Two stable steady states in the Hodgkin-Huxley axons
Aihara, K.; Matsumoto, G.
1983-01-01
Two stable steady states were found in the numerical solution of the Hodgkin-Huxley equations for the intact squid axon bathed in potassium-rich sea water with an externally applied inward current. Under the conditions the two stable steady-states exist, the Hodgkin-Huxley equations have a complex bifurcation structure including, in addition to the two stable steady-states, a stable limit cycle, two unstable equilibrium points, and one asymptotically stable equilibrium point. It was also conc...
Zheng, Zhenzhen; Chou, Ching-Shan; Yi, Tau-Mu; Nie, Qing
2011-10-01
Cell polarization, in which substances previously uniformly distributed become asymmetric due to external or/and internal stimulation, is a fundamental process underlying cell mobility, cell division, and other polarized functions. The yeast cell S. cerevisiae has been a model system to study cell polarization. During mating, yeast cells sense shallow external spatial gradients and respond by creating steeper internal gradients of protein aligned with the external cue. The complex spatial dynamics during yeast mating polarization consists of positive feedback, degradation, global negative feedback control, and cooperative effects in protein synthesis. Understanding such complex regulations and interactions is critical to studying many important characteristics in cell polarization including signal amplification, tracking dynamic signals, and potential trade-off between achieving both objectives in a robust fashion. In this paper, we study some of these questions by analyzing several models with different spatial complexity: two compartments, three compartments, and continuum in space. The step-wise approach allows detailed characterization of properties of the steady state of the system, providing more insights for biological regulations during cell polarization. For cases without membrane diffusion, our study reveals that increasing the number of spatial compartments results in an increase in the number of steady-state solutions, in particular, the number of stable steady-state solutions, with the continuum models possessing infinitely many steady-state solutions. Through both analysis and simulations, we find that stronger positive feedback, reduced diffusion, and a shallower ligand gradient all result in more steady-state solutions, although most of these are not optimally aligned with the gradient. We explore in the different settings the relationship between the number of steady-state solutions and the extent and accuracy of the polarization. Taken together
Joseph, David; Schobelock, Michael J; Riesenberg, Robert R; Vince, Bradley D; Webster, Lynn R; Adeniji, Abidemi; Elgadi, Mabrouk; Huang, Fenglei
2015-01-01
The effects of steady-state faldaprevir on the safety, pharmacokinetics, and pharmacodynamics of steady-state methadone and buprenorphine-naloxone were assessed in 34 healthy male and female subjects receiving stable addiction management therapy. Subjects continued receiving a stable oral dose of either methadone (up to a maximum dose of 180 mg per day) or buprenorphine-naloxone (up to a maximum dose of 24 mg-6 mg per day) and also received oral faldaprevir (240 mg) once daily (QD) for 8 days following a 480-mg loading dose. Serial blood samples were taken for pharmacokinetic analysis. The pharmacodynamics of the opioid maintenance regimens were evaluated by the objective and subjective opioid withdrawal scales. Coadministration of faldaprevir with methadone or buprenorphine-naloxone resulted in geometric mean ratios for the steady-state area under the concentration-time curve from 0 to 24 h (AUC(0-24,ss)), the steady-state maximum concentration of the drug in plasma (C(max,ss)), and the steady-state concentration of the drug in plasma at 24 h (C(24,ss)) of 0.92 to 1.18 for (R)-methadone, (S)-methadone, buprenorphine, norbuprenorphine, and naloxone, with 90% confidence intervals including, or very close to including, 1.00 (no effect), suggesting a limited overall effect of faldaprevir. Although individual data showed moderate variability in the exposures between subjects and treatments, there was no evidence of symptoms of opiate overdose or withdrawal either during the coadministration of faldaprevir with methadone or buprenorphine-naloxone or after faldaprevir dosing was stopped. Similar faldaprevir exposures were observed in the methadone- and buprenorphine-naloxone-treated subjects. In conclusion, faldaprevir at 240 mg QD can be coadministered with methadone or buprenorphine-naloxone without dose adjustment, although given the relatively narrow therapeutic windows of these agents, monitoring for opiate overdose and withdrawal may still be appropriate. (This
Steady-state pharmacokinetics of sirolimus in stable adult Chinese renal transplant patients.
Wang, Huifen Faye; Qiu, Feng; Wu, Xiongfe; Fang, Juanzhi; Crownover, Penelope; Korth-Bradley, Joan; Schulman, Seth
2014-05-01
This open-label, nonrandomized study was conducted to evaluate the steady-state pharmacokinetics of sirolimus in 24 stable Chinese renal transplant patients receiving daily oral maintenance doses of sirolimus (1-4 mg). Repeated trough and serial whole blood sirolimus concentrations over a 24-hour dosing interval were collected and assayed using high-performance liquid chromatography with tandem mass spectrometry (HPLC/MS/MS). Non-compartmental analysis (NCA) was employed to calculate sirolimus pharmacokinetic parameters. Cytochrome P450 (CYP) 3A5 genotyping was performed. Cyclosporine (CsA) levels were determined for patients who took concomitant CsA. Mean (±SD) sirolimus maximum concentration (Cmax ), area under the concentration-time curve within a dosing interval of τ (AUCτ ), oral clearance (CL/F), and trough concentration (Ctrough ) at steady state were: 14.1 ± 13.4 ng/mL, 199 ± 210 ng · h/mL, 10.1 ± 4.4 L/h, and 5.9 ± 6.3 ng/mL, respectively. Median tmax (range) was 2.49 hours (1-12 hours). A strong correlation was observed between Ctrough and AUCτ . Pharmacokinetics of sirolimus in patients with and without concomitant CsA were comparable. Allele frequency of CYP3A5*3 was 70.9% and a trend of higher oral clearance was observed in CYP3A5 expressers compared with non-expressers although the number of subjects in each genotype was small. © 2014, The American College of Clinical Pharmacology.
Dawid, H.; Keoula, M.Y.; Kort, Peter
2017-01-01
This paper presents a numerical method for the characterization of Markov-perfect equilibria of symmetric differential games exhibiting coexisting stable steady states. The method relying on the calculation of ‘local value functions’ through collocation in overlapping parts of the state space, is
Advanced steady-state operating scenarios
International Nuclear Information System (INIS)
Nevins, W.M.; Bulmer, R.H.; Pearlstein, L.D.; Haney, S.W.; Manickam, J.
1993-01-01
The goal for advanced steady-state operation in ITER should be to demonstrate the operation of the plasma core for a steady-state fusion reactor. To accomplish this the authors must develop steady-state operating scenarios at high beta for high fusion power density, low auxiliary power requirements (Q CD ≥ 25, where Q CD triple-bond P fusion/P CD and P DC is the power required for sustaining the plasma current) for low recirculating power requirements, and at moderate safety factor (q ψ ≤ 4.5) to minimize the cost for the tokamak core of a steady-state demonstration power reactor based on the operating modes demonstrated in ITER. The key to achieving steady-state operation at high fusion power in ITER will be the development of operating scenarios with very high bootstrap current fractions (f BS ≥ 90%) in which the radial profile of the bootstrap current density is well aligned with that of the total plasma current density, and for which the MHD β-limit exceeds β n * = 0.05 T-m/MA. They are in the process of developing such operating modes for ITER. In section 1 they propose two advanced steady-state operating points; a preliminary operating point that was the basis for the MHD studies reported in section 2, and a second operating point that has been optimized based on the authors studies to date. In section 2 they present calculations indicating that the initial operating point is stable to MHD ballooning and low-n kink modes (with a conducting wall at r = 1.25a) up to β n * ∼ 6 x 10 -2 T - m/MA. In section 3 they present a free-boundary MHD equilibrium, and show that advanced steady-state operating modes are compatible with the ITER poloidal field system and diverter
Steady states in conformal theories
CERN. Geneva
2015-01-01
A novel conjecture regarding the steady state behavior of conformal field theories placed between two heat baths will be presented. Some verification of the conjecture will be provided in the context of fluid dynamics and holography.
Stable atomic hydrogen: Polarized atomic beam source
International Nuclear Information System (INIS)
Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.
1984-01-01
We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)
Steady State Shift Damage Localization
DEFF Research Database (Denmark)
Sekjær, Claus; Bull, Thomas; Markvart, Morten Kusk
2017-01-01
The steady state shift damage localization (S3DL) method localizes structural deterioration, manifested as either a mass or stiffness perturbation, by interrogating the damage-induced change in the steady state vibration response with damage patterns cast from a theoretical model. Damage is, thus...... the required accuracy when examining complex structures, an extensive amount of degrees of freedom (DOF) must often be utilized. Since the interrogation matrix for each damage pattern depends on the size of the system matrices constituting the FE-model, the computational time quickly becomes of first...
Steady-State Process Modelling
DEFF Research Database (Denmark)
Cameron, Ian; Gani, Rafiqul
2011-01-01
illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process....
International Nuclear Information System (INIS)
Murygin, I.V.; Chebotin, V.N.
1979-01-01
The polarization of fuel-cell electrodes (mixtures CO + CO 2 and H 2 + H 2 O) in systems with solid oxide electrolytes is discussed. The theory is based upon a process model where the electrode reaction zone can spread along the line of three-phase contact by diffusion of reaction partners and products across the electrolyte/electrode and electrolyte/gas interface
Enceladus is not in Steady State
Cheunchitra, T.; Stevenson, D. J.
