook; Son, Kwang Hee [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Park, Won Sun [Department of Physiology, Kangwon National University, School of Medicine, Chuncheon 200-701 (Korea, Republic of); Lee, Min-Goo [Department of Physiology, Korea University, College of Medicine, Anam-dong, Sungbuk-Gu, Seoul 136-705 (Korea, Republic of); Kim, Daejin [Department of Anatomy, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Shin, Yong Kyoo [Department of Pharmacology, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Jung, In Duk, E-mail: jungid@pusan.ac.kr [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Park, Yeong-Min, E-mail: immunpym@pusan.ac.kr [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of)

    2011-08-05

    Highlights: {yields} Treatment with Rv0462 induces the expression of surface molecules and the production of cytokines in DCs. {yields} Rv0462 induces the activation of MAPKs. {yields} Rv0462-treated DCs enhances the proliferation of CD4{sup +} T cells. -- Abstract: Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naive T cells, polarized CD4{sup +} and CD8{sup +} T cells to secrete IFN-{gamma} in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.

  5. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells.

    Science.gov (United States)

    Lee, Guinevere Q; Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung'u, Thumbi; Walker, Bruce D; Rosenberg, Eric S; Yu, Xu G; Lichterfeld, Mathias

    2017-06-30

    HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells.

  6. In vitro Th1 and Th2 cell polarization is severely influenced by the initial ratio of naïve and memory CD4+ T cells

    DEFF Research Database (Denmark)

    Blom, Lars; Poulsen, Lars K.

    2013-01-01

    by even small percentages (99% naïve CD4+ T cells resulted in better Th1 and Th2 polarization with significant reduced fractions of IL-4+ and IFN-γ+ CD4+ T cells, respectively. Moreover, the Th2 primed >99% naïve CD4+ T cells showed significantly higher ratio of IL-4+:IFN-γ+ (>4 fold) and GATA-3:+T......-bet+ (>3 fold) CD4+ T cells when compared with the standard purified >90-95% naïve CD4+ T cells primed under the same culture conditions. This suggests immunomagnetic bead separation, a low cost and easy available technique, with few modifications to the manufacturer's protocol as an attractive alternative...... for laboratories not having a cell sorter. Taken together, we report that it is essential to use rigorously purified (>99%) naïve CD4+ T cells for optimal initial in vitro Th1 and Th2 priming....

  7. CpG Oligodeoxynucleotides Enhance the Efficacy of Adoptive Cell Transfer Using Tumor Infiltrating Lymphocytes by Modifying the Th1 Polarization and Local Infiltration of Th17 Cells

    Directory of Open Access Journals (Sweden)

    Lin Xu

    2010-01-01

    Full Text Available Adoptive cell transfer immunotherapy using tumor infiltrating lymphocytes (TILs was an important therapeutic strategy against tumors. But the efficacy remains limited and development of new strategies is urgent. Recent evidence suggested that CpG-ODNs might be a potent candidate for tumor immunotherapy. Here we firstly reported that CpG-ODNs could significantly enhance the antitumor efficacy of adoptively transferred TILs in vivo accompanied by enhanced activity capacity and proliferation of CD8+ T cells and CD8+ T cells, as well as a Th1 polarization immune response. Most importantly, we found that CpG-ODNs could significantly elevate the infiltration of Th17 cells in tumor mass, which contributed to anti-tumor efficacy of TILs in vivo. Our findings suggested that CpG ODNs could enhance the anti-tumor efficacy of adoptively transferred TILs through modifying Th1 polarization and local infiltration of Th17 cells, which might provide a clue for developing a new strategy for ACT based on TILs.

  8. Monomethylfumarate affects polarization of monocyte-derived dendritic cells resulting in down-regulated Th1 lymphocyte responses

    DEFF Research Database (Denmark)

    Litjens, Nicolle H R; Rademaker, Mirjam; Ravensbergen, Bep

    2004-01-01

    Psoriasis vulgaris, a type-1 cytokine-mediated chronic skin disease, can be treated successfully with fumaric acid esters (FAE). Beneficial effects of this medication coincided with decreased production of IFN-gamma. Since dendritic cells (DC) regulate the differentiation of T helper (Th) cells......% of that by the respective Th cells cocultured with control DC. IL-4 production by primed, but not naive Th cells cocultured with MMF-DC was decreased as compared to cocultures with control DC. IL-10 production by naive and primed Th cells cocultured with MMF-DC and control DC did not differ. In addition, MMF inhibited LPS......-induced NF-kappaB activation in DC. Together, beneficial effects of FAE in psoriasis involve modulation of DC polarization by MMF such that these cells down-regulate IFN-gamma production by Th cells....

  9. SjCRT, a recombinant Schistosoma japonicum calreticulin, induces maturation of dendritic cells and a Th1-polarized immune response in mice

    Directory of Open Access Journals (Sweden)

    Lizhen Ma

    2017-11-01

    Full Text Available Abstract Background It is well known that immunization of radiation-attenuated (RA schistosoma cercariae or schistosomula can induce high levels of protective immunity against schistosoma cercariae reinfection in many animals. Many studies have shown that the Th1 cellular immune response is crucial for the protective effect elicited by RA schistosomula. However, the molecular mechanism of this strong protective immunity remains unclear. Methods The expression profiles of Schistosoma japonicum calreticulin (SjCRT in RA and normal schistosoma-derived cells were investigated by flow cytometry. The effect of recombinant SjCRT (rSjCRT on mouse dendritic cells (DCs was determined by FACS, ELISA and RT-PCR analysis. We also analyzed the effects of SjCRT on the activation of spleen cells from mice immunized with rSjCRT by detecting lymphocyte proliferation and the cytokine profiles of splenocytes. Results We found that the expression level of SjCRT in the cells from RA larvae was significantly higher than that in cells from normal schistosomula at early stages of development (day 4. The results of effect of rSjCRT on mouse DCs showed that rSjCRT could induce phenotypic and functional maturation of DCs, and SjCRT bound to the surface of DCs through the CD91 receptor and could be engulfed by DCs. The results of activation of splenocytes from mice immunized with rSjCRT also demonstrate that rSjCRT can effectively stimulate the proliferative response of splenic lymphocytes, elicit splenocytes from immunized mice to secrete high levels of IFN-γ, TNF-α and IL-4, and activate CD4+ T cells to produce high levels of IFN-γ. Conclusion SjCRT is one of the immunostimulatory molecules released from RA schistosomula cells, might play a crucial role in conferring a Th1-polarized immune response induced by RA cercariae/schistosomula in mice, and is a candidate molecule responsible for the high levels of protective immunity induced by RA schistosomula.

  10. Impairment of the Intrinsic Capability of Th1 Polarization in Irradiated Mice: A Close Look at the Imbalanced Th1/Th2 Response after Irradiation.

    Science.gov (United States)

    Chen, Renxiang; Wang, Yi-Wen; Fornace, Albert J; Li, Heng-Hong

    2016-12-01

    Two major CD4 + T-helper (Th) lineages are Th1 and Th2, and well balanced Th1/Th2 responses are essential for immune function. In previously published studies, it was reported that radiation induces a Th1/Th2 immune imbalance toward a Th2-dominant direction, and this imbalance may contribute to postirradiation immune dysfunction. The polarization of Th cells is driven by the cytokine milieu and controlled by intracellular regulatory pathways that respond to cytokine signaling. It is widely accepted that radiation induces cytokine aberration, however, the precise alterations of cytokines in various tissue environments have been difficult to evaluate. In addition, the effects of radiation on the intrinsic functions of Th cells remain uncharacterized. Therefore, how radiation affects Th1/Th2 balance remains somewhat unclear. To address this, we investigated the changes in the polarization capability of Th cells by isolating them from mice previously exposed to radiation and assessing the cells in an established in vitro Th polarization system. Our novel results demonstrate that prior exposure to radiation led to the persistent aberration of the inherent capability of Th cells to differentiate into Th1 and Th2 lineages. The parallel changes in expression of Th1-specific master transcription factors and the key genes in metabolic reprograming indicated that radiation affects the core components in Th1 polarization. While Th1 differentiation was impaired after irradiation, little adverse effect was observed in Th2 differentiation; both of these findings contribute to the known phenotypes of Th1/Th2 imbalance caused by radiation.

  11. A novel dendritic cell-based immunization approach for the induction of durable Th1-polarized anti-HER-2/neu responses in women with early breast cancer

    Science.gov (United States)

    Koski, Gary K.; Koldovsky, Ursula; Xu, Shuwen; Mick, Rosemarie; Sharma, Anupama; Fitzpatrick, Elizabeth; Weinstein, Susan; Nisenbaum, Harvey; Levine, Bruce L; Fox, Kevin; Zhang, Paul; Czerniecki, Brian J

    2011-01-01

    Twenty-seven subjects with HER-2/neu over-expressing ductal carcinoma in situ of the breast were enrolled in a neoadjuvant immunization trial for safety and immunogenicity of DC1-polarized dendritic cells (DC1) pulsed with six HER-2/neu promiscuous MHC class II-binding peptides, plus two additional HLA-A2.1 class I-binding peptides. DC1 were generated with IFN-γ plus a special clinical-grade bacterial endotoxin (LPS) and administered directly into groin lymph nodes four times at weekly intervals prior to scheduled surgical resection of DCIS. Subjects were monitored for the induction of new or enhanced anti-peptide reactivity by IFN-γ ELIspot and ELISA assays performed on Th cells obtained from peripheral blood or excised sentinel lymph nodes. Responses by CTL against HLA-A2.1-binding peptides were measured using peptide-pulsed T2 target cells or HER-2/neu-expressing or non-expressing tumor cell lines. DC1 showed surface phenotype indistinct from “gold standard” inflammatory cocktail-activated DC, but displayed a number of distinguishing functional characteristics including the secretion of soluble factors and enhanced “killer DC” capacity against tumor cells in vitro. Post-immunization, we observed sensitization of Th cells to at least 1 class II peptide in 22 of 25 (88%, 95% exact CI 68.8 – 97.5%) evaluable subjects, while eleven of 13 (84.6%, 95% exact CI 64 – 99.8%) HLA-A2.1 subjects were successfully sensitized to class I peptides. Perhaps most importantly, anti-HER-2/neu peptide responses were observed up to 52 months post-immunization. These data show even in the presence of early breast cancer such DC1 are potent inducers of durable type I-polarized immunity, suggesting potential clinical value for development of cancer immunotherapy. PMID:22130160

  12. IL-4 enhances IL-10 production in Th1 cells: implications for Th1 and Th2 regulation.

    Science.gov (United States)

    Mitchell, Ruth E; Hassan, Masriana; Burton, Bronwen R; Britton, Graham; Hill, Elaine V; Verhagen, Johan; Wraith, David C

    2017-09-12

    IL-10 is an immunomodulatory cytokine with a critical role in limiting inflammation in immune-mediated pathologies. The mechanisms leading to IL-10 expression by CD4 + T cells are being elucidated, with several cytokines implicated. We explored the effect of IL-4 on the natural phenomenon of IL-10 production by a chronically stimulated antigen-specific population of differentiated Th1 cells. In vitro, IL-4 blockade inhibited while addition of exogenous IL-4 to Th1 cultures enhanced IL-10 production. In the in vivo setting of peptide immunotherapy leading to a chronically stimulated Th1 phenotype, lack of IL-4Rα inhibited the induction of IL-10. Exploring the interplay of Th1 and Th2 cells through co-culture, Th2-derived IL-4 promoted IL-10 expression by Th1 cultures, reducing their pathogenicity in vivo. Co-culture led to upregulated c-Maf expression with no decrease in the proportion of T-bet + cells in these cultures. Addition of IL-4 also reduced the encephalitogenic capacity of Th1 cultures. These data demonstrate that IL-4 contributes to IL-10 production and that Th2 cells modulate Th1 cultures towards a self-regulatory phenotype, contributing to the cross-regulation of Th1 and Th2 cells. These findings are important in the context of Th1 driven diseases since they reveal how the Th1 phenotype and function can be modulated by IL-4.

  13. Triterpene esters from Uncaria rhynchophylla drive potent IL-12-dependent Th1 polarization.

    Science.gov (United States)

    Umeyama, Akemi; Yahisa, Yoshinori; Okada, Minori; Okayama, Eriko; Uda, Ayaka; Shoji, Noboru; Lee, Je-Jung; Takei, Masao; Hashimoto, Toshihiro

    2010-10-01

    Dendritic cells (DC) are key antigen-presenting cells that link innate and adaptive immunity and ultimately activate antigen-specific T cells. In the current study, we demonstrated that two triterpene esters, uncarinic acid C (1) and uncarinic acid D (2), which are isolated from the hooks of Uncaria rhynchophylla, activate phenotypic and cytokine production alterations in DC. We also show that 1 and 2 modulate human DC function in a fashion that favors Th1 cell polarization. The effect of 1 (E configuration at the 2' position) was approximately 20 times more potent than that of 2 (Z configuration at 2'). These results indicated that the configuration of the 2' double bond greatly effects activity. Thus, 1 and 2 may prove useful as DC-based vaccines for cancer immunotherapy.

  14. Th1 and Th2 help for B cells

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1995-01-01

    that IL-5 (125 U/ml) synergizes with Th1 cells to induce B cell responses to IL-2, that are maintained following T-cell removal, e.g. autonomous. Th1 help in the absence of IL-5 resulted in weak or undetectable responses following T cell removal. The mechanism of IL-5 synergy involved persistence of IL-2R...... anti-Ig did not circumvent the need for IL-5 for autonomous IL-2 responses. Consistent with the above, interaction with an IL-5-producing Th2 clone induced strong autonomous B cell responses to IL-2. Qualitative differences of Th2 help over that of Th1 may thus be attributable to their differential...

  15. Th1 Differentiation Drives the Accumulation of Intravascular, Non-protective CD4 T Cells during Tuberculosis.

    Science.gov (United States)

    Sallin, Michelle A; Sakai, Shunsuke; Kauffman, Keith D; Young, Howard A; Zhu, Jinfang; Barber, Daniel L

    2017-03-28

    Recent data indicate that the differentiation state of Th1 cells determines their protective capacity against tuberculosis. Therefore, we examined the role of Th1-polarizing factors in the generation of protective and non-protective subsets of Mtb-specific Th1 cells. We find that IL-12/23p40 promotes Th1 cell expansion and maturation beyond the CD73 + CXCR3 + T-bet dim stage, and T-bet prevents deviation of Th1 cells into Th17 cells. Nevertheless, IL- 12/23p40 and T-bet are also essential for the production of a prominent subset of intravascular CX3CR1 + KLRG1 + Th1 cells that persists poorly and can neither migrate into the lung parenchyma nor control Mtb growth. Furthermore, T-bet suppresses development of CD69 + CD103 + tissue resident phenotype effectors in lung. In contrast, Th1-cell-derived IFN-γ inhibits the accumulation of intravascular CX3CR1 + KLRG1 + Th1 cells. Thus, although IL-12 and T-bet are essential host survival factors, they simultaneously oppose lung CD4 T cell responses at several levels, demonstrating the dual nature of Th1 polarization in tuberculosis. Published by Elsevier Inc.

  16. Th1 Differentiation Drives the Accumulation of Intravascular, Non-protective CD4 T Cells during Tuberculosis

    Directory of Open Access Journals (Sweden)

    Michelle A. Sallin

    2017-03-01

    Full Text Available Recent data indicate that the differentiation state of Th1 cells determines their protective capacity against tuberculosis. Therefore, we examined the role of Th1-polarizing factors in the generation of protective and non-protective subsets of Mtb-specific Th1 cells. We find that IL-12/23p40 promotes Th1 cell expansion and maturation beyond the CD73+CXCR3+T-betdim stage, and T-bet prevents deviation of Th1 cells into Th17 cells. Nevertheless, IL- 12/23p40 and T-bet are also essential for the production of a prominent subset of intravascular CX3CR1+KLRG1+ Th1 cells that persists poorly and can neither migrate into the lung parenchyma nor control Mtb growth. Furthermore, T-bet suppresses development of CD69+CD103+ tissue resident phenotype effectors in lung. In contrast, Th1-cell-derived IFN-γ inhibits the accumulation of intravascular CX3CR1+KLRG1+ Th1 cells. Thus, although IL-12 and T-bet are essential host survival factors, they simultaneously oppose lung CD4 T cell responses at several levels, demonstrating the dual nature of Th1 polarization in tuberculosis.

  17. Th1 differentiation drives the accumulation of intravascular, non-protective CD4 T cells during tuberculosis

    Science.gov (United States)

    Sallin, Michelle A.; Sakai, Shunsuke; Kauffman, Keith D.; Young, Howard A.; Zhu, Jinfang; Barber, Daniel L.

    2017-01-01

    SUMMARY Recent data indicate that the differentiation state of Th1 cells determines their protective capacity against tuberculosis. Therefore, we examined the role of Th1 polarizing factors in the generation of protective and non-protective subsets of Mtb-specific Th1 cells. We find IL-12/23p40 promotes Th1 cell expansion and maturation beyond the CD73+CXCR3+T-betdim stage, and T-bet prevents deviation of Th1 cells into Th17 cells. Nevertheless, IL-12/23p40 and T-bet are also essential for the production of a prominent subset of intravascular CX3CR1+KLRG1+ Th1 cells that persists poorly and can neither migrate into the lung parenchyma nor control Mtb growth. Furthermore, T-bet suppresses development of CD69+CD103+ tissue resident phenotype effectors in lung. In contrast, Th1 cell-derived IFNγ inhibits the accumulation of intravascular CX3CR1+KLRG1+ Th1 cells. Thus, although IL-12 and T-bet are essential host survival factors, they simultaneously oppose lung CD4 T cell responses at several levels, demonstrating the dual nature of Th1 polarization in tuberculosis. PMID:28355562

  18. TGF-β converts Th1 cells into Th17 cells through stimulation of Runx1 expression.

    Science.gov (United States)

    Liu, Hou-Pu; Cao, Anthony T; Feng, Ting; Li, Qingjie; Zhang, Wenbo; Yao, Suxia; Dann, Sara M; Elson, Charles O; Cong, Yingzi

    2015-04-01

    Differentiated CD4(+) T cells preserve plasticity under various conditions. However, the stability of Th1 cells is unclear, as is whether Th1 cells can convert into Th17 cells and thereby contribute to the generation of IFN-γ(+) IL-17(+) CD4(+) T cells, the number of which correlates with severity of colitis. We investigated whether IFN-γ(+) Th1 cells can convert into Th17 cells under intestinal inflammation and the mechanisms involved. IFN-γ(Thy1.1+) Th1 cells were generated by culturing naïve CD4(+) T cells from IFN-γ(Thy1.1) CBir1 TCR-Tg reporter mice, whose TCR is specific for an immunodominant microbiota antigen, CBir1 flagellin, under Th1 polarizing conditions. IFN-γ(Thy1.1+) Th1 cells induced colitis in Rag(-/-) mice after adoptive transfer and converted into IL-17(+) Th17, but not Foxp3(+) Treg cells in the inflamed intestines. TGF-β and IL-6, but not IL-1β and IL-23, regulated Th1 conversion into Th17 cells. TGF-β induction of transcriptional factor Runx1 is crucial for the conversion, since silencing Runx1 by siRNA inhibited Th1 conversion into Th17 cells. Furthermore, TGF-β enhanced histone H3K9 acetylation but inhibited H3K9 trimethylation of Runx1- and ROR-γt-binding sites on il-17 or rorc gene in Th1 cells. We conclude that Th1 cells convert into Th17 cells under inflammatory conditions in intestines, which is possibly mediated by TGF-β induction of Runx1. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Interferon-β Suppresses Murine Th1 Cell Function in the Absence of Antigen-Presenting Cells

    Science.gov (United States)

    Boivin, Nicolas; Baillargeon, Joanie; Doss, Prenitha Mercy Ignatius Arokia; Roy, Andrée-Pascale; Rangachari, Manu

    2015-01-01

    Interferon (IFN)-β is a front-line therapy for the treatment of the relapsing-remitting form of multiple sclerosis. However, its immunosuppressive mechanism of function remains incompletely understood. While it has been proposed that IFN-β suppresses the function of inflammatory myelin antigen-reactive T cells by promoting the release of immunomodulatory cytokines such as IL-27 from antigen-presenting cells (APCs), its direct effects on inflammatory CD4+ Th1 cells are less clear. Here, we establish that IFN-β inhibits mouse IFN-γ+ Th1 cell function in the absence of APCs. CD4+ T cells express the type I interferon receptor, and IFN-β can suppress Th1 cell proliferation under APC-free stimulation conditions. IFN-β-treated myelin antigen-specific Th1 cells are impaired in their ability to induce severe experimental autoimmune encephalomyelitis (EAE) upon transfer to lymphocyte-deficient Rag1-/- mice. Polarized Th1 cells downregulate IFN-γ and IL-2, and upregulate the negative regulatory receptor Tim-3, when treated with IFN-β in the absence of APCs. Further, IFN-β treatment of Th1 cells upregulates phosphorylation of Stat1, and downregulates phosphorylation of Stat4. Our data indicate that IFN-γ-producing Th1 cells are directly responsive to IFN-β and point to a novel mechanism of IFN-β-mediated T cell suppression that is independent of APC-derived signals. PMID:25885435

  20. Dendritic Cell-Induced Th1 and Th17 Cell Differentiation for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Julia Terhune

    2013-11-01

    Full Text Available The success of cellular immunotherapies against cancer requires the generation of activated CD4+ and CD8+ T-cells. The type of T-cell response generated (e.g., Th1 or Th2 will determine the efficacy of the therapy, and it is generally assumed that a type-1 response is needed for optimal cancer treatment. IL-17 producing T-cells (Th17/Tc17 play an important role in autoimmune diseases, but their function in cancer is more controversial. While some studies have shown a pro-cancerous role for IL-17, other studies have shown an anti-tumor function. The induction of polarized T-cell responses can be regulated by dendritic cells (DCs. DCs are key regulators of the immune system with the ability to affect both innate and adaptive immune responses. These properties have led many researchers to study the use of ex vivo manipulated DCs for the treatment of various diseases, such as cancer and autoimmune diseases. While Th1/Tc1 cells are traditionally used for their potent anti-tumor responses, mounting evidence suggests Th17/Tc17 cells should be utilized by themselves or for the induction of optimal Th1 responses. It is therefore important to understand the factors involved in the induction of both type-1 and type-17 T-cell responses by DCs.

  1. Effects of PARP-1 Deficiency on Th1 and Th2 Cell Differentiation

    Directory of Open Access Journals (Sweden)

    M. Sambucci

    2013-01-01

    Full Text Available T cell differentiation to effector Th cells such as Th1 and Th2 requires the integration of multiple synergic and antagonist signals. Poly(ADP-ribosylation is a posttranslational modification of proteins catalyzed by Poly(ADP-ribose polymerases (PARPs. Recently, many reports showed that PARP-1, the prototypical member of the PARP family, plays a role in immune/inflammatory responses. Consistently, its enzymatic inhibition confers protection in several models of immune-mediated diseases, mainly through an inhibitory effect on NF-κB (and NFAT activation. PARP-1 regulates cell functions in many types of immune cells, including dendritic cells, macrophages, and T and B lymphocytes. Our results show that PARP-1KO cells displayed a reduced ability to differentiate in Th2 cells. Under both nonskewing and Th2-polarizing conditions, naïve CD4 cells from PARP-1KO mice generated a reduced frequency of IL-4+ cells, produced less IL-5, and expressed GATA-3 at lower levels compared with cells from wild type mice. Conversely, PARP-1 deficiency did not substantially affect differentiation to Th1 cells. Indeed, the frequency of IFN-γ+ cells as well as IFN-γ production, in nonskewing and Th1-polarizing conditions, was not affected by PARP-1 gene ablation. These findings demonstrate that PARP-1 plays a relevant role in Th2 cell differentiation and it might be a target to be exploited for the modulation of Th2-dependent immune-mediated diseases.

  2. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway.

    Science.gov (United States)

    Neumann, Katrin; Rudolph, Christine; Neumann, Christian; Janke, Marko; Amsen, Derk; Scheffold, Alexander

    2015-07-01

    Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell differentiation in mice. Using in vitro co-culture systems and subsequent cytokine analysis, we showed that LSECs induced high amounts of the anti-inflammatory cytokine IL-10 in developing Th1 cells. These LSEC-stimulated Th1 cells had no pro-inflammatory capacity in vivo but instead actively suppressed an inflammatory Th1-cell-induced delayed-type hypersensitivity reaction. Blockage of IL-10 signaling in vivo inhibited immunosuppressive activity of LSEC-stimulated Th1 cells. We identified the Notch pathway as a mechanism how LSECs trigger IL-10 expression in Th1 cells. LSECs expressed high levels of the Delta-like and Jagged family of Notch ligands and induced expression of the Notch target genes hes-1 and deltex-1 in Th1 cells. Blockade of Notch signaling selectively inhibited IL-10 induction in Th1 cells by LSECs. Our findings suggest that LSEC-induced IL-10 expression in Th1 cells via the Notch pathway may contribute to the control of hepatic inflammatory immune responses by induction of a self-regulatory mechanism in pro-inflammatory Th1 cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The PDL1-PD1 Axis Converts Human Th1 Cells Into Regulatory T Cells

    Science.gov (United States)

    Amarnath, Shoba; Mangus, Courtney W.; Wang, James C.M.; Wei, Fang; He, Alice; Kapoor, Veena; Foley, Jason E.; Massey, Paul R.; Felizardo, Tania C.; Riley, James L.; Levine, Bruce L.; June, Carl H.; Medin, Jeffrey A.; Fowler, Daniel H.

    2011-01-01

    Immune surveillance by T helper type 1 (Th1) cells is critical for the host response to tumors and infection, but also contributes to autoimmunity and graft-versus-host disease (GvHD) after transplantation. The inhibitory molecule programmed death ligand-1 (PDL1) has been shown to anergize human Th1 cells, but other mechanisms of PDL1-mediated Th1 inhibition such as the conversion of Th1 cells to a regulatory phenotype have not been well characterized. We hypothesized that PDL1 may cause Th1 cells to manifest differentiation plasticity. Conventional T cells or irradiated K562 myeloid tumor cells overexpressing PDL1 converted TBET+ Th1 cells into FOXP3+ regulatory T cells (TREGS) in vivo, thereby preventing human-into-mouse xenogeneic GvHD (xGvHD). Either blocking PD1 expression on Th1 cells by siRNA targeting or abrogation of PD1 signaling by SHP1/2 pharmacologic inhibition stabilized Th1 cell differentiation during PDL1 challenge and restored the capacity of Th1 cells to mediate lethal xGVHD. PD1 signaling therefore induces human Th1 cells to manifest in vivo plasticity, resulting in a TREG phenotype that severely impairs cell-mediated immunity. Converting human Th1 cells to a regulatory phenotype with PD1 signaling provides a potential way to block GvHD after transplantation. Moreover, because this conversion can be prevented by blocking PD1 expression or pharmacologically inhibiting SHP1/2, this pathway provides a new therapeutic direction for enhancing T cell immunity to cancer and infection. PMID:22133721

  4. Ex-Th17 (Nonclassical Th1) Cells Are Functionally Distinct from Classical Th1 and Th17 Cells and Are Not Constrained by Regulatory T Cells.

    Science.gov (United States)

    Basdeo, Sharee A; Cluxton, Deborah; Sulaimani, Jamal; Moran, Barry; Canavan, Mary; Orr, Carl; Veale, Douglas J; Fearon, Ursula; Fletcher, Jean M

    2017-03-15

    Th17 cells are an important therapeutic target in autoimmunity. However, it is known that Th17 cells exhibit considerable plasticity, particularly at sites of autoimmune inflammation. Th17 cells can switch to become ex-Th17 cells that no longer produce IL-17 but produce IFN-γ. These ex-Th17 cells are also called nonclassical Th1 cells because of their ability to produce IFN-γ, similar to Th1 cells; however, it is unclear whether they resemble Th1 or Th17 cells in terms of their function and regulation, and whether they have a pathogenic role in autoimmunity. We compared the phenotypic and functional features of human Th17, Th1, and ex-Th17 cell populations. Our data showed that despite their loss of IL-17 expression, ex-Th17 cells were more polyfunctional in terms of cytokine production than either Th1 or bona fide Th17 cells, and produced increased amounts of proinflammatory cytokines. The proliferative brake on Th17 cells appeared to be lifted because ex-Th17 cells proliferated more than Th17 cells after stimulation. In contrast with Th1 and Th17 cells, ex-Th17 cells were highly resistant to suppression of proliferation and cytokines by regulatory T cells. Finally, we showed that ex-Th17 cells accumulated in the joints of rheumatoid arthritis patients. Taken together, these data indicate that human ex-Th17 cells are functionally distinct from Th1 and Th17 cells, and suggest that they may play a pathogenic role at sites of autoimmunity, such as the rheumatoid arthritis joint where they accumulate. These findings have implications for therapeutic strategies that target IL-17, because these may not inhibit pathogenic ex-Th17 cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Experimental autoimmune myasthenia gravis may occur in the context of a polarized Th1- or Th2-type immune response in rats

    DEFF Research Database (Denmark)

    Saoudi, A; Bernard, I; Hoedemaekers, A

    1999-01-01

    Experimental autoimmune myasthenia gravis (EAMG) is a T cell-dependent, Ab-mediated autoimmune disease induced in rats by a single immunization with acetylcholine receptor (AChR). Although polarized Th1 responses have been shown to be crucial for the development of mouse EAMG, the role of Th cell...

  6. Regulatory Effect of Catalpol on Th1/Th2 cells in Mice with Bone Loss Induced by Estrogen Deficiency.

    Science.gov (United States)

    Lai, Nannan; Zhang, Jianhai; Ma, Xingyan; Wang, Bin; Miao, Xiuming; Wang, Zhaoxia; Guo, Yuqi; Wang, Li; Yao, Chengfang; Li, Xia; Jiang, Guosheng

    2015-12-01

    Estradiol (E2 ) deficiency can cause bone loss and the skew of Th1/Th2 cells. However, the correlation between the Th1/Th2 cells and the bone loss induced by estrogen deficiency remains unclear. Our aim was to investigate the role of Th1/Th2 in bone loss induced by estrogen deficiency and elucidated the therapeutical effect of catalpol in this condition. Young, sham-operated (Sham), ovariectomized (Ovx), and naturally aged mice, treated with catalpol at different doses or control vehicle, were used in this study as indicated in each experiment. ELISA assay, dual-energy X-ray absorptiometry, and flow cytometry were used to analyze E2 , C-terminal telopeptides of type I collagen (CTx-I), bone mineral density (BMD), and Th1/Th2 subsets, respectively. The mRNA and protein expressions of specific transcription factors for Th1/Th2 cells (T-bet and GATA-3) were analyzed using real-time quantitative PCR and Western blot, respectively. Bone mineral density and E2 levels positively correlated with the proportion of Th2 subset while negatively correlated with that of Th1 subset and the ratio of Th1/Th2. Catalpol alleviated bone loss effectively by regulating Th1/Th2 polarization. Catalpol promoted the expression of Th2-specific transcription factors while inhibited that associated with Th1. Th1/Th2 skew is involved in bone loss induced by estrogen deficiency. Catalpol alleviates bone loss effectively by regulating Th1/Th2 paradigm. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Delayed Activation Kinetics of Th2- and Th17 Cells Compared to Th1 Cells.

    Science.gov (United States)

    Duechting, Andrea; Przybyla, Anna; Kuerten, Stefanie; Lehmann, Paul V

    2017-09-12

    During immune responses, different classes of T cells arise: Th1, Th2, and Th17. Mobilizing the right class plays a critical role in successful host defense and therefore defining the ratios of Th1/Th2/Th17 cells within the antigen-specific T cell repertoire is critical for immune monitoring purposes. Antigen-specific Th1, Th2, and Th17 cells can be detected by challenging peripheral blood mononuclear cells (PBMC) with antigen, and establishing the numbers of T cells producing the respective lead cytokine, IFN-γ and IL-2 for Th1 cells, IL-4 and IL-5 for Th2, and IL-17 for Th-17 cells, respectively. Traditionally, these cytokines are measured within 6 h in flow cytometry. We show here that 6 h of stimulation is sufficient to detect peptide-induced production of IFN-γ, but 24 h are required to reveal the full frequency of protein antigen-specific Th1 cells. Also the detection of IL-2 producing Th1 cells requires 24 h stimulation cultures. Measurements of IL-4 producing Th2 cells requires 48-h cultures and 96 h are required for frequency measurements of IL-5 and IL-17 secreting T cells. Therefore, accounting for the differential secretion kinetics of these cytokines is critical for the accurate determination of the frequencies and ratios of antigen-specific Th1, Th2, and Th17 cells.

  8. T-cell clones from Th1, Th17 or Th1/17 lineages and their signature cytokines have different capacity to activate endothelial cells or synoviocytes.

    Science.gov (United States)

    Lavocat, Fabien; Maggi, Laura; Annunziato, Francesco; Miossec, Pierre

    2016-12-01

    To compare the direct effect of cytokines on synoviocytes and endothelial cells to the effects of supernatants from Th1, Th17 and Th1/17 clones and the direct cell-cell interactions with the same clones. Th17 and Th1/17 clones were obtained from the CD161+CCR6+ fraction and Th1 clones from the CD161-CCR6- fraction of human CD4+ T-cells. Endothelial cells or synoviocytes were cultured in the presence of either isolated pro-inflammatory cytokines (IL-17 and/or TNF-α) or supernatants from the T-cell clones or co-cultured with T-cell clones themselves. IL-6 and IL-8 expression and production were analyzed. IL-17 and TNF-α induced IL-6 and IL-8 expression, although IL-17 alone had a limited effect on endothelial cells compared to synoviocytes. Supernatants from activated T-helper clones also induced IL-6 and IL-8 expression but with discrepancies between endothelial cells and synoviocytes. Endothelial cells were mostly activated by Th1 clone supernatants whereas synoviocytes were activated by all T-cell subtypes. Finally, cell-cell contact experiments showed a great heterogeneity among cell clones, even from the same lineage. IL-6 expression was mostly induced by contact with Th1 clones both in endothelial and mesenchymal cells whereas IL-8 expression was induced by all T-cell clones whatever their phenotype. We showed that endothelial cells were much more sensitive to Th1 activation whereas synoviocytes were activated by all T-helper lineages. This work highlights the heterogeneity of interactions between T-cells and stromal cells through soluble factors or direct cell contact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Activated rat hepatic stellate cells influence Th1/Th2 profile in vitro.

    Science.gov (United States)

    Xing, Zhi-Zhi; Huang, Liu-Ye; Wu, Cheng-Rong; You, Hong; Ma, Hong; Jia, Ji-Dong

    2015-06-21

    To investigate the effects of activated rat hepatic stellate cells (HSCs) on rat Th1/Th2 profile in vitro. Growth and survival of activated HSCs and CD4(+) T lymphocytes cultured alone or together was assessed after 24 or 48 h. CD4(+) T lymphocytes were then cultured with or without activated HSCs for 24 or 48 h and the proportion of Th1 [interferon (IFN)-γ(+)] and Th2 [interleukin (IL)-4(+)] cells was assessed by flow cytometry. Th1 and Th2 cell apoptosis was assessed after 24 h of co-culture using a caspase-3 staining procedure. Differentiation rates of Th1 and Th2 cells from CD4(+) T lymphocytes that were positive for CD25 but did not express IFN-γ or IL-4 were also assessed after 48 h of co-culture with activated HSCs. Galectin-9 expression in HSCs was determined by immunofluorescence and Western blotting. ELISA was performed to assess galectin-9 secretion from activated HSCs. Co-culture of CD4(+) T lymphocytes with activated rat HSCs for 48 h significantly reduced the proportion of Th1 cells compared to culture-alone conditions (-1.73% ± 0.71%; P Th1/Th2 ratio was significantly decreased (-0.44 ± 0.13; P Th1 cells was decreased (-65.71 ± 9.67; P Th1 (12.27% ± 0.99%; P Th1 cell apoptosis rate was significantly higher than in Th2 cells (P Th1 and Th2 cells; however, the increase in the proportion of Th2 cells was significantly higher than that of Th1 cells (1.85% ± 0.48%; P Th1/Th2 profile, inhibiting the Th1 response and enhancing the Th2 response, and this may be a novel pathway for liver fibrogenesis.

  10. Polarized Th1 and Th2 cells are less responsive to negative feedback by receptors coupled to the AC/cAMP system compared to freshly isolated T cells

    NARCIS (Netherlands)

    Heijink, Irene H; Vellenga, Edo; Borger, Peter; Postma, Dirkje S; Monchy, Jan G R de; Kauffman, Henk F

    1 The adenylyl cyclase (AC)/cyclic adenosine monophosphate (cAMP) system is known to negatively regulate transcriptional activity of T cells, thereby possibly modulating T-cell-mediated responses at the sites of inflammation. Effects of cAMP have been widely studied in freshly isolated T cells and

  11. Role of Th1 and Th2 cells in autoimmune demyelinating disease

    NARCIS (Netherlands)

    Nagelkerken, L.

    1998-01-01

    Evidence is accumulating that Th1 cells play an important role in the development of multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE), whereas Th2 cells contribute to recovery from disease. A maj or determinant in the development of Th1 and Th2 cells is the type of

  12. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway

    NARCIS (Netherlands)

    Neumann, Katrin; Rudolph, Christine; Neumann, Christian; Janke, Marko; Amsen, Derk; Scheffold, Alexander

    2015-01-01

    Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell

  13. Common Features of Regulatory T Cell Specialization During Th1 Responses

    Directory of Open Access Journals (Sweden)

    Katharina Littringer

    2018-06-01

    Full Text Available CD4+Foxp3+ Treg cells are essential for maintaining self-tolerance and preventing excessive immune responses. In the context of Th1 immune responses, co-expression of the Th1 transcription factor T-bet with Foxp3 is essential for Treg cells to control Th1 responses. T-bet-dependent expression of CXCR3 directs Treg cells to the site of inflammation. However, the suppressive mediators enabling effective control of Th1 responses at this site are unknown. In this study, we determined the signature of CXCR3+ Treg cells arising in Th1 settings and defined universal features of Treg cells in this context using multiple Th1-dominated infection models. Our analysis defined a set of Th1-specific co-inhibitory receptors and cytotoxic molecules that are specifically expressed in Treg cells during Th1 immune responses in mice and humans. Among these, we identified the novel co-inhibitory receptor CD85k as a functional predictor for Treg-mediated suppression specifically of Th1 responses, which could be explored therapeutically for selective immune suppression in autoimmunity.

  14. Quantitative Proteomics of Gut-Derived Th1 and Th1/Th17 Clones Reveal the Presence of CD28+ NKG2D- Th1 Cytotoxic CD4+ T cells.

    Science.gov (United States)

    Riaz, Tahira; Sollid, Ludvig Magne; Olsen, Ingrid; de Souza, Gustavo Antonio

    2016-03-01

    T-helper cells are differentiated from CD4+ T cells and are traditionally characterized by inflammatory or immunosuppressive responses in contrast to cytotoxic CD8+ T cells. Mass-spectrometry studies on T-helper cells are rare. In this study, we aimed to identify the proteomes of human Th1 and Th1/Th17 clones derived from intestinal biopsies of Crohn's disease patients and to identify differentially expressed proteins between the two phenotypes. Crohn's disease is an inflammatory bowel disease, with predominantly Th1- and Th17-mediated response where cells of the "mixed" phenotype Th1/Th17 have also been commonly found. High-resolution mass spectrometry was used for protein identification and quantitation. In total, we identified 7401 proteins from Th1 and Th1/Th17 clones, where 334 proteins were differentially expressed. Major differences were observed in cytotoxic proteins that were overrepresented in the Th1 clones. The findings were validated by flow cytometry analyses using staining with anti-granzyme B and anti-perforin and by a degranulation assay, confirming higher cytotoxic features of Th1 compared with Th1/Th17 clones. By testing a larger panel of T-helper cell clones from seven different Crohn's disease patients, we concluded that only a subgroup of the Th1 cell clones had cytotoxic features, and these expressed the surface markers T-cell-specific surface glycoprotein CD28 and were negative for expression of natural killer group 2 member D. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction

    OpenAIRE

    Shin, Jung Hoon; Park, Se-Ho

    2013-01-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although ?-galactosylceramide (?-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-? by NKT cells, concomitant with a d...

  16. Cathepsin B in antigen-presenting cells controls mediators of the Th1 immune response during Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Iris J Gonzalez-Leal

    2014-09-01

    Full Text Available Resistance and susceptibility to Leishmania major infection in the murine model is determined by the capacity of the host to mount either a protective Th1 response or a Th2 response associated with disease progression. Previous reports involving the use of cysteine cathepsin inhibitors indicated that cathepsins B (Ctsb and L (Ctsl play important roles in Th1/Th2 polarization during L. major infection in both susceptible and resistant mouse strains. Although it was hypothesized that these effects are a consequence of differential patterns of antigen processing, the mechanisms underlying these differences were not further investigated. Given the pivotal roles that dendritic cells and macrophages play during Leishmania infection, we generated bone-marrow derived dendritic cells (BMDC and macrophages (BMM from Ctsb-/- and Ctsl-/- mice, and studied the effects of Ctsb and Ctsl deficiency on the survival of L. major in infected cells. Furthermore, the signals used by dendritic cells to instruct Th cell polarization were addressed: the expression of MHC class II and co-stimulatory molecules, and cytokine production. We found that Ctsb-/- BMDC express higher levels of MHC class II molecules than wild-type (WT and Ctsl-/- BMDC, while there were no significant differences in the expression of co-stimulatory molecules between cathepsin-deficient and WT cells. Moreover, both BMDC and BMM from Ctsb-/- mice significantly up-regulated the levels of interleukin 12 (IL-12 expression, a key Th1-inducing cytokine. These findings indicate that Ctsb-/- BMDC display more pro-Th1 properties than their WT and Ctsl-/- counterparts, and therefore suggest that Ctsb down-regulates the Th1 response to L. major. Moreover, they propose a novel role for Ctsb as a regulator of cytokine expression.

  17. Memory Th1 Cells Are Protective in Invasive Staphylococcus aureus Infection

    Science.gov (United States)

    Lalor, Stephen J.; Leech, John M.; O’Keeffe, Kate M.; Mac Aogáin, Micheál; O’Halloran, Dara P.; Lacey, Keenan A.; Tavakol, Mehri; Hearnden, Claire H.; Fitzgerald-Hughes, Deirdre; Humphreys, Hilary; Fennell, Jérôme P.; van Wamel, Willem J.; Foster, Timothy J.; Geoghegan, Joan A.; Lavelle, Ed C.; Rogers, Thomas R.; McLoughlin, Rachel M.

    2015-01-01

    Mechanisms of protective immunity to Staphylococcus aureus infection in humans remain elusive. While the importance of cellular immunity has been shown in mice, T cell responses in humans have not been characterised. Using a murine model of recurrent S. aureus peritonitis, we demonstrated that prior exposure to S. aureus enhanced IFNγ responses upon subsequent infection, while adoptive transfer of S. aureus antigen-specific Th1 cells was protective in naïve mice. Translating these findings, we found that S. aureus antigen-specific Th1 cells were also significantly expanded during human S. aureus bloodstream infection (BSI). These Th1 cells were CD45RO+, indicative of a memory phenotype. Thus, exposure to S. aureus induces memory Th1 cells in mice and humans, identifying Th1 cells as potential S. aureus vaccine targets. Consequently, we developed a model vaccine comprising staphylococcal clumping factor A, which we demonstrate to be an effective human T cell antigen, combined with the Th1-driving adjuvant CpG. This novel Th1-inducing vaccine conferred significant protection during S. aureus infection in mice. This study notably advances our understanding of S. aureus cellular immunity, and demonstrates for the first time that a correlate of S. aureus protective immunity identified in mice may be relevant in humans. PMID:26539822

  18. Memory Th1 Cells Are Protective in Invasive Staphylococcus aureus Infection.

    LENUS (Irish Health Repository)

    Brown, Aisling F

    2015-01-01

    Mechanisms of protective immunity to Staphylococcus aureus infection in humans remain elusive. While the importance of cellular immunity has been shown in mice, T cell responses in humans have not been characterised. Using a murine model of recurrent S. aureus peritonitis, we demonstrated that prior exposure to S. aureus enhanced IFNγ responses upon subsequent infection, while adoptive transfer of S. aureus antigen-specific Th1 cells was protective in naïve mice. Translating these findings, we found that S. aureus antigen-specific Th1 cells were also significantly expanded during human S. aureus bloodstream infection (BSI). These Th1 cells were CD45RO+, indicative of a memory phenotype. Thus, exposure to S. aureus induces memory Th1 cells in mice and humans, identifying Th1 cells as potential S. aureus vaccine targets. Consequently, we developed a model vaccine comprising staphylococcal clumping factor A, which we demonstrate to be an effective human T cell antigen, combined with the Th1-driving adjuvant CpG. This novel Th1-inducing vaccine conferred significant protection during S. aureus infection in mice. This study notably advances our understanding of S. aureus cellular immunity, and demonstrates for the first time that a correlate of S. aureus protective immunity identified in mice may be relevant in humans.

  19. Graft rejection as a Th1-type process amenable to regulation by donor Th2-type cells through an interleukin-4/STAT6 pathway.

    Science.gov (United States)

    Mariotti, Jacopo; Foley, Jason; Ryan, Kaitlyn; Buxhoeveden, Nicole; Kapoor, Veena; Amarnath, Shoba; Fowler, Daniel H

    2008-12-01

    Graft rejection has been defined as the mirror image of graft-versus-host disease, which is biologically characterized primarily as a Th1-type process. As such, we reasoned that graft rejection would represent a Th1 response amenable to Th2 modulation. Indeed, adoptive transfer of host Th1-type cells mediated rejection of fully MHC-disparate murine bone marrow allografts more effectively than host Th2-type cells. Furthermore, STAT1-deficient host T cells did not differentiate into Th1-type cells in vivo and failed to mediate rejection. We next hypothesized that donor Th2 cell allograft augmentation would prevent rejection by modulation of the host Th1/Th2 balance. In the setting of donor Th2 cell therapy, host-anti-donor allospecific T cells acquired Th2 polarity, persisted posttransplantation, and did not mediate rejection. Abrogation of rejection required donor Th2 cell IL-4 secretion and host T-cell STAT6 signaling. In conclusion, T cell-mediated marrow graft rejection primarily resembles a Th1-type process that can be abrogated by donor Th2 cell therapy that promotes engraftment through a novel mechanism whereby cytokine polarization is transferred to host T cells.

  20. A Longitudinal Study of the Role of T Cell subset, Th1/Th2 cytokines ...

    African Journals Online (AJOL)

    A Longitudinal Study of the Role of T Cell subset, Th1/Th2 cytokines and antiplasmodial antibodies in uncomplicated Malaria in a Village Population Chronically Exposed to Plasmodium falciparum Malaria.

  1. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction.

    Science.gov (United States)

    Shin, Jung Hoon; Park, Se-Ho

    2013-10-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although α-galactosylceramide (α-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-γ by NKT cells, concomitant with a decreased level of IL-4, in the circumstance of co-culture of DCs and B Cells. Remarkably, the response promoted by B cells was dependent on CD1d expression of B cells.

  2. Radiation-induced decrease of CD8+ dendritic cells contributes to Th1/Th2 shift.

    Science.gov (United States)

    Liu, Hu; Li, Bailong; Jia, Xiaojing; Ma, Yan; Gu, Yifeng; Zhang, Pei; Wei, Qun; Cai, Jianming; Cui, Jianguo; Gao, Fu; Yang, Yanyong

    2017-05-01

    Exposure to ionizing radiation (IR) often reduce the helper T (Th) 1 like function, resulting in a Th1/Th2 imbalance, which could affect the efficacy of cancer radiotherapy. As the most potent antigen presenting cells, dendritic cells (DC) can be divided into several subsets with specialized function. However, there is no literature covering the changes of DC subsets and their roles in immune regulation in response to IR. In the present study, we were aimed to investigate the changes of DC subsets after IR and its relationship with Th1/Th2 immunity. We found a significant decrease of BDCA3+DC in the blood of patients treated with radiotherapy. CD8+DC, a mouse equivalent of human BDCA3+DC, was also found decreased in mice spleen, peripheral blood and lymph node tissues after irradiation. As CD8+DC mainly induce Th1 immunity, we tested the changes of Th1/Th2 response and found that IR caused a repression of Th1 immunity, indicating a possible role of CD8+DC in radiation-induced Th1/Th2 imbalance. We also found that a CD8+DC-inducing cytokine, Fms-like tyrosine kinase 3 ligand (FLT3 ligand), restored CD8+DC and reversed Th1/Th2 shift. And then we found that bone marrow cells from irradiated mice differentiated into less CD8+DC, which was also protected by FLT3 ligand. In conclusion, our data showed that IR induced a decrease of CD8+DC and Th1/Th2 shift, which was reversed by Flt3 ligand treatment, suggesting a novel mechanism for radiation-induced immunosuppression. Copyright © 2017. Published by Elsevier B.V.

  3. Natural killer cells regulate Th1/Treg and Th17/Treg balance in chlamydial lung infection.

    Science.gov (United States)

    Li, Jing; Dong, Xiaojing; Zhao, Lei; Wang, Xiao; Wang, Yan; Yang, Xi; Wang, Hong; Zhao, Weiming

    2016-07-01

    Natural killer (NK) cell is an important component in innate immunity, playing a critical role in bridging innate and adaptive immunity by modulating the function of other immune cells including T cells. In this study, we focused on the role of NK cells in regulating Th1/Treg and Th17/Treg balance during chlamydial lung infection. We found that NK cell-depleted mice showed decreased Th1 and Th17 cells, which was correlated with reduced interferon-γ, interleukin (IL)-12, IL-17 and IL-22 production as well as T-bet and receptor-related orphan receptor gamma t expression compared with mice treated with the isotype control antibody. In contrast, NK cell depletion significantly increased Treg in cell number and related transcription factor (Foxp3) expression. The opposite trends of changes of Th1/Th17 and Treg led to significant reduction in the Th1/Treg and Th17/Treg ratios. The data implicate that NK cells play an important role in host defence against chlamydial lung infection, mainly through maintaining Th1/Treg and Th17/Treg balance. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties.

    Science.gov (United States)

    Prajeeth, Chittappen K; Kronisch, Julius; Khorooshi, Reza; Knier, Benjamin; Toft-Hansen, Henrik; Gudi, Viktoria; Floess, Stefan; Huehn, Jochen; Owens, Trevor; Korn, Thomas; Stangel, Martin

    2017-10-16

    Autoreactive Th1 and Th17 cells are believed to mediate the pathology of multiple sclerosis in the central nervous system (CNS). Their interaction with microglia and astrocytes in the CNS is crucial for the regulation of the neuroinflammation. Previously, we have shown that only Th1 but not Th17 effectors activate microglia. However, it is not clear which cells are targets of Th17 effectors in the CNS. To understand the effects driven by Th17 cells in the CNS, we induced experimental autoimmune encephalomyelitis in wild-type mice and CD4 + T cell-specific integrin α4-deficient mice where trafficking of Th1 cells into the CNS was affected. We compared microglial and astrocyte response in the brain and spinal cord of these mice. We further treated astrocytes with supernatants from highly pure Th1 and Th17 cultures and assessed the messenger RNA expression of neurotrophic factors, cytokines and chemokines, using real-time PCR. Data obtained was analyzed using the Kruskal-Wallis test. We observed in α4-deficient mice weak microglial activation but comparable astrogliosis to that of wild-type mice in the regions of the brain populated with Th17 infiltrates, suggesting that Th17 cells target astrocytes and not microglia. In vitro, in response to supernatants from Th1 and Th17 cultures, astrocytes showed altered expression of neurotrophic factors, pro-inflammatory cytokines and chemokines. Furthermore, increased expression of chemokines in Th1- and Th17-treated astrocytes enhanced recruitment of microglia and transendothelial migration of Th17 cells in vitro. Our results demonstrate the delicate interaction between T cell subsets and glial cells and how they communicate to mediate their effects. Effectors of Th1 act on both microglia and astrocytes whereas Th17 effectors preferentially target astrocytes to promote neuroinflammation.

  5. Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties

    DEFF Research Database (Denmark)

    Prajeeth, Chittappen K; Kronisch, Julius; Khorooshi, Reza M. H.

    2017-01-01

    Background: Autoreactive Th1 and Th17 cells are believed to mediate the pathology of multiple sclerosis in the central nervous system (CNS). Their interaction with microglia and astrocytes in the CNS is crucial for the regulation of the neuroinflammation. Previously we have shown that only Th1...... mice where trafficking of Th1 cells into the CNS was affected. We compared microglia and astrocyte response in the brain and spinal cord of these mice. We further treated astrocytes with supernatants from highly pure Th1 and Th17 cultures and assessed the mRNA expression of neurotrophic factors......, cytokines and chemokines using real-time PCR. Data obtained was analysed using Kruskal- Wallis test. Results: We observed in α4-deficient mice weak microglial activation but comparable astrogliosis to that of wild-type mice in the regions of the brain populated with Th17 infiltrates suggesting that Th17...

  6. Id2 reinforces TH1 cell differentiation and inhibits E2A to repress TFH cell differentiation

    Science.gov (United States)

    Shaw, Laura A.; Bélanger, Simon; Omilusik, Kyla D.; Cho, Sunglim; Scott-Browne, James P.; Nance, J. Philip; Goulding, John; Lasorella, Anna; Lu, Li-Fan; Crotty, Shane; Goldrath, Ananda W.

    2016-01-01

    Differentiation of T helper (TH) effector subsets is critical for host protection. E protein transcription factors and Id proteins are important arbiters of T cell development, but their role in differentiation of TH1 and TFH cells is not well understood. TH1 cells showed robust Id2 expression compared to TFH cells, and RNAi depletion of Id2 increased TFH cell frequencies. Further, TH1 cell differentiation was blocked by Id2 deficiency, leading to E protein-dependent accumulation of effector cells with mixed characteristics during viral infection and severely impaired generation of TH1 cells following Toxoplasma gondii infection. The TFH-defining transcriptional repressor Bcl6 bound the Id2 locus, providing a mechanism for the bimodal Id2 expression and reciprocal development of TH1 and TFH cell fates. PMID:27213691

  7. Interleukin-1 is required for cancer eradication mediated by tumor-specific Th1 cells.

    Science.gov (United States)

    Haabeth, Ole Audun Werner; Lorvik, Kristina Berg; Yagita, Hideo; Bogen, Bjarne; Corthay, Alexandre

    The role of inflammation in cancer is controversial as both tumor-promoting and tumor-suppressive aspects of inflammation have been reported. In particular, it has been shown that pro-inflammatory cytokines, like interleukin-1α (IL-1α), IL-1β, IL-6, and tumor necrosis factor α (TNFα), may either promote or suppress cancer. However, the cellular and molecular basis underlying these opposing outcomes remains enigmatic. Using mouse models for myeloma and lymphoma, we have recently reported that inflammation driven by tumor-specific T helper 1 (Th1) cells conferred protection against B-cell cancer and that interferon-γ (IFN-γ) was essential for this process. Here, we have investigated the contribution of several inflammatory mediators. Myeloma eradication by Th1 cells was not affected by inhibition of TNF-α, TNF-related weak inducer of apoptosis (TWEAK), or TNF-related apoptosis-inducing ligand (TRAIL). In contrast, cancer elimination by tumor-specific Th1 cells was severely impaired by the in vivo neutralization of both IL-1α and IL-1β (collectively named IL-1) with IL-1 receptor antagonist (IL-1Ra). The antitumor functions of tumor-specific Th1 cells and tumor-infiltrating macrophages were both affected by IL-1 neutralization. Secretion of the Th1-derived cytokines IL-2 and IFN-γ at the incipient tumor site was severely reduced by IL-1 blockade. Moreover, IL-1 was shown to synergize with IFN-γ for induction of tumoricidal activity in tumor-infiltrating macrophages. This synergy between IL-1 and IFN-γ may explain how inflammation, when driven by tumor-specific Th1 cells, represses rather than promotes cancer. Collectively, the data reveal a central role of inflammation, and more specifically of the canonical pro-inflammatory cytokine IL-1, in enhancing Th1-mediated immunity against cancer.

  8. Biglycan, a novel trigger of Th1 and Th17 cell recruitment into the kidney.

    Science.gov (United States)

    Nastase, Madalina-Viviana; Zeng-Brouwers, Jinyang; Beckmann, Janet; Tredup, Claudia; Christen, Urs; Radeke, Heinfried H; Wygrecka, Malgorzata; Schaefer, Liliana

    2017-12-15

    Th1 and Th17 cells, T helper (Th) subtypes, are key inducers of renal fibrosis. The molecular mechanisms of their recruitment into the kidney, however, are not well understood. Here, we show that biglycan, a proteoglycan of the extracellular matrix, acting in its soluble form as a danger signal, stimulates autonomously the production of Th1 and Th17 chemoattractants CXCL10 and CCL20 in macrophages. In the presence of IFNγ, biglycan synergistically stimulates CXCL9. In macrophages deficient for TLR2, TLR4, and their adaptor molecules MyD88 or TRIF, we identified highly selective mechanisms of biglycan-dependent Th1/17 chemoattraction. Thus, the expression of CXCL9 and CXCL10, common chemoattractants for CXCR3-positive Th1 and Th17 cells, is triggered in a biglycan-TLR4/TRIF-dependent manner. By contrast, biglycan induces CCL20 chemokine production, responsible for CCR6-positive Th17 cell recruitment, in a TLR2/4/MyD88-dependent manner. Importantly, at the onset of diabetes mellitus and lupus nephritis we provide evidence for biglycan-dependent recruitment of Th1 and Th17 cells, IFNγ and IL-17 production, and development of albuminuria in mice lacking or overexpressing soluble biglycan. Furthermore, by genetic ablation of Cxcl10 we showed in vivo involvement of this chemokine in biglycan-dependent recruitment of Th1 and Th17 cells into the kidney. Finally, a positive correlation of biglycan and CXCL10/CXCL9 levels was detected in plasma from patients with diabetic nephropathy and lupus nephritis. Taken together, we identified biglycan as a novel trigger of Th1 and Th17 cell recruitment into the kidney and we postulate that interfering with biglycan/TLR/TRIF/MyD88-signaling might provide novel therapeutic avenues for renal fibrosis. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  9. Oxidative stress modulates the cytokine response of differentiated Th17 and Th1 cells.

    Science.gov (United States)

    Abimannan, Thiruvaimozhi; Peroumal, Doureradjou; Parida, Jyoti R; Barik, Prakash K; Padhan, Prasanta; Devadas, Satish

    2016-10-01

    Reactive oxygen species (ROS) signaling is critical in T helper (Th) cell differentiation; however its role in differentiated Th cell functions is unclear. In this study, we investigated the role of oxidative stress on the effector functions of in vitro differentiated mouse Th17 and Th1 cells or CD4 + T cells from patients with Rheumatoid Arthritis using pro-oxidants plumbagin (PB) and hydrogen peroxide. We found that in mouse Th cells, non-toxic concentration of pro-oxidants inhibited reactivation induced expression of IL-17A in Th17 and IFN-γ in Th1 cells by reducing the expression of their respective TFs, RORγt and T-bet. Interestingly, in both the subsets, PB increased the expression of IL-4 by enhancing reactivation induced ERK1/2 phosphorylation. We further investigated the cytokine modulatory effect of PB on CD4 + T cells isolated from PBMCs of patients with Rheumatoid Arthritis, a well-known Th17 and or Th1 mediated disease. In human CD4 + T cells from Rheumatoid Arthritis patients, PB reduced the frequencies of IL-17A + (Th17), IFN - γ + (Th1) and IL-17A + /IFN - γ + (Th17/1) cells and also inhibited the production of pro-inflammatory cytokines TNF-α and IL-6. N-Acetyl Cysteine (NAC) an antioxidant completely reversed PB mediated cytokine modulatory effects in both mouse and human cells indicating a direct role for ROS. Together our data suggest that oxidative microenvironment can alter cytokine response of terminally differentiated cells and thus altering intracellular ROS could be a potential way to target Th17 and Th1 cells in autoimmune disorders. Copyright © 2016. Published by Elsevier Inc.

  10. Regulation of Th1 cells and experimental autoimmune encephalomyelitis (EAE) by glycogen synthase kinase-3

    Science.gov (United States)

    Beurel, Eléonore; Kaidanovich-Beilin, Oksana; Yeh, Wen-I; Song, Ling; Palomo, Valle; Michalek, Suzanne M.; Woodgett, James R.; Harrington, Laurie E.; Eldar-Finkelman, Hagit; Martinez, Ana; Jope, Richard S.

    2013-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis (MS), a debilitating autoimmune disease of the central nervous system, for which only limited therapeutic interventions are available. Since MS is mediated in part by autoreactive T cells, particularly Th17 and Th1 cells, in the present study, we tested if inhibitors of glycogen synthase kinase-3 (GSK3), previously reported to reduce Th17 cell generation, also alter Th1 cell production or ameliorate EAE. GSK3 inhibitors were found to impede the production of Th1 cells by reducing STAT1 activation. Molecularly reducing the expression of either of the two GSK3 isoforms demonstrated that Th17 cell production was sensitive to reduced levels of GSK3β, and Th1 cell production was inhibited in GSK3α-deficient cells. Administration of the selective GSK3 inhibitors TDZD-8, VP2.51, VP0.7, or L803-mts, significantly reduced the clinical symptoms of MOG35-55-induced EAE in mice, nearly eliminating the chronic progressive phase, and reduced the number of Th17 and Th1 cells in the spinal cord. Administration of TDZD-8 or L803-mts after the initial disease episode ameliorated clinical symptoms in a relapsing/remitting model of PLP139-151-induced EAE. Furthermore, deletion of GSK3β specifically in T cells was sufficient to ameliorate MOG35-55-induced EAE. These results demonstrate isoform-selective effects of GSK3 on T cell generation, therapeutic effects of GSK3 inhibitors in EAE, and that GSK3 inhibition in T cells is sufficient to reduce the severity of EAE, suggesting that GSK3 may be a feasible target for developing new therapeutic interventions for MS. PMID:23606540

  11. Effect of Malnutrition on the Expression of Cytokines Involved in Th1 Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Leonor Rodríguez

    2013-02-01

    Full Text Available Malnutrition is a common cause of secondary immune deficiency and has been linked to an increased susceptibility to infection in humans. Malnutrition specifically affects T-cell-mediated immune responses. The aim of this study was to assess in lymphocytes from malnourished children the expression levels of IL-12, IL-18 and IL-21, molecules that induce the differentiation of T cells related to the immunological cellular response (Th1 response and the production of cytokines related to the immunological cellular response (Th1 cytokines. We found that the expression levels of IL-12, IL-18 and IL-21 were significantly diminished in malnourished children compared to well-nourished children and were coincident with lower plasmatic levels of IL-2 and IFN-γ (Th1 cytokines. In this study, we show for the first time that the gene expression and intracellular production of cytokines responsible for Th1 cell differentiation (IL-12, IL-18 and IL-21 are diminished in malnourished children. As expected, this finding was related to lower plasmatic levels of IL-2 and IFN-γ. The decreased expression of Th1 cytokines observed in this study may contribute to the deterioration of the immunological Type 1 (cellular response. We hypothesize that the decreased production of IL-12, IL-18 and IL-21 in malnourished children contributes to their inability to eradicate infections.

  12. Elevated Ratio of Th17 Cell-Derived Th1 Cells (CD161(+)Th1 Cells) to CD161(+)Th17 Cells in Peripheral Blood of Early-Onset Rheumatoid Arthritis Patients.

    Science.gov (United States)

    Kotake, Shigeru; Nanke, Yuki; Yago, Toru; Kawamoto, Manabu; Kobashigawa, Tsuyoshi; Yamanaka, Hisashi

    2016-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by the destruction of articular cartilage and bone with elevated levels of proinflammatory cytokines. It has been reported that IL-17 and Th17 cells play important roles in the pathogenesis of RA. Recently, plasticity in helper T cells has been demonstrated; Th17 cells can convert to Th1 cells. It remains to be elucidated whether this conversion occurs in the early phase of RA. Here, we tried to identify Th17 cells, Th1 cells, and Th17 cell-derived Th1 cells (CD161(+)Th1 cells) in the peripheral blood of early-onset RA patients. We also evaluated the effect of methotrexate on the ratio of Th17 cells in early-onset RA patients. The ratio of Th17 cell-derived Th1 cells to CD161(+)Th17 cells was elevated in the peripheral blood of early-onset RA patients. In addition, MTX reduced the ratio of Th17 cells but not Th1 cells. These findings suggest that IL-17 and Th17 play important roles in the early phase of RA; thus, anti-IL-17 antibodies should be administered to patients with RA in the early phase.

  13. A2E Suppresses Regulatory Function of RPE Cells in Th1 Cell Differentiation Via Production of IL-1β and Inhibition of PGE2.

    Science.gov (United States)

    Shi, Qian; Wang, Qiu; Li, Jing; Zhou, Xiaohui; Fan, Huimin; Wang, Fenghua; Liu, Haiyun; Sun, Xiangjun; Sun, Xiaodong

    2015-12-01

    Inflammatory status of RPE cells induced by A2E is essential in the development of AMD. Recent research indicated T-cell immunity was involved in the pathological progression of AMD. This study was designed to investigate how A2E suppresses immunoregulatory function of RPE cells in T-cell immunity in vitro. Mouse RPE cells or human ARPE19 cells were stimulated with A2E, and co-cultured with naïve T cells under Th1, Th2, Th17, and regulatory T cell (Treg) polarization conditions. The intracellular cytokines or transcript factors of the induced T-cells subset were detected with flow cytometer and qRT-PCR. The ROS levels were detected, and the factors and possible pathways involved in the A2E-laden RPE cells were analyzed through neutralization antibody of IL-1β and inhibitors of related pathways. The A2E reduced regulatory function of RPE cells in Treg differentiation. The A2E-laden RPE cells promoted polarization of Th1 cells in vitro, but not Th2 or Th17 differentiation. The A2E induced RPE cells to release inflammatory cytokines and ROS, but PGE2 production was inhibited. Through neutralization of IL-1β or inhibition of COX2-PGE2 pathways, A2E-laden RPE cells expressed reduced effect in inducing Th1 cells. The A2E inhibited regulatory function of RPE cells in suppressing Th1 cell immunity in vitro through production of IL-1β and inhibition of PGE2. Our data indicate that A2E could suppress immunoregulatory function of RPE cells and adaptive immunity might play a role in the immune pathogenesis of AMD.

  14. Evidence for mouse Th1- and Th2-like helper T cells in vivo. Selective reduction of Th1-like cells after total lymphoid irradiation

    International Nuclear Information System (INIS)

    Bass, H.; Mosmann, T.; Strober, S.

    1989-01-01

    Purified CD4+ BALB/c spleen T cells obtained 4-6 wk after total lymphoid irradiation (TLI) helped normal syngeneic B cells to produce a vigorous antibody response to TNP keyhole limpet hemocyanin in adoptive cell transfer experiments. However, the same cells failed to transfer delayed-type hypersensitivity to the adoptive hosts as measured by a foot pad swelling assay. In addition, purified CD4+ cells from TLI-treated mice were unable to induce graft vs. host disease in lethally irradiated allogeneic C57BL/Ka recipient mice. In response to mitogen stimulation, unfractionated spleen cells obtained from TLI mice secreted normal levels of IL-4 and IL-5, but markedly reduced levels of IL-2 and INF-gamma. A total of 229 CD4+ clones from spleen cells of both normal and TLI-treated mice were established, and the cytokine secretion pattern from each clone was analyzed. The results demonstrate that the ratio of Th1- and Th2-like clones in the spleens of normal BALB/c mice is 1:0.6, whereas the ratio in TLI mice is approximately 1:7. These results suggest that Th2-like cells recover rapidly (at approximately 4-6 wk) after TLI treatment and account for the early return of antibody helper activity and secretion of IL-4 and IL-5, but Th1-like cells recover more slowly (in approximately 3 mo) after irradiation, and this accounts for the deficit in cell-mediated immunity and the reduced amount of IL-2 and IFN-gamma secretion

  15. Langerhans cell-like dendritic cells stimulated with an adjuvant direct the development of Th1 and Th2 cells in vivo.

    Science.gov (United States)

    Matsui, K; Mori, A; Ikeda, R

    2015-10-01

    It is well known that Langerhans cells (LCs) work as the primary orchestrators in the polarization of immune responses towards a T helper type 1 (Th1) or Th2 milieu. In this study, we attempted to generate LCs from murine bone marrow cells and elicit a Th1- or Th2-prone immune response through the LCs after stimulation with Th1 or Th2 adjuvant. LCs were generated from murine bone marrow cells using granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-4 and transforming growth factor (TGF)-β, and were obtained as I-A(d) positive cells. Mice were primed with Th1/Th2 adjuvant- and ovalbumin (OVA)-pulsed LCs and then given a booster injection of OVA 2 days later via the hind footpad. Five days after the OVA injection, the cytokine response in the draining popliteal lymph nodes was investigated by reverse transcription-polymerase chain reaction (RT-PCR) flow cytometry and enzyme-linked immunosorbent assay (ELISA). The generated LCs expressed typical LC surface markers, E-cadherin and Langerin, and were classified accordingly as LC-like dendritic cells (LDCs). Administration of Th1 adjuvant, cytosine-phosphate-guanosine (CpG)-DNA- and OVA-pulsed LDCs into the hind footpads of mice induced a Th1-prone immune response, as represented by up-regulation of IFN-γ production and down-regulation of IL-4 production in the lymph node cells. Conversely, Th2 adjuvant, histamine-pulsed LDCs induced a Th2-prone immune response, as represented by up-regulation of IL-4 production and down-regulation of IFN-γ production. These results suggest that LDCs may be used as a substitute for LCs and have the ability to induce the development of Th1 and Th2 cells in vivo. Our experimental system would therefore be useful for screening of inhibitors of Th1/Th2 differentiation in order to control allergic disease. © 2015 British Society for Immunology.

  16. The expanding universe of T-cell subsets: Th1, Th2 and more.

    Science.gov (United States)

    Mosmann, T R; Sad, S

    1996-03-01

    Since their discovery nearly ten years ago, T helper 1 (Th1) and Th2 subsets have been implicated in the regulation of many immune responses. In this article, Tim Mosmann and Subash Sad discuss the increasing number of T-cell subsets defined by cytokine patterns; the differentiation pathways of CD4+ and CD8+ T cells; the contribution of other cell types to these patterns; and the cytokine interactions during infection and pregnancy.

  17. CD38 gene-modified dendritic cells inhibit murine asthma development by increasing IL-12 production and promoting Th1 cell differentiation.

    Science.gov (United States)

    Wang, Jiaoli; Zhu, Weiguo; Chen, Yinghu; Lin, Zhendong; Ma, Shenglin

    2016-11-01

    Predominant T helper (Th)2 and impaired Th1 cell polarization has a crucial role in the development of asthma. Cluster of differentiation (CD)38 is associated with the increased release of interleukin (IL)‑12 from dendritic cells (DCs) and DC‑induced Th1 cell polarization. However, whether CD38 expression affects DC function in asthma development remains unknown. In the current study, adenoviruses were constructed containing the murine CD38 gene. Overexpression of CD38 protein level in DCs induced from bone‑marrow derived DCs (BMDCs) by recombinant mouse granulocyte macrophage colony‑stimulating factor and IL‑4 was achieved through 24 h adenovirus infection. The results demonstrated that BMDCs with CD38 overexpression exhibited no phenotypic change; however, following stimulation with lipopolysaccharide (LPS), maturation and IL‑12 secretion were increased. In addition, CD38‑overexpressing BMDCs stimulated with LPS exhibited more effective Th1 cell differentiation. Mice that were administered CD38‑overexpressing BMDCs exhibited milder symptoms of asthma. Furthermore, decreased IL‑4, IL‑5 and IL‑13 levels were detected in bronchoalveolar lavage fluid (BALF), reduced immunoglobulin E levels were measured in the sera, and increased interferon‑γ was detected in BALF from the recipients of CD38‑overexpressing BMDCs. Increased phosphorylated‑p38 expression was also detected in LPS-stimulated CD38-overexpressing BMDCs, whereas pretreatment with a p38‑specific inhibitor was able to abolish the effects of LPS stimulation and CD38 overexpression on IL‑12 release and Th1 cell differentiation in BMDCs. These results suggested that CD38 may be involved in the DC function of alleviating asthma via restoration of the Th1/Th2 balance, thus providing a novel strategy for asthma therapy.

  18. Reverse plasticity: TGF-β and IL-6 induce Th1-to-Th17-cell transdifferentiation in the gut.

    Science.gov (United States)

    Geginat, Jens; Paroni, Moira; Kastirr, Ilko; Larghi, Paola; Pagani, Massimiliano; Abrignani, Sergio

    2016-10-01

    Th17 cells are a heterogeneous population of pro-inflammatory T cells that have been shown to mediate immune responses against intestinal bacteria. Th17 cells are highly plastic and can transdifferentiate to Th1/17 cells or unconventional Th1 cells, which are highly pathogenic in animal models of immune-mediated diseases such as inflammatory bowel diseases. A recent European Journal of Immunology article by Liu et al. (Eur. J. Immunol. 2015. 45:1010-1018) showed, surprisingly, that Th1 cells have a similar plasticity, and could transdifferentiate to Th17 cells. Thus, IFN-γ-producing Th1 effector cells specific for an intestinal microbial antigen were shown to acquire IL-17-producing capacities in the gut in a mouse model of colitis, and in response to TGF-β and IL-6 in vitro. TGF-β induced Runx1, and together with IL-6 was shown to render the ROR-γt and IL-17 promoters in Th1 cells accessible for Runx1 binding. In this commentary, we discuss how this unexpected plasticity of Th1 cells challenges our view on the generation of Th1/17 cells with the capacity to co-produce IL-17 and IFN-γ, and consider possible implications of this Th1-to-Th17-cell conversion for therapies of inflammatory bowel diseases and protective immune responses against intracellular pathogens. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The role of Th1 and Th17 cells in glomerulonephritis.

    Science.gov (United States)

    Azadegan-Dehkordi, Fatemeh; Bagheri, Nader; Shirzad, Hedayatollah; Rafieian-Kopaei, Mahmoud

    2015-04-01

    T helper (Th) cells as an important part of the immune is responsible for elimination of invading pathogens. But, if Th cell responses are not regulated effectively, the autoimmune diseases might develop. The Th17 subset usually produces interleukin-17A which in experimental models of organ-specific autoimmune inflammation is very important. Directory of open access journals (DOAJ), Google Scholar, Embase, Scopus, PubMed and Web of Science have been searched. Fifty-six articles were found and searched. In the present review article, we tried to summarize the recently published data about characteristics and role of Th1 and Th17 cells and discuss in detail, the potential role of these T helpers immune responses in renal inflammation and renal injury, focusing on glomerulonephritis. Published papers in animal and human studies indicated that autoimmune diseases such as rheumatoid arthritis and multiple sclerosis, classically believed to be Th1-mediated, are mainly derived from a Th17 immune response. Identification of the Th17 subgroup has explained seemingly paradoxical observations and improved our understanding of immune-mediated inflammatory responses. Secretion of IL-17A, as well as IL-17F, IL-21, IL-22, suggests that Th17 subset may play a crucial role as a pleiotropic pro-inflammatory Th subset. There is experimental evidence to support the notion that Th1 and Th17 cells contribute to kidney injury in renal inflammatory diseases like glomerulonephritis.

  20. Oral dendritic cells mediate antigen-specific tolerance by stimulating TH1 and regulatory CD4+ T cells.

    Science.gov (United States)

    Mascarell, Laurent; Lombardi, Vincent; Louise, Anne; Saint-Lu, Nathalie; Chabre, Henri; Moussu, Hélène; Betbeder, Didier; Balazuc, Anne-Marie; Van Overtvelt, Laurence; Moingeon, Philippe

    2008-09-01

    A detailed characterization of oral antigen-presenting cells is critical to improve second-generation sublingual allergy vaccines. To characterize oral dendritic cells (DCs) within lingual and buccal tissues from BALB/c mice with respect to their surface phenotype, distribution, and capacity to polarize CD4(+) T-cell responses. In situ analysis of oral DCs was performed by immunohistology. Purified DCs were tested in vitro for their capacity to capture, process, and present the ovalbumin antigen to naive CD4(+) T cells. In vivo priming of ovalbumin-specific T cells adoptively transferred to BALB/c mice was analyzed by cytofluorometry in cervical lymph nodes after sublingual administration of mucoadhesive ovalbumin. Three subsets of oral DCs with a distinct tissue distribution were identified: (1) a minor subset of CD207(+) Langerhans cells located in the mucosa itself, (2) a major subpopulation of CD11b(+)CD11c(-) and CD11b(+)CD11c(+) myeloid DCs at the mucosal/submucosal interface, and (3) B220(+)120G8(+) plasmacytoid DCs found in submucosal tissues. Purified myeloid and plasmacytoid oral DCs capture and process the antigen efficiently and are programmed to elicit IFN-gamma and/or IL-10 production together with a suppressive function in naive CD4(+) T cells. Targeting the ovalbumin antigen to oral DCs in vivo by using mucoadhesive particles establishes tolerance in the absence of cell depletion through the stimulation of IFN-gamma and IL-10-producing CD4(+) regulatory T cells in cervical lymph nodes. The oral immune system is composed of various subsets of tolerogenic DCs organized in a compartmentalized manner and programmed to induce T(H)1/regulatory T-cell responses.

  1. Allogeneic effector/memory Th-1 cells impair FoxP3+ regulatory T lymphocytes and synergize with chaperone-rich cell lysate vaccine to treat leukemia.

    Science.gov (United States)

    Janikashvili, Nona; LaCasse, Collin J; Larmonier, Claire; Trad, Malika; Herrell, Amanda; Bustamante, Sara; Bonnotte, Bernard; Har-Noy, Michael; Larmonier, Nicolas; Katsanis, Emmanuel

    2011-02-03

    Therapeutic strategies combining the induction of effective antitumor immunity with the inhibition of the mechanisms of tumor-induced immunosuppression represent a key objective in cancer immunotherapy. Herein we demonstrate that effector/memory CD4(+) T helper-1 (Th-1) lymphocytes, in addition to polarizing type-1 antitumor immune responses, impair tumor-induced CD4(+)CD25(+)FoxP3(+) regulatory T lymphocyte (Treg) immunosuppressive function in vitro and in vivo. Th-1 cells also inhibit the generation of FoxP3(+) Tregs from naive CD4(+)CD25(-)FoxP3(-) T cells by an interferon-γ-dependent mechanism. In addition, in an aggressive mouse leukemia model (12B1), Th-1 lymphocytes act synergistically with a chaperone-rich cell lysate (CRCL) vaccine, leading to improved survival and long-lasting protection against leukemia. The combination of CRCL as a source of tumor-specific antigens and Th-1 lymphocytes as an adjuvant has the potential to stimulate efficient specific antitumor immunity while restraining Treg-induced suppression.

  2. Blood Stem Cell Activity Is Arrested by Th1-Mediated Injury Preventing Engraftment following Nonmyeloablative Conditioning

    Science.gov (United States)

    Florek, Mareike; Kohrt, Holbrook E. K.; Küpper, Natascha J.; Filatenkov, Alexander; Linderman, Jessica A.; Hadeiba, Husein; Negrin, Robert S.

    2016-01-01

    T cells are widely used to promote engraftment of hematopoietic stem cells (HSCs) during an allogeneic hematopoietic cell transplantation. Their role in overcoming barriers to HSC engraftment is thought to be particularly critical when patients receive reduced doses of preparative chemotherapy and/or radiation compared with standard transplantations. In this study, we sought to delineate the effects CD4+ cells on engraftment and blood formation in a model that simulates clinical hematopoietic cell transplantation by transplanting MHC-matched, minor histocompatibility–mismatched grafts composed of purified HSCs, HSCs plus bulk T cells, or HSCs plus T cell subsets into mice conditioned with low-dose irradiation. Grafts containing conventional CD4+ T cells caused marrow inflammation and inhibited HSC engraftment and blood formation. Posttransplantation, the marrows of HSCs plus CD4+ cell recipients contained IL-12–secreting CD11c+ cells and IFN-γ–expressing donor Th1 cells. In this setting, host HSCs arrested at the short-term stem cell stage and remained in the marrow in a quiescent cell cycling state (G0). As a consequence, donor HSCs failed to engraft and hematopoiesis was suppressed. Our data show that Th1 cells included in a hematopoietic allograft can negatively impact HSC activity, blood reconstitution, and engraftment of donor HSCs. This potential negative effect of donor T cells is not considered in clinical transplantation in which bulk T cells are transplanted. Our findings shed new light on the effects of CD4+ T cells on HSC biology and are applicable to other pathogenic states in which immune activation in the bone marrow occurs such as aplastic anemia and certain infectious conditions. PMID:27815446

  3. Dectin-1 isoforms contribute to distinct Th1/Th17 cell activation in mucosal candidiasis

    Science.gov (United States)

    Carvalho, Agostinho; Giovannini, Gloria; De Luca, Antonella; D'Angelo, Carmen; Casagrande, Andrea; Iannitti, Rossana G; Ricci, Giovanni; Cunha, Cristina; Romani, Luigina

    2012-01-01

    The recognition of β-glucans by dectin-1 has been shown to mediate cell activation, cytokine production and a variety of antifungal responses. Here, we report that the functional activity of dectin-1 in mucosal immunity to Candida albicans is influenced by the genetic background of the host. Dectin-1 was required for the proper control of gastrointestinal and vaginal candidiasis in C57BL/6, but not BALB/c mice; in fact, the latter showed increased resistance in the absence of dectin-1. The susceptibility of dectin-1-deficient C57BL/6 mice to infection was associated with defects in IL-17A and aryl hydrocarbon receptor-dependent IL-22 production and in adaptive Th1 responses. In contrast, the resistance of dectin-1-deficient BALB/c mice was associated with increased IL-17A and IL-22 production and the skewing towards Th1/Treg immune responses that provide immunological memory. Disparate canonical/noncanonical NF-κB signaling pathways downstream of dectin-1 were activated in the two different mouse strains. Thus, the net activity of dectin-1 in antifungal mucosal immunity is dependent on the host's genetic background, which affects both the innate cytokine production and the adaptive Th1/Th17 cell activation upon dectin-1 signaling. PMID:22543832

  4. T-bet- and STAT4-dependent IL-33 receptor expression directly promotes antiviral Th1 cell responses.

    Science.gov (United States)

    Baumann, Claudia; Bonilla, Weldy V; Fröhlich, Anja; Helmstetter, Caroline; Peine, Michael; Hegazy, Ahmed N; Pinschewer, Daniel D; Löhning, Max

    2015-03-31

    During infection, the release of damage-associated molecular patterns, so-called "alarmins," orchestrates the immune response. The alarmin IL-33 plays a role in a wide range of pathologies. Upon release, IL-33 signals through its receptor ST2, which reportedly is expressed only on CD4(+) T cells of the Th2 and regulatory subsets. Here we show that Th1 effector cells also express ST2 upon differentiation in vitro and in vivo during lymphocytic choriomeningitis virus (LCMV) infection. The expression of ST2 on Th1 cells was transient, in contrast to constitutive ST2 expression on Th2 cells, and marked highly activated effector cells. ST2 expression on virus-specific Th1 cells depended on the Th1-associated transcription factors T-bet and STAT4. ST2 deficiency resulted in a T-cell-intrinsic impairment of LCMV-specific Th1 effector responses in both mixed bone marrow-chimeric mice and adoptive cell transfer experiments. ST2-deficient virus-specific CD4(+) T cells showed impaired expansion, Th1 effector differentiation, and antiviral cytokine production. Consequently, these cells mediated little virus-induced immunopathology. Thus, IL-33 acts as a critical and direct cofactor to drive antiviral Th1 effector cell activation, with implications for vaccination strategies and immunotherapeutic approaches.

  5. A Schistosoma japonicum chimeric protein with a novel adjuvant induced a polarized Th1 immune response and protection against liver egg burdens

    Directory of Open Access Journals (Sweden)

    Xue Xiangyang

    2009-05-01

    Full Text Available Abstract Background Schitosomiasis japonica is still a significant public health problem in China. A protective vaccine for human or animal use represents an important strategy for long-term control of this disease. Due to the complex life cycle of schistosomes, different vaccine design approaches may be necessary, including polyvalent subunit vaccines. In this study, we constructed four chimeric proteins (designated SjGP-1~4 via fusion of Sj26GST and four individual paramyosin fragments. We tested these four proteins as vaccine candidates, and investigated the effect of deviating immune response on protection roles in mice. Methods The immunogencity and protection efficacy of chimeric proteins were evaluated in mice. Next, the chimeric protein SjGP-3 was selected and formulated in various adjuvants, including CFA, ISA 206, IMS 1312 and ISA 70M. The titers of antigen-specific IgG, IgE and IgG subclass were measured. The effect of adjuvant on cytokine production and percentages of CD3+CD8-IFN-γ+ cells and CD3+CD8-IL-4+ cells were analyzed at different time points. Worm burdens and liver egg counts in different adjuvant groups were counted to evaluate the protection efficacy against cercarial challenge. Results Immunization of mice with chimeric proteins provided various levels of protection. Among the four proteins, SjGP-3 induced the highest level of protection, and showed enhanced protective efficacy compared with its individual component Sj26GST. Because of this, SjGP-3 was further formulated in various adjuvants to investigate the effect of adjuvant on immune deviation. The results revealed that SjGP-3 formulated in veterinary adjuvant ISA 70M induced a lasting polarized Th1 immune response, whereas the other adjuvants, including CFA, ISA 206 and IMS 1312, generated a moderate mixed Th1/Th2 response after immunization but all except for IMS 1312 shifted to Th2 response after onset of eggs. More importantly, the SjGP-3/70M formulation induced

  6. Vitamin D counteracts Mycobacterium tuberculosis-induced cathelicidin downregulation in dendritic cells and allows Th1 differentiation and IFNγ secretion

    DEFF Research Database (Denmark)

    Rode, Anna K.O.; Kongsbak, Martin; Hansen, Marie M.

    2017-01-01

    -suppressive function inhibiting Th1 differentiation and production of IFNγ in T cells. The aim of this study was to investigate this apparent paradox. We studied naïve human CD4+ T cells activated either with CD3 and CD28 antibodies or with allogeneic dendritic cells (DC) stimulated with heat-killed M. tuberculosis...... (HKMT) or purified toll-like receptor (TLR) ligands. We show that vitamin D does not block differentiation of human CD4+ T cells to Th1 cells and that interleukin (IL)-12 partially counteracts vitamin D-mediated inhibition of IFNγ production promoting production of equal amounts of IFNγ in Th1 cells...... in patients with TB. At the same time, experimental data have shown that Th1 cells through production of IFNγ are crucial for cathelicidin release by macrophages, bacterial killing, and containment of M. tuberculosis in granulomas. Paradoxically, vitamin D has repeatedly been ascribed an immune...

  7. T-Bet Enhances Regulatory T Cell Fitness and Directs Control of Th1 Responses in Crescentic GN.

    Science.gov (United States)

    Nosko, Anna; Kluger, Malte A; Diefenhardt, Paul; Melderis, Simon; Wegscheid, Claudia; Tiegs, Gisa; Stahl, Rolf A K; Panzer, Ulf; Steinmetz, Oliver M

    2017-01-01

    Th1 cells are central pathogenic mediators of crescentic GN (cGN). Mechanisms responsible for Th1 cell downregulation, however, remain widely unknown. Recently, it was proposed that activation of the Th1-characteristic transcription factor T-bet optimizes Foxp3 + regulatory T (Treg) cells to counteract Th1-type inflammation. Because very little is known about the role of T-bet + Treg1 cells in inflammatory diseases, we studied the function of these cells in the nephrotoxic nephritis (NTN) model of cGN. The percentage of Treg1 cells progressively increased in kidneys of nephritic wild-type mice during the course of NTN, indicating their functional importance. Notably, naïve Foxp3 Cre xT-bet fl/fl mice, lacking Treg1 cells, showed spontaneous skewing toward Th1 immunity. Furthermore, absence of Treg1 cells resulted in aggravated NTN with selectively dysregulated renal and systemic Th1 responses. Detailed analyses of Treg cells from Foxp3 Cre xT-bet fl/fl mice revealed unaltered cytokine production and suppressive capacity. However, in competitive cotransfer experiments, wild-type Treg cells outcompeted T-bet-deficient Treg cells in terms of population expansion and expression levels of Foxp3, indicating that T-bet expression is crucial for general Treg fitness. Additionally, T-bet-deficient Treg cells lacked expression of the Th1-characteristic trafficking receptor CXCR3, which correlated with significant impairment of renal Treg infiltration. In summary, our data indicate a new subtype of Treg cells in cGN. These Treg1 cells are characterized by activation of the transcription factor T-bet, which enhances the overall fitness of these cells and optimizes their capacity to downregulate Th1 responses by inducing chemokine receptor CXCR3 expression. Copyright © 2016 by the American Society of Nephrology.

  8. Uncarinic Acid C Isolated from Uncaria rhynchophylla Induces Differentiation of Th1-Promoting Dendritic Cells Through TLR4 Signaling.

    Science.gov (United States)

    Kim, Kyu Sik; Pham, Thanh Nhan Nguyen; Jin, Chun-Ji; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao

    2011-02-28

    Uncarinic acid C (URC) is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cells (DC) is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. DC might be a potential target for URC. We demonstrate that URC activates human DC as documented by phenotypic and functional maturation, and altered cytokine production. The expression of CD1a, CD38, CD40, CD54, CD80, CD83, CD86, HLA-DR and CCR7 on URC-primed DC was enhanced. The production of IL-12p70 by URC-primed DC was higher than that of lipopolysaccharide (LPS)-primed DC. The production of IL-12p70 by URC-primed DC was inhibited by the anti-Toll-like receptor 4 (TLR4) monoclonal antibody (mAb), but partially abolished by anti-TLR2 mAb. mRNA coding for TLR2 and TLR4 was expressed in URC-primed DC. URC-primed DC induced the NF-κB transcription factor. Naïve T cells co-cultured with URC-primed DC turned into typical Th1 cells that produced large quantities of IFN-γ depending on IL-12 secretion. URC enhanced the T cell stimulatory capacity in an allo MLR. In the cytotoxic T-lymphocyte assay (CTL) assay, DNA fragmentation assay and (51)Cr release on URC-primed DC were more augmented than that of TNF-α-primed DC. DC matured with URC had an intermediate migratory capacity towards CCL19 and CCL21. These results suggest that URC modulates DC function in a fashion that favors Th1 polarization via the activation of IL-12p70 dependent on TLR4 signaling, and may be used on DC-based vaccine for cancer immunotherapy.

  9. Effector/memory CD4 T cells making either Th1 or Th2 cytokines commonly co-express T-bet and GATA-3.

    Directory of Open Access Journals (Sweden)

    Arundhoti Das

    Full Text Available Naïve CD4 T (NCD4T cells post-activation undergo programming for inducible production of cytokines leading to generation of memory cells with various functions. Based on cytokine based polarization of NCD4T cells in vitro, programming for either 'Th1' (interferon-gamma [IFNg] or 'Th2' (interleukin [IL]-4/5/13 cytokines is thought to occur via mutually exclusive expression and functioning of T-bet or GATA-3 transcription factors (TFs. However, we show that a high proportion of mouse and human memory-phenotype CD4 T (MCD4T cells generated in vivo which expressed either Th1 or Th2 cytokines commonly co-expressed T-bet and GATA-3. While T-bet levels did not differ between IFNg-expressing and IL-4/5/13-expressing MCD4T cells, GATA-3 levels were higher in the latter. These observations were also confirmed in MCD4T cells from FVB/NJ or aged C57BL/6 or IFNg-deficient mice. While MCD4T cells from these strains showed greater Th2 commitment than those from young C57BL/6 mice, pattern of co-expression of TF was similar. Effector T cells generated in vivo following immunization also showed TF co-expression in Th1 or Th2 cytokine producing cells. We speculated that the difference in TF expression pattern of MCD4T cells generated in vivo and those generated in cytokine polarized cultures in vitro could be due to relative absence of polarizing conditions during activation in vivo. We tested this by NCD4T cell activation in non-polarizing conditions in vitro. Anti-CD3 and anti-CD28-mediated priming of polyclonal NCD4T cells in vitro without polarizing milieu generated cells that expressed either IFNg or IL-4/5/13 but not both, yet both IFNg- and IL-4/5/13-expressing cells showed upregulation of both TFs. We also tested monoclonal T cell populations activated in non-polarizing conditions. TCR-transgenic NCD4T cells primed in vitro by cognate peptide in non-polarizing conditions which expressed either IFNg or IL-4/5/13 also showed a high proportion of cells co

  10. Retinoic acid is essential for Th1 cell lineage stability and prevents transition to a Th17 cell program.

    Science.gov (United States)

    Brown, Chrysothemis C; Esterhazy, Daria; Sarde, Aurelien; London, Mariya; Pullabhatla, Venu; Osma-Garcia, Ines; Al-Bader, Raya; Ortiz, Carla; Elgueta, Raul; Arno, Matthew; de Rinaldis, Emanuele; Mucida, Daniel; Lord, Graham M; Noelle, Randolph J

    2015-03-17

    CD4(+) T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4(+) T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Retinoic Acid Is Essential for Th1 Cell Lineage Stability and Prevents Transition to a Th17 Cell Program

    Science.gov (United States)

    Brown, Chrysothemis C.; Esterhazy, Daria; Sarde, Aurelien; London, Mariya; Pullabhatla, Venu; Osma-Garcia, Ines; al-Bader, Raya; Ortiz, Carla; Elgueta, Raul; Arno, Matthew; de Rinaldis, Emanuele; Mucida, Daniel; Lord, Graham M.; Noelle, Randolph J.

    2015-01-01

    Summary CD4+ T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4+ T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells. PMID:25769610

  12. Enrichment for Th1 cells in the Mel-14+ CD4+ T cell fraction in aged mice

    NARCIS (Netherlands)

    Dobber, R.; Tielemans, M.; Nagelkerken, L.

    1995-01-01

    CD4+ T cells from young and aged mice were sorted into Mel-14+ cells which are regarded as naive cells and Mel-14- cells which are regarded as memory cells. These subsets were stimulated in short-time cultures with anti-CD3 or anti-CD3/anti-CD28 in order to determine the presence of Th1 and/or Th2

  13. Total glucosides of paeony inhibits Th1/Th17 cells via decreasing dendritic cells activation in rheumatoid arthritis.

    Science.gov (United States)

    Lin, Jinpiao; Xiao, Lianbo; Ouyang, Guilin; Shen, Yu; Huo, Rongfen; Zhou, Zhou; Sun, Yue; Zhu, Xianjin; Zhang, Jie; Shen, Baihua; Li, Ningli

    2012-12-01

    Total glucoside of paeony (TGP), an active compound extracted from paeony root, has been used in therapy for rheumatoid arthritis (RA). Th1 and Th17 cells are now believed to play crucial roles in the lesions of RA. However, the molecular mechanism of TGP in inhibition of Th1 and Th17 cells remains unclear. In this study, we found that TGP treatment significantly decreased percentage and number of Th1 and Th17 cells in collagen induced arthritis (CIA) mice. Consistently, treatment with TGP decreased expression of T-bet and RORγt as well as phosphorylation of STAT1 and STAT3. In particular, TGP treatment inhibited dendritic cells (DCs) maturation and reduced production of IL-12 and IL-6. Moreover, TGP-treatment RA patients showed shank population of matured DCs and IFN-γ-, IL-17-producing cells. Taken together, our results demonstrated that TGP inhibited maturation and activation of DCs, which led to impaired Th1 and Th17 differentiation in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. CD4+ Th1 HER2-Specific T Cells as a Novel Treatment for HER2-Overexpressing Breast Cancer

    National Research Council Canada - National Science Library

    Lai, Vy P

    2007-01-01

    .... Second, we have thoroughly characterized the cytokine production by our ex vivo expanded T cells and observed high levels of secreted Th1 cytokines, primarily IFN and GM-CSF, but also, interestingly...

  15. Preferential Th1 cytokine profile of phosphoantigen-stimulated human Vγ9Vδ2 T cells.

    LENUS (Irish Health Repository)

    Dunne, Margaret R

    2010-01-01

    Human Vγ9Vδ2 T cells recognise pyrophosphate-based antigens (phosphoantigens) and have multiple functions in innate and adaptive immunity, including a unique ability to activate other cells of the immune system. We used flow cytometry and ELISA to define the early cytokine profiles of Vγ9Vδ2 T cells stimulated in vitro with isopentenyl pyrophosphate (IPP) and (E)-4-hydroxy-3-methyl-but-2 enyl pyrophosphate (HMB-PP) in the absence and presence of IL-2 and IL-15. We show that fresh Vγ9Vδ2 T cells produce interferon-γ (IFN-γ) and tumour necrosis factor-α (TNF-α) within 4 hours of stimulation with phosphoantigen, but neither IL-10, IL-13, nor IL-17 was detectable up to 72 hours under these conditions. Cytokine production was not influenced by expression or lack, thereof, of CD4 or CD8. Addition of IL-2 or IL-15 caused expansion of IFN-γ-producing Vγ9Vδ2 T cells, but did not enhance IFN-γ secretion after 24-72 hours. Thus, phosphoantigen-stimulated Vγ9Vδ2 T cells have potential as Th1-biasing adjuvants for immunotherapy.

  16. Preferential Th1 Cytokine Profile of Phosphoantigen-Stimulated Human Vγ9Vδ2 T Cells

    Directory of Open Access Journals (Sweden)

    Margaret R. Dunne

    2010-01-01

    Full Text Available Human Vγ9Vδ2 T cells recognise pyrophosphate-based antigens (phosphoantigens and have multiple functions in innate and adaptive immunity, including a unique ability to activate other cells of the immune system. We used flow cytometry and ELISA to define the early cytokine profiles of Vγ9Vδ2 T cells stimulated in vitro with isopentenyl pyrophosphate (IPP and (E-4-hydroxy-3-methyl-but-2 enyl pyrophosphate (HMB-PP in the absence and presence of IL-2 and IL-15. We show that fresh Vγ9Vδ2 T cells produce interferon-γ (IFN-γ and tumour necrosis factor-α (TNF-α within 4 hours of stimulation with phosphoantigen, but neither IL-10, IL-13, nor IL-17 was detectable up to 72 hours under these conditions. Cytokine production was not influenced by expression or lack, thereof, of CD4 or CD8. Addition of IL-2 or IL-15 caused expansion of IFN-γ-producing Vγ9Vδ2 T cells, but did not enhance IFN-γ secretion after 24–72 hours. Thus, phosphoantigen-stimulated Vγ9Vδ2 T cells have potential as Th1-biasing adjuvants for immunotherapy.

  17. Allergen-specific Th1 cells counteract efferent Th2 cell-dependent bronchial hyperresponsiveness and eosinophilic inflammation partly via IFN-gamma.

    Science.gov (United States)

    Huang, T J; MacAry, P A; Eynott, P; Moussavi, A; Daniel, K C; Askenase, P W; Kemeny, D M; Chung, K F

    2001-01-01

    Th2 T cell immune-driven inflammation plays an important role in allergic asthma. We studied the effect of counterbalancing Th1 T cells in an asthma model in Brown Norway rats that favors Th2 responses. Rats received i.v. transfers of syngeneic allergen-specific Th1 or Th2 cells, 24 h before aerosol exposure to allergen, and were studied 18-24 h later. Adoptive transfer of OVA-specific Th2 cells, but not Th1 cells, and OVA, but not BSA exposure, induced bronchial hyperresponsiveness (BHR) to acetylcholine and eosinophilia in a cell number-dependent manner. Importantly, cotransfer of OVA-specific Th1 cells dose-dependently reversed BHR and bronchoalveolar lavage (BAL) eosinophilia, but not mucosal eosinophilia. OVA-specific Th1 cells transferred alone induced mucosal eosinophilia, but neither BHR nor BAL eosinophilia. Th1 suppression of BHR and BAL eosinophilia was allergen specific, since cotransfer of BSA-specific Th1 cells with the OVA-specific Th2 cells was not inhibitory when OVA aerosol alone was used, but was suppressive with OVA and BSA challenge. Furthermore, recipients of Th1 cells alone had increased gene expression for IFN-gamma in the lungs, while those receiving Th2 cells alone showed increased IL-4 mRNA. Importantly, induction of these Th2 cytokines was inhibited in recipients of combined Th1 and Th2 cells. Anti-IFN-gamma treatment attenuated the down-regulatory effect of Th1 cells. Allergen-specific Th1 cells down-regulate efferent Th2 cytokine-dependent BHR and BAL eosinophilia in an asthma model via mechanisms that depend on IFN-gamma. Therapy designed to control the efferent phase of established asthma by augmenting down-regulatory Th1 counterbalancing mechanisms should be effective.

  18. Inhibition of Th1 and Th17 Cells by Medicinal Plants and Their Derivatives: A Systematic Review.

    Science.gov (United States)

    Asadi-Samani, Majid; Bagheri, Nader; Rafieian-Kopaei, Mahmoud; Shirzad, Hedayatollah

    2017-08-01

    Searching for new natural drugs that are capable of targeting Th1 and Th17 may lead to development of more effective treatments for inflammatory and autoimmune diseases. Most of the natural drugs can be derived from plants that are used in traditional medicine and folk medicine. The aim of this systematic review is to identify and introduce plants or plant derivatives that are effective on inflammatory diseases by inhibiting Th1 and Th17 responses. To achieve this purpose, the search terms herb, herbal medicine, herbal drug, medicinal plant, phytochemical, traditional Chinese medicine, Ayurvedic medicine, natural compound, inflammation, inflammatory diseases, Th1, Th17, T helper 1 or T helper 17 were used separately in Title/Keywords/Abstract in Web of Science and PubMed databases. In articles investigating the effect of the medicinal plants and their derivatives in inhibiting Th1 and Th17 cells, the effects of eight extracts of the medicinal plants, 21 plant-based compounds and some of their derivatives, and eight drugs derived from the medicinal plants' compounds in inhibiting Th1 and Th17 cells were reviewed. The results showed that medicinal plants and their derivates are able to suppress Th17 and Th1 T cell functions as well as cytokine secretion and differentiation. The results can be used to produce herbal drugs that suppress Th, especially Th17, responses. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Polysaccharides from Ganoderma formosanum function as a Th1 adjuvant and stimulate cytotoxic T cell response in vivo.

    Science.gov (United States)

    Pi, Chia-Chen; Chu, Ching-Liang; Lu, Chu-Ying; Zhuang, Yu-Jing; Wang, Cheng-Li; Yu, Yao-Hsuan; Wang, Hui-Yi; Lin, Chih-Chung; Chen, Chun-Jen

    2014-01-09

    The fungus of Ganoderma is a basidiomycete that possesses a variety of pharmacological effects and has been used in traditional Asian medicine for centuries. Ganoderma formosanum is a native Ganoderma species isolated in Taiwan, and we have previously demonstrated that PS-F2, a polysaccharide fraction purified from the submerged culture broth of G. formosanum, exhibits immunostimulatory properties in macrophages. In this study, we further characterized the adjuvant functions of PS-F2. In vitro, PS-F2 stimulated dendritic cells (DCs) to produce proinflammatory cytokines, including TNF-α, interleukin (IL)-6, and IL-12/IL-23 p40. PS-F2 also stimulated DCs to express the maturation markers CD40, CD80, CD86, and MHC class II. In a murine splenocyte culture, PS-F2 treatment resulted in elevated expression of T-bet and interferon (IFN)-γ in T lymphocytes. When used as an adjuvant in vivo with the ovalbumin (OVA) antigen, PS-F2 stimulated OVA-specific antibody production and primed IFN-γ production in OVA-specific T lymphocytes. PS-F2-adjuvated immunization also induced OVA-specific CTLs, which protected mice from a challenge with tumor cells expressing OVA. Collectively, our data show that PS-F2 functions as an adjuvant capable of inducing a Th1-polarized adaptive immune response, which would be useful in vaccines against viruses and tumors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Th1 and Th17 Cells and Associated Cytokines Discriminate among Clinically Isolated Syndrome and Multiple Sclerosis Phenotypes.

    Science.gov (United States)

    Arellano, Gabriel; Acuña, Eric; Reyes, Lilian I; Ottum, Payton A; De Sarno, Patrizia; Villarroel, Luis; Ciampi, Ethel; Uribe-San Martín, Reinaldo; Cárcamo, Claudia; Naves, Rodrigo

    2017-01-01

    Multiple sclerosis (MS) is a chronic, inflammatory, and demyelinating disease of the central nervous system. It is a heterogeneous pathology that can follow different clinical courses, and the mechanisms that underlie the progression of the immune response across MS subtypes remain incompletely understood. Here, we aimed to determine differences in the immunological status among different MS clinical subtypes. Blood samples from untreated patients diagnosed with clinically isolated syndrome (CIS) ( n  = 21), different clinical forms of MS ( n  = 62) [relapsing-remitting (RRMS), secondary progressive, and primary progressive], and healthy controls (HCs) ( n  = 17) were tested for plasma levels of interferon (IFN)-γ, IL-10, TGF-β, IL-17A, and IL-17F by immunoanalysis. Th1 and Th17 lymphocyte frequencies were determined by flow cytometry. Our results showed that IFN-γ levels and the IFN-γ/IL-10 ratio were higher in CIS patients than in RRMS patients and HC. Th1cell frequencies were higher in CIS and RRMS than in progressive MS, and RRMS had a higher Th17 frequency than CIS. The Th1/Th17 cell ratio was skewed toward Th1 in CIS compared to MS phenotypes and HC. Receiver operating characteristic statistical analysis determined that IFN-γ, the IFN-γ/IL-10 ratio, Th1cell frequency, and the Th1/Th17 cell ratio discriminated among CIS and MS subtypes. A subanalysis among patients expressing high IL-17F levels showed that IL-17F and the IFN-γ/IL-17F ratio discriminated between disease subtypes. Overall, our data showed that CIS and MS phenotypes displayed distinct Th1- and Th17-related cytokines and cell profiles and that these immune parameters discriminated between clinical forms. Upon validation, these parameters might be useful as biomarkers to predict disease progression.

  1. Nocardia rubra cell-wall skeleton promotes CD4+ T cell activation and drives Th1 immune response.

    Science.gov (United States)

    Wang, Guangchuan; Wu, Jie; Miao, Miao; Dou, Heng; Nan, Ning; Shi, Mingsheng; Yu, Guang; Shan, Fengping

    2017-08-01

    Several lines of evidences have shown that Nocardia rubra cell wall skeleton (Nr-CWS) has immunoregulatory and anti-tumor activities. However, there is no information about the effect of Nr-CWS on CD4 + T cells. The aim of this study was to explore the effect of Nr-CWS on the phenotype and function of CD4 + T cells. Our results of in vitro experiments showed that Nr-CWS could significantly up-regulate the expression of CD69 and CD25 on CD4 + T cells, promote the proliferation of CD4 + T cells, increase the production of IFN-γ, TNF-α and IL-2 in the supernatants, but has no significant effect on the apoptosis and death of CD4 + T cells. Results of in vivo experiments showed that Nr-CWS could promote the proliferation of CD4 + T cells, and increase the production of IL-2, IFN-γ and TNF-α (Th1 type cytokines). These data suggest that Nr-CWS can enhance the activation of CD4 + T cells, promote the proliferation of CD4 + T cells and the differentiation of CD4 + T cells to Th1 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. spv locus aggravates Salmonella infection of zebrafish adult by inducing Th1/Th2 shift to Th2 polarization.

    Science.gov (United States)

    Wu, Shu-Yan; Wang, Li-Dan; Xu, Guang-Mei; Yang, Si-di; Deng, Qi-Feng; Li, Yuan-Yuan; Huang, Rui

    2017-08-01

    Salmonella enterica serovar typhimurium (S. typhimurium) are facultative intracellular enteric pathogens causing disease with a broad range of hosts. It was known that Th1-type cytokines such as IFN-γ, IL-12, and TNF-α etc. could induce protective immunity against intracellular pathogens, while Th2-type cytokines such as IL-4, IL-10, and IL-13 etc. are proved to help pathogens survive inside hosts and cause severe infection. One of the critical virulence factor attributes to the pathogenesis of S. typhimurium is Salmonella plasmid virulence genes (spv). Until now, the interaction between spv locus and the predictable generation of Th1 or Th2 immune responses to Salmonella has not been identified. In this study, zebrafish adults were employed to explore the effect of spv locus on Salmonella pathogenesis as well as host adaptive immune responses especially shift of Th1/Th2 balance. The pathological changes of intestines and livers in zebrafish were observed by hematoxylin-eosin (HE) staining and electron microscopy. Levels of the transcription factors of Th1 (Tbx21) and Th2 (GATA3) were measured by real-time quantitative PCR (RT-qPCR). Expression of cytokines were determined by using RT-qPCR and ELISA, respectively. Results showed that spv operon aggravates damage of zebrafish. Furthermore, it demonstrated that spv locus could inhibit the transcription of tbx21 gene and suppress the expression of cytokines IFN-γ, IL-12 and TNF-α. On the contrary, the transcription of gata3 gene could be promoted and the expression of cytokines IL-4, IL-10 and IL-13 were enhanced by spv locus. Taken together, our data revealed that spv locus could aggravate Salmonella infection of zebrafish adult by inducing an imbalance of Th1/Th2 immune response and resulting in a detrimental Th2 bias of host. Copyright © 2017. Published by Elsevier Ltd.

  3. Angiotensin II Regulates Th1 T Cell Differentiation Through Angiotensin II Type 1 Receptor-PKA-Mediated Activation of Proteasome.

    Science.gov (United States)

    Qin, Xian-Yun; Zhang, Yun-Long; Chi, Ya-Fei; Yan, Bo; Zeng, Xiang-Jun; Li, Hui-Hua; Liu, Ying

    2018-01-01

    Naive CD4+ T cells differentiate into T helper cells (Th1 and Th2) that play an essential role in the cardiovascular diseases. However, the molecular mechanism by which angiotensin II (Ang II) promotes Th1 differentiation remains unclear. The aim of this study was to determine whether the Ang II-induced Th1 differentiation regulated by ubiquitin-proteasome system (UPS). Jurkat cells were treated with Ang II (100 nM) in the presence or absence of different inhibitors. The gene mRNA levels were detected by real-time quantitative PCR analysis. The protein levels were measured by ELISA assay or Western blot analysis, respectively. Ang II treatment significantly induced a shift from Th0 to Th1 cell differentiation, which was markedly blocked by angiotensin II type 1 receptor (AT1R) inhibitor Losartan (LST). Moreover, Ang II significantly increased the activities and the expression of proteasome catalytic subunits (β1, β1i, β2i and β5i) in a dose- and time-dependent manner. However, Ang II-induced proteasome activities were remarkably abrogated by LST and PKA inhibitor H-89. Mechanistically, Ang II-induced Th1 differentiation was at least in part through proteasome-mediated degradation of IκBα and MKP-1 and activation of STAT1 and NF-κB. This study for the first time demonstrates that Ang II activates AT1R-PKA-proteasome pathway, which promotes degradation of IκBα and MKP-1 and activation of STAT1 and NF-κB thereby leading to Th1 differentiation. Thus, inhibition of proteasome activation might be a potential therapeutic target for Th1-mediated diseases. © 2018 The Author(s). Published by S. Karger AG, Basel.

  4. C5a regulates IL-12+ DC migration to induce pathogenic Th1 and Th17 cells in sepsis.

    Directory of Open Access Journals (Sweden)

    Ning Ma

    Full Text Available OBJECTIVE: It is well known that complement system C5a is excessively activated during the onset of sepsis. However, it is unclear whether C5a can regulate dentritic cells (DCs to stimulate adaptive immune cells such as Th1 and Th17 in sepsis. METHODS: Sepsis was induced by cecal ligation and puncture (CLP. CLP-induced sepsis was treated with anti-C5a or IL-12. IL-12(+DC, IFNγ(+Th1, and IL-17(+Th17 cells were analyzed by flow cytometry. IL-12 was measured by ELISA. RESULTS: Our studies here showed that C5a induced IL-12(+DC cell migration from the peritoneal cavity to peripheral blood and lymph nodes. Furthermore, IL-12(+DC cells induced the expansion of pathogenic IFNγ(+Th1 and IL-17(+Th17 cells in peripheral blood and lymph nodes. Moreover, IL-12, secreted by DC cells in the peritoneal cavity, is an important factor that prevents the development of sepsis. CONCLUSION: Our data suggests that C5a regulates IL-12(+DC cell migration to induce pathogenic Th1 and Th17 cells in sepsis.

  5. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Chen-Chen Lee

    2015-01-01

    Full Text Available This study investigated the immunomodulatory effects of ferulic acid (FA on antigen-presenting dendritic cells (DCs in vitro and its antiallergic effects against ovalbumin- (OVA- induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS stimulation induced a high level of interleukin- (IL- 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF- α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4, MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13, and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN- γ production in bronchoalveolar lavage fluid (BALF and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model.

  6. Correlation Between Th1, Th2 Cells and Levels of Serum MMP-2, MMP-9 in Children with Asthma

    Directory of Open Access Journals (Sweden)

    Xuan WANG

    2015-12-01

    Full Text Available Abstract Objective: To explore the correlation between Th1 and Th2 cells and the levels of serum matrix metalloproteinase-2 (MMP-2 and MMP-9 in children with asthma. Methods: A total of 89 children with asthma were divided into acute group (n=48 and chronic group (n=41 according to the course of disease, and 40 healthy children at the same term were collected as control group. The ratios of Th1 and Th2 cells as well as levels of MMP-2 and MMP-9 were compared in three groups, and the correlation between Th1 and Th2 cells and levels of MMP-2, MMP-9 was analyzed in acute group and chronic group. Results: When compared with control group, the ratios of Th1 and Th2 cells went down in both acute group and chronic group (P<0.01, while the levels of serum MMP-2 and MMP-9 up (P<0.01. The levels of serum MMP-2 and MMP-9 in acute group were dramatically higher than those in chronic group, and there was statistical significance (P<0.01. Pearson correlation analysis revealed that there was no significant correlation between Th1 and Th2 cells and MMP-2 level (r=0.148, P=0.314, r=0.299, P=0.058; r=0.183, P=0.214, r=0.289, P=0.067, whereas both Th1 and Th2 cells were negatively correlated with MMP-9 level in acute group and chronic group (r=-0.489, P=0.000, r=-0.324, P=0.039; r=-0.352, P=0.014, r=-0.357, P=0.022. Conclusion: Aberrant secretion of Th cells can not only damage the immune function of children with asthma, but also decrease the level of serum MMP-9, consequently affecting the collagen degradation and airway remodeling.

  7. Multiparameter fluorescence imaging for quantification of TH-1 and TH-2 cytokines at the single-cell level

    Science.gov (United States)

    Fekkar, Hakim; Benbernou, N.; Esnault, S.; Shin, H. C.; Guenounou, Moncef

    1998-04-01

    Immune responses are strongly influenced by the cytokines following antigenic stimulation. Distinct cytokine-producing T cell subsets are well known to play a major role in immune responses and to be differentially regulated during immunological disorders, although the characterization and quantification of the TH-1/TH-2 cytokine pattern in T cells remained not clearly defined. Expression of cytokines by T lymphocytes is a highly balanced process, involving stimulatory and inhibitory intracellular signaling pathways. The aim of this study was (1) to quantify the cytokine expression in T cells at the single cell level using optical imaging, (2) and to analyze the influence of cyclic AMP- dependent signal transduction pathway in the balance between the TH-1 and TH-2 cytokine profile. We attempted to study several cytokines (IL-2, IFN-(gamma) , IL-4, IL-10 and IL-13) in peripheral blood mononuclear cells. Cells were prestimulated in vitro using phytohemagglutinin and phorbol ester for 36h, and then further cultured for 8h in the presence of monensin. Cells were permeabilized and then simple-, double- or triple-labeled with the corresponding specific fluorescent monoclonal antibodies. The cell phenotype was also determined by analyzing the expression of each of CD4, CD8, CD45RO and CD45RA with the cytokine expression. Conventional images of cells were recorded with a Peltier- cooled CCD camera (B/W C5985, Hamamatsu photonics) through an inverted microscope equipped with epi-fluorescence (Diaphot 300, Nikon). Images were digitalized using an acquisition video interface (Oculus TCX Coreco) in 762 by 570 pixels coded in 8 bits (256 gray levels), and analyzed thereafter in an IBM PC computer based on an intel pentium processor with an adequate software (Visilog 4, Noesis). The first image processing step is the extraction of cell areas using an edge detection and a binary thresholding method. In order to reduce the background noise of fluorescence, we performed an opening

  8. Regulation of Th1 and Th17 cell differentiation and amelioration of experimental autoimmune encephalomyelitis by natural product compound berberine.

    Science.gov (United States)

    Qin, Xia; Guo, Bingshi T; Wan, Bing; Fang, Lei; Lu, Limin; Wu, Lili; Zang, Ying Qin; Zhang, Jingwu Z

    2010-08-01

    Berberine (BBR), an isoquinoline alkaloid derived from plants, is widely used as an anti-inflammatory remedy in traditional Chinese medicine. In this study, we showed that BBR was efficacious in the amelioration of experimental autoimmune encephalomyelitis (EAE) through novel regulatory mechanisms involving pathogenic Th1 and Th17 cells. BBR inhibited differentiation of Th17 cells and, to a lesser degree, Th1 cells through direct actions on the JAK/STAT pathway, whereas it had no effect on the relative number of CD4(+)Foxp3(+) regulatory T cells. In addition, BBR indirectly influenced Th17 and Th1 cell functions through its effect on the expression and function of costimulatory molecules and the production of IL-6, which was attributable to the inhibition of NF-kappaB activity in CD11b(+) APCs. BBR treatment completely abolished the encephalitogenicity of MOG(35-55)-reactive Th17 cells in an adoptive transfer EAE model, and the same treatment significantly inhibited the ability of MOG(35-55)-reactive Th1 cells to induce EAE. This study provides new evidence that natural compounds, such as BBR, are of great value in the search for novel anti-inflammatory agents and therapeutic targets for autoimmune diseases.

  9. Vitamin D Counteracts Mycobacterium tuberculosis-Induced Cathelicidin Downregulation in Dendritic Cells and Allows Th1 Differentiation and IFNγ Secretion

    Directory of Open Access Journals (Sweden)

    Anna K. O. Rode

    2017-05-01

    Full Text Available Tuberculosis (TB presents a serious health problem with approximately one-third of the world’s population infected with Mycobacterium tuberculosis in a latent state. Experience from the pre-antibiotic era and more recent clinical studies have established a beneficial role of sunlight and vitamin D in patients with TB. At the same time, experimental data have shown that Th1cells through production of IFNγ are crucial for cathelicidin release by macrophages, bacterial killing, and containment of M. tuberculosis in granulomas. Paradoxically, vitamin D has repeatedly been ascribed an immune-suppressive function inhibiting Th1 differentiation and production of IFNγ in T cells. The aim of this study was to investigate this apparent paradox. We studied naïve human CD4+ T cells activated either with CD3 and CD28 antibodies or with allogeneic dendritic cells (DC stimulated with heat-killed M. tuberculosis (HKMT or purified toll-like receptor (TLR ligands. We show that vitamin D does not block differentiation of human CD4+ T cells to Th1cells and that interleukin (IL-12 partially counteracts vitamin D-mediated inhibition of IFNγ production promoting production of equal amounts of IFNγ in Th1cells in the presence of vitamin D as in T cells activated in the absence of vitamin D and IL-12. Furthermore, we show that HKMT and TLR2 ligands strongly downregulate cathelicidin expression in DC and that vitamin D counteracts this by upregulating cathelicidin expression. In conclusion, we demonstrate that vitamin D counteracts M. tuberculosis-induced cathelicidin downregulation and allows Th1 differentiation and IFNγ secretion.

  10. Vitamin D Counteracts Mycobacterium tuberculosis-Induced Cathelicidin Downregulation in Dendritic Cells and Allows Th1 Differentiation and IFNγ Secretion.

    Science.gov (United States)

    Rode, Anna K O; Kongsbak, Martin; Hansen, Marie M; Lopez, Daniel Villalba; Levring, Trine B; Woetmann, Anders; Ødum, Niels; Bonefeld, Charlotte M; Geisler, Carsten

    2017-01-01

    Tuberculosis (TB) presents a serious health problem with approximately one-third of the world's population infected with Mycobacterium tuberculosis in a latent state. Experience from the pre-antibiotic era and more recent clinical studies have established a beneficial role of sunlight and vitamin D in patients with TB. At the same time, experimental data have shown that Th1cells through production of IFNγ are crucial for cathelicidin release by macrophages, bacterial killing, and containment of M. tuberculosis in granulomas. Paradoxically, vitamin D has repeatedly been ascribed an immune-suppressive function inhibiting Th1 differentiation and production of IFNγ in T cells. The aim of this study was to investigate this apparent paradox. We studied naïve human CD4 + T cells activated either with CD3 and CD28 antibodies or with allogeneic dendritic cells (DC) stimulated with heat-killed M. tuberculosis (HKMT) or purified toll-like receptor (TLR) ligands. We show that vitamin D does not block differentiation of human CD4 + T cells to Th1cells and that interleukin (IL)-12 partially counteracts vitamin D-mediated inhibition of IFNγ production promoting production of equal amounts of IFNγ in Th1cells in the presence of vitamin D as in T cells activated in the absence of vitamin D and IL-12. Furthermore, we show that HKMT and TLR2 ligands strongly downregulate cathelicidin expression in DC and that vitamin D counteracts this by upregulating cathelicidin expression. In conclusion, we demonstrate that vitamin D counteracts M. tuberculosis -induced cathelicidin downregulation and allows Th1 differentiation and IFNγ secretion.

  11. Differential activation behavior of dermal dendritic cells underlies the strain-specific Th1 responses to single epicutaneous immunization.

    Science.gov (United States)

    Lee, Chih-Hung; Chen, Jau-Shiuh; Chiu, Hsien-Ching; Hong, Chien-Hui; Liu, Ching-Yi; Ta, Yng-Cun; Wang, Li-Fang

    2016-12-01

    Epicutaneous immunization with allergens is an important sensitization route for atopic dermatitis. We recently showed in addition to the Th2 response following single epicutaneous immunization, a remarkable Th1 response is induced in B6 mice, but not in BALB/c mice, mimicking the immune response to allergens in human non-atopics and atopics. We investigated the underlying mechanisms driving this differential Th1 response between BALB/c and B6 mice. We characterized dermal dendritic cells by flow cytometric analysis. We measured the induced Th1/Th2 responses by measuring the IFN-γ/IL-13 contents of supernatants of antigen reactivation cultures of lymph node cells. We demonstrate that more dermal dendritic cells with higher activation status migrate into draining lymph nodes of B6 mice compared to BALB/c mice. Dermal dendritic cells of B6 mice have a greater ability to capture protein antigen than those of BALB/c mice. Moreover, increasing the activation status or amount of captured antigen in dermal dendritic cells induced a Th1 response in BALB/c mice. Further, differential activation behavior, but not antigen-capturing ability of dermal dendritic cells between BALB/c and B6 mice is dendritic cell-intrinsic. These results show that the differential activation behavior of dermal dendritic cells underlies the strain-specific Th1 responses following single epicutaneous immunization. Furthermore, our findings highlight the potential differences between human atopics and non-atopics and provide useful information for the prediction and prevention of atopic diseases. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. ifn-γ-dependent secretion of IL-10 from Th1 cells and microglia/macrophages contributes to functional recovery after spinal cord injury

    Science.gov (United States)

    Ishii, H; Tanabe, S; Ueno, M; Kubo, T; Kayama, H; Serada, S; Fujimoto, M; Takeda, K; Naka, T; Yamashita, T

    2013-01-01

    Transfer of type-1 helper T-conditioned (Th1-conditioned) cells promotes functional recovery with enhanced axonal remodeling after spinal cord injury (SCI). This study explored the molecular mechanisms underlying the beneficial effects of pro-inflammatory Th1-conditioned cells after SCI. The effect of Th1-conditioned cells from interferon-γ (ifn-γ) knockout mice (ifn-γ−/− Th1 cells) on the recovery after SCI was reduced. Transfer of Th1-conditioned cells led to the activation of microglia (MG) and macrophages (MΦs), with interleukin 10 (IL-10) upregulation. This upregulation of IL-10 was reduced when ifn-γ−/− Th1 cells were transferred. Intrathecal neutralization of IL-10 in the spinal cord attenuated the effects of Th1-conditioned cells. Further, IL-10 is robustly secreted from Th1-conditioned cells in an ifn-γ-dependent manner. Th1-conditioned cells from interleukin 10 knockout (il-10−/−) mice had no effects on recovery from SCI. These findings demonstrate that ifn-γ-dependent secretion of IL-10 from Th1 cells, as well as native MG/MΦs, is required for the promotion of motor recovery after SCI. PMID:23828573

  13. Bordetella pertussis commits human dendritic cells to promote a Th1/Th17 response through the activity of adenylate cyclase toxin and MAPK-pathways.

    Directory of Open Access Journals (Sweden)

    Giorgio Fedele

    Full Text Available The complex pathology of B. pertussis infection is due to multiple virulence factors having disparate effects on different cell types. We focused our investigation on the ability of B. pertussis to modulate host immunity, in particular on the role played by adenylate cyclase toxin (CyaA, an important virulence factor of B. pertussis. As a tool, we used human monocyte derived dendritic cells (MDDC, an ex vivo model useful for the evaluation of the regulatory potential of DC on T cell immune responses. The work compared MDDC functions after encounter with wild-type B. pertussis (BpWT or a mutant lacking CyaA (BpCyaA-, or the BpCyaA- strain supplemented with either the fully functional CyaA or a derivative, CyaA*, lacking adenylate cyclase activity. As a first step, MDDC maturation, cytokine production, and modulation of T helper cell polarization were evaluated. As a second step, engagement of Toll-like receptors (TLR 2 and TLR4 by B. pertussis and the signaling events connected to this were analyzed. These approaches allowed us to demonstrate that CyaA expressed by B. pertussis strongly interferes with DC functions, by reducing the expression of phenotypic markers and immunomodulatory cytokines, and blocking IL-12p70 production. B. pertussis-treated MDDC promoted a mixed Th1/Th17 polarization, and the activity of CyaA altered the Th1/Th17 balance, enhancing Th17 and limiting Th1 expansion. We also demonstrated that Th1 effectors are induced by B. pertussis-MDDC in the absence of IL-12p70 through an ERK1/2 dependent mechanism, and that p38 MAPK is essential for MDDC-driven Th17 expansion. The data suggest that CyaA mediates an escape strategy for the bacterium, since it reduces Th1 immunity and increases Th17 responses thought to be responsible, when the response is exacerbated, for enhanced lung inflammation and injury.

  14. The beneficial effect of total glucosides of paeony on psoriatic arthritis links to circulating Tregs and Th1 cell function.

    Science.gov (United States)

    Wang, Yi Na; Zhang, Yu; Wang, Yan; Zhu, Ding Xian; Xu, Li Qin; Fang, Hong; Wu, Wei

    2014-03-01

    Total glycosides of peony (TGP) is a natural immuno-modulatory drug extracted from traditional Chinese herb peony. It has been approved by State Food and Drug Administration for the treatment of rheumatoid arthritis. However, data of TGP effect on psoriatic arthritis (PsA) is still scarce. In this study, 19 patients with PsA received 12-week treatment of TGP, and clinical efficacy in joint manifestations was evaluated by DAS28 at weeks 0, 4, 8 and 12. Peripheral percentages of Tregs, Th1, Th2 and NK cells were analyzed, and serum Th1-type cytokines (IL-12, IFN-γ and TNF-α), Th2-type cytokines (IL-4, IL-5 and IL-10) as well as pro-inflammatory factors (IL-2, IL-6 and IL-8) were concomitantly examined. Six patients (32%) exhibited ≥25% decrease of DAS28 (responders). Interestingly, all responders displayed a continuous decrease in Treg and Th1 numbers during TGP treatment, concomitant with significant decreases in Th1-type cytokine levels. Serum IL-6 also showed a significant decline in responders. Non-responders lacked these sequential alterations. Thus, TGP merits further consideration as a promising therapeutic option for PsA. The result indicated that recovery of Tregs and Th1 may serve as prognostic markers to assess responsiveness to TGP treatment in PsA. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Bone Marrow Derived Mesenchymal Stromal Cells Harness Purinergenic Signaling to Tolerize Human Th1 Cells In Vivo

    Science.gov (United States)

    Amarnath, Shoba; Foley, Jason E.; Farthing, Don E.; Gress, Ronald E.; Laurence, Arian; Eckhaus, Michael A.; Métais, Jean-Yves; Rose, Jeremy J.; Hakim, Frances T.; Felizardo, Tania C.; Cheng, Austin V.; Robey, Pamela G.; Stroncek, David E.; Sabatino, Marianna; Battiwalla, Minoo; Ito, Sawa; Fowler, Daniel H.; Barrett, Austin J.

    2014-01-01

    The use of bone marrow derived mesenchymal stromal cells (BMSC) in the treatment of alloimmune and autoimmune conditions has generated much interest, yet an understanding of the therapeutic mechanism remains elusive. We therefore explored immune modulation by a clinical-grade BMSC product in a model of human-into-mouse xenogeneic GVHD (x-GVHD) mediated by human CD4+ Th1 cells. BMSC reversed established, lethal x-GVHD through marked inhibition of Th1 cell effector function. Gene marking studies indicated BMSC engraftment was limited to the lung; further, there was no increase in regulatory T cells, thereby suggesting a paracrine mechanism of BMSC action. BMSC recipients had increased serum CD73 expressing exosomes that promoted adenosine accumulation ex vivo. Importantly, immune modulation mediated by BMSC was fully abrogated by pharmacologic therapy with an adenosine A2A receptor antagonist. To investigate the potential clinical relevance of these mechanistic findings, patient serum samples collected pre- and post-BMSC treatment were studied for exosome content: CD73 expressing exosomes promoting adenosine accumulation were detected in post-BMSC samples. In conclusion, BMSC effectively modulate experimental GVHD through a paracrine mechanism that promotes adenosine-based immune suppression. PMID:25532725

  16. Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity.

    Science.gov (United States)

    Contreras, Francisco; Prado, Carolina; González, Hugo; Franz, Dafne; Osorio-Barrios, Francisco; Osorio, Fabiola; Ugalde, Valentina; Lopez, Ernesto; Elgueta, Daniela; Figueroa, Alicia; Lladser, Alvaro; Pacheco, Rodrigo

    2016-05-15

    Dopamine receptor D3 (DRD3) expressed on CD4(+) T cells is required to promote neuroinflammation in a murine model of Parkinson's disease. However, how DRD3 signaling affects T cell-mediated immunity remains unknown. In this study, we report that TCR stimulation on mouse CD4(+) T cells induces DRD3 expression, regardless of the lineage specification. Importantly, functional analyses performed in vivo using adoptive transfer of OVA-specific OT-II cells into wild-type recipients show that DRD3 deficiency in CD4(+) T cells results in attenuated differentiation of naive CD4(+) T cells toward the Th1 phenotype, exacerbated generation of Th2 cells, and unaltered Th17 differentiation. The reciprocal regulatory effect of DRD3 signaling in CD4(+) T cells favoring Th1 generation and impairing the acquisition of Th2 phenotype was also reproduced using in vitro approaches. Mechanistic analysis indicates that DRD3 signaling evokes suppressor of cytokine signaling 5 expression, a negative regulator of Th2 development, which indirectly favors acquisition of Th1 phenotype. Accordingly, DRD3 deficiency results in exacerbated eosinophil infiltration into the airways of mice undergoing house dust mite-induced allergic response. Interestingly, our results show that, upon chronic inflammatory colitis induced by transfer of naive CD4(+) T cells into lymphopenic recipients, DRD3 deficiency not only affects Th1 response, but also the frequency of Th17 cells, suggesting that DRD3 signaling also contributes to Th17 expansion under chronic inflammatory conditions. In conclusion, our findings indicate that DRD3-mediated signaling in CD4(+) T cells plays a crucial role in the balance of effector lineages, favoring the inflammatory potential of CD4(+) T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  17. Intensive chemotherapy for acute myeloid leukemia differentially affects circulating TC1, TH1, TH17 and TREG cells

    Directory of Open Access Journals (Sweden)

    Gjertsen Bjørn

    2010-07-01

    Full Text Available Abstract Background Several observations suggest that immunological events early after chemotherapy, possibly during the period of severe treatment-induced cytopenia, are important for antileukemic immune reactivity in acute myeloid leukemia (AML. We therefore investigated the frequencies of various T cell subsets (TC1, TH1, TH17 and CD25+ FoxP3+ TREG cells in AML patients with untreated disease and following intensive chemotherapy. Results Relative levels of circulating TC1 and TH1 cells were decreased in patients with severe chemotherapy-induced cytopenia, whereas TH17 levels did not differ from healthy controls. Increased levels of regulatory CD25+ FoxP3+ T cells were detected in AML patients with untreated disease, during chemotherapy-induced cytopenia and during regeneration after treatment. TH17 and TH1 levels were significantly higher in healthy males than females, but this gender difference was not detected during chemotherapy-induced cytopenia. Finally, exogenous IL17-A usually had no or only minor effects on proliferation of primary human AML cells. Conclusions We conclude that the effect of intensive AML chemotherapy differ between circulating T cell subsets, relative frequencies of TH17 cells are not affected by chemotherapy and this subset may affect AML cells indirectly through their immunoregulatory effects but probably not through direct effects of IL17-A.

  18. Stable T-bet+GATA-3+ Th1/Th2 Hybrid Cells Arise In Vivo, Can Develop Directly from Naive Precursors, and Limit Immunopathologic Inflammation

    Science.gov (United States)

    Peine, Michael; Fröhlich, Anja; Hegazy, Ahmed N.; Kühl, Anja A.; Grevelding, Christoph G.; Höfer, Thomas; Hartmann, Susanne; Löhning, Max

    2013-01-01

    Differentiated T helper (Th) cell lineages are thought to emerge from alternative cell fate decisions. However, recent studies indicated that differentiated Th cells can adopt mixed phenotypes during secondary immunological challenges. Here we show that natural primary immune responses against parasites generate bifunctional Th1 and Th2 hybrid cells that co-express the lineage-specifying transcription factors T-bet and GATA-3 and co-produce Th1 and Th2 cytokines. The integration of Th1-promoting interferon (IFN)-γ and interleukin (IL)-12 signals together with Th2-favoring IL-4 signals commits naive Th cells directly and homogeneously to the hybrid Th1/2 phenotype. Specifically, IFN-γ signals are essential for T-bet+GATA-3+ cells to develop in vitro and in vivo by breaking the dominance of IL-4 over IL-12 signals. The hybrid Th1/2 phenotype is stably maintained in memory cells in vivo for months. It resists reprogramming into classic Th1 or Th2 cells by Th1- or Th2-promoting stimuli, which rather induce quantitative modulations of the combined Th1 and Th2 programs without abolishing either. The hybrid phenotype is associated with intermediate manifestations of both Th1 and Th2 cell properties. Consistently, hybrid Th1/2 cells support inflammatory type-1 and type-2 immune responses but cause less immunopathology than Th1 and Th2 cells, respectively. Thus, we propose the self-limitation of effector T cells based on the stable cell-intrinsic balance of two opposing differentiation programs as a novel concept of how the immune system can prevent excessive inflammation. PMID:23976880

  19. Stable T-bet(+GATA-3(+ Th1/Th2 hybrid cells arise in vivo, can develop directly from naive precursors, and limit immunopathologic inflammation.

    Directory of Open Access Journals (Sweden)

    Michael Peine

    Full Text Available Differentiated T helper (Th cell lineages are thought to emerge from alternative cell fate decisions. However, recent studies indicated that differentiated Th cells can adopt mixed phenotypes during secondary immunological challenges. Here we show that natural primary immune responses against parasites generate bifunctional Th1 and Th2 hybrid cells that co-express the lineage-specifying transcription factors T-bet and GATA-3 and co-produce Th1 and Th2 cytokines. The integration of Th1-promoting interferon (IFN-γ and interleukin (IL-12 signals together with Th2-favoring IL-4 signals commits naive Th cells directly and homogeneously to the hybrid Th1/2 phenotype. Specifically, IFN-γ signals are essential for T-bet(+GATA-3(+ cells to develop in vitro and in vivo by breaking the dominance of IL-4 over IL-12 signals. The hybrid Th1/2 phenotype is stably maintained in memory cells in vivo for months. It resists reprogramming into classic Th1 or Th2 cells by Th1- or Th2-promoting stimuli, which rather induce quantitative modulations of the combined Th1 and Th2 programs without abolishing either. The hybrid phenotype is associated with intermediate manifestations of both Th1 and Th2 cell properties. Consistently, hybrid Th1/2 cells support inflammatory type-1 and type-2 immune responses but cause less immunopathology than Th1 and Th2 cells, respectively. Thus, we propose the self-limitation of effector T cells based on the stable cell-intrinsic balance of two opposing differentiation programs as a novel concept of how the immune system can prevent excessive inflammation.

  20. T cell expression of IL-18R and DR3 is essential for non-cognate stimulation of Th1 cells and optimal clearance of intracellular bacteria.

    Science.gov (United States)

    Pham, Oanh H; O'Donnell, Hope; Al-Shamkhani, Aymen; Kerrinnes, Tobias; Tsolis, Renée M; McSorley, Stephen J

    2017-08-01

    Th1 cells can be activated by TCR-independent stimuli, but the importance of this pathway in vivo and the precise mechanisms involved require further investigation. Here, we used a simple model of non-cognate Th1 cell stimulation in Salmonella-infected mice to examine these issues. CD4 Th1 cell expression of both IL-18R and DR3 was required for optimal IFN-γ induction in response to non-cognate stimulation, while IL-15R expression was dispensable. Interestingly, effector Th1 cells generated by immunization rather than live infection had lower non-cognate activity despite comparable IL-18R and DR3 expression. Mice lacking T cell intrinsic expression of MyD88, an important adapter molecule in non-cognate T cell stimulation, exhibited higher bacterial burdens upon infection with Salmonella, Chlamydia or Brucella, suggesting that non-cognate Th1 stimulation is a critical element of efficient bacterial clearance. Thus, IL-18R and DR3 are critical players in non-cognate stimulation of Th1 cells and this response plays an important role in protection against intracellular bacteria.