2016-12-01
Libration data tell us there is a global ocean. Topography and gravity tell us that there is substantial compensation at degree 2, meaning that the underside of the ice shell must have topography. This topography will decay, typically on a timescale of order a million years (fortuitously similar to thermal diffusion times through the ice shell), by viscous lateral flow of the ice. This could in principle be compensated in steady state by net melting beneath the poles and a compensating net freezing at the equator. In that model, the ice shell beneath the poles is partially melted with water being continuously produced and percolating to the base (or expelled if there are cracks, as at the South Pole). We have modeled this without an a priori assumption about the strength of tidal heating. We find that even if the tidal heating is zero on average around the equator, then the latent heat release from the required freezing can only be accommodated in steady state if the ice shell is 18km. The ice thickness must be even less at the poles in order to satisfy gravity and topography. Moreover, there must then be substantial tidal heating at the poles and it is physically unreasonable to have the volumetric tidal heating at the equator be enormously less than at the North Pole. For example, if the volumetric tidal heating at the equator is on average one quarter of that at the North Pole then marginal consistency with gravity and topography may be possible for a mean ice thickness at the equator of 12km. The global heat flow may exceed 40GW, much higher than the detectable IR excess (the observed south polar tiger stripe heat flow). Recent work (Fuller et al.) admits orbital evolutions with large heat flow at least for a recent part of the orbital history. However, this thin shell steady state model has difficulty reconciling observed gravity and topography as well as the libration data. We conclude that it is unlikely that Enceladus has no net melting or freezing. The ice
New Tore Supra steady state operating scenario
International Nuclear Information System (INIS)
Martin, G.; Parlange, F.; van Houtte, D.; Wijnands, T.
1995-01-01
This document deals with plasma control in steady state conditions. A new plasma control systems enabling feedback control of global plasma equilibrium parameters has been developed. It also enables to operate plasma discharge in steady state regime. (TEC). 4 refs., 5 figs
Steady State Vapor Bubble in Pool Boiling.
Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C
2016-02-03
Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.
The steady state in toroidal traps
International Nuclear Information System (INIS)
Goldston, R.
1997-01-01
Experiments at the JET, TORE SUPRA, TFTR and DIII-D reactors have corroborated calculations showing that an advanced tokamak configuration with an important self-generated current, a large plasma pressure and thus a large thermonuclear power density, could allow for the construction of fusion steady state reactors with reduced size and cost. Stellarators only need external superconductive coils for reaching the steady state, but it is essential to reduce in a large proportion the plasma self-generated current
Critical issues for steady state operation
International Nuclear Information System (INIS)
Ohyabu, Nobuyoshi
1994-01-01
Significant progress has been made in the toroidal magnetic fusion research, achieving high quality plasmas which satisfy the breakeven condition. As the next step, such plasmas need to be maintained in a steady state or a longer period. Critical issues for the steady state operation have been discussed briefly, such as high heat load on the divertor plates, deterioration of the energy confinement with increasing power, impurity contamination, including helium (ash), maintaining of the magnetic configuration, erosion of the plasma facing material. (author)
Steady-state magnetohydrodynamic clump turbulence
International Nuclear Information System (INIS)
Tetreault, D.J.
1989-01-01
The turbulent steady state of the magnetohydrodynamic (MHD) clump instability [Phys. Fluids 31, 2122 (1988)] is investigated. The steady state is determined by the balance between clump growth by turbulent mixing and clump decay by field line stochasticity. The turbulent fields driving the mixing are generated self-consistently from Ampere's law and conserve the magnetic helicity. In the steady state, the mean current and magnetic field satisfy J 0 = μB 0 , where μ depends on the mean-square fluctuation level. Above this critical point (J 0 >μB 0 ), the plasma is MHD clump unstable. MHD clump instability is a dynamical route to the force-free, Taylor state. For the steady state to exist, μ must exceed a threshold on the order of that required for B 0 /sub z/ field reversal. Steady-state MHD clump turbulence corresponds to field reversed Taylor states. From the μ threshold condition, the steady-state fluctuation spectrum (δB/sub rms//B) is calculated and shown to increase with mean driving current as θ 3 , where θ is the pinch parameter
Three-dimensional stellarator equilibrium as an ohmic steady state
International Nuclear Information System (INIS)
Park, W.; Monticello, D.A.; Strauss, H.; Manickam, J.
1985-07-01
A stable three-dimensional stellarator equilibrium can be obtained numerically by a time-dependent relaxation method using small values of dissipation. The final state is an ohmic steady state which approaches an ohmic equilibrium in the limit of small dissipation coefficients. We describe a method to speed up the relaxation process and a method to implement the B vector . del p = 0 condition. These methods are applied to obtain three-dimensional heliac equilibria using the reduced heliac equations
Steady state evaluation of aortic dissections: a feasibility study
International Nuclear Information System (INIS)
De Cicco, Maria Luisa; Andreoli, Chiara; Casciani, Emanuele; Polettini, Elisabetta; Gualdi, Gian Franco
2005-01-01
Purpose. One the main reasons for the limited use of MR1 in the evaluation of aortic dissection in emergency conditions is its long execution lime. The authors report their experience regarding a new MRI sequence that reduces execution time and avoids the use of contrast medium. Materials and methods. Eighteen haemodynamically stable patients with suspected (16 cases, 3 with confirmed diagnosis of aneurysm) or known aortic dissection (2 cases) underwent in emergency conditions 1.5T MR1 with Steady-State sequence (Fast Imaging Employing Steady-State Acquisition: GRE 2D; TR 3.5, TE 1.6; Flip Angle 45, bandwidth 125, matrix 224x224, NEX 1, acquisition lime per slice 7 s, thickness 6-8 mm, FOV 38; 2D-OE breath-hold sequence requiring cardiac triggering). The results obtained were compared in terms of diagnostic accuracy and execution lime wth those of classical MRI examination (black blood TI, FSE T2 and 3D MR-angiography) or multislice CT. Results. The diagnostic accuracy of MRI, both with Steady-State sequence and the classical technique, and multislice CT in the diagnosis of dissection or aneurysm equal (100%), whereas execution time is 6, 25 and 6 minutes, respectively. Multislice CT proved to be more accurate than Steady-State MR1 in evaluating the renal parenchyma and the extension of the dissection to the renal arteries. Conclusions. The Steady-State MRI sequence provides a diagnosis of aortic dissection or aneurysmal dilatation in a short lime and may represent a valuable alternative to CT in emergency settings, especially in patients with reported contraindications to iodinated contrast media [it
A steady state theory for processive cellulases
DEFF Research Database (Denmark)
Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil
2013-01-01
remains to be fully developed. In this paper, we suggest a deterministic kinetic model that relies on a processive set of enzyme reactions and a quasi steady-state assumption. It is shown that this approach is practicable in the sense that it leads to mathematically simple expressions for the steady......-state rate, and only requires data from standard assay techniques as experimental input. Specifically, it is shown that the processive reaction rate at steady state may be expressed by a hyperbolic function related to the conventional Michaelis–Menten equation. The main difference is a ‘kinetic processivity......Processive enzymes perform sequential steps of catalysis without dissociating from their polymeric substrate. This mechanism is considered essential for efficient enzymatic hydrolysis of insoluble cellulose (particularly crystalline cellulose), but a theoretical framework for processive kinetics...
Practical steady-state enzyme kinetics.
Lorsch, Jon R
2014-01-01
Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.
Ge, Hao; Qian, Hong
2009-10-02
We show that the thermodynamic limit of a bistable phosphorylation-dephosphorylation cycle has a selection rule for the "more stable" macroscopic steady state. The analysis is akin to the Maxwell construction. Based on the chemical master equation approach, it is shown that, except at a critical point, bistability disappears in the stochastic model when fluctuation is sufficiently low but unneglectable. Onsager's Gaussian fluctuation theory applies to the unique macroscopic steady state. With an initial state in the basin of attraction of the "less stable" steady state, the deterministic dynamics obtained by the law of mass action is a metastable phenomenon. Stability and robustness in cell biology are emergent stochastic concepts.
Energy repartition in the nonequilibrium steady state
Yan, Peng; Bauer, G.E.; Zhang, Huaiwu
2017-01-01
The concept of temperature in nonequilibrium thermodynamics is an outstanding theoretical issue. We propose an energy repartition principle that leads to a spectral (mode-dependent) temperature in steady-state nonequilibrium systems. The general concepts are illustrated by analytic solutions of
Steady-state spheromak reactor studies
International Nuclear Information System (INIS)
Krakowski, R.A.; Hagenson, R.L.
1985-01-01
After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported
Steady state statistics of driven diffusions
Czech Academy of Sciences Publication Activity Database
Maes, C.; Netočný, Karel; Wynants, B.
2008-01-01
Roč. 387, č. 12 (2008), s. 2675-2689 ISSN 0378-4371 R&D Projects: GA ČR GC202/07/J051 Institutional research plan: CEZ:AV0Z10100520 Keywords : nonequilibrium fluctuations * steady state * diffusion Subject RIV: BE - Theoretical Physics Impact factor: 1.441, year: 2008
Factorised steady states and condensation transitions in ...
Indian Academy of Sciences (India)
Scotland. E-mail: martin@ph.ed.ac.uk. Abstract. Systems driven out of equilibrium can often exhibit behaviour not seen in systems in thermal equilibrium – for example phase ... weights rather it will be a nonequilibrium steady state. ... particular cases are: if u(m) = m then the dynamics of each particle is independent.
Steady-state spheromak reactor studies. Revision
International Nuclear Information System (INIS)
Krakowski, R.A.; Hagenson, R.L.
1985-01-01
After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design point is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported
Factorised steady states and condensation transitions in ...