  1. Ezh2 regulates transcriptional and post-translational expression of T-bet and promotes Th1 cell responses mediating aplastic anemia in mice1

    Science.gov (United States)

    Tong, Qing; He, Shan; Xie, Fang; Mochizuki, Kazuhiro; Liu, Yongnian; Mochizuki, Izumi; Meng, Lijun; Sun, Hongxing; Zhang, Yanyun; Guo, Yajun; Hexner, Elizabeth; Zhang, Yi

    2014-01-01

    Acquired aplastic anemia (AA) is a potentially fatal bone marrow (BM) failure syndrome. IFN-γ-producing T helper (Th)1 CD4+ T cells mediate the immune destruction of hematopoietic cells, and are central to the pathogenesis. However, the molecular events that control the development of BM-destructive Th1 cells remain largely unknown. Ezh2 is a chromatin-modifying enzyme that regulates multiple cellular processes primarily by silencing gene expression. We recently reported that Ezh2 is crucial for inflammatory T cell responses after allogeneic BM transplantation. To elucidate whether Ezh2 mediates pathogenic Th1 responses in AA and the mechanism of Ezh2 action in regulating Th1 cells, we studied the effects of Ezh2 inhibition in CD4+ T cells using a mouse model of human AA. Conditionally deleting Ezh2 in mature T cells dramatically reduced the production of BM-destructive Th1 cells in vivo, decreased BM-infiltrating Th1 cells, and rescued mice from BM failure. Ezh2 inhibition resulted in significant decrease in the expression of Tbx21 and Stat4 (which encode transcription factors T-bet and STAT4, respectively). Introduction of T-bet but not STAT4 into Ezh2-deficient T cells fully rescued their differentiation into Th1 cells mediating AA. Ezh2 bound to the Tbx21 promoter in Th1 cells, and directly activated Tbx21 transcription. Unexpectedly, Ezh2 was also required to prevent proteasome-mediated degradation of T-bet protein in Th1 cells. Our results identify T-bet as the transcriptional and post-translational Ezh2 target that acts together to generate BM-destructive Th1 cells, and highlight the therapeutic potential of Ezh2 inhibition in reducing AA and other autoimmune diseases. PMID:24760151

  2. mTOR Inhibition Attenuates Dextran Sulfate Sodium-Induced Colitis by Suppressing T Cell Proliferation and Balancing TH1/TH17/Treg Profile.

    Directory of Open Access Journals (Sweden)

    Shurong Hu

    Full Text Available It has been established that mammalian target of Rapamycin (mTOR inhibitors have anti-inflammatory effects in models of experimental colitis. However, the underlying mechanism is largely unknown. In this research, we investigate the anti-inflammatory effects of AZD8055, a potent mTOR inhibitor, on T cell response in dextran sulfate sodium (DSS-induced colitis in mice, a commonly used animal model of inflammatory bowel diseases (IBD. Severity of colitis is evaluated by changing of body weight, bloody stool, fecal consistency, histology evaluation and cytokine expression. We find that AZD8055 treatment attenuates DSS-induced body weight loss, colon length shortening and pathological damage of the colon. And AZD8055 treatment decreases colonic expression of genes encoding the pro-inflammatory cytokines interferon-γ, interleukin (IL-17A, IL-1β,IL-6 and tumor necrosis factor(TNF-a and increases colonic expression of anti-inflammatory cytokines IL-10. We show that AZD8055 treatment decreases the percentages of CD4+ T cells and CD8+ T cells in spleen, lymph nodes and peripheral blood of mice. We also find that AZD8055 treatment significantly reduces the number of T helper 1(TH1 cells and TH17 cells and increases regulatory T (Treg cells in the lamina propria and mesenteric lymph nodes. Furthermore, we demonstrates that AZD8055 suppresses the proliferation of CD4+ and CD8+ T cells and the differentiation of TH1/TH17 cells and expands Treg cells in vitro. The results suggest that, in experimental colitis, AZD8055 exerts anti-inflammatory effect by regulating T helper cell polarization and proliferation.

  3. The diagnostic value of Th1/Th2 cell cytokine and thyroid autoantibody on autoimmune thyroid diseases

    International Nuclear Information System (INIS)

    Feng Xuemin; Qin Mingxiu; Zhao Yan

    2008-01-01

    To study the diagnostic value of Th1/Th2 cell cytokine and thyroid autoantibody in autoimmune thyroid diseases (AITD), 28 patients with Graves' disease (GD), 15 patients with hyperthyroidism and thyroiditis (GDIII), 13 patients with Hashimoto's hyperthyroidism (HTL), 21 patients with Hashimoto's thyroiditis(HT)and 20 healthy subjects were enrolled in this study. The serum concentrations of Th1 cytokine (IFN-γ) and Th2 cytokine (IL-4) were determined by ELISA. The serum levels of thyrotropin receptor antibodies (TRAb), thyroglobulin antibodies (TGAb) and thyroid peroxidase antibodies (TPOAb) were measured by RIA. The relationship between the serum levels of IFN-γ, IL-4 and TRAb, TGAb and TPOAb were analyzed. The results showed that IFN-γ levels from higher to lower in different groups were in the order of HT, HTL, GDIII, GD and the IL-4 were GD, GDIII, HTL, HT, respectively. There was significant difference in the IFN-γ (P<0.05) and IL-4 levels (P<0.01) between GDIII and HTL groups. There was no significant difference in TGAb and TPOAb between GDIII and HTL groups. In HT group, IFN-γ levels was positively correlated with TGAb and TPOAb (r=0.67,0.54,P<0.01). In GD group, IL-4 was positively correlated with TRAb (r =0.71,P<0.01). The imbalance of Th1/Th2 cell cytokine reflects pathologic change and abnormality of immune function in AITD patients. The detection of Th1/Th2 cell cytokine combined with thyroid autoantibody may be regarded as an indicator in the diagnosis of autoimmune thyroid diseases. (authors)

  4. Clozapine inhibits Th1 cell differentiation and causes the suppression of IFN-γ production in peripheral blood mononuclear cells.

    Science.gov (United States)

    Chen, Mao-Liang; Tsai, Tzung-Chieh; Wang, Lu-Kai; Lin, Yi-Yin; Tsai, Ya-Min; Lee, Ming-Cheng; Tsai, Fu-Ming

    2012-08-01

    Antipsychotic drugs (APDs) are widely used to alleviate a number of psychic disorders and may have immunomodulatory effects. However, the previous studies of cytokine and immune regulation in APDs are quite inconsistent. The aim of this study was to examine the in vitro effects of different ADPs on cytokine production by peripheral blood mononuclear cells (PBMCs). We examined the effects of risperidone, clozapine, and haloperidol on the production of phorbol myristate acetate and ionomycin-induced interferon-γ (IFN-γ)/interleukin (IL)-4 in PBMCs by using intracellular staining. Real-time quantitative PCR and Western blot were used to further examine the expression changes of some critical transcription factors related to T-cell differentiation in antipsychotic-treated PBMCs. Our results indicated that clozapine can suppress the stimulated production of IFN-γ by 30.62%, whereas haloperidol weakly enhances the expression of IFN-γ. Differences in IL-4 production or in the number of CD4+ T cells were not observed in cells treated with different APDs. Furthermore, clozapine and risperidone inhibited the T-bet mRNA and protein expression, which are critical to Th1 differentiation. Also, clozapine can enhance the expression of Signal Transducer and Activator of Transcription 6 and GATA3, which are critical for the differentiation of Th2 cells. The results suggested that clozapine and haloperidol may induce different immunomodulatory effects on the immune system.

  5. The CC-chemokine receptor 5 (CCR5) is a marker of, but not essential for the development of human Th1 cells

    DEFF Research Database (Denmark)

    Odum, Niels; Bregenholt, S; Eriksen, K W

    1999-01-01

    The CC-chemokine receptor 5 (CCR5) has recently been described as a surface marker of human T cells producing type 1 (Th1) cytokines. Here we confirm that CCR5 is expressed on human Th1 but not on Th2 T-cell clones. Using intracellular cytokine staining, we show that alloantigen specific CD4+ T...

  6. Antagonizing Arachidonic Acid-Derived Eicosanoids Reduces Inflammatory Th17 and Th1 Cell-Mediated Inflammation and Colitis Severity

    Directory of Open Access Journals (Sweden)

    Jennifer M. Monk

    2014-01-01

    Full Text Available During colitis, activation of two inflammatory T cell subsets, Th17 and Th1 cells, promotes ongoing intestinal inflammatory responses. n-6 polyunsaturated fatty acid- (PUFA- derived eicosanoids, such as prostaglandin E2 (PGE2, promote Th17 cell-mediated inflammation, while n-3 PUFA antagonize both Th17 and Th1 cells and suppress PGE2 levels. We utilized two genetic mouse models, which differentially antagonize PGE2 levels, to examine the effect on Th17 cells and disease outcomes in trinitrobenzene sulfonic acid- (TNBS- induced colitis. Fat-1 mice contain the ω3 desaturase gene from C. elegans and synthesize n-3 PUFA de novo, thereby reducing the biosynthesis of n-6 PUFA-derived eicosanoids. In contrast, Fads1 Null mice contain a disrupted Δ5 desaturase gene and produce lower levels of n-6 PUFA-derived eicosanoids. Compared to Wt littermates, Fat-1 and Fads1 Null mice exhibited a similar colitic phenotype characterized by reduced colonic mucosal inflammatory eicosanoid levels and mRNA expression of Th17 cell markers (IL-17A, RORγτ, and IL-23, decreased percentages of Th17 cells and, improved colon injury scores (P≤0.05. Thus, during colitis, similar outcomes were obtained in two genetically distinct models, both of which antagonize PGE2 levels via different mechanisms. Our data highlight the critical impact of n-6 PUFA-derived eicosanoids in the promotion of Th17 cell-mediated colonic inflammation.

  7. Ulmus davidiana var. japonica Nakai upregulates eosinophils and suppresses Th1 and Th17 cells in the small intestine.

    Directory of Open Access Journals (Sweden)

    Han-Sung Lee

    Full Text Available The bark of Ulmus davidiana var. japonica Nakai (Ulmaceae has been used in traditional Korean medicine for chronic inflammation in the gastrointestinal tract. Here we investigated the frequency and cytokine profile of the major immune cells in the small intestinal lamina propria (SI LP, spleen, and mesenteric lymph nodes (MLNs of mice treated orally with Ulmus davidiana var. japonica Nakai bark water extract (UDE to address the immunomodulatory role of this herb in intestinal homeostasis. B6 mice were given 5g/kg UDE once daily for 14 days. They were then sacrificed, and cells were isolated from the spleen, MLNs, and SI LP. The proportion of B versus T lymphocytes, CD4(+ versus CD8(+ T lymphocytes, Th1 and Th17 cells, and Foxp3(+ regulatory T cells in the spleen, MLNs, and SI LP were analyzed. The frequency of antigen-presenting cells (APCs, including dendritic cells, macrophages, and eosinophils in the SI LP and the expression of costimulatory molecules on APCs were also evaluated. The numbers and frequencies of Th1 and Th17 cells in the SI LP were significantly reduced in the UDE-treated mice compared with PBS controls. In addition, the proportion of IL-4-producing eosinophils in the SI LP was significantly elevated in the UDE-treated mice compared with controls. Taken together, these data indicate that UDE up-regulates the number and frequency of SI LP eosinophils, which can down-regulate the Th1 and Th17 responses via IL-4 secretion and contribute to intestinal homeostasis.

  8. Interactions between Th1 cells and Tregs affect regulation of hepatic fibrosis in biliary atresia through the IFN-γ/STAT1 pathway.

    Science.gov (United States)

    Wen, Jie; Zhou, Ying; Wang, Jun; Chen, Jie; Yan, Wenbo; Wu, Jin; Yan, Junkai; Zhou, Kejun; Xiao, Yongtao; Wang, Yang; Xia, Qiang; Cai, Wei

    2017-06-01

    Regulatory T cells (Tregs) and CD4 + T helper (Th) cells have important roles in bile duct injury of biliary atresia (BA). However, their impacts on liver fibrosis are undefined. Between 2013 and 2016, 146 patients with various stages of BA were enrolled in this study. Peripheral blood, liver biopsy and lymph node samples were collected. Flow cytometry, magnetic cell sorting and immunostaining were used to characterize lymphocytes from BA patients. Deficiency of Tregs was observed along with increased Th1, Th2 and Th17 frequencies in the peripheral blood and livers of BA patients. The levels of peripheral and intrahepatic Th1 cells positively correlated with the stage of liver fibrosis. Furthermore, Th1 cells were located in close proximity to activated hepatic stellate cells (HSCs) and areas of fibrosis in BA livers. In culture, Th1 cells accelerated the proliferation and secretion of profibrogenic markers of HSCs through the IFN-γ/STAT1 pathway. Of note, Tregs blocked the Th1-stimulated effects on HSCs by inhibiting Th1-induced activation of STAT1. Consistent with the results of in vitro study, intrahepatic IFN-γ/STAT1 levels increased in relation to the severity of liver fibrosis in BA patients, and the altered balance between MMP2 and TIMP1 expressions in livers may contribute to increased deposition of extracellular matrix and fibrosis. Finally, to identify the effects of Th1 cells on Tregs, we demonstrated that Th1 cells upregulated the proportion of aTreg cells by secreting IFN-γ cytokine. Thus, aberrant Th1 immune responses in BA promote the proliferation and secretion of HSCs through the IFN-γ/STAT1 pathway. The regulation of HSCs by the interactions between Tregs and Th1 cells might be part of the mechanism underlying progressive liver fibrosis and may be a suitable target for therapy.

  9. Th1-like human T-cell clones recognizing Leishmania gp63 inhibit Leishmania major in human macrophages

    DEFF Research Database (Denmark)

    Kemp, M; Hey, A S; Bendtzen, K

    1994-01-01

    The major surface protease of Leishmania major, gp63, has been suggested as a vaccine candidate for cutaneous leishmaniasis. In this study gp63 was purified from L. major promastigotes. A panel of human T-cell clones recognizing this protein were generated from individuals who had previously had...... resembling Th1 cells. Autologous mononuclear cells and Epstein-Barr virus-transformed B cell lines were equally efficient in presenting the antigen to the T cells. The gp63 reactive T cells induced resistance to infection in cultured human macrophages by L. major. The data confirm that human CD4+ T cells...... recognizing gp63 can take part in the host defence against L. major infections....

  10. Th1/M1 conversion to Th2/M2 responses in models of inflammation lacking cell death stimulates maturation of monocyte precursors to fibroblasts

    Directory of Open Access Journals (Sweden)

    JoAnn eTrial

    2013-09-01

    Full Text Available We have demonstrated that cardiac fibrosis arises from the differentiation of monocyte-derived fibroblasts. We present here evidence that this process requires sequential Th1 and Th2 induction promoting analogous M1 (classically activated and M2 (alternatively activated macrophage polarity. Our models are 1 mice subjected to daily repetitive ischemia reperfusion (I/R without infarction and 2 the in vitro transmigration of human mononuclear leukocytes through human cardiac microvascular endothelium. In the mouse heart, leukocytes entered after I/R in response to monocyte chemoattractant protein-1 (MCP-1 which is the major cytokine induced by this protocol. Monocytes within the heart then differentiated into fibroblasts making collagen while bearing the markers of M2 macrophages. T cells were seen in these hearts as well as in the human heart with cardiomyopathy. In the in vitro model, transmigration of the leukocytes was likewise induced by MCP-1 and some monocytes matured into fibroblasts bearing M2 markers. In this model, the MCP-1 stimulus induced a transient Th1 and M1 response that developed into a predominately Th2 and M2 response. An increase in the Th2 product IL-13 was present in both the human and the mouse models, consistent with its known role in fibrosis. In these simplified models, in which there is no cell death to stimulate an anti-inflammatory response, there is nonetheless a resolution of inflammation enabling a profibrotic environment. This induces the maturation of monocyte precursors into fibroblasts.

  11. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    International Nuclear Information System (INIS)

    Fukuyama, Yoshiko; Tokuhara, Daisuke; Sekine, Shinichi; Kataoka, Kosuke; Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko; Davydova, Julia; Yamamoto, Masato; Gilbert, Rebekah S.; Fujihashi, Kohtaro

    2012-01-01

    Highlights: ► Nasal Ad-FL effectively up-regulates APC function by CD11c + DCs in mucosal tissues. ► Nasal Ad-FL induces Notch ligand (L)-expressing CD11c + DCs. ► Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c + dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c + DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c + DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c + DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4 + T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-γ, IL-2 and IL-4 producing CD4 + T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch–Notch-L pathway. These results show that Ad-FL induces CD11c + DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  12. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Yoshiko; Tokuhara, Daisuke [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Division of Mucosal Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639 (Japan); Sekine, Shinichi [Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka 565-0871 (Japan); Kataoka, Kosuke [Department of Preventive Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Davydova, Julia; Yamamoto, Masato [Department of Surgery, University of Minnesota, Minneapolis, MN 55455 (United States); Gilbert, Rebekah S. [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Fujihashi, Kohtaro, E-mail: kohtarof@uab.edu [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Nasal Ad-FL effectively up-regulates APC function by CD11c{sup +} DCs in mucosal tissues. Black-Right-Pointing-Pointer Nasal Ad-FL induces Notch ligand (L)-expressing CD11c{sup +} DCs. Black-Right-Pointing-Pointer Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c{sup +} dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c{sup +} DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c{sup +} DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c{sup +} DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4{sup +} T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-{gamma}, IL-2 and IL-4 producing CD4{sup +} T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c{sup +} DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  13. BJ-1108, a 6-Amino-2,4,5-trimethylpyridin-3-ol analogue, regulates differentiation of Th1 and Th17 cells to ameliorate experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Kang, Youra; Timilshina, Maheshwor; Nam, Tae-Gyu; Jeong, Byeong-Seon; Chang, Jae-Hoon

    2017-02-28

    CD4 + T cells play an important role in the initiation of an immune response by providing help to other cells. Among the helper T subsets, interferon-γ (IFN-γ)-secreting T helper 1 (Th1) and IL-17-secreting T helper 17 (Th17) cells are indispensable for clearance of intracellular as well as extracellular pathogens. However, Th1 and Th17 cells are also associated with pathogenesis and contribute to the progression of multiple inflammatory conditions and autoimmune diseases. In the current study, we found that BJ-1108, a 6-aminopyridin-3-ol analogue, significantly inhibited Th1 and Th17 differentiation in vitro in a concentration-dependent manner, with no effect on proliferation or apoptosis of activated T cells. Moreover, BJ-1108 inhibited differentiation of Th1 and Th17 cells in ovalbumin (OVA)-specific OT II mice. A complete Freund's adjuvant (CFA)/OVA-induced inflammatory model revealed that BJ-1108 can reduce generation of proinflammatory Th1 and Th17 cells. Furthermore, in vivo studies showed that BJ-1108 delayed onset of disease and suppressed experimental autoimmune encephalomyelitis (EAE) disease progression by inhibiting differentiation of Th1 and Th17 cells. BJ-1108 treatment ameliorates inflammation and EAE by inhibiting Th1 and Th17 cells differentiation. Our findings suggest that BJ-1108 is a promising novel therapeutic agent for the treatment of inflammation and autoimmune disease.

  14. Human Blood CD1c+ Dendritic Cells Promote Th1 and Th17 Effector Function in Memory CD4+ T Cells.

    Science.gov (United States)

    Leal Rojas, Ingrid M; Mok, Wai-Hong; Pearson, Frances E; Minoda, Yoshihito; Kenna, Tony J; Barnard, Ross T; Radford, Kristen J

    2017-01-01

    Dendritic cells (DC) initiate the differentiation of CD4 + helper T cells into effector cells including Th1 and Th17 responses that play an important role in inflammation and autoimmune disease pathogenesis. In mice, Th1 and Th17 responses are regulated by different conventional (c) DC subsets, with cDC1 being the main producers of IL-12p70 and inducers of Th1 responses, while cDC2 produce IL-23 to promote Th17 responses. The role that human DC subsets play in memory CD4 + T cell activation is not known. This study investigated production of Th1 promoting cytokine IL-12p70, and Th17 promoting cytokines, IL-1β, IL-6, and IL-23, by human blood monocytes, CD1c + DC, CD141 + DC, and plasmacytoid DC and examined their ability to induce Th1 and Th17 responses in memory CD4 + T cells. Human CD1c + DC produced IL-12p70, IL-1β, IL-6, and IL-23 in response to R848 combined with LPS or poly I:C. CD141 + DC were also capable of producing IL-12p70 and IL-23 but were not as proficient as CD1c + DC. Activated CD1c + DC were endowed with the capacity to promote both Th1 and Th17 effector function in memory CD4 + T cells, characterized by high production of interferon-γ, IL-17A, IL-17F, IL-21, and IL-22. These findings support a role for CD1c + DC in autoimmune inflammation where Th1/Th17 responses play an important role in disease pathogenesis.

  15. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria.

    Science.gov (United States)

    Lönnberg, Tapio; Svensson, Valentine; James, Kylie R; Fernandez-Ruiz, Daniel; Sebina, Ismail; Montandon, Ruddy; Soon, Megan S F; Fogg, Lily G; Nair, Arya Sheela; Liligeto, Urijah; Stubbington, Michael J T; Ly, Lam-Ha; Bagger, Frederik Otzen; Zwiessele, Max; Lawrence, Neil D; Souza-Fonseca-Guimaraes, Fernando; Bunn, Patrick T; Engwerda, Christian R; Heath, William R; Billker, Oliver; Stegle, Oliver; Haque, Ashraful; Teichmann, Sarah A

    2017-03-03

    Differentiation of naïve CD4 + T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo . By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory monocytes. Thus, by integrating genomic and computational approaches, our study has provided two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for characterizing cell differentiation towards multiple fates.

  16. Preventative Effect of an Herbal Preparation (HemoHIM) on Development of Airway Inflammation in Mice via Modulation of Th1/2 Cells Differentiation

    OpenAIRE

    Kim, Jong-Jin; Cho, Hyun Wook; Park, Hae-Ran; Jung, Uhee; Jo, Sung-Kee; Yee, Sung-Tae

    2013-01-01

    HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe) is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4(+) T cells isolated from C57BL/6 mouse spleens were cultured w...

  17. Oral myeloid cells uptake allergoids coupled to mannan driving Th1/Treg responses upon sublingual delivery in mice.

    Science.gov (United States)

    Soria, I; López-Relaño, J; Viñuela, M; Tudela, J-I; Angelina, A; Benito-Villalvilla, C; Díez-Rivero, C M; Cases, B; Manzano, A I; Fernández-Caldas, E; Casanovas, M; Palomares, O; Subiza, J L

    2018-04-01

    Polymerized allergoids coupled to nonoxidized mannan (PM-allergoids) may represent novel vaccines targeting dendritic cells (DCs). PM-allergoids are better captured by DCs than native allergens and favor Th1/Treg cell responses upon subcutaneous injection. Herein we have studied in mice the in vivo immunogenicity of PM-allergoids administered sublingually in comparison with native allergens. Three immunization protocols (4-8 weeks long) were used in Balb/c mice. Serum antibody levels were tested by ELISA. Cell responses (proliferation, cytokines, and Tregs) were assayed by flow cytometry in spleen and lymph nodes (LNs). Allergen uptake was measured by flow cytometry in myeloid sublingual cells. A quick antibody response and higher IgG2a/IgE ratio were observed with PM-allergoids. Moreover, stronger specific proliferative responses were seen in both submandibular LNs and spleen cells assayed in vitro. This was accompanied by a higher IFNγ/IL-4 ratio with a quick IL-10 production by submandibular LN cells. An increase in CD4 + CD25 high FOXP3 + Treg cells was detected in LNs and spleen of mice treated with PM-allergoids. These allergoids were better captured than native allergens by antigen-presenting (CD45 + MHC-II + ) cells obtained from the sublingual mucosa, including DCs (CD11b + ) and macrophages (CD64 + ). Importantly, all the differential effects induced by PM-allergoids were abolished when using oxidized instead of nonoxidized PM-allergoids. Our results demonstrate for the first time that PM-allergoids administered through the sublingual route promote the generation of Th1 and FOXP3 + Treg cells in a greater extent than native allergens by mechanisms that might well involve their better uptake by oral antigen-presenting cells. © 2018 The Authors. Allergy Published by John Wiley & Sons Ltd.

  18. Upregulation of bacterial-specific Th1 and Th17 responses that are enriched in CXCR5+CD4+ T cells in non-small cell lung cancer.

    Science.gov (United States)

    Ma, Qin-Yun; Huang, Da-Yu; Zhang, Hui-Jun; Wang, Shaohua; Chen, Xiao-Feng

    2017-11-01

    The microbial community in the mucosal surfaces is involved in the development of human cancers, including gastric cancer and colorectal cancer. The respiratory tract in the lung also hosts a distinctive microbial community, but the correlation between this community and lung cancer is largely unknown. Here, we examined the Th1 and Th17 responses toward several bacterial antigens, in CD4 + T cells sourced from the peripheral blood (PB), the lung cancer (LC) tissue, and the gastrointestinal (GI) tract of non-small cell lung cancer (NSCLC) patients. Compared to healthy controls, the NSCLC patients presented significantly higher frequencies of Th1 and Th17 cells reacting to Streptococcus salivarius and S. agalactiae, in the PB, LC, and GI tract. Further investigation showed that the upregulation in anti-bacteria response was likely antigen-specific for two reasons. Firstly, the frequencies of Th1 and Th17 cells reacting to Escherichia coli, a typical GI bacterium, were not upregulated in the PB and the LC of NSCLC patients. Secondly, the S. salivarius and S. agalactiae responses could be partially blocked by Tü39, a MHC class II blocking antibody, suggesting that antigen-specific interaction between CD4 + T cells and antigen-presenting cells was required. We also found that S. salivarius and S. agalactiae could potently activate the monocytes to secrete higher levels of interleukin (IL)-6, IL-12, and tumor necrosis factor, which were Th1- and Th17-skewing cytokines. Interestingly, whereas CXCR5 + CD4 + T cells represented <20% of total CD4 + T cells, they represented 17%-82% of bacteria-specific Th1 or Th17 cells. Together, these data demonstrated that NSCLC patients presented a significant upregulation of bacterial-specific Th1 and Th17 responses that were enriched in CXCR5 + CD4 + T cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Interleukin-33 promoting Th1 lymphocyte differentiation dependents on IL-12.

    Science.gov (United States)

    Komai-Koma, Mousa; Wang, Eryi; Kurowska-Stolarska, Mariola; Li, Dong; McSharry, Charles; Xu, Damo

    2016-03-01

    The pro-Th2 cytokine IL-33 is now emerging as an important Th1 cytokine-IFN-γ inducer in murine CD4(+) T cells that is essential for protective cell-mediated immunity against viral infection in mice. However, whether IL-33 can promote human Th1 cell differentiation and how IL-33 polarizes Th1 cells is less understood. We assessed the ability of IL-33 to induce Th1 cell differentiation and IFN-γ production in vitro and in vivo. We report here that IL-33 alone had no ability in Th1 cell polarization. However it potentiated IL-12-mediated Th1 cell differentiation and IFN-γ production in TCR-stimulated murine and human CD4(+) T cells in vitro and in vivo. IL-33 promoted Th1 cell development via MyD88 and synergized with IL-12 to enhance St2 and IL-12R expression in CD4(+) T cells. These data therefore provide a novel mechanism for Th1 cell differentiation and optimal induction of a Type 1 response. Thus, IL-33 is capable of inducing IL-12-dependent Th1 cell differentiation in human and mouse CD4(+) T cells. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  20. Effect of ginseng polysaccharides and dendritic cells on the balance of Th1/Th2 T helper cells in patients with non-small cell lung cancer.

    Science.gov (United States)

    Ma, Junjie; Liu, Huiping; Wang, Xiaolong

    2014-12-01

    To investigate the effect of thorascopic administration.of ginseng polysaccharides (GPS) plus dendritic cells (DC) on T helper cell type 1/T helper cell type 2 (Th1/Th2) balance in patients with non-small cell lung cancer (NSCLC). A total of 96 NSCLC patients were divided evenly into two groups. The control group was treated with DCs alone and the treatment group was treated with DCs plus GPS. After DCs and GPS were administered thoracoscopically, once a week, 4 times for 30 days, the patients' quality of life was measured with the Functional Assessment of Cancer Treatment-Lung (FACT-L) questionnaire before and after treatment. Serum interferon-γ (INF-γ), interleukin-4 (IL-4), IL-2 and IL-5 were examined before and after treatments. The level of Th1 cytokines (INF-γ, IL-2) and the ratio of Th1/Th2 cytokines (INF-γ/IL-4, IL-2/ IL-5) increased in both treatment groups, while Th2 cytokines (IL-4, IL-5) and FACT-L scores decreased (P GPS group than in the control group (P L scores and Th2 cytokines (IL-4, IL-5) were higher in the control group than in the DCs + GPS group (P GPS had a greater effect on NSCLC patients' immune function as compared with DCs alone. This was evident by increased expression of Th1 cytokines (INF-γ, IL-2) and the ratio of Th1/Th2 (INF-γ/IL-4, IL-2/IL-5), as well as by decreased FACT-L scores and the expression of Th2 cytokines (IL-4, IL-5).

  1. IL-27 Receptor Signalling Restricts the Formation of Pathogenic, Terminally Differentiated Th1 Cells during Malaria Infection by Repressing IL-12 Dependent Signals

    Science.gov (United States)

    Villegas-Mendez, Ana; de Souza, J. Brian; Lavelle, Seen-Wai; Gwyer Findlay, Emily; Shaw, Tovah N.; van Rooijen, Nico; Saris, Christiaan J.; Hunter, Christopher A.; Riley, Eleanor M.; Couper, Kevin N.

    2013-01-01

    The IL-27R, WSX-1, is required to limit IFN-γ production by effector CD4+ T cells in a number of different inflammatory conditions but the molecular basis of WSX-1-mediated regulation of Th1 responses in vivo during infection has not been investigated in detail. In this study we demonstrate that WSX-1 signalling suppresses the development of pathogenic, terminally differentiated (KLRG-1+) Th1 cells during malaria infection and establishes a restrictive threshold to constrain the emergent Th1 response. Importantly, we show that WSX-1 regulates cell-intrinsic responsiveness to IL-12 and IL-2, but the fate of the effector CD4+ T cell pool during malaria infection is controlled primarily through IL-12 dependent signals. Finally, we show that WSX-1 regulates Th1 cell terminal differentiation during malaria infection through IL-10 and Foxp3 independent mechanisms; the kinetics and magnitude of the Th1 response, and the degree of Th1 cell terminal differentiation, were comparable in WT, IL-10R1−/− and IL-10−/− mice and the numbers and phenotype of Foxp3+ cells were largely unaltered in WSX-1−/− mice during infection. As expected, depletion of Foxp3+ cells did not enhance Th1 cell polarisation or terminal differentiation during malaria infection. Our results significantly expand our understanding of how IL-27 regulates Th1 responses in vivo during inflammatory conditions and establishes WSX-1 as a critical and non-redundant regulator of the emergent Th1 effector response during malaria infection. PMID:23593003

  2. Intercellular adhesion molecule-1/LFA-1 ligation favors human Th1 development

    NARCIS (Netherlands)

    Smits, Hermelijn H.; de Jong, Esther C.; Schuitemaker, Joost H. N.; Geijtenbeek, Theo B. H.; van Kooyk, Yvette; Kapsenberg, Martien L.; Wierenga, Eddy A.

    2002-01-01

    Th cell polarization toward Th1 or Th2 cells is strongly driven by exogenous cytokines, in particular IL-12 or IL-4, if present during activation by Ag-presenting dendritic cells (DC). However, additional Th cell polarizing mechanisms are induced by the ligation of cell surface molecules on DC and

  3. Regulatory role of NKG2D+ NK cells in intestinal lamina propria by secreting double-edged Th1 cytokines in ulcerative colitis.

    Science.gov (United States)

    Wang, Fan; Peng, Pai-Lan; Lin, Xue; Chang, Ying; Liu, Jing; Zhou, Rui; Nie, Jia-Yan; Dong, Wei-Guo; Zhao, Qiu; Li, Jin

    2017-11-17

    The role of intestinal lamina propria (LP) NKG2D+ NK cells is unclear in regulating Th1/Th2 balance in ulcerative colitis (UC). In this study, we investigated the frequency of LP NKG2D+ NK cells in DSS-induced colitis model and intestinal mucosal samples of UC patients, as well as the secretion of Th1/Th2/Th17 cytokines in NK cell lines after MICA stimulation. The role of Th1 cytokines in UC was validated by bioinformatics analysis. We found that DSS-induced colitis in mice was characterized by a Th2-mediated process. In acute phrase, the frequency of LP NKG2D+ lymphocytes increased significantly and decreased in remission, while the frequency of LP NKG2D+ NK cells decreased significantly in acute phase and increased in remission. No obvious change was found in the frequency of total LP NK cells. Similarly, severe UC patients had a higher expression of mucosal NKG2D and a lower number of NKG2D+ NK cells than mild to moderate UC. In NK cell lines, the MICA stimulation could induce a predominant secretion of Th1 cytokines (TNF, IFN-γ). Furthermore, in bioinformatics analysis, mucosal Th1 cytokine of TNF, showed a double-edged role in UC when compared to the Th1-mediated disease of Crohn's colitis. In conclusion, LP NKG2D+ NK cells partially played a regulatory role in UC through secreting Th1 cytokines to regulate the Th2-predominant Th1/Th2 imbalance, despite of the concomitant pro-inflammatory effects of Th1 cytokines.

  4. Inflammasome and Fas-Mediated IL-1β Contributes to Th17/Th1 Cell Induction in Pathogenic Bacterial Infection In Vivo.

    Science.gov (United States)

    Uchiyama, Ryosuke; Yonehara, Shin; Taniguchi, Shun'ichiro; Ishido, Satoshi; Ishii, Ken J; Tsutsui, Hiroko

    2017-08-01

    CD4 + Th cells play crucial roles in orchestrating immune responses against pathogenic microbes, after differentiating into effector subsets. Recent research has revealed the importance of IFN-γ and IL-17 double-producing CD4 + Th cells, termed Th17/Th1 cells, in the induction of autoimmune and inflammatory diseases. In addition, Th17/Th1 cells are involved in the regulation of infection caused by the intracellular bacterium Mycobacterium tuberculosis in humans. However, the precise mechanism of Th17/Th1 induction during pathogen infection is unclear. In this study, we showed that the inflammasome and Fas-dependent IL-1β induces Th17/Th1 cells in mice, in response to infection with the pathogenic intracellular bacterium Listeria monocytogenes In the spleens of infected wild-type mice, Th17/Th1 cells were induced, and expressed T-bet and Rorγt. In Pycard -/- mice, which lack the adaptor molecule of the inflammasome (apoptosis-associated speck-like protein containing a caspase recruitment domain), Th17/Th1 induction was abolished. In addition, the Fas-mediated IL-1β production was required for Th17/Th1 induction during bacterial infection: Th17/Th1 induction was abolished in Fas -/- mice, whereas supplementation with recombinant IL-1β restored Th17/Th1 induction via IL-1 receptor 1 (IL-1R1), and rescued the mortality of Fas -/- mice infected with Listeria IL-1R1, but not apoptosis-associated speck-like protein containing a caspase recruitment domain or Fas on T cells, was required for Th17/Th1 induction, indicating that IL-1β stimulates IL-1R1 on T cells for Th17/Th1 induction. These results indicate that IL-1β, produced by the inflammasome and Fas-dependent mechanisms, contributes cooperatively to the Th17/Th1 induction during bacterial infection. This study provides a deeper understanding of the molecular mechanisms underlying Th17/Th1 induction during pathogenic microbial infections in vivo. Copyright © 2017 by The American Association of Immunologists

  5. Circulating endothelial progenitor cells, Th1/Th2/Th17-related cytokines, and endothelial dysfunction in resistant hypertension.

    Science.gov (United States)

    Magen, Eli; Feldman, Arie; Cohen, Ziona; Alon, Dora Ben; Minz, Evegeny; Chernyavsky, Alexey; Linov, Lina; Mishal, Joseph; Schlezinger, Menacham; Sthoeger, Zev

    2010-02-01

    A possible link between chronic vascular inflammation and arterial hypertension is now an object of intensive studies. To compare Th1/Th2/Th17 cells-related cytokines, circulating endothelial progenitor cells (EPC), and endothelial function in subjects with resistant arterial hypertension (RAH) and controlled arterial hypertension (CAH). Blood pressure was measured by electronic sphygmomanometer. EPC were identified as CD34+/CD133+/kinase insert domain receptor (KDR)+ cells by flow cytometry. Th1/Th2/Th17 cells-related cytokines were identified using the Human Th1/Th2/Th17 Cytokines MultiAnalyte ELISArray Kit. Endothelium-dependent (FMD) vasodilatation of brachial artery was measured by Doppler ultrasound scanning. RAH group (n = 20) and CAH group (n = 20) and 17 healthy individuals (control group) were recruited. In the RAH group, lower blood levels of EPC number (42.4 +/- 16.7 cells/mL) and EPC% (0.19 +/- 0.08%) were observed than in the CAH group (93.1 +/- 88.7 cells/mL; P = 0.017; 0.27 +/- 0.17; P = 0.036) and control group (68.5 +/- 63.6 cells/mL; P < 0.001; 0.28 +/- 0.17%; P = 0.003), respectively. Plasma transforming growth factor-beta1 levels were significantly higher in the RAH group (1767 +/- 364 pg/mL) than in the CAH group (1292 +/- 349; P < 0.001) and in control group (1203 +/- 419 pg/mL; P < 0.001). In the RAH group, statistically significant negative correlation was observed between systolic blood pressure and EPC% (r = -0.72, P < 0.01). FMD in the RAH group was significantly lower (5.5 +/- 0.8%) than in the CAH group (9.2 +/- 1.4; P < 0.001) and in healthy controls (10.1 +/- 1.1%; P < 0.001). RAH is characterized by reduced circulating EPC, substantial endothelial dysfunction, and increased plasma transforming growth factor-beta1 levels.

  6. Granulocyte colony-stimulating factor decreases the Th1/Th2 ratio in peripheral blood mononuclear cells from patients with chronic immune thrombocytopenic purpura in vitro.

    Science.gov (United States)

    Ge, Fei; Zhang, Zhuo; Hou, Jinxiao; Cao, Fenglin; Zhang, Yingmei; Wang, Ping; Wei, Hong; Zhou, Jin

    2016-12-01

    Chronic immune thrombocytopenia purpura (ITP) is an autoimmune disease that exhibits an abnormally high Th1/Th2 ratio. Granulocyte colony-stimulating factor (G-CSF) has been shown to decrease the Th1/Th2 ratio in healthy donors. In this study, we investigated the effects of G-CSF treatment on the Th1/Th2 cells and the underlying mechanisms in patients with ITP in vitro. Peripheral blood mononuclear cells (PBMCs) isolated from patients with ITP and healthy controls were treated with G-CSF. Expression levels of interferon (IFN)-γ, interleukin (IL)-2, IL-4, and IL-13 in supernatants were measured by enzyme-linked immunosorbent assays. The expression of IFN-γ, IL-4, and G-CSF receptor (G-CSFR) on Th1 and Th2 cells were examined by flow cytometry and confocal microscopy. The mRNA expression of IFN-γ, IL-2, IL-4, IL-13, and T-box expressed in T cells (T-bet) and GATA-binding protein 3 (GATA-3) in PBMCs was evaluated by reverse transcription polymerase chain reaction. The results showed that G-CSF could significantly reduce the Th1/Th2 ratio in PBMCs from patients with ITP in vitro. As the concentration of G-CSF increased, Th1/Th2 ([IFN-γ+IL-2]/[IL-4+IL-13]) cytokine ratios and T-bet/GATA-3 mRNA ratios decreased in a concentration-dependent manner. Th1 cells and Th2 cells both expressed G-CSFR. These results suggest that G-CSF could decrease the Th1/Th2 ratio in the context of ITP, and elucidate the direct and indirect immunomodulatory mechanisms underlying G-CSF functions in Th1/Th2 cells, thus supporting the therapeutic potential of G-CSF in the treatment of patients with ITP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Th1- and Th2-like subsets of innate lymphoid cells

    NARCIS (Netherlands)

    Bernink, Jochem; Mjösberg, Jenny; Spits, Hergen

    2013-01-01

    Innate lymphoid cells (ILCs) constitute a family of effectors in innate immunity and regulators of tissue remodeling that have a cytokine and transcription factor expression pattern that parallels that of the T-helper (Th) cell family. Here, we discuss how ILCs can be categorized and summarize the

  8. Mesenchymal Stromal Cells Prevent Allostimulation In Vivo and Control Checkpoints of Th1 Priming: Migration of Human DC to Lymph Nodes and NK Cell Activation.

    Science.gov (United States)

    Consentius, C; Akyüz, L; Schmidt-Lucke, J A; Tschöpe, C; Pinzur, L; Ofir, R; Reinke, P; Volk, H-D; Juelke, K

    2015-10-01

    Although the immunomodulatory potency of mesenchymal stromal cells (MSC) is well established, the mechanisms behind are still not clear. The crosstalk between myeloid dendritic cells (mDC) and natural killer (NK) cells and especially NK cell-derived interferon-gamma (IFN-γ) play a pivotal role in the development of type 1 helper (Th1) cell immune responses. While many studies explored the isolated impact of MSC on either in vitro generated DC, NK, or T cells, there are only few data available on the complex interplay between these cells. Here, we investigated the impact of MSC on the functionality of human mDC and the consequences for NK cell and Th1 priming in vitro and in vivo. In critical limb ischemia patients, who have been treated with allogeneic placenta-derived mesenchymal-like stromal cells (PLX-PAD), no in vivo priming of Th1 responses toward the major histocompatibility complex (MHC) mismatches could be detected. Further in vitro studies revealed that mDC reprogramming could play a central role for these effects. Following crosstalk with MSC, activated mDC acquired a tolerogenic phenotype characterized by reduced migration toward CCR7 ligand and impaired ability to stimulate NK cell-derived IFN-γ production. These effects, which were strongly related to an altered interleukin (IL)-12/IL-10 production by mDC, were accompanied by an effective prevention of Th1 priming in vivo. Our findings provide novel evidence for the regulation of Th1 priming by MSC via modulation of mDC and NK cell crosstalk and show that off-the-shelf produced MHC-mismatched PLX-PAD can be used in patients without any sign of immunogenicity. © 2015 AlphaMed Press.

  9. 5-Aminolevulinic Acid-Mediated Sonodynamic Therapy Alleviates Atherosclerosis via Enhancing Efferocytosis and Facilitating a Shift in the Th1/Th2 Balance Toward Th2 Polarization

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2018-05-01

    Full Text Available Background/Aims: We and other groups have demonstrated that 5-aminolevulinic acid (ALA-mediated sonodynamic therapy (ALA-SDT induces macrophage and foam cell apoptosis and stabilizes atherosclerosis (AS plaques in animal models. Lymphocytes also play vital roles in the development of AS. The primary purpose of the present study was to investigate the effects of ALA-SDT on T helper (Th cell fate and function, Th subset differentiation, and atherosclerotic lesion stability. Methods: We utilized ALA-SDT on Western diet-fed apoE-/-mice in vivo and human Jurkat cells in vitro. Hematoxylin and eosin staining and TUNEL assays were used to evaluate the atherosclerotic plaque size and apoptosis within the atheroma. ALA induced cytotoxicity on cultured Jurkat cells was determined with CCK-8 assay. To address the mechanisms, levels of intracellular reactive oxygen species (ROS, mitochondrial membrane potential (MMP, and mitochondrial permeability transition pore (MPTP opening were evaluated by staining with fluorescent probes. Western blot analysis and confocal microscopy were used to analyze the protein levels of caspases, Bax and cytochrome c and the release of cytochrome c. Cell apoptosis and necrosis and phagocytosis were examined by flow cytometry. ELISAs and immunofluorescent staining were used to assess the corresponding cytokine levels and Th subset cell numbers within the atheroma. Results: Our studies revealed that ALA-SDT significantly enhanced CD4+ cell apoptosis and macrophage-mediated phagocytosis and hence reduced the necrotic core size. ALA-SDT activated the mitochondrial apoptotic signaling pathway with minimal necrosis in Jurkat cells. ALA-SDT inhibited the Th1 response and enhanced the Th2 response. These effects of ALA-SDT were mediated primarily through the generation of ROS. Conclusion: ALA-SDT alleviates AS by enhancing cytotoxic effects on Th cells, subsequently stimulating efferocytosis and facilitating a shift in the Th1/Th2

  10. Identification of DRG-1 As a Melanoma-Associated Antigen Recognized by CD4+ Th1 Cells.

    Directory of Open Access Journals (Sweden)

    Yukiko Kiniwa

    Full Text Available Immunotherapy has emerged as a promising strategy for the treatment of metastatic melanoma. Clinical studies have demonstrated the feasibility of cancer immunotherapy using tumor antigens recognized by CD8(+ T cells. However, the overall immune responses induced by these antigens are too weak and transient to induce tumor regression in the majority of patients who received immunization. A growing body of evidence suggests that CD4(+ T helper (Th cells play an important role in antitumor immunity. Therefore, the identification of MHC class II-restricted tumor antigens capable of stimulating CD4(+ T cells may provide opportunities for developing effective cancer vaccines. To this end, we describe the identification of developmentally regulated GTP-binding protein 1 (DRG-1 as a melanoma-associated antigen recognized by HLA-DR11-restricted CD4(+ Th1 cells. Epitope mapping analysis showed that the DRG1248-268 epitope of DRG-1 was required for T cell recognition. Reverse transcription-polymerase chain reaction revealed that DRG-1 was highly expressed in melanoma cell lines but not in normal tissues. DRG-1 knockdown by lentiviral-based shRNA suppressed melanoma cell proliferation and soft agar colony formation. Taken together, these data suggest that DRG-1 plays an important role in melanoma cell growth and transformation, indicating that DRG1 may represent a novel target for CD4(+ T cell-mediated immunotherapy in melanoma.

  11. Identification of DRG-1 As a Melanoma-Associated Antigen Recognized by CD4+ Th1 Cells.

    Science.gov (United States)

    Kiniwa, Yukiko; Li, Jiang; Wang, Mingjun; Sun, Chuang; Lee, Jeffrey E; Wang, Rong-Fu; Wang, Helen Y

    2015-01-01

    Immunotherapy has emerged as a promising strategy for the treatment of metastatic melanoma. Clinical studies have demonstrated the feasibility of cancer immunotherapy using tumor antigens recognized by CD8(+) T cells. However, the overall immune responses induced by these antigens are too weak and transient to induce tumor regression in the majority of patients who received immunization. A growing body of evidence suggests that CD4(+) T helper (Th) cells play an important role in antitumor immunity. Therefore, the identification of MHC class II-restricted tumor antigens capable of stimulating CD4(+) T cells may provide opportunities for developing effective cancer vaccines. To this end, we describe the identification of developmentally regulated GTP-binding protein 1 (DRG-1) as a melanoma-associated antigen recognized by HLA-DR11-restricted CD4(+) Th1 cells. Epitope mapping analysis showed that the DRG1248-268 epitope of DRG-1 was required for T cell recognition. Reverse transcription-polymerase chain reaction revealed that DRG-1 was highly expressed in melanoma cell lines but not in normal tissues. DRG-1 knockdown by lentiviral-based shRNA suppressed melanoma cell proliferation and soft agar colony formation. Taken together, these data suggest that DRG-1 plays an important role in melanoma cell growth and transformation, indicating that DRG1 may represent a novel target for CD4(+) T cell-mediated immunotherapy in melanoma.

  12. miR-148a is upregulated by Twist1 and T-bet and promotes Th1-cell survival by regulating the proapoptotic gene Bim.

    Science.gov (United States)

    Haftmann, Claudia; Stittrich, Anna-Barbara; Zimmermann, Jakob; Fang, Zhuo; Hradilkova, Kristyna; Bardua, Markus; Westendorf, Kerstin; Heinz, Gitta A; Riedel, René; Siede, Julia; Lehmann, Katrin; Weinberger, Esther E; Zimmel, David; Lauer, Uta; Häupl, Thomas; Sieper, Joachim; Backhaus, Marina; Neumann, Christian; Hoffmann, Ute; Porstner, Martina; Chen, Wei; Grün, Joachim R; Baumgrass, Ria; Matz, Mareen; Löhning, Max; Scheffold, Alexander; Wittmann, Jürgen; Chang, Hyun-Dong; Rajewsky, Nikolaus; Jäck, Hans-Martin; Radbruch, Andreas; Mashreghi, Mir-Farzin

    2015-04-01

    Repeatedly activated T helper 1 (Th1) cells present during chronic inflammation can efficiently adapt to the inflammatory milieu, for example, by expressing the transcription factor Twist1, which limits the immunopathology caused by Th1 cells. Here, we show that in repeatedly activated murine Th1 cells, Twist1 and T-bet induce expression of microRNA-148a (miR-148a). miR-148a regulates expression of the proapoptotic gene Bim, resulting in a decreased Bim/Bcl2 ratio. Inhibition of miR-148a by antagomirs in repeatedly activated Th1 cells increases the expression of Bim, leading to enhanced apoptosis. Knockdown of Bim expression by siRNA in miR-148a antagomir-treated cells restores viability of the Th1 cells, demonstrating that miR-148a controls survival by regulating Bim expression. Thus, Twist1 and T-bet not only control the differentiation and function of Th1 cells, but also their persistence in chronic inflammation. © 2014 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Modulation of immune cells and Th1/Th2 cytokines in insulin-treated ...

    African Journals Online (AJOL)

    and Th2 cytokines and the frequencies of innate and adaptive immunity cells .... As inclusion criteria, all participants were non- .... Ranges of normal values: Fasting glucose: 3.88-6.10 mM (0.7-1.10 g/L); .... of HbA1c, reflecting a poor control of diabetes37 and a .... rophage recruitment and adipose tissue inflammation in.

  14. Memory Th1 Cells Are Protective in Invasive Staphylococcus aureus Infection

    NARCIS (Netherlands)

    A.F. Brown (Aisling F.); A.G. Murphy (Alison G.); S.J. Lalor (Stephen J.); J.M. Leech (John M.); K.M. O’Keeffe (Kate M.); M. Mac Aogáin (Micheál); D.P. O’Halloran (Dara P.); K.A. Lacey (Keenan A.); M. Tavakol (Mehri); C.H. Hearnden (Claire H.); D. Fitzgerald-Hughes (Deirdre); H. Humphreys (Hilary); J.P. Fennell (Jérôme P.); W.J.B. van Wamel (Willem); T.J. Foster (Timothy J.); J.A. Geoghegan (Joan A.); E.C. Lavelle (Ed C.); T.R. Rogers (Thomas R.); R.M. McLoughlin (Rachel M.)

    2015-01-01

    textabstractMechanisms of protective immunity to Staphylococcus aureus infection in humans remain elusive. While the importance of cellular immunity has been shown in mice, T cell responses in humans have not been characterised. Using a murine model of recurrent S. aureus peritonitis, we

  15. Th1/Th2 Cytokines: An Easy Model to Study Gene Expression in Immune Cells

    Science.gov (United States)

    Moran, Jose M.; Gonzalez-Polo, Rosa A.; Soler, German; Fuentes, Jose M.

    2006-01-01

    This report describes a laboratory exercise that was incorporated into a Cell Biology and Molecular Biology advanced course. The exercise was made for a class size with eight students and was designed to reinforce the understanding of basic molecular biology techniques. Students used the techniques of reverse transcription and arginase activity…

  16. Enhancement of Th1 type cytokine production and primary T cell activation by PBI-1393.

    Science.gov (United States)

    Allam, Mustapha; Julien, Nathalie; Zacharie, Boulos; Penney, Christopher; Gagnon, Lyne

    2007-12-01

    In previous reports, we have shown that PBI-1393 (formerly BCH-1393), N,N-Dimethylaminopurine pentoxycarbonyl D-arginine, stimulates cytotoxic T-lymphocyte (CTL) responses both in vitro and in vivo in normal immune status and immunosuppressed mice. Additionally, PBI-1393 was tested for anticancer activity in syngeneic mouse experimental tumor models and it displayed significant inhibition of tumor outgrowths when given in combination with sub-therapeutic doses of cytotoxic drugs (cyclophosphamide, 5-fluorouracil, doxorubicin and cis-platinum). However, the mechanism of action of PBI-1393 was still unknown. Here, we report that PBI-1393 enhances IL-2 and IFN-gamma production in human activated T cells by 51% and 46% respectively. PBI-1393 increases also IL-2 and IFN-gamma mRNA expression as shown by RT-PCR. The physiological relevance of IL-2 and IFN-gamma gene modulation by PBI-1393 is illustrated by the advantageous increase of T cell proliferation (39+/-0.3% above control) and human CTL response against prostate (PC-3) cancer cells (42+/-0.03%). The enhancement of human T cell proliferation and CTL activation by PBI-1393 demonstrates that this compound potentiates the immune response and in this regard, it could be used as an alternative approach to IL-2 and/or IFN-gamma therapy against cancer.

  17. IFN-γ-producing Th1-like regulatory T cells may limit acute cellular renal allograft rejection: Paradoxical post-transplantation effects of IFN-γ.

    Science.gov (United States)

    Xu, Xiaoguang; Huang, Haiyan; Wang, Qiang; Cai, Ming; Qian, Yeyong; Han, Yong; Wang, Xinying; Gao, Yu; Yuan, Ming; Xu, Liang; Yao, Chen; Xiao, Li; Shi, Bingyi

    2017-02-01

    IFN-γ is a protypical proinflammatory cytokine that plays a central role in inflammation and acute graft rejection. Accumulating evidence indicates that IFN-γ can exert previously unexpected immunoregulatory activities. However, little is known about the role of IFN-γ secreted by Th1-like regulatory T cells in human kidney transplantation. To determine the function of IFN-γ in acute T cell-mediated renal allograft rejection (ACR), we examined serum cytokine expression profiles in ACR patients by human cytokine multiplex immunoassay and analyzed the cellular origins of IFN-γ in peripheral blood and renal allograft biopsies from ACR cases and controls by flow cytometry and immunohistochemistry, respectively. The results showed significant reduction in serum concentrations of Th1-inducing cytokines IL-12p70 and IFN-γ as well as Th2-related cytokine IL-4 in ACR patients compared with stable controls. However, levels of several Th1-, Th2- and Th17-related cytokines, such as IL-2, TNF-α, TNF-β, IL-12 (p40), IL-10, IL-15, IL-17, IL-21, and IL-23, as well as the frequencies of Th1 and Th17 cell, did not differ between ACR cases and stable controls. Moreover, we found the levels of IFN-γ were correlated with those of the anti-inflammatory factor, IL-1 receptor antagonist (IL-1Ra) in ACR. Notably, the Th1-like Treg cell-to-Foxp3 - Th1 cell ratio was significantly lower in ACR patients compared with that in stable controls. In graft biopsies from ACR patients, Treg cells and Th1-like Treg cells were less abundant than those without ACR. Our study indicates that IFN-γ secreted from Th1-like Treg cells negatively modulates ACR. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Commensal oral bacteria antigens prime human dendritic cells to induce Th1, Th2 or Treg differentiation.

    Science.gov (United States)

    Kopitar, A N; Ihan Hren, N; Ihan, A

    2006-02-01

    In various immunopathologic conditions, bacterial flora induce an immune response which results in inflammatory manifestations, e.g. periapical granuloma. Dendritic cells provide the main orchestration of specific immune responses. The aim of our study was to test the capacity of distinct oral bacterial antigens (prepared from Streptococcus mitis, Propionibacterium acnes, and Bacteroides spp.) to prime human dendritic cells for stimulation of the T-lymphocyte response. To assess the T-lymphocyte response, the expression of CD25, CD69, intracellular interferon gamma (cIFN-gamma), and intracellular interleukin 4 (cIL-4) was determined. Dendritic cells were prepared from leukocyte buffy coat from healthy blood donors. Monocytes were stimulated with IL-4 and GM-CSF and dendritic cells activated with bacterial lysates. Cell suspensions contained up to 90% dendritic cells, which represented 2-12% of the initial number of mononuclear cells. Lymphocyte subsets that developed in lymphocyte cultures after 1 week of stimulation were analyzed by flow cytometry. Dendritic cells, primed with antigens of Bacteroides fragilis have shown significantly higher activation and expression of intercellular IFN-gamma by T lymphocytes compared to negative controls. The dendritic cells primed with antigens of P. acnes had no effect on T-lymphocyte activation or cytokine production; instead they induced differentiation of T lymphocytes into CD25bright cells (regulatory T cells) with a potentially inhibitory effect on immune response. Dendritic cells primed with antigens of S. mitis induced increased expression of cIL-4. We conclude that commensal oral bacteria antigens prepared from B. fragilis, S. mitis, and P. acnes prime human dendritic cells to induce Th1, Th2, and T(reg) differentiation, respectively. This may advance our understanding of immunopathologic manifestations in the oral cavity and offer new possibilities for redirecting immune responses in mucosal vaccination.

  19. Reciprocal modulation of helper Th1 and Th17 cells by the β2-adrenergic receptor agonist drug terbutaline.

    Science.gov (United States)

    Carvajal Gonczi, Catalina M; Tabatabaei Shafiei, Mahdieh; East, Ashley; Martire, Erika; Maurice-Ventouris, Meagane H I; Darlington, Peter J

    2017-09-01

    Catecholamine hormones are powerful regulators of the immune system produced by the sympathetic nervous system (SNS). They regulate the adaptive immune system by altering T-cell differentiation into T helper (Th) 1 and Th2 cell subsets, but the effect on Th17 cells is not known. Th17 cells, defined, in part, by chemokine receptor CCR6 and cytokine interleukin (IL)-17A, are crucial for mediating certain pathogen-specific responses and are linked with several autoimmune diseases. We demonstrated that a proportion of human Th17 cells express beta 2-adrenergic receptor (β2AR), a G protein-coupled receptor that responds to catecholamines. Activation of peripheral blood mononuclear cells, which were obtained from venous blood drawn from healthy volunteers, with anti-cluster of differentiation 3 (CD3) and anti-CD28 and with a β2-agonist drug, terbutaline (TERB), augmented IL-17A levels (P < 0.01) in the majority of samples. TERB reduced interferon gamma (IFNγ) indicating that IL-17A and IFNγ are reciprocally regulated. Similar reciprocal regulation was observed with dbcAMP. Proliferation of Th cells was monitored by carboxyfluorescein diacetate N-succinimidyl ester labeling and flow cytometry with antibody staining for CD3 and CD4. TERB increased proliferation by a small but significant margin (P < 0.001). Next, Th17 cells (CD4 + CXCR3 - CCR6 + ) were purified using an immunomagnetic positive selection kit, which removes all other mononuclear cells. TERB increased IL-17A from purified Th17 cells, which argues that TERB acts directly on Th17 cells. Thus, hormone signals from the SNS maintain a balance of Th cells subtypes through the β2AR. © 2017 Federation of European Biochemical Societies.

  20. Dysregulated cytokine expression by CD4+ T cells from post-septic mice modulates both Th1 and Th2-mediated granulomatous lung inflammation.

    Directory of Open Access Journals (Sweden)

    William F Carson

    Full Text Available Previous epidemiological studies in humans and experimental studies in animals indicate that survivors of severe sepsis exhibit deficiencies in the activation and effector function of immune cells. In particular, CD4+ T lymphocytes can exhibit reduced proliferative capacity and improper cytokine responses following sepsis. To further investigate the cell-intrinsic defects of CD4+ T cells following sepsis, splenic CD4+ T cells from sham surgery and post-septic mice were transferred into lymphopenic mice. These recipient mice were then subjected to both TH1-(purified protein derivative and TH2-(Schistosoma mansoni egg antigen driven models of granulomatous lung inflammation. Post-septic CD4+ T cells mediated smaller TH1 and larger TH2 lung granulomas as compared to mice receiving CD4+ T cells from sham surgery donors. However, cytokine production by lymph node cells in antigen restimulation assays indicated increased pan-specific cytokine expression by post-septic CD4+ T cell recipient mice in both TH1 and TH2 granuloma models. These include increased production of T(H2 cytokines in TH1 inflammation, and increased production of T(H1 cytokines in TH2 inflammation. These results suggest that cell-intrinsic defects in CD4+ T cell effector function can have deleterious effects on inflammatory processes post-sepsis, due to a defect in the proper regulation of TH-specific cytokine expression.

  1. Immunization with Paracoccidioides brasiliensis radioattenuated yeast cells induces Th1 immune response in Balb/C mice

    International Nuclear Information System (INIS)

    Martins, Estefania M.N.; Andrade, Antero S.R.; Resende, Maria Aparecida de; Reis, Bernardo S.; Goes, Alfredo M.

    2009-01-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America. To date, there is no effective vaccine. In our laboratory yeast cells of P. brasiliensis were attenuated by gamma irradiation. We defined an absorbed dose in which the pathogen loses the reproductive ability, while retaining the morphology, the synthesis and secretion of proteins and the oxidative metabolism. The immunization with these cells was able to confer protection in BALB/c mice. The aim of the present work was evaluate the immune response pathway activated in mice immunized with P. brasiliensis radioattenuated yeast cells. The protector effect was evaluated in BALB/c mice groups immunized once or twice, respectively. Each group was divided in three sub groups that were challenge 30, 45 or 60 days after the immunization. These groups were called G1A, G1B and G1C in the group immunized once and G2A, G2B and G2C in the group immunized twice. Recovery of CFUs and cytokines determination (IFN - γ, IL - 10 and IL IV 4) were performed three months post challenge. Quantitative RT-PCR was the method of choice used to quantify the expression of cytokines. The sera were collected weekly to evaluate the IgG antibody titers and the IgG1 and IgG2a pattern in the course of infection. A significant reduction in CFUs recovery was verified 90 days post challenge in mice submitted to one immunization: 73.0%, 96.0% and 76.3% for sub-groups G1A, G1B and G1C, respectively. In the group submitted to two immunizations, a remarkable increase in the protection was obtained. No CFUs was recovered from sub-groups G2B and G2C and very few CFUs (reduction of 98.6%) were recovered from the lungs of sub group G2A. In mice submitted to one immunization, Th1 and Th2 cytokines were simultaneously produced. In the group submitted to two immunizations, levels of IL-10 and IL-4 were very low, while IFN-γ production was maintained indicating that a Th1 pattern was dominant. For

  2. Immunization with Paracoccidioides brasiliensis radioattenuated yeast cells induces Th1 immune response in Balb/C mice

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Estefania M.N.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: estefaniabio@yahoo.com.br, e-mail: antero@cdtn.br; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: maresend@mono.icb.ufmg.br; Reis, Bernardo S.; Goes, Alfredo M. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia], e-mail: goes@mono.icb.ufmg.br, e-mail: brsgarbi@mono.icb.ufmg.br

    2009-07-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America. To date, there is no effective vaccine. In our laboratory yeast cells of P. brasiliensis were attenuated by gamma irradiation. We defined an absorbed dose in which the pathogen loses the reproductive ability, while retaining the morphology, the synthesis and secretion of proteins and the oxidative metabolism. The immunization with these cells was able to confer protection in BALB/c mice. The aim of the present work was evaluate the immune response pathway activated in mice immunized with P. brasiliensis radioattenuated yeast cells. The protector effect was evaluated in BALB/c mice groups immunized once or twice, respectively. Each group was divided in three sub groups that were challenge 30, 45 or 60 days after the immunization. These groups were called G1A, G1B and G1C in the group immunized once and G2A, G2B and G2C in the group immunized twice. Recovery of CFUs and cytokines determination (IFN - {gamma}, IL - 10 and IL IV 4) were performed three months post challenge. Quantitative RT-PCR was the method of choice used to quantify the expression of cytokines. The sera were collected weekly to evaluate the IgG antibody titers and the IgG1 and IgG2a pattern in the course of infection. A significant reduction in CFUs recovery was verified 90 days post challenge in mice submitted to one immunization: 73.0%, 96.0% and 76.3% for sub-groups G1A, G1B and G1C, respectively. In the group submitted to two immunizations, a remarkable increase in the protection was obtained. No CFUs was recovered from sub-groups G2B and G2C and very few CFUs (reduction of 98.6%) were recovered from the lungs of sub group G2A. In mice submitted to one immunization, Th1 and Th2 cytokines were simultaneously produced. In the group submitted to two immunizations, levels of IL-10 and IL-4 were very low, while IFN-{gamma} production was maintained indicating that a Th1 pattern was

  3. Staphylococcus aureus Esx Factors Control Human Dendritic Cell Functions Conditioning Th1/Th17 Response

    Directory of Open Access Journals (Sweden)

    Melania Cruciani

    2017-07-01

    Full Text Available The opportunistic pathogen Staphylococcus aureus (S. aureus is a major cause of nosocomial- and community-acquired infections. In addition, many antibiotic-resistant strains are emerging worldwide, thus, there is an urgent unmet need to pinpoint novel therapeutic and prophylactic strategies. In the present study, we characterized the impact of infection with the pandemic methicillin-resistant USA300 S. aureus strain on human primary dendritic cells (DC, key initiators and regulators of immune responses. In particular, among staphylococcal virulence factors, the function of EsxA and EsxB, two small acidic dimeric proteins secreted by the type VII-like secretion system Ess (ESAT-6-like secretion system, was investigated in human DC setting. A comparative analysis of bacterial entry, replication rate as well as DC maturation, apoptosis, signaling pathway activation and cytokine production was performed by using wild type (wt USA300 and three isogenic mutants carrying the deletion of esxA (ΔesxA, esxB (ΔesxB, or both genes (ΔesxAB. The S. aureus mutant lacking only the EsxA protein (ΔesxA stimulated a stronger pro-apoptotic phenotype in infected DC as compared to wt USA300, ΔesxAB, and ΔesxB strains. When the mutant carrying the esxB deletion (ΔesxB was analyzed, a higher production of both regulatory and pro-inflammatory mediators was found in the infected DC with respect to those challenged with the wt counterpart and the other esx mutants. In accordance with these data, supernatant derived from ΔesxB-infected DC promoted a stronger release of both IFN-γ and IL-17 from CD4+ T cells as compared with those conditioned with supernatants derived from wild type USA300-, ΔesxAB-, and ΔesxA-infected cultures. Although, the interaction of S. aureus with human DC is not yet fully understood, our data suggest that both cytokine production and apoptotic process are modulated by Esx factors, thus indicating a possible role of these proteins in the

  4. Selective targeting of pro-inflammatory Th1 cells by microRNA-148a-specific antagomirs in vivo.

    Science.gov (United States)

    Maschmeyer, Patrick; Petkau, Georg; Siracusa, Francesco; Zimmermann, Jakob; Zügel, Franziska; Kühl, Anja Andrea; Lehmann, Katrin; Schimmelpfennig, Sarah; Weber, Melanie; Haftmann, Claudia; Riedel, René; Bardua, Markus; Heinz, Gitta Anne; Tran, Cam Loan; Hoyer, Bimba Franziska; Hiepe, Falk; Herzog, Sebastian; Wittmann, Jürgen; Rajewsky, Nikolaus; Melchers, Fritz Georg; Chang, Hyun-Dong; Radbruch, Andreas; Mashreghi, Mir-Farzin

    2018-05-01

    In T lymphocytes, expression of miR-148a is induced by T-bet and Twist1, and is specific for pro-inflammatory Th1 cells. In these cells, miR-148a inhibits the expression of the pro-apoptotic protein Bim and promotes their survival. Here we use sequence-specific cholesterol-modified oligonucleotides against miR-148a (antagomir-148a) for the selective elimination of pro-inflammatory Th1 cells in vivo. In the murine model of transfer colitis, antagomir-148a treatment reduced the number of pro-inflammatory Th1 cells in the colon of colitic mice by 50% and inhibited miR-148a expression by 71% in the remaining Th1 cells. Expression of Bim protein in colonic Th1 cells was increased. Antagomir-148a-mediated reduction of Th1 cells resulted in a significant amelioration of colitis. The effect of antagomir-148a was selective for chronic inflammation. Antigen-specific memory Th cells that were generated by an acute immune reaction to nitrophenylacetyl-coupled chicken gamma globulin (NP-CGG) were not affected by treatment with antagomir-148a, both during the effector and the memory phase. In addition, antibody titers to NP-CGG were not altered. Thus, antagomir-148a might qualify as an effective drug to selectively deplete pro-inflammatory Th1 cells of chronic inflammation without affecting the protective immunological memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. P2X7 receptor drives Th1 cell differentiation and controls the follicular helper T cell population to protect against Plasmodium chabaudi malaria.

    Directory of Open Access Journals (Sweden)

    Érika Machado de Salles

    2017-08-01

    Full Text Available A complete understanding of the mechanisms underlying the acquisition of protective immunity is crucial to improve vaccine strategies to eradicate malaria. However, it is still unclear whether recognition of damage signals influences the immune response to Plasmodium infection. Adenosine triphosphate (ATP accumulates in infected erythrocytes and is released into the extracellular milieu through ion channels in the erythrocyte membrane or upon erythrocyte rupture. The P2X7 receptor senses extracellular ATP and induces CD4 T cell activation and death. Here we show that P2X7 receptor promotes T helper 1 (Th1 cell differentiation to the detriment of follicular T helper (Tfh cells during blood-stage Plasmodium chabaudi malaria. The P2X7 receptor was activated in CD4 T cells following the rupture of infected erythrocytes and these cells became highly responsive to ATP during acute infection. Moreover, mice lacking the P2X7 receptor had increased susceptibility to infection, which correlated with impaired Th1 cell differentiation. Accordingly, IL-2 and IFNγ secretion, as well as T-bet expression, critically depended on P2X7 signaling in CD4 T cells. Additionally, P2X7 receptor controlled the splenic Tfh cell population in infected mice by promoting apoptotic-like cell death. Finally, the P2X7 receptor was required to generate a balanced Th1/Tfh cell population with an improved ability to transfer parasite protection to CD4-deficient mice. This study provides a new insight into malaria immunology by showing the importance of P2X7 receptor in controlling the fine-tuning between Th1 and Tfh cell differentiation during P. chabaudi infection and thus in disease outcome.

  6. The intravenous injection of oxidized LDL- or Apolipoprotein B100 – Coupled splenocytes promotes Th1 polarization in wildtype and Apolipoprotein E – Deficient mice

    International Nuclear Information System (INIS)

    Steinmetz, Martin; Ponnuswamy, Padmapriya; Laurans, Ludivine; Esposito, Bruno; Tedgui, Alain; Mallat, Ziad

    2015-01-01

    Background: Th1 responses in atherosclerosis are mainly associated with the aggravation of atherosclerotic plaques, whereas Th2 responses lead to a less pronounced disease in mouse models. The fixation of antigens on cells by means of ethylene carbodiimide (ECDI), and subsequent injection of these antigen-coupled splenocytes (Ag-SP) to induce tolerance against the attached antigens, has been successfully used to treat murine type 1 diabetes or encephalomyelitis in. We analyzed this approach in a mouse model for atherosclerosis. Methods and results: OTII-transgenic mice that were treated with a single dose of 5 × 10 7 OVA-coupled splenocytes (OVA-SP), had decreased splenocyte proliferation, and lower IFNγ production in vitro upon antigen recall. However, in vivo CD4 cell activation was increased. To try lipoprotein-derived, “atherosclerosis-associated” antigens, we first tested human oxidized LDL. In wild type mice, an increase of IFNγ production upon in vitro recall was detected in the oxLDL-SP group. In Apolipoprotein E − deficient (ApoE−/−) mice that received oxLDL-SP every 5 weeks for 20 weeks, we did not find any difference of atherosclerotic plaque burden, but again increased IFNγ production. To overcome xenogenous limitations, we then examined the effects of mouse Apolipoprotein B100 peptides P3 and P6. ApoB100-SP treatment again promoted a more IFNγ pronounced response upon in vitro recall. Flow cytometry analysis of cytokine secreting spleen cells revealed CD4 positive T cells to be mainly the source for IFNγ. In ApoE−/− mice that were administered ApoB100-SP during 20 weeks, the atherosclerotic plaque burden in aortic roots as well as total aorta was unchanged compared to PBS treated controls. Splenocyte proliferation upon antigen recall was not significantly altered in ApoB100-SP treated ApoE−/− mice. Conclusion: Although we did not observe a relevant anti-atherosclerotic benefit, the treatment with antigen

  7. The intravenous injection of oxidized LDL- or Apolipoprotein B100 – Coupled splenocytes promotes Th1 polarization in wildtype and Apolipoprotein E – Deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Steinmetz, Martin, E-mail: martin.steinmetz@ukb.uni-bonn.de [INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris (France); Internal Medicine II, University Hospital Bonn, 53105 Bonn (Germany); Ponnuswamy, Padmapriya; Laurans, Ludivine; Esposito, Bruno; Tedgui, Alain [INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris (France); Mallat, Ziad [INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris (France); Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke' s Hospital, Cambridge, CB2 2QQ (United Kingdom)

    2015-08-14

    Background: Th1 responses in atherosclerosis are mainly associated with the aggravation of atherosclerotic plaques, whereas Th2 responses lead to a less pronounced disease in mouse models. The fixation of antigens on cells by means of ethylene carbodiimide (ECDI), and subsequent injection of these antigen-coupled splenocytes (Ag-SP) to induce tolerance against the attached antigens, has been successfully used to treat murine type 1 diabetes or encephalomyelitis in. We analyzed this approach in a mouse model for atherosclerosis. Methods and results: OTII-transgenic mice that were treated with a single dose of 5 × 10{sup 7} OVA-coupled splenocytes (OVA-SP), had decreased splenocyte proliferation, and lower IFNγ production in vitro upon antigen recall. However, in vivo CD4 cell activation was increased. To try lipoprotein-derived, “atherosclerosis-associated” antigens, we first tested human oxidized LDL. In wild type mice, an increase of IFNγ production upon in vitro recall was detected in the oxLDL-SP group. In Apolipoprotein E − deficient (ApoE−/−) mice that received oxLDL-SP every 5 weeks for 20 weeks, we did not find any difference of atherosclerotic plaque burden, but again increased IFNγ production. To overcome xenogenous limitations, we then examined the effects of mouse Apolipoprotein B100 peptides P3 and P6. ApoB100-SP treatment again promoted a more IFNγ pronounced response upon in vitro recall. Flow cytometry analysis of cytokine secreting spleen cells revealed CD4 positive T cells to be mainly the source for IFNγ. In ApoE−/− mice that were administered ApoB100-SP during 20 weeks, the atherosclerotic plaque burden in aortic roots as well as total aorta was unchanged compared to PBS treated controls. Splenocyte proliferation upon antigen recall was not significantly altered in ApoB100-SP treated ApoE−/− mice. Conclusion: Although we did not observe a relevant anti-atherosclerotic benefit, the treatment with antigen

  8. CD4+ T helper cells and regulatory T cells in active lupus nephritis: an imbalance towards a predominant Th1 response?

    Science.gov (United States)

    Mesquita, D; Kirsztajn, G Mastroianni; Franco, M F; Reis, L A; Perazzio, S F; Mesquita, F V; Ferreira, V da Silva; Andrade, L E Coelho; de Souza, A W Silva

    2018-01-01

    The objective of this study was to evaluate the frequency of CD4 + T cell subsets in peripheral blood mononuclear cells (PBMC), urine and renal tissue from patients with lupus nephritis (LN). PBMC and urinary cells were collected from 17 patients with active LN, 20 disease controls (DC) with primary glomerulonephritis and 10 healthy controls (HC) and were analysed by flow cytometry with markers for T helper type 1 (Th1), Th2, Th17 and regulatory T cells (T reg ) cells. T cell subsets were assessed by immunohistochemistry from LN biopsy specimens from 12 LN patients. T cell subtypes in PBMC were re-evaluated at 6 months of therapy. CD4 + T cells were decreased in PBMC in LN compared with DC and HC (P = 0·0001). No differences were observed in urinary CD4 + T cell subsets between LN and DC. The frequency of urinary Th17 cells was higher in patients with non-proliferative than in proliferative LN (P = 0·041). CD3 + and T-box 21 ( Tbet+) cells were found in glomeruli and interstitium of LN patients, while forkhead box protein 3 (FoxP3), retinoid-related orphan receptor gamma (ROR-γ) and GATA binding protein 3 (GATA-3) were present only in glomeruli. Th1 cells in PBMC were correlated negatively with urinary Th1 cells (Rho = -0·531; P = 0·028) and with T bet in renal interstitium (Rho = -0·782; P = 0·004). At 6 months, LN patients showed an increase in Th17 cells in PBMC. In conclusion, the inverse association between Th1 cells from PBMC and urinary/renal tissue indicate a role for Th1 in LN pathophysiology. Urinary Th17 cells were associated with less severe LN, and Th17 increased in PBMC during therapy. Urinary CD4 + T cells were not different between LN and DC. © 2017 British Society for Immunology.

  9. Total glucosides of peony attenuates 2,4,6-trinitrobenzene sulfonic acid/ethanol-induced colitis in rats through adjustment of TH1/TH2 cytokines polarization.

    Science.gov (United States)

    Zhang, Yabing; Zhou, Rui; Zhou, Feng; Cheng, Hong; Xia, Bing

    2014-01-01

    The present study is to investigate effects of total glucosides of peony (TGP) on 2,4,6-trinitrobenzene sulfonic acid (TNBS)/ethanol-induced colitis in rats and to explore potential clinical use of TGP for treatment of inflammatory bowel disease. Sixty Sprague-Dawley rats were randomly grouped into normal controls, model controls, sulfasalazine (SASP) controls (100 mg/kg/day), and low, medium, and high-dose TGP groups (25, 50, and 100 mg/kg/day, respectively). 24 h following colonic instillation of TNBS, TGP, and SASP were given by gastric gavage three times a day for 7 days. Disease activity index (DAI), colon macroscopic damage index (CMDI), histopathological score (HPS), and myeloperoxidase (MPO) activity were evaluated. Levels of serum TNF-α, IL-1β, and IL-10 were measured by ELISA, and expression of TNF-α, IL-1β, and IL-10 mRNA and protein in colonic tissues was detected by RT-PCR and western blot, respectively. Compared with rats in the model controls, TGP (50 or 100 mg/kg/day)-treated rats with TNBS/ethanol-induced colitis showed significant improvements of DAI, CMDI, HPS, and MPO activity. Moreover, administration of TGP (50 or 100 mg/kg/day) decreased the up-regulated levels of serum TNF-α and IL-1β, and expression of TNF-α and IL-1β mRNA and protein in colonic tissues, and increased the serum IL-10 and colonic IL-10 mRNA and protein level. And there was no significant difference compared with administration of SASP (P > 0.05). TGP attenuates TNBS/ethanol-induced colitis in rats and its efficacy is similar to SASP, the potential mechanism might be related to the adjustment of Th1/Th2 cytokines polarization by decreasing pro-inflammatory cytokine TNF-α and IL-1β, and increasing anti-inflammatory cytokine IL-10.

  10. Preventative effect of an herbal preparation (HemoHIM) on development of airway inflammation in mice via modulation of Th1/2 cells differentiation.

    Science.gov (United States)

    Kim, Jong-Jin; Cho, Hyun Wook; Park, Hae-Ran; Jung, Uhee; Jo, Sung-Kee; Yee, Sung-Tae

    2013-01-01

    HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe) is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4(+) T cells isolated from C57BL/6 mouse spleens were cultured with or without HemoHIM. To examine airway inflammation, C57BL/6 mice were fed HemoHIM for 4 weeks before sensitization and provocation with ovalbumin (OVA). In an in vitro experiment, naive CD4(+) T cells displayed increased Th1 (IFN-γ(+) cell) as well as decreased Th2 (IL-4(+) cell) differentiation in a HemoHIM concentration-dependent manner. Furthermore, in an airway inflammation mice model, eosinophil numbers in BALF, serum levels of OVA-specific IgE and IgG1, and cytokine (IL-4, IL-5, and IL-13) levels in BALF and the supernatant of splenocytes all decreased upon HemoHIM (100 mg/kg body weight) pretreatment (4 weeks). These results show that HemoHIM attenuated allergic airway inflammation in the mouse model through regulation of the Th1/Th2 balance.

  11. Preventative effect of an herbal preparation (HemoHIM on development of airway inflammation in mice via modulation of Th1/2 cells differentiation.

    Directory of Open Access Journals (Sweden)

    Jong-Jin Kim

    Full Text Available HemoHIM, an herbal preparation of three edible herbs (Angelica gigas Nakai, Cnidium officinale Makino, Paeonia japonica Miyabe is known to increase the Th1 immune response as well as reduce the allergic response in human mast cells. Here, our goal was to determine whether or not HemoHIM could induce Th1 cell differentiation as well as inhibit the development of airway inflammation. To study Th1/Th2 cell differentiation, naive CD4(+ T cells isolated from C57BL/6 mouse spleens were cultured with or without HemoHIM. To examine airway inflammation, C57BL/6 mice were fed HemoHIM for 4 weeks before sensitization and provocation with ovalbumin (OVA. In an in vitro experiment, naive CD4(+ T cells displayed increased Th1 (IFN-γ(+ cell as well as decreased Th2 (IL-4(+ cell differentiation in a HemoHIM concentration-dependent manner. Furthermore, in an airway inflammation mice model, eosinophil numbers in BALF, serum levels of OVA-specific IgE and IgG1, and cytokine (IL-4, IL-5, and IL-13 levels in BALF and the supernatant of splenocytes all decreased upon HemoHIM (100 mg/kg body weight pretreatment (4 weeks. These results show that HemoHIM attenuated allergic airway inflammation in the mouse model through regulation of the Th1/Th2 balance.

  12. Induction of Th1-Biased T Follicular Helper (Tfh) Cells in Lymphoid Tissues during Chronic Simian Immunodeficiency Virus Infection Defines Functionally Distinct Germinal Center Tfh Cells.

    Science.gov (United States)

    Velu, Vijayakumar; Mylvaganam, Geetha Hanna; Gangadhara, Sailaja; Hong, Jung Joo; Iyer, Smita S; Gumber, Sanjeev; Ibegbu, Chris C; Villinger, Francois; Amara, Rama Rao

    2016-09-01

    Chronic HIV infection is associated with accumulation of germinal center (GC) T follicular helper (Tfh) cells in the lymphoid tissue. The GC Tfh cells can be heterogeneous based on the expression of chemokine receptors associated with T helper lineages, such as CXCR3 (Th1), CCR4 (Th2), and CCR6 (Th17). However, the heterogeneous nature of GC Tfh cells in the lymphoid tissue and its association with viral persistence and Ab production during chronic SIV/HIV infection are not known. To address this, we characterized the expression of CXCR3, CCR4, and CCR6 on GC Tfh cells in lymph nodes following SIVmac251 infection in rhesus macaques. In SIV-naive rhesus macaques, only a small fraction of GC Tfh cells expressed CXCR3, CCR4, and CCR6. However, during chronic SIV infection, the majority of GC Tfh cells expressed CXCR3, whereas the proportion of CCR4(+) cells did not change, and CCR6(+) cells decreased. CXCR3(+), but not CXCR3(-), GC Tfh cells produced IFN-γ (Th1 cytokine) and IL-21 (Tfh cytokine), whereas both subsets expressed CD40L following stimulation. Immunohistochemistry analysis demonstrated an accumulation of CD4(+)IFN-γ(+) T cells within the hyperplastic follicles during chronic SIV infection. CXCR3(+) GC Tfh cells also expressed higher levels of ICOS, CCR5, and α4β7 and contained more copies of SIV DNA compared with CXCR3(-) GC Tfh cells. However, CXCR3(+) and CXCR3(-) GC Tfh cells delivered help to B cells in vitro for production of IgG. These data demonstrate that chronic SIV infection promotes expansion of Th1-biased GC Tfh cells, which are phenotypically and functionally distinct from conventional GC Tfh cells and contribute to hypergammaglobulinemia and viral reservoirs. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. IL-1β promotes the differentiation of polyfunctional human CCR6+CXCR3+ Th1/17 cells that are specific for pathogenic and commensal microbes1

    Science.gov (United States)

    Duhen, Thomas; Campbell, Daniel J

    2014-01-01

    In humans, Th1/17 cells, identified by co-expression of the chemokine receptors CCR6 and CXCR3, have been proposed to be highly pathogenic in several autoimmune disorders due in part to their expression of the pro-inflammatory cytokines IL-17, IFN-γ and GM-CSF. However, their developmental requirements, relationship with “classic” Th17 and Th1 cells and physiological role in normal immune responses are not well understood. Here, we examined CCR6+CXCR3+ Th1/17 cells from healthy individuals, and found that ex vivo those cells produced the effector cytokines IL-17, IL-22 and IFN-γ in all possible combinations, and were highly responsive to both IL-12 and IL-23. Moreover, although the antigen specificity of CCR6+CXCR3+ Th1/17 cells showed substantial overlap with that of Th1 and Th17 cells, this population was enriched in cells recognizing certain extracellular bacteria and expressing the intestinal homing receptor integrin β7. Finally, we identified IL-1β as a key cytokine that renders Th17 cells sensitive to IL-12, and both cytokines together potently induced the differentiation of cells that produce IL-17, IFN-γ and GM-CSF. Therefore, interfering with IL-1β and IL-12 signaling in Th17 cells during inflammation may be a promising therapeutic approach to reduce their differentiation into “pathogenic” CCR6+CXCR3+ Th1/17 cells in patients with autoimmune diseases. PMID:24890729

  14. Thymic irradiation inhibits the rapid recovery of TH1 but not TH2-like functions of CD4+ T cells after total lymphoid irradiation

    International Nuclear Information System (INIS)

    Bass, H.; Adkins, B.; Strober, S.

    1991-01-01

    Four to six weeks after total lymphoid irradiation (TLI), there is a selective deficit in the CD4+ T cells which secrete IL-2, proliferate in the MLR, and induce GVHD (Th1-like functions). A similar deficit in CD4+ T cells which secrete IL-4 and help antibody responses (Th2-like functions) is not observed. In the present study, shielding of the thymus with lead during TLI increased the Th1-like functions of CD4+ cells. Mice without thymus shields showed a marked selective reduction in the medullary stromal cells identified with the monoclonal antibody, MD1, and the severe reduction was prevented with thymus shields. Thus, shielding the thymus prevents the depletion of thymic medullary stromal cells and allows for a rapid recovery of Th1-like functions in the mouse spleen after TLI. Th2-like functions recover rapidly after TLI whether or not the thymus is irradiated

  15. Batf3-dependent CD8α+ Dendritic Cells Aggravates Atherosclerosis via Th1 Cell Induction and Enhanced CCL5 Expression in Plaque Macrophages.

    Science.gov (United States)

    Li, Yalin; Liu, Xueyan; Duan, Wei; Tian, Hua; Zhu, Guangming; He, Hao; Yao, Shutong; Yi, Shuying; Song, Wengang; Tang, Hua

    2017-04-01

    Dendritic cells (DCs) play an important role in controlling T cell-mediated adaptive immunity in atherogenesis. However, the role of the basic leucine zipper transcription factor, ATF-like 3 (Batf3)-dependent CD8α + DC subset in atherogenesis remains unclear. Here we show that Batf3 -/- Apoe -/- mice, lacking CD8α + DCs, exhibited a significant reduction in atherogenesis and T help 1 (Th1) cells compared with Apoe -/- controls. Then, we found that CD8α + DCs preferentially induce Th1 cells via secreting interleukin-12 (IL-12), and that the expression of interferon-gamma (IFN-γ)or chemokine (C-C motif) ligand 5 (CCL5) in aorta were significantly decreased in Batf3 -/- Apoe -/- mice. We further demonstrated that macrophages were the major CCL5-expressing cells in the plaque, which was significantly reduced in Batf3 -/- Apoe -/- mice. Furthermore, we found CCL5 expression in macrophages was promoted by IFN-γ. Finally, we showed that Batf3 -/- Apoe -/- mice displayed decreased infiltration of leukocytes in the plaque. Thus, CD8α + DCs aggravated atherosclerosis, likely by inducing Th1 cell response, which promoted CCL5 expression in macrophages and increased infiltration of leukocytes and lesion inflammation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Changes in the Ratio of Tc1/Tc2 and Th1/Th2 Cells but Not in Subtypes of NK-Cells in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Yayi Hou

    2007-06-01

    Full Text Available It has been suggested that natural killer (NK cell activity and Th1 immunitymay be involved in the pathogenesis of preeclampsia. This study aimed to investigate theimmunophenotypes of NK cells and type 1/type 2 immunity in both decidua and maternalperipheral blood between normal (n=11 and preeclamptic pregnant women (n=20 by flowcytometry. The results showed that no significant difference was observed between patientsand controls by detecting CD56+ CD69+ and CD56+ CD94+ NK cells in both peripheralblood and decidua. Moreover, in preeclamptic patients, decreased percentages of Tc2 andTh2 cells and the increased ratios of Tc1/Tc2 were determined in both decidua andmaternal peripheral blood. In addition, the ratio of Th1/Th2 in peripheral blood alsoincreased. There was no significant difference of immunophenotypes of uNK cells betweenpreeclampsia and normal pregnancy. Local decidua and systematic immunity did notcorrelate with each other. These results suggest that the type 1/type 2 immunity shifted totype 1 immunity including Th1 and Tc1 cells may contribute to the patho-genesis ofpreeclampsia.

  17. Alleviation of collagen-induced arthritis by the benzoxathiole derivative BOT-4-one in mice: Implication of the Th1- and Th17-cell-mediated immune responses.

    Science.gov (United States)

    Kim, Byung-Hak; Yoon, Bo Ruem; Kim, Eun Kyoung; Noh, Kum Hee; Kwon, Sun-Ho; Yi, Eun Hee; Lee, Hyun Gyu; Choi, Jung Sook; Kang, Seong Wook; Park, In-Chul; Lee, Won-Woo; Ye, Sang-Kyu

    2016-06-15

    Autoimmune rheumatoid arthritis is characterized by chronic inflammation and hyperplasia in the synovial joints. Although the cause of rheumatoid arthritis is largely unknown, substantial evidence has supported the importance of immune cells and inflammatory cytokines in the initiation and progression of this disease. Herein, we demonstrated that the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) alleviated type II collagen-induced arthritis in a mouse model. The levels of pro-inflammatory cytokines are elevated in both human patients with rheumatoid arthritis and mice with collagen-induced arthritis. BOT-4-one treatment reduced the levels of pro-inflammatory cytokines in mice and endotoxin-stimulated macrophages. BOT-4-one treatment suppressed the polarization of Th1- and Th17-cell subsets by inhibiting the expression and production of their lineage-specific master transcription factors and cytokines, as well as activation of signal transducer and activator of transcription proteins. In addition, BOT-4-one inhibited mitogen-activated protein kinase and NF-kappaB signaling as well as the transcriptional activities and DNA-binding of transcription factors, including activator protein-1, cAMP response element-binding protein and NF-kappaB. Our results suggest that BOT-4-one may have therapeutic potential for the treatment of chronic inflammation associated with autoimmune rheumatoid arthritis. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Role of T-bet, the master regulator of Th1 cells, in the cytotoxicity of murine CD4+ T cells.

    Science.gov (United States)

    Eshima, Koji; Misawa, Kana; Ohashi, Chihiro; Iwabuchi, Kazuya

    2018-05-01

    Although CD4 + T cells are generally regarded as helper T cells, some activated CD4 + T cells have cytotoxic properties. Given that CD4 + cytotoxic T lymphocytes (CTLs) often secrete IFN-γ, CTL activity among CD4 + T cells may be attributable to Th1 cells, where a T-box family molecule, T-bet serves as the "master regulator". However, although the essential contribution of T-bet to expression of IFN-γ has been well-documented, it remains unclear whether T-bet is involved in CD4 + T cell-mediated cytotoxicity. In this study, to investigate the ability of T-bet to confer cytolytic activity on CD4 + T cells, the T-bet gene (Tbx21) was introduced into non-cytocidal CD4 + T cell lines and their cytolytic function analyzed. Up-regulation of FasL (CD178), which provided the transfectant with cytotoxicity, was observed in Tbx21transfected CD4 + T cells but not in untransfected parental cells. In one cell line, T-bet transduction also induced perforin gene (Prf1) expression and Tbx21 transfectants efficiently killed Fas - target cells. Although T-bet was found to repress up-regulation of CD40L (CD154), which controls FasL-mediated cytolysis, the extent of CD40L up-regulation on in vitro-differentiated Th1 cells was similar to that on Th2 cells, suggesting the existence of a compensatory mechanism. These results collectively indicate that T-bet may be involved in the expression of genes, such as FasL and Prf1, which confer cytotoxicity on Th1 cells. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  19. Expression of Toll-Like Receptor 2 by Dendritic Cells Is Essential for the DnaJ-ΔA146Ply-Mediated Th1 Immune Response against Streptococcus pneumoniae.

    Science.gov (United States)

    Wang, Xiaofang; Yuan, Taixian; Yuan, Jun; Su, Yufeng; Sun, Xiaoyu; Wu, Jingwen; Zhang, Hong; Min, Xun; Zhang, Xuemei; Yin, Yibing

    2018-03-01

    The fusion protein DnaJ-ΔA146Ply could induce cross-protective immunity against pneumococcal infection via mucosal and subcutaneous immunization in mice in the absence of additional adjuvants. DnaJ and Ply are both Toll-like receptor 4 (TLR4) but not TLR2 ligands. However, we found that TLR2 -/- mice immunized subcutaneously with DnaJ-ΔA146Ply showed significantly lower survival rates and higher bacterial loads in nasal washes than did wild-type (WT) mice after being challenged with pneumococcal strain D39 or 19F. The gamma interferon (IFN-γ) level in splenocytes decreased in TLR2 -/- mice, indicating that Th1 immunity elicited by DnaJ-ΔA146Ply was impaired in these mice. We explored the mechanism of protective immunity conferred by DnaJ-ΔA146Ply and the role of TLR2 in this process. DnaJ-ΔA146Ply effectively promoted dendritic cell (DC) maturation via TLR4 but not the TLR2 signaling pathway. In a DnaJ-ΔA146Ply-treated DC and naive CD4 + T cell coculture system, the deficiency of TLR2 in DCs resulted in a significant decline of IFN-γ production and Th1 subset differentiation. The same effect was observed in adoptive-transfer experiments. In addition, TLR2 -/- DCs showed remarkably lower levels of the Th1-polarizing cytokine IL-12p70 than did WT DCs, suggesting that TLR2 was indispensable for DnaJ-ΔA146Ply-induced IL-12 production and Th1 proliferation. Thus, our findings illustrate that dendritic cell expression of TLR2 is essential for optimal Th1 immune response against pneumococci in mice immunized subcutaneously with DnaJ-ΔA146Ply. Copyright © 2018 American Society for Microbiology.

  20. A sea urchin lectin, SUL-1, from the Toxopneustid sea urchin induces DC maturation from human monocyte and drives Th1 polarization in vitro

    International Nuclear Information System (INIS)

    Takei, Masao; Nakagawa, Hideyuki

    2006-01-01

    The sea urchin Toxopneustes pileolus belonging to the family Toxopneustidae, they have well-developed globiferous pedicellariae with pharmacologically active substances. We have purified a novel sea urchin lectin-1 (SUL-1) from the large globiferous pedicellariae of T. pileolus. Dendritic cells (DC) are professional APC and play a pivotal role in controlling immune responses. This study investigated whether SUL-1 can drive DC maturation from human immature monocyte-derived DC in vitro. Human monocytes were cultured with GM-CSF and IL-4 for 6 days followed by another 1 day in the presence of SUL-1 or LPS. DC harvested on day 7 were examined using functional assays. The expression levels of CD1a, CD80, CD83, CD86 and HLA-DR as expressed by mean fluorescence intensity (MFI) on DC differentiated from immature DC after culture with 1.0 μg/ml of SUL-1 for 1 day were enhanced and decreased endocytic activity. SUL-1-treated DC also displayed enhanced T cell stimulatory capacity in an MLR, as measured by T cell proliferation. Cell surface expression of CD80, CD83 and CD86 on SUL-1-treated DC was inhibited by anti-DC-SIGN mAb, while anti-DC-SIGN mAb had no influence on allogeneic T cell proliferation by SUL-1-treated DC. DC differentiated with SUL-1 induced the differentiation of naive T cell towards a helper T cell type 1 (Th1) response at DC/T (1:5) cells ratio depending on IL-12 secretion. In CTL assay, the production of IFN-γ and 51 Cr release on SUL-1-treated DC were more augmented than of immature DC or LPS-treated DC. SUL-1-treated DC expressed CCR7 and had a high migration to MIP-3β. Intracellular Ca 2+ mobilization in SUL-1-treated DC was also induced by MIP-3β. These results suggest that SUL-1 bindings to DC-SIGN on surface of immature DC may lead to differentiate DC from immature DC. Moreover, it suggests that SUL-1 may be used on DC-based vaccines for cancer immunotherapy

  1. A Built-In CpG Adjuvant in RSV F Protein DNA Vaccine Drives a Th1 Polarized and Enhanced Protective Immune Response

    Directory of Open Access Journals (Sweden)

    Yao Ma

    2018-01-01

    Full Text Available Human respiratory syncytial virus (RSV is the most significant cause of acute lower respiratory infection in children. However, there is no licensed vaccine available. Here, we investigated the effect of five or 20 copies of C-Class of CpG ODN (CpG-C motif incorporated into a plasmid DNA vaccine encoding RSV fusion (F glycoprotein on the vaccine-induced immune response. The addition of CpG-C motif enhanced serum binding and virus-neutralizing antibody responses in BALB/c mice immunized with the DNA vaccines. Moreover, mice vaccinated with CpG-modified vaccines, especially with the higher 20 copies, resulted in an enhanced shift toward a Th1-biased antibody and T-cell response, a decrease in pulmonary pathology and virus replication, and a decrease in weight loss after RSV challenge. This study suggests that CpG-C motif, cloned into the backbone of DNA vaccine encoding RSV F glycoprotein, functions as a built-in adjuvant capable of improving the efficacy of DNA vaccine against RSV infection.

  2. Intestinal Irradiation and Fibrosis in a Th1-Deficient Environment

    International Nuclear Information System (INIS)

    Linard, Christine; Billiard, Fabienne; Benderitter, Marc

    2012-01-01

    Purpose: Changes in the Th1/Th2 immune balance may play a role in increasing the incidence of radiation-induced toxicity. This study evaluates the consequences of Th1 deficiency on intestinal response (fibrosis and T cell trafficking) to abdominal irradiation and examines in mucosa and mesenteric lymph nodes (MLN) the differential involvement of the two Th1 pathways, T-bet/STAT1 and IL-12/STAT4, in controlling this balance in mice. Methods and Materials: Using T-bet-deficient mice (T-bet −/− ), we evaluated the mRNA and protein expression of the Th1 pathways (IFN-γ, T-bet/STAT1, and IL-12/STAT4) and the CD4 + and CD8 + populations in ileal mucosa and MLN during the first 3 months after 10 Gy abdominal irradiation. Results: The T-bet-deficient mice showed an increased fibrotic response to radiation, characterized by higher TGF-β1, col3a1 expression, and collagen deposition in mucosa compared with wild-type mice. This response was associated with drastically lower expression of IFN-γ, the hallmark Th1 cytokine. Analysis of the Th1 expression pathways, T-bet/STAT1 and IL-12/STAT4, showed their equal involvement in the failure of Th1 polarization. A minimal IFN-γ level depended on the IL-23-p19/STAT4 level. In addition, the radiation-induced deficiency in the priming of Th1 by IFN-γ was related to the defective homing capacity of CD8 + cells in the mucosa. Conclusion: Irradiation induces Th2 polarization, and the Th2 immune response may play a role in potentiating irradiation-induced intestinal collagen deposition.

  3. Intestinal Irradiation and Fibrosis in a Th1-Deficient Environment

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Christine, E-mail: christine.linard@irsn.fr [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France); Billiard, Fabienne; Benderitter, Marc [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France)

    2012-09-01

    Purpose: Changes in the Th1/Th2 immune balance may play a role in increasing the incidence of radiation-induced toxicity. This study evaluates the consequences of Th1 deficiency on intestinal response (fibrosis and T cell trafficking) to abdominal irradiation and examines in mucosa and mesenteric lymph nodes (MLN) the differential involvement of the two Th1 pathways, T-bet/STAT1 and IL-12/STAT4, in controlling this balance in mice. Methods and Materials: Using T-bet-deficient mice (T-bet{sup -/-}), we evaluated the mRNA and protein expression of the Th1 pathways (IFN-{gamma}, T-bet/STAT1, and IL-12/STAT4) and the CD4{sup +} and CD8{sup +} populations in ileal mucosa and MLN during the first 3 months after 10 Gy abdominal irradiation. Results: The T-bet-deficient mice showed an increased fibrotic response to radiation, characterized by higher TGF-{beta}1, col3a1 expression, and collagen deposition in mucosa compared with wild-type mice. This response was associated with drastically lower expression of IFN-{gamma}, the hallmark Th1 cytokine. Analysis of the Th1 expression pathways, T-bet/STAT1 and IL-12/STAT4, showed their equal involvement in the failure of Th1 polarization. A minimal IFN-{gamma} level depended on the IL-23-p19/STAT4 level. In addition, the radiation-induced deficiency in the priming of Th1 by IFN-{gamma} was related to the defective homing capacity of CD8{sup +} cells in the mucosa. Conclusion: Irradiation induces Th2 polarization, and the Th2 immune response may play a role in potentiating irradiation-induced intestinal collagen deposition.

  4. Commensal Gram-negative bacteria prime human dendritic cells for enhanced IL-23 and IL-27 expression and enhanced Th1 development

    NARCIS (Netherlands)

    Smits, Hermelijn H.; van Beelen, Astrid J.; Hessle, Christina; Westland, Robert; de Jong, Esther; Soeteman, Eelco; Wold, Agnes; Wierenga, Eddy A.; Kapsenberg, Martien L.

    2004-01-01

    Dendritic cells (DC) are the main orchestrators of specific immune responses. Depending on microbial information they encounter in peripheral tissues, they promote the development of Th1, Th2 or unpolarized Th cell responses. In this study we have investigated the immunomodulatory effect of

  5. A mucin-like peptide from Fasciola hepatica induces parasite-specific Th1-type cell immunity.

    Science.gov (United States)

    Noya, Verónica; Brossard, Natalie; Berasaín, Patricia; Rodríguez, Ernesto; Chiale, Carolina; Mazal, Daniel; Carmona, Carlos; Freire, Teresa

    2016-03-01

    Fasciolosis, caused by the liver fluke Fasciola hepatica, is a major parasitic disease of livestock that causes significant economic losses worldwide. Although drugs are effective against liver flukes, they do not prevent reinfection, and continuous treatment is costly. Moreover, resistant fluke strains are emerging. In this context, vaccination is a good alternative since it provides a cost-effective long-term prevention strategy to control fasciolosis. In this paper, we evaluate the Fhmuc peptide as a potential vaccine against fasciolosis. This peptide derives from a mucin-like protein highly expressed in the infective stage of Fasciola hepatica. Mucin-like molecules expressed by parasites can contribute to several infection processes by protecting the parasite from host proteases and recognition by the immune system. We show that the Fhmuc peptide induces Th1-like immune responses specific for F. hepatica excretion-secretion products (FhESP) with a high production of IFNγ. We also investigated whether this peptide could protect animals from infection, and present preliminary data indicating that animals treated with Fhmuc exhibited reduced liver damage compared to non-immunised animals and that this protection was associated with a recruitment of B and T lymphocytes in the peritoneum, as well as eosinophils and mature dendritic cells. These results suggest that the mucin-like peptide Fhmuc could constitute a potential vaccine candidate against fasciolosis and pave the way towards the development of vaccines against parasites.

  6. Predominance of Th1 response, increase of megakaryocytes and Kupffer cells are related to survival in Trypanosoma cruzi infected mice treated with Lycopodium clavatum.

    Science.gov (United States)

    Falkowski-Temporini, Gislaine Janaina; Lopes, Carina Ribeiro; Massini, Paula Fernanda; Brustolin, Camila Fernanda; Sandri, Patricia Flora; Ferreira, Érika Cristina; Aleixo, Denise Lessa; Pala, Nelson Roberto; de Araújo, Silvana Marques

    2016-12-01

    We investigated the number of megakaryocytes, Kupffer cells and ratios of Th1/Th2 and Th1/Th17 cytokines in survival of mice infected with Y strain of Trypanosoma cruzi and treated with Lycopodium clavatum. In a blind, randomized and controlled assay, Swiss male mice, 8weeks-old, infected with 1400 trypomastigotes (Y strain) were divided into groups and treated with: GLy - Lycopodium clavatum dynamization13c and GCI - alcohol solution 7° GL (vehicle medicine). The treatment was offered two days before infection and on the 2nd, 4th and 6th days after infection, overnight (1mL/100mL) and ad libitum. Parameters assessed were: survival rate, number of megakaryocytes and Kupffer cells, cytokines dosage (TNF-α, IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-17), Th1/Th2 and Th1/Th17 ratios. The increase in megakaryocytes, Kupffer cells, predominance of Th1 response, with increased TNF-α, IL-10, TNF-α/IL-4, TNF-α/IL-17 and decreased IL-6 IL-6/IL-4, are related to increased survival in mice infected with T. cruzi and treated with Lycopodium clavatum 13c. This result demonstrates the possibility of an alternative approach for the treatment of Chagas disease with dynamized drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Upregulation of Tim-3 on CD4(+) T cells is associated with Th1/Th2 imbalance in patients with allergic asthma.

    Science.gov (United States)

    Tang, Fei; Wang, Fukun; An, Liyun; Wang, Xianling

    2015-01-01

    T cell Ig and mucin domain-containing molecule-3 (Tim-3) is a negative regulator preferentially expressed on Th1 cells. Allergic asthma is a clinical syndrome well characterized by Th1/Th2 imbalance. To investigate the role of Tim-3 in the pathogenesis of asthma and its relationship with Th1/Th2 imbalance, a total of 40 patients with allergic asthma and 40 healthy controls were enrolled. Expression of Tim-3 and Th1/Th2 imbalance as well as the relationship between them was analyzed by flow cytometry and real-time PCR. Peripheral blood mononuclear cells (PBMCs) were cultured in vitro and anti-Tim-3 was used to block Tim-3 signaling; Th1/Th2 cytokines in the culture supernatant were detected by enzyme linked immunosorbent assay (ELISA). CD4(+) T cells and B cells were sorted and co-cultured in vitro, and anti-Tim-3 was used to block Tim-3 signaling; Total IgG/IgE in the culture supernatant was detected by ELISA. The mRNA level of T-bet and IFN-γ were significantly decreased in allergic asthma patients, while GATA-3 and IL-4 were significantly increased. Expression of Tim-3 on CD4(+) T cells was much higher in allergic asthma patients and it was negatively correlated with T-bet/GATA-3 ratio or IFN-γ/IL-4 ratio. Blocking of Tim-3 significantly increased Th1 cytokines (TNF-α and IFN-γ) and decreased Th2 cytokines (IL-4, IL-5, IL-13) in the culture supernatant of PBMCs. Blocking of Tim-3 dramatically reduced the production of IgG and IgE in the co-culture supernatant of CD4(+) T cells and B cells. In conclusion, Tim-3 was up-regulated in allergic asthma patients and related with the Th1/Th2 imbalance. Blocking of Tim-3 may be of therapeutic benefit by enhancing the Th1 cytokines response, down-regulating the Th2 cytokines response, and reducing IgG/IgE production.

  8. Cigarette Smoke Induction of Interleukin-27/WSX-1 Regulates the Differentiation of Th1 and Th17 Cells in a Smoking Mouse Model of Emphysema.

    Science.gov (United States)

    Qiu, Shi-Lin; Duan, Min-Chao; Liang, Yi; Tang, Hai-Juan; Liu, Guang-Nan; Zhang, Liang-Ming; Yang, Chao-Mian

    2016-01-01

    IFN-γ-producing CD4 + T (Th1) cells and IL-17-producing CD4 + T (Th17) cells play a critical role in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the immune regulation between Th1 and Th17 cells remains unclear. Previous studies have demonstrated that interleukin-27 (IL-27)/WSX-1 exerted pro- or anti-inflammatory effects in many acute inflammatory diseases by modulating T cell-mediated immune response, but little was known about its role in chronic inflammatory disease, especially in smoking-related lung diseases. Considering IL-27 is an important regulator in T lymphocytes immune responses and was found markedly increased in patients with COPD, we hypothesized that IL-27/WSX-1 may exert immuno-regulatory effects on the differentiation of Th1 and Th17 cells in smoking-related COPD. In this study, we aimed to evaluate the expression of IL-27 in patients with COPD and explore the role of IL-27/WSX-1 on Th1 and Th17 cells differentiation in a smoking mouse model of emphysema. We found that elevated expression of IL-27 was associated with increased proportion of Th1 cells and Th17 cells in patients with COPD and demonstrated parallel findings in cigarette smoke-exposed mice. In addition, cigarette smoke exposure upregulated the expression of IL-27R (WSX-1) by naive CD4 + T cells in mice. In vitro , IL-27 significantly augmented the secretion of IFN-γ by naive CD4 + T cells via a T-bet, p-STAT1, and p-STAT3-dependent manner, but inhibited the production of IL-17 by a ROR-γt and p-STAT1-dependent way. Furthermore, anti-IL27 treatment dramatically decreased the expression of IFN-γ-producing CD4 + T cells in cigarette smoke-exposed mice. These findings proposed that IL-27 has functions for promoting the expression of Th1 cells but inhibiting the expression of Th17 cells in vitro and IL-27 neutralization-attenuated Th1-mediated inflammation in vivo , suggesting targeting IL-27/WSX-1 may provide a new therapeutic approach for smoking

  9. Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway.

    Science.gov (United States)

    Wu, Xin; Dou, Yannong; Yang, Yan; Bian, Difei; Luo, Jinque; Tong, Bei; Xia, Yufeng; Dai, Yue

    2015-08-15

    Arctigenin, the main effective constituent of Arctium lappa L. fruit, has previously been proven to dramatically attenuate dextran sulfate sodium (DSS)-induced colitis in mice, a frequently used animal model of inflammatory bowel disease (IBD). As Th1 and Th17 cells play a crucial role in the pathogenesis of IBD, the present study addressed whether and how arctigenin exerted anti-colitis efficacy by interfering with the differentiation and activation of Th1/Th17 cells. In vitro, arctigenin was shown to markedly inhibit the differentiation of Th17 cells from naïve T cells, and moderately inhibit the differentiation of Th1 cells, which was accompanied by lowered phosphorylation of STAT3 and STAT4, respectively. In contrast, arctigenin was lack of marked effect on the differentiation of either Th2 or regulatory T cells. Furthermore, arctigenin was shown to suppress the mammalian target of rapamycin complex 1 (mTORC1) pathway in T cells as demonstrated by down-regulated phosphorylation of the downstream target genes p70S6K and RPS6, and it functioned independent of two well-known upstream kinases PI3K/AKT and ERK. Arctigenin was also able to inhibit the activity of mTORC1 by dissociating raptor from mTOR. Interestingly, the inhibitory effect of arctigenin on T cell differentiation disappeared under a status of mTORC1 overactivation via knockdown of tuberous sclerosis complex 2 (TSC2, a negative regulator of mTORC1) or pretreatment of leucine (an agonist of mTOR). In DSS-induced mice, the inhibition of Th1/Th17 responses and anti-colitis effect of arctigenin were abrogated by leucine treatment. In conclusion, arctigenin ameliorates colitis through down-regulating the differentiation of Th1 and Th17 cells via mTORC1 pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    , deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.......After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related...

  11. The Balance of Th1/Th2 and LAP+Tregs/Th17 Cells Is Crucial for Graft Survival in Allogeneic Corneal Transplantation

    Directory of Open Access Journals (Sweden)

    Shang Li

    2018-01-01

    Full Text Available Purpose. CD4+LAP+ T cells are newly discovered regulatory T cells (Tregs. The aim of this study is to investigate the balance of Th1/Th2 and LAP+Tregs/Th17 in mice after allogeneic corneal transplantation. Methods. A total of 65 mice received orthotopic penetrating transplantation. According to the survival scores of the grafts, the mice were divided into the rejection group and the survival group 3 weeks after transplantation. Th1, Th2, Th17, and regulatory T cells in the ipsilateral drainage lymph nodes and spleens were measured with flow cytometry. The related cytokines in aqueous humor were also analyzed. Results. The frequencies of Foxp3+Tregs, GARP+Tregs, and LAP+Tregs in the survival group were significantly higher than those in the rejection group. And the expression trend of CD4+LAP+ T cells and CD4+GARP+ T cells was consistent. The level of IFN-γ, TNF, IL-6, and IL-17A markedly increased in aqueous humor during corneal allograft rejection. The ratio of Th1/Th2 and Th17/LAP+Tregs significantly increased in the rejection group at the 3rd week after corneal transplantation. Conclusion. LAP+Tregs might be regarded as substitute for Foxp3+Tregs. The balance of Th1/Th2 and LAP+Tregs/Th17 is crucial for corneal allograft survival.

  12. CD4(+) memory T cells with high CD26 surface expression are enriched for Th1 markers and correlate with clinical severity of multiple sclerosis

    DEFF Research Database (Denmark)

    Krakauer, M; Sorensen, P S; Sellebjerg, F

    2006-01-01

    ) memory T lymphocytes contained the high levels of markers of Th1, activation, and effector functions and cell counts of this subset correlated with MS disease severity. This subset had lower expression of PD-1, CCR4, and L-selectin in MS than in controls. These changes were only partially normalised...

  13. Bee Venom Acupuncture Alleviates Experimental Autoimmune Encephalomyelitis by Upregulating Regulatory T Cells and Suppressing Th1 and Th17 Responses.

    Science.gov (United States)

    Lee, Min Jung; Jang, Minhee; Choi, Jonghee; Lee, Gihyun; Min, Hyun Jung; Chung, Won-Seok; Kim, Jong-In; Jee, Youngheun; Chae, Younbyoung; Kim, Sung-Hoon; Lee, Sung Joong; Cho, Ik-Hyun

    2016-04-01

    suppressing T-helper (Th) 17 and Th1 responses. These results warrant further investigation of BVA as a treatment for autoimmune disorders of the central nervous system.

  14. The existence of Th22, pure Th17 and Th1 cells in CIN and Cervical Cancer along with their frequency variation in different stages of cervical cancer

    International Nuclear Information System (INIS)

    Zhang, Wenjing; Tian, Xinli; Mumtahana, Fidia; Jiao, Jun; Zhang, Teng; Croce, Kimiko Della; Ma, Daoxin; Kong, Beihua; Cui, Baoxia

    2015-01-01

    Recently, it is found that T-helper (Th) 22 cells are involved in different types of autoimmune and tumor diseases. But, till now, no study has been carried out to understand the involvement of these cells in cervical cancer (CC). Flow cytometry was used to determine the expression of interferon gamma (IFN-γ), Interleukin-22 (IL-22), IL-17 in the peripheral blood of healthy controls (HC), CIN and cervical cancer patients. From peripheral blood mononuclear cells (PBMCs), mRNA expression levels of Aryl hydrocarbon receptor (AHR), RAR-related orphan receptor C (RORC), TNF-α and IL-6 were respectively determined. Using the method of ELISA, plasma concentrations of IL-22, IL-17 and TNF-α were examined. Th22 and Th17 cells were elevated in CC and CIN patients. Th1 cells and the plasma concentrations of IL-22 in CC patients were significantly increased compared with HC. In CC patients, an increased prevalence of Th22 cells was associated with lymph node metastases. There was a positive correlation between Th22 and Th17 cells, but an approximately negative correlation between Th22 and Th1 cells in CC patients. The mRNA expression of RORC, TNF-α and IL-6 was significantly high in CC patients. Our results indicate that there is a higher circulatory frequency of Th22, Th17 and Th1 cells in CC which may conjointly participate in the pathogenesis and growth of CC

  15. The proportion of Th1 cells, which prevail in gut mucosa, is decreased in inflammatory bowel syndrome

    NARCIS (Netherlands)

    van Damme, N.; de Keyser, F.; Demetter, P.; Baeten, D.; Mielants, H.; Verbruggen, G.; Cuvelier, C.; Veys, E. M.; de Vos, M.

    2001-01-01

    T lymphocytes and their cytokines have an important role in the regulation of immune responses in the gut and in the pathogenesis of intestinal inflammation such as in Crohn's disease. The aim of this study was to analyse the Th1/Th2 cytokine profile (IFN-gamma, IL-2, IL-4 and IL-10) in

  16. Marijuana-derived Δ-9-tetrahydrocannabinol suppresses Th1/Th17 cell-mediated delayed-type hypersensitivity through microRNA regulation.

    Science.gov (United States)

    Sido, Jessica M; Jackson, Austin R; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2016-09-01

    ∆(9)-Tetrahydrocannabinol (THC) is one of the major bioactive cannabinoids derived from the Cannabis sativa plant and is known for its anti-inflammatory properties. Delayed-type hypersensitivity (DTH) is driven by proinflammatory T helper cells including the classic inflammatory Th1 lineage as well as the more recently discovered Th17 lineage. In the current study, we investigated whether THC can alter the induction of Th1/Th17 cells involved in mBSA-induced DTH response. THC treatment (20 mg/kg) of C57BL/6 mice with DTH caused decreased swelling and infiltration of immune cells at the site of antigen rechallenge. Additionally, THC treatment decreased lymphocyte activation as well as Th1/Th17 lineage commitment, including reduced lineage-specific transcription factors and cytokines. Interestingly, while DTH caused an overexpression of miR-21, which increases Th17 differentiation via SMAD7 inhibition, and downregulation of miR-29b, an IFN-γ inhibitor, THC treatment reversed this microRNA (miR) dysregulation. Furthermore, when we transfected primary cells from DTH mice with miR-21 inhibitor or miR-29b mimic, as seen with THC treatment, the expression of target gene message was directly impacted increasing SMAD7 and decreasing IFN-γ expression, respectively. In summary, the current study suggests that THC treatment during DTH response can simultaneously inhibit Th1/Th17 activation via regulation of microRNA (miRNA) expression. • THC treatment inhibits simultaneous Th1/Th17 driven inflammation. • THC treatment corrects DTH-mediated microRNA dysregulation. • THC treatment regulates proinflammatory cytokines and transcription factors.

  17. Relationships between Th1 or Th2 iNKT cell activity and structures of CD1d-antigen complexes: meta-analysis of CD1d-glycolipids dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Xavier Laurent

    2014-11-01

    Full Text Available A number of potentially bioactive molecules can be found in nature. In particular, marine organisms are a valuable source of bioactive compounds. The activity of an α-galactosylceramide was first discovered in 1993 via screening of a Japanese marine sponge (Agelas mauritanius. Very rapidly, a synthetic glycololipid analogue of this natural molecule was discovered, called KRN7000. Associated with the CD1d protein, this α-galactosylceramide 1 (KRN7000 interacts with the T-cell antigen receptor to form a ternary complex that yields T helper (Th 1 and Th2 responses with opposing effects. In our work, we carried out molecular dynamics simulations (11.5 µs in total involving eight different ligands (conducted in triplicate in an effort to find out correlation at the molecular level, if any, between chemical modulation of 1 and the orientation of the known biological response, Th1 or Th2. Comparative investigations of human versus mouse and Th1 versus Th2 data have been carried out. A large set of analysis tools was employed including free energy landscapes. One major result is the identification of a specific conformational state of the sugar polar head, which could be correlated, in the present study, to the biological Th2 biased response. These theoretical tools provide a structural basis for predicting the very different dynamical behaviors of α-glycosphingolipids in CD1d and might aid in the future design of new analogues of 1.

  18. Leishmania donovani-reactive Th1- and Th2-like T-cell clones from individuals who have recovered from visceral leishmaniasis

    DEFF Research Database (Denmark)

    Kemp, M; Kurtzhals, J A; Bendtzen, K

    1993-01-01

    analyzed in a panel of L. donovani-reactive CD4+ human T-cell clones generated from individuals who had recovered from VL after antimonial treatment. Two of the T-cell clones produced large amounts of IL-4 without production of IFN-gamma, seven clones produced both IFN-gamma and IL-4, and eight produced...... by interleukin-4 (IL-4)-producing Th2 cells, or cure may result by Th1 cells secreting gamma interferon (IFN-gamma). The present study examined the potential of human T cells to generate Th1 or Th2 responses to L. donovani. The profiles of IFN-gamma, IL-4, and lymphotoxin secretion after antigen stimulation were...... only IFN-gamma. This is the first report of a Th1- and Th2-type response in human leishmaniasis. These results suggest that in analogy with murine models, there is a dichotomy in the human T-cell response to L. donovani infections. Preferential activation of IL-4-producing Th2-like cells may...

  19. Anti-inflammatory activity of chloroquine and amodiaquine through p21-mediated suppression of T cell proliferation and Th1 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sera; Shin, Ji Hyun; Jang, Eun Jung; Won, Hee Yeon; Kim, Hyo Kyeong; Jeong, Mi- Gyeong [College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kim, Kwang Soo [Molecular Neurobiology Laboratory, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478 (United States); Hwang, Eun Sook, E-mail: eshwang@ewha.ac.kr [College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750 (Korea, Republic of)

    2016-05-27

    Chloroquine (CQ) and amodiaquine (AQ) have been used for treating or preventing malaria for decades, and their application has expanded into treating inflammatory disease in humans. CQ and AQ are applicable for controlling rheumatoid arthritis, but their molecular mechanisms of anti-inflammatory activity remain to be elucidated. In this study, we examined the effects of CQ and AQ on T cell activation and T cell-mediated immune response. CQ had no significant effect on T cell numbers, but decreased the population of T cells with a high division rate. However, AQ treatment significantly increased the number of cells with low division rates and eliminated cells with high division rates, resulting in the inhibition of T cell proliferation triggered by T cell receptor stimulation, of which inhibition occurred in developing effector T helper and regulatory T cells, regardless of the different exogenous cytokines. Interestingly, the cyclin-dependent kinase inhibitor p21 was significantly and dose-dependently increased by CQ, and more potently by AQ, while other cell cycle regulators were unchanged. Both CQ and AQ elevated the transcription level of p21 though the activation of p53, but also blocked p21 protein degradation in the presence of cycloheximide, causing p21 protein accumulation mainly in the nucleus. Sustained treatment of developing T cells with either CQ or AQ suppressed IFN-γ production in a dose dependent manner and potently inhibited the differentiation of IFN-γ-producing Th1 cells. These results demonstrate that CQ and AQ increase the expression level of p21 and inhibit T cell proliferation and the development of IFN-γ-producing Th1 cells, thereby revealing beneficial roles in treating a wide range of chronic inflammatory diseases mediated by inflammatory T cells. -- Highlights: •T cell division rates are suppressed by chloroquine and amodiaquine treatment. •Chloroquine and amodiaquine potently increased the p21 expression. •The p21 induction is

  20. Anti-inflammatory activity of chloroquine and amodiaquine through p21-mediated suppression of T cell proliferation and Th1 cell differentiation

    International Nuclear Information System (INIS)

    Oh, Sera; Shin, Ji Hyun; Jang, Eun Jung; Won, Hee Yeon; Kim, Hyo Kyeong; Jeong, Mi- Gyeong; Kim, Kwang Soo; Hwang, Eun Sook

    2016-01-01

    Chloroquine (CQ) and amodiaquine (AQ) have been used for treating or preventing malaria for decades, and their application has expanded into treating inflammatory disease in humans. CQ and AQ are applicable for controlling rheumatoid arthritis, but their molecular mechanisms of anti-inflammatory activity remain to be elucidated. In this study, we examined the effects of CQ and AQ on T cell activation and T cell-mediated immune response. CQ had no significant effect on T cell numbers, but decreased the population of T cells with a high division rate. However, AQ treatment significantly increased the number of cells with low division rates and eliminated cells with high division rates, resulting in the inhibition of T cell proliferation triggered by T cell receptor stimulation, of which inhibition occurred in developing effector T helper and regulatory T cells, regardless of the different exogenous cytokines. Interestingly, the cyclin-dependent kinase inhibitor p21 was significantly and dose-dependently increased by CQ, and more potently by AQ, while other cell cycle regulators were unchanged. Both CQ and AQ elevated the transcription level of p21 though the activation of p53, but also blocked p21 protein degradation in the presence of cycloheximide, causing p21 protein accumulation mainly in the nucleus. Sustained treatment of developing T cells with either CQ or AQ suppressed IFN-γ production in a dose dependent manner and potently inhibited the differentiation of IFN-γ-producing Th1 cells. These results demonstrate that CQ and AQ increase the expression level of p21 and inhibit T cell proliferation and the development of IFN-γ-producing Th1 cells, thereby revealing beneficial roles in treating a wide range of chronic inflammatory diseases mediated by inflammatory T cells. -- Highlights: •T cell division rates are suppressed by chloroquine and amodiaquine treatment. •Chloroquine and amodiaquine potently increased the p21 expression. •The p21 induction is

  1. Proanthocyanidins from the bark of Metasequoia glyptostroboides ameliorate allergic contact dermatitis through directly inhibiting T cells activation and Th1/Th17 responses.

    Science.gov (United States)

    Chen, Fengyang; Ye, Xiaodi; Yang, Yadong; Teng, Tianli; Li, Xiaoyu; Xu, Shifang; Ye, Yiping

    2015-04-15

    The leaves and bark of Metasequoia glyptostroboides are used as anti-microbic, analgesic and anti-inflammatory drug for dermatic diseases in Chinese folk medicine. However, the pharmacological effects and material basis responsible for the therapeutic use of this herb have not yet been well studied. The objectives of this study were to evaluate the anti-inflammatory effects of the proanthocyanidin fraction from the bark of M. glyptostroboides (MGEB) and to elucidate its immunological mechanisms. The anti-inflammatory activity of MGEB was evaluated using 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) in mice. Its potential mechanisms were further investigated by determining its effects on Con A-induced T cell activation and Th1/Th17 responses in vitro. Both intraperitoneal injection and oral administration of MGEB significantly reduced the ear swelling in DNFB-induced ACD mice. MGEB inhibited Con A-induced proliferation and the expression levels of cell surface molecules CD69 and CD25 of T cells in vitro. MGEB also significantly decreased the production of Th1/Th17 specific cytokines (IL-2, IFN-γ and IL-17) and down-regulated their mRNA expression levels in activated T-cells. MGEB could ameliorate ACD, at least in part, through directly inhibiting T cells activation and Th1/Th17 responses. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. The female lower genital tract is a privileged compartment with IL-10 producing dendritic cells and poor Th1 immunity following Chlamydia trachomatis infection.

    Directory of Open Access Journals (Sweden)

    Ellen Marks

    Full Text Available While a primary genital tract infection with C. trachomatis stimulates partial-protection against re-infection, it may also result in severe inflammation and tissue destruction. Here we have dissected whether functional compartments exist in the genital tract that restrict Th1-mediated protective immunity. Apart from the Th1-subset, little is known about the role of other CD4(+ T cell subsets in response to a genital tract chlamydial infection. Therefore, we investigated CD4(+ T cell subset differentiation in the genital tract using RT-PCR for expression of critical transcription factors and cytokines in the upper (UGT and lower genital tract (LGT of female C57BL/6 mice in response to C. trachomatis serovar D infection. We found that the Th1 subset dominated the UGT, as IFN-γ and T-bet mRNA expression were high, while GATA-3 was low following genital infection with C. trachomatis serovar D. By contrast, IL-10 and GATA-3 mRNA dominated the LGT, suggesting the presence of Th2 cells. These functional compartments also attracted regulatory T cells (Tregs differently as increased FoxP3 mRNA expression was seen primarily in the UGT. Although IL-17A mRNA was somewhat up-regulated in the LGT, no significant change in RORγ-t mRNA expression was observed, suggesting no involvement of Th17 cells. The dichotomy between the LGT and UGT was maintained during infection by IL-10 because in IL-10-deficient mice the distinction between the two compartments was completely lost and a dramatic shift to the predominance of Th1 cells in the LGT occurred. Unexpectedly, the major source of IL-10 was CD11c(+ CD11b(+ DC, probably creating an anti-inflammatory privileged site in the LGT.

  3. TNF-α inhibitors reduce the pathological Th1 -Th17 /Th2 imbalance in cutaneous mesenchymal stem cells of psoriasis patients.

    Science.gov (United States)

    Campanati, Anna; Orciani, Monia; Lazzarini, Raffaella; Ganzetti, Giulia; Consales, Veronica; Sorgentoni, Giulia; Di Primio, Roberto; Offidani, Annamaria

    2017-04-01

    Psoriasis is a disease characterized by an imbalance between Th 1 and Th 17 and Th 2 inflammatory axes, in which cutaneous mesenchymal stem cells (MSCs) are early involved, as they show a greater relative expression of several genes encoding for Th 1 and Th 17 cytokines. Therapeutic implications of TNF-α inhibitors on differentiated skin cells have been largely described in psoriasis; however, their effects on MSCs derived from patients with psoriasis have been only partially described. The aim of this work was to evaluate the effect of TNF-α inhibitors on cytokine milieu expressed by MSCs isolated from the skin of patients with psoriasis. Resident MSCs from skin of patients with psoriasis and healthy subjects have been isolated, characterized and profiled by PCR and ELISA for the expression of 22 cytokines involved in Th 1 , Th 2 and Th 17 pathways, both before and after 12 weeks therapy with TNF-α inhibitors. The administration of TNF-α inhibitors for 12-weeks acts on MSCs as follows: it reduces the expression of several Th 1 -Th 17 cytokines whose levels are elevated at baseline (IL-6, IL-8, IL-12, IL-23A, IFN-γ, TNF-α, CCL2, CCL20, CXCL2, CXCL5, IL-17A, IL-17C, IL-17F, IL-21, G-CSF). Similarly, it enhances the expression of several Th 2 cytokines which are underexpressed at baseline (IL-2, IL-4, IL-5), reducing the expression of those overexpressed at baseline (TGF-β and IL-13). TNF-α inhibitors could contribute to reduce the pathological imbalance between the Th 1 -Th 17 vs Th 2 axis in MSCs of patients with psoriasis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4+ T cell subsets in multiple sclerosis patients.

    Science.gov (United States)

    Sacramento, Priscila M; Monteiro, Clarice; Dias, Aleida S O; Kasahara, Taissa M; Ferreira, Thaís B; Hygino, Joana; Wing, Ana Cristina; Andrade, Regis M; Rueda, Fernanda; Sales, Marisa C; Vasconcelos, Claudia Cristina; Bento, Cleonice A M

    2018-05-02

    Excessive levels of pro-inflammatory cytokines in the central nervous system (CNS) are associated with reduced serotonin (5-HT) synthesis, a neurotransmitter with diverse immune effects. In this study, we evaluated the ability of exogenous 5-HT to modulate the T-cell behavior of patients with multiple sclerosis (MS), a demyelinating autoimmune disease mediated by Th1 and Th17 cytokines. Here, 5-HT attenuated, in vitro, T-cell proliferation and Th1 and Th17 cytokines production in cell cultures from MS patients. Additionally, 5-HT reduced IFN-γ and IL-17 release by CD8 + T-cells. By contrast, 5-HT increased IL-10 production by CD4 + T-cells from MS patients. A more accurate analysis of these IL-10-secreting CD4 + T-cells revealed that 5-HT favors the expansion of FoxP3 + CD39 + regulatory T cells (Tregs) and type 1 regulatory T cells. Notably, this neurotransmitter also elevated the frequency of Treg17 cells, a novel regulatory T-cell subset. The effect of 5-HT in up-regulating CD39 + Treg and Treg17 cells was inversely correlated with the number of active brain lesions. Finally, in addition to directly reducing cytokine production by purified Th1 and Th17 cells, 5-HT enhanced in vitro Treg function. In summary, our data suggest that serotonin may play a protective role in the pathogenesis of MS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Relative Contribution of Th1 and Th17 Cells in Adaptive Immunity to Bordetella pertussis: Towards the Rational Design of an Improved Acellular Pertussis Vaccine

    Science.gov (United States)

    Ross, Pádraig J.; Allen, Aideen C.; Walsh, Kevin; Misiak, Alicja; Lavelle, Ed C.; McLoughlin, Rachel M.; Mills, Kingston H. G.

    2013-01-01

    Whooping cough caused by Bordetella pertussis is a re-emerging infectious disease despite the introduction of safer acellular pertussis vaccines (Pa). One explanation for this is that Pa are less protective than the more reactogenic whole cell pertussis vaccines (Pw) that they replaced. Although Pa induce potent antibody responses, and protection has been found to be associated with high concentrations of circulating IgG against vaccine antigens, it has not been firmly established that host protection induced with this vaccine is mediated solely by humoral immunity. The aim of this study was to examine the relative contribution of Th1 and Th17 cells in host immunity to infection with B. pertussis and in immunity induced by immunization with Pw and Pa and to use this information to help rationally design a more effective Pa. Our findings demonstrate that Th1 and Th17 both function in protective immunity induced by infection with B. pertussis or immunization with Pw. In contrast, a current licensed Pa, administered with alum as the adjuvant, induced Th2 and Th17 cells, but weak Th1 responses. We found that IL-1 signalling played a central role in protective immunity induced with alum-adsorbed Pa and this was associated with the induction of Th17 cells. Pa generated strong antibody and Th2 responses, but was fully protective in IL-4-defective mice, suggesting that Th2 cells were dispensable. In contrast, Pa failed to confer protective immunity in IL-17A-defective mice. Bacterial clearance mediated by Pa-induced Th17 cells was associated with cell recruitment to the lungs after challenge. Finally, protective immunity induced by an experimental Pa could be enhanced by substituting alum with a TLR agonist that induces Th1 cells. Our findings demonstrate that alum promotes protective immunity through IL-1β-induced IL-17A production, but also reveal that optimum protection against B. pertussis requires induction of Th1, but not Th2 cells. PMID:23592988

  6. LIGHT Is critical for IL-12 production by dendritic cells, optimal CD4+ Th1 cell response, and resistance to Leishmania major.

    Science.gov (United States)

    Xu, Guilian; Liu, Dong; Okwor, Ifeoma; Wang, Yang; Korner, Heinrich; Kung, Sam K P; Fu, Yang-Xin; Uzonna, Jude E

    2007-11-15

    Although studies indicate LIGHT (lymphotoxin (LT)-like, exhibits inducible expression and competes with HSV glycoprotein D for herpes virus entry mediator (HVEM), a receptor expressed by T lymphocytes) enhances inflammation and T cell-mediated immunity, the mechanisms involved in this process remain obscure. In this study, we assessed the role of LIGHT in IL-12 production and development of CD4(+) Th cells type one (Th1) in vivo. Bone marrow-derived dendritic cells from LIGHT(-/-) mice were severely impaired in IL-12p40 production following IFN-gamma and LPS stimulation in vitro. Furthermore, blockade of LIGHT in vitro and in vivo with HVEM-Ig and LT beta receptor (LTbetaR)-Ig leads to impaired IL-12 production and defective polyclonal and Ag-specific IFN-gamma production in vivo. In an infection model, injection of HVEM-Ig or LTbetaR-Ig into the usually resistant C57BL/6 mice results in defective IL-12 and IFN-gamma production and severe susceptibility to Leishmania major that was reversed by rIL-12 treatment. This striking susceptibility to L. major in mice injected with HVEM-Ig or LTbetaR-Ig was also reproduced in LIGHT(-/-) --> RAG1(-/-) chimeric mice. In contrast, L. major-infected LTbeta(-/-) mice do not develop acute disease, suggesting that the effect of LTbetaR-Ig is not due to blockade of membrane LT (LTalpha1beta2) signaling. Collectively, our data show that LIGHT plays a critical role for optimal IL-12 production by DC and the development of IFN-gamma-producing CD4(+) Th1 cells and its blockade results in severe susceptibility to Leishmania major.

  7. Effect of xanthohumol on Th1/Th2 balance in a breast cancer mouse model.

    Science.gov (United States)

    Zhang, Wenchao; Pan, Yanlong; Gou, Panhong; Zhou, Cheng; Ma, Lianqing; Liu, Qiming; Du, Yuping; Yang, Jinbo; Wang, Qin

    2018-01-01

    Xanthohumol (XN), a prenylflavonoid found in the hop plant, Humulus lupulus, exhibits a variety of biological activities. Numerous studies have reported that XN inhibits the growth of many types of cancer cells, but the effects of XN on tumor immunity have not yet been studied. We explored the effect of XN on Th1/Th2 balance and the underlying mechanism based on a BALB/c-4T1 breast cancer mouse model. The results showed that XN significantly slowed down tumor growth and inhibited expression of antitumor proliferation protein Ki-67 as well as breast cancer-specific marker cancer antigen 15-3 (CA15-3). Flow cytometric analysis revealed that XN enhanced the secretion of perforin, granzyme B and increased the ratio of CD8+/CD25+. ELISA analysis of cytokine results demonstrated that XN obviously upregulated Th1 cytokines, while downregulated Th2 cytokines. Th1/Th2 ratio analysis by flow cytometry illustrated that XN regulated the balance drift to Th1 polarization. Western blotting and immunohistochemistry (IHC) results manifested that XN induced expression of T-bet, a Th1-specific transcription factor. Furthermore, we found that XN significantly promoted the phosphorylation of signal transducer and activator of transcription (STAT)4. Our results demonstrated that XN promoted Th1/Th2 balance towards Th1 polarization, and STAT4 may play a positive role in the regulation of Th1/Th2 cytokines by XN.

  8. Characterization of the subsets of human NKT-like cells and the expression of Th1/Th2 cytokines in patients with unexplained recurrent spontaneous abortion.

    Science.gov (United States)

    Yuan, Jing; Li, Jian; Huang, Shi-Yun; Sun, Xin

    2015-08-01

    The objective was to investigate the subsets of natural killer T (NKT)-like cells and the expression of Th1/Th2 cytokines in the peripheral blood (PB) and/or decidual tissue of patients with unexplained recurrent spontaneous abortion (URSA). The percentages of NKT-like cells in the PB and deciduas of URSA patients in early pregnancy and in the PB of nonpregnant women were analyzed by flow cytometry. The expression of interferon (IFN)-γ (Th1 cytokine) and Th2 cytokines, interleukin (IL)-4 and IL-10, in the PB and decidual tissue was measured by quantitative RT-PCR and enzyme-linked immunosorbent assay (ELISA). Most percentages of subsets of NKT-like cells (CD3(+)CD56(+), CD3(+)CD56(+)CD16(+)) in the PB and deciduas were significantly greater in URSA patients than in normal pregnant and nonpregnant women. A cut-off value of 3.75% for the increased percentage of CD3(+)CD56(+)CD16(+) NKT-like cells in the PB appeared to be predictive of pregnancy failure. Moreover, we found that in the decidua, IFN-γ expression was significantly higher, while IL-4 and IL-10 expression was significantly lower in URSA patients compared with those with a normal pregnancy. The ratio of decidual Th1/Th2 cytokines in URSA patients was significantly increased compared with that in normal pregnant women. Decidual IL-4 expression correlated negatively with the percentages of blood CD3(+)CD56(+)CD16(+) NKT-like cells and the decidual CD3(+)CD56(+) and CD3(+)CD56(+)CD16(+) NKT-like cells. NKT-like cells may play an important role in maintaining normal pregnancy. Measurement of CD3(+)CD56(+)CD16(+) NKT-like cells in the PB may provide a potential tool for assessing patients' risk of spontaneous abortion. Copyright © 2015. Published by Elsevier Ireland Ltd.

  9. Th1 cytokine-induced syndecan-4 shedding by airway smooth muscle cells is dependent on mitogen-activated protein kinases.

    Science.gov (United States)

    Tan, Xiahui; Khalil, Najwa; Tesarik, Candice; Vanapalli, Karunasri; Yaputra, Viki; Alkhouri, Hatem; Oliver, Brian G G; Armour, Carol L; Hughes, J Margaret

    2012-04-01

    In asthma, airway smooth muscle (ASM) chemokine secretion can induce mast cell recruitment into the airways. The functions of the mast cell chemoattractant CXCL10, and other chemokines, are regulated by binding to heparan sulphates such as syndecan-4. This study is the first demonstration that airway smooth muscle cells (ASMC) from people with and without asthma express and shed syndecan-4 under basal conditions. Syndecan-4 shedding was enhanced by stimulation for 24 h with the Th1 cytokines interleukin-1β (IL-1β) or tumor necrosis factor-α (TNF-α), but not interferon-γ (IFNγ), nor the Th2 cytokines IL-4 and IL-13. ASMC stimulation with IL-1β, TNF-α, and IFNγ (cytomix) induced the highest level of syndecan-4 shedding. Nonasthmatic and asthmatic ASM cell-associated syndecan-4 protein expression was also increased by TNF-α or cytomix at 4-8 h, with the highest levels detected in cytomix-stimulated asthmatic cells. Cell-associated syndecan-4 levels were decreased by 24 h, whereas shedding remained elevated at 24 h, consistent with newly synthesized syndecan-4 being shed. Inhibition of ASMC matrix metalloproteinase-2 did not prevent syndecan-4 shedding, whereas inhibition of ERK MAPK activation reduced shedding from cytomix-stimulated ASMC. Although ERK inhibition had no effect on syndecan-4 mRNA levels stimulated by cytomix, it did cause an increase in cell-associated syndecan-4 levels, consistent with the shedding being inhibited. In conclusion, ASMC produce and shed syndecan-4 and although this is increased by the Th1 cytokines, the MAPK ERK only regulates shedding. ASMC syndecan-4 production during Th1 inflammatory conditions may regulate chemokine activity and mast cell recruitment to the ASM in asthma.