Indian Academy of Sciences (India)
I will then consider a more general class of mass trans- port models, encompassing continuous mass variables and discrete time updating, and present a necessary and sufficient condition for the steady state to factorise. The prop- erty of factorisation again allows an analysis of the condensation transitions which may occur.
Steady state modeling of desiccant wheels
DEFF Research Database (Denmark)
Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl
2014-01-01
systems. A steady state two-dimensional model is formulated and implemented aiming to obtain good accuracy and short computational times. Comparison with experimental data from the literature shows that the model reproduces the physical behavior of desiccant wheels. Mass diffusion in the desiccant should...
Intermediates, Catalysts, Persistence, and Boundary Steady States
DEFF Research Database (Denmark)
Marcondes de Freitas, Michael; Feliu, Elisenda; Wiuf, Carsten
2017-01-01
as cascades of a large class of post-translational modification systems (of which the MAPK cascade and the n-site futile cycle are prominent examples). Since one of the aforementioned sufficient conditions for persistence precludes the existence of boundary steady states, our method also provides a graphical...
Steady-State Creep of Asphalt Concrete
Directory of Open Access Journals (Sweden)
Alibai Iskakbayev
2017-02-01
Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.
The Steady State Distribution of the Master Equation
Sano, Mitsusada M.
2008-01-01
The steady states of the master equation are investigated. We give two expressions for the steady state distribution of the master equation a la the Zubarev-McLennan steady state distribution, i.e., the exact expression and an expression near equilibrium. The latter expression obtained is consistent with recent attempt of constructing steady state theormodynamics.
Steady state compact toroidal plasma production
Turner, William C.
1986-01-01
Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.
Simulating ITER steady-state operation scenarios
International Nuclear Information System (INIS)
Kim, S.H.; Casper, T.A.; Campbell, D.J.; Snipes, J.A.; Bulmer, R.; LoDestro, L.L.; Meyer, W.H.; Pearlstein, L.D.
2015-01-01
Full text of publication follows. ITER steady-state operation aims at demonstrating fully non-inductive plasma operation at a moderate fusion power multiplication factor (Q) of about 5, for long burn durations of up to 3000 s. In this work, this operational capability is studied using an advanced free-boundary transport simulation code, CORSICA [1-3], including relevant physics and engineering constraints. The tokamak discharge modelling capability of the CORSICA code has been improved by integrating realistic source modules for heating and current drive and a parameterized EPED1 pedestal model. The electro-magnetic ITER machine description is computed using the recent design parameters and the latest source configurations are taken into account. This work has been performed to study the feasibility of the ITER steady-state operation. Although the evolution of internal transport barriers (ITBs) are not yet included in this study, a higher energy confinement over the H-mode confinement (H98>1) is assumed by maintaining a reversed safety factor (q) profile during the flat-top phase. This paper presents several ITER steady-state operation scenarios, including a reference 9 MA case, and also suggests a potential approach for achieving fully non-inductive ITER steady-state operation with Q>5. References: [1] Crotinger, J.A. et al, 1997 LLNL Report UCRL-ID-126284; NTIS PB2005-102154; [2] Casper, T.A. et al, 2010 23. Int. Conf. on Fusion Energy (Daejeon, Korea) ITR/P1-19 accepted for publication in Nuclear Fusion; [3] Kim, S.H. et al, 2012 24. Int. Conf. on Fusion Energy (San Diego, USA) ITR/P1-13. (authors)
Steady-State-Preserving Simulation of Genetic Regulatory Systems
Directory of Open Access Journals (Sweden)
Ruqiang Zhang
2017-01-01
Full Text Available A novel family of exponential Runge-Kutta (expRK methods are designed incorporating the stable steady-state structure of genetic regulatory systems. A natural and convenient approach to constructing new expRK methods on the base of traditional RK methods is provided. In the numerical integration of the one-gene, two-gene, and p53-mdm2 regulatory systems, the new expRK methods are shown to be more accurate than their prototype RK methods. Moreover, for nonstiff genetic regulatory systems, the expRK methods are more efficient than some traditional exponential RK integrators in the scientific literature.
Statistical steady states in turbulent droplet condensation
Bec, Jeremie; Krstulovic, Giorgio; Siewert, Christoph
2017-11-01
We investigate the general problem of turbulent condensation. Using direct numerical simulations we show that the fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. This leads to propose a Lagrangian stochastic model consisting of a set of integro-differential equations for the joint evolution of the squared radius and the supersaturation along droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution.
Dissipative dark matter halos: The steady state solution
Foot, R.
2018-02-01
Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.
Producing a steady-state population inversion
International Nuclear Information System (INIS)
Richards, R.K.; Griffin, D.C.
1986-03-01
An observed steady-state transition at 17.5 nm is identified as the 2p 5 3s3p 4 S/sub 3/2/ → 2p 6 3p 2 P/sub 3/2/ transition in Na-like aluminum. The upper level is populated by electron inner shell ionization of metastable Mg-like aluminum. From the emission intensity, the rate coefficient for populating the upper level is calculated to be approximately 5 x 10 -10 ) cm 3 /sec. Since the upper level is quasimetastable with a lifetime 22 times longer than the lower level, it may be possible to produce a population inversion, if a competing process to populate the lower level can be reduced
Magnetic sensor for steady state tokamak
Energy Technology Data Exchange (ETDEWEB)
Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1996-06-01
A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).
International Nuclear Information System (INIS)
Rowan, D.J.
2013-01-01
Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of 137 Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable 133 Cs) from geologic sources and the other released in pulses ( 137 Cs) from reactor operations. I also compare 137 Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test 137 Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher 137 Cs BAFs than expected from 133 Cs BAFs for the same fish or 137 Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any situation
Rowan, D J
2013-07-01
Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any
Triple echo steady-state (TESS) relaxometry.
Heule, Rahel; Ganter, Carl; Bieri, Oliver
2014-01-01
Rapid imaging techniques have attracted increased interest for relaxometry, but none are perfect: they are prone to static (B0 ) and transmit (B1 ) field heterogeneities, and commonly biased by T2 /T1 . The purpose of this study is the development of a rapid T1 and T2 relaxometry method that is completely (T2 ) or partly (T1 ) bias-free. A new method is introduced to simultaneously quantify T1 and T2 within one single scan based on a triple echo steady-state (TESS) approach in combination with an iterative golden section search. TESS relaxometry is optimized and evaluated from simulations, in vitro studies, and in vivo experiments. It is found that relaxometry with TESS is not biased by T2 /T1 , insensitive to B0 heterogeneities, and, surprisingly, that TESS-T2 is not affected by B1 field errors. Consequently, excellent correspondence between TESS and reference spin echo data is observed for T2 in vitro at 1.5 T and in vivo at 3 T. TESS offers rapid T1 and T2 quantification within one single scan, and in particular B1 -insensitive T2 estimation. As a result, the new proposed method is of high interest for fast and reliable high-resolution T2 mapping, especially of the musculoskeletal system at high to ultra-high fields. Copyright © 2013 Wiley Periodicals, Inc.
Hong, Changki; Hwang, Jeewon; Cho, Kwang-Hyun; Shin, Insik
2015-01-01
Boolean networks have been widely used to model biological processes lacking detailed kinetic information. Despite their simplicity, Boolean network dynamics can still capture some important features of biological systems such as stable cell phenotypes represented by steady states. For small models, steady states can be determined through exhaustive enumeration of all state transitions. As the number of nodes increases, however, the state space grows exponentially thus making it difficult to find steady states. Over the last several decades, many studies have addressed how to handle such a state space explosion. Recently, increasing attention has been paid to a satisfiability solving algorithm due to its potential scalability to handle large networks. Meanwhile, there still lies a problem in the case of large models with high maximum node connectivity where the satisfiability solving algorithm is known to be computationally intractable. To address the problem, this paper presents a new partitioning-based method that breaks down a given network into smaller subnetworks. Steady states of each subnetworks are identified by independently applying the satisfiability solving algorithm. Then, they are combined to construct the steady states of the overall network. To efficiently apply the satisfiability solving algorithm to each subnetwork, it is crucial to find the best partition of the network. In this paper, we propose a method that divides each subnetwork to be smallest in size and lowest in maximum node connectivity. This minimizes the total cost of finding all steady states in entire subnetworks. The proposed algorithm is compared with others for steady states identification through a number of simulations on both published small models and randomly generated large models with differing maximum node connectivities. The simulation results show that our method can scale up to several hundreds of nodes even for Boolean networks with high maximum node connectivity. The
Controlling Unknown Saddle Type Steady States of Dynamical Systems with Latency in the Feedback Loop
DEFF Research Database (Denmark)
Tamasevicius, Arunas; Bumeliene, Skaidra; Tamaseviciute, Elena
2009-01-01
We suggest an adaptive control technique for stabilizing saddle type unstable steady states of dynamical systems. The controller is composed of an unstable and a stable high-pass filters operating in parallel. The mathematical model is considered analytically and numerically. The conjoint...
Electrically evoked auditory steady-state responses in Guinea pigs.
Jeng, Fuh-Cherng; Abbas, Paul J; Brown, Carolyn J; Miller, Charles A; Nourski, Kirill V; Robinson, Barbara K
2007-01-01
Most cochlear implant systems available today provide the user with information about the envelope of the speech signal. The goal of this study was to explore the feasibility of recording electrically evoked auditory steady-state response (ESSR) and in particular to evaluate the degree to which the response recorded using electrical stimulation could be separated from stimulus artifact. Sinusoidally amplitude-modulated electrical stimuli with alternating polarities were used to elicit the response in adult guinea pigs. Separation of the stimulus artifact from evoked neural responses was achieved by summing alternating polarity responses or by using spectral analysis techniques. The recorded response exhibited physiological response properties including a pattern of nonlinear growth and their abolishment following euthanasia or administration of tetrodotoxin. These findings demonstrate that the ESSR is a response generated by the auditory system and can be separated from electrical stimulus artifact. As it is evoked by a stimulus that shares important features of cochlear implant stimulation, this evoked potential may be useful in either clinical or basic research efforts. Copyright 2007 S. Karger AG, Basel.
A two-step iterative method for evolving nonlinear acoustic systems to a steady-state
Watson, Willie R.; Myers, Michael K.
1990-01-01
A new approach for evolving two-dimensional nonlinear acoustic systems with flow to a steady state is presented. The approach is a two-step iterative method which is tested on a benchmark acoustic problem for which an exact analytical solution is available. Results are also calculated for a nonlinear acoustic problem for which an exact analytical solution is not known. Results indicate that the two-step method represents a powerful, efficient, and stable method for evolving two-dimensional acoustic systems to a steady state, and that the method is applicable to any number of spatial dimensions and to other hyperbolic systems. It is noted that for the benchmark problem only a single iteration on the method is required when the transient and steady-state field are of the same order of magnitude; however, four iterations are required when the steady-state field is several orders of magnitude smaller than the transient field. This method requires six iterations before achieving a steady state for the nonlinear test problem.
Measurement of non-steady-state free fatty acid turnover
International Nuclear Information System (INIS)
Jensen, M.D.; Heiling, V.; Miles, J.M.
1990-01-01
The accuracy of non-steady-state equations for measuring changes in free fatty acid rate of appearance (Ra) is unknown. In the present study, endogenous lipolysis (traced with [ 14 C]-linoleate) was pharmacologically suppressed in six conscious mongrel dogs. A computer-responsive infusion pump was then used to deliver an intravenous oleic acid emulsion in both constant and linear gradient infusion modes. Both non-steady-state equations with various effective volumes of distribution (V) and steady-state equations were used to measure oleate Ra [( 14 C]oleate). Endogenous lipolysis did not change during the experiment. When oleate Ra increased in a linear gradient fashion, only non-steady-state equations with a large (150 ml/kg) V resulted in erroneous values (9% overestimate, P less than 0.05). In contrast, when oleate Ra decreased in a similar fashion, steady-state and standard non-steady-state equations (V = plasma volume = 50 ml/kg) overestimated total oleate Ra (18 and 7%, P less than 0.001 and P less than 0.05, respectively). Overall, non-steady-state equations with an effective V of 90 ml/kg (1.8 x plasma volume) allowed the most accurate estimates of oleate Ra
Parametrization of the feedback Hamiltonian realizing a pure steady state
International Nuclear Information System (INIS)
Yamamoto, Naoki
2005-01-01
Feedback control is expected to considerably protect quantum states against decoherence caused by interaction between the system and environment. Especially, Markovian feedback scheme developed by Wiseman can modify the properties of decoherence and eventually recover the purity of the steady state of the corresponding master equation. This paper provides a condition for which the modified master equation has a pure steady state. By applying this condition to a two-qubit system, we obtain a complete parametrization of the feedback Hamiltonian such that the steady state becomes a maximally entangled state
DEFF Research Database (Denmark)
Wedel, Stig; Lues, Dan
1984-01-01
The steady-state multiplicity features of an adiabatic fixed bed reactor were Investigated experimentally by the methanation of either CO or CO2 as test reactions. No more than two stable steady states were found at any operating conditions. The Langmuir-Hinshelwood kinetics of these reactions ca...
Archelas, Alain; Zhao, Wei; Faure, Bruno; Iacazio, Gilles; Kotik, Michael
2016-02-01
A detailed kinetic study based on steady-state and pre-steady-state measurements is described for the highly enantioselective epoxide hydrolase Kau2. The enzyme, which is a member of the α/β-hydrolase fold family, preferentially reacts with the (S,S)-enantiomer of trans-stilbene oxide (TSO) with an E value of ∼200. The enzyme follows a classical two-step catalytic mechanism with formation of an alkyl-enzyme intermediate in the first step and hydrolysis of this intermediate in a rate-limiting second step. Tryptophan fluorescence quenching during TSO conversion appears to correlate with alkylation of the enzyme. The steady-state data are consistent with (S,S) and (R,R)-TSO being two competing substrates with marked differences in k(cat) and K(M) values. The high enantiopreference of the epoxide hydrolase is best explained by pronounced differences in the second-order alkylation rate constant (k2/K(S)) and the alkyl-enzyme hydrolysis rate k3 between the (S,S) and (R,R)-enantiomers of TSO. Our data suggest that during conversion of (S,S)-TSO the two active site tyrosines, Tyr(157) and Tyr(259), serve mainly as electrophilic catalysts in the alkylation half-reaction, polarizing the oxirane oxygen of the bound epoxide through hydrogen bond formation, however, without fully donating their hydrogens to the forming alkyl-enzyme intermediate. Copyright © 2015 Elsevier Inc. All rights reserved.
Loriaux, Paul Michael; Tesler, Glenn; Hoffmann, Alexander
2013-01-01
The steady states of cells affect their response to perturbation. Indeed, diagnostic markers for predicting the response to therapeutic perturbation are often based on steady state measurements. In spite of this, no method exists to systematically characterize the relationship between steady state and response. Mathematical models are established tools for studying cellular responses, but characterizing their relationship to the steady state requires that it have a parametric, or analytical, expression. For some models, this expression can be derived by the King-Altman method. However, King-Altman requires that no substrate act as an enzyme, and is therefore not applicable to most models of signal transduction. For this reason we developed py-substitution, a simple but general method for deriving analytical expressions for the steady states of mass action models. Where the King-Altman method is applicable, we show that py-substitution yields an equivalent expression, and at comparable efficiency. We use py-substitution to study the relationship between steady state and sensitivity to the anti-cancer drug candidate, dulanermin (recombinant human TRAIL). First, we use py-substitution to derive an analytical expression for the steady state of a published model of TRAIL-induced apoptosis. Next, we show that the amount of TRAIL required for cell death is sensitive to the steady state concentrations of procaspase 8 and its negative regulator, Bar, but not the other procaspase molecules. This suggests that activation of caspase 8 is a critical point in the death decision process. Finally, we show that changes in the threshold at which TRAIL results in cell death is not always equivalent to changes in the time of death, as is commonly assumed. Our work demonstrates that an analytical expression is a powerful tool for identifying steady state determinants of the cellular response to perturbation. All code is available at http://signalingsystems.ucsd.edu/models-and-code/ or
Properties of the steady state distribution of electrons in semiconductors
Energy Technology Data Exchange (ETDEWEB)
Muscato, Orazio; Di Stefano, Vincenza [Catania Univ. degli Studi (Italy). Dipt. di Matematica e Informatica; Wagner, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany)
2010-07-01
This paper studies a Boltzmann transport equation with several electronphonon scattering mechanisms, which describes the charge transport in semiconductors. The electric field is coupled to the electron distribution function via Poisson's equation. Both the parabolic and the quasi-parabolic band approximations are considered. The steady state behaviour of the electron distribution function is investigated by a Monte Carlo algorithm. More precisely, several nonlinear functionals of the solution are calculated that quantify the deviation of the steady state from a Maxwellian distribution with respect to the wave-vector. On the one hand, the numerical results illustrate known theoretical statements about the steady state and indicate possible directions for future studies. On the other hand, the nonlinear functionals provide tools that can be used in the framework of Monte Carlo algorithms for detecting regions in which the steady state distribution has a relatively simple structure, thus providing a basis for domain decomposition methods. (orig.)
H-modes under steady-state conditions in JET
International Nuclear Information System (INIS)
Campbell, D.J.; Arshad, S.A.; Gondhalekar, A.; Thomas, P.R.
1994-01-01
Two H-mode regimes have been identified in JET in which edge localized modes (ELMs) maintain steady-state conditions. In the first regime, strong gas puffing was used in combined (ICRF plus NBI) heating experiments at powers of up to 20 MW. Rapid ELM activity occurred and at moderate powers (∼ 8 MW) steady-state H-modes with durations of up to 18s and energy confinement times of up to 95% of the JET/D-IIID scaling were established. At high toroidal beta (β N ≥ 1.5) H-mode plasmas were also found to exhibit regular ELM behaviour which resulted in steady-state H-modes with confinement enhancement of ∼ 90% of the JET/D-IIID scaling. This paper examines the plasma properties of these regimes and assesses their implications for steady-state H-mode operation in ignited plasmas. (author)
Stabilizing unstable steady states using extended time-delay autosynchronization.
Chang, Austin; Bienfang, Joshua C.; Hall, G. Martin; Gardner, Jeff R.; Gauthier, Daniel J.
1998-12-01
We describe a method for stabilizing unstable steady states in nonlinear dynamical systems using a form of extended time-delay autosynchronization. Specifically, stabilization is achieved by applying a feedback signal generated by high-pass-filtering in real time the dynamical state of the system to an accessible system parameter or variables. Our technique is easy to implement, does not require knowledge of the unstable steady state coordinates in phase space, automatically tracks changes in the system parameters, and is more robust to broadband noise than previous schemes. We demonstrate the controller's efficacy by stabilizing unstable steady states in an electronic circuit exhibiting low-dimensional temporal chaos. The simplicity and robustness of the scheme suggests that it is ideally suited for stabilizing unstable steady states in ultra-high-speed systems. (c) 1998 American Institute of Physics.
Quantum thermodynamics of nanoscale steady states far from equilibrium
Taniguchi, Nobuhiko
2018-04-01
We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.