  10. Microscopic Colitis Evolved Into Inflammatory Bowel Diseases Is Characterized by Increased Th1/Tc1 Cells in Colonic Mucosal Lamina Propria.

    Science.gov (United States)

    Li, Ji; Yan, Yuchu; Meng, Ziran; Liu, Shuhong; Beck, Paul L; Ghosh, Subrata; Qian, Jiaming; Gui, Xianyong

    2017-10-01

    An association between microscopic colitis (MC), i.e., lymphocytic colitis (LC) and collagenous colitis (CC), and inflammatory bowel diseases (IBD) has been noticed. A subset of MC cases may evolve into IBD, and IBD in remission may present as MC in a histologic pattern. Moreover, MC and IBD may coexist in different regions of the bowel. A link between MC and IBD in their pathogenesis is, therefore, suggested. Abnormal mucosal immunity is likely the key. We reviewed 2324 MC cases in Calgary over 14 years and identified 20 cases evolved into IBD (IBD transformers). 13 of them were further investigated for colonic mucosal lamina propria mononuclear cells (LPMNCs), as opposed to 22 cases whose MC resolved. On their index colonic biopsy immunohistochemistry was performed to detect major T cell subsets characterized by key cytokines and master transcription factors (IFNγ and T-bet for Th1/Tc1, GATA-3 for Th2/Tc2, IL-17 and RORc for Th17/Tc17, FoxP3 for Treg/Tcreg) as well as TNFα + cells (partly representing Th1). LPMNCs positive for each marker were counted (average number per high-power field). IBD transformers had increased IFNγ + , T-bet + , TNF-α + , and GATA-3 + LPMNCs compared to the MC-resolved cases. The LC-to-IBD subgroup had increased IFNγ + and GATA-3 + cells compared to the LC-resolved subgroup. The CC-to-IBD subgroup had increased T-bet + , TNF-α + , and GATA-3 + cells compared to the CC-resolved subgroup. Among MC-resolved patients, more TNF-α + and RORc + cells were seen in LC than in CC. Th1/Tc1- and TNFα-producing cells, and likely a subset of Th2/Tc2 cells as well, may be involved in the MC-to-IBD transformation.

  11. Identification of two Th1 cell epitopes on the Babesia bovis-encoded 77-kilodalton merozoite protein (Bb-1) by use of truncated recombinant fusion proteins.

    Science.gov (United States)

    Brown, W C; Zhao, S; Woods, V M; Tripp, C A; Tetzlaff, C L; Heussler, V T; Dobbelaere, D A; Rice-Ficht, A C

    1993-01-01

    Previous studies have demonstrated the serologic and T-cell immunogenicity for cattle of a recombinant form of the apical complex-associated 77-kDa merozite protein of Babesia bovis, designated Bb-1. The present study characterizes the immunogenic epitopes of the Bb-1 protein. A series of recombinant truncated fusion proteins spanning the majority of the Bb-1 protein were expressed in Escherichia coli, and their reactivities with bovine peripheral blood mononuclear cells and T-cell clones derived from B. bovis-immune cattle and with rabbit antibodies were determined. Lymphocytes from two immune cattle were preferentially stimulated by the N-terminal half of the Bb-1 protein (amino acids 23 to 266, termed Bb-1A), localizing the T-cell epitopes to the Bb-1A portion of the molecule. CD4+ T-cell clones derived by stimulation with the intact Bb-1 fusion protein were used to identify two T-cell epitopes in the Bb-1A protein, consisting of amino acids SVVLLSAFSGN VWANEAEVSQVVK and FSDVDKTKSTEKT (residues 23 to 46 and 82 to 94). In contrast, rabbit antiserum raised against the intact fusion protein reacted only with the C-terminal half of the protein (amino acids 267 to 499, termed Bb-1B), which contained 28 tandem repeats of the tetrapeptide PAEK or PAET. Biological assays and Northern (RNA) blot analyses for cytokines revealed that following activation with concanavalin A, T-cell clones reactive against the two Bb-1A epitopes produced interleukin-2, gamma interferon, and tumor necrosis factors beta and alpha, but not interleukin-4, suggesting that the Bb-1 antigen preferentially stimulates the Th1 subset of CD4+ T cells in cattle. The studies described here report for the first time the characterization, by cytokine production, of the Th1 subset of bovine T cells and show that, as in mice, protozoal antigens can induce Th1 cells in ruminants. This first demonstration of B. bovis-encoded Th1 cell epitopes provides a rationale for incorporation of all or part of the Bb-1

  12. Anti-IL-2 treatment impairs the expansion of T(reg cell population during acute malaria and enhances the Th1 cell response at the chronic disease.

    Directory of Open Access Journals (Sweden)

    Cláudia A Zago

    Full Text Available Plasmodium chabaudi infection induces a rapid and intense splenic CD4(+ T cell response that contributes to both disease pathogenesis and the control of acute parasitemia. The subsequent development of clinical immunity to disease occurs concomitantly with the persistence of low levels of chronic parasitemia. The suppressive activity of regulatory T (T(reg cells has been implicated in both development of clinical immunity and parasite persistence. To evaluate whether IL-2 is required to induce and to sustain the suppressive activity of T(reg cells in malaria, we examined in detail the effects of anti-IL-2 treatment with JES6-1 monoclonal antibody (mAb on the splenic CD4(+ T cell response during acute and chronic P. chabaudi AS infection in C57BL/6 mice. JES6-1 treatment on days 0, 2 and 4 of infection partially inhibits the expansion of the CD4(+CD25(+Foxp3(+ cell population during acute malaria. Despite the concomitant secretion of IL-2 and expression of high affinity IL-2 receptor by large CD4(+ T cells, JES6-1 treatment does not impair effector CD4(+ T cell activation and IFN-γ production. However, at the chronic phase of the disease, an enhancement of cellular and humoral responses occurs in JES6-1-treated mice, with increased production of TNF-α and parasite-specific IgG2a antibodies. Furthermore, JES6-1 mAb completely blocked the in vitro proliferation of CD4(+ T cells from non-treated chronic mice, while it further increased the response of CD4(+ T cells from JES6-1-treated chronic mice. We conclude that JES6-1 treatment impairs the expansion of T(reg cell population during early P. chabaudi malaria and enhances the Th1 cell response in the late phase of the disease.

  13. Turmeric (Curcuma longa) attenuates food allergy symptoms by regulating type 1/type 2 helper T cells (Th1/Th2) balance in a mouse model of food allergy.

    Science.gov (United States)

    Shin, Hee Soon; See, Hye-Jeong; Jung, Sun Young; Choi, Dae Woon; Kwon, Da-Ae; Bae, Min-Jung; Sung, Ki-Seung; Shon, Dong-Hwa

    2015-12-04

    Turmeric (Curcuma longa) has traditionally been used to treat pain, fever, allergic and inflammatory diseases such as bronchitis, arthritis, and dermatitis. In particular, turmeric and its active component, curcumin, were effective in ameliorating immune disorders including allergies. However, the effects of turmeric and curcumin have not yet been tested on food allergies. Mice were immunized with intraperitoneal ovalbumin (OVA) and alum. The mice were orally challenged with 50mg OVA, and treated with turmeric extract (100mg/kg), curcumin (3mg/kg or 30 mg/kg) for 16 days. Food allergy symptoms including decreased rectal temperature, diarrhea, and anaphylaxis were evaluated. In addition, cytokines, immunoglobulins, and mouse mast cell protease-1 (mMCP-1) were evaluated using ELISA. Turmeric significantly attenuated food allergy symptoms (decreased rectal temperature and anaphylactic response) induced by OVA, but curcumin showed weak improvement. Turmeric also inhibited IgE, IgG1, and mMCP-1 levels increased by OVA. Turmeric reduced type 2 helper cell (Th2)-related cytokines and enhanced a Th1-related cytokine. Turmeric ameliorated OVA-induced food allergy by maintaining Th1/Th2 balance. Furthermore, turmeric was confirmed anti-allergic effect through promoting Th1 responses on Th2-dominant immune responses in immunized mice. Turmeric significantly ameliorated food allergic symptoms in a mouse model of food allergy. The turmeric as an anti-allergic agent showed immune regulatory effects through maintaining Th1/Th2 immune balance, whereas curcumin appeared immune suppressive effects. Therefore, we suggest that administration of turmeric including various components may be useful to ameliorate Th2-mediated allergic disorders such as food allergy, atopic dermatitis, and asthma. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Primary murine CD4+ T cells fail to acquire the ability to produce effector cytokines when active Ras is present during Th1/Th2 differentiation.

    Directory of Open Access Journals (Sweden)

    Sujit V Janardhan

    Full Text Available Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo.

  15. Caveolin1 Is Required for Th1 Cell Infiltration, but Not Tight Junction Remodeling, at the Blood-Brain Barrier in Autoimmune Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Sarah E. Lutz

    2017-11-01

    Full Text Available Lymphocytes cross vascular boundaries via either disrupted tight junctions (TJs or caveolae to induce tissue inflammation. In the CNS, Th17 lymphocytes cross the blood-brain barrier (BBB before Th1 cells; yet this differential crossing is poorly understood. We have used intravital two-photon imaging of the spinal cord in wild-type and caveolae-deficient mice with fluorescently labeled endothelial tight junctions to determine how tight junction remodeling and caveolae regulate CNS entry of lymphocytes during the experimental autoimmune encephalomyelitis (EAE model for multiple sclerosis. We find that dynamic tight junction remodeling occurs early in EAE but does not depend upon caveolar transport. Moreover, Th1, but not Th17, lymphocytes are significantly reduced in the inflamed CNS of mice lacking caveolae. Therefore, tight junction remodeling facilitates Th17 migration across the BBB, whereas caveolae promote Th1 entry into the CNS. Moreover, therapies that target both tight junction degradation and caveolar transcytosis may limit lymphocyte infiltration during inflammation.

  16. Oral Treatment with Extract of Agaricus blazei Murill Enhanced Th1 Response through Intestinal Epithelial Cells and Suppressed OVA-Sensitized Allergy in Mice

    Directory of Open Access Journals (Sweden)

    Go Bouike

    2011-01-01

    Full Text Available To clarify the mechanism of the antiallergic activity of Agaricus blazei Murill extract (ABME, the present paper used an in vivo allergy model and an in vitro intestinal gut model. During OVA sensitization, the serum IgE levels decreased significantly in ABME group. Interleukin (IL-4 and -5 produced from OVA-restimulated splenocytes was significantly decreased, and anti-CD3ε/CD28 antibody treatment also reduced IL-10, -4, and -5 production and increased IFN-γ production in ABME group. These results suggest that oral administration of ABME improves Th1/Th2 balance. Moreover, a coculture system constructed of Caco-2 cells and splenocytes from OT-II mice or RAW 264.7 cells indicated that the significant increases in IFN-γ production by ABME treatment. Therefore, it was concluded that the antiallergic activity of ABME was due to the activation of macrophages by epithelial cells and the promotion of the differentiation of naïve T cells into Th1 cells in the immune.

  17. The Leishmania promastigote surface antigen-2 (PSA-2) is specifically recognised by Th1 cells in humans with naturally acquired immunity to L. major

    DEFF Research Database (Denmark)

    Kemp, M; Handman, E; Kemp, K

    1998-01-01

    The promastigote surface antigen-2 (PSA-2) is a Leishmania parasite antigen, which can induce Th1-mediated protection against murine leishmaniasis when used as a vaccine. To evaluate PSA-2 as a human vaccine candidate the specific T-cell response to PSA-2 was characterised in individuals immune...... to cutaneous leishmaniasis. Peripheral blood mononuclear cells from Sudanese individuals with a past history of self-healing cutaneous leishmaniasis proliferated vigorously in response to PSA-2 isolated from Leishmania major, whereas the antigen did not activate cells from presumably unexposed Danes....... Peripheral blood mononuclear cells from individuals with previous L. major infection had varying proliferative responses to PSA-2 derived from L. donovani promastigotes. Peripheral blood mononuclear cells activated by PSA-2 from L. major produced high amounts of interferon-gamma and tumour necrosis factor...

  18. Oral beta-glucan adjuvant therapy converts nonprotective Th2 response to protective Th1 cell-mediated immune response in mammary tumor-bearing mice.

    Directory of Open Access Journals (Sweden)

    Gordon D Ross

    2007-06-01

    Full Text Available Beta (1-3-D-glucans were identified almost 40 years ago as biological response modifiers that stimulated tumor rejection. In vitro studies have shown that beta-glucans bind to a lectin domain within complement receptor type 3 (CR3, or to, more recently described dectin-1 a beta-glucan specific receptor, acting mainly on phagocytic cells. In this study, we assessed the intracellular cytokine profiles of peripheral blood lymphocytes from mice bearing mammary tumors receiving i.v. anti-tumor mAbs combined or not with whole glucan particle suspension given orally (WGP, 400 microg every 24 hours. The proportions of T cells producing IL-4 and IFNgamma were determined by flow cytometry. The proportion of T cells producing IL-4 was significantly higher in tumor-bearing mice not receiving beta-glucan-enhanced therapy. Conversely, T cells from mice undergoing beta-glucan-enhanced therapy showed increased production of the Th1 cytokine IFNgamma. The switch from a Th2 to a Th1 response after WGP therapy was possibly mediated by intestinal mucosal macrophages releasing IL-12.

  19. High Risk First Degree Relatives of Type 1 Diabetics: An Association with Increases in CXCR3+ T Memory Cells Reflecting an Enhanced Activity of Th1 Autoimmune Response

    Directory of Open Access Journals (Sweden)

    Tanja Milicic

    2014-01-01

    Full Text Available We analyzed the level of (a CXCR3+ (Th1 and CCR4+ (Th2 T memory cells (b interferon-γ inducible chemokine (IP-10(Th1 and thymus and activation-regulated chemokine (TARC(Th2, in 51 first degree relatives (FDRs of type 1 diabetics (T1D (17 high risk FDRs (GADA+, IA-2+ and 34 low risk FDRs (GADA−, IA-2−, 24 recent-onset T1D (R-T1D, and 18 healthy subjects. T memory subsets were analyzed by using four-color immunofluorescence staining and flowcytometry. IP-10 and TARC were determined by ELISA. High risk FDRs showed higher levels of CXCR3+ and lower level of CCR4+ T memory cells compared to low risk FDRs (64.98 ± 5.19 versus 42.13 ± 11.11; 29.46 ± 2.83 versus 41.90 ± 8.58%, resp., P<0.001. Simultaneously, both IP-10 and TARC levels were increased in high risk versus low risk FDRs (160.12 ± 73.40 versus 105.39 ± 71.30; 438.83 ± 120.62 versus 312.04 ± 151.14 pg/mL, P<0.05. Binary logistic regression analysis identified the level of CXCR3+ T memory cells as predictors for high risk FDRs, together with high levels of IP-10. The results imply that, in FDRs, the risk for T1D might be strongly influenced by enhanced activity of Th1 and diminished activity of Th2 autoimmune response.

  20. Dietary Omega-3 Fatty Acids Suppress Experimental Autoimmune Uveitis in Association with Inhibition of Th1 and Th17 Cell Function

    Science.gov (United States)

    Shoda, Hiromi; Yanai, Ryoji; Yoshimura, Takeru; Nagai, Tomohiko; Kimura, Kazuhiro; Sobrin, Lucia; Connor, Kip M.; Sakoda, Yukimi; Tamada, Koji; Ikeda, Tsunehiko; Sonoda, Koh-Hei

    2015-01-01

    Omega (ω)–3 long-chain polyunsaturated fatty acids (LCPUFAs) inhibit the production of inflammatory mediators and thereby contribute to the regulation of inflammation. Experimental autoimmune uveitis (EAU) is a well-established animal model of autoimmune retinal inflammation. To investigate the potential effects of dietary intake of ω-3 LCPUFAs on uveitis, we examined the anti-inflammatory properties of these molecules in comparison with ω-6 LCPUFAs in a mouse EAU model. C57BL/6 mice were fed a diet containing ω-3 LCPUFAs or ω-6 LCPUFAs for 2 weeks before as well as after the induction of EAU by subcutaneous injection of a fragment of human interphotoreceptor retinoid-binding protein emulsified with complete Freund’s adjuvant. Both clinical and histological scores for uveitis were smaller for mice fed ω-3 LCPUFAs than for those fed ω-6 LCPUFAs. The concentrations of the T helper 1 (Th1) cytokine interferon-γ and the Th17 cytokine interleukin-17 in intraocular fluid as well as the production of these cytokines by lymph node cells were reduced for mice fed ω-3 LCPUFAs. Furthermore, the amounts of mRNAs for the Th1- and Th17-related transcription factors T-bet and RORγt, respectively, were reduced both in the retina and in lymph node cells of mice fed ω-3 LCPUFAs. Our results thus show that a diet enriched in ω-3 LCPUFAs suppressed uveitis in mice in association with inhibition of Th1 and Th17 cell function. PMID:26393358

  1. Effect of thymosin alpha-1 on subpopulations of Th1, Th2, Th17, and regulatory T cells (Tregs) in vitro

    International Nuclear Information System (INIS)

    Yang, Xia; Qian, Feng; He, Hai-Yang; Liu, Kai-Jun; Lan, Yuan-Zhi; Ni, Bing; Tian, Yi; Fu, Xiao-Lan; Zhang, Ji; Shen, Zi-Gang; Li, Jian; Yin, Yi; Li, Jin-Tao; Wu, Yu-Zhang

    2011-01-01

    Thymosin alpha 1 (Tα1) has been shown to have beneficial effects on numerous immune system parameters, but little is known about the effects of Tα1 on patients with gastric carcinoma. The objective of this study was to determine the effect of Tα1 on subpopulations of Th1, Th2, Th17, and regulatory T cells (Tregs) in vitro, and to evaluate its efficacy as an immunoregulatory factor in patients with gastric carcinoma. We compared the effect of Tα1 on the frequency of CD4 + and CD8 + T cells, especially the CD4 + CD25 + Foxp3 + Tregs in peripheral blood mononuclear cells (PBMCs) from gastric carcinoma patients (N = 35) and healthy donors (N = 22). We also analyzed the changes in the proliferation of PBMCs in response to treatment with Tα1, and examined the production of Th1, Th2, and Th17 cytokines by PBMCs and tumor-infiltrating lymphocytes. The treatment of PBMCs from gastric cancer patients, with Tα1 (50 µg/mL) alone increased the percentage of CD4+CD25+Foxp3+ (suppressive antitumor-specific Tregs) from 1.68 ± 0.697 to 2.19 ± 0.795% (P < 0.05). Our results indicate that Tα1 increases the percentage of Tregs and IL-1β, TNF-α, and IL-6 in vitro

  2. Filarial lymphedema is characterized by antigen-specific Th1 and th17 proinflammatory responses and a lack of regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Subash Babu

    Full Text Available Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients.To elucidate the role of CD4(+ T cell subsets in the development of lymphatic pathology, we examined specific sets of cytokines in individuals with filarial lymphedema in response to parasite antigen (BmA and compared them with responses from asymptomatic infected individuals. We also examined expression patterns of Toll-like receptors (TLR1-10 and Nod-like receptors (Nod1, Nod2, and NALP3 in response to BmA. BmA induced significantly higher production of Th1-type cytokines-IFN-gamma and TNF-alpha-in patients with lymphedema compared with asymptomatic individuals. Notably, expression of the Th17 family of cytokines-IL-17A, IL-17F, IL-21, and IL-23-was also significantly upregulated by BmA stimulation in lymphedema patients. In contrast, expression of Foxp3, GITR, TGFbeta, and CTLA-4, known to be expressed by regulatory T cells, was significantly impaired in patients with lymphedema. BmA also induced significantly higher expression of TLR2, 4, 7, and 9 as well Nod1 and 2 mRNA in patients with lymphedema compared with asymptomatic controls.Our findings implicate increased Th1/Th17 responses and decreased regulatory T cells as well as regulation of Toll- and Nod-like receptors in pathogenesis of filarial lymphedema.

  3. Effect of thymosin alpha-1 on subpopulations of Th1, Th2, Th17, and regulatory T cells (Tregs) in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xia [Institute of Immunology,Third Military Medical University, Chongqing (China); Qian, Feng [Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing (China); He, Hai-Yang; Liu, Kai-Jun [Institute of Immunology,Third Military Medical University, Chongqing (China); Lan, Yuan-Zhi [Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing (China); Ni, Bing; Tian, Yi; Fu, Xiao-Lan; Zhang, Ji; Shen, Zi-Gang; Li, Jian; Yin, Yi; Li, Jin-Tao; Wu, Yu-Zhang [Institute of Immunology,Third Military Medical University, Chongqing (China)

    2011-12-02

    Thymosin alpha 1 (Tα1) has been shown to have beneficial effects on numerous immune system parameters, but little is known about the effects of Tα1 on patients with gastric carcinoma. The objective of this study was to determine the effect of Tα1 on subpopulations of Th1, Th2, Th17, and regulatory T cells (Tregs) in vitro, and to evaluate its efficacy as an immunoregulatory factor in patients with gastric carcinoma. We compared the effect of Tα1 on the frequency of CD4{sup +} and CD8{sup +} T cells, especially the CD4{sup +}CD25{sup +}Foxp3{sup +} Tregs in peripheral blood mononuclear cells (PBMCs) from gastric carcinoma patients (N = 35) and healthy donors (N = 22). We also analyzed the changes in the proliferation of PBMCs in response to treatment with Tα1, and examined the production of Th1, Th2, and Th17 cytokines by PBMCs and tumor-infiltrating lymphocytes. The treatment of PBMCs from gastric cancer patients, with Tα1 (50 µg/mL) alone increased the percentage of CD4+CD25+Foxp3+ (suppressive antitumor-specific Tregs) from 1.68 ± 0.697 to 2.19 ± 0.795% (P < 0.05). Our results indicate that Tα1 increases the percentage of Tregs and IL-1β, TNF-α, and IL-6 in vitro.

  4. Raising the roof: the preferential pharmacological stimulation of Th1 and th2 responses mediated by NKT cells.

    Science.gov (United States)

    East, James E; Kennedy, Andrew J; Webb, Tonya J

    2014-01-01

    Natural killer T (NKT) cells serve as a bridge between the innate and adaptive immune systems, and manipulating their effector functions can have therapeutic significances in the treatment of autoimmunity, transplant biology, infectious disease, and cancer. NKT cells are a subset of T cells that express cell-surface markers characteristic of both natural killer cells and T cells. These unique immunologic cells have been demonstrated to serve as a link between the innate and adaptive immune systems through their potent cytokine production following the recognition of a range of lipid antigens, mediated through presentation of the major histocompatibility complex (MHC) class I like CD1d molecule, in addition to the NKT cell's cytotoxic capabilities upon activation. Although a number of glycolipid antigens have been shown to complex with CD1d molecules, most notably the marine sponge derived glycolipid alpha-galactosylceramide (α-GalCer), there has been debate as to the identity of the endogenous activating lipid presented to the T-cell receptor (TCR) via the CD1d molecule on antigen-presenting cells (APCs). This review aims to survey the use of pharmacological agents and subsequent structure-activity relationships (SAR) that have given insight into the binding interaction of glycolipids with both the CD1d molecules as well as the TCR and the subsequent immunologic response of NKT cells. These studies not only elucidate basic binding interactions but also pave the way for future pharmacological modulation of NKT cell responses. © 2012 Wiley Periodicals, Inc.

  5. Raising the Roof: The Preferential Pharmacological Stimulation of Th1 and Th2 Responses Mediated by NKT Cells

    Science.gov (United States)

    East, James E.; Kennedy, Andrew J.; Webb, Tonya J.

    2014-01-01

    Natural killer T (NKT) cells serve as a bridge between the innate and adaptive immune systems, and manipulating their effector functions can have therapeutic significances in the treatment of autoimmunity, transplant biology, infectious disease, and cancer. NKT cells are a subset of T cells that express cell-surface markers characteristic of both natural killer cells and T cells. These unique immunologic cells have been demonstrated to serve as a link between the innate and adaptive immune systems through their potent cytokine production following the recognition of a range of lipid antigens, mediated through presentation of the major histocompatibility complex (MHC) class I like CD1d molecule, in addition to the NKT cell′s cytotoxic capabilities upon activation. Although a number of glycolipid antigens have been shown to complex with CD1d molecules, most notably the marine sponge derived glycolipid alpha-galactosylceramide (α-GalCer), there has been debate as to the identity of the endogenous activating lipid presented to the T-cell receptor (TCR) via the CD1d molecule on antigen-presenting cells (APCs). This review aims to survey the use of pharmacological agents and subsequent structure–activity relationships (SAR) that have given insight into the binding interaction of glycolipids with both the CD1d molecules as well as the TCR and the subsequent immunologic response of NKT cells. These studies not only elucidate basic binding interactions but also pave the way for future pharmacological modulation of NKT cell responses. PMID:23239102

  6. Selective enrichment of Th1 CD45RBlow CD4+ T cells in autoimmune infiltrates in experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Renno, T; Zeine, R; Girard, J M

    1994-01-01

    The cytokine effector status of CD4+ T cells from lymph nodes (LN) and the central nervous system (CNS) of SJL/J mice immunized with autoantigen in adjuvant for the induction of experimental allergic encephalomyelitis (EAE) was compared. CD4+ T cells were FACS sorted based on the levels...... in the sorted populations. CD45RBlow cells constituted a minority of CD4+ cells in the LN and expressed elevated levels of IL-2, IFN-gamma, and IL-4 mRNA, whereas the CD45RBlow CD4+ population did not express detectable message for these cytokines under linear PCR conditions. By contrast to the LN, CD4+ cells...... of expression of the activation marker CD45RB. Low levels of expression of this surface marker are induced by antigen recognition and are associated with 'effector' T cell function. Reverse transcriptase polymerase chain reaction (PCR) was used to analyze the expression of different T cell cytokine genes...

  7. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  8. Unexpected exacerbations following initiation of disease-modifying drugs in neuromyelitis optica spectrum disorder: Which factor is responsible, anti-aquaporin 4 antibodies, B cells, Th1 cells, Th2 cells, Th17 cells, or others?

    Science.gov (United States)

    Kira, Jun-Ichi

    2017-08-01

    Some disease-modifying drugs for multiple sclerosis, which mainly act on T cells, are ineffective for neuromyelitis optica spectrum disorder and induce unexpected relapses. These include interferon beta, glatiramer acetate, fingolimod, natalizumab, and alemtuzumab. The cases reported here suggest that dimethyl fumarate, which reduces the number of Th1 and Th17 cells and induces IL-4-producing Th2 cells, is also unsuitable for neuromyelitis optica spectrum disorder, irrespective of anti-aquaporin 4 IgG serostatus. Although oral dimethyl fumarate with manageable adverse effects is easy to initiate in the early course of multiple sclerosis, special attention should be paid for atypical demyelinating cases.

  9. Uncarinic Acid C Isolated from Uncaria rhynchophylla Induces Differentiation of Th1-Promoting Dendritic Cells Through TLR4 Signaling

    OpenAIRE

    Kim, Kyu Sik; Pham, Thanh Nhan Nguyen; Jin, Chun-Ji; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao

    2011-01-01

    Uncarinic acid C (URC) is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cells (DC) is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. DC might be a potential target for URC. We demonstrate that URC activates human DC as documented by phenotypic and functional maturation, and altered cytokine production. The expression ...

  10. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells.

    Science.gov (United States)

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-08-28

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  11. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells

    Directory of Open Access Journals (Sweden)

    Yao Pan

    2015-08-01

    Full Text Available Trichloroethylene (TCE is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA and dichloroacetic acid (DCA, on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  12. Expression of Programmed Death-Ligand 1 by Human Colonic CD90+ Stromal Cells Differs Between Ulcerative Colitis and Crohn’s Disease and Determines Their Capacity to Suppress Th1 Cells

    Directory of Open Access Journals (Sweden)

    Ellen J. Beswick

    2018-05-01

    Full Text Available Background and AimsThe role of programmed cell death protein 1 (PD-1 and its ligands in the dysregulation of T helper immune responses observed in the inflammatory bowel disease (IBD is unclear. Recently, a novel concept emerged that CD90+ colonic (myofibroblasts (CMFs, also known as stromal cells, act as immunosuppressors, and are among the key regulators of acute and chronic inflammation. The objective of this study was to determine if the level of the PD-1 ligands is changed in the IBD inflamed colonic mucosa and to test the hypothesis that changes in IBD-CMF-mediated PD-1 ligand-linked immunosuppression is a mechanism promoting the dysregulation of Th1cell responses.MethodsTissues and cells derived from Crohn’s disease (CD, ulcerative colitis (UC, and healthy individuals (N were studied in situ, ex vivo, and in culture.ResultsA significant increase in programmed death-ligand 1 (PD-L1 was observed in the inflamed UC colonic mucosa when compared to the non-inflamed matched tissue samples, CD, and healthy controls. UC-CMFs were among the major populations in the colonic mucosa contributing to the enhanced PD-L1 expression. In contrast, PD-L1 expression was decreased in CD-CMFs. When compared to CD-CMFs and N-CMFs, UC-CMFs demonstrated stronger suppression of IL-2, Th1 transcriptional factor Tbet, and IFN-γ expression by CD3/CD28-activated CD4+ T cells, and this process was PD-L1 dependent. Similar observations were made when differentiated Th1cells were cocultured with UC-CMFs. In contrast, CD-CMFs showed reduced capacity to suppress Th1cell activity and addition of recombinant PD-L1 Fc to CD-CMF:T cell cocultures partially restored the suppression of the Th1 type responses.ConclusionWe present evidence showing that increased PD-L1 expression suppresses Th1cell activity in UC. In contrast, loss of PD-L1 expression observed in CD contributes to the persistence of the Th1 inflammatory milieu in CD. Our data suggest that

  13. Induction of Th1 polarized immune responses by thiolated Eudragit-coated F4 and F18 fimbriae of enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Lee, Won-Jung; Cha, Seungbin; Shin, Minkyoung; Islam, Mohammad Ariful; Cho, Chong-su; Yoo, Han Sang

    2011-10-01

    Diarrhea in newborn and weaned piglets is mainly induced by enterotoxigenic Escherichia coli (ETEC) with fimbriae F4 (K88) and F18 (F107). In this study, we evaluated F4 and F18 coated with thiolated Eudragit microspheres (TEMS) as a candidate for an oral vaccine. The average particle sizes of TEMS, F4-loaded TEMS, and F18-loaded TEMS were measured as 4.2±0.75 μm, 4.7±0.50 μm, and 4.5±0.37 μm, respectively. F4 is more efficiently encapsulated than F18 in the loading with TEMS. In the release test, F4 and F18 fimbriae were protected in acidic circumstances, whereas most were released at pH 7.4 of intestine circumstances. Production of TNF-α and NO from RAW 264.7 cells was increased in a time-dependent manner after exposure to all groups, whereas only F4- or F18-loaded TEMS-stimulated IL-6 secretion. The levels of IFN-γ from mouse splenocytes after exposure to F4 or F18 were increased while IL-4 was not detectable. These results suggest that F4- and F18-loaded TEMS may effectively induce immune response with the efficient release of antigens to appropriate target sites. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Transcriptional profiling reveals molecular signatures associated with HIV permissiveness in Th1Th17 cells and identifies Peroxisome Proliferator-Activated Receptor Gamma as an intrinsic negative regulator of viral replication

    Science.gov (United States)

    2013-01-01

    Background We previously demonstrated that primary Th1Th17 cells are highly permissive to HIV-1, whereas Th1 cells are relatively resistant. Molecular mechanisms underlying these differences remain unknown. Results Exposure to replication competent and single-round VSV-G pseudotyped HIV strains provide evidence that superior HIV replication in Th1Th17 vs. Th1 cells was regulated by mechanisms located at entry and post-entry levels. Genome-wide transcriptional profiling identified transcripts upregulated (n = 264) and downregulated (n = 235) in Th1Th17 vs. Th1 cells (p-value Th17 (nuclear receptors, trafficking, p38/MAPK, NF-κB, p53/Ras, IL-23) vs. Th1 cells (proteasome, interferon α/β). Differentially expressed genes were classified into biological categories using Gene Ontology. Th1Th17 cells expressed typical Th17 markers (IL-17A/F, IL-22, CCL20, RORC, IL-26, IL-23R, CCR6) and transcripts functionally linked to regulating cell trafficking (CEACAM1, MCAM), activation (CD28, CD40LG, TNFSF13B, TNFSF25, PTPN13, MAP3K4, LTB, CTSH), transcription (PPARγ, RUNX1, ATF5, ARNTL), apoptosis (FASLG), and HIV infection (CXCR6, FURIN). Differential expression of CXCR6, PPARγ, ARNTL, PTPN13, MAP3K4, CTSH, SERPINB6, PTK2, and ISG20 was validated by RT-PCR, flow cytometry and/or confocal microscopy. The nuclear receptor PPARγ was preferentially expressed by Th1Th17 cells. PPARγ RNA interference significantly increased HIV replication at levels post-entry and prior HIV-DNA integration. Finally, the activation of PPARγ pathway via the agonist Rosiglitazone induced the nuclear translocation of PPARγ and a robust inhibition of viral replication. Conclusions Thus, transcriptional profiling in Th1Th17 vs. Th1 cells demonstrated that HIV permissiveness is associated with a superior state of cellular activation and limited antiviral properties and identified PPARγ as an intrinsic negative regulator of viral replication. Therefore, triggering PPARγ pathway via non

  15. Mechanisms of Mycobacterium avium-induced resistance against insulin-dependent diabetes mellitus (IDDM) in non-obese diabetic (NOD) mice: role of Fas and Th1 cells.

    Science.gov (United States)

    Martins, T C; Aguas, A P

    1999-02-01

    NOD mice spontaneously develop autoimmune diabetes. One of the manipulations that prevent diabetes in NOD mice is infection with mycobacteria or immunization of mice with mycobacteria-containing adjuvant. Infection of NOD mice with Mycobacterium avium, done before the mice show overt diabetes, results in permanent protection of the animals from diabetes and this protective effect is associated with increased numbers of CD4+ T cells and B220+ B cells. Here, we investigate whether the M. avium-induced protection of NOD mice from diabetes was associated with changes in the expression of Fas (CD95) and FasL by immune cells, as well as alterations in cytotoxic activity, interferon-gamma (IFN-gamma) and IL-4 production and activation of T cells of infected animals. Our data indicate that protection of NOD mice from diabetes is a Th1-type response that is mediated by up-regulation of the Fas-FasL pathway and involves an increase in the cytotoxicity of T cells. These changes are consistent with induction by the infection of regulatory T cells with the ability of triggering deletion or anergy of peripheral self-reactive lymphocytes that cause the autoimmune disease of NOD mice.

  16. TH1/TH2 cytokines and soluble CD30 levels in kidney allograft patients with donor bone marrow cell infusion.

    Science.gov (United States)

    Solgi, G; Amirzagar, A A; Pourmand, G; Mehrsai, A R; Taherimahmoudi, M; Baradaran, N; Nicknam, M H; Ebrahimi Rad, M R; Saraji, A; Asadpoor, A A; Moheiydin, M; Nikbin, B

    2009-09-01

    We investigated the relevance of donor bone marrow cell infusion (DBMI) and serum levels of interferon-gamma (IFN-gamma), interleukin-10 (IL-10), and soluble CD30 (sCD30) in kidney recipients. We analyzed the allograft outcomes correlated with sCD30, IFN-gamma, and IL-10 levels using pre- and posttransplantation sera from 40 live donor renal transplants (20 patients with DBMI [2.1 x 10(9) +/- 1.3 x 10(9) mononuclear cells/body] and 20 controls). Patients with acute rejection episodes (ARE)-3/20 DBMI and 6/20 controls-showed increased sCD30 and IFN-gamma as well as decreased IL-10 posttransplantation compared with nonrejectors. Significant differences were observed for sCD30 and IFN-gamma levels: 59.54 vs 30.92 ng/mL (P = .02) and 11.91 vs 3.01 pg/mL (P = .01), respectively. Comparison of pre- and posttransplant levels of IFN-gamma, IL-10, and sCD30 in ARE patients showed higher levels in posttransplant sera except for IFN-gamma in controls (6.37 vs 11.93; P = .01). Increased IFN-gamma and IL-10 were correlated with rejection (r = .93; P = .008). sCD30 correlated with serum creatinine among ARE patients in control and DBMI groups (r = .89; P = .019; and r = 1.00; P sCD30, IFN-gamma, and IL-10 posttransplantation in rejecting patients provided evidence for coexistence of cellular and humoral responses in ARE. There appeared to be a down-regulatory effect of infusion on alloresponses.

  17. Total glucosides of paeony suppresses experimental autoimmune uveitis in association with inhibition of Th1 and Th2 cell function in mice.

    Science.gov (United States)

    Huang, Xue-Tao; Wang, Bin; Zhang, Wen-Hua; Peng, Man-Qiang; Lin, Ding

    2018-01-01

    Total glucosides of paeony (TGP) are active components extracted from the roots of Paeonia lactiflora Pall. In this study, we investigated the role and mechanisms of TGP in experimental autoimmune uveitis (EAU) model of mice. The C57BL/6 mice were randomly divided into three groups: sham group, EAU-control group, and EAU-TGP group. Clinical score of images of the eye fundus were taken on 7, 14, 21, and 28 days after induction of EAU. The concentrations of proinflammatory cytokines in intraocular fluid were measured at 14 days after EAU induction with the use of a multiplex assay system. Flow cytometry was used to analyze the frequency of CD4+, CD8+, interferon-gamma (IFN-γ), and CD4+/CD8+ ratio in spleen and lymph nodes. Western blotting was used to measure expressions of mitogen-activated protein kinase (MAPK) pathway-related proteins in retina. Clinical scores for uveitis were lower in TGP-treated EAU mice than those without TGP treatment. Importantly, the concentrations of cytokines induced by T-helper 1 (Th1) and T-helper 2 (Th2) cells in intraocular fluid were reduced in EAU mice treated with TGP. Furthermore, the frequency of CD4+, IFN-γ, and CD4+/CD8+ ratio was decreased and the frequency of CD8+ was increased in spleen and lymph nodes of mice treated with TGP. The anti-inflammatory effects of TGP were mediated by inhibiting the MAPK signaling pathways. Our results showed that TGP suppressed uveitis in mice via the inhibition of Th1 and Th2 cell function. Thus, TGP may be a promising therapeutic strategy for uveitis, as well as other ocular inflammatory diseases.

  18. Intratumoral delivery of IL-18 naked DNA induces T-cell activation and Th1 response in a mouse hepatic cancer model

    International Nuclear Information System (INIS)

    Chang, Chi-Young; Lee, Jienny; Kim, Eun-Young; Park, Hae-Jung; Kwon, Choon-Hyuck; Joh, Jae-Won; Kim, Sung-Joo

    2007-01-01

    The novel cytokine, interleukin (IL)-18, is a strong interferon-γ inducer and costimulatory factor in Th1 cell activation. IL-18 triggers IFN-γ production and enhances cytolytic activity in both T and NK cells. However, the exact mechanism of antitumor action of IL-18 remains to be clarified. To determine the effects of IL-18 plasmid DNA on hepatic cancer in mice, CT26 murine colon adenocarcinoma cells were established in mouse liver. Plasmid vectors encoding IL-18 were transferred directly into the liver 7 days after tumor injection to restrict IL-18 expression within the tumor site. The IL-18 protein level was increased in the liver 4 days after plasmid injection, and a marked antitumoral effect was observed at day 7. Antitumor effects were evaluated by measuring tumor regression, immune cell population, and IFN-γ production. The IL-18 plasmid controlled the growth of hepatic tumors and proliferation of splenic immune cells. Moreover, treatment of CT26 tumors with the IL-18 plasmid significantly enhanced the population of the effector T and NK cells in the spleen and peripheral blood. In spleen, the population of CD4 + CD62 Low cells was augmented in response to IL-18 on day 7. These results are consistent with the increase in CD4 + T cells secreting IFN-γ, but not CD8 + T cells. The marked reduction of tumor growth in tumor-bearing mice was associated with the maintenance of IFN-γ production in spleen in response to IL-18. These antitumoral effects were maintained until 14 days after plasmid injection. Our results suggest that direct plasmid DNA transfer of IL-18 with no accompanying reagents to augment transfection efficiency may be useful in tumor immunotherapy

  19. Distinct Roles of Th17 and Th1 Cells in Inflammatory Responses Associated with the Presentation of Paucibacillary Leprosy and Leprosy Reactions.

    Science.gov (United States)

    Santos, M B; de Oliveira, D T; Cazzaniga, R A; Varjão, C S; Dos Santos, P L; Santos, M L B; Correia, C B; Faria, D R; Simon, M do V; Silva, J S; Dutra, W O; Reed, S G; Duthie, M S; de Almeida, R P; de Jesus, A R

    2017-07-01

    It is well established that helper T cell responses influence resistance or susceptibility to Mycobacterium leprae infection, but the role of more recently described helper T cell subsets in determining severity is less clear. To investigate the involvement of Th17 cells in the pathogenesis of leprosy, we determined the immune profile with variant presentations of leprosy. Firstly, IL-17A, IFN-γ and IL-10 were evaluated in conjunction with CD4 + T cell staining by confocal microscopy of lesion biopsies from tuberculoid (TT) and lepromatous leprosy (LL) patients. Secondly, inflammatory cytokines were measured by multiplex assay of serum samples from Multibacillary (MB, n = 28) and Paucibacillary (PB, n = 23) patients and household contacts (HHC, n = 23). Patients with leprosy were also evaluated for leprosy reaction occurrence: LR+ (n = 8) and LR- (n = 20). Finally, peripheral blood mononuclear cells were analysed by flow cytometry used to determine the phenotype of cytokine-producing cells. Lesions from TT patients were found to have more CD4 + IL-17A + cells than those from LL patients. Higher concentrations of IL-17A and IL-1β were observed in serum from PB than MB patients. The highest serum IFN-γ concentrations were, however, detected in sera from MB patients that developed leprosy reactions (MB LR + ). Together, these results indicate that Th1 cells were associated with both the PB presentation and also with leprosy reactions. In contrast, Th17 cells were associated with an effective inflammatory response that is present in the PB forms but were not predictive of leprosy reactions in MB patients. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  20. Notch and presenilin regulate cellular expansion and cytokine secretion but cannot instruct Th1/Th2 fate acquisition.

    Directory of Open Access Journals (Sweden)

    Chin-Tong Ong

    2008-07-01

    Full Text Available Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4(+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4(+ T or reporter cells, the presence of Lunatic Fringe in CD4(+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4(+ T cells lacking gamma-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation.

  1. Recognition of viral and self-antigens by TH1 and TH1/TH17 central memory cells in patients with multiple sclerosis reveals distinct roles in immune surveillance and relapses.

    Science.gov (United States)

    Paroni, Moira; Maltese, Virginia; De Simone, Marco; Ranzani, Valeria; Larghi, Paola; Fenoglio, Chiara; Pietroboni, Anna M; De Riz, Milena A; Crosti, Maria C; Maglie, Stefano; Moro, Monica; Caprioli, Flavio; Rossi, Riccardo; Rossetti, Grazisa; Galimberti, Daniela; Pagani, Massimiliano; Scarpini, Elio; Abrignani, Sergio; Geginat, Jens

    2017-09-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) that is caused by autoreactive T cells and associated with viral infections. However, the phenotype of pathogenic T cells in peripheral blood remains to be defined, and how viruses promote MS is debated. We aimed to identify and characterize potentially pathogenic autoreactive T cells, as well as protective antiviral T cells, in patients with MS. We analyzed CD4 + helper T-cell subsets from peripheral blood or cerebrospinal fluid for cytokine production, gene expression, plasticity, homing potentials, and their reactivity to self-antigens and viral antigens in healthy subjects and patients with MS. Moreover, we monitored their frequencies in untreated and fingolimod- or natalizumab-treated patients with MS. T H 1/T H 17 central memory (T H 1/T H 17 CM ) cells were selectively increased in peripheral blood of patients with relapsing-remitting MS with a high disease score. T H 1/T H 17 CM cells were closely related to conventional T H 17 cells but had more pathogenic features. In particular, they could shuttle between lymph nodes and the CNS and produced encephalitogenic cytokines. The cerebrospinal fluid of patients with active MS was enriched for CXCL10 and contained mainly CXCR3-expressing T H 1 and T H 1/T H 17 subsets. However, while T H 1 cells responded consistently to viruses, T H 1/T H 17 CM cells reacted strongly with John Cunningham virus in healthy subjects but responded instead to myelin-derived self-antigens in patients with MS. Fingolimod and natalizumab therapies efficiently targeted autoreactive T H 1/T H 17 CM cells but also blocked virus-specific T H 1 cells. We propose that autoreactive T H 1/T H 17 CM cells expand in patients with MS and promote relapses after bystander recruitment to the CNS, whereas T H 1 cells perform immune surveillance. Thus the selective targeting of T H 1/T H 17 cells could inhibit relapses without causing John

  2. Immunization of Mice with a Live Transconjugant Shigella Hybrid Strain Induced Th1 and Th17 Cell-Mediated Immune Responses and Confirmed Passive Protection Against Heterologous Shigellae.

    Science.gov (United States)

    Nag, D; Koley, H; Sinha, R; Mukherjee, P; Sarkar, C; Withey, J H; Gachhui, R

    2016-02-01

    An avirulent, live transconjugant Shigella hybrid (LTSHΔstx) strain was constructed in our earlier study by introducing a plasmid vector, pPR1347, into a Shiga toxin gene deleted Shigella dysenteriae 1. Three successive oral administrations of LTSHΔstx to female adult mice produced comprehensive passive heterologous protection in their offspring against challenge with wild-type shigellae. Production of NO and different cytokines such asIL-12p70, IL-1β and IL-23 in peritoneal mice macrophages indicated that LTSHΔstx induced innate and adaptive immunity in mice. Furthermore, production of IFN-γ, IL-10 and IL-17 in LTSH-primed splenic CD4+ T cell suggested that LTSHΔstx may induce Th1 and Th17 cell-mediated immune responses. Exponential increase of the serum IgG and IgA titre against whole shigellae was observed in immunized adult mice during and after the immunization with the highest peak on day 35. Antigen-specific sIgA was also determined from intestinal lavage of immunized mice. The stomach extracts of neonates from immunized mice, mainly containing mother's milk, contained significant levels of anti-LTSHΔstx immunoglobulin. These studies suggest that the LTSHΔstx could be a new live oral vaccine candidate against shigellosis in the near future. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  3. Recombinant ESAT-6-CFP10 Fusion Protein Induction of Th1/Th2 Cytokines and FoxP3 Expressing Treg Cells in Pulmonary TB.

    Directory of Open Access Journals (Sweden)

    Dolly Jackson-Sillah

    Full Text Available Early secretory antigenic target 6 (ESAT-6 and culture filtrate protein 10 (CFP-10 are Mycobacterium tuberculosis (Mtb-specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors.Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest.The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4(+FoxP3(+CD25(hi cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB.These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes.

  4. Recombinant ESAT-6-CFP10 Fusion Protein Induction of Th1/Th2 Cytokines and FoxP3 Expressing Treg Cells in Pulmonary TB.

    Science.gov (United States)

    Jackson-Sillah, Dolly; Cliff, Jacqueline M; Mensah, Gloria Ivy; Dickson, Emmanuel; Sowah, Sandra; Tetteh, John K A; Addo, Kwasi K; Ottenhoff, Tom H M; Bothamley, Graham; Dockrell, Hazel M

    2013-01-01

    Early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) are Mycobacterium tuberculosis (Mtb)-specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors. Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC) were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest. The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4(+)FoxP3(+)CD25(hi) cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB. These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes.

  5. Coupling Planar Cell Polarity Signaling to Morphogenesis

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Axelrod

    2002-01-01

    Full Text Available Epithelial cells and other groups of cells acquire a polarity orthogonal to their apical–basal axes, referred to as Planar Cell Polarity (PCP. The process by which these cells become polarized requires a signaling pathway using Frizzled as a receptor. Responding cells sense cues from their environment that provide directional information, and they translate this information into cellular asymmetry. Most of what is known about PCP derives from studies in the fruit fly, Drosophila. We review what is known about how cells translate an unknown signal into asymmetric cytoskeletal reorganization. We then discuss how the vertebrate processes of convergent extension and cochlear hair-cell development may relate to Drosophila PCP signaling.

  6. Dendritic cells pulsed with Pythium insidiosum (1,3)(1,6)-β-glucan, Heat-inactivated zoospores and immunotherapy prime naïve T cells to Th1 differentiation in vitro.

    Science.gov (United States)

    Ledur, Pauline C; Tondolo, Juliana S M; Jesus, Francielli P K; Verdi, Camila M; Loreto, Érico S; Alves, Sydney H; Santurio, Janio M

    2018-03-01

    Pythiosis is a life-threatening disease caused by the fungus-like microorganism Pythium insidiosum that can lead to death if not treated. Since P. insidiosum has particular cell wall characteristics, pythiosis is difficult to treat, as it does not respond well to traditional antifungal drugs. In our study, we investigated a new immunotherapeutic approach with potential use in treatment and in the acquisition of immunity against pythiosis. Dendritic cells from both human and mouse, pulsed with P. insidiosum heat-inactivated zoospore, (1,3)(1,6)-β-glucan and the immunotherapeutic PitiumVac ® efficiently induced naïve T cell differentiation in a Th1 phenotype by the activation of specific Th1 cytokine production in vitro. Heat-inactivated zoospores showed the greatest Th1 response among the tested groups, with a significant increase in IL-6 and IFN-γ production in human cells. In mice cells, we also observed a Th17 pathway induction, with an increase on the IL-17A levels in lymphocytes cultured with β-glucan pulsed DCs. These results suggest a potential use of DCs pulsed with P. insidiosum antigens as a new therapeutic strategy in the treatment and acquisition of immunity against pythiosis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0644 TITLE: Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: Chun-Ju...Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0644 5c. PROGRAM ELEMENT...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Cancer stem cells (CSCs), a cell population with acquired perpetuating self-renewal properties which

  8. Derp1-modified dendritic cells attenuate allergic inflammation by regulating the development of T helper type1(Th1)/Th2 cells and regulatory T cells in a murine model of allergic rhinitis.

    Science.gov (United States)

    Yu, Shaoqing; Han, Bing; Liu, Shuangxi; Wang, Hong; Zhuang, Wenjie; Huang, Yu; Zhang, Ruxin

    2017-10-01

    The CD4 + CD25 + Foxp3 + regulatory T cells (Tregs) are known to regulate Th2-induced allergic rhinitis (AR). In this study, we evaluated the efficacy of Derp1-modified dendritic cells (DCs) in AR immunotherapy. Derp1 was synthesized and transfected into DCs to generate Derp1-modified DCs. Phenotypes of Derp1-modified DCs were analyzed with flow cytometry using antibodies against DC markers CD11c, CD11b, CD59, CD103 and Toll-like receptor 1(TLR1). Four groups of subject mice were formed; the controls were treated with immature DCs, while the AR mice models were sensitized with Derp1(AR) and treated with DCs(DC-AR) or Derp1-modified DCs (Derp1DC-AR). The frequency of sneezing and scratching, eosinophil cell count, and Th1/Th2 ratio in the spleen were measured for all groups. The percentage of CD4 + CD25 + Foxp3 + Tregs in peripheral blood mononuclear cells was measured using flow cytometry; serum IgE, IgG1, and histamine were measured using enzyme-linked immunosorbent assay; expression levels of transcription factors T-bet, GATA3, Foxp3+ and IL-10 were analyzed using reverse transcription-polymerase chain reaction, and Western blot used in analyzed expression of Foxp3+ and IL-10 in nasal mucosa. Treatment with Derp1-modified DCs ameliorated the allergic response. The Derp1DC-AR group had significantly lower eosinophil cell count and the IgE, IgG1, and histamine levels than the AR and DC-AR groups, and higher mRNA levels of Th1 transcription factors T-bet, IL-10 and Foxp3 in nasal mucosa than DC-AR mice, but Th2 transcription factors GATA3 mRNA expression level has the opposite results. Furthermore, the Th1/Th2 ratio and percentage of CD4 + CD25 + Foxp3 + Tregs was significantly lower in the AR group (pTh1/Th2, showing an immunotherapeutic effect against AR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Basolateral BMP signaling in polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Masao Saitoh

    Full Text Available Bone morphogenetic proteins (BMPs regulate various biological processes, mostly mediated by cells of mesenchymal origin. However, the roles of BMPs in epithelial cells are poorly understood. Here, we demonstrate that, in polarized epithelial cells, BMP signals are transmitted from BMP receptor complexes exclusively localized at the basolateral surface of the cell membrane. In addition, basolateral stimulation with BMP increased expression of components of tight junctions and enhanced the transepithelial resistance (TER, counteracting reduction of TER by treatment with TGF-β or an anti-tumor drug. We conclude that BMPs maintain epithelial polarity via intracellular signaling from basolaterally localized BMP receptors.

  10. Interleukin-34 Regulates Th1 and Th17 Cytokine Production by Activating Multiple Signaling Pathways through CSF-1R in Chicken Cell Lines

    Directory of Open Access Journals (Sweden)

    Anh Duc Truong

    2018-06-01

    Full Text Available Interleukin-34 (IL-34 is a newly recognized cytokine with functions similar to macrophage colony-stimulating factor 1. It is expressed in macrophages and fibroblasts, where it induces cytokine production; however, the mechanism of chicken IL-34 (chIL-34 signaling has not been identified to date. The aim of this study was to analyze the signal transduction pathways and specific biological functions associated with chIL-34 in chicken macrophage (HD11 and fibroblast (OU2 cell lines. We found that IL-34 is a functional ligand for the colony-stimulating factor receptor (CSF-1R in chicken cell lines. Treatment with chIL-34 increased the expression of Th1 and Th17 cytokines through phosphorylation of tyrosine and serine residues in Janus kinase (JAK 2, tyrosine kinase 2 (TYK2, signal transducer and activator of transcription (STAT 1, STAT3, and Src homology 2-containing tyrosine phosphatase 2 (SHP-2, which also led to phosphorylation of NF-κB1, p-mitogen-activated protein kinase kinase kinase 7 (TAK1, MyD88, suppressor of cytokine signaling 1 (SOCS1, and extracellular signal-regulated kinase 1 and 2 (ERK1/2. Taken together, these results suggest that chIL-34 functions by binding to CSF-1R and activating the JAK/STAT, nuclear factor κ B (NF-κB, and mitogen-activated protein kinase signaling pathways; these signaling events regulate cytokine expression and suggest roles for chIL-34 in innate and adaptive immunity.

  11. A bistable model of cell polarity.

    Directory of Open Access Journals (Sweden)

    Matteo Semplice

    Full Text Available Ultrasensitivity, as described by Goldbeter and Koshland, has been considered for a long time as a way to realize bistable switches in biological systems. It is not as well recognized that when ultrasensitivity and reinforcing feedback loops are present in a spatially distributed system such as the cell plasmamembrane, they may induce bistability and spatial separation of the system into distinct signaling phases. Here we suggest that bistability of ultrasensitive signaling pathways in a diffusive environment provides a basic mechanism to realize cell membrane polarity. Cell membrane polarization is a fundamental process implicated in several basic biological phenomena, such as differentiation, proliferation, migration and morphogenesis of unicellular and multicellular organisms. We describe a simple, solvable model of cell membrane polarization based on the coupling of membrane diffusion with bistable enzymatic dynamics. The model can reproduce a broad range of symmetry-breaking events, such as those observed in eukaryotic directional sensing, the apico-basal polarization of epithelium cells, the polarization of budding and mating yeast, and the formation of Ras nanoclusters in several cell types.

  12. Allergoid-specific T-cell reaction as a measure of the immunological response to specific immunotherapy (SIT) with a Th1-adjuvanted allergy vaccine.

    Science.gov (United States)

    von Baehr, V; Hermes, A; von Baehr, R; Scherf, H P; Volk, H D; Fischer von Weikersthal-Drachenberg, K J; Woroniecki, S

    2005-01-01

    Specific immunotherapy (SIT) is believed to modulate CD4+ T-helper cells. In order to improve safety, SIT vaccines are often formulated with allergoids (chemically modified allergens). Interaction between T-cells and allergoids is necessary to influence cellular cytokine expression. There have been few reports on identification the early cellular effects of SIT. Patients allergic to grass and/or mugwort pollen (n= 21) were treated with a 4-shot allergy vaccine (Pollinex Quattro) containing appropriate allergoids (grass/rye and/or mugwort) adsorbed to L-tyrosine plus a Th1 adjuvant, monophosphoryl lipid A (MPL). Fourteen grass-allergic patients served as untreated controls. Using the peripheral blood mononuclear cells of these patients, an optimized lymphocyte transformation test (LTT) was employed to monitor the in vitro proliferative response of T-cells to an allergoid challenge (solubilised Pollinex Quattro) before the first and last injection and then 2 and 20 weeks after the final injection. Control challenges utilised preparations of a similar pollen vaccine without the adjuvant MPL and a tree pollen vaccine with and without MPL. The LTT showed increased LTT stimulation indices (SI) in 17/20 SIT patients when the solublised vaccine preparation was used as a challenge before the last injection and 2 weeks after, in comparison to pre-treatment levels. Twenty weeks after therapy, the SI decreased to baseline level. A vaccine challenge without MPL gave lower SI levels. A challenge of a clinically inappropriate tree allergoid vaccine gave no response, and a nontreated group also showed no response. Following a short-course SIT adjuvated with MPL, challenges of allergoids were shown to activate allergen-specific T cells in vitro. There was an additional stimulating effect when the challenge was in combination with MPL. There were no non-specific effects of MPL, shown by the tree allergoid/MPL control. The timing of the response was closely correlated to the

  13. CCR6+ Th cells in the cerebrospinal fluid of persons with multiple sclerosis are dominated by pathogenic non-classic Th1 cells and GM-CSF-only-secreting Th cells.

    Science.gov (United States)

    Restorick, S M; Durant, L; Kalra, S; Hassan-Smith, G; Rathbone, E; Douglas, M R; Curnow, S J

    2017-08-01

    Considerable attention has been given to CCR6 + IL-17-secreting CD4 + T cells (Th17) in the pathology of a number of autoimmune diseases including multiple sclerosis (MS). However, other Th subsets also play important pathogenic roles, including those that secrete IFNγ and GM-CSF. CCR6 expression by Th17 cells allows their migration across the choroid plexus into the cerebrospinal fluid (CSF), where they are involved in the early phase of experimental autoimmune encephalomyelitis (EAE), and in MS these cells are elevated in the CSF during relapses and contain high frequencies of autoreactive cells. However, the relatively low frequency of Th17 cells suggests they cannot by themselves account for the high percentage of CCR6 + cells in MS CSF. Here we identify the dominant CCR6 + T cell subsets in both the blood and CSF as non-classic Th1 cells, including many that secrete GM-CSF, a key encephalitogenic cytokine. In addition, we show that Th cells secreting GM-CSF but not IFNγ or IL-17, a subset termed GM-CSF-only-secreting Th cells, also accumulate in the CSF. Importantly, in MS the proportion of IFNγ- and GM-CSF-secreting T cells expressing CCR6 was significantly enriched in the CSF, and was elevated in MS, suggesting these cells play a pathogenic role in this disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. CD4+ T regulatory cells from the colonic lamina propria of normal mice inhibit proliferation of enterobacteria-reactive, disease-inducing Th1-cells from scid mice with colitis

    DEFF Research Database (Denmark)

    Gad, M; Brimnes, J; Claesson, Mogens Helweg

    2003-01-01

    Adoptive transfer of CD4+ T cells into scid mice leads to a chronic colitis in the recipients. The transferred CD4+ T cells accumulate in the intestinal lamina propria (LP), express an activated Th1 phenotype and proliferate vigorously when exposed ex vivo to enteric bacterial antigens. As LP CD4......+ T cells from normal BALB/c mice do not respond to enteric bacterial antigens, we have investigated whether colonic LP-derived CD4+ T cells from normal mice suppress the antibacterial response of CD4+ T cells from scid mice with colitis. LP-derived CD4+ T cells cocultured with bone marrow......-derived dendritic cells effectively suppress the antibacterial proliferative response of CD4+ T cells from scid mice with colitis. The majority of these LP T-reg cells display a nonactivated phenotype and suppression is independent of antigen exposure, is partly mediated by soluble factor(s) different from IL-10...

  15. n3 PUFAs reduce mouse CD4+ T-cell ex vivo polarization into Th17 cells.

    Science.gov (United States)

    Monk, Jennifer M; Hou, Tim Y; Turk, Harmony F; McMurray, David N; Chapkin, Robert S

    2013-09-01

    Little is known about the impact of n3 (ω3) PUFAs on polarization of CD4(+) T cells into effector subsets other than Th1 and Th2. We assessed the effects of dietary fat [corn oil (CO) vs. fish oil (FO)] and fermentable fiber [cellulose (C) vs. pectin (P)] (2 × 2 design) in male C57BL/6 mice fed CO-C, CO-P, FO-C, or FO-P diets for 3 wk on the ex vivo polarization of purified splenic CD4(+) T cells (using magnetic microbeads) into regulatory T cells [Tregs; forkhead box P3 (Foxp3(+)) cells] or Th17 cells [interleukin (IL)-17A(+) and retinoic acid receptor-related orphan receptor (ROR) γτ(+) cells] by flow cytometry. Treg polarization was unaffected by diet; however, FO independently reduced the percentage of both CD4(+) IL-17A(+) (P diets enriched in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or DHA + EPA similarly reduced Th17-cell polarization in comparison to CO by reducing expression of the Th17-cell signature cytokine (IL-17A; P = 0.0015) and transcription factor (RORγτ P = 0.02), whereas Treg polarization was unaffected. Collectively, these data show that n3 PUFAs exert a direct effect on the development of Th17 cells in healthy mice, implicating a novel n3 PUFA-dependent, anti-inflammatory mechanism of action via the suppression of the initial development of this inflammatory T-cell subset.

  16. Computer-assisted prediction of HLA-DR binding and experimental analysis for human promiscuous Th1-cell peptides in the 24 kDa secreted lipoprotein (LppX) of Mycobacterium tuberculosis.

    Science.gov (United States)

    Al-Attiyah, R; Mustafa, A S

    2004-01-01

    The secreted 24 kDa lipoprotein (LppX) is an antigen that is specific for Mycobacterium tuberculosis complex and M. leprae. The present study was carried out to identify the promiscuous T helper 1 (Th1)-cell epitopes of the M. tuberculosis LppX (MT24, Rv2945c) antigen by using 15 overlapping synthetic peptides (25 mers overlapping by 10 residues) covering the sequence of the complete protein. The analysis of Rv2945c sequence for binding to 51 alleles of nine serologically defined HLA-DR molecules, by using a virtual matrix-based prediction program (propred), showed that eight of the 15 peptides of Rv2945c were predicted to bind promiscuously to >/=10 alleles from more than or equal to three serologically defined HLA-DR molecules. The Th1-cell reactivity of all the peptides was assessed in antigen-induced proliferation and interferon-gamma (IFN-gamma)-secretion assays with peripheral blood mononuclear cells (PBMCs) from 37 bacille Calmette-Guérin (BCG)-vaccinated healthy subjects. The results showed that 17 of the 37 donors, which represented an HLA-DR-heterogeneous group, responded to one or more peptides of Rv2945c in the Th1-cell assays. Although each peptide stimulated PBMCs from one or more donors in the above assays, the best positive responses (12/17 (71%) responders) were observed with the peptide p14 (aa 196-220). This suggested a highly promiscuous presentation of p14 to Th1 cells. In addition, the sequence of p14 is completely identical among the LppX of M. tuberculosis, M. bovis and M. leprae, which further supports the usefulness of Rv2945c and p14 in the subunit vaccine design against both tuberculosis and leprosy.

  17. Gender-specific effects of genetic variants within Th1 and Th17 cell-mediated immune response genes on the risk of developing rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Rafael Cáliz

    Full Text Available The present study was conducted to explore whether single nucleotide polymorphisms (SNPs in Th1 and Th17 cell-mediated immune response genes differentially influence the risk of rheumatoid arthritis (RA in women and men. In phase one, 27 functional/tagging polymorphisms in C-type lectins and MCP-1/CCR2 axis were genotyped in 458 RA patients and 512 controls. Carriers of Dectin-2 rs4264222T allele had an increased risk of RA (OR = 1.47, 95%CI 1.10-1.96 whereas patients harboring the DC-SIGN rs4804803G, MCP-1 rs1024611G, MCP-1 rs13900T and MCP-1 rs4586C alleles had a decreased risk of developing the disease (OR = 0.66, 95%CI 0.49-0.88; OR = 0.66, 95%CI 0.50-0.89; OR = 0.73, 95%CI 0.55-0.97 and OR = 0.68, 95%CI 0.51-0.91. Interestingly, significant gender-specific differences were observed for Dectin-2 rs4264222 and Dectin-2 rs7134303: women carrying the Dectin-2 rs4264222T and Dectin-2 rs7134303G alleles had an increased risk of RA (OR = 1.93, 95%CI 1.34-2.79 and OR = 1.90, 95%CI 1.29-2.80. Also five other SNPs showed significant associations only with one gender: women carrying the MCP-1 rs1024611G, MCP-1 rs13900T and MCP-1 rs4586C alleles had a decreased risk of RA (OR = 0.61, 95%CI 0.43-0.87; OR = 0.67, 95%CI 0.47-0.95 and OR = 0.60, 95%CI 0.42-0.86. In men, carriers of the DC-SIGN rs2287886A allele had an increased risk of RA (OR = 1.70, 95%CI 1.03-2.78, whereas carriers of the DC-SIGN rs4804803G had a decreased risk of developing the disease (OR = 0.53, 95%CI 0.32-0.89. In phase 2, we genotyped these SNPs in 754 RA patients and 519 controls, leading to consistent gender-specific associations for Dectin-2 rs4264222, MCP-1 rs1024611, MCP-1 rs13900 and DC-SIGN rs4804803 polymorphisms in the pooled sample (OR = 1.38, 95%CI 1.08-1.77; OR = 0.74, 95%CI 0.58-0.94; OR = 0.76, 95%CI 0.59-0.97 and OR = 0.56, 95%CI 0.34-0.93. SNP-SNP interaction analysis of significant SNPs also showed a

  18. The cytokine polymorphisms affecting Th1/Th2 increase the susceptibility to, and severity of, chronic ITP.

    Science.gov (United States)

    Takahashi, Noriyuki; Saitoh, Takayuki; Gotoh, Nanami; Nitta, Yasuhiro; Alkebsi, Lobna; Kasamatsu, Tetsuhiro; Minato, Yusuke; Yokohama, Akihiko; Tsukamoto, Norifumi; Handa, Hiroshi; Murakami, Hirokazu

    2017-05-16

    T-helper cell type 1 (Th1) polarization in chronic immune thrombocytopenia (cITP) has been reported at the protein and mRNA levels. We evaluated the impact of Th1/Th2 cytokine and cytokine receptor functional polymorphisms on both susceptibility to, and severity of, cITP. We analysed IFN-γ + 874 T/A, IFN-γR -611G/A, IL-4 -590C/T, and IL-4Rα Q576R polymorphisms in 126 cITP patients (male/female: 34/92; median age: 47.7 years) and 202 healthy control donors. Genotyping was determined by PCR and direct sequencing. The Th1/Th2 ratio was detected in peripheral blood mononuclear cells via flow cytometry. cITP patients had a higher frequency of the IL-4Rα 576 non-QQ genotype compared to healthy subjects (P = 0.04). cITP patients with the IFN-γ +874 non-AA genotype (high expression type) showed more severe thrombocytopenia than those with the AA genotype (P Th1/Th2 ratio than control patients (P Th1/Th2 ratio (P Th1/Th2 increase the susceptibility to, and severity of, chronic ITP.

  19. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression

    Science.gov (United States)

    Simon, Priscilla S.; Bardhan, Kankana; Chen, May R.; Paschall, Amy V.; Lu, Chunwan; Bollag, Roni J.; Kong, Feng-Chong; Jin, JianYue; Kong, Feng-Ming; Waller, Jennifer L.; Pollock, Raphael E.; Liu, Kebin

    2016-01-01

    Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression. PMID:27014915

  20. Th1/Th2 cytokine expression in diabetic retinopathy.

    Science.gov (United States)

    Cao, Y L; Zhang, F Q; Hao, F Q

    2016-07-15

    Diabetic retinopathy (DR), an important complication of diabetes mellitus (DM), is not well understood. T helper cell balance (Th1/Th2) is involved in various autoimmune diseases; however, its role in DR is not understood. This study explores changes in Th1 and Th2 cytokine expression during DR. Blood samples were collected from 25 healthy volunteers (normal control group), 35 patients with type 2 DM (T2DM group) without DR, and 30 cases of T2DM patients with DR (DR group). Real-time PCR was used to measure mRNA expression of IL-2 and TNF-α, secreted from Th1 cells, and of IL-4 and IL-10, secreted from Th2 cells. We used ELISA to detect cytokine expression in serum to analyze the correlation between Th1 and Th2 cytokines. IL-2 and TNF-αmRNA and protein expression levels in the T2DM and DR groups were significantly higher than in the normal control group (P 0.05). IL-2 and TNF-αwere negatively correlated with IL-4 and IL-10 in the DR group, respectively. We found that Th1 cytokine secretion was higher and Th2 cytokines secretion was lower during DR, leading to a Th1/ Th2 imbalance, suggesting that Th1/Th2 imbalance is a side effect for DR occurrence and development.