Karst, Daniel J; Steinhoff, Robert F; Kopp, Marie R G; Serra, Elisa; Soos, Miroslav; Zenobi, Renato; Morbidelli, Massimo
2017-07-01
Perfusion cell culture processes allow the steady-state culture of mammalian cells at high viable cell density, which is beneficial for overall product yields and homogeneity of product quality in the manufacturing of therapeutic proteins. In this study, the extent of metabolic steady state and the change of the metabolite profile between different steady states of an industrial Chinese hamster ovary (CHO) cell line producing a monoclonal antibody (mAb) was investigated in stirred tank perfusion bioreactors. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) of daily cell extracts revealed more than a hundred peaks, among which 76 metabolites were identified by tandem MS (MS/MS) and high resolution Fourier transform ion cyclotron resonance (FT-ICR) MS. Nucleotide ratios (Uridine (U)-ratio, nucleotide triphosphate (NTP)-ratio and energy charge (EC)) and multivariate analysis of all features indicated a consistent metabolite profile for a stable culture performed at 40 × 10 6 cells/mL over 26 days of culture. Conversely, the reactor was operated continuously so as to reach three distinct steady states one after the other at 20, 60, and 40 × 10 6 cells/mL. In each case, a stable metabolite profile was achieved after an initial transient phase of approximately three days at constant cell density when varying between these set points. Clear clustering according to cell density was observed by principal component analysis, indicating steady-state dependent metabolite profiles. In particular, varying levels of nucleotides, nucleotide sugar, and lipid precursors explained most of the variance between the different cell density set points. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:879-890, 2017. © 2016 American Institute of Chemical Engineers.
Robust Steady State Analysis of the Power Grid
Pandey, Amritanshu; Jereminov, Marko; Wagner, Martin R.; Bromberg, David M.; Hug, Gabriela; Pileggi, Larry
2018-01-01
A robust methodology for obtaining the steady-state solution of the power grid is essential for reliable operation as well as planning of the future transmission and distribution grid. At present, disparate methods exist for steady-state analysis of the transmission (power flow) and distribution power grid (three-phase power flow). All existing alternating current (AC) power flow and three-phase power flow analyses formulate a non-linear problem that generally lacks the ability to ensure conv...
Steady-state leaching of tritiated water from silica gel
DEFF Research Database (Denmark)
Das, H.A.; Hou, Xiaolin
2009-01-01
Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion.......Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion....
Selection of steady states in planar Darcy convection
International Nuclear Information System (INIS)
Tsybulin, V.G.; Karasoezen, B.; Ergenc, T.
2006-01-01
The planar natural convection of an incompressible fluid in a porous medium is considered. We study the selection of steady states under temperature perturbations on the boundary. A selection map is introduced in order to analyze the selection of a steady state from a continuous family of equilibria which exists under zero boundary conditions. The results of finite-difference modeling for a rectangular enclosure are presented
Reliable and Efficient Procedure for Steady-State Analysis of Nonautonomous and Autonomous Systems
Directory of Open Access Journals (Sweden)
J. Dobes
2012-04-01
Full Text Available The majority of contemporary design tools do not still contain steady-state algorithms, especially for the autonomous systems. This is mainly caused by insufficient accuracy of the algorithm for numerical integration, but also by unreliable steady-state algorithms themselves. Therefore, in the paper, a very stable and efficient procedure for the numerical integration of nonlinear differential-algebraic systems is defined first. Afterwards, two improved methods are defined for finding the steady state, which use this integration algorithm in their iteration loops. The first is based on the idea of extrapolation, and the second utilizes nonstandard time-domain sensitivity analysis. The two steady-state algorithms are compared by analyses of a rectifier and a C-class amplifier, and the extrapolation algorithm is primarily selected as a more reliable alternative. Finally, the method based on the extrapolation naturally cooperating with the algorithm for solving the differential-algebraic systems is thoroughly tested on various electronic circuits: Van der Pol and Colpitts oscillators, fragment of a large bipolar logical circuit, feedback and distributed microwave oscillators, and power amplifier. The results confirm that the extrapolation method is faster than a classical plain numerical integration, especially for larger circuits with complicated transients.
Mühler, R
2012-05-01
Recording human auditory steady-state responses (ASSR) at different frequencies allows objective assessment of auditory thresholds. Common practice has been to record ASSR to pure tones that are sinusoidally modulated in amplitude and frequency. Recently, optimized chirp stimuli have been proposed to evoke transient as well as steady-state responses. Because of the resulting uncertainty about the different methods, this paper aims to reconsider the terminology of transient and steady-state responses. Two experiments demonstrate the smooth transition between transient and steady-state responses. In experiment 1, click-evoked auditory brainstem responses (ABR) were recorded over a wide range of stimulus repetition rates (24/s to 72/s). In experiment 2, auditory steady-state responses were recorded for the same stimulus repetition rates, using three different stimulus types: an amplitude modulated 1-kHz tone (AM), a 1-kHz tone-burst (TB) and a flat-spectrum chirp. Experiment 1 demonstrates the merging of the typical ABR wave complexes at higher repetition rates, forming a steady-state response. This effect can only be observed if the time window is extended far beyond the window traditionally used for clinical ABR recordings. Experiment 2 reveals similar ASSR amplitude spectra regardless of the stimulus type and repetition rate used. Steady-state responses can be evoked for a large variety of stimulus types and repetition rates. Thus, from a clinician's point of view, steady-state responses cannot be considered a new type of evoked responses. They differ from transient responses primarily in the frequency response method and the longer timeframe required.
Steady-state pulses and superradiance in short-wavelength, swept-gain amplifiers
International Nuclear Information System (INIS)
Bonifacio, R.; Hopf, F.A.; Meystre, P.; Scully, M.O.
1975-01-01
The steady-state behavior of amplifiers in which the excitation is swept at the speed of light is discussed in the semiclassical approximation. In the present work the case where the decay time of the population is comparable to that of the polarization is examined. Pulse propagation is shown to obey a generalized sine-Gordon equation which contains the effects of atomic relaxations. The analytical expression of the steady-state pulses (SSP) gives two threshold conditions. In the region of limited gain the SSP is a broad pulse with small area which can be obtained by small signal theory. In the second region of high gain the SSP is the superradiant π pulse. Its pulse power is not limited as in usual superradiant theory because, as is shown, for a swept excitation the cooperation-length limit does not exist
Calibration of a mass spectrometer in steady-state conditions
International Nuclear Information System (INIS)
Popov, E.V.; Kupryazhkin, A.Ya.
1982-01-01
The mass spectrometer calibration technique by 4 He in steady-state operation conditions by the method of gas expansion from the small volume into the large one using a capacitance micromanometer is described. For realizing steady-state operation of the mass-spectrometer one of the steam-mercury diffusion pumps has been replaced for an adsorption pump. Using adsorption pump permits to maintain working vacuum in the system for more than 3 h. The mass spectrometer calibration has been performed by comparing calibrated volume and mass spectrometer chamber volume. The mass spectrometer sensitivity value by 4 He in the steady-state operation ν=(4.1+-0.1)x10 - 7 Pa/mV is obtained
A steady state solution to a field reversed configuration
International Nuclear Information System (INIS)
Okamoto, M.
1987-01-01
To find a steady state field reversed configuration, a method is considered for sustaining the diamagnetic plasma current by a seed current externally driven at the field null point. The steady state solution is obtained by solving the one-dimensional fluid equations including equilibrium and transport. It is found that the amount of seed current necessary to maintain a steady field reversal depends strongly on τ B /τ N , where τ B and τ N are the magnetic diffusion times and the particle confinement time, respectively. As τ B /τ N increases, more flux is excluded from the plasma. The steady state solution is applied to a D-T ignited plasma. (author)
From Steady-State To Cyclic Metal Forming Processes
International Nuclear Information System (INIS)
Montmitonnet, Pierre
2007-01-01
Continuous processes often exhibit a high proportion of steady state, and have been modeled with steady-state formulations for thirty years, resulting in very CPU-time efficient computations. On the other hand, incremental forming processes generally remain a challenge for FEM software, because of the local nature of deformation compared with the size of the part to be formed, and of the large number of deformation steps needed. Among them however, certain semi-continuous metal forming processes can be characterized as periodic, or cyclic. In this case, an efficient computational strategy can be derived from the ideas behind the steady-state models. This will be illustrated with the example of pilgering, a seamless tube cold rolling process
Structural simplification of chemical reaction networks in partial steady states.
Madelaine, Guillaume; Lhoussaine, Cédric; Niehren, Joachim; Tonello, Elisa
2016-11-01
We study the structural simplification of chemical reaction networks with partial steady state semantics assuming that the concentrations of some but not all species are constant. We present a simplification rule that can eliminate intermediate species that are in partial steady state, while preserving the dynamics of all other species. Our simplification rule can be applied to general reaction networks with some but few restrictions on the possible kinetic laws. We can also simplify reaction networks subject to conservation laws. We prove that our simplification rule is correct when applied to a module of a reaction network, as long as the partial steady state is assumed with respect to the complete network. Michaelis-Menten's simplification rule for enzymatic reactions falls out as a special case. We have implemented an algorithm that applies our simplification rules repeatedly and applied it to reaction networks from systems biology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Contour analysis of steady state tokamak reactor performance
International Nuclear Information System (INIS)
Devoto, R.S.; Fenstermacher, M.E.