  1. Dendritic cell-mediated T cell polarization

    NARCIS (Netherlands)

    de Jong, Esther C.; Smits, Hermelijn H.; Kapsenberg, Martien L.

    2005-01-01

    Effective defense against diverse types of micro-organisms that invade our body requires specialized classes of antigen-specific immune responses initiated and maintained by distinct subsets of effector CD4(+) T helper (Th) cells. Excessive or detrimental (e.g., autoimmune) responses by effector T

  2. n3 PUFAs Reduce Mouse CD4+ T-Cell Ex Vivo Polarization into Th17 Cells123

    Science.gov (United States)

    Monk, Jennifer M.; Hou, Tim Y.; Turk, Harmony F.; McMurray, David N.; Chapkin, Robert S.

    2013-01-01

    Little is known about the impact of n3 (ω3) PUFAs on polarization of CD4+ T cells into effector subsets other than Th1 and Th2. We assessed the effects of dietary fat [corn oil (CO) vs. fish oil (FO)] and fermentable fiber [cellulose (C) vs. pectin (P)] (2 × 2 design) in male C57BL/6 mice fed CO-C, CO-P, FO-C, or FO-P diets for 3 wk on the ex vivo polarization of purified splenic CD4+ T cells (using magnetic microbeads) into regulatory T cells [Tregs; forkhead box P3 (Foxp3+) cells] or Th17 cells [interleukin (IL)-17A+ and retinoic acid receptor-related orphan receptor (ROR) γτ+ cells] by flow cytometry. Treg polarization was unaffected by diet; however, FO independently reduced the percentage of both CD4+ IL-17A+ (P diets enriched in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or DHA + EPA similarly reduced Th17-cell polarization in comparison to CO by reducing expression of the Th17-cell signature cytokine (IL-17A; P = 0.0015) and transcription factor (RORγτ P = 0.02), whereas Treg polarization was unaffected. Collectively, these data show that n3 PUFAs exert a direct effect on the development of Th17 cells in healthy mice, implicating a novel n3 PUFA–dependent, anti-inflammatory mechanism of action via the suppression of the initial development of this inflammatory T-cell subset. PMID:23864512

  3. Pulsed high-dose dexamethasone modulates Th1-/Th2-chemokine imbalance in immune thrombocytopenia.

    Science.gov (United States)

    Liu, Zongtang; Wang, Meiying; Zhou, Shufen; Ma, Ji; Shi, Yan; Peng, Jun; Hou, Ming; Guo, Chengshan

    2016-10-24

    Chemokines and chemokine receptors play important roles in autoimmune diseases; however, their role in immune thrombocytopenia (ITP) is unclear. High-dose dexamethasone (HD-DXM) may become a first-line therapy for adult patients with ITP, but the effect of HD-DXM on chemokines in ITP patients is unknown. Our aim was to investigate the mechanism of pulsed HD-DXM for management of ITP, specifically regarding the chemokine pathways. Th1-/Th2-associated chemokine and chemokine receptor profiles in ITP patients before and after pulsed HD-DXM was studied. Plasma levels of CCL5 and CXCL11 (Th1-associated) and of CCL11 (Th2-associated) were determined by ELISA. Gene expression of these three chemokines and their corresponding receptors CCR5, CXCR3, and CCR3, in peripheral blood mononuclear cells (PBMCs) was determined by quantitative RT-PCR. Thirty-three of the thirty-eight ITP patients responded effectively to HD-DXM (oral, 40 mg/day, 4 days). In ITP patients, plasma CXCL11 levels increased, while CCL11 and CCL5 decreased compared to controls (P Th1-/Th2-associated chemokines and chemokine receptors may play important roles in the pathogenesis of ITP. Importantly, regulating Th1 polarization by pulsed HD-DXM may represent a novel approach for immunoregulation in ITP.

  4. Cytotoxic effector functions of T cells are not required for protective immunity against fatal Rickettsia typhi infection in a murine model of infection: Role of TH1 and TH17 cytokines in protection and pathology.

    Directory of Open Access Journals (Sweden)

    Kristin Moderzynski

    2017-02-01

    Full Text Available Endemic typhus caused by Rickettsia (R. typhi is an emerging febrile disease that can be fatal due to multiple organ pathology. Here we analyzed the requirements for protection against R. typhi by T cells in the CB17 SCID model of infection. BALB/c wild-type mice generate CD4+ TH1 and cytotoxic CD8+ T cells both of which are sporadically reactivated in persistent infection. Either adoptively transferred CD8+ or CD4+ T cells protected R. typhi-infected CB17 SCID mice from death and provided long-term control. CD8+ T cells lacking either IFNγ or Perforin were still protective, demonstrating that the cytotoxic function of CD8+ T cells is not essential for protection. Immune wild-type CD4+ T cells produced high amounts of IFNγ, induced the release of nitric oxide in R. typhi-infected macrophages and inhibited bacterial growth in vitro via IFNγ and TNFα. However, adoptive transfer of CD4+IFNγ-/- T cells still protected 30-90% of R. typhi-infected CB17 SCID mice. These cells acquired a TH17 phenotype, producing high amounts of IL-17A and IL-22 in addition to TNFα, and inhibited bacterial growth in vitro. Surprisingly, the neutralization of either TNFα or IL-17A in CD4+IFNγ-/- T cell recipient mice did not alter bacterial elimination by these cells in vivo, led to faster recovery and enhanced survival compared to isotype-treated animals. Thus, collectively these data show that although CD4+ TH1 cells are clearly efficient in protection against R. typhi, CD4+ TH17 cells are similarly protective if the harmful effects of combined production of TNFα and IL-17A can be inhibited.

  5. Regnase-1 and Roquin Nonredundantly Regulate Th1 Differentiation Causing Cardiac Inflammation and Fibrosis.

    Science.gov (United States)

    Cui, Xiaotong; Mino, Takashi; Yoshinaga, Masanori; Nakatsuka, Yoshinari; Hia, Fabian; Yamasoba, Daichi; Tsujimura, Tohru; Tomonaga, Keizo; Suzuki, Yutaka; Uehata, Takuya; Takeuchi, Osamu

    2017-12-15

    Regnase-1 and Roquin are RNA binding proteins that are essential for degradation of inflammatory mRNAs and maintenance of immune homeostasis. Although deficiency of either of the proteins leads to enhanced T cell activation, their functional relationship in T cells has yet to be clarified because of lethality upon mutation of both Regnase-1 and Roquin. By using a Regnase-1 conditional allele, we show that mutations of both Regnase-1 and Roquin in T cells leads to massive lymphocyte activation. In contrast, mutation of either Regnase-1 or Roquin affected T cell activation to a lesser extent than the double mutation, indicating that Regnase-1 and Roquin function nonredundantly in T cells. Interestingly, Regnase-1 and Roquin double-mutant mice suffered from severe inflammation and early formation of fibrosis, especially in the heart, along with the increased expression of Ifng , but not Il4 or Il17a Consistently, mutation of both Regnase-1 and Roquin leads to a huge increase in the Th1, but not the Th2 or Th17, population in spleens compared with T cells with a single Regnase-1 or Roquin deficiency. Regnase-1 and Roquin are capable of repressing the expression of a group of mRNAs encoding factors involved in Th1 differentiation, such as Furin and Il12rb1 , via their 3' untranslated regions. Moreover, Regnase-1 is capable of repressing Roquin mRNA. This cross-regulation may contribute to the synergistic control of T cell activation/polarization. Collectively, our results demonstrate that Regnase-1 and Roquin maintain T cell immune homeostasis and regulate Th1 polarization synergistically. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. Immunomodulatory effect of tea saponin in immune T-cells and T-lymphoma cells via regulation of Th1, Th2 immune response and MAPK/ERK2 signaling pathway.

    Science.gov (United States)

    Bhardwaj, Jyoti; Chaudhary, Narendra; Seo, Hyo-Jin; Kim, Min-Yong; Shin, Tai-Sun; Kim, Jong-Deog

    2014-06-01

    The anti-cancer activity of saponins and phenolic compounds present in green tea was previously reported. However, the immunomodulatory and adjuvanticity activity of tea saponin has never been studied. In this study, we investigated the immunomodulatory effect of tea saponin in T-lymphocytes and EL4 cells via regulation of cytokine response and mitogen-activated protein kinases (MAPK) signaling pathway. Quantitative analysis of mRNA expression level of cytokines were performed by reverse transcription polymerase chain reaction following stimulation with tea saponin, ovalbumin (OVA) alone or tea saponin in combination with OVA. Tea saponin inhibited the proliferation of EL4 cells measured in a dose-dependent manner. No cytotoxicity effect of tea saponin was detected in T-lymphocytes; rather, tea saponin enhanced the proliferation of T-lymphocytes. Tea saponin with OVA increased the expression of interleukin (IL)-1, IL-2, IL-12, interferon-γ and tumor necrosis factor (TNF)-α and decreased the expression level of IL-10 and IL-8 in T-lymphocytes. Furthermore, tea saponin, in the presence of OVA, downregulated the MAPK signaling pathway via inhibition of IL-4, IL-8 and nuclear factor kappaB (NF-κB) in EL4 cells. Th1 cytokines enhancer and Th2 cytokines and NF-κB inhibitor, tea saponin can markedly inhibit the proliferation and invasiveness of T-lymphoma (EL4) cells, possibly due to TNF-α- and NF-κB-mediated regulation of MAPK signaling pathway.

  7. Liposome delivery of Chlamydia muridarum major outer membrane protein primes a Th1 response that protects against genital chlamydial infection in a mouse model

    DEFF Research Database (Denmark)

    Hansen, Jon; Jensen, Klaus Thorleif; Follmann, Frank

    2008-01-01

    BACKGROUND: Immunity to chlamydia is thought to rely on interferon (IFN)-gamma-secreting T helper cells type 1 (Th1) with an additional effect of secreted antibodies. A need for Th1-polarizing adjuvants in experimental chlamydia vaccines has been demonstrated, and antigen conformation has also been......-alpha and a profoundly reduced vaginal chlamydial load, compared with control mice. The protection was CD4(+) T cell dependent and was not dependent on MOMP conformation. CONCLUSION: CAF01 adjuvant facilitates a protective anti-MOMP CD4(+) T cell response independent of MOMP conformation....

  8. Dichotomy of the T cell response to Leishmania antigens in patients suffering from cutaneous leishmaniasis; absence or scarcity of Th1 activity is associated with severe infections

    DEFF Research Database (Denmark)

    Gaafar, A; Kharazmi, A; Ismail, A

    1995-01-01

    ) and amastigotes (LDA), and the surface protease gp63. The proliferative responses to Leishmania antigens were lower in patients with severe disease than in patients with mild disease (P = 0.01-0.05), and such a difference was not observed in the response to purified protein derivative of tuberculin (PPD...... when the cells from the same donors were stimulated by TT and PPD. The percentages of patients with a Th1-like response pattern after stimulation by LMP in patients with severe and mild disease manifestations were 30% and 80%, respectively. This difference was statistically significant (P = 0.034)....

  9. The interdependence of the Rho GTPases and apicobasal cell polarity.

    Science.gov (United States)

    Mack, Natalie Ann; Georgiou, Marios

    2014-01-01

    Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease.

  10. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria

    OpenAIRE

    L?nnberg, Tapio; Svensson, Valentine; James, Kylie R.; Fernandez-Ruiz, Daniel; Sebina, Ismail; Montandon, Ruddy; Soon, Megan S. F.; Fogg, Lily G.; Nair, Arya Sheela; Liligeto, Urijah; Stubbington, Michael J. T.; Ly, Lam-Ha; Bagger, Frederik Otzen; Zwiessele, Max; Lawrence, Neil D.

    2017-01-01

    Differentiation of na?ve CD4+ T cells into functionally distinct T helper subsets is crucial for the orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping transcriptional programs in differentiating T cell populations, this process has remained a challenge for systematic dissection in vivo. By using single-cell transcriptomics and computational analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we reconstructed the developmenta...

  11. T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Hedegaard, Chris J; Krakauer, Martin; Bendtzen, Klaus

    2008-01-01

    Autoreactive T cells are thought to play an essential role in the pathogenesis of multiple sclerosis (MS). We examined the stimulatory effect of human myelin basic protein (MBP) on mononuclear cell (MNC) cultures from 22 patients with MS and 22 sex-matched and age-matched healthy individuals, and...

  12. Dichotomy of the human T cell response to Leishmania antigens. I. Th1-like response to Leishmania major promastigote antigens in individuals recovered from cutaneous leishmaniasis

    DEFF Research Database (Denmark)

    Kemp, M; Hey, A S; Kurtzhals, J A

    1994-01-01

    of skin lesions, and in Danes without known exposure to Leishmania parasites. Proliferation and production of interferon-gamma (IFN-gamma) and IL-4 in antigen-stimulated cultures was measured. Lymphocytes from individuals with a history of CL proliferated vigorously and produced IFN-gamma after...... the unexposed Danes were not activated by gp63. The cells from Danish donors produced either IFN-gamma or IL-4, but not both cytokines after incubation with the crude preparation of L. major antigens. The data show that the T cell response to Leishmania antigens in humans who have had uncomplicated CL...... stimulation with either a crude preparation of L. major antigens or the major surface protease gp63. These cultures produced no or only little IL-4. Also cells from leishmanin skin test-positive donors with no history of CL produced IFN-gamma and no IL-4 in response to L. major antigens. Cells from...

  13. Lipophilic fractions from the marine sponge Halichondria sitiens decrease secretion of pro-inflammatory cytokines by dendritic cells and decrease their ability to induce a Th1 type response by allogeneic CD4+ T cells.

    Science.gov (United States)

    Di, Xiaxia; Oskarsson, Jon T; Omarsdottir, Sesselja; Freysdottir, Jona; Hardardottir, Ingibjorg

    2017-12-01

    Halichondria (Halichondriidae) marine sponges contain components possessing various biological activities, but immunomodulation is not among the ones reported. This study evaluated the immunomodulatory effects of fractions/compounds from Halichondria sitiens Schmidt. Crude dichloromethane/methanol extracts of H. sitiens were subjected to various chromatographic techniques to obtain fractions/compounds with immunomodulatory activity, using bioassay-guided isolation. The effects of the fractions/compounds were determined by measuring secretion of cytokines and expression of surface molecules by dendritic cells (DCs) and their ability to stimulate and modify cytokine secretion by allogeneic CD4 + T cells. The bioactive fractions were chemically analyzed to identify the immunomodulatory constituents by 1D, 2D NMR, and HRMS data. Several lipophilic fractions from H. sitiens at 10 μg/mL decreased secretion of the pro-inflammatory cytokines IL-12p40 and IL-6 by the DCs, with maximum inhibition being 64% and 25%, respectively. In addition, fractions B3b3F and B3b3J decreased the ability of DCs to induce T cell secretion of IFN-γ. Fraction B3b3 induced morphological changes in DCs, characterized by extreme elongation of dendrites and cell clustering. Chemical screening revealed the presence of glycerides and some minor unknown constituents in the biologically active fractions. One new glyceride, 2,3-dihydroxypropyl 2-methylhexadecanoate (1), was isolated from one fraction and two known compounds, 3-[(1-methoxyhexadecyl)oxy]propane-1,2-diol (2) and monoheptadecanoin (3), were identified in another, but none of them had immunomodulatory activity. These results demonstrate that several lipophilic fractions from H. sitiens have anti-inflammatory effects on DCs and decrease their ability to induce a Th1 type immune response.

  14. A High RORγT/CD3 Ratio is a Strong Prognostic Factor for Postoperative Survival in Advanced Colorectal Cancer: Analysis of Helper T Cell Lymphocytes (Th1, Th2, Th17 and Regulatory T Cells).

    Science.gov (United States)

    Yoshida, Naohiro; Kinugasa, Tetsushi; Miyoshi, Hiroaki; Sato, Kensaku; Yuge, Kotaro; Ohchi, Takafumi; Fujino, Shinya; Shiraiwa, Sachiko; Katagiri, Mitsuhiro; Akagi, Yoshito; Ohshima, Koichi

    2016-03-01

    Tumor-infiltrating lymphocytes (TILs), part of the host immune response, have been widely reported as influential factors in the tumor microenvironment for the clinical outcome of colorectal cancer (CRC). However, the network of helper T cells is very complex, and which T-cell subtypes affect the progression of CRC and postoperative prognosis remains unclear. This study investigated the expression of several subtypes of TILs including T helper type 1 (Th1), Th2, Th17, and regulatory T (Treg) cells to determine their correlation with clinicopathologic features and postoperative prognosis. The study investigated the expression of TILs using immunohistochemistry of tissue microarray samples for 199 CRC patients. The number of each T-cell subtype infiltrating tumors was counted using ImageJ software. The relationship between TIL marker expression, clinicopathologic features, and prognosis was analyzed. A high RORγT/CD3 ratio (Th17 ratio) was significantly correlated with lymph node metastasis (p = 0.002), and a high of Foxp3/CD3 ratio (Treg ratio) was correlated with tumor location in the colon (p = 0.04), as shown by the Chi square test. In multivariate analysis, a high RORγT/CD3 ratio was the only independent prognostic factor for overall survival (p = 0.04; hazard ratio [HR], 1.84; 95% confidence interval [CI] 1.02-3.45). This study confirmed a high RORγT/CD3 ratio as a strong prognostic marker for postoperative survival. The immunohistochemistry results suggest that Th17 may affect lymph node metastasis in CRC. If new immunotherapies reducing Th17 expression are established, they may improve the efficiency of cancer treatment and prolong the survival of patients with CRC.

  15. RhIL-11 treatment normalized Th1/Th2 and T-bet/GATA-3 imbalance in in human immune thrombocytopenic purpura (ITP).

    Science.gov (United States)

    Lin, Ying; Zhou, Xieming; Guo, Wenjian; Li, Qianqian; Pan, Xiahui; Bao, Yunhua; He, Muqing; Zhu, Baoling; Lin, Xiaoji; Jin, Limin; Yao, Rongxin

    2016-09-01

    Immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disorder characterized by reduction in platelet counts. T helper 1 (Th1) cells polarization with an increased shift of Th1/Th2 ratio has been reported in ITP. This shift is associated with transcription factor T-box expressed in T cells (T-bet) upregulation and GATA-binding protein 3 (GATA-3) downregulation, leading to an increased T-bet/GATA-3 ratio. Our previous in vitro study showed that recombinant human interleukin-11 (rhIL-11) could normalize Th1/Th2 imbalance in the peripheral blood mononuclear cells (PBMCs) isolated from adult ITP patients, which co-occurred with T-bet/GATA-3 ratio restoration. In this report, we investigated whether rhIL-11 had therapeutic effect in clinical ITP patients and whether rhIL-11 treatment could normalize Th1/Th2 and T-bet/GATA-3 levels in vivo. We found rhIL-11 treatment had a response rate of 67.7% and significantly decreased Th1 and T-bet levels but increased Th2 and GATA-3 levels in ITP patients who showed good response, normalizing Th1/Th2 and T-bet/GATA-3 ratios similar to that in healthy controls. Thus our study suggested rhIL-11 was effective with tolerable adverse effects in ITP. The treatment strategy warrants further clinical investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. IL-12 inhibits the TGF-beta-dependent T cell developmental programs and skews the TGF-beta-induced differentiation into a Th1-like direction

    Czech Academy of Sciences Publication Activity Database

    Procházková, Jana; Pokorná, Kateřina; Holáň, Vladimír

    2012-01-01

    Roč. 217, č. 1 (2012), s. 74-82 ISSN 0171-2985 R&D Projects: GA AV ČR KAN200520804; GA MŠk 1M0506; GA ČR GAP304/11/0653; GA ČR(CZ) GAP301/11/1568; GA ČR GD310/08/H077 Institutional research plan: CEZ:AV0Z50520514 Keywords : cytokines * T cell differentiation * T cell subsets Subject RIV: EC - Immunology Impact factor: 2.814, year: 2012

  17. Modelo natural de dicotomía TH1-TH2: La enfermedad de Hansen Th1-TH2 balance. Natural model: Hansen'disease

    Directory of Open Access Journals (Sweden)

    N. L Vaquero

    2010-09-01

    Full Text Available La enfermedad de Hansen producida por el Mycobacterium leprae, es una enfermedad infecciosa cuyo amplio espectro clínico e inmunopatológico se correlaciona con los diferentes patrones de respuesta Th1/Th2. La activación preferencial de esas subpoblaciones de linfocitos T CD4 juega un rol importante en su patogenia y constituye un modelo natural de esa dicotomía de la respuesta inmune. Ambas formas polares de la lepra presentan un perfil definido de secreción de citoquinas: Th1 (IL2 e IFN? en el polo tuberculoide y Th2 (IL4, IL5, IL10 en el polo lepromatoso. En el primer caso, la respuesta celular adecuada estimula la activación macrofágica y lleva a la destrucción del bacilo. Las lesiones son escasas y limitadas a la piel y nervios periféricos. En el segundo en cambio, la respuesta celular es casi nula y los bacilos se multiplican descontroladamente dentro de los macrófagos, llevando a la diseminación de las lesiones y afectación de otros órganos. La inmunidad humoral está exacerbada y hay un alto nivel de anticuerpos que no pueden eliminar el germen intracelular. Los factores que determinan la diferenciación hacia una respuesta Th1 ó Th2 no se han esclarecido totalmente. Se han postulado varias hipótesis que hacen referencia a factores genéticos, prevalencia de citoquinas en el microambiente celular, disfunción macrofágica; alteración en los receptores Toll de la inmunidad innata, en la expresión de moléculas coestimulatorias, etc En los últimos años se han descubierto nuevas subpoblaciones de linfocitos, (CD4+ CD25+, Tr1, Th3 y Th17 que estarían implicadas en la desregulación de estas respuestas inmunes.Hansen' disease, caused by Mycobacterium leprae, is an infectious illness whose wide clinical and immunopathologic spectrum correl with different Th1/Th2 responses patterns. The prefferencial activation of the CD4 T cells subset play an important rol in it's pathogenia and provides a natural model of that balance

  18. CD1d-dependent NKT cells play a protective role in acute and chronic arthritis models by ameliorating antigen-specific Th1 responses

    DEFF Research Database (Denmark)

    Teige, Anna; Bockermann, Robert; Hasan, Maruf

    2010-01-01

    -induced arthritis (AIA) and collagen-induced arthritis (CIA), to evaluate acute and chronic arthritis in CD1d knockout mice and mice depleted of NK1.1(+) cells. CD1d-deficient mice developed more severe AIA compared with wild-type littermates, with a higher degree of inflammation and proteoglycan depletion. Chronic...... arthritis in CIA was also worse in the absence of CD1d-dependent NKTs. Elevated levels of Ag-specific IFN-gamma production accompanied these findings rather than changes in IL-17alpha. Depletion of NK1.1(+) cells supported these findings in AIA and CIA. This report provides support for CD1d-dependent NKTs...

  19. Lactobacillus casei ssp.casei induced Th1 cytokine profile and natural killer cells activity in invasive ductal carcinoma bearing mice.

    Science.gov (United States)

    Soltan Dallal, Mohammad Mehdi; Yazdi, Mohammad Hossein; Holakuyee, Marzieh; Hassan, Zuhair Mohammad; Abolhassani, Mohsen; Mahdavi, Mehdi

    2012-06-01

    Lactic acid bacteria which are used as probiotics have ability to modulate immune responses and modify immune mechanisms. It has also been indicated that some strains of this family can affect the immune responses against solid tumors. In the present work, we proposed to study the effects of oral administration of L.cacesi ssp casei on the NK cells cytotoxicity and also production of cytokines in spleen cells culture of BALB/c mice bearing invasive ductal carcinoma. 30 female In-bred BALB/c mice, were used and divided in two groups of test and control each containing 15 mice. Every day from 2 weeks before tumor transplantation 0.5 ml of PBS containing 2.7×108 CFU/ml of L.casei spp casei was orally administered to the test mice and it was followed 3 weeks after transplantation as well with 3 days interval between each week. Control mice received an equal volume of PBS in a same manner. Results showed that oral administration of L. casei significantly increased the production of IL-12 and IFN-γ (Psurvival was significantly prolonged in comparison to the controls. Our findings suggest that daily intake of L.casei can improve immune responses in mice bearing invasive ductal carcinoma, but further studies are needed to investigate the other involving mechanisms in this case.

  20. Id2 reinforces TH1 differentiation and inhibits E2A to repress TFH differentiation.

    Science.gov (United States)

    Shaw, Laura A; Bélanger, Simon; Omilusik, Kyla D; Cho, Sunglim; Scott-Browne, James P; Nance, J Philip; Goulding, John; Lasorella, Anna; Lu, Li-Fan; Crotty, Shane; Goldrath, Ananda W

    2016-07-01

    The differentiation of helper T cells into effector subsets is critical to host protection. Transcription factors of the E-protein and Id families are important arbiters of T cell development, but their role in the differentiation of the TH1 and TFH subsets of helper T cells is not well understood. Here, TH1 cells showed more robust Id2 expression than that of TFH cells, and depletion of Id2 via RNA-mediated interference increased the frequency of TFH cells. Furthermore, TH1 differentiation was blocked by Id2 deficiency, which led to E-protein-dependent accumulation of effector cells with mixed characteristics during viral infection and severely impaired the generation of TH1 cells following infection with Toxoplasma gondii. The TFH cell-defining transcriptional repressor Bcl6 bound the Id2 locus, which provides a mechanism for the bimodal Id2 expression and reciprocal development of TH1 cells and TFH cells.

  1. Surface-Displayed IL-10 by Recombinant Lactobacillus plantarum Reduces Th1 Responses of RAW264.7 Cells Stimulated with Poly(I:C) or LPS.

    Science.gov (United States)

    Cai, Ruopeng; Jiang, Yanlong; Yang, Wei; Yang, Wentao; Shi, Shaohua; Shi, Chunwei; Hu, Jingtao; Gu, Wei; Ye, Liping; Zhou, Fangyu; Gong, Qinglong; Han, Wenyu; Yang, Guilian; Wang, Chunfeng

    2016-02-01

    Recently, poly-γ-glutamic acid synthetase A (pgsA) has been applied to display exogenous proteins on the surface of Lactobacillus casei or Lactococcus lactis, which results in a surfacedisplayed component of bacteria. However, the ability of carrying genes encoded by plasmids and the expression efficiency of recombinant bacteria can be somewhat affected by the longer gene length of pgsA (1,143 bp); therefore, a truncated gene, pgsA, was generated based on the characteristics of pgsA by computational analysis. Using murine IL-10 as an exogenous gene, recombinant Lactobacillus plantarum was constructed and the capacity of the surface-displayed protein and functional differences between exogenous proteins expressed by these strains were evaluated. Surface expression of IL-10 on both recombinant bacteria with anchorins and the higher expression levels in L. plantarum-pgsA'-IL-10 were confirmed by western blot assay. Most importantly, up-regulation of IL-1β, IL-6, TNF-α, IFN-γ, and the nuclear transcription factor NF-κB p65 in RAW264.7 cells after stimulation with Poly(I:C) or LPS was exacerbated after co-culture with L. plantarum-pgsA. By contrast, IL-10 expressed by these recombinant strains could reduce these factors, and the expression of these factors was associated with recombinant strains that expressed anchorin (especially in L. plantarum-pgsA'-IL-10) and was significantly lower compared with the anchorin-free strains. These findings indicated that exogenous proteins could be successfully displayed on the surface of L. plantarum by pgsA or pgsA', and the expression of recombinant bacteria with pgsA' was superior compared with bacteria with pgsA.

  2. The polarized double cell target of the SMC

    International Nuclear Information System (INIS)

    Adams, D.; Adeva, B.; Arik, E.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, G.; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjoerkholm, P.; Bonner, B.E.; Botton, N. de; Boutemeur, M.; Bradamante, F.; Bravar, A.; Bressan, A.; Bueltmann, S.; Burtin, E.; Cavata, C.; Crabb, D.; Cranshaw, J.; Cuhadar, T.; Torre, S. Dalla; Dantzig, R. van; Derro, B.; Deshpande, A.; Dhawan, S.; Dulya, C.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Forthmann, S.; Frois, B.; Gallas, A.; Garzon, J.A.; Gaussiran, T.; Gilly, H.; Giorgi, M.; Goeler, E. von; Goertz, S.; Gracia, G.; Groot, N. de; Perdekamp, M. Grosse; Guelmez, E.; Haft, K.; Harrach, D. von; Hasegawa, T.; Hautle, P.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Kabuss, E.M.; Kageya, T.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kiryluk, J.; Kishi, A.; Kisselev, Yu.; Klostermann, L.; Kraemer, D.; Krivokhijine, V.; Kroeger, W.; Kurek, K.; Kyynaeraeinen, J.; Lamanna, M.; Landgraf, U.; Layda, T.; Le Goff, J.M.; Lehar, F.; Lesquen, A. de; Lichtenstadt, J.; Lindqvist, T.; Litmaath, M.; Lowe, M.; Magnon, A.; Mallot, G.K.; Marie, F.; Martin, A.; Martino, J.; Matsuda, T.; Mayes, B.; McCarthy, J.S.; Medved, K.; Meyer, W.; Middelkoop, G. van; Miller, D.; Miyachi, Y.; Mori, K.; Moromisato, J.; Nassalski, J.; Naumann, L.; Neganov, B.; Niinikoski, T.O.; Oberski, J.E.J.; Ogawa, A.; Ozben, C.; Parks, D.P.; Pereira, H.; Penzo, A.; Perrot-Kunne, F.; Peshekhonov, D.; Piegaia, R.; Pinsky, L.; Platchkov, S.; Plo, M.; Pose, D.; Postma, H.; Pretz, J.; Pussieux, T.; Pyrlik, J.; Raedel, G.; Reyhancan, I.; Reicherz, G.; Rieubland, J.M.; Rijllart, A.; Roberts, J.B.; Rock, S.; Rodriguez, M.; Rondio, E.; Rosado, A.; Roscherr, B.; Sabo, I.; Saborido, J.; Sandacz, A.; Savin, I.; Schiavon, P.; Schiller, A.; Schueler, K.P.; Segel, R.; Seitz, R.; Semertzidis, Y.; Sever, F.; Shanahan, P.; Sichtermann, E.P.; Simeoni, F.; Smirnov, G.I.; Staude, A.; Steinmetz, A.; Stiegler, U.; Stuhrmann, H.; Szleper, M.; Teichert, K.M.; Tessarotto, F.; Thers, D.; Tlaczala, W.; Trentalange, S.; Tripet, A.; Unel, G.; Velasco, M.; Vogt, J.; Voss, R.; Weinstein, R.; Whitten, C.; Windmolders, R.; Willumeit, R.; Wislicki, W.; Witzmann, A.; Zanetti, A.M.; Zaremba, K.; Zhao, J.

    1999-01-01

    The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993-1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials -- butanol, ammonia, and deuterated butanol -- with maximum degrees of polarization of 94%, 91% and 60%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses, the accuracies achieved were between 2.0% and 3.2%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, construction and performance of the target are reviewed

  3. The polarized double cell target of the SMC

    CERN Document Server

    Adams, D; Adeva, B; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Layda, T; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Neganov, B S; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Pereira, H; Penzo, Aldo L; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Pussieux, T; Pyrlik, J; Rädel, G; Reyhancan, I; Reicherz, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Schüler, K P; Segel, R E; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Thers, D; Tlaczala, W; Trentalange, S; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Zanetti, A M; Zaremba, K; Zhao, J

    1999-01-01

    The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993 to 1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials $-$ butanol, ammonia, and deuterated butanol, with maximum degrees of polarization of 94, 91, and 60 \\%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses. The achieved accuracies were between 2.0 and 3.2 \\%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, the ...

  4. Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes

    Science.gov (United States)

    St. John, Ashley L.; Chan, Cheryl Y.; Staats, Herman F.; Leong, Kam W.; Abraham, Soman N.

    2012-03-01

    Granules of mast cells (MCs) enhance adaptive immunity when, on activation, they are released as stable particles. Here we show that submicrometre particles modelled after MC granules augment immunity when used as adjuvants in vaccines. The synthetic particles, which consist of a carbohydrate backbone with encapsulated inflammatory mediators such as tumour necrosis factor, replicate attributes of MCs in vivo including the targeting of draining lymph nodes and the timed release of the encapsulated mediators. When used as an adjuvant during vaccination of mice with haemagglutinin from the influenza virus, the particles enhanced adaptive immune responses and increased survival of mice on lethal challenge. Furthermore, differential loading of the particles with the cytokine IL-12 directed the character of the response towards Th1 lymphocytes. The synthetic MC adjuvants replicate and enhance the functions of MCs during vaccination, and can be extended to polarize the resulting immunity.

  5. Dietary Fructo-Oligosaccharides Attenuate Early Activation of CD4+ T Cells Which Produce both Th1 and Th2 Cytokines in the Intestinal Lymphoid Tissues of a Murine Food Allergy Model.

    Science.gov (United States)

    Tsuda, Masato; Arakawa, Haruka; Ishii, Narumi; Ubukata, Chihiro; Michimori, Mana; Noda, Masanari; Takahashi, Kyoko; Kaminogawa, Shuichi; Hosono, Akira

    2017-01-01

    Fructo-oligosaccharides (FOS) are prebiotic agents with immunomodulatory effects involving improvement of the intestinal microbiota and metabolome. In this study, we investigated the cellular mechanisms through which FOS modulate intestinal antigen-specific CD4+ T cell responses in food allergy, using OVA23-3 mice. OVA23-3 mice were fed an experimental diet containing either ovalbumin (OVA) or OVA and FOS for 1 week. Body weight and mucosal mast cell protease 1 in the serum were measured as the indicator of intestinal inflammation. Single-cell suspensions were prepared from intestinal and systemic lymphoid tissues for cellular analysis. Cytokine production was measured by ELISA. Activation markers and intracellular cytokines in CD4+ T cells were analyzed by flow cytometry. Activated CD4+ T cells were purified to examine cytokine production. Dietary intake of FOS provided moderate protection from the intestinal inflammation induced by the OVA-containing diet. FOS significantly reduced food allergy-induced Th2 cytokine responses in intestinal tissues but not in systemic tissues. FOS decreased OVA diet-induced IFN-γ+IL-4+ double-positive CD4+ T cells and early-activated CD45RBhighCD69+CD4+ T cells in the mesenteric lymph nodes. Furthermore, we confirmed that these CD45RBhighCD69+CD4+ T cells are able to produce high levels of IFN-γ and moderate level of IL-4, IL-10, and IL-13. Dietary intake of FOS during the development of food allergy attenuates the induction of intestinal Th2 cytokine responses by regulating early activation of naïve CD4+ T cells, which produce both Th1 and Th2 cytokines. Our results suggest FOS might be a potential food agent for the prevention of food allergy by modulating oral sensitization to food antigens. © 2017 S. Karger AG, Basel.

  6. Polymer photovoltaic cells sensitive to the circular polarization ofl light

    NARCIS (Netherlands)

    Gilot, J.; Abbel, R.J.; Lakhwani, G.; Meijer, E.W.; Schenning, A.P.H.J.; Meskers, S.C.J.

    2009-01-01

    Chiral conjugated polymer is used to construct a photovoltaic cell whose response depends on the circular polarization of the incoming light. The selectivity for left and right polarized light as a function of the thickness of the polymer layer is accounted for by modeling of the optical properties

  7. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for molecules associated with metabolism, signaling and regulation in central nervous system mixed glial cell cultures

    Directory of Open Access Journals (Sweden)

    Studzinski Diane

    2009-01-01

    Full Text Available Abstract Background Cytokines secreted by immune cells and activated glia play central roles in both the pathogenesis of and protection from damage to the central nervous system (CNS in multiple sclerosis (MS. Methods We have used gene array analysis to identify the initial direct effects of cytokines on CNS glia by comparing changes in early gene expression in CNS glial cultures treated for 6 hours with cytokines typical of those secreted by Th1 and Th2 lymphocytes and monocyte/macrophages (M/M. Results In two previous papers, we summarized effects of these cytokines on immune-related molecules, and on neural and glial related proteins, including neurotrophins, growth factors and structural proteins. In this paper, we present the effects of the cytokines on molecules involved in metabolism, signaling and regulatory mechanisms in CNS glia. Many of the changes in gene expression were similar to those seen in ischemic preconditioning and in early inflammatory lesions in experimental autoimmune encephalomyelitis (EAE, related to ion homeostasis, mitochondrial function, neurotransmission, vitamin D metabolism and a variety of transcription factors and signaling pathways. Among the most prominent changes, all three cytokine mixtures markedly downregulated the dopamine D3 receptor, while Th1 and Th2 cytokines downregulated neuropeptide Y receptor 5. An unexpected finding was the large number of changes related to lipid metabolism, including several suggesting a switch from diacylglycerol to phosphatidyl inositol mediated signaling pathways. Using QRT-PCR we validated the results for regulation of genes for iNOS, arginase and P glycoprotein/multi-drug resistance protein 1 (MDR1 seen at 6 hours with microarray. Conclusion Each of the three cytokine mixtures differentially regulated gene expression related to metabolism and signaling that may play roles in the pathogenesis of MS, most notably with regard to mitochondrial function and neurotransmitter

  8. Profiling calcium signals of in vitro polarized human effector CD4+ T cells.

    Science.gov (United States)

    Kircher, Sarah; Merino-Wong, Maylin; Niemeyer, Barbara A; Alansary, Dalia

    2018-06-01

    Differentiation of naïve CD4 + T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca 2+ signals, mainly mediated by the store operated Ca 2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4 + T cell subsets show differential Ca 2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4 + effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca 2+ release activated Ca 2+ currents (I CRAC ) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca 2+ profiles of helper CD4 + Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4 + T cells. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. Dedicator of cytokinesis 8-deficient CD4+ T cells are biased to a TH2 effector fate at the expense of TH1 and TH17 cells.

    Science.gov (United States)

    Tangye, Stuart G; Pillay, Bethany; Randall, Katrina L; Avery, Danielle T; Phan, Tri Giang; Gray, Paul; Ziegler, John B; Smart, Joanne M; Peake, Jane; Arkwright, Peter D; Hambleton, Sophie; Orange, Jordan; Goodnow, Christopher C; Uzel, Gulbu; Casanova, Jean-Laurent; Lugo Reyes, Saul Oswaldo; Freeman, Alexandra F; Su, Helen C; Ma, Cindy S

    2017-03-01

    Dedicator of cytokinesis 8 (DOCK8) deficiency is a combined immunodeficiency caused by autosomal recessive loss-of-function mutations in DOCK8. This disorder is characterized by recurrent cutaneous infections, increased serum IgE levels, and severe atopic disease, including food-induced anaphylaxis. However, the contribution of defects in CD4 + T cells to disease pathogenesis in these patients has not been thoroughly investigated. We sought to investigate the phenotype and function of DOCK8-deficient CD4 + T cells to determine (1) intrinsic and extrinsic CD4 + T-cell defects and (2) how defects account for the clinical features of DOCK8 deficiency. We performed in-depth analysis of the CD4 + T-cell compartment of DOCK8-deficient patients. We enumerated subsets of CD4 + T helper cells and assessed cytokine production and transcription factor expression. Finally, we determined the levels of IgE specific for staple foods and house dust mite allergens in DOCK8-deficient patients and healthy control subjects. DOCK8-deficient memory CD4 + T cells were biased toward a T H 2 type, and this was at the expense of T H 1 and T H 17 cells. In vitro polarization of DOCK8-deficient naive CD4 + T cells revealed the T H 2 bias and T H 17 defect to be T-cell intrinsic. Examination of allergen-specific IgE revealed plasma IgE from DOCK8-deficient patients is directed against staple food antigens but not house dust mites. Investigations into the DOCK8-deficient CD4 + T cells provided an explanation for some of the clinical features of this disorder: the T H 2 bias is likely to contribute to atopic disease, whereas defects in T H 1 and T H 17 cells compromise antiviral and antifungal immunity, respectively, explaining the infectious susceptibility of DOCK8-deficient patients. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  10. Microtubules Enable the Planar Cell Polarity of Airway Cilia

    Science.gov (United States)

    Vladar, Eszter K.; Bayly, Roy D.; Sangoram, Ashvin; Scott, Matthew P.; Axelrod, Jeffrey D.

    2012-01-01

    Summary Background Airway cilia must be physically oriented along the longitudinal tissue axis for concerted, directional motility that is essential for proper mucociliary clearance. Results We show that Planar Cell Polarity (PCP) signaling specifies directionality and orients respiratory cilia. Within all airway epithelial cells a conserved set of PCP proteins shows interdependent, asymmetric junctional localization; non-autonomous signaling coordinates polarization between cells; and a polarized microtubule (MT) network is likely required for asymmetric PCP protein localization. We find that basal bodies dock after polarity of PCP proteins is established, are polarized nearly simultaneously, and refinement of basal body/cilium orientation continues during airway epithelial development. Unique to mature multiciliated cells, we identify PCP-regulated, planar polarized MTs that originate from basal bodies and interact, via their plus ends, with membrane domains associated with the PCP proteins Frizzled and Dishevelled. Disruption of MTs leads to misoriented cilia. Conclusions A conserved PCP pathway orients airway cilia by communicating polarity information from asymmetric membrane domains at the apical junctions, through MTs, to orient the MT and actin based network of ciliary basal bodies below the apical surface. PMID:23122850

  11. Induction of a polarized Th1 response by insertion of multiple copies of a viral T-cell epitope into adenylate cyclase of Bordetella pertussis

    Czech Academy of Sciences Publication Activity Database

    Dadaglio, G.; Moukrim, Z.; Lo-Man, R.; Sheshko, V.; Šebo, Peter; Leclerc, C.

    2000-01-01

    Roč. 68, č. 7 (2000), s. 3867-3872 ISSN 0019-9567 R&D Projects: GA ČR GA310/98/0432; GA MŠk VS96149; GA MŠk ME 167 Institutional research plan: CEZ:A53/98:Z5-020-9ii Subject RIV: EE - Microbiology, Virology Impact factor: 4.204, year: 2000

  12. Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells.

    Science.gov (United States)

    Jossin, Yves; Lee, Minhui; Klezovitch, Olga; Kon, Elif; Cossard, Alexia; Lien, Wen-Hui; Fernandez, Tania E; Cooper, Jonathan A; Vasioukhin, Valera

    2017-06-05

    Malformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1 fl/fl ), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1 fl/fl brains. While it is well known that cell polarity proteins govern the formation of AJCs, the exact mechanisms remain unclear. We show that LLGL1 directly binds to and promotes internalization of N-cadherin, and N-cadherin/LLGL1 interaction is inhibited by atypical protein kinase C-mediated phosphorylation of LLGL1, restricting the accumulation of AJCs to the basolateral-apical boundary. Disruption of the N-cadherin-LLGL1 interaction during cortical development in vivo is sufficient for PH. These findings reveal a mechanism responsible for the physical and functional connection between cell polarity and cell-cell adhesion machineries in mammalian cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Newly identified CpG ODNs, M5-30 and M6-395, stimulate mouse immune cells to secrete TNF-alpha and enhance Th1-mediated immunity.

    Science.gov (United States)

    Choi, Sun-Shim; Chung, Eunkyung; Jung, Yu-Jin

    2010-08-01

    Bacterial CpG motifs are known to induce both innate and adaptive immunity in infected hosts via toll-like receptor 9 (TLR9). Because small oligonucleotides (ODNs) mimicking bacterial CpG motifs are easily synthesized, they have found use as immunomodulatory agents in a number of disease models. We have developed a novel bioinformatics approach to identify effective CpG ODN sequences and evaluate their function as TLR9 ligands in a murine system. Among the CpG ODNs we identified, M5-30 and M6-395 showed significant ability to stimulate TNF-alpha and IFN-gamma production in a mouse macrophage cell line and mouse splenocytes, respectively. We also found that these CpG ODNs activated cells through the canonical NF-kappa B signaling pathway. Moreover, both CpG ODNs were able to induce Th1-mediated immunity in Mycobacterium tuberculosis (Mtb)-infected mice. Our results demonstrate that M5-30 and M6-395 function as TLR9-specific ligands, making them useful in the study of TLR9 functionality and signaling in mice.

  14. Studies on optical pumping cells (OPC) to polarize 3He

    International Nuclear Information System (INIS)

    Hutanu, V.; Rupp, A.

    2004-01-01

    The technique applied at HMI to obtain nuclear-spin-polarized 3 He, used in neutron spin filters (NSFs), is metastability-exchange optical pumping. To prepare efficient NSF, one must highly polarize 3 He nuclei in the optical pumping volume (OPV) and reduce the polarization losses during the compression phase. Great progress has been achieved in reducing of depolarization due to the recent development of both, large polarization preserving piston compressors and long relaxation time filter cells. It is even more important to significantly enhance the 3 He polarization rate during optical pumping in order to increase NSF efficiency. Different cells materials were tested, such as Duran and quartz glass. In order to use the laser light more efficiently and to decrease the risk of 3 He depolarization due to unfavorable reflections, antireflection (AR) coatings were used on cell windows made of quartz glass. They were compared with the ones without coating, made of quartz, Duran and BK7 glass. The comparison of various techniques to mount the windows such as blowing, gluing or molecular diffusion was also conducted. It indicated that the molecular diffusion is the most suitable technique because of a better purity of the gas in the cell and the preservation of the optical flatness of the windows. Cells, for practical reasons each entirely made from the same material (Duran, Quartz glass) with windows mounted using this method, showed the best polarization performance

  15. A Predictive Model for Yeast Cell Polarization in Pheromone Gradients.

    Science.gov (United States)

    Muller, Nicolas; Piel, Matthieu; Calvez, Vincent; Voituriez, Raphaël; Gonçalves-Sá, Joana; Guo, Chin-Lin; Jiang, Xingyu; Murray, Andrew; Meunier, Nicolas

    2016-04-01

    Budding yeast cells exist in two mating types, a and α, which use peptide pheromones to communicate with each other during mating. Mating depends on the ability of cells to polarize up pheromone gradients, but cells also respond to spatially uniform fields of pheromone by polarizing along a single axis. We used quantitative measurements of the response of a cells to α-factor to produce a predictive model of yeast polarization towards a pheromone gradient. We found that cells make a sharp transition between budding cycles and mating induced polarization and that they detect pheromone gradients accurately only over a narrow range of pheromone concentrations corresponding to this transition. We fit all the parameters of the mathematical model by using quantitative data on spontaneous polarization in uniform pheromone concentration. Once these parameters have been computed, and without any further fit, our model quantitatively predicts the yeast cell response to pheromone gradient providing an important step toward understanding how cells communicate with each other.

  16. Reciprocal and dynamic polarization of planar cell polarity core components and myosin

    Science.gov (United States)

    Newman-Smith, Erin; Kourakis, Matthew J; Reeves, Wendy; Veeman, Michael; Smith, William C

    2015-01-01

    The Ciona notochord displays planar cell polarity (PCP), with anterior localization of Prickle (Pk) and Strabismus (Stbm). We report that a myosin is polarized anteriorly in these cells and strongly colocalizes with Stbm. Disruption of the actin/myosin machinery with cytochalasin or blebbistatin disrupts polarization of Pk and Stbm, but not of myosin complexes, suggesting a PCP-independent aspect of myosin localization. Wash out of cytochalasin restored Pk polarization, but not if done in the presence of blebbistatin, suggesting an active role for myosin in core PCP protein localization. On the other hand, in the pk mutant line, aimless, myosin polarization is disrupted in approximately one third of the cells, indicating a reciprocal action of core PCP signaling on myosin localization. Our results indicate a complex relationship between the actomyosin cytoskeleton and core PCP components in which myosin is not simply a downstream target of PCP signaling, but also required for PCP protein localization. DOI: http://dx.doi.org/10.7554/eLife.05361.001 PMID:25866928

  17. Th1-Th17 Ratio as a New Insight in Rheumatoid Arthritis Disease.

    Science.gov (United States)

    Bazzazi, Hadi; Aghaei, Mehrdad; Memarian, Ali; Asgarian-Omran, Hossein; Behnampour, Nasser; Yazdani, Yaghoub

    2018-02-01

    The Th17, Th1 and dual Th17/Th1 cells are important players in rheumatoid arthritis (RA) disease. To assess their roles, the frequency and impact of these cells were investigated in patients with different disease activity. In 14 new cases and 41 established RA patients in comparison with 22 healthy controls, the percentages of Th17, Th1 and dual Th17/Th1 cells were determined by flow-cytometry and their correlations were investigated with disease activity score (DAS28). Moreover, serum levels of IL-6 and IL-17 as inducer and functional cytokines for Th17 were investigated. Finally, serum levels of anti citrullinated protein antibody (ACPA) and rheumatoid factor (RF) were assessed. Percentage of Th17 cells in RA patients were increased in comparison with healthy controls (pTh1 cells in RA patients were less than healthy group (pTh17/Th1 cell only in new cases of RA were more than healthy control groups (pTh1/Th17 ratio in RA patients is statistically different with healthy control group (pTh1/Th17 ratio in RA patient suggested a new paradigm in the field of autoimmune disease and indicated that imbalance or plasticity between these subsets can be important in progress, diagnosis and therapy of RA disease.

  18. FijiWingsPolarity: An open source toolkit for semi-automated detection of cell polarity.

    Science.gov (United States)

    Dobens, Leonard L; Shipman, Anna; Axelrod, Jeffrey D

    2018-01-02

    Epithelial cells are defined by apical-basal and planar cell polarity (PCP) signaling, the latter of which establishes an orthogonal plane of polarity in the epithelial sheet. PCP signaling is required for normal cell migration, differentiation, stem cell generation and tissue repair, and defects in PCP have been associated with developmental abnormalities, neuropathologies and cancers. While the molecular mechanism of PCP is incompletely understood, the deepest insights have come from Drosophila, where PCP is manifest in hairs and bristles across the adult cuticle and organization of the ommatidia in the eye. Fly wing cells are marked by actin-rich trichome structures produced at the distal edge of each cell in the developing wing epithelium and in a mature wing the trichomes orient collectively in the distal direction. Genetic screens have identified key PCP signaling pathway components that disrupt trichome orientation, which has been measured manually in a tedious and error prone process. Here we describe a set of image processing and pattern-recognition macros that can quantify trichome arrangements in micrographs and mark these directly by color, arrow or colored arrow to indicate trichome location, length and orientation. Nearest neighbor calculations are made to exploit local differences in orientation to better and more reliably detect and highlight local defects in trichome polarity. We demonstrate the use of these tools on trichomes in adult wing preps and on actin-rich developing trichomes in pupal wing epithelia stained with phalloidin. FijiWingsPolarity is freely available and will be of interest to a broad community of fly geneticists studying the effect of gene function on PCP.

  19. Construction, purification, and characterization of a chimeric TH1 antagonist

    Directory of Open Access Journals (Sweden)

    Javier-González Luís

    2006-05-01

    Full Text Available Abstract Background TH1 immune response antagonism is a desirable approach to mitigate some autoimmune and inflammatory reactions during the course of several diseases where IL-2 and IFN-γ are two central players. Therefore, the neutralization of both cytokines could provide beneficial effects in patients suffering from autoimmune or inflammatory illnesses. Results A chimeric antagonist that can antagonize the action of TH1 immunity mediators, IFN-γ and IL-2, was designed, engineered, expressed in E. coli, purified and evaluated for its in vitro biological activities. The TH1 antagonist molecule consists of the extracellular region for the human IFNγ receptor chain 1 fused by a four-aminoacid linker peptide to human 60 N-terminal aminoacid residues of IL-2. The corresponding gene fragments were isolated by RT-PCR and cloned in the pTPV-1 vector. E. coli (W3110 strain was transformed with this vector. The chimeric protein was expressed at high level as inclusion bodies. The protein was partially purified by pelleting and washing. It was then solubilized with strong denaturant and finally refolded by gel filtration. In vitro biological activity of chimera was demonstrated by inhibition of IFN-γ-dependent HLA-DR expression in Colo 205 cells, inhibition of IFN-γ antiproliferative effect on HEp-2 cells, and by a bidirectional effect in assays for IL-2 T-cell dependent proliferation: agonism in the absence versus inhibition in the presence of IL-2. Conclusion TH1 antagonist is a chimeric protein that inhibits the in vitro biological activities of human IFN-γ, and is a partial agonist/antagonist of human IL-2. With these attributes, the chimera has the potential to offer a new opportunity for the treatment of autoimmune and inflammatory diseases.

  20. Effect of Eucommia ulmoides Oliv., Gynostemma pentaphyllum (Thunb.) Makino, and Curcuma longa L. on Th1- and Th2-cytokine responses and human leukocyte antigen-DR expression in peripheral blood mononuclear cells of septic patients.

    Science.gov (United States)

    Wu, Huang-Pin; Lin, Yin-Ku

    2018-05-10

    Many traditional Chinese medicines (TCM), such as Eucommia ulmoides Oliv., Gynostemma pentaphyllum (Thunb.) Makino, and Curcuma longa L., have been reported to have various immune-modulatory effects. To determine the effects of extracts from these three TCM on type 1 T help (Th1)- and Th2-cytokine responses and human leukocyte antigen (HLA)-DR expression in peripheral blood mononuclear cells (PBMCs) obtained from septic patients. Lipopolysaccharide (LPS)-stimulated PBMCs of healthy controls and septic patients were cultured for 48 hs with or without 0.05/0.1 mg/ml of TCM extract. HLA-DR expression in monocytes was detected using flow cytofluorimetry. The interferon [IFN]-γ, tumor necrosis factor [TNF]-α, interleukin (IL)- 2, IL-5, IL-10, and IL-13 levels in supernatants were measured with a human enzyme-linked immunosorbent assay. Treatment with either 0.05 or 0.1 mg/ml of C. longa L. extract significantly restored the percentage of HLA-DR-positive monocytes, which was decreased by LPS in control and patient groups. Treatment with 0.05 or 0.1 mg/ml E. ulmoides Oliv. and C.longa L. extract decreased IL-10 production from LPS-stimulated PBMCs of controls and patients. In patients with sepsis, C. longa L. extract decreased IL-10 production to a greater degree than did E. ulmoides Oliv extract. Although IFN-γ, TNF-α, or IL-13 productions from LPS-stimulated PBMCs were influenced by E. ulmoides Oliv., G. pentaphyllum (Thunb.) Makino, or C. longa L. in control or sepsis groups in this study, only the influence of IL-10 was consistent in both control and sepsis groups. By enhancing monocyte HLA-DR expression and decreasing IL-10 production, C. longa L. might help restore inflammatory responses in septic patients to eradicate pathogens. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Gαq Regulates the Development of Rheumatoid Arthritis by Modulating Th1 Differentiation.

    Science.gov (United States)

    Wang, Dashan; Liu, Yuan; Li, Yan; He, Yan; Zhang, Jiyun; Shi, Guixiu

    2017-01-01

    The G α q-containing G protein, an important member of G q/11 class, is ubiquitously expressed in mammalian cells. G α q has been found to play an important role in immune regulation and development of autoimmune disease such as rheumatoid arthritis (RA). However, how G α q participates in the pathogenesis of RA is still not fully understood. In the present study, we aimed to find out whether G α q controls RA via regulation of Th1 differentiation. We observed that the expression of G α q was negatively correlated with the expression of signature Th1 cytokine (IFN- γ ) in RA patients, which suggests a negative role of G α q in differentiation of Th1 cells. By using G α q knockout ( Gnaq-/- ) mice, we demonstrated that loss of G α q led to enhanced Th1 cell differentiation. G α q negative regulated the differentiation of Th1 cell by modulating the expression of T-bet and the activity of STAT4. Furthermore, we detected the increased ratio of Th1 cells in Gnaq-/- bone marrow (BM) chimeras spontaneously developing inflammatory arthritis. In conclusion, results presented in the study demonstrate that loss of G α q promotes the differentiation of Th1 cells and contributes to the pathogenesis of RA.

  2. Transport and sorting of sphingolipids in polarized cells : the involvement of the sub-apical compartment

    NARCIS (Netherlands)

    IJzendoorn, Sven Christian David van

    1999-01-01

    The work described in this thesis has provided a novel insight into the process of sphingolipid transport and sorting in polarized cells. We have used HepG2 cells as a model system to study polarized traffic in hepatic cells. Under specific culture conditions, HepG2 cells acquire a polarized

  3. Overexpression of PTPN2 in Visceral Adipose Tissue Ameliorated Atherosclerosis via T Cells Polarization Shift in Diabetic Apoe-/- Mice

    Directory of Open Access Journals (Sweden)

    Ya Li

    2018-03-01

    Full Text Available Background/Aims: Dysregulated inflammation in adipose tissue, marked by increased pro-inflammatory T-cell accumulation and reduced regulatory T cells (Treg, contributes to diabetes-associated insulin resistance and atherosclerosis. However, the molecular mechanisms underlying T-cell-mediated inflammation in adipose tissue remain largely unknown. Methods: Sixty apolipoprotein E (ApoE-/- mice were randomly divided into chow and diabetes groups. Diabetes was induced by a high-fat and high-sugar diet combined with low-dose streptozotocin. Then we transferred a recombinant adenovirus carrying the protein tyrosine phosphatase non-receptor type 2 (PTPN2 gene into epididymal white adipose tissue (EWAT of ApoE-/- mice. After transfection, all mice were euthanized to evaluate the effects of PTPN2 on T cells polarization and atherosclerosis. Results: PTPN2 was downregulated in EWAT of diabetic ApoE-/- mice. PTPN2 overexpression in EWAT reversed the high Th1/Treg and Th17/Treg ratios in EWAT of diabetic mice. In addition, PTPN2 overexpression in EWAT could significantly reduce macrophages infiltration, the ratio of M1/M2 macrophages and the expression of pro-inflammatory cytokines in EWAT, improving insulin resistance. In aortic root lesions, the vulnerability index were significantly decreased by overexpression of PTPN2 in EWAT. Conclusion: These data suggested that PTPN2 overexpression in EWAT would inhibit systemic inflammation and increase the plaque stability via T cells polarization shift in diabetic mice.

  4. Monocyte-derived dendritic cells exposed to Der p 1 allergen enhance the recruitment of Th2 cells: major involvement of the chemokines TARC/CCL17 and MDC/CCL22

    NARCIS (Netherlands)

    Hammad, Hamida; Smits, Hermelijn H.; Ratajczak, Céline; Nithiananthan, Asokananthan; Wierenga, Eddy A.; Stewart, Geoffrey A.; Jacquet, Alain; Tonnel, Andre-Bernard; Pestel, Joël

    2003-01-01

    Dendritic cells (DC) are potent antigen - presenting cells that can orientate the immune response towards a Th1 or a Th2 type. DC produce chemokines that are involved in the recruitment of either Th1 cells, such as IP10 (CXCL10), Th2 cells such as TARC (CCL17) and MDC (CCL22), or non-polarized T

  5. Dysregulated CD46 shedding interferes with Th1-contraction in systemic lupus erythematosus.

    Science.gov (United States)

    Ellinghaus, Ursula; Cortini, Andrea; Pinder, Christopher L; Le Friec, Gaelle; Kemper, Claudia; Vyse, Timothy J

    2017-07-01

    IFN-γ-producing T helper 1 (Th1) cell responses mediate protection against infections but uncontrolled Th1 activity also contributes to a broad range of autoimmune diseases. Autocrine complement activation has recently emerged as key in the induction and contraction of human Th1 immunity: activation of the complement regulator CD46 and the C3aR expressed by CD4 + T cells via autocrine generated ligands C3b and C3a, respectively, are critical to IFN-γ production. Further, CD46-mediated signals also induce co-expression of immunosuppressive IL-10 in Th1 cells and transition into a (self)-regulating and contracting phase. In consequence, C3 or CD46-deficient patients suffer from recurrent infections while dysregulation of CD46 signaling contributes to Th1 hyperactivity in rheumatoid arthritis and multiple sclerosis. Here, we report a defect in CD46-regulated Th1 contraction in patients with systemic lupus erythematosus (SLE). We observed that MMP-9-mediated increased shedding of soluble CD46 by Th1 cells was associated with this defect and that inhibition of MMP-9 activity normalized release of soluble CD46 and restored Th1 contraction in patients' T cells. These data may deliver the first mechanistic explanation for the increased serum CD46 levels observed in SLE patients and indicate that targeting CD46-cleaving proteases could be a novel avenue to modulate Th1 responses. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Behavior of tight-junction, adherens-junction and cell polarity proteins during HNF-4α-induced epithelial polarization

    International Nuclear Information System (INIS)

    Satohisa, Seiro; Chiba, Hideki; Osanai, Makoto; Ohno, Shigeo; Kojima, Takashi; Saito, Tsuyoshi; Sawada, Norimasa

    2005-01-01

    We previously reported that expression of tight-junction molecules occludin, claudin-6 and claudin-7, as well as establishment of epithelial polarity, was triggered in mouse F9 cells expressing hepatocyte nuclear factor (HNF)-4α [H. Chiba, T. Gotoh, T. Kojima, S. Satohisa, K. Kikuchi, M. Osanai, N. Sawada. Hepatocyte nuclear factor (HNF)-4α triggers formation of functional tight junctions and establishment of polarized epithelial morphology in F9 embryonal carcinoma cells, Exp. Cell Res. 286 (2003) 288-297]. Using these cells, we examined in the present study behavior of tight-junction, adherens-junction and cell polarity proteins and elucidated the molecular mechanism behind HNF-4α-initiated junction formation and epithelial polarization. We herein show that not only ZO-1 and ZO-2, but also ZO-3, junctional adhesion molecule (JAM)-B, JAM-C and cell polarity proteins PAR-3, PAR-6 and atypical protein kinase C (aPKC) accumulate at primordial adherens junctions in undifferentiated F9 cells. In contrast, CRB3, Pals1 and PATJ appeared to exhibit distinct subcellular localization in immature cells. Induced expression of HNF-4α led to translocation of these tight-junction and cell polarity proteins to beltlike tight junctions, where occludin, claudin-6 and claudin-7 were assembled, in differentiated cells. Interestingly, PAR-6, aPKC, CRB3 and Pals1, but not PAR-3 or PATJ, were also concentrated on the apical membranes in differentiated cells. These findings indicate that HNF-4α provokes not only expression of tight-junction adhesion molecules, but also modulation of subcellular distribution of junction and cell polarity proteins, resulting in junction formation and epithelial polarization

  7. Enforcing host cell polarity: an apicomplexan parasite strategy towards dissemination.

    Science.gov (United States)

    Baumgartner, Martin

    2011-08-01

    The propagation of apicomplexan parasites through transmitting vectors is dependent on effective dissemination of parasites inside the mammalian host. Intracellular Toxoplasma and Theileria parasites face the challenge that their spread inside the host depends in part on the motile capacities of their host cells. In response, these parasites influence the efficiency of dissemination by altering adhesive and/or motile properties of their host cells. Theileria parasites do so by targeting signalling pathways that control host cell actin dynamics. The resulting enforced polar host cell morphology facilitates motility and invasiveness, by establishing focal adhesion and invasion structures at the leading edge of the infected cell. This parasite strategy highlights mechanisms of motility regulation that are also likely relevant for immune or cancer cell motility. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Cell polarity signaling in the plasticity of cancer cell invasiveness

    Czech Academy of Sciences Publication Activity Database

    Gandalovičová, A.; Vomastek, Tomáš; Rosel, D.; Brábek, J.

    2016-01-01

    Roč. 7, č. 18 (2016), s. 25022-25049 ISSN 1949-2553 R&D Projects: GA ČR GA13-06405S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : polarity * invasion * plasticity Subject RIV: EE - Microbiology, Virology Impact factor: 5.168, year: 2016

  9. Centrosome polarization in T cells: a task for formins

    Directory of Open Access Journals (Sweden)

    Laura eAndrés-Delgado

    2013-07-01

    Full Text Available T-cell antigen receptor (TCR engagement triggers the rapid reorientation of the centrosome, which is associated with the secretory machinery, towards the immunological synapse (IS for polarized protein trafficking. Recent evidence indicates that upon TCR triggering the INF2 formin, together with the formins DIA1 and FMNL1, promotes the formation of a specialized array of stable detyrosinated MTs that breaks the symmetrical organization of the T-cell microtubule (MT cytoskeleton. The detyrosinated MT array and TCR-induced tyrosine phosphorylation should coincide for centrosome polarization. We propose that the pushing forces produced by the detyrosinated MT array, which modify the position of the centrosome, in concert with Src kinase dependent TCR signaling, which provide the reference frame with respect to which the centrosome reorients, result in the repositioning of the centrosome to the IS.

  10. The transcription factors Runx3 and ThPOK cross-regulate acquisition of cytotoxic function by human Th1 lymphocytes

    Science.gov (United States)

    Defrance, Matthieu; Vu Manh, Thien-Phong; Azouz, Abdulkader; Detavernier, Aurélie; Hoyois, Alice; Das, Jishnu; Bizet, Martin; Pollet, Emeline; Tabbuso, Tressy; Calonne, Emilie; van Gisbergen, Klaas; Dalod, Marc; Fuks, François; Goriely, Stanislas

    2018-01-01

    Cytotoxic CD4 (CD4CTX) T cells are emerging as an important component of antiviral and antitumor immunity, but the molecular basis of their development remains poorly understood. In the context of human cytomegalovirus infection, a significant proportion of CD4 T cells displays cytotoxic functions. We observed that the transcriptional program of these cells was enriched in CD8 T cell lineage genes despite the absence of ThPOK downregulation. We further show that establishment of CD4CTX-specific transcriptional and epigenetic programs occurred in a stepwise fashion along the Th1-differentiation pathway. In vitro, prolonged activation of naive CD4 T cells in presence of Th1 polarizing cytokines led to the acquisition of perforin-dependent cytotoxic activity. This process was dependent on the Th1 transcription factor Runx3 and was limited by the sustained expression of ThPOK. This work elucidates the molecular program of human CD4CTX T cells and identifies potential targets for immunotherapy against viral infections and cancer. PMID:29488879

  11. Exocytosis and cell polarity in plants - exocyst and recycling domains

    Czech Academy of Sciences Publication Activity Database

    Žárský, Viktor; Cvrčková, F.; Potocký, Martin; Hála, Michal

    2009-01-01

    Roč. 183, č. 2 (2009), s. 255-272 ISSN 0028-646X R&D Projects: GA MŠk(CZ) LC06034; GA AV ČR IAA601110916; GA MŠk ME 841 Institutional research plan: CEZ:AV0Z50380511 Keywords : cell polarity * Exo70 * exocyst Subject RIV: ED - Physiology Impact factor: 6.033, year: 2009

  12. Heme and non-heme iron transporters in non-polarized and polarized cells

    Directory of Open Access Journals (Sweden)

    Yasui Yumiko

    2010-06-01

    Full Text Available Abstract Background Heme and non-heme iron from diet, and recycled iron from hemoglobin are important products of the synthesis of iron-containing molecules. In excess, iron is potentially toxic because it can produce reactive oxygen species through the Fenton reaction. Humans can absorb, transport, store, and recycle iron without an excretory system to remove excess iron. Two candidate heme transporters and two iron transporters have been reported thus far. Heme incorporated into cells is degraded by heme oxygenases (HOs, and the iron product is reutilized by the body. To specify the processes of heme uptake and degradation, and the reutilization of iron, we determined the subcellular localizations of these transporters and HOs. Results In this study, we analyzed the subcellular localizations of 2 isoenzymes of HOs, 4 isoforms of divalent metal transporter 1 (DMT1, and 2 candidate heme transporters--heme carrier protein 1 (HCP1 and heme responsive gene-1 (HRG-1--in non-polarized and polarized cells. In non-polarized cells, HCP1, HRG-1, and DMT1A-I are located in the plasma membrane. In polarized cells, they show distinct localizations: HCP1 and DMT1A-I are located in the apical membrane, whereas HRG-1 is located in the basolateral membrane and lysosome. 16Leu at DMT1A-I N-terminal cytosolic domain was found to be crucial for plasma membrane localization. HOs are located in smooth endoplasmic reticulum and colocalize with NADPH-cytochrome P450 reductase. Conclusions HCP1 and DMT1A-I are localized to the apical membrane, and HRG-1 to the basolateral membrane and lysosome. These findings suggest that HCP1 and DMT1A-I have functions in the uptake of dietary heme and non-heme iron. HRG-1 can transport endocytosed heme from the lysosome into the cytosol. These localization studies support a model in which cytosolic heme can be degraded by HOs, and the resulting iron is exported into tissue fluids via the iron transporter ferroportin 1, which is

  13. Appearance of differentiated cells derived from polar body nuclei in the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Hiroki eSakai

    2013-09-01

    Full Text Available AbstractIn Bombyx mori, polar body nuclei are observed until 9h after egg lying, however, the fate of polar body nuclei remains unclear. To examine the fate of polar body nuclei, we employed a mutation of serosal cell pigmentation, pink-eyed white egg (pe. The heterozygous pe/+pe females produced black serosal cells in white eggs, while pe/pe females did not produce black serosal cells in white eggs. These results suggest that the appearance of black serosal cells in white eggs depends on the genotype (pe/ +pe of the mother. Because the polar body nuclei had +pe genes in the white eggs laid by a pe/ +pe female, polar body nuclei participate in development and differentiate into functional cell (serosal cells. Analyses of serosal cells pigmentation indicated that approximately 30% of the eggs contained polar-body-nucleus-derived cells. These results demonstrate that polar-body-nucleus-derived cells appeared at a high frequency under natural conditions. Approximately 80% of polar-body-nucleus-derived cells appeared near the anterior pole and the dorsal side, which is opposite to where embryogenesis occurs. The number of cells derived from the polar body nuclei was very low. Approximately 26 % of these eggs contained only one black serosal cell. PCR-based analysis revealed that the polar-body-nucleus-derived cells disappeared in late embryonic stages (stage 25. Overall, polar-body-nuclei-derived cells were unlikely to contribute to embryos.