1990-01-01
A new method of analysis for presenting the possible operating space for steady state, non-ignited tokamak reactors is proposed. The method uses contours of reactor performance and plasma characteristics, fusion power gain, wall neutron flux, current drive power, etc., plotted on a two-dimensional grid, the axes of which are the plasma current I p and the normalized beta, β n = β/(I p /aB 0 ), to show possible operating points. These steady state operating contour plots are called SOPCONS. This technique is illustrated in an application to a design for the International Thermonuclear Experimental Reactor (ITER) with neutral beam, lower hybrid and bootstrap current drive. The utility of the SOPCON plots for pointing out some of the non-intuitive considerations in steady state reactor design is shown. (author). Letter-to-the-editor. 16 refs, 3 figs, 1 tab
Visualization and manipulation of meta-stable polarization variants in multiferroic materials
Directory of Open Access Journals (Sweden)
Moonkyu Park
2013-04-01
Full Text Available Here we demonstrate the role of meta-stable polarization variants in out-of-plane polarization switching behavior in epitaxially grown BiFeO3 thin films using angle-resolved piezoresponse force microscopy (AR-PFM. The out-of-plane polarization switching mainly occurred at the boundary between meta-stable and stable polarization domains, and was accompanied by a significant change in in-plane domain configuration from complicated structure with 12 polarization variants to simple stripe structure with 4 polarization variants. These results imply that the biased tip rearranges the delicately balanced domain configuration, which is determined by the competition between electrostatic and strain energies, into simple interweaving one that is more thermodynamically stable.
Steady-state pharmacokinetics and metabolism of voriconazole in patients.
Geist, Marcus J P; Egerer, Gerlinde; Burhenne, Jürgen; Riedel, Klaus-Dieter; Weiss, Johanna; Mikus, Gerd
2013-11-01
Voriconazole exhibits non-linear pharmacokinetics in adults and is said to be mainly metabolized by CYP2C19 and CYP3A4 to voriconazole-N-oxide. The aim of this study was to obtain data on steady-state pharmacokinetics after dosing for at least 14 days in patients taking additional medication and in vivo data on metabolites other than voriconazole-N-oxide. Thirty-one patients receiving voriconazole as regular therapeutic drug treatment during hospitalization participated in this prospective study. Pharmacokinetic profiles were obtained for the 12 h (dosing interval) after the first orally administered dose (400 mg) or (if possible and) after an orally administered maintenance dose (200 mg) following intake for at least 14 days (n = 14 after first dose; n = 23 after maintenance dose). Blood and urine samples were collected and the concentrations of voriconazole and three of its metabolites (the N-oxide, hydroxy-voriconazole and dihydroxy-voriconazole) were determined, as well as the CYP2C19 genotype of the patients. All other drugs taken by the participating patients were evaluated. A high variability of exposure (AUC) after the first dose was slightly reduced during steady-state dosing for voriconazole (82% to 71%) and the N-oxide (86% to 56%), remained high for hydroxy-voriconazole (79%) and even increased for dihydroxy-voriconazole (97% to 127%). In 16 of the 22 steady-state patients, trough plasma concentrations were steady state stayed almost constant. Hydroxylations of voriconazole seem to be quantitatively more important in its metabolism than N-oxidation. High variability in voriconazole exposure, as well as low steady-state trough plasma concentrations, suggest that the suggested steady-state dosage of 200 mg twice a day has to be increased to prevent disease progression. Therapeutic drug monitoring is probably necessary to optimize the voriconazole dose for individual patients.
Kostanyan, Artak E
2014-12-19
The multiple dual mode (MDM) counter-current chromatography (CCC) separation consists of a succession of two isocratic counter-current steps and is carried out in series alternating between normal phase and reversed phase operation. The performance of the MDM technique can be improved by the sample re-injection between each of the dual-mode steps. The objective of this work was to develop analytical expressions to describe the MDM CCC with periodic sample injection, which can be used to simulate these processes and select optimal operating conditions for the separation of a given feed mixture. Two possible methods of the MDM separation with periodic sample injection are considered: 1 - steady-state separation: the duration of the flow periods of the phases is kept constant for all the cycles and the steady-state regime is achieved after a certain number of cycles. 2 - non-steady-state separation with variable duration of phase elution steps. It is shown that proper selection of the duration of phase flow times allows to reach complete separation of solutes in continuous steady-state operation mode even in a low efficiency column. This mode of operation provides both high productivity and high resolution. The non-steady-state method with variable duration of phase elution steps offers several options to split a mixture into groups of compounds and/or concentrate target compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Non-equilibrium steady state in the hydro regime
Energy Technology Data Exchange (ETDEWEB)
Pourhasan, Razieh [Science Institute, University of Iceland,Dunhaga 5, 107 Reykjavik (Iceland)
2016-02-01
We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P=P(E). Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.
Emergence of advance waves in a steady-state universe
Energy Technology Data Exchange (ETDEWEB)
Hobart, R.H.
1979-10-01
In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state.
Emergence of advance waves in a steady-state universe
International Nuclear Information System (INIS)
Hobart, R.H.
1979-01-01
In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state
Stability of periodic steady-state solutions to a non-isentropic Euler-Poisson system
Liu, Cunming; Peng, Yue-Jun
2017-06-01
We study the stability of periodic smooth solutions near non-constant steady-states for a non-isentropic Euler-Poisson system without temperature damping term. The system arises in the theory of semiconductors for which the doping profile is a given smooth function. In this stability problem, there are no special restrictions on the size of the doping profile, but only on the size of the perturbation. We prove that small perturbations of periodic steady-states are exponentially stable for large time. For this purpose, we introduce new variables and choose a non-diagonal symmetrizer of the full Euler equations to recover dissipation estimates. This also allows to make the proof of the stability result very simple and concise.
Sassa, Akira; Beard, William A; Shock, David D; Wilson, Samuel H
2013-08-19
Human 8-oxoguanine DNA glycosylase (OGG1) excises the mutagenic oxidative DNA lesion 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Kinetic characterization of OGG1 is undertaken to measure the rates of 8-oxoG excision and product release. When the OGG1 concentration is lower than substrate DNA, time courses of product formation are biphasic; a rapid exponential phase (i.e. burst) of product formation is followed by a linear steady-state phase. The initial burst of product formation corresponds to the concentration of enzyme properly engaged on the substrate, and the burst amplitude depends on the concentration of enzyme. The first-order rate constant of the burst corresponds to the intrinsic rate of 8-oxoG excision and the slower steady-state rate measures the rate of product release (product DNA dissociation rate constant, k(off)). Here, we describe steady-state, pre-steady-state, and single-turnover approaches to isolate and measure specific steps during OGG1 catalytic cycling. A fluorescent labeled lesion-containing oligonucleotide and purified OGG1 are used to facilitate precise kinetic measurements. Since low enzyme concentrations are used to make steady-state measurements, manual mixing of reagents and quenching of the reaction can be performed to ascertain the steady-state rate (k(off)). Additionally, extrapolation of the steady-state rate to a point on the ordinate at zero time indicates that a burst of product formation occurred during the first turnover (i.e. y-intercept is positive). The first-order rate constant of the exponential burst phase can be measured using a rapid mixing and quenching technique that examines the amount of product formed at short time intervals (steady-state phase and corresponds to the rate of 8-oxoG excision (i.e. chemistry). The chemical step can also be measured using a single-turnover approach where catalytic cycling is prevented by saturating substrate DNA with enzyme (E>S). These approaches can measure elementary rate
the steady-state performance characteristics of single phase transfer
African Journals Online (AJOL)
2012-11-03
Nov 3, 2012 ... The paper reports the derivation of the steady- state equivalent circuit of a single phase transfer ... series opposition between the two halves of the ma- ..... from its equivalent circuit of fig 6 for different values of slip. Impedance due to forward field. Zf = Rf + jXf = Rr. 2(2s - 1). + jxr. 2. (19) in parallel with jxm. 2.
Canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states
Czech Academy of Sciences Publication Activity Database
Maes, C.; Netočný, Karel
2008-01-01
Roč. 82, č. 3 (2008), 30003/1-30003/6 ISSN 0295-5075 R&D Projects: GA ČR GC202/07/J051 Institutional research plan: CEZ:AV0Z10100520 Keywords : nonequilibrium fluctuations * steady state * Onsager- Machlup theory Subject RIV: BE - Theoretical Physics Impact factor: 2.203, year: 2008
Application of Monte Carlo Method to Steady State Heat Conduction ...
African Journals Online (AJOL)
The Monte Carlo method was used in modelling steady state heat conduction problems. The method uses the fixed and the floating random walks to determine temperature in the domain of the definition of the heat conduction equation, at a single point directly. A heat conduction problem with an irregular shaped geometry ...
Steady-state equations of even flux and scattering
International Nuclear Information System (INIS)
Verwaerde, D.
1985-11-01
Some mathematical properties of steady-state equation of even flux are shown in variational formalism. This theoretical frame allows to study the existence of a solution and its asymptotical behavior in opaque media (i.e. the relation with scattering equation). At last it allows to qualify the convergence velocity of resolution iterative processes used practically [fr
Principle of Entropy Maximization for Nonequilibrium Steady States
DEFF Research Database (Denmark)
Shapiro, Alexander; Stenby, Erling Halfdan
2002-01-01
The goal of this contribution is to find out to what extent the principle of entropy maximization, which serves as a basis for the equilibrium thermodynamics, may be generalized onto non-equilibrium steady states. We prove a theorem that, in the system of thermodynamic coordinates, where entropy...
Steady-state response of a micropolar generalized thermoelastic ...
Indian Academy of Sciences (India)
The linear theory of micropolar thermoelasticity was developed by extending the theory of micropolar continua to include thermal effects by Eringen [2] and Nowacki. [13]. Steady state response to moving loads in elasticity have been discussed in Fung [7]. Different authors [1,9,10,11,14,16±18] discussed different problems ...