  14. Self-gravity at the scale of the polar cell

    Science.gov (United States)

    Huré, J.-M.; Pierens, A.; Hersant, F.

    2009-06-01

    We present the exact calculus of the gravitational potential and acceleration along the symmetry axis of a plane, homogeneous, polar cell as a function of mean radius bar{a}, radial extension Δ a, and opening angle Δ φ. Accurate approximations are derived in the limit of high numerical resolution at the geometrical mean of the inner and outer radii (a key-position in current FFT-based Poisson solvers). Our results are the full extension of the approximate formula given in the textbook of Binney & Tremaine to all resolutions. We also clarify definitely the question about the existence (or not) of self-forces in polar cells. We find that there is always a self-force at radius except if the shape factor ρ ≡ bar{a}Δ φ /Δ a → 3.531, asymptotically. Such cells are therefore well suited to build a polar mesh for high resolution simulations of self-gravitating media in two dimensions. A by-product of this study is a newly discovered indefinite integral involving complete elliptic integral of the first kind over modulus.

  15. Constitutively polarized granules prime KHYG-1 NK cells.

    Science.gov (United States)

    Suck, Garnet; Branch, Donald R; Aravena, Paola; Mathieson, Mark; Helke, Simone; Keating, Armand

    2006-09-01

    The major mechanism for NK cell lysis of tumor cells is granule-mediated cytotoxicity. Polarization of granules is a prelude to the release of their cytotoxic contents in response to target-cell binding. We describe the novel observation of constitutive granule polarization in the cytotoxic NK cell line, KHYG-1. Continuous degranulation of KHYG-1 cells, however, does not occur and still requires target-cell contact. Disruption of microtubules with colcemid is sufficient to disperse the granules in KHYG-1 and significantly decreases cytotoxicity. A similar effect is not obtained by inhibiting extracellular signal-related kinase 2 (ERK2), the most distal kinase investigated in the cytolytic pathway. Disruption of microtubules significantly down-regulates activation receptors, NKp44 and NKG2D, implicating them as potential microtubule-trafficking receptors. Such changes in upstream receptor expression may have caused deactivation of ERK2, since NKG2D cross-linking also leads to receptor down-regulation and diminished ERK phosphorylation. Thus, a functional role for NKG2D in KHYG-1 cytotoxicity is demonstrated. Moreover, the novel primed state may contribute to the high cytotoxicity exhibited by KHYG-1.

  16. Th1, Th17, CXCL16 and homocysteine elevated after intracranial and cervical stent implantation.

    Science.gov (United States)

    Tang, Yanyan; Wei, Yunfei; Ye, Ziming; Qin, Chao

    2017-08-01

    The presence of Th1 and Th17 cells has been observed as major inducers in inflammation and immune responses associated stenting. However, there is rare data on the impact of Th1, Th17, CXCL16 and homocysteine after cerebral stent implantation. Here, we performed the statistical analysis to first evaluate the variation of the Th17and Th1 cells and their related cytokines, CXCL16 and homocysteine in the peripheral blood of patients with cerebral stenting. The flow cytometry was used to detect the proportion of Th1 and Th17 cells in peripheral blood mononuclear cells (PBMCs). The enzyme-linked immunosorbent assay was used to measure the serum concentrations of IFN-γ, IL-17 and CXCL16. Plasma homocysteine was examined by immunoturbidimetry. The level of Th1, CXCL16 and homocysteine showed an increase at 3 d, followed by the continuous decrease at 7 d and 3 months. The frequency of Th17 cells increased to a peak at three days, and subsequently decreased with a higher level than baseline. Our data revealed that the variation in Th1, Th17, CXCL16 and homocysteine in peripheral blood of patients with stenting may be implicated in inflammation after intracranial and cervical stent implantation. A better understanding of these factors will provide help for further drug design and clinical therapy.

  17. Relative Contributions of B Cells and Dendritic Cells from Lupus-Prone Mice to CD4+ T Cell Polarization.

    Science.gov (United States)

    Choi, Seung-Chul; Xu, Zhiwei; Li, Wei; Yang, Hong; Roopenian, Derry C; Morse, Herbert C; Morel, Laurence

    2018-05-01

    Mouse models of lupus have shown that multiple immune cell types contribute to autoimmune disease. This study sought to investigate the involvement of B cells and dendritic cells in supporting the expansion of inflammatory and regulatory CD4 + T cells that are critical for lupus pathogenesis. We used lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) and congenic C57BL/6J (B6) control mice to investigate how the genetic predisposition of these two cell types controls the activity of normal B6 T cells. Using an allogeneic in vitro assay, we showed that TC B1-a and conventional B cells expanded Th17 cells significantly more than their B6 counterparts. This expansion was dependent on CD86 and IL-6 expression and mapped to the Sle1 lupus-susceptibility locus. In vivo, TC B cells promoted greater differentiation of CD4 + T cells into Th1 and follicular helper T cells than did B6 B cells, but they limited the expansion of Foxp3 regulatory CD4 + T cells to a greater extent than did B6 B cells. Finally, when normal B6 CD4 + T cells were introduced into Rag1 -/- mice, TC myeloid/stromal cells caused their heightened activation, decreased Foxp3 regulatory CD4 + T cell differentiation, and increased renal infiltration of Th1 and Th17 cells in comparison with B6 myeloid/stromal cells. The results show that B cells from lupus mice amplify inflammatory CD4 + T cells in a nonredundant manner with myeloid/stromal cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  18. Tumor-associated macrophages in oral premalignant lesions coexpress CD163 and STAT1 in a Th1-dominated microenvironment

    International Nuclear Information System (INIS)

    Mori, Kazumasa; Haraguchi, Shigeki; Hiori, Miki; Shimada, Jun; Ohmori, Yoshihiro

    2015-01-01

    Tumor-associated macrophages (TAMs) are implicated in the growth, invasion and metastasis of various solid tumors. However, the phenotype of TAMs in premalignant lesions of solid tumors has not been clarified. In the present study, we identify the phenotype of TAMs in leukoplakia, an oral premalignant lesion, by immunohistochemical analysis and investigate the involvement of infiltrated T cells that participate in the polarization of TAMs. The subjects included 30 patients with oral leukoplakia and 10 individuals with normal mucosa. Hematoxylin and eosin slides were examined for the histological grades, and immunohistochemical analysis was carried out using antibodies against CD68 (pan-MΦ), CD80 (M1 MΦ), CD163 (M2 MΦ), CD4 (helper T cells: Th), CD8 (cytotoxic T cells), CXCR3, CCR5 (Th1), CCR4 (Th2), signal transducer and activator of transcription (STAT1), phosphorylated STAT1 (pSTAT1) and chemokine CXCL9. The differences in the numbers of positively stained cells among the different histological grades were tested for statistical significance using the Kruskal-Wallis test. Correlations between different types of immune cells were determined using Spearman’s rank analysis. An increase in the rate of CD163 + TAM infiltration was observed in mild and moderate epithelial dysplasia, which positively correlated with the rate of intraepithelial CD4 + Th cell infiltration. Although CCR4 + cells rarely infiltrated, CXCR3 + and CCR5 + cells were observed in these lesions. Cells positive for STAT1 and chemokine CXCL9, interferon- (IFN)-induced gene products, and pSTAT1 were also observed in the same lesions. Double immunofluorescence staining demonstrated that the cells that were positive for CD163 were also positive for STAT1. CD163 + TAMs in oral premalignant lesions coexpress CD163 and STAT1, suggesting that the TAMs in oral premalignant lesions possess an M1 phenotype in a Th1-dominated micromilieu

  19. The vaccine adjuvant alum promotes IL-10 production that suppresses Th1 responses.

    Science.gov (United States)

    Oleszycka, Ewa; McCluskey, Sean; Sharp, Fiona A; Muñoz-Wolf, Natalia; Hams, Emily; Gorman, Aoife L; Fallon, Padraic G; Lavelle, Ed C

    2018-04-01

    The effectiveness of many vaccines licensed for clinical use relates to the induction of neutralising antibodies, facilitated by the inclusion of vaccine adjuvants, particularly alum. However, the ability of alum to preferentially promote humoral rather than cellular, particularly Th1-type responses, is not well understood. We demonstrate that alum activates immunosuppressive mechanisms following vaccination, which limit its capacity to induce Th1 responses. One of the key cytokines limiting excessive immune responses is IL-10. Injection of alum primed draining lymph node cells for enhanced IL-10 secretion ex vivo. Moreover, at the site of injection, macrophages and dendritic cells were key sources of IL-10 expression. Alum strongly enhanced the transcription and secretion of IL-10 by macrophages and dendritic cells. The absence of IL-10 signalling did not compromise alum-induced cell infiltration into the site of injection, but resulted in enhanced antigen-specific Th1 responses after vaccination. In contrast to its decisive regulatory role in regulating Th1 responses, there was no significant change in antigen-specific IgG1 antibody production following vaccination with alum in IL-10-deficient mice. Overall, these findings indicate that injection of alum promotes IL-10, which can block Th1 responses and may explain the poor efficacy of alum as an adjuvant for inducing protective Th1 immunity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Lewis Lung Cancer Cells Promote SIGNR1(CD209b)-Mediated Macrophages Polarization Induced by IL-4 to Facilitate Immune Evasion.

    Science.gov (United States)

    Yan, Xiaolong; Li, Wenhai; Pan, Lei; Fu, Enqing; Xie, Yonghong; Chen, Min; Mu, Deguang

    2016-05-01

    Tumor-associated macrophages are a prominent component of lung cancer and contribute to tumor progression by facilitating the immune evasion of cancer cells. DC-SIGN (CD209) assists in the immune evasion of a broad spectrum of pathogens and neoplasms by inhibiting the maturation of DCs and subsequent cytokines production. However, the expression of DC-SIGN in macrophages and its role in mediating immune evasion in lung cancer and the underlying mechanism remain unclear. Our study aimed to identify the immunosuppressive role of SIGNR1 in murine macrophage differentiation and lung cancer progression. We found that SIGNR1-positive RAW264.7 macrophages were enriched in mixed cultures with Lewis lung cancer cells (LLC) (ratio of RAW 264.7 to LLC being 1:1) after stimulation with IL-4. Moreover, LLC-educated macrophages exhibited significantly higher levels of IL-10 but lower IL-12 in response to IL-4 treatment as determined by RT-PCR and ELISA. However, inhibition of SIGNR1 markedly hampered the production of IL-10, indicating that SIGNR1 was indispensable for IL-4+LLC induced macrophage polarization towards the M2 subtype. Furthermore, polarized M2 cells immersed in a tumor microenvironment promoted the migration of LLCs, as measured by transwell assays, but migration was suppressed after blockade of SIGNR1 using CD209b antibody. In addition, IL-4+LLC-educated macrophages reduced the proliferation of the activated T cells and reduced IFN-γ-mediated Th1 response in T cells, while SIGNR1 inhibition rescued Th1 cell functions. In conclusion, murine SIGNR1 expressed in LLC-educated macrophages appears to mediate IL-4-induced RAW264.7 macrophage polarization and thus facilitate lung cancer evasion. © 2015 Wiley Periodicals, Inc.

  1. Planar Cell Polarity Controls Pancreatic Beta Cell Differentiation and Glucose Homeostasis

    DEFF Research Database (Denmark)

    Cortijo, Cedric; Gouzi, Mathieu; Tissir, Fadel

    2012-01-01

    glucose clearance. Loss of Celsr2 and 3 leads to a reduction of Jun phosphorylation in progenitors, which, in turn, reduces beta cell differentiation from endocrine progenitors. These results highlight the importance of the PCP pathway in cell differentiation in vertebrates. In addition, they reveal.......5 synchronously to apicobasal polarization of pancreas progenitors. Loss of function of the two PCP core components Celsr2 and Celsr3 shows that they control the differentiation of endocrine cells from polarized progenitors, with a prevalent effect on insulin-producing beta cells. This results in a decreased...

  2. Association between Th1/Th2 immune imbalance and obesity in women with or without polycystic ovary syndrome.

    Science.gov (United States)

    Gong, Ping; Shi, Bingwei; Wang, Juan; Cao, Peixia; Diao, Zhenyu; Wang, Yuji; Hu, Yali; Li, Shuping

    2018-02-15

    This study aimed to investigate the Th1/Th2 cells in peripheral blood of PCOS patients, and assess the potential correlation between Th1/Th2 imbalance and obesity. Thirty-nine PCOS patients and 23 age-matched controls were enrolled. The PBMCs were obtained before pharmacological intervention in women with or without PCOS. The profiles of Th1 (IFN-γ) and Th2 (IL-4) cytokines of CD3 + CD - T lymphocyte subsets were analyzed by flow cytometry. Plasma sex hormones including E 2 , T, FSH, LH, and FINS, FPG were measured, together with BMI, WC, LH/FSH, E 2 /T and HOMA-IR index being calculated. Association between Th1/Th2 imbalance and BMI, WC were evaluated. The proportion of Th1 cells and Th1/Th2 ratio were significantly higher in PCOS patients than those in controls, accompanied by elevated T, LH, LH/FSH, FINS, HOMA-IR index and reduced E 2 /T. The Th1/Th2 ratio was increased when BMI and WC were enhanced in PCOS. Moreover, the significant difference of Th1/Th2 ratio was observed between WC subgroups of PCOS. It is concluded that Th1 type immunity is predominant in systemic immunization of PCOS patients. Th1/Th2 immune imbalance is connected with obesity, especially abdominal obesity, and may be one of the underlying mechanism for the pathogenesis of PCOS.

  3. Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells.

    Science.gov (United States)

    Majda, Mateusz; Grones, Peter; Sintorn, Ida-Maria; Vain, Thomas; Milani, Pascale; Krupinski, Pawel; Zagórska-Marek, Beata; Viotti, Corrado; Jönsson, Henrik; Mellerowicz, Ewa J; Hamant, Olivier; Robert, Stéphanie

    2017-11-06

    The epidermis of aerial plant organs is thought to be limiting for growth, because it acts as a continuous load-bearing layer, resisting tension. Leaf epidermis contains jigsaw puzzle piece-shaped pavement cells whose shape has been proposed to be a result of subcellular variations in expansion rate that induce local buckling events. Paradoxically, such local compressive buckling should not occur given the tensile stresses across the epidermis. Using computational modeling, we show that the simplest scenario to explain pavement cell shapes within an epidermis under tension must involve mechanical wall heterogeneities across and along the anticlinal pavement cell walls between adjacent cells. Combining genetics, atomic force microscopy, and immunolabeling, we demonstrate that contiguous cell walls indeed exhibit hybrid mechanochemical properties. Such biochemical wall heterogeneities precede wall bending. Altogether, this provides a possible mechanism for the generation of complex plant cell shapes. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation

    Science.gov (United States)

    Pham, Duy; Yu, Qing; Walline, Crystal C.; Muthukrishnan, Rajarajeswari; Blum, Janice S.; Kaplan, Mark H.

    2013-01-01

    The Signal Transducer and Activator of Transcription factor STAT4 is a critical regulator of Th1 differentiation and inflammatory disease. Yet, how STAT4 regulates gene expression is still unclear. In this report, we define a STAT4-dependent sequence of events including H3K4 methylation, Jmjd3 association with STAT4 target loci, and a Jmjd3-dependent decrease in H3K27 trimethylation and DNA methyltransferase (Dnmt) 3a association with STAT4 target loci. Dnmt3a has an obligate role in repressing Th1 gene expression, and in Th1 cultures deficient in both STAT4 and Dnmt3a, there is recovery in the expression of a subset of Th1 genes that is sufficient to increase IFNγ production. Moreover, although STAT4-deficient mice are protected from the development of EAE, mice deficient in STAT4 and conditionally-deficient in Dnmt3a in T cells develop paralysis. Th1 genes that are de-repressed in the absence of Dnmt3a have greater induction following the ectopic expression of the Th1-associated transcription factors T-bet and Hlx1. Together, these data demonstrate that STAT4 and Dnmt3a play opposing roles in regulating Th1 gene expression, and that one mechanism for STAT4-dependent gene programming is in establishing a de-repressed genetic state susceptible to transactivation by additional fate-determining transcription factors. PMID:23772023

  5. Cell polarity, cell adhesion, and spermatogenesis: role of cytoskeletons [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Linxi Li

    2017-08-01

    Full Text Available In the rat testis, studies have shown that cell polarity, in particular spermatid polarity, to support spermatogenesis is conferred by the coordinated efforts of the Par-, Crumbs-, and Scribble-based polarity complexes in the seminiferous epithelium. Furthermore, planar cell polarity (PCP is conferred by PCP proteins such as Van Gogh-like 2 (Vangl2 in the testis. On the other hand, cell junctions at the Sertoli cell–spermatid (steps 8–19 interface are exclusively supported by adhesion protein complexes (for example, α6β1-integrin-laminin-α3,β3,γ3 and nectin-3-afadin at the actin-rich apical ectoplasmic specialization (ES since the apical ES is the only anchoring device in step 8–19 spermatids. For cell junctions at the Sertoli cell–cell interface, they are supported by adhesion complexes at the actin-based basal ES (for example, N-cadherin-β-catenin and nectin-2-afadin, tight junction (occludin-ZO-1 and claudin 11-ZO-1, and gap junction (connexin 43-plakophilin-2 and also intermediate filament-based desmosome (for example, desmoglein-2-desmocollin-2. In short, the testis-specific actin-rich anchoring device known as ES is crucial to support spermatid and Sertoli cell adhesion. Accumulating evidence has shown that the Par-, Crumbs-, and Scribble-based polarity complexes and the PCP Vangl2 are working in concert with actin- or microtubule-based cytoskeletons (or both and these polarity (or PCP protein complexes exert their effects through changes in the organization of the cytoskeletal elements across the seminiferous epithelium of adult rat testes. As such, there is an intimate relationship between cell polarity, cell adhesion, and cytoskeletal function in the testis. Herein, we critically evaluate these recent findings based on studies on different animal models. We also suggest some crucial future studies to be performed.

  6. Interleukin-21 receptor deficiency increases the initial toll-like receptor 2 response but protects against joint pathology by reducing Th1 and Th17 cells during streptococcal cell wall arthritis.

    Science.gov (United States)

    Marijnissen, Renoud J; Roeleveld, Debbie M; Young, Deborah; Nickerson-Nutter, Cheryl; Abdollahi-Roodsaz, Shahla; Garcia de Aquino, Sabrina; van de Loo, Fons A J; van Spriel, Annemiek B; Boots, Annemieke M H; van den Berg, Wim B; Koenders, Marije I

    2014-04-01

    The cytokine interleukin-21 (IL-21) can have both proinflammatory and immunosuppressive effects. The purpose of this study was to investigate the potential dual role of IL-21 in experimental arthritis in relation to Th17 cells. Antigen-induced arthritis (AIA) and chronic streptococcal cell wall (SCW) arthritis were induced in IL-21 receptor-deficient (IL-21R(-/-) ) and wild-type mice. Knee joints, synovial tissue, and serum were analyzed for arthritis pathology and inflammatory markers. During AIA and chronic SCW arthritis, IL-21R deficiency protected against severe inflammation and joint destruction. This was accompanied by suppressed serum IgG1 levels and antigen-specific T cell responses. Levels of IL-17 were reduced during AIA, and synovial lymphocytes isolated during SCW arthritis for flow cytometry demonstrated that mainly IL-17+ interferon-γ (IFNγ)-positive T cells were reduced in IL-21R(-/-) mice. However, during the acute phases of SCW arthritis, significantly higher joint swelling scores were observed, consistent with enhanced tumor necrosis factor and IL-6 expression. Interestingly, IL-21R(-/-) mice were significantly less capable of up-regulating suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 messenger RNA. IL-21 stimulation also affected the Toll-like receptor 2 (TLR-2)/caspase recruitment domain 15 response to SCW fragments in vitro, indicating that impaired SOCS regulation in the absence of IL-21 signaling might contribute to the increased local activation during SCW arthritis. In contrast to the proinflammatory role of IL-21 in adaptive immunity, which drives IL-17+IFN+ cells and joint pathology during chronic experimental arthritis, IL-21 also has an important immunosuppressive role, presumably by inhibiting TLR signaling via SOCS-1 and SOCS-3. If this dual role of IL-21 in various immune processes is present in human disease, it could make IL-21 a difficult therapeutic target in rheumatoid arthritis. Copyright © 2014 by the American

  7. Challenge for lowering concentration polarization in solid oxide fuel cells

    Science.gov (United States)

    Shimada, Hiroyuki; Suzuki, Toshio; Yamaguchi, Toshiaki; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu

    2016-01-01

    In the scope of electrochemical phenomena, concentration polarization at electrodes is theoretically inevitable, and lowering the concentration overpotential to improve the performance of electrochemical cells has been a continuing challenge. Electrodes with highly controlled microstructure, i.e., high porosity and uniform large pores are therefore essential to achieve high performance electrochemical cells. In this study, state-of-the-art technology for controlling the microstructure of electrodes has been developed for realizing high performance support electrodes of solid oxide fuel cells (SOFCs). The key is controlling the porosity and pore size distribution to improve gas diffusion, while maintaining the integrity of the electrolyte and the structural strength of actual sized electrode supports needed for the target application. Planar anode-supported SOFCs developed in this study realize 5 μm thick dense electrolyte (yttria-stabilized zirconia: YSZ) and the anode substrate (Ni-YSZ) of 53.6 vol.% porosity with a large median pore diameter of 0.911 μm. Electrochemical measurements reveal that the performance of the anode-supported SOFCs improves with increasing anode porosity. This Ni-YSZ anode minimizes the concentration polarization, resulting in a maximum power density of 3.09 W cm-2 at 800 °C using humidified hydrogen fuel without any electrode functional layers.

  8. Planar Cell Polarity Controls Pancreatic Beta Cell Differentiation and Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Cedric Cortijo

    2012-12-01

    Full Text Available Planar cell polarity (PCP refers to the collective orientation of cells within the epithelial plane. We show that progenitor cells forming the ducts of the embryonic pancreas express PCP proteins and exhibit an active PCP pathway. Planar polarity proteins are acquired at embryonic day 11.5 synchronously to apicobasal polarization of pancreas progenitors. Loss of function of the two PCP core components Celsr2 and Celsr3 shows that they control the differentiation of endocrine cells from polarized progenitors, with a prevalent effect on insulin-producing beta cells. This results in a decreased glucose clearance. Loss of Celsr2 and 3 leads to a reduction of Jun phosphorylation in progenitors, which, in turn, reduces beta cell differentiation from endocrine progenitors. These results highlight the importance of the PCP pathway in cell differentiation in vertebrates. In addition, they reveal that tridimensional organization and collective communication of cells are needed in the pancreatic epithelium in order to generate appropriate numbers of endocrine cells.

  9. Dichotomy of the human T cell response to Leishmania antigens. II. Absent or Th2-like response to gp63 and Th1-like response to lipophosphoglycan-associated protein in cells from cured visceral leishmaniasis patients

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Hey, A S; Jardim, A

    1994-01-01

    -gamma) production in PBMC from cured patients, while cells from non-exposed donors gave weak responses. A similar pattern was induced by lipophosphoglycan-associated protein (LPGAP). By contrast, the major surface protease of Leishmania, gp63, induced only a weak proliferative response without IFN-gamma production...... in five of 17 samples from cured patients. Four of the five responding cultures produced IL-4, i.e. the response to this antigen was of the Th2 type. Furthermore, sera from acutely ill visceral leishmaniasis patients contained high levels of IgG antibodies to gp63. The Th2-like response to gp63...

  10. Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment.

    Directory of Open Access Journals (Sweden)

    Shigenobu Yonemura

    Full Text Available Establishment of apical-basal polarity is crucial for epithelial sheets that form a compartment in the body, which function to maintain the environment in the compartment. Effects of impaired polarization are easily observed in three-dimensional (3-D culture systems rather than in two-dimensional (2-D culture systems. Although the mechanisms for establishing the polarity are not completely understood, signals from the extracellular matrix (ECM are considered to be essential for determining the basal side and eventually generating polarity in the epithelial cells. To elucidate the common features and differences in polarity establishment among various epithelial cells, we analyzed the formation of epithelial apical-basal polarity using three cell lines of different origin: MDCK II cells (dog renal tubules, EpH4 cells (mouse mammary gland, and R2/7 cells (human colon expressing wild-type α-catenin (R2/7 α-Cate cells. These cells showed clear apical-basal polarity in 2-D cultures. In 3-D cultures, however, each cell line displayed different responses to the same ECM. In MDCK II cells, spheroids with a single lumen formed in both Matrigel and collagen gel. In R2/7 α-Cate cells, spheroids showed similar apical-basal polarity as that seen in MDCK II cells, but had multiple lumens. In EpH4 cells, the spheroids displayed an apical-basal polarity that was opposite to that seen in the other two cell types in both ECM gels, at least during the culture period. On the other hand, the three cell lines showed the same apical-basal polarity both in 2-D cultures and in 3-D cultures using the hanging drop method. The three lines also had similar cellular responses to ECM secreted by the cells themselves. Therefore, appropriate culture conditions should be carefully determined in advance when using various epithelial cells to analyze cell polarity or 3-D morphogenesis.

  11. What about Th1/Th2 in cutaneous leishmaniasis vaccine discovery?

    Directory of Open Access Journals (Sweden)

    Campos-Neto A.

    2005-01-01

    Full Text Available The T helper cell type 1 (Th1 response is essential to resist leishmaniasis, whereas the Th2 response favors the disease. However, many leishmanial antigens, which stimulate a Th1 immune response during the disease or even after the disease is cured, have been shown to have no protective action. Paradoxically, antigens associated with an early Th2 response have been found to be highly protective if the Th1 response to them is generated before infection. Therefore, finding disease-associated Th2 antigens and inducing a Th1 immune response to them using defined vaccination protocols is an interesting unorthodox alternative approach to the discovery of a leishmania vaccine.

  12. Integrin-linked kinase interactions with ELMO2 modulate cell polarity.

    Science.gov (United States)

    Ho, Ernest; Irvine, Tames; Vilk, Gregory J A; Lajoie, Gilles; Ravichandran, Kodi S; D'Souza, Sudhir J A; Dagnino, Lina

    2009-07-01

    Cell polarization is a key prerequisite for directed migration during development, tissue regeneration, and metastasis. Integrin-linked kinase (ILK) is a scaffold protein essential for cell polarization, but very little is known about the precise mechanisms whereby ILK modulates polarization in normal epithelia. Elucidating these mechanisms is essential to understand tissue morphogenesis, transformation, and repair. Here we identify a novel ILK protein complex that includes Engulfment and Cell Motility 2 (ELMO2). We also demonstrate the presence of RhoG in ILK-ELMO2 complexes, and the localization of this multiprotein species specifically to the leading lamellipodia of polarized cells. Significantly, the ability of RhoG to bind ELMO is crucial for ILK induction of cell polarization, and the joint expression of ILK and ELMO2 synergistically promotes the induction of front-rear polarity and haptotactic migration. This places RhoG-ELMO2-ILK complexes in a key position for the development of cell polarity and forward movement. Although ILK is a component of many diverse multiprotein species that may contribute to cell polarization, expression of dominant-negative ELMO2 mutants is sufficient to abolish the ability of ILK to promote cell polarization. Thus, its interaction with ELMO2 and RhoG is essential for the ability of ILK to induce front-rear cell polarity.

  13. Muscle Stem Cell Fate Is Controlled by the Cell-Polarity Protein Scrib

    Directory of Open Access Journals (Sweden)

    Yusuke Ono

    2015-02-01

    Full Text Available Satellite cells are resident skeletal muscle stem cells that supply myonuclei for homeostasis, hypertrophy, and repair in adult muscle. Scrib is one of the major cell-polarity proteins, acting as a potent tumor suppressor in epithelial cells. Here, we show that Scrib also controls satellite-cell-fate decisions in adult mice. Scrib is undetectable in quiescent cells but becomes expressed during activation. Scrib is asymmetrically distributed in dividing daughter cells, with robust accumulation in cells committed to myogenic differentiation. Low Scrib expression is associated with the proliferative state and preventing self-renewal, whereas high Scrib levels reduce satellite cell proliferation. Satellite-cell-specific knockout of Scrib in mice causes a drastic and insurmountable defect in muscle regeneration. Thus, Scrib is a regulator of tissue stem cells, controlling population expansion and self-renewal with Scrib expression dynamics directing satellite cell fate.

  14. Th1-, Th2-, and Th17-associated cytokine expression in hypopharyngeal carcinoma and clinical significance.

    Science.gov (United States)

    Chen, Xuemei; Wang, Junfu; Wang, Rui; Su, Qinghong; Luan, Junwen; Huang, Haiyan; Zhou, Peng; Liu, Jinsheng; Xu, Xiaoqun

    2016-02-01

    Th0 cells differentiate into Th1 or Th2 depending on multiple transcription factors acting on specific time points to regulate gene expression. Th17 cells, a subset of IL-17-producing T cells distinct from Th1 or Th2 cells, have been described as key players in inflammation and autoimmune diseases as well as cancer development. In the present study, 53 patients with hypopharyngeal cancer were included. The expression levels of Th1-, Th2- and Th17-associated cytokines in hypopharyngeal cancer tissues and pericarcinoma tissues were detected. The relationship between Th1, Th2, or Th17 infiltration and metastasis was studied. Our results showed that the mRNA and protein expressions of Th1 cytokines were lower, while the expressions of Th2 and Th17 cytokines were higher in tumor tissues, and the intensity of expression was strengthened with clinical stage increasing. Cancer tissues had higher level expressions of Th2 and Th17 cytokines than that of pericarcinoma tissues. From the above data, we speculated that high expressions of Th2- and Th17-associated cytokines in hypopharyngeal carcinoma may contribute to cancer development and metastasis.

  15. Increased Th1/Th17 Responses Contribute to Low-Grade Inflammation in Age-Related Macular Degeneration.

    Science.gov (United States)

    Chen, Jiajia; Wang, Wenzhan; Li, Qiuming

    2017-01-01

    Age-related macular degeneration (AMD) is the primary cause of senior blindness in developed countries. Mechanisms underlying initiation and development of AMD remained known. We examined the CD4+ T cell compartments and their functions in AMD patients. AMD patients presented significantly higher frequencies of interferon (IFN)-γ-expressing and interleukin (IL)-17-expressing CD4+ T cells than healthy controls. The levels of IFN-γ and IL-17 expression by CD4+ T cells were significantly higher in AMD patients. These IFN-γ-expressing Th1 cells and IL-17-expressing Th17 cells could be selectively enriched by surface CCR3+ and CCR4+CCR6+ expression, respectively. Th1 and Th17 cells from AMD patients promoted the differentiation of monocytes toward M1 macrophages, which were previously associated with retinal damage. Th1 and Th17 cells also increased the level of MHC class I expression in human retinal pigment epithelial (RPE)-1 cells, while Th1 cells increased the frequency of MHC class II-expressing RPE-1 cells. These proinflammatory effects were partly, but not entirely, induced by the secretion of IFN-γ and IL-17. This study demonstrated an enrichment of Th1 cells and Th17 cells in AMD patients. These Th1 and Th17 cells possessed proinflammatory roles in an IFN-γ- and IL-17-dependent fashion, and could potentially serve as therapeutic targets. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. Effects of γ-rays on Th1 and Th2 immune function of mice

    International Nuclear Information System (INIS)

    Jin Wei; Cui Yufang; An Xiaoxia; Xu Han; Dong Bo; Liu Xiaolan; Luo Qingliang

    2007-01-01

    Objective: To observe the effects of 6 Gy whole body γ-irradiation on immune function of Th1 and Th2 in mouse, and to investigate the cellular and molecular mechanism of immune system injury induced by irradiation. Methods: Surface marker and intracellular cytokines of lymphocytes were stained with fluorescence-labeled monoclonal antibodies, then the changes of lymphocyte subpopulations, especially the Th1 and Th2 in mouse peripheral blood and spleen were analyzed by flow cytometry. Results: (1) 1 d after 6 Gy y- irradiation, lymphocytic subsets of CD 19 + and CD 8 + in spleen decreased apparently and the percentages of them were only 30% and 41% of control groups respectively (P 19 + and 14 d for CD 8 + respectively, however, up to 21 d post-irradiation they still did not return to control level. (2) Th1 subpopulations in mouse peripheral blood and spleen were significantly reduced at 1 d after irradiation and were only 2.6% and 7.6% of control groups (P 4 + / CD 8 + were significantly increased at 1 d post-irradiation in mouse spleen because of swift reduction of CD 8 + cells. Interestingly, either in peripheral blood or in spleen in irradiated mice, the ratio of Th1/Th2 were evidently raised because of the decrement of Th1 cells, exhibited obviously a phenomenon of predominant immune response of Th2 cells. Conclusions: It is suggested that the depression of mouse immune function induced by 6 Gy γ-irradiation might be caused by changes of CD 4 + /CD 8 + ratio, especially the imbalance of Th1/Th2 function subpopulations. It is shown that the imbalance of Th1/Th2 function subpopulations plays an important role in radiation-induced immune injury, thus providing a better insight into the molecular mechanism and new strategies for prevent and treatment measures of immune injury by irradiation. (authors)

  17. A Single-Cell Biochemistry Approach Reveals PAR Complex Dynamics during Cell Polarization.

    Science.gov (United States)

    Dickinson, Daniel J; Schwager, Francoise; Pintard, Lionel; Gotta, Monica; Goldstein, Bob

    2017-08-21

    Regulated protein-protein interactions are critical for cell signaling, differentiation, and development. For the study of dynamic regulation of protein interactions in vivo, there is a need for techniques that can yield time-resolved information and probe multiple protein binding partners simultaneously, using small amounts of starting material. Here we describe a single-cell protein interaction assay. Single-cell lysates are generated at defined time points and analyzed using single-molecule pull-down, yielding information about dynamic protein complex regulation in vivo. We established the utility of this approach by studying PAR polarity proteins, which mediate polarization of many animal cell types. We uncovered striking regulation of PAR complex composition and stoichiometry during Caenorhabditis elegans zygote polarization, which takes place in less than 20 min. PAR complex dynamics are linked to the cell cycle by Polo-like kinase 1 and govern the movement of PAR proteins to establish polarity. Our results demonstrate an approach to study dynamic biochemical events in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Comparison of Chlamydia trachomatis serovar L2 growth in polarized genital epithelial cells grown in three-dimensional culture with non-polarized cells.

    Science.gov (United States)

    Dessus-Babus, Sophie; Moore, Cheryl G; Whittimore, Judy D; Wyrick, Priscilla B

    2008-04-01

    A common model for studying Chlamydia trachomatis and growing chlamydial stocks uses Lymphogranuloma venereum serovar L2 and non-polarized HeLa cells. However, recent publications indicate that the growth rate and progeny yields can vary considerably for a particular strain depending on the cell line/type used, and seem to be partially related to cell tropism. In the present study, the growth of invasive serovar L2 was compared in endometrial HEC-1B and endocervical HeLa cells polarized on collagen-coated microcarrier beads, as well as in HeLa cells grown in tissue culture flasks. Microscopy analysis revealed no difference in chlamydial attachment/entry patterns or in inclusion development throughout the developmental cycle between cell lines. Very comparable growth curves in both cell lines were also found using real-time PCR analysis, with increases in chlamydial DNA content of 400-500-fold between 2 and 36 h post-inoculation. Similar progeny yields with comparable infectivity were recovered from HEC-1B and HeLa cell bead cultures, and no difference in chlamydial growth was found in polarized vs. non-polarized HeLa cells. In conclusion, unlike other C. trachomatis strains such as urogenital serovar E, invasive serovar L2 grows equally well in physiologically different endometrial and endocervical environments, regardless of the host cell polarization state.

  19. Morphine Suppresses T helper Lymphocyte Differentiation to Th1 Type Through PI3K/AKT Pathway.

    Science.gov (United States)

    Mao, Mao; Qian, Yanning; Sun, Jie

    2016-04-01

    To investigate the effect of morphine on T helper lymphocyte differentiation and PI3K/AKT pathway mechanism, CD4+ lymphocytes were treated by phorbol-myristate-acetate (25 ng/ml) (PMA) plus ionomycin (1 μg/ml) in the presence of various concentrations of morphine (25, 50, 100, 200 ng/ml) for 4 h. Th1 and Th2 subsets, supernatant cytokines, and PI3K, AKT, and protein kinase C-theta (PKC-θ) levels were detected. The Th1 cell percentage, Th1-derived cytokines, and ratio of Th1/Th2 decreased in the presence of morphine in a concentration-dependent manner. However, Th2 cell percentage kept stable after morphine treatment. The phosphorylation of PI3K and AKT decreased, but the phosphorylation of PKC-θ did not change in the presence of morphine. The decreased percentage of Th1 cells and ratio of Th1/Th2 was recovered by naloxone concentration-dependently. Morphine can inhibit the differentiation of Th1 lymphocytes and decrease the ratio of Th1/Th2 via the pathway of PI3K/AKT. The effect can be inhibited by naloxone.

  20. Mechanistic Framework for Establishment, Maintenance, and Alteration of Cell Polarity in Plants

    Directory of Open Access Journals (Sweden)

    Pankaj Dhonukshe

    2012-01-01

    Full Text Available Cell polarity establishment, maintenance, and alteration are central to the developmental and response programs of nearly all organisms and are often implicated in abnormalities ranging from patterning defects to cancer. By residing at the distinct plasma membrane domains polar cargoes mark the identities of those domains, and execute localized functions. Polar cargoes are recruited to the specialized membrane domains by directional secretion and/or directional endocytic recycling. In plants, auxin efflux carrier PIN proteins display polar localizations in various cell types and play major roles in directional cell-to-cell transport of signaling molecule auxin that is vital for plant patterning and response programs. Recent advanced microscopy studies applied to single cells in intact plants reveal subcellular PIN dynamics. They uncover the PIN polarity generation mechanism and identified important roles of AGC kinases for polar PIN localization. AGC kinase family members PINOID, WAG1, and WAG2, belonging to the AGC-3 subclass predominantly influence the polar localization of PINs. The emerging mechanism for AGC-3 kinases action suggests that kinases phosphorylate PINs mainly at the plasma membrane after initial symmetric PIN secretion for eventual PIN internalization and PIN sorting into distinct ARF-GEF-regulated polar recycling pathways. Thus phosphorylation status directs PIN translocation to different cell sides. Based on these findings a mechanistic framework evolves that suggests existence of cell side-specific recycling pathways in plants and implicates AGC3 kinases for differential PIN recruitment among them for eventual PIN polarity establishment, maintenance, and alteration.

  1. Atherosclerosis-Driven Treg Plasticity Results in Formation of a Dysfunctional Subset of Plastic IFNγ+ Th1/Tregs.

    Science.gov (United States)

    Butcher, Matthew J; Filipowicz, Adam R; Waseem, Tayab C; McGary, Christopher M; Crow, Kevin J; Magilnick, Nathaniel; Boldin, Mark; Lundberg, Patric S; Galkina, Elena V

    2016-11-11

    Forkhead box P3 + T regulatory cells (Tregs) are key players in maintaining immune homeostasis. Evidence suggests that Tregs respond to environmental cues to permit or suppress inflammation. In atherosclerosis, Th1-driven inflammation affects Treg homeostasis, but the mechanisms governing this phenomenon are unclear. Here, we address whether atherosclerosis impacts Treg plasticity and functionality in Apoe - /- mice, and what effect Treg plasticity might have on the pathology of atherosclerosis. We demonstrate that atherosclerosis promotes Treg plasticity, resulting in the reduction of CXCR3 + Tregs and the accumulation of an intermediate Th1-like interferon (IFN)-γ + CCR5 + Treg subset (Th1/Tregs) within the aorta. Importantly, Th1/Tregs arise in atherosclerosis from bona fide Tregs, rather than from T-effector cells. We show that Th1/Tregs recovered from atherosclerotic mice are dysfunctional in suppression assays. Using an adoptive transfer system and plasticity-prone Mir146a -/- Tregs, we demonstrate that elevated IFNγ + Mir146a -/- Th1/Tregs are unable to adequately reduce atherosclerosis, arterial Th1, or macrophage content within Apoe -/- mice, in comparison to Mir146a +/+ Tregs. Finally, via single-cell RNA-sequencing and real-time -polymerase chain reaction, we show that Th1/Tregs possess a unique transcriptional phenotype characterized by coexpression of Treg and Th1 lineage genes and a downregulation of Treg-related genes, including Ikzf2, Ikzf4, Tigit, Lilrb4, and Il10. In addition, an ingenuity pathway analysis further implicates IFNγ, IFNα, interleukin-2, interleukin-7, CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), T-cell receptor, and Csnk2b-related pathways in regulating Treg plasticity. Atherosclerosis drives Treg plasticity, resulting in the accumulation of dysfunctional IFNγ + Th1/Tregs that may permit further arterial inflammation and atherogenesis. © 2016 American Heart Association, Inc.

  2. Transfection efficiency and uptake process of polyplexes in human lung endothelial cells: a comparative study in non-polarized and polarized cells.

    Science.gov (United States)

    Mennesson, Eric; Erbacher, Patrick; Piller, Véronique; Kieda, Claudine; Midoux, Patrick; Pichon, Chantal

    2005-06-01

    Following systemic administration, polyplexes must cross the endothelium barrier to deliver genes to the target cells underneath. To design an efficient gene delivery system into lung epithelium, we evaluated capture and transfection efficiencies of DNA complexed with either Jet-PEI (PEI-polyplexes) or histidylated polylysine (His-polyplexes) in human lung microvascular endothelial cells (HLMEC) and tracheal epithelial cells. After optimizing growth conditions to obtain a tight HLMEC monolayer, we characterized uptake of polyplexes by flow cytometry and evaluated their transfection efficiency. Polyplexes were formulated as small particles. YOYO-labelled plasmid fluorescence intensity and luciferase activity were used as readouts for uptake and gene expression, respectively. PEI-polyplexes were more efficiently taken up than His-polyplexes by both non-polarized (2-fold) and polarized HLMEC (10-fold). They were mainly internalized by a clathrin-dependent pathway whatever the cell state. In non-polarized cells, His-polyplexes entered also mainly via a clathrin-dependent pathway but with an involvement of cholesterol. The cell polarization decreased this way and a clathrin-independent pathway became predominant. PEI-polyplexes transfected more efficiently HLMEC than His-polyplexes (10(7) vs. 10(5) relative light units (RLU)/mg of proteins) with a more pronounced difference in polarized cells. In contrast, no negative effect of the cell polarization was observed with tracheal epithelial cells in which both polyplexes had comparable efficiency. We show that the efficiency of polyplex uptake by HLMEC and their internalization mechanism are polymer-dependent. By contrast with His-polyplexes, the HLMEC polarization has little influence on the uptake process and on the transfection efficiency of PEI-polyplexes. Copyright (c) 2005 John Wiley & Sons, Ltd.

  3. Regulation of Human Macrophage M1–M2 Polarization Balance by Hypoxia and the Triggering Receptor Expressed on Myeloid Cells-1

    Directory of Open Access Journals (Sweden)

    Federica Raggi

    2017-09-01

    Full Text Available Macrophages (Mf are a heterogeneous population of tissue-resident professional phagocytes and a major component of the leukocyte infiltrate at sites of inflammation, infection, and tumor growth. They can undergo diverse forms of activation in response to environmental factors, polarizing into specialized functional subsets. A common hallmark of the pathologic environment is represented by hypoxia. The impact of hypoxia on human Mf polarization has not been fully established. The objective of this study was to elucidate the effects of a hypoxic environment reflecting that occurring in vivo in diseased tissues on the ability of human Mf to polarize into classically activated (proinflammatory M1 and alternatively activated (anti-inflammatory M2 subsets. We present data showing that hypoxia hinders Mf polarization toward the M1 phenotype by decreasing the expression of T cell costimulatory molecules and chemokine homing receptors and the production of proinflammatory, Th1-priming cytokines typical of classical activation, while promoting their acquisition of phenotypic and secretory features of alternative activation. Furthermore, we identify the triggering receptor expressed on myeloid cells (TREM-1, a member of the Ig-like immunoregulatory receptor family, as a hypoxia-inducible gene in Mf and demonstrate that its engagement by an agonist Ab reverses the M2-polarizing effect of hypoxia imparting a M1-skewed phenotype to Mf. Finally, we provide evidence that Mf infiltrating the inflamed hypoxic joints of children affected by oligoarticular juvenile idiopatic arthritis express high surface levels of TREM-1 associated with predominant M1 polarization and suggest the potential of this molecule in driving M1 proinflammatory reprogramming in the hypoxic synovial environment.

  4. Regulation of Human Macrophage M1–M2 Polarization Balance by Hypoxia and the Triggering Receptor Expressed on Myeloid Cells-1

    Science.gov (United States)

    Raggi, Federica; Pelassa, Simone; Pierobon, Daniele; Penco, Federica; Gattorno, Marco; Novelli, Francesco; Eva, Alessandra; Varesio, Luigi; Giovarelli, Mirella; Bosco, Maria Carla

    2017-01-01

    Macrophages (Mf) are a heterogeneous population of tissue-resident professional phagocytes and a major component of the leukocyte infiltrate at sites of inflammation, infection, and tumor growth. They can undergo diverse forms of activation in response to environmental factors, polarizing into specialized functional subsets. A common hallmark of the pathologic environment is represented by hypoxia. The impact of hypoxia on human Mf polarization has not been fully established. The objective of this study was to elucidate the effects of a hypoxic environment reflecting that occurring in vivo in diseased tissues on the ability of human Mf to polarize into classically activated (proinflammatory M1) and alternatively activated (anti-inflammatory M2) subsets. We present data showing that hypoxia hinders Mf polarization toward the M1 phenotype by decreasing the expression of T cell costimulatory molecules and chemokine homing receptors and the production of proinflammatory, Th1-priming cytokines typical of classical activation, while promoting their acquisition of phenotypic and secretory features of alternative activation. Furthermore, we identify the triggering receptor expressed on myeloid cells (TREM)-1, a member of the Ig-like immunoregulatory receptor family, as a hypoxia-inducible gene in Mf and demonstrate that its engagement by an agonist Ab reverses the M2-polarizing effect of hypoxia imparting a M1-skewed phenotype to Mf. Finally, we provide evidence that Mf infiltrating the inflamed hypoxic joints of children affected by oligoarticular juvenile idiopatic arthritis express high surface levels of TREM-1 associated with predominant M1 polarization and suggest the potential of this molecule in driving M1 proinflammatory reprogramming in the hypoxic synovial environment. PMID:28936211

  5. Comparison of Chlamydia trachomatis serovar L2 growth in polarized genital epithelial cells grown in three-dimensional culture with non-polarized cells

    OpenAIRE

    Dessus-Babus, Sophie; Moore, Cheryl G.; Whittimore, Judy D.; Wyrick, Priscilla B.

    2008-01-01

    A common model for studying Chlamydia trachomatis and growing chlamydial stocks uses Lymphogranuloma venereum serovar L2 and non-polarized HeLa cells. However, recent publications indicate that the growth rate and progeny yields can vary considerably for a particular strain depending on the cell line/type used, and seem to be partially related to cell tropism. In the present study, the growth of invasive serovar L2 was compared in endometrial HEC-1B and endocervical HeLa cells polarized on co...

  6. Immunomodulation Mechanism of Antidepressants: Interactions between Serotonin/Norepinephrine Balance and Th1/Th2 Balance

    Science.gov (United States)

    Martino, Matteo; Rocchi, Giulio; Escelsior, Andrea; Fornaro, Michele

    2012-01-01

    Neurotransmitters and hormones regulate major immune functions, including the selection of T helper (Th)1 or Th2 cytokine responses, related to cell-mediated and humoral immunity, respectively. A role of imbalance and dynamic switching of Th1/Th2 system has been proposed, with relative displacement of the immune reserve in relation to complex interaction between Th1/Th2 and neuro-hormonal balance fluctuations, in the pathogenesis of various chronic human diseases, probably also including psychiatric disorders. Components of the stress system such as norepinephrine (NE) and glucocorticoids appear to mediate a Th2 shift, while serotonin (5-HT) and melatonin might mediate a Th1 shift. Some antidepressants would occur affecting these systems, acting on neurotransmitter balance (especially the 5-HT/NE balance) and expression levels of receptor subtypes, which in turn affect cytokine production and relative Th1/Th2 balance. It could be therefore hypothesized that the antidepressant-related increase in NE tone enhances the Th2 response, while the decrease in NE tone or the increase in 5-HT tone enhances the Th1 response. However, the neurotransmitter and Th1/Th2 balance modulation could be relative, aiming to restore physiological levels a previous imbalance in receptor sensitivity and cytokine production. The considerations on neuro-immunomodulation could represent an additional aid in the study of pathophysiology of psychiatric disorders and in the choice of specific antidepressants in specific clusters of symptoms, especially in comorbidity with internal pathologies. Furthermore limited data, reviewed here, have shown the effectiveness of some antidepressants as pure immunomodulators. However, these considerations are tentative and require experimental confirmation or refutation by future studies. PMID:23204981

  7. The reorientation of cell nucleus promotes the establishment of front-rear polarity in migrating fibroblasts.

    Science.gov (United States)

    Maninová, Miloslava; Klímová, Zuzana; Parsons, J Thomas; Weber, Michael J; Iwanicki, Marcin P; Vomastek, Tomáš

    2013-06-12

    The establishment of cell polarity is an essential step in the process of cell migration. This process requires precise spatiotemporal coordination of signaling pathways that in most cells create the typical asymmetrical profile of a polarized cell with nucleus located at the cell rear and the microtubule organizing center (MTOC) positioned between the nucleus and the leading edge. During cell polarization, nucleus rearward positioning promotes correct microtubule organizing center localization and thus the establishment of front-rear polarity and directional migration. We found that cell polarization and directional migration require also the reorientation of the nucleus. Nuclear reorientation is manifested as temporally restricted nuclear rotation that aligns the nuclear axis with the axis of cell migration. We also found that nuclear reorientation requires physical connection between the nucleus and cytoskeleton mediated by the LINC (linker of nucleoskeleton and cytoskeleton) complex. Nuclear reorientation is controlled by coordinated activity of lysophosphatidic acid (LPA)-mediated activation of GTPase Rho and the activation of integrin, FAK (focal adhesion kinase), Src, and p190RhoGAP signaling pathway. Integrin signaling is spatially induced at the leading edge as FAK and p190RhoGAP are predominantly activated or localized at this location. We suggest that integrin activation within lamellipodia defines cell front, and subsequent FAK, Src, and p190RhoGAP signaling represents the polarity signal that induces reorientation of the nucleus and thus promotes the establishment of front-rear polarity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Th1/2 Immune Response Signature Predicts Outcome after Dose-Dense Immunochemotherapy in Patients with High Risk Diffuse Large B-Cell Lymphoma – Results from Nordic Lymphoma Group Trials

    DEFF Research Database (Denmark)

    M, Autio; Jørgensen, Judit Meszaros; SK, Leivonen

    treatment-specific roles in diffuse large B-cell lymphoma. For the high risk DLBCL patients treated with dose-dense immunochemotherapy, high expression of type 1/2 immune response signature genes predicts a poor outcome. A detailed characterization of immune cell composition in the tumor microenvironment......Introduction: Despite better therapeutic options and improved survival of diffuse large B-cell lymphoma (DLBCL), 30-40% of the patients still relapse and have dismal prognosis. Recently, the impact of genomic aberrations, allowing lymphoma cells to escape immune recognition on DLBCL pathogenesis...... has been recognized. However, whether immune related signatures could be used as determinants for treatment outcome has not been rigorously evaluated. Here, our aim was to elucidate the immunologic characteristics of the tumor microenvironment, and associate the findings with outcome in patients...

  9. The Role of Neutrophils in the Induction of Specific Th1 and Th17 during Vaccination against Tuberculosis.

    Science.gov (United States)

    Trentini, Monalisa M; de Oliveira, Fábio M; Kipnis, André; Junqueira-Kipnis, Ana P

    2016-01-01

    Mycobacterium tuberculosis causes tuberculosis (TB), a disease that killed more than 1.5 million people worldwide in 2014, and the Bacillus Calmette Guérin (BCG) vaccine is the only currently available vaccine against TB. However, it does not protect adults. Th1 and Th17 cells are crucial for TB control, as well as the neutrophils that are directly involved in DC trafficking to the draining lymph nodes and the activation of T lymphocytes during infection. Although several studies have shown the importance of neutrophils during M. tuberculosis infection, none have shown its role in the development of a specific response to a vaccine. The vaccine mc(2)-CMX was shown to protect mice against M. tuberculosis challenge, mainly due to specific Th1 and Th17 cells. This study evaluated the importance of neutrophils in the generation of the Th1- and Th17-specific responses elicited by this vaccine. The vaccine injection induced a neutrophil rich lesion with a necrotic central area. The IL-17 KO mice did not generate vaccine-specific Th1 cells. The vaccinated IL-22 KO mice exhibited Th1- and Th17-specific responses. Neutrophil depletion during vaccination abrogated the induction of Th1-specific responses and prohibited the bacterial load reduction observed in the vaccinated animals. The results show, for the first time, the role of neutrophils in the generation of specific Th1 and Th17 cells in response to a tuberculosis vaccine.

  10. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    Science.gov (United States)

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Flotillins are involved in the polarization of primitive and mature hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Lawrence Rajendran

    Full Text Available BACKGROUND: Migration of mature and immature leukocytes in response to chemokines is not only essential during inflammation and host defense, but also during development of the hematopoietic system. Many molecules implicated in migratory polarity show uniform cellular distribution under non-activated conditions, but acquire a polarized localization upon exposure to migratory cues. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present evidence that raft-associated endocytic proteins (flotillins are pre-assembled in lymphoid, myeloid and primitive hematopoietic cells and accumulate in the uropod during migration. Furthermore, flotillins display a polarized distribution during immunological synapse formation. Employing the membrane lipid-order sensitive probe Laurdan, we show that flotillin accumulation in the immunological synapse is concomittant with membrane ordering in these regions. CONCLUSIONS: Together with the observation that flotillin polarization does not occur in other polarized cell types such as polarized epithelial cells, our results suggest a specific role for flotillins in hematopoietic cell polarization. Based on our results, we propose that in hematopoietic cells, flotillins provide intrinsic cues that govern segregation of certain microdomain-associated molecules during immune cell polarization.

  12. Changes of lymphocytes in spleen and liver by local irradiation to the maxilla in mice. Th1/Th2 balance

    International Nuclear Information System (INIS)

    Tamazawa, Ken; Satoh, Daigo; Yosue, Takashi

    2001-01-01

    This study was to examine changes in cell-mediated immunity by local irradiation, in particular focusing on the Th1/Th2 balance. We investigated influence due to local irradiation (10 Gy) of a portion of the maxilla in mice. The wet-weight of spleen, the percentage and the absolute numbers of the lymphocytes in spleen, wet-weight of the liver, the percentage of lymphocytes in liver were measured using a flow cytometer and values were compared with those obtained from non-irradiated animals. Furthermore, we analysed the percentage and absolute numbers of T helper 1 (Th1) cells, T cytotoxic 1 (Tc1) cells by the intracellular cytokine. The following results were obtained: Wet-weight of the spleen showed a significant decrease one and three days after irradiation. Wet-weight of the liver did not show any significant change after irradiation. In spleen, the percentage of Th1-like cells showed a significant increase one and three days after irradiation, and one of the Th2-like cells showed a significant decrease one day after irradiation. The ratio of the Th1-like cells to Th2-like cells showed an extreme increase one and three days after irradiation. The absolute numbers of the Th1-like cells and the Th2-like cells showed a significant decrease one and three days after irradiation. In liver, the percentage of the Th1-like cells showed a significant increase one and three days after irradiation, and the percentage of the Th2-like cells did not show any significant change after irradiation. The ratio of the Th1-like cells to Th2-like cells showed a significant increase one day after irradiation. In spleen, the percentage of the Th1 cells and Tc1 cells showed a significant increase one and three days after irradiation, but neither of the absolute numbers showed any significant change after irradiation. These results indicated that the characteristic changes of Th1/Th2 balance shifted to a Th1-dominant status by irradiation, and the ability from irradiation therapy to the

  13. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor.

    Science.gov (United States)

    Pols, Thijs W H; Puchner, Teresa; Korkmaz, H Inci; Vos, Mariska; Soeters, Maarten R; de Vries, Carlie J M

    2017-01-01

    Bile acids are established signaling molecules next to their role in the intestinal emulsification and uptake of lipids. We here aimed to identify a potential interaction between bile acids and CD4+ Th cells, which are central in adaptive immune responses. We screened distinct bile acid species for their potency to affect T cell function. Primary human and mouse CD4+ Th cells as well as Jurkat T cells were used to gain insight into the mechanism underlying these effects. We found that unconjugated lithocholic acid (LCA) impedes Th1 activation as measured by i) decreased production of the Th1 cytokines IFNγ and TNFαα, ii) decreased expression of the Th1 genes T-box protein expressed in T cells (T-bet), Stat-1 and Stat4, and iii) decreased STAT1α/β phosphorylation. Importantly, we observed that LCA impairs Th1 activation at physiological relevant concentrations. Profiling of MAPK signaling pathways in Jurkat T cells uncovered an inhibition of ERK-1/2 phosphorylation upon LCA exposure, which could provide an explanation for the impaired Th1 activation. LCA induces these effects via Vitamin D receptor (VDR) signaling since VDR RNA silencing abrogated these effects. These data reveal for the first time that LCA controls adaptive immunity via inhibition of Th1 activation. Many factors influence LCA levels, including bile acid-based drugs and gut microbiota. Our data may suggest that these factors also impact on adaptive immunity via a yet unrecognized LCA-Th cell axis.

  14. Restoring Lost Anti-HER-2 Th1 Immunity in Breast Cancer: A Crucial Role for Th1 Cytokines in Therapy and Prevention.

    Science.gov (United States)

    Nocera, Nadia F; Lee, M Catherine; De La Cruz, Lucy M; Rosemblit, Cinthia; Czerniecki, Brian J

    2016-01-01

    The ErbB/B2 (HER-2/neu) oncogene family plays a critical role in the development and metastatic spread of several tumor types including breast, ovarian and gastric cancer. In breast cancer, HER-2/neu is expressed in early disease development in a large percentage of DCIS lesions and its expression is associated with an increased risk of invasion and recurrence. Targeting HER-2 with antibodies such as trastuzumab or pertuzumab has improved survival, but patients with more extensive disease may develop resistance to therapy. Interestingly, response to HER-2 targeted therapies correlates with presence of immune response genes in the breast. Th1 cell production of the cytokines interferon gamma (IFNγ) and TNFα can enhance MHC class I expression, PD-L1 expression, augment apoptosis and tumor senescence, and enhances growth inhibition of many anti-breast cancer agents, including anti-estrogens and HER-2 targeted therapies. Recently, we have identified that a loss of anti-HER-2 CD4 Th1 in peripheral blood occurs during breast tumorigenesis and is dramatically diminished, even in Stage I breast cancers. The loss of anti-HER-2 Th1 response is specific and not readily reversed by standard therapies. In fact, this loss of anti-HER-2 Th1 response in peripheral blood correlates with lack of complete response to neoadjuvant therapy and diminished disease-free survival. This defect can be restored with HER-2 vaccinations in both DCIS and IBC. Correcting the anti-HER-2 Th1 response may have significant impact in improving response to HER-2 targeted therapies. Development of immune monitoring systems for anti-HER-2 Th1 to identify patients at risk for recurrence could be critical to improving outcomes, since the anti-HER-2 Th1 response can be restored by vaccination. Correction of the cellular immune response against HER-2 may prevent recurrence in high-risk patients with DCIS and IBC at risk of developing new or recurrent breast cancer.

  15. MOG extracellular domain (p1-125) triggers elevated frequency of CXCR3+ CD4+ Th1 cells in the CNS of mice and induces greater incidence of severe EAE

    DEFF Research Database (Denmark)

    Thyagabhavan Mony, Jyothi; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Myelin-specific T cells are implicated in multiple sclerosis (MS) and drive experimental autoimmune encephalomyelitis (EAE). EAE is commonly induced with short peptides, whereas in MS, whole myelin proteins are available for immune response. We asked whether immunization with the immunoglobulin-l...

  16. Valsartan Attenuates KIR2.1 by Downregulating the Th1 Immune Response in Rats Following Myocardial Infarction.

    Science.gov (United States)

    Li, Xinran; Hu, Hesheng; Wang, Ye; Xue, Mei; Li, Xiaolu; Cheng, Wenjuan; Xuan, Yongli; Yin, Jie; Yang, Na; Yan, Suhua

    2016-03-01

    Myocardial infarction (MI) results in decreased inward-rectifier K⁺ current (IK1), which is mediated primarily by the Kir2.1 protein and is accompanied by upregulated T cells. Interferon γ (IFN-γ), secreted predominantly by Th1 cells, causes a decrease in IK1 in microglia. Whether Th1 cells can induce IK1/Kir2.1 remodeling following MI and whether valsartan can ameliorate this phenomenon remain unclear. Rats experiencing MI received either valsartan or saline for 7 days. Th1-enriched lymphocytes and myocytes were cocultured with or without valsartan treatment. Th1 cells were monitored by flow cytometry. The protein levels of Kir2.1 were detected by Western blot analyses. IK1 was recorded through whole-cell patch clamping. The plasma levels of IFN-γ, interleukin 2, and tumor necrosis factor α were detected by enzyme-linked immunosorbent assay. Th1 cell number and cytokine expression levels were higher following MI, and the Kir2.1 protein level was decreased. In MI rats, valsartan reduced Th1 cell number and cytokine expression levels and increased the Kir2.1 expression and the IK1 current compared with the rats that received saline treatment; these results are consistent with the effect of valsartan in cocultured lymphocytes and myocytes. In vitro, IFN-γ overexpression suppressed the IK1 current, whereas interleukin 2 and tumor necrosis factor α had no significant effect on the current, establishing that Th1 cell regulation of IK1/Kir2.1 expression is mainly dependent on IFN-γ. Valsartan ameliorates IK1/Kir2.1 remodeling by downregulating the Th1 immune response following MI.

  17. Daple Coordinates Planar Polarized Microtubule Dynamics in Ependymal Cells and Contributes to Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Maki Takagishi

    2017-07-01

    Full Text Available Motile cilia in ependymal cells, which line the cerebral ventricles, exhibit a coordinated beating motion that drives directional cerebrospinal fluid (CSF flow and guides neuroblast migration. At the apical cortex of these multi-ciliated cells, asymmetric localization of planar cell polarity (PCP proteins is required for the planar polarization of microtubule dynamics, which coordinates cilia orientation. Daple is a disheveled-associating protein that controls the non-canonical Wnt signaling pathway and cell motility. Here, we show that Daple-deficient mice present hydrocephalus and their ependymal cilia lack coordinated orientation. Daple regulates microtubule dynamics at the anterior side of ependymal cells, which in turn orients the cilial basal bodies required for the directional cerebrospinal fluid flow. These results demonstrate an important role for Daple in planar polarity in motile cilia and provide a framework for understanding the mechanisms and functions of planar polarization in the ependymal cells.

  18. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy.

    Science.gov (United States)

    Chen, Jiahuan; Ganguly, Anutosh; Mucsi, Ashley D; Meng, Junchen; Yan, Jiacong; Detampel, Pascal; Munro, Fay; Zhang, Zongde; Wu, Mei; Hari, Aswin; Stenner, Melanie D; Zheng, Wencheng; Kubes, Paul; Xia, Tie; Amrein, Matthias W; Qi, Hai; Shi, Yan

    2017-02-01

    Dendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell-DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells. We show that this unusually strong LFA-1-dependent adhesiveness of T reg cells is caused in part by their low calpain activities, which normally release integrin-cytoskeleton linkage, and thereby reduce adhesion. Super resolution imaging reveals that such T reg cell adhesion causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation, and skews Fascin-1-dependent actin polarization in DCs toward the T reg cell adhesion zone. Although it is reversible upon T reg cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. Our results reveal a dynamic cytoskeletal component underlying T reg cell-mediated DC suppression in a contact-dependent manner. © 2017 Chen et al.

  19. Down-regulation of Notch signaling pathway reverses the Th1/Th2 imbalance in tuberculosis patients.

    Science.gov (United States)

    Li, Qifeng; Zhang, Hui; Yu, Liang; Wu, Chao; Luo, Xinhui; Sun, He; Ding, Jianbing

    2018-01-01

    Th1/Th2 imbalance to Th2 is of significance in the peripheral immune responses in Tuberculosis (TB) development. However, the mechanisms for Th1/Th2 imbalance are still not well determined. Notch signaling pathway is involved in the peripheral T cell activation and effector cell differentiation. However, whether it affects Th1/Th2 imbalance in TB patients is still not known. Here, we used γ-secretase inhibitor (DAPT) to treat the peripheral blood mononuclear cells (PBMCs) from healthy people or individuals with latent or active TB infection in vitro, respectively. Then, the Th1/Th2 ratios were determined by flow cytometry, and cytokines of IFN-γ, IL-4, IL-10 in the culture supernatant were measured by CBA method. The Notch signal pathway associated proteins Hes1, GATA3 and T-bet were quantitated by real-time PCR or immunoblotting. Our results showed that DAPT effectively inhibited the protein level of Hes1. In TB patients, the Th2 ratio increased in the PBMCs, alone with the high expression of GATA3 and IL-4, resulting in the high ratios of Th2/Th1 and GATA3/T-bet in TB patients. However, Th2 cells ratio decreased after blocking the Notch signaling pathway by DAPT and the Th2/Th1 ratio in TB patients were DAPT dose-dependent, accompanied by the decrease of IL-4 and GATA3. But, its influence on Th1 ratio and Th1 related T-bet and IFN-γ levels were not significant. In conclusion, our results suggest that blocking Notch signaling by DAPT could inhibit Th2 responses and restore Th1/Th2 imbalance in TB patients. Copyright © 2017. Published by Elsevier B.V.

  20. Modulation of Th1/Th2 Immune Responses by Killed Propionibacterium acnes and Its Soluble Polysaccharide Fraction in a Type I Hypersensitivity Murine Model: Induction of Different Activation Status of Antigen-Presenting Cells

    Directory of Open Access Journals (Sweden)

    Carla Cristina Squaiella-Baptistão

    2015-01-01

    Full Text Available Propionibacterium acnes (P. acnes is a gram-positive anaerobic bacillus present in normal human skin microbiota, which exerts important immunomodulatory effects, when used as heat- or phenol-killed suspensions. We previously demonstrated that heat-killed P. acnes or its soluble polysaccharide (PS, extracted from the bacterium cell wall, suppressed or potentiated the Th2 response to ovalbumin (OVA in an immediate hypersensitivity model, depending on the treatment protocol. Herein, we investigated the mechanisms responsible for these effects, using the same model and focusing on the activation status of antigen-presenting cells (APCs. We verified that higher numbers of APCs expressing costimulatory molecules and higher expression levels of these molecules are probably related to potentiation of the Th2 response to OVA induced by P. acnes or PS, while higher expression of toll-like receptors (TLRs seems to be related to Th2 suppression. In vitro cytokines production in cocultures of dendritic cells and T lymphocytes indicated that P. acnes and PS seem to perform their effects by acting directly on APCs. Our data suggest that P. acnes and PS directly act on APCs, modulating the expression of costimulatory molecules and TLRs, and these differently activated APCs drive distinct T helper patterns to OVA in our model.

  1. Tests of a polarized source of hydrogen and deuterium based on spin-exchange optical pumping and a storage cell for polarized deuterium

    International Nuclear Information System (INIS)

    Holt, R.J.; Gilman, R.; Kinney, E.R.

    1988-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which is based on the principle of spin-exchange optical pumping has been developed at Argonne. The advantages of this method over conventional polarized sources for internal target experiments is discussed. At present, the laser-driven polarized source delivers hydrogen 8 x 10 16 atoms/s with a polarization of 24% and deuterium at 6 x 10 16 atoms/s with a polarization of 25%. A passive storage cell for polarized deuterium was tested in the VEPP-3 electron storage ring. The storage cell was found to increase the target thickness by approximately a factor of three and no loss in polarization was observed. 10 refs., 4 figs., 2 tabs

  2. Resveratrol Ameliorates Dysregulation of Th1, Th2, Th17, and T Regulatory Cell-Related Transcription Factor Signaling in a BTBR T + tf/J Mouse Model of Autism.

    Science.gov (United States)

    Bakheet, Saleh A; Alzahrani, Mohammad Zeed; Ansari, Mushtaq Ahmad; Nadeem, Ahmed; Zoheir, Khairy M A; Attia, Sabry M; Al-Ayadhi, Laila Yousef; Ahmad, Sheikh Fayaz

    2017-09-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder. It is characterized by impaired social communication, abnormal social interactions, and repetitive behaviors and/or restricted interests. BTBR T + tf/J (BTBR) inbred mice are commonly used as a model for ASD. Resveratrol is used widely as a beneficial therapeutic in the treatment of an extensive array of pathologies, including neurodegenerative diseases. In the present study, the effect of resveratrol administration (20 and 40 mg/kg) was evaluated in both BTBR and C57BL/6 (B6) mice. Behavioral (self-grooming), Foxp3, T-bet, GATA-3, RORγt, and IL-17A in CD4 + T cells were assessed. Our study showed that BTBR control mice exhibited a distinct immune profile from that of the B6 control mice. BTBR mice were characterized by lower levels of Foxp3 + and higher levels of RORγt + , T-bet + , and GATA-3 + production in CD4 + T cells when compared with B6 control. Resveratrol (20 and 40 mg/kg) treatment to B6 and BTBR mice showed substantial induction of Foxp3 + and reduction of T-bet + , GATA-3 + , and IL-17A + expression in CD4 + cells when compared with the respective control groups. Moreover, resveratrol treatment resulted in upregulated expression of Foxp3 mRNA and decreased expression levels of T-bet, GATA-3, RORγt, and IL-17A in the spleen and brain tissues. Western blot analysis confirmed that resveratrol treatment decreased the protein expression of T-bet, GATA-3, RORγ, and IL-17 and that it increased Foxp3 in B6 and BTBR mice. Our results suggest that autism is associated with dysregulation of transcription factor signaling that can be corrected by resveratrol treatment.

  3. Dynamics of cell polarity in tissue morphogenesis: a comparative view from Drosophila and Ciona [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Michael T. Veeman

    2016-06-01

    Full Text Available Tissues in developing embryos exhibit complex and dynamic rearrangements that shape forming organs, limbs, and body axes. Directed migration, mediolateral intercalation, lumen formation, and other rearrangements influence the topology and topography of developing tissues. These collective cell behaviors are distinct phenomena but all involve the fine-grained control of cell polarity. Here we review recent findings in the dynamics of polarized cell behavior in both the Drosophila ovarian border cells and the Ciona notochord. These studies reveal the remarkable reorganization of cell polarity during organ formation and underscore conserved mechanisms of developmental cell polarity including the Par/atypical protein kinase C (aPKC and planar cell polarity pathways. These two very different model systems demonstrate important commonalities but also key differences in how cell polarity is controlled in tissue morphogenesis. Together, these systems raise important, broader questions on how the developmental control of cell polarity contributes to morphogenesis of diverse tissues across the metazoa.

  4. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neovascularization.

    Science.gov (United States)

    Dubrac, Alexandre; Genet, Gael; Ola, Roxana; Zhang, Feng; Pibouin-Fragner, Laurence; Han, Jinah; Zhang, Jiasheng; Thomas, Jean-Léon; Chedotal, Alain; Schwartz, Martin A; Eichmann, Anne

    2016-01-26

    Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here, we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2- and VEGF-induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, and pathological ocular neovascularization and wound healing, as well. These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2, and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis. © 2015 American Heart Association, Inc.

  5. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neo-Vascularization

    Science.gov (United States)

    Dubrac, Alexandre; Genet, Gael; Ola, Roxana; Zhang, Feng; Pibouin-Fragner, Laurence; Han, Jinah; Zhang, Jiasheng; Thomas, Jean-Léon; Chedotal, Alain; Schwartz, Martin A.; Eichmann, Anne

    2015-01-01

    Background Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. Methods and Results Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2 and VEGF induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, as well as pathological ocular neovascularization and wound healing. Conclusions These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2 and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis. PMID:26659946

  6. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells

    NARCIS (Netherlands)

    Mays, R.W.; Siemers, K.A.; Fritz, B.A.; Lowe, A.W.; van Meer, G.; Nelson, W.J.

    1995-01-01

    We have studied mechanisms involved in generating a polarized distribution of Na/K-ATPase in the basal-lateral membrane of two clones of MDCK II cells. Both clones exhibit polarized distributions of marker proteins of the apical and basal-lateral membranes, including Na/K-ATPase, at steady state.

  7. Decreased B and T lymphocyte attenuator in Behcet's disease may trigger abnormal Th17 and Th1 immune responses.

    Science.gov (United States)

    Ye, Zi; Deng, Bolin; Wang, Chaokui; Zhang, Dike; Kijlstra, Aize; Yang, Peizeng

    2016-02-04

    Behcet's disease (BD) is a chronic, systemic and recurrent inflammatory disease associated with hyperactive Th17 and Th1 immune responses. Recent studies have shown that B and T lymphocyte attenuator (BTLA) negatively regulates the immune response. In this study, we investigated whether BTLA activation could be exploited to inhibit the development of abnormal immune responses in BD patients. BTLA expression in PBMCs and CD4(+) T cells was significantly decreased in active BD patients. Decreased BTLA level was associated with increased Th17 and Th1 responses. Activation of BTLA inhibited the abnormal Th17 and Th1 responses and IL-22 expression in both patients and controls. Addition of an agonistic anti-BTLA antibody remarkably inhibited DC-induced Th17 and Th1 cell responses, resulted in decreased production of the Th17 and Th1-related cytokines IL-1beta, IL-6, IL-23 and IL-12p70 and reduced CD40 expression in DCs. In conclusion, decreased BTLA expression in ocular BD may lead to inappropriate control of the Th17 and Th1 immune responses and DC functions. Therefore, BTLA may be involved in the development and recurrence of this disease. Agonistic agents of BTLA may represent a potential therapeutic approach for the treatment of BD and other inflammatory diseases mediated by abnormal Th17 and Th1 immune responses.

  8. The infiltration, and prognostic importance, of Th1 lymphocytes vary in molecular subgroups of colorectal cancer.

    Science.gov (United States)

    Ling, Agnes; Lundberg, Ida V; Eklöf, Vincy; Wikberg, Maria L; Öberg, Åke; Edin, Sofia; Palmqvist, Richard

    2016-01-01

    Giving strong prognostic information, T-cell infiltration is on the verge of becoming an additional component in the routine clinical setting for classification of colorectal cancer (CRC). With a view to further improving the tools for prognostic evaluation, we have studied how Th1 lymphocyte infiltration correlates with prognosis not only by quantity, but also by subsite, within CRCs with different molecular characteristics (microsatellite instability, CpG island methylator phenotype status, and BRAF and KRAS mutational status). We evaluated the Th1 marker T-bet by immunohistochemistry in 418 archival tumour tissue samples from patients who underwent surgical resection for CRC. We found that a high number of infiltrating Th1 lymphocytes is strongly associated with an improved prognosis in patients with CRC, irrespective of intratumoural subsite, and that both extent of infiltration and patient outcome differ according to molecular subgroup. In brief, microsatellite instability, CpG island methylator phenotype-high and BRAF mutated tumours showed increased infiltration of Th1 lymphocytes, and the most pronounced prognostic effect of Th1 infiltration was found in these tumours. Interestingly, BRAF mutated tumours were found to be more highly infiltrated by Th1 lymphocytes than BRAF wild-type tumours whereas the opposite was seen for KRAS mutated tumours. These differences could be explained at least partly by our finding that BRAF mutated, in contrast to KRAS mutated, CRC cell lines and tumour specimens expressed higher levels of the Th1-attracting chemokine CXCL10, and reduced levels of CCL22 and TGFB1, stimulating Th2/Treg recruitment and polarisation. In conclusion, the strong prognostic importance of Th1 lymphocyte infiltration in CRC was found at all subsites evaluated, and it remained significant in multivariable analyses, indicating that T-bet may be a valuable marker in the clinical setting. Our results also indicate that T-bet is of value when analysed in

  9. Networking for proteins : A yeast two-hybrid and RNAi profiling approach to uncover C. elegans cell polarity regulators

    NARCIS (Netherlands)

    Koorman, T.|info:eu-repo/dai/nl/337456038

    2016-01-01

    Cell polarity is a near universal trait of life and guides many aspects of animal development. Although a number of key polarity proteins have been identified, many interactions with proteins acting downstream likely remain to be elucidated. Mutations in polarity proteins or deregulation of polarity

  10. Academic stress-induced changes in Th1- and Th2-cytokine response

    Directory of Open Access Journals (Sweden)

    Areej M. Assaf

    2017-12-01

    Full Text Available Psychological stress stimulates physiological responses releasing catecholamines and corticoids, which act via corresponding receptors on immune cells, producing a shift in the cytokine balance. These responses are variable depending on the nature of stressors. The effect of the academic stress on the production of the Th1-cytokines (TNF-α, IFN-γ, IL-1β, IL-2, IL-6 and IL-8 and Th2-cytokines (IL-1ra, IL-4, IL-5 and IL-10 on 35 medical/health sciences students after completing their questionnaires was investigated. Blood samples were taken at three stages; baseline stage at the beginning, midterm and final academic examination stages. Plasma cortisol and cytokines were measured during the three stages. The last two stages were compared with the baseline non-stress period. Results of the stress induced during the final examination stage were the highest with a significant increase in cortisol release, IL-4, IL-5 and IL-1ra release with a shift in Th1:Th2 cytokines balance towards Th2. Whereby, the midterm stage did not show significant reduction in Th1-cytokines except for TNF-α, with an increase in IFN-γ level that was reduced in the third stage. Th2 cytokine, IL-1ra, had positive correlations with Th1 cytokines; IL-2 and IFN-γ in the second stage and IL-6 cytokine in the third stage. Cortisol was positively correlated with IL-8 in the last stage and heart rates had negative correlation with IL-10 in the first and last stages. Findings of this study indicate that exam stress down-regulates Th1 with a selective up-regulation of Th2-cytokines. In conclusion, Cortisol might have a role in suppressing the release of Th1- mediated cellular immune response which could increase the vulnerability among the students to infectious diseases.

  11. Academic stress-induced changes in Th1- and Th2-cytokine response.

    Science.gov (United States)

    Assaf, Areej M; Al-Abbassi, Reem; Al-Binni, Maysaa

    2017-12-01

    Psychological stress stimulates physiological responses releasing catecholamines and corticoids, which act via corresponding receptors on immune cells, producing a shift in the cytokine balance. These responses are variable depending on the nature of stressors. The effect of the academic stress on the production of the Th1-cytokines (TNF-α, IFN-γ, IL-1β, IL-2, IL-6 and IL-8) and Th2-cytokines (IL-1ra, IL-4, IL-5 and IL-10) on 35 medical/health sciences students after completing their questionnaires was investigated. Blood samples were taken at three stages; baseline stage at the beginning, midterm and final academic examination stages. Plasma cortisol and cytokines were measured during the three stages. The last two stages were compared with the baseline non-stress period. Results of the stress induced during the final examination stage were the highest with a significant increase in cortisol release, IL-4, IL-5 and IL-1ra release with a shift in Th1:Th2 cytokines balance towards Th2. Whereby, the midterm stage did not show significant reduction in Th1-cytokines except for TNF-α, with an increase in IFN-γ level that was reduced in the third stage. Th2 cytokine, IL-1ra, had positive correlations with Th1 cytokines; IL-2 and IFN-γ in the second stage and IL-6 cytokine in the third stage. Cortisol was positively correlated with IL-8 in the last stage and heart rates had negative correlation with IL-10 in the first and last stages. Findings of this study indicate that exam stress down-regulates Th1 with a selective up-regulation of Th2-cytokines. In conclusion, Cortisol might have a role in suppressing the release of Th1- mediated cellular immune response which could increase the vulnerability among the students to infectious diseases.

  12. The Hippo pathway controls border cell migration through distinct mechanisms in outer border cells and polar cells of the Drosophila ovary.

    Science.gov (United States)

    Lin, Tzu-Huai; Yeh, Tsung-Han; Wang, Tsu-Wei; Yu, Jenn-Yah

    2014-11-01

    The Hippo pathway is a key signaling cascade in controlling organ size. The core components of this pathway are two kinases, Hippo (Hpo) and Warts (Wts), and a transcriptional coactivator, Yorkie (Yki). Yes-associated protein (YAP, a Yki homolog in mammals) promotes epithelial-mesenchymal transition and cell migration in vitro. Here, we use border cells in the Drosophila ovary as a model to study Hippo pathway functions in cell migration in vivo. During oogenesis, polar cells secrete Unpaired (Upd), which activates JAK/STAT signaling of neighboring cells and specifies them into outer border cells. The outer border cells form a cluster with polar cells and undergo migration. We find that hpo and wts are required for migration of the border cell cluster. In outer border cells, overexpression of hpo disrupts polarization of the actin cytoskeleton and attenuates migration. In polar cells, knockdown of hpo and wts or overexpression of yki impairs border cell induction and disrupts migration. These manipulations in polar cells reduce JAK/STAT activity in outer border cells. Expression of upd-lacZ is increased and decreased in yki and hpo mutant polar cells, respectively. Furthermore, forced expression of upd in polar cells rescues defects of border cell induction and migration caused by wts knockdown. These results suggest that Yki negatively regulates border cell induction by inhibiting JAK/STAT signaling. Together, our data elucidate two distinct mechanisms of the Hippo pathway in controlling border cell migration: (1) in outer border cells, it regulates polarized distribution of the actin cytoskeleton; (2) in polar cells, it regulates upd expression to control border cell induction and migration. Copyright © 2014 by the Genetics Society of America.

  13. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine

    NARCIS (Netherlands)

    Klunder, Leon J.; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C. D.

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we

  14. Concomitant use of polarization and positive phase contrast microscopy for the study of microbial cells

    Czech Academy of Sciences Publication Activity Database

    Žižka, Zdeněk; Gabriel, Jiří

    2015-01-01

    Roč. 60, č. 6 (2015), s. 545-550 ISSN 0015-5632 Institutional support: RVO:61388971 Keywords : polarization microscopy * microbial cells * positive phase contrast Subject RIV: EE - Microbiology, Virology Impact factor: 1.335, year: 2015

  15. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine.

    Science.gov (United States)

    Klunder, Leon J; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C D

    2017-07-05

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  16. Cdc42 regulates epithelial cell polarity and cytoskeletal function during kidney tubule development

    DEFF Research Database (Denmark)

    Elias, Bertha C; Das, Amrita; Parekh, Diptiben V

    2015-01-01

    The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and main......The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development...

  17. Replacement of the cytoplasmic domain alters sorting of a viral glycoprotein in polarized cells.

    OpenAIRE

    Puddington, L; Woodgett, C; Rose, J K

    1987-01-01

    The envelope glycoprotein (G protein) of vesicular stomatitis virus (VSV) is transported to the basolateral plasma membrane of polarized epithelial cells, whereas the hemagglutinin glycoprotein (HA protein) of influenza virus is transported to the apical plasma membrane. To determine if the cytoplasmic domain of VSV G protein might be important in directing G protein to the basolateral membrane, we derived polarized Madin-Darby canine kidney cell lines expressing G protein or G protein with i...

  18. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Lv, Xiaonan [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100090 (China); Herrler, Georg [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Enjuanes, Luis [Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid (Spain); Zhou, Xingdong [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Qu, Bo [Faculty of Life Sciences, Northeast Agricultural University, Harbin 150030 (China); Meng, Fandan [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Cong, Chengcheng [College Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110161 (China); Ren, Xiaofeng; Li, Guangxing [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China)

    2015-04-15

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.

  19. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    International Nuclear Information System (INIS)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun; Lv, Xiaonan; Herrler, Georg; Enjuanes, Luis; Zhou, Xingdong; Qu, Bo; Meng, Fandan; Cong, Chengcheng; Ren, Xiaofeng; Li, Guangxing

    2015-01-01

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs

  20. Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling

    NARCIS (Netherlands)

    Smeets, Ruben L.; Fleuren, Wilco W. M.; He, Xuehui; Vink, Paul M.; Wijnands, Frank; Gorecka, Monika; Klop, Henri; Bauerschmidt, Sussane; Garritsen, Anja; Koenen, Hans J. P. M.; Joosten, Irma; Boots, Annemieke M. H.; Alkema, Wynand

    2012-01-01

    Background: T lymphocytes are orchestrators of adaptive immunity. Naive T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we

  1. Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling.

    NARCIS (Netherlands)

    Smeets, R.L.; Fleuren, W.W.M.; He, X.; Vink, P.M.; Wijnands, F.; Gorecka, M.; Klop, H.; Bauerschmidt, S.; Garritsen, A.; Koenen, H.J.P.M.; Joosten, I.; Boots, A.M.H.; Alkema, W.

    2012-01-01

    BACKGROUND: T lymphocytes are orchestrators of adaptive immunity. Naive T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we

  2. Targeting of SNAP-23 and SNAP-25 in polarized epithelial cells

    NARCIS (Netherlands)

    Low, SH; Roche, PA; Anderson, HA; van Ijzendoorn, SCD; Zhang, M; Mostov, KE; Weimbs, T

    1998-01-01

    SNAP-23 is the ubiquitously expressed homologue of the neuronal SNAP-25, which functions in synaptic vesicle fusion, We have investigated the subcellular localization of SNAP-23 in polarized epithelial cells, In hepatocyte-derived HepG2 cells and in Madin-Darby canine kidney (MDCK) cells, the

  3. Differential effects of Mycobacterium bovis - derived polar and apolar lipid fractions on bovine innate immune cells

    Directory of Open Access Journals (Sweden)

    Pirson Chris

    2012-06-01

    Full Text Available Abstract Mycobacterial lipids have long been known to modulate the function of a variety of cells of the innate immune system. Here, we report the extraction and characterisation of polar and apolar free lipids from Mycobacterium bovis AF 2122/97 and identify the major lipids present in these fractions. Lipids found included trehalose dimycolate (TDM and trehalose monomycolate (TMM, the apolar phthiocerol dimycocersates (PDIMs, triacyl glycerol (TAG, pentacyl trehalose (PAT, phenolic glycolipid (PGL, and mono-mycolyl glycerol (MMG. Polar lipids identified included glucose monomycolate (GMM, diphosphatidyl glycerol (DPG, phenylethanolamine (PE and a range of mono- and di-acylated phosphatidyl inositol mannosides (PIMs. These lipid fractions are capable of altering the cytokine profile produced by fresh and cultured bovine monocytes as well as monocyte derived dendritic cells. Significant increases in the production of IL-10, IL-12, MIP-1β, TNFα and IL-6 were seen after exposure of antigen presenting cells to the polar lipid fraction. Phenotypic characterisation of the cells was performed by flow cytometry and significant decreases in the expression of MHCII, CD86 and CD1b were found after exposure to the polar lipid fraction. Polar lipids also significantly increased the levels of CD40 expressed by monocytes and cultured monocytes but no effect was seen on the constitutively high expression of CD40 on MDDC or on the levels of CD80 expressed by any of the cells. Finally, the capacity of polar fraction treated cells to stimulate alloreactive lymphocytes was assessed. Significant reduction in proliferative activity was seen after stimulation of PBMC by polar fraction treated cultured monocytes whilst no effect was seen after lipid treatment of MDDC. These data demonstrate that pathogenic mycobacterial polar lipids may significantly hamper the ability of the host APCs to induce an appropriate immune response to an invading pathogen.

  4. The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae.

    Science.gov (United States)

    Juanes, Maria Angeles; Piatti, Simonetta

    2016-08-01

    Cell division is a fundamental but complex process that gives rise to two daughter cells. It includes an ordered set of events, altogether called "the cell cycle", that culminate with cytokinesis, the final stage of mitosis leading to the physical separation of the two daughter cells. Symmetric cell division equally partitions cellular components between the two daughter cells, which are therefore identical to one another and often share the same fate. In many cases, however, cell division is asymmetrical and generates two daughter cells that differ in specific protein inheritance, cell size, or developmental potential. The budding yeast Saccharomyces cerevisiae has proven to be an excellent system to investigate the molecular mechanisms governing asymmetric cell division and cytokinesis. Budding yeast is highly polarized during the cell cycle and divides asymmetrically, producing two cells with distinct sizes and fates. Many components of the machinery establishing cell polarization during budding are relocalized to the division site (i.e., the bud neck) for cytokinesis. In this review we recapitulate how budding yeast cells undergo polarized processes at the bud neck for cell division.

  5. MicroRNA-145 influences the balance of Th1/Th2 via regulating RUNX3 in asthma patients.

    Science.gov (United States)

    Fan, Linxia; Wang, Xiaojun; Fan, Linlan; Chen, Qizhang; Zhang, Hong; Pan, Hui; Xu, Aixia; Wang, Hongjuan; Yu, Yang

    To delineate the underlying mechanism of microRNA-145 modulate the balance of Th1/Th2 via targeting RUNX3 in asthma patients. Peripheral blood samples were collected from asthma patients and healthy controls. CD4 + T cells were isolated and cultured. Using quantitative PCR detect, the level of microRNA-145 and RUNX3 mRNA level in the CD4 + T cells from asthma patients and healthy controls, meanwhile, western blot was used to detect the RUNX3 protein level. Th1 or Th2 related cytokines were measured by enzyme-linked immunosorbent assay. Dual-Luciferase Reporter Assay was performed to confirm the correlation between microRNA-145 and RUNX3. MicroRNA-145 mimic or inhibitor was transfected in the CD4 + T cells and the changes of RUNX3 level, Th1 or Th2 related cytokines and the percentage of Th1 and Th2 were observed after transfection. MicroRNA-145 level of CD4 + T cells was higher with a lower RUNX3 expression in asthma patients. There is negative correlation between microRNA-145 and RUNX3. Th2 hyperactivity and Th1 deficiency was detected in the CD4 + T cells of asthma patients. Dual-Luciferase Reporter Assay has shown that RUNX3 is a target of microRNA. Up-regulation or down-regulation of miR-145 level caused RUNX3 expression changes in CD4 + T cells and influence the related cytokines. Inhibition of microRNA-145 may reverse the imbalance of Th1/Th2 in asthma patients. MicroRNA-145 could regulate the balance of Th1/Th2 through targeting the RUNX3 in asthma patients. MicroRNA-145 and RUNX3 may be used as biomarkers or targets in the diagnosis or therapy of asthma.

  6. Galectin-9 ameliorates anti-GBM glomerulonephritis by inhibiting Th1 and Th17 immune responses in mice.

    Science.gov (United States)

    Zhang, Qian; Luan, Hong; Wang, Le; He, Fan; Zhou, Huan; Xu, Xiaoli; Li, Xingai; Xu, Qing; Niki, Toshiro; Hirashima, Mitsuomi; Xu, Gang; Lv, Yongman; Yuan, Jin

    2014-04-15

    Antiglomerular basement membrane glomerulonephritis (anti-GBM GN) is a Th1- and Th17-predominant autoimmune disease. Galectin-9 (Gal-9), identified as the ligand of Tim-3, functions in diverse biological processes and leads to the apoptosis of CD4(+)Tim-3(+) T cells. It is still unclear how Gal-9 regulates the functions of Th1 and Th17 cells and prevents renal injury in anti-GBM GN. In this study, Gal-9 was administered to anti-GBM GN mice for 7 days. We found that Gal-9 retarded the increase of Scr, ameliorated renal tubular injury, and reduced the formation of crescents. The infiltration of Th1 and Th17 cells into the spleen and kidneys significantly decreased in Gal-9-treated nephritic mice. The reduced infiltration of Th1 and Th17 cells might be associated with the downregulation of CCL-20, CXCL-9, and CXCL-10 mRNAs in the kidney. In parallel, the blood levels of IFN-γ and IL-17A declined in Gal-9-treated nephritic mice at days 21 and 28. In addition, an enhanced Th2 cell-mediated immune response was observed in the kidneys of nephritic mice after a 7-day injection of Gal-9. In conclusion, the protective role of Gal-9 in anti-GBM GN is associated with the inhibition of Th1 and Th17 cell-mediated immune responses and enhanced Th2 immunity in the kidney.

  7. Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate

    Energy Technology Data Exchange (ETDEWEB)

    Vorhagen, Susanne; Niessen, Carien M., E-mail: carien.niessen@uni-koeln.de

    2014-11-01

    Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.

  8. The APC tumor suppressor is required for epithelial cell polarization and three-dimensional morphogenesis

    Science.gov (United States)

    Lesko, Alyssa C.; Goss, Kathleen H.; Yang, Frank F.; Schwertner, Adam; Hulur, Imge; Onel, Kenan; Prosperi, Jenifer R.

    2015-01-01

    The Adenomatous Polyposis Coli (APC) tumor suppressor has been previously implicated in the control of apical-basal polarity; yet, the consequence of APC loss-of-function in epithelial polarization and morphogenesis has not been characterized. To test the hypothesis that APC is required for the establishment of normal epithelial polarity and morphogenesis programs, we generated APC-knockdown epithelial cell lines. APC depletion resulted in loss of polarity and multi-layering on permeable supports, and enlarged, filled spheroids with disrupted polarity in 3D culture. Importantly, these effects of APC knockdown were independent of Wnt/β-catenin signaling, but were rescued with either full-length or a carboxy (c)-terminal segment of APC. Moreover, we identified a gene expression signature associated with APC knockdown that points to several candidates known to regulate cell-cell and cell-matrix communication. Analysis of epithelial tissues from mice and humans carrying heterozygous APC mutations further support the importance of APC as a regulator of epithelial behavior and tissue architecture. These data also suggest that the initiation of epithelial-derived tumors as a result of APC mutation or gene silencing may be driven by loss of polarity and dysmorphogenesis. PMID:25578398

  9. Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium.

    Science.gov (United States)

    Wortman, Juliana C; Nahmad, Marcos; Zhang, Peng Cheng; Lander, Arthur D; Yu, Clare C

    2017-07-01

    In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj.

  10. Lowe Syndrome protein OCRL1 supports maturation of polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Adam G Grieve

    Full Text Available Mutations in the inositol polyphosphate 5-phosphatase OCRL1 cause Lowe Syndrome, leading to cataracts, mental retardation and renal failure. We noted that cell types affected in Lowe Syndrome are highly polarized, and therefore we studied OCRL1 in epithelial cells as they mature from isolated individual cells into polarized sheets and cysts with extensive communication between neighbouring cells. We show that a proportion of OCRL1 targets intercellular junctions at the early stages of their formation, co-localizing both with adherens junctional components and with tight junctional components. Correlating with this distribution, OCRL1 forms complexes with junctional components α-catenin and zonula occludens (ZO-1/2/3. Depletion of OCRL1 in epithelial cells growing as a sheet inhibits maturation; cells remain flat, fail to polarize apical markers and also show reduced proliferation. The effect on shape is reverted by re-expressed OCRL1 and requires the 5'-phosphatase domain, indicating that down-regulation of 5-phosphorylated inositides is necessary for epithelial development. The effect of OCRL1 in epithelial maturation is seen more strongly in 3-dimensional cultures, where epithelial cells lacking OCRL1 not only fail to form a central lumen, but also do not have the correct intracellular distribution of ZO-1, suggesting that OCRL1 functions early in the maturation of intercellular junctions when cells grow as cysts. A role of OCRL1 in junctions of polarized cells may explain the pattern of organs affected in Lowe Syndrome.

  11. Effect of III-nitride polarization on V{sub OC} in p-i-n and MQW solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Namkoong, Gon; Boland, Patrick; Foe, Kurniawan; Latimer, Kevin [Department of Electrical and Computer Engineering, Old Dominion University, Applied Research Center, 12050 Jefferson Avenue, Newport News, VA 23606 (United States); Bae, Si-Young; Shim, Jae-Phil; Lee, Dong-Seon [School of Information and Communications, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju 500-712 (Korea, Republic of); Jeon, Seong-Ran [Korea Photonics Technology Institute, 971-35, Wolchul-dong, Buk-gu, Gwangju, 500-779 (Korea, Republic of); Doolittle, W. Alan [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-02-15

    We performed detailed studies of the effect of polarization on III-nitride solar cells. Spontaneous and piezoelectric polarizations were assessed to determine their impacts upon the open circuit voltages (V{sub OC}) in p-i(InGaN)-n and multi-quantum well (MQW) solar cells. We found that the spontaneous polarization in Ga-polar p-i-n solar cells strongly modifies energy band structures and corresponding electric fields in a way that degrades V{sub OC} compared to non-polar p-i-n structures. In contrast, we found that piezoelectric polarization in Ga-polar MQW structures does not have a large influence on V{sub OC} compared to non-polar MQW structures. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Conversion of proteins from a non-polarized to an apical secretory pattern in MDCK cells

    International Nuclear Information System (INIS)

    Vogel, Lotte K.; Larsen, Jakob E.; Hansen, Martin; Truffer, Renato

    2005-01-01

    Previously it was shown that fusion proteins containing the amino terminus of an apical targeted member of the serpin family fused to the corresponding carboxyl terminus of the non-polarized secreted serpin, antithrombin, are secreted mainly to the apical side of MDCK cells. The present study shows that this is neither due to the transfer of an apical sorting signal from the apically expressed proteins, since a sequence of random amino acids acts the same, nor is it due to the deletion of a conserved signal for correct targeting from the non-polarized secreted protein. Our results suggest that the polarity of secretion is determined by conformational sensitive sorting signals

  13. Polarization Affects Airway Epithelial Conditioning of Monocyte-Derived Dendritic Cells

    DEFF Research Database (Denmark)

    Papazian, Dick; Chhoden, Tashi; Arge, Maria

    2015-01-01

    were allowed to polarize on filter inserts, and MDDCs were allowed to adhere to the epithelial basal side. In an optimized setup, the cell application was reversed, and the culture conditions were modified to preserve cellular polarization and integrity. These two parameters were crucial for the MDDCs....... In conclusion, we determined that AEC conditioning favoring cellular integrity leads to a tolerogenic MDDC phenotype, which is likely to be important in regulating immune responses against commonly inhaled allergens....

  14. Evidence for Nuclear Tensor Polarization of Deuterium Molecules in Storage Cells

    International Nuclear Information System (INIS)

    van den Brand, J.; Bulten, H.; Zhou, Z.; Unal, O.; van den Brand, J.; Ferro-Luzzi, M.; Botto, T.; Bouwhuis, M.; Heimberg, P.; de Jager, C.; de Lange, D.; Nooren, G.; Papadakis, N.; Passchier, I.; Poolman, H.; Steijger, J.; Vodinas, N.; de Vries, H.; van den Brand, J.; Ferro-Luzzi, M.; Lang, J.; Alarcon, R.; Dolfini, S.; Ent, R.; Higinbotham, D.

    1997-01-01

    Deuterium molecules were obtained by recombination, on a copper surface, of deuterium atoms prepared in specific hyperfine states. The molecules were stored for about 5ms in an open-ended cylindrical cell, placed in a 23mT magnetic field, and their tensor polarization was measured by elastic scattering of 704MeV electrons. The results of the measurements are consistent with the deuterium molecules retaining the tensor polarization of the initial atoms. copyright 1997 The American Physical Society

  15. Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus.

    Science.gov (United States)

    Scheler, Björn; Schnepf, Vera; Galgenmüller, Carolina; Ranf, Stefanie; Hückelhoven, Ralph

    2016-05-01

    RHO GTPases are regulators of cell polarity and immunity in eukaryotes. In plants, RHO-like RAC/ROP GTPases are regulators of cell shaping, hormone responses, and responses to microbial pathogens. The barley (Hordeum vulgare L.) RAC/ROP protein RACB is required for full susceptibility to penetration by Blumeria graminis f.sp. hordei (Bgh), the barley powdery mildew fungus. Disease susceptibility factors often control host immune responses. Here we show that RACB does not interfere with early microbe-associated molecular pattern-triggered immune responses such as the oxidative burst or activation of mitogen-activated protein kinases. RACB also supports rather than restricts expression of defence-related genes in barley. Instead, silencing of RACB expression by RNAi leads to defects in cell polarity. In particular, initiation and maintenance of root hair growth and development of stomatal subsidiary cells by asymmetric cell division is affected by silencing expression of RACB. Nucleus migration is a common factor of developmental cell polarity and cell-autonomous interaction with Bgh RACB is required for positioning of the nucleus near the site of attack from Bgh We therefore suggest that Bgh profits from RACB's function in cell polarity rather than from immunity-regulating functions of RACB. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Optically-driven red blood cell rotor in linearly polarized laser tweezers

    Indian Academy of Sciences (India)

    We have constructed a dual trap optical tweezers set-up around an inverted microscope where both the traps can be independently controlled and manipulated in all the three dimensions. Here we report our observations on rotation of red blood cells (RBCs) in a linearly polarized optical trap. Red blood cells deform and ...

  17. Iron repletion relocalizes hephaestin to a proximal basolateral compartment in polarized MDCK and Caco2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Min [Department of Biological Sciences, University of Columbia, NY (United States); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Attieh, Zouhair K. [Department of Laboratory Science and Technology, American University of Science and Technology, Ashrafieh (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Son, Hee Sook [Department of Food Science and Human Nutrition, College of Human Ecology, Chonbuk National University (Korea, Republic of); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Chen, Huijun [Medical School, Nanjing University, Nanjing 210008, Jiangsu Province (China); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Bacouri-Haidar, Mhenia [Department of Biology, Faculty of Sciences (I), Lebanese University, Hadath (Lebanon); Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States); Vulpe, Chris D., E-mail: vulpe@berkeley.edu [Department of Nutritional Science and Toxicology, University of California, Berkeley, CA (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in non-polarized cells. Black-Right-Pointing-Pointer Hephaestin localizes in the perinuclear space in iron deficient and polarized cells. Black-Right-Pointing-Pointer Hephaestin with apical iron moves near to basolateral membrane of polarized cells. Black-Right-Pointing-Pointer Peri-basolateral location of hephaestin is accessible to the extracellular space. Black-Right-Pointing-Pointer Hephaestin is involved in iron mobilization from the intestine to circulation. -- Abstract: While intestinal cellular iron entry in vertebrates employs multiple routes including heme and non-heme routes, iron egress from these cells is exclusively channeled through the only known transporter, ferroportin. Reduced intestinal iron export in sex-linked anemia mice implicates hephaestin, a ferroxidase, in this process. Polarized cells are exposed to two distinct environments. Enterocytes contact the gut lumen via the apical surface of the cell, and through the basolateral surface, to the body. Previous studies indicate both local and systemic control of iron uptake. We hypothesized that differences in iron availability at the apical and/or basolateral surface may modulate iron uptake via cellular localization of hephaestin. We therefore characterized the localization of hephaestin in two models of polarized epithelial cell lines, MDCK and Caco2, with varying iron availability at the apical and basolateral surfaces. Our results indicate that hephaestin is expressed in a supra-nuclear compartment in non-polarized cells regardless of the iron status of the cells and in iron deficient and polarized cells. In polarized cells, we found that both apical (as FeSO{sub 4}) and basolateral iron (as the ratio of apo-transferrin to holo-transferrin) affect mobilization of hephaestin from the supra-nuclear compartment. We find that the presence of apical iron is essential for relocalization of hephaestin to a

  18. Th1-skewed tissue responses to a mycolyl glycolipid in mycobacteria-infected rhesus macaques

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Daisuke; Miyamoto, Ayumi; Hattori, Yuki; Komori, Takaya [Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Nakamura, Takashi [Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Igarashi, Tatsuhiko [Laboratory of Primate Model, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Harashima, Hideyoshi [Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Sugita, Masahiko [Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan)

    2013-11-08

    Highlights: •Glucose monomycolate (GMM) is a marker glycolipid for active tuberculosis. •Tissue responses to GMM involved up-regulation of Th1-attracting chemokines. •Th1-skewed local responses were mounted at the GMM-injected tissue. -- Abstract: Trehalose 6,6′-dimycolate (TDM) is a major glycolipid of the cell wall of mycobacteria with remarkable adjuvant functions. To avoid detection by the host innate immune system, invading mycobacteria down-regulate the expression of TDM by utilizing host-derived glucose as a competitive substrate for their mycolyltransferases; however, this enzymatic reaction results in the concomitant biosynthesis of glucose monomycolate (GMM) which is recognized by the acquired immune system. GMM-specific, CD1-restricted T cell responses have been detected in the peripheral blood of infected human subjects and monkeys as well as in secondary lymphoid organs of small animals, such as guinea pigs and human CD1-transgenic mice. Nevertheless, it remains to be determined how tissues respond at the site where GMM is produced. Here we found that rhesus macaques vaccinated with Mycobacterium bovis bacillus Calmette–Guerin mounted a chemokine response in GMM-challenged skin that was favorable for recruiting T helper (Th)1 T cells. Indeed, the expression of interferon-γ, but not Th2 or Th17 cytokines, was prominent in the GMM-injected tissue. The GMM-elicited tissue response was also associated with the expression of monocyte/macrophage-attracting CC chemokines, such as CCL2, CCL4 and CCL8. Furthermore, the skin response to GMM involved the up-regulated expression of granulysin and perforin. Given that GMM is produced primarily by pathogenic mycobacteria proliferating within the host, the Th1-skewed tissue response to GMM may function efficiently at the site of infection.

  19. Th1-skewed tissue responses to a mycolyl glycolipid in mycobacteria-infected rhesus macaques

    International Nuclear Information System (INIS)

    Morita, Daisuke; Miyamoto, Ayumi; Hattori, Yuki; Komori, Takaya; Nakamura, Takashi; Igarashi, Tatsuhiko; Harashima, Hideyoshi; Sugita, Masahiko

    2013-01-01

    Highlights: •Glucose monomycolate (GMM) is a marker glycolipid for active tuberculosis. •Tissue responses to GMM involved up-regulation of Th1-attracting chemokines. •Th1-skewed local responses were mounted at the GMM-injected tissue. -- Abstract: Trehalose 6,6′-dimycolate (TDM) is a major glycolipid of the cell wall of mycobacteria with remarkable adjuvant functions. To avoid detection by the host innate immune system, invading mycobacteria down-regulate the expression of TDM by utilizing host-derived glucose as a competitive substrate for their mycolyltransferases; however, this enzymatic reaction results in the concomitant biosynthesis of glucose monomycolate (GMM) which is recognized by the acquired immune system. GMM-specific, CD1-restricted T cell responses have been detected in the peripheral blood of infected human subjects and monkeys as well as in secondary lymphoid organs of small animals, such as guinea pigs and human CD1-transgenic mice. Nevertheless, it remains to be determined how tissues respond at the site where GMM is produced. Here we found that rhesus macaques vaccinated with Mycobacterium bovis bacillus Calmette–Guerin mounted a chemokine response in GMM-challenged skin that was favorable for recruiting T helper (Th)1 T cells. Indeed, the expression of interferon-γ, but not Th2 or Th17 cytokines, was prominent in the GMM-injected tissue. The GMM-elicited tissue response was also associated with the expression of monocyte/macrophage-attracting CC chemokines, such as CCL2, CCL4 and CCL8. Furthermore, the skin response to GMM involved the up-regulated expression of granulysin and perforin. Given that GMM is produced primarily by pathogenic mycobacteria proliferating within the host, the Th1-skewed tissue response to GMM may function efficiently at the site of infection

  20. Photoinduced Bulk Polarization and Its Effects on Photovoltaic Actions in Perovskite Solar Cells.

    Science.gov (United States)

    Wu, Ting; Collins, Liam; Zhang, Jia; Lin, Pei-Ying; Ahmadi, Mahshid; Jesse, Stephen; Hu, Bin

    2017-11-28

    This article reports an experimental demonstration of photoinduced bulk polarization in hysteresis-free methylammonium (MA) lead-halide perovskite solar cells [ITO/PEDOT:PSS/perovskite/PCBM/PEI/Ag]. An anomalous capacitance-voltage (CV) signal is observed as a broad "shoulder" in the depletion region from -0.5 to +0.5 V under photoexcitation based on CV measurements where a dc bias is gradually scanned to continuously drift mobile ions in order to detect local polarization under a low alternating bias (50 mV, 5 kHz). Essentially, gradually scanning the dc bias and applying a low alternating bias can separately generate continuously drifting ions and a bulk CV signal from local polarization under photoexcitation. Particularly, when the device efficiency is improved from 12.41% to 18.19% upon chlorine incorporation, this anomalous CV signal can be enhanced by a factor of 3. This anomalous CV signal can be assigned as the signature of photoinduced bulk polarization by distinguishing from surface polarization associated with interfacial charge accumulation. Meanwhile, replacing easy-rotational MA + with difficult-rotational formamidinium (FA + ) cations largely minimizes such anomalous CV signal, suggesting that photoinduced bulk polarization relies on the orientational freedom of dipolar organic cations. Furthermore, a Kelvin probe force microscopy study shows that chlorine incorporation can suppress the density of charged defects and thus enhances photoinduced bulk polarization due to the reduced screening effect from charged defects. A bias-dependent photoluminescence study indicates that increasing bulk polarization can suppress carrier recombination by decreasing charge capture probability through the Coulombic screening effect. Clearly, our studies provide an insightful understanding of photoinduced bulk polarization and its effects on photovoltaic actions in perovskite solar cells.

  1. Monitoring the initiation and kinetics of human dendritic cell-induced polarization of autologous naive CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Tammy Oth

    Full Text Available A crucial step in generating de novo immune responses is the polarization of naive cognate CD4+ T cells by pathogen-triggered dendritic cells (DC. In the human setting, standardized DC-dependent systems are lacking to study molecular events during the initiation of a naive CD4+ T cell response. We developed a TCR-restricted assay to compare different pathogen-triggered human DC for their capacities to instruct functional differentiation of autologous, naive CD4+ T cells. We demonstrated that this methodology can be applied to compare differently matured DC in terms of kinetics, direction, and magnitude of the naive CD4+ T cell response. Furthermore, we showed the applicability of this assay to study the T cell polarizing capacity of low-frequency blood-derived DC populations directly isolated ex vivo. This methodology for addressing APC-dependent instruction of naive CD4+ T cells in a human autologous setting will provide researchers with a valuable tool to gain more insight into molecular mechanisms occurring in the early phase of T cell polarization. In addition, it may also allow the study of pharmacological agents on DC-dependent T cell polarization in the human system.

  2. Effect of light polarization on the efficiency of photodynamic therapy of basal cell carcinomas: an in vitro cellular study.

    Science.gov (United States)

    JalalKamali, M; Nematollahi-Mahani, S N; Shojaei, M; Shamsoddini, A; Arabpour, N

    2018-02-01

    In an in vitro study, the effect of light polarization on the efficiency of 5-aminolaevulinic acid (ALA) photodynamic therapy (PDT) of basal cell carcinoma (BCC) was investigated. Three states of light polarization (non-polarized, linearly polarized, and circularly polarized) were considered. Cells were exposed to green (532 pm 20 nm) irradiation from light emitting diodes. Cell survival was measured by the colorimetric assay (WST-1) and Trypan blue staining. The colorimetric assay showed a pronounced decrease in the cell viability (up to 30%) using polarized light compared to the non-polarized one in the wavelength region used. Similar results were obtained by the cell counting method (20-30% increase in cell death). The observed effect was dependent on the concentration of photosensitizer. The effect is more expressed in the case of linearly polarized light compared to the circularly polarized one. Results show that the use of polarized light increases the efficiency of in vitro ALA-PDT of BCC. Utilizing polarized light, it is possible to obtain the same effect from PDT by lower concentrations of photosensitizer. Additionally, the concentration dependency of PDT response and photo-bleaching is also reduced.

  3. A one-dimensional model of PCP signaling: polarized cell behavior in the notochord of the ascidian Ciona.

    Science.gov (United States)

    Kourakis, Matthew J; Reeves, Wendy; Newman-Smith, Erin; Maury, Benoit; Abdul-Wajid, Sarah; Smith, William C

    2014-11-01

    Despite its importance in development and physiology the planar cell polarity (PCP) pathway remains one of the most enigmatic signaling mechanisms. The notochord of the ascidian Ciona provides a unique model for investigating the PCP pathway. Interestingly, the notochord appears to be the only embryonic structure in Ciona activating the PCP pathway. Moreover, the Ciona notochord as a single-file array of forty polarized cells is a uniquely tractable system for the study of polarization dynamics and the transmission of the PCP pathway. Here, we test models for propagation of a polarizing signal, interrogating temporal, spatial and signaling requirements. A simple cell-cell relay cascading through the entire length of the notochord is not supported; instead a more complex mechanism is revealed, with interactions influencing polarity between neighboring cells, but not distant ones. Mechanisms coordinating notochord-wide polarity remain elusive, but appear to entrain general (i.e., global) polarity even while local interactions remain important. However, this global polarizer does not appear to act as a localized, spatially-restricted determinant. Coordination of polarity along the long axis of the notochord requires the PCP pathway, a role we demonstrate is temporally distinct from this pathway's earlier role in convergent extension and intercalation. We also reveal polarity in the notochord to be dynamic: a cell's polarity state can be changed and then restored, underscoring the Ciona notochord's amenability for in vivo studies of PCP. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Planar cell polarity gene expression correlates with tumor cell viability and prognostic outcome in neuroblastoma

    International Nuclear Information System (INIS)

    Dyberg, Cecilia; Papachristou, Panagiotis; Haug, Bjørn Helge; Lagercrantz, Hugo; Kogner, Per; Ringstedt, Thomas; Wickström, Malin; Johnsen, John Inge

    2016-01-01

    The non-canonical Wnt/Planar cell polarity (PCP) signaling pathway is a major player in cell migration during embryonal development and has recently been implicated in tumorigenesis. Transfections with cDNA plasmids or siRNA were used to increase and suppress Prickle1 and Vangl2 expression in neuroblastoma cells and in non-tumorigenic cells. Cell viability was measured by trypan blue exclusion and protein expression was determined with western blotting. Transcriptional activity was studied with luciferase reporter assay and mRNA expression with real-time RT-PCR. Immunofluorescence stainings were used to study the effects of Vangl2 overexpression in non-tumorigenic embryonic cells. Statistical significance was tested with t-test or one-way ANOVA. Here we show that high expression of the PCP core genes Prickle1 and Vangl2 is associated with low-risk neuroblastoma, suppression of neuroblastoma cell growth and decreased Wnt/β-catenin signaling. Inhibition of Rho-associated kinases (ROCKs) that are important in mediating non-canonical Wnt signaling resulted in increased expression of Prickle1 and inhibition of β-catenin activity in neuroblastoma cells. In contrast, overexpression of Vangl2 in MYC immortalized neural stem cells induced accumulation of active β-catenin and decreased the neural differentiation marker Tuj1. Similarly, genetically modified mice with forced overexpression of Vangl2 in nestin-positive cells showed decreased Tuj1 differentiation marker during embryonal development. Our experimental data demonstrate that high expression of Prickle1 and Vangl2 reduce the growth of neuroblastoma cells and indicate different roles of PCP proteins in tumorigenic cells compared to normal cells. These results suggest that the activity of the non-canonical Wnt/PCP signaling pathway is important for neuroblastoma development and that manipulation of the Wnt/PCP pathway provides a possible therapy for neuroblastoma. The online version of this article (doi:10.1186/s

  5. Label-free investigation of the effects of lithium niobate polarization on cell adhesion

    Science.gov (United States)

    Mandracchia, B.; Gennari, O.; Paturzo, M.; Grilli, S.; Ferraro, P.

    2017-06-01

    The determination of contact area is pivotal to understand how biomaterials properties influence cell adhesion. In particular, the influence of surface charges is well-known but still controversial, especially when new functional materials and methods are introduced. Here, we use for the first time Holographic Total Internal Reflection Microscopy (HoloTIRM) to study the influence of the spontaneous polarization of ferroelectric lithium niobate (LN) on the adhesion properties of fibroblast cells. The selective illumination of a very thin region directly above the substrate, achieved by Total Internal Reflection, provides high-contrast images of the contact regions. Holographic recording, on the other hand, allows for label-free quantitative phase imaging of the contact areas between cells and LN. Phase signal is more sensitive in the first 100nm and, thus more reliable in order to locate focal contacts. This work shows that cells adhering on negatively polarized LN present a significant increase of the contact area in comparison with cells adhering on the positively polarized LN substrate, as well as an intensification of contact vicinity. This confirms the potential of LN as a platform for investigating the role of charges on cellular processes. The similarity of cell adhesion behavior on negatively polarized LN and glass control also confirms the possibility to use LN as an active substrate without impairing cell behavior.

  6. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  7. Effect of atomic noise on optical squeezing via polarization self-rotation in a thermal vapor cell

    DEFF Research Database (Denmark)

    Hsu, M.T.L.; Hetet, G.; Peng, A.

    2006-01-01

    The traversal of an elliptically polarized optical field through a thermal vapor cell can give rise to a rotation of its polarization axis. This process, known as polarization self-rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic transition wavelengths. We ...

  8. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization.

    Science.gov (United States)

    Mohamadzadeh, Mansour; Olson, Scott; Kalina, Warren V; Ruthel, Gordon; Demmin, Gretchen L; Warfield, Kelly L; Bavari, Sina; Klaenhammer, Todd R

    2005-02-22

    Professional antigen-presenting dendritic cells (DCs) are critical in regulating T cell immune responses at both systemic and mucosal sites. Many Lactobacillus species are normal members of the human gut microflora and most are regarded as safe when administered as probiotics. Because DCs can naturally or therapeutically encounter lactobacilli, we investigated the effects of several well defined strains, representing three species of Lactobacillus on human myeloid DCs (MDCs) and found that they modulated the phenotype and functions of human MDCs. Lactobacillus-exposed MDCs up-regulated HLA-DR, CD83, CD40, CD80, and CD86 and secreted high levels of IL-12 and IL-18, but not IL-10. IL-12 was sustained in MDCs exposed to all three Lactobacillus species in the presence of LPS from Escherichia coli, whereas LPS-induced IL-10 was greatly inhibited. MDCs activated with lactobacilli clearly skewed CD4(+) and CD8(+) T cells to T helper 1 and Tc1 polarization, as evidenced by secretion of IFN-gamma, but not IL-4 or IL-13. These results emphasize a potentially important role for lactobacilli in modulating immunological functions of DCs and suggest that certain strains could be particularly advantageous as vaccine adjuvants, by promoting DCs to regulate T cell responses toward T helper 1 and Tc1 pathways.

  9. Distinct DC subsets regulate adaptive Th1 and 2 responses during Trichuris muris infection

    DEFF Research Database (Denmark)

    Demiri, M.; Müller-Luda, K.; Agace, William Winston

    2017-01-01

    a high-dose infection and displayed impaired Th2 responses. Conversely, mice lacking IRF8-dependent cDC cleared a low-dose infection and displayed an impaired Th1 response while increased production of Th2 cytokines. Finally, mice lacking both IRF4- and IRF8-dependent cDC were able to generate a Th2...... response and clear a low-dose infection. Collectively, these results suggest that IRF4- and IRF8-dependent cDC act antagonistically during T. muris infection, and demonstrate that intestinal Th2 responses can be generated towards T. muris in the absence of IRF4-dependent cDC.......Low- and high-dose infections with the murine large intestinal nematode Trichuris muris are associated with induction of adaptive Th1 and Th2 responses, respectively, in mesenteric lymph nodes (MLN). Classical dendritic cells (cDC) accumulate in the large intestinal mucosa and MLN upon T. muris...

  10. Radiolabelled Interleukin-12, a new radiopharmaceutical for imaging chronic TH1-mediated inflammation

    International Nuclear Information System (INIS)

    Annovazzi, A.; Cornelissen, B.; Slegers, G.; D'Alessandria, C.; Bonanno, E.; Signore, A.

    2003-01-01

    Full text: Cytokines have been extensively used to image inflammatory processes (IL1, IL2, IL6, IL8 and others). In particular, for chronic inflammation, labelled IL2 has been successfully used although it binds to both T helper-1 (Th1) and T helper-2 (Th2) cells. In order to increase the specificity for the detection of Th1-mediated inflammation (i.e. organ specific autoimmune diseases), we considered the possibility to label the interleukin-12 (IL12), an heterodimeric cytokine which play a key role in the development of Th1 cells. Objectives: Aim of the present study was to label the Interleukin-12 with 123I and to test its potential as radiopharmaceutical to image chronic inflammatory disorders. Methods: IL12 was labelled with 123I using the IODOGEN method and purified by gel-filtration chromatography on PD10 columns. 123I-IL12 biodistribution was studied in normal NMRI mice at 1,2 and 4h after injection. A mouse model of autoimmune chronic colitis induced by intrarectal instillation of Trinitrobenzen sulfonic acid (TNBS) has been used for imaging purposes and, as controls, mice receiving 50% ethanol in phosphate buffer saline. Results: 123I-IL12 labelling efficiency ranged between 52-65%. Results of biodistribution studies showed a rapid plasma clearance and a main renal excretion route. No significant 123I-IL12 accumulation in major organs and tissues was observed. 123I-IL12 accumulated in areas of chronic inflamed colon as assessed by histological examination. No significant 123I-IL12 uptake is detectable in mice with acute colitis, confirming the specificity of 123IIL12 binding on its receptors expressed on T-lymphocytes. Conclusions: We conclude that this cytokine could be used for the in vivo imaging of Th1 mediated inflammatory processes. (author)

  11. Circularly Polarized Transparent Microstrip Patch Reflectarray Integrated with Solar Cell for Satellite Applications

    OpenAIRE

    Zainud-Deen, S. H.; El-Shalaby, N. A.; Gaber, S. M.; Malhat, H. A.

    2016-01-01

    Circularly polarized (CP) transparent microstrip reflectarray antenna is integrated with solar cell for small satellite applications at 10 GHz. The reflectarray unit cell consists of a perfect electric conductor (PEC) square patch printed on an optically transparent substrate with the PEC ground plane. A comparison between using transparent conducting polymers and using the PEC in unit-cell construction has been introduced. The waveguide simulator is used to calculate the required compensatio...

  12. Mutation of the planar cell polarity gene VANGL1 in adolescent idiopathic scoliosis

    DEFF Research Database (Denmark)

    Andersen, Malene Rask; Farooq, Muhammad; Koefoed, Karen

    2017-01-01

    STUDY DESIGN: Mutation analysis of a candidate disease gene in a cohort of patients with moderate to severe Adolescent idiopathic scoliosis (AIS). OBJECTIVE: To investigate if damaging mutations in the planar cell polarity gene VANGL1 could be identified in AIS patients. SUMMARY OF BACKGROUND DATA......: AIS is a spinal deformity which occurs in 1-3% of the population. The cause of AIS is often unknown, but genetic factors are important in the etiology. Rare variants in genes encoding regulators of WNT/planar cell polarity (PCP) signaling were recently identified in AIS patients. METHODS: We analyzed...

  13. Polarization Curve of a Non-Uniformly Aged PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Andrei Kulikovsky

    2014-01-01

    Full Text Available We develop a semi-analytical model for polarization curve of a polymer electrolyte membrane (PEM fuel cell with distributed (aged along the oxygen channel MEA transport and kinetic parameters of the membrane–electrode assembly (MEA. We show that the curve corresponding to varying along the channel parameter, in general, does not reduce to the curve for a certain constant value of this parameter. A possibility to determine the shape of the deteriorated MEA parameter along the oxygen channel by fitting the model equation to the cell polarization data is demonstrated.

  14. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  15. Myosin-1A Targets to Microvilli Using Multiple Membrane Binding Motifs in the Tail Homology 1 (TH1) Domain*

    Science.gov (United States)

    Mazerik, Jessica N.; Tyska, Matthew J.

    2012-01-01

    One of the most abundant components of the enterocyte brush border is the actin-based monomeric motor, myosin-1a (Myo1a). Within brush border microvilli, Myo1a carries out a number of critical functions at the interface between membrane and actin cytoskeleton. Proper physiological function of Myo1a depends on its ability to bind to microvillar membrane, an interaction mediated by a C-terminal tail homology 1 (TH1) domain. However, little is known about the mechanistic details of the Myo1a-TH1/membrane interaction. Structure-function analysis of Myo1a-TH1 targeting in epithelial cells revealed that an N-terminal motif conserved among class I myosins and a C-terminal motif unique to Myo1a-TH1 are both required for steady state microvillar enrichment. Purified Myo1a bound to liposomes composed of phosphatidylserine and phosphoinositol 4,5-bisphosphate, with moderate affinity in a charge-dependent manner. Additionally, peptides of the N- and C-terminal regions required for targeting were able to compete with Myo1a for binding to highly charged liposomes in vitro. Single molecule total internal reflection fluorescence microscopy showed that these motifs are also necessary for slowing the membrane detachment rate in cells. Finally, Myo1a-TH1 co-localized with both lactadherin-C2 (a phosphatidylserine-binding protein) and PLCδ1-PH (a phosphoinositol 4,5-bisphosphate-binding protein) in microvilli, but only lactaderin-C2 expression reduced brush border targeting of Myo1a-TH1. Together, our results suggest that Myo1a targeting to microvilli is driven by membrane binding potential that is distributed throughout TH1 rather than localized to a single motif. These data highlight the diversity of mechanisms that enable different class I myosins to target membranes in distinct biological contexts. PMID:22367206

  16. IKKα Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Serkan I. Göktuna

    2014-06-01

    Full Text Available The recruitment of immune cells into solid tumors is an essential prerequisite of tumor development. Depending on the prevailing polarization profile of these infiltrating leucocytes, tumorigenesis is either promoted or blocked. Here, we identify IκB kinase α (IKKα as a central regulator of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKKα kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of interferon γ (IFNγ-expressing M1-like myeloid cells. In IKKα mutant mice, M1-like polarization is not controlled in a cell-autonomous manner but, rather, depends on the interplay of both IKKα mutant tumor epithelia and immune cells. Because therapies aiming at the tumor microenvironment rather than directly at the mutated cancer cell may circumvent resistance development, we suggest IKKα as a promising target for colorectal cancer (CRC therapy.

  17. Proliferative effects of apical, but not basal, matrix metalloproteinase-7 activity in polarized MDCK cells

    International Nuclear Information System (INIS)

    Harrell, Permila C.; McCawley, Lisa J.; Fingleton, Barbara; McIntyre, J. Oliver; Matrisian, Lynn M.

    2005-01-01

    Matrix metalloproteinase-7 (MMP-7) is primarily expressed in glandular epithelium. Therefore, its mechanism of action may be influenced by its regulated vectorial release to either the apical and/or basolateral compartments, where it would act on its various substrates. To gain a better understanding of where MMP-7 is released in polarized epithelium, we have analyzed its pattern of secretion in polarized MDCK cells expressing stably transfected human MMP-7 (MDCK-MMP-7), and HCA-7 and Caco2 human colon cancer cell lines. In all cell lines, latent MMP-7 was secreted to both cellular compartments, but was 1.5- to 3-fold more abundant in the basolateral compartment as compared to the apical. However, studies in the MDCK system demonstrated that MMP-7 activity was 2-fold greater in the apical compartment of MDCK-MMP-7 HIGH -polarized monolayers, which suggests the apical co-release of an MMP-7 activator. In functional assays, MMP-7 over-expression increased cell saturation density as a result of increased cell proliferation with no effect on apoptosis. Apical MMP-7 activity was shown to be responsible for the proliferative effect, which occurred, as demonstrated by media transfer experiments, through cleavage of an apical substrate and not through the generation of a soluble factor. Taken together, our findings demonstrate the importance of MMP-7 secretion in relation to its mechanism of action when expressed in a polarized epithelium

  18. Requirement for Dlgh-1 in planar cell polarity and skeletogenesis during vertebrate development.

    Directory of Open Access Journals (Sweden)

    Charlene Rivera

    Full Text Available The development of specialized organs is tightly linked to the regulation of cell growth, orientation, migration and adhesion during embryogenesis. In addition, the directed movements of cells and their orientation within the plane of a tissue, termed planar cell polarity (PCP, appear to be crucial for the proper formation of the body plan. In Drosophila embryogenesis, Discs large (dlg plays a critical role in apical-basal cell polarity, cell adhesion and cell proliferation. Craniofacial defects in mice carrying an insertional mutation in Dlgh-1 suggest that Dlgh-1 is required for vertebrate development. To determine what roles Dlgh-1 plays in vertebrate development, we generated mice carrying a null mutation in Dlgh-1. We found that deletion of Dlgh-1 caused open eyelids, open neural tube, and misorientation of cochlear hair cell stereociliary bundles, indicative of defects in planar cell polarity (PCP. Deletion of Dlgh-1 also caused skeletal defects throughout the embryo. These findings identify novel roles for Dlgh-1 in vertebrates that differ from its well-characterized roles in invertebrates and suggest that the Dlgh-1 null mouse may be a useful animal model to study certain human congenital birth defects.

  19. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells.

    Science.gov (United States)

    Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François

    2015-04-20

    During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea

    Directory of Open Access Journals (Sweden)

    Anna Kirjavainen

    2015-03-01

    Full Text Available Hair cells of the organ of Corti (OC of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubule cytoskeletons. The Rho GTPase Cdc42 regulates cytoskeletal dynamics and polarization of various cell types, and, thus, serves as a candidate regulator of hair cell polarity. We have here induced Cdc42 inactivation in the late-embryonic OC. We show the role of Cdc42 in the establishment of planar polarity of hair cells and in cellular patterning. Abnormal planar polarity was displayed as disturbances in hair bundle orientation and morphology and in kinocilium/basal body positioning. These defects were accompanied by a disorganized cell-surface microtubule network. Atypical protein kinase C (aPKC, a putative Cdc42 effector, colocalized with Cdc42 at the hair cell apex, and aPKC expression was altered upon Cdc42 depletion. Our data suggest that Cdc42 together with aPKC is part of the machinery establishing hair cell planar polarity and that Cdc42 acts on polarity through the cell-surface microtubule network. The data also suggest that defects in apical polarization are influenced by disturbed cellular patterning in the OC. In addition, our data demonstrates that Cdc42 is required for stereociliogenesis in the immature cochlea.

  1. Th17 Immune Cells in vivo: Friend or Foe? | Center for Cancer Research

    Science.gov (United States)

    Upon encountering an antigen, T cells bearing CD4+ (a helper marker) proliferate and become polarized. During this process, the cells produce specific signaling molecules called cytokines.  This signaling stimulates the T cells to become more specialized.  What results is the production of T cell subsets such as Th1, Th17, or others.

  2. Th-1, Th-2 Cytokines Profile among Madurella mycetomatis Eumycetoma Patients.

    Science.gov (United States)

    Nasr, Amre; Abushouk, Amir; Hamza, Anhar; Siddig, Emmanuel; Fahal, Ahmed H

    2016-07-01

    Eumycetoma is a progressive and destructive chronic granulomatous subcutaneous inflammatory disease caused by certain fungi, the most common being Madurella mycetomatis. The host defence mechanisms against fungi usually range from an early non-specific immune response to activation and induction of specific adaptive immune responses by the production of Th-1 and Th-2 cytokines. The aim of this study is to determine the levels of Th-1 and Th-2 cytokines in patients infected with Madurella mycetomatis, and the association between their levels and disease prognosis. This is a descriptive cross-sectional study conducted at the Mycetoma Research Centre, University of Khartoum, Sudan, where 70 patients with confirmed M. mycetomatis eumycetoma were enrolled; 35 with, and 35 without surgical excision. 70 healthy individuals from mycetoma endemic areas were selected as controls. The levels of serum cytokines were determined by cytometric bead array technique. Significantly higher levels of the Th-1 cytokines (IFN-γ, TNF-α, IL-1β and IL-2) were recorded in patients treated with surgical excision, compared to those treated without surgical excision. In contrast, the Th-2 cytokines (IL-4, IL-5, IL-6 and IL-10) were significantly lower in patients treated with surgical excision compared to those treated without surgical excision. In conclusion, the results of this study suggest that cell-mediated immunity can have a role to play in the pathogenesis of eumycetoma.

  3. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage.

    Science.gov (United States)

    Li, Yuwei; Li, Ang; Junge, Jason; Bronner, Marianne

    2017-10-10

    Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton.

  4. Th1-Induced CD106 Expression Mediates Leukocytes Adhesion on Synovial Fibroblasts from Juvenile Idiopathic Arthritis Patients.

    Science.gov (United States)

    Maggi, Laura; Margheri, Francesca; Luciani, Cristina; Capone, Manuela; Rossi, Maria Caterina; Chillà, Anastasia; Santarlasci, Veronica; Mazzoni, Alessio; Cimaz, Rolando; Liotta, Francesco; Maggi, Enrico; Cosmi, Lorenzo; Del Rosso, Mario; Annunziato, Francesco

    2016-01-01

    This study tested the hypothesis that subsets of human T helper cells can orchestrate leukocyte adhesion to synovial fibroblasts (SFbs), thus regulating the retention of leukocytes in the joints of juvenile idiopathic arthritis (JIA) patients. Several cell types, such as monocytes/macrophages, granulocytes, T and B lymphocytes, SFbs and osteoclasts participate in joint tissue damage JIA. Among T cells, an enrichment of classic and non-classic Th1 subsets, has been found in JIA synovial fluid (SF), compared to peripheral blood (PB). Moreover, it has been shown that IL-12 in the SF of inflamed joints mediates the shift of Th17 lymphocytes towards the non-classic Th1 subset. Culture supernatants of Th17, classic and non-classic Th1 clones, have been tested for their ability to stimulate proliferation, and to induce expression of adhesion molecules on SFbs, obtained from healthy donors. Culture supernatants of both classic and non-classic Th1, but not of Th17, clones, were able to induce CD106 (VCAM-1) up-regulation on SFbs. This effect, mediated by tumor necrosis factor (TNF)-α, was crucial for the adhesion of circulating leukocytes on SFbs. Finally, we found that SFbs derived from SF of JIA patients expressed higher levels of CD106 than those from healthy donors, resembling the phenotype of SFbs activated in vitro with Th1-clones supernatants. On the basis of these findings, we conclude that classic and non-classic Th1 cells induce CD106 expression on SFbs through TNF-α, an effect that could play a role in leukocytes retention in inflamed joints.

  5. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity.

    Directory of Open Access Journals (Sweden)

    Jianzhong Yu

    2008-03-01

    Full Text Available Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly identified Hippo tumor-suppressor pathway plays a crucial role in the posterior follicle cells in the regulation of oocyte polarity. Disruption of the Hippo pathway, including major components Hippo, Salvador, and Warts, results in aberrant follicle-cell differentiation and proliferation and dramatic disruption of the oocyte anterior-posterior axis. These phenotypes are related to defective Notch signaling in follicle cells, because misexpression of a constitutively active form of Notch alleviates the oocyte polarity defects. We also find that follicle cells defective in Hippo signaling accumulate the Notch receptor and display defects in endocytosis markers. Our findings suggest that the interaction between Hippo and classic developmental pathways such as Notch is critical to spatial and temporal regulation of differentiation and proliferation and is essential for development of the body axes in Drosophila.

  6. Host-Polarized Cell Growth in Animal Symbionts.

    Science.gov (United States)

    Pende, Nika; Wang, Jinglan; Weber, Philipp M; Verheul, Jolanda; Kuru, Erkin; Rittmann, Simon K-M R; Leisch, Nikolaus; VanNieuwenhze, Michael S; Brun, Yves V; den Blaauwen, Tanneke; Bulgheresi, Silvia

    2018-04-02

    To determine the fundamentals of cell growth, we must extend cell biological studies to non-model organisms. Here, we investigated the growth modes of the only two rods known to widen instead of elongating, Candidatus Thiosymbion oneisti and Thiosymbion hypermnestrae. These bacteria are attached by one pole to the surface of their respective nematode hosts. By incubating live Ca. T. oneisti and T. hypermnestrae with a peptidoglycan metabolic probe, we observed that the insertion of new cell wall starts at the poles and proceeds inward, concomitantly with FtsZ-based membrane constriction. Remarkably, in Ca. T. hypermnestrae, the proximal, animal-attached pole grows before the distal, free pole, indicating that the peptidoglycan synthesis machinery is host oriented. Immunostaining of the symbionts with an antibody against the actin homolog MreB revealed that it was arranged medially-that is, parallel to the cell long axis-throughout the symbiont life cycle. Given that depolymerization of MreB abolished newly synthesized peptidoglycan insertion and impaired divisome assembly, we conclude that MreB function is required for symbiont widening and division. In conclusion, our data invoke a reassessment of the localization and function of the bacterial actin homolog. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Membrane dynamics and the regulation of epithelial cell polarity

    NARCIS (Netherlands)

    van der Wouden, JM; Maier, O; van IJzendoorn, SCD; Hoekstra, D

    2003-01-01

    Plasma membranes of epithelial cells consist of two domains, an apical and a basolateral domain, the surfaces of which differ in composition. The separation of these domains by a tight junction and the fact that specific transport pathways exist for intracellular communication between these domains

  8. The subapical compartment and its role in intracellular trafficking and cell polarity

    NARCIS (Netherlands)

    Van Ijzendoorn, Sven C. D.; Maier, Olaf; Van Der Wouden, Johanna M.; Hoekstra, Dick

    In polarized epithelial cells and hepatocytes, apical and basolateral plasma membrane surfaces are maintained, each displaying a distinct molecular composition. In recent years, it has become apparent that a subapical compartment, referred to as SAC, plays a prominent if not crucial role in the

  9. Therapeutic effect of cortistatin on experimental arthritis by downregulating inflammatory and Th1 responses.

    Science.gov (United States)

    Gonzalez-Rey, Elena; Chorny, Alejo; Del Moral, Raimundo G; Varela, Nieves; Delgado, Mario

    2007-05-01

    Rheumatoid arthritis is a chronic autoimmune disease of unknown aetiology characterised by chronic inflammation in the joints and subsequent destruction of the cartilage and bone. To propose a new strategy for the treatment of arthritis based on the administration of cortistatin, a newly discovered neuropeptide with anti-inflammatory actions. DBA/1J mice with collagen-induced arthritis were treated with cortistatin after the onset of disease, and the clinical score and joint histopathology were evaluated. Inflammatory response was determined by measuring the levels of various inflammatory mediators (cytokines and chemokines) in joints and serum. T helper cell type 1 (Th1)-mediated autoreactive response was evaluated by determining the proliferative response and cytokine profile of draining lymph node cells stimulated with collagen and by assaying the content of serum autoantibodies. Cortistatin treatment significantly reduced the severity of established collagen-induced arthritis, completely abrogating joint swelling and destruction of cartilage and bone. The therapeutic effect of cortistatin was associated with a striking reduction in the two deleterious components of the disease-that is, the Th1-driven autoimmune and inflammatory responses. Cortistatin downregulated the production of various inflammatory cytokines and chemokines, decreased the antigen-specific Th1-cell expansion, and induced the production of regulatory cytokines, such as interleukin 10 and transforming growth factor beta1. Cortistatin exerted its effects on synovial cells through both somatostatin and ghrelin receptors, showing a higher effect than both peptides protecting against experimental arthritis. This work provides a powerful rationale for the assessment of the efficacy of cortistatin as a novel therapeutic approach to the treatment of rheumatoid arthritis.

  10. Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/beta-catenin-based adherens junctions

    NARCIS (Netherlands)

    Theard, Delphine; Steiner, Magdalena; Kalicharan, Dharamdajal; Hoekstra, Dick; van IJzendoorn, Sven C. D.

    Using a mutant hepatocyte