Herd-Level Modeling and Steady-State Livestock Productivity ...
African Journals Online (AJOL)
... an outline of the scope for applications and addresses the prospects for refinement and model extensions. The algorithms for use in development of steady state derivations include transition of matrices in a Markov Chain approach, continuous differential equations and actuarial approach built on life and fecundity tables.
Combined Steady-State and Dynamic Heat Exchanger Experiment
Luyben, William L.; Tuzla, Kemal; Bader, Paul N.
2009-01-01
This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…
Correlates of Steady-State Haematocrit and Hepatosplenomegaly in ...
African Journals Online (AJOL)
Backgroup: Sickle cell disease is a common genetic disorder in Nigeria. Objectives: To determine the steady state haematocrit, liver size and spleen size in children with sickle cell disease and the factors that influence them. Methods: This was a retrospective study of children with sickle cell disorders who attended the ...
Plasticity, Fracture and Friction in Steady-State Plate Cutting
DEFF Research Database (Denmark)
Simonsen, Bo Cerup; Wierzbicki, Tomasz
1997-01-01
A closed form solution to the problem of steady-state wedge cutting through a ductile metal plate is presented. The considered problem is an idealization of a ship bottom raking process, i.e. a continuous cutting damage of a ship bottom by a hard knife-like rock in a grounding event. A new...
Classical Orbital Paramagnetism in Non-equilibrium Steady State
Indian Academy of Sciences (India)
Avinash A. Deshpande
2017-09-12
Sep 12, 2017 ... Abstract. We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-Markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of ...
A steady state model for anaerobic digestion of sewage sludges ...
African Journals Online (AJOL)
A steady state model for anaerobic digestion of sewage sludge is developed that comprises three sequential parts – a kinetic part from which the % COD removal and ... and a carbonate system weak acid/base chemistry part from which the digester pH is calculated from the partial pressure of CO2 and alkalinity generated.
Steady States of the Parametric Rotator and Pendulum
Bouzas, Antonio O.
2010-01-01
We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…
Practical error analysis of the quasi-steady-state approximation ...
African Journals Online (AJOL)
The Quasi-Steady-State Approximation (QSSA) is a method of getting approximate solutions to differential equations, developed heuristically in biochemistry early this century. It can produce acceptable and important results even when formal analytic and numerical procedures fail. It has become associated with singular ...
Regulation of the tolerogenic function of steady-state DCs.
Probst, Hans Christian; Muth, Sabine; Schild, Hansjörg
2014-04-01
Dendritic cells (DCs) are master regulators of T-cell responses. After sensing pathogen-derived molecular patterns (PAMPs), or signals of inflammation and cellular stress, DCs differentiate into potent activators of naïve CD4(+) and CD8(+) T cells through a process that is termed DC maturation. By contrast, DCs induce and maintain peripheral T-cell tolerance in the steady state, that is in the absence of overt infection or inflammation. However, the immunological steady state is not devoid of DC-activating stimuli, such as commensal microorganisms, subclinical infections, or basal levels of proinflammatory mediators. In the presence of these activating stimuli, DC maturation must be calibrated to ensure self-tolerance yet allow for adequate T-cell responses to infections. Here, we review the factors that are known to control DC maturation in the steady state and discuss their effect on the tolerogenic function of steady-state DCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Classical Orbital Paramagnetism in Non-equilibrium Steady State
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-Markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital ...
Dark Entangled Steady States of Interacting Rydberg Atoms
DEFF Research Database (Denmark)
Dasari, Durga; Mølmer, Klaus
2013-01-01
their short-lived excited states lead to rapid, dissipative formation of an entangled steady state. We show that for a wide range of physical parameters, this entangled state is formed on a time scale given by the strengths of coherent Raman and Rabi fields applied to the atoms, while it is only weakly...
A displacement based FE formulation for steady state problems
Yu, Y.
2005-01-01
In this thesis a new displacement based formulation is developed for elasto-plastic deformations in steady state problems. In this formulation the displacements are the primary variables, which is in contrast to the more common formulations in terms of the velocities as the primary variables. In a
Classical Orbital Paramagnetism in Non-equilibrium Steady State
Indian Academy of Sciences (India)
Avinash A. Deshpande
2017-09-12
Sep 12, 2017 ... Classical Orbital Paramagnetism in Non-equilibrium Steady State. AVINASH A. DESHPANDE. ∗ and N. KUMAR. Raman Research Institute, Bangalore 560 080, India. ∗. Corresponding author. E-mail: desh@rri.res.in. MS received 25 March 2017; accepted 31 July 2017; published online 12 September ...
Dust remobilization in fusion plasmas under steady state conditions
Tolias, P.; Ratynskaia, S.; de Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; I. Bykov,; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.
2016-01-01
The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic
Steady-state Operational Characteristics of Ghana Research ...
African Journals Online (AJOL)
Steady state operational characteristics of the 30 kW tank-in-pool type reactor named Ghana Research Reactor-1 were investigated after a successful on-site zero power critical experiments. The steadystate operational character-istics determined were the thermal neutron fluxes, maximum period of operation at nominal ...
Optimising performance in steady state for a supermarket refrigeration system
DEFF Research Database (Denmark)
Green, Torben; Kinnaert, Michel; Razavi-Far, Roozbeh
2012-01-01
Using a supermarket refrigeration system as an illustrative example, the paper postulates that by appropriately utilising knowledge of plant operation, the plant wide performance can be optimised based on a small set of variables. Focusing on steady state operations, the total system performance...
Stabilizing the border steady-state solution of two interacting ...
African Journals Online (AJOL)
In this paper, we have successfully developed a feedback control which has been used to stabilize an unstable steady-state solution (0, 3.3534). This convergence has occurred when the values of the final time are 190, 200, 210 and 220 which corresponds to the scenario when the value of the step length of our simulation ...
Ashworth, J. R.; Birdi, J. J.; Emmett, T. F.
1992-01-01
evolution of actinolite to more stable aluminous compositions. This is modelled by a non-steady-state modification of the theory, retaining local equilibrium in grain boundaries while relatively steep zoning profiles develop in grain interiors through slow intracrystalline diffusion. Replacement of actinolite by hornblende does not require a change in P- T conditions if actinolite is a kinetically determined, non-equilibrium product. The common preservation of a sharp contact between hornblende and actionolite layers may be explained by ineffectiveness of intracrystalline diffusion: according to the theory, given sufficient grain-boundary Al flux, a metastable actinolite + quartz layer in contact with hornblende may be diffusionally stable and may continue to grow in a steady state.
Auditory steady-state response in cochlear implant patients.
Torres-Fortuny, Alejandro; Arnaiz-Marquez, Isabel; Hernández-Pérez, Heivet; Eimil-Suárez, Eduardo
2018-03-19
Auditory steady state responses to continuous amplitude modulated tones at rates between 70 and 110Hz, have been proposed as a feasible alternative to objective frequency specific audiometry in cochlear implant subjects. The aim of the present study is to obtain physiological thresholds by means of auditory steady-state response in cochlear implant patients (Clarion HiRes 90K), with acoustic stimulation, on free field conditions and to verify its biological origin. 11 subjects comprised the sample. Four amplitude modulated tones of 500, 1000, 2000 and 4000Hz were used as stimuli, using the multiple frequency technique. The recording of auditory steady-state response was also recorded at 0dB HL of intensity, non-specific stimulus and using a masking technique. The study enabled the electrophysiological thresholds to be obtained for each subject of the explored sample. There were no auditory steady-state responses at either 0dB or non-specific stimulus recordings. It was possible to obtain the masking thresholds. A difference was identified between behavioral and electrophysiological thresholds of -6±16, -2±13, 0±22 and -8±18dB at frequencies of 500, 1000, 2000 and 4000Hz respectively. The auditory steady state response seems to be a suitable technique to evaluate the hearing threshold in cochlear implant subjects. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.
A waved journal bearing concept with improved steady-state and dynamic performance
Dimofte, Florin
1994-01-01
Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. A three wave, waved journal bearing geometry is used to show the geometry of this concept. The performance of generic waved bearings having either three, four, six, or eight waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of dynamic coefficients and fluid film stability. It was found that the bearing wave amplitude has an important influence on both steady-state and dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases. Also, the waved bearing becomes more stable as the wave amplitude increases. In addition, increasing the number of waves reduces the waved bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the waved bearing design for a specific application. It is concluded that the stiffness of an air bearing, due to the hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.
International Nuclear Information System (INIS)
Cobelli, C.; Toffolo, G.
1990-01-01
In vivo studies on the glucose system often require its perturbation by an exogenous input of glucose, whereas glucose turnover is assessed by infusing a glucose tracer. The constant infusion represents the usual format of tracer administration, but it has no clear advantage other than simplicity. Here we propose a different tracer infusion format. It consists of infusing the tracer in parallel with unlabeled glucose so as to maintain a constant specific activity in the infusate. This protocol does not increase experimental complexity and provides new information on the glucose system in non-steady state by allowing reconstruction of the endogenous component of glucose concentration. This reconstruction only requires very general assumptions, such as tracer-tracee indistinguishability and mass conservation; in particular it is independent of the glucose model structure, i.e., number of compartments and their interconnections. A proof of the result is given for a general nonlinear model of the glucose system. The constant specific activity input is also advantageous for non-steady-state calculations, because it reduces the variation in the measured plasma glucose specific activity. The glucose system has served as the prototype, but the protocol is applicable to other blood-borne substances. The radioactive tracer case has been considered, but the same results apply to stable isotope tracers as well; in this case they also become relevant in a somewhat different context, i.e., kinetic studies in steady state
40 CFR 92.130 - Determination of steady-state concentrations.
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Determination of steady-state....130 Determination of steady-state concentrations. (a)(1) For HC and NOX emissions, a steady-state... section. (2) For CO and CO2 emissions, a steady-state concentration measurement, measured after 300...
Steady-state propagation of interface corner crack
DEFF Research Database (Denmark)
Veluri, Badrinath; Jensen, Henrik Myhre
2013-01-01
Steady-state propagation of interface cracks close to three-dimensional corners has been analyzed. Attention was focused on modeling the shape of the interface crack front and calculating the critical stress for steady-state propagation of the crack. The crack propagation was investigated...... by estimating the fracture mechanics parameters that includes the strain energy release rate, crack front profiles and the three-dimensional mode-mixity along the interface crack front. A numerical approach was then applied for coupling the far field solutions based on the Finite Element Method to the near...... field (crack tip) solutions based on the J-integral. The adopted two-dimensional numerical approach for the calculation of fracture mechanical properties was compared with three-dimensional models for quarter-circular and straight sided crack front shapes. A quantitative approach was formulated based...
Theory of minimum dissipation of energy for the steady state
International Nuclear Information System (INIS)
Chu, T.K.
1992-02-01
The magnetic configuration of an inductively driven steady-state plasma bounded by a surface (or two adjacent surfaces) on which B·n = 0 is force-free: ∇xB = 2αB, where α is a constant, in time and in space. α is the ratio of the Poynting flux to the magnetic helicity flux at the boundary. It is also the ratio of the dissipative rates of the magnetic energy to the magnetic helicity in the plasma. The spatial extent of the configuration is noninfinitesimal. This global constraint is a result of the requirement that, for a steady-state plasma, the rate of change of the vector potential, ∂A/∂t, is constant in time and uniform in space
Theoretical analysis of steady state operating forces in control valves
Directory of Open Access Journals (Sweden)
Basavaraj Hubballi
2018-01-01
Full Text Available The controlling components, such as valves are used to regulate controlled fluid power. It is not always possible to calculate valve forces accurately, and with some types of valves even the existence of certain types of forces cannot be predicted with certainty. In many cases, however, the analysis can be made fairly completely and accurately. The assumption of steady state conditions is valid for the valve alone, but transient effects in the rest of the system may be large. These effects are particularly important with regard to the instability of valves, where the system may react on the valve in such a way as to make it squeal or oscillate, sometimes with large amplitude. The origin of the steady state flow force understood from a brief qualitative explanation. The following paper will summarize much of what is known about valve forces in the spool type controlling element.
Quantally fed steady-state domain distributions in stochastic inflation
International Nuclear Information System (INIS)
Bellini, M.; Sisterna, P.D.; Deza, R.R.
2000-01-01
Within the framework of stochastic inflationary cosmology it has been derived steady-state distributions P c (V) of domains in comoving coordinates, under the assumption of slow-rolling and for two specific choices of the coarse-grained inflation potential V(Φ). It has been modelled the process as a Starobinsky-like equation in V-space plus a time-independent source term P ω (V) which carries (phenomenologically) quantum-mechanical information drawn from either of two known solutions of the Wheeler-De Witt equation: Hartle-Hawking's and Vilenkin's wave functions. The presence of the source term leads to the existence of nontrivial steady-state distributions P c ω (V). The relative efficiencies of both mechanisms at different scales are compared for the proposed potentials
Non-equilibrium steady states in supramolecular polymerization
Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.
2017-06-01
Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.
Steady State Dynamic Operating Behavior of Universal Motor
Directory of Open Access Journals (Sweden)
Muhammad Khan Burdi
2015-01-01
Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known
Extending Molecular Theory to Steady-State Diffusing Systems
Energy Technology Data Exchange (ETDEWEB)
FRINK,LAURA J. D.; SALINGER,ANDREW G.; THOMPSON,AIDAN P.
1999-10-22
Predicting the properties of nonequilibrium systems from molecular simulations is a growing area of interest. One important class of problems involves steady state diffusion. To study these cases, a grand canonical molecular dynamics approach has been developed by Heffelfinger and van Swol [J. Chem. Phys., 101, 5274 (1994)]. With this method, the flux of particles, the chemical potential gradients, and density gradients can all be measured in the simulation. In this paper, we present a complementary approach that couples a nonlocal density functional theory (DFT) with a transport equation describing steady-state flux of the particles. We compare transport-DFT predictions to GCMD results for a variety of ideal (color diffusion), and nonideal (uphill diffusion and convective transport) systems. In all cases excellent agreement between transport-DFT and GCMD calculations is obtained with diffusion coefficients that are invariant with respect to density and external fields.
Optimal control of transitions between nonequilibrium steady states.
Directory of Open Access Journals (Sweden)
Patrick R Zulkowski
Full Text Available Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines.
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
2016-08-29
8,9]: A reaction such as ATP hydrolysis ( ATP → ADPþ Pi) produces entropy in the surrounding solution, and the chemical potential difference between...kinetic proofreading is achieved through breaking detailed balance, e.g., coupling the w ↔ x transition to the hydrolysis of ATP into ADP , whose...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences — reaches a steady state in
Visual steady state in relation to age and cognitive function
DEFF Research Database (Denmark)
Horwitz, Anna; Dyhr Thomsen, Mia; Wiegand, Iris
2017-01-01
examine the steady-state VEP power response (SSVEP-PR) in the alpha (8Hz) and gamma (36Hz) bands in 54 males (avg. age: 62.0 years) and compare these with 10 young healthy participants (avg. age 27.6 years). Furthermore, we correlate the individual alpha-to-gamma difference in relative visual-area power......, global cognition, executive function, memory, and education (p
Progress and prospect of true steady state operation with RF
Directory of Open Access Journals (Sweden)
Jacquinot Jean
2017-01-01
Full Text Available Operation of fusion confinement experiments in full steady state is a major challenge for the development towards fusion energy. Critical to achieving this goal is the availability of actively cooled plasma facing components and auxiliary systems withstanding the very harsh plasma environment. Equally challenging are physics issues related to achieving plasma conditions and current drive efficiency required by reactor plasmas. RF heating and current drive systems have been key instruments for obtaining the progress made until today towards steady state. They hold all the records of long pulse plasma operation both in tokamaks and in stellarators. Nevertheless much progress remains to be made in particular for integrating all the requirements necessary for maintaining in steady state the density and plasma pressure conditions of a reactor. This is an important stated aim of ITER and of devices equipped with superconducting magnets. After considering the present state of the art, this review will address the key issues which remain to be solved both in physics and technology for reaching this goal. They constitute very active subjects of research which will require much dedicated experimentation in the new generation of superconducting devices which are now in operation or becoming close to it.
Steady states of continuous-time open quantum walks
Liu, Chaobin; Balu, Radhakrishnan
2017-07-01
Continuous-time open quantum walks (CTOQW) are introduced as the formulation of quantum dynamical semigroups of trace-preserving and completely positive linear maps (or quantum Markov semigroups) on graphs. We show that a CTOQW always converges to a steady state regardless of the initial state when a graph is connected. When the graph is both connected and regular, it is shown that the steady state is the maximally mixed state. As shown by the examples in this article, the steady states of CTOQW can be very unusual and complicated even though the underlying graphs are simple. The examples demonstrate that the structure of a graph can affect quantum coherence in CTOQW through a long-time run. Precisely, the quantum coherence persists throughout the evolution of the CTOQW when the underlying topology is certain irregular graphs (such as a path or a star as shown in the examples). In contrast, the quantum coherence will eventually vanish from the open quantum system when the underlying topology is a regular graph (such as a cycle).
Optimization of steady-state beam-driven tokamak reactors
International Nuclear Information System (INIS)
Mikkelsen, D.R.; Singer, C.E.
1983-01-01
Recent developments in neutral beam technology prompt us to reconsider the prospects for steady-state tokamak reactors. A mathematical reactor model is developed that includes the physics of beam-driven currents and reactor power balance, as well as reactor and beam system costs. This model is used to find the plasma temperatures that minimize the reactor cost per unit of net electrical output. The optimum plasma temperatures are nearly independent of β and are roughly twice as high as the optimum temperatures for ignited reactors. If beams of neutral deuterium atoms with near-optimum energies of 1 to 2 MeV are used to drive the current in a reactor the size of the International Tokamak Reactor, then the optimum temperatures are typically T /SUB e/ approx. = 12 to 15 keV and T /SUB i/ approx. = 17 to 21 keV for a wide range of model parameters. Net electrical output rises rapidly with increasing deuterium beam energy for E /SUB b/ less than or equal to 400 keV, but rises only slowly above E /SUB b/ about 1 MeV. We estimate that beam-driven steady-state reactors could be economically competitive with pulsed-ignition reactors if cyclic-loading problems limit the toroidal magnetic field strength of pulsed reactors to less than or equal to 85% of that allowed in steady-state reactors
Steady state ventilation regimes in multiple room buildings
Flynn, Morris; Caulfield, Colm-Cille
2004-11-01
The ventilation of connected chambers offers a rich variety of flow behaviors. A two-chamber model is considered in which only one of the chambers is thermally forced yet both may communicate with the external environment. If the plume source has a finite volume flux, either chamber may become blocked i.e. completely filled with contaminated fluid. Hence, a steady, naturally ventilated regime is possible only for certain non-dimensional combinations of the effective vent area and the source volume and buoyancy fluxes. Steady state conditions are derived in a manner analogous to Linden, Lane-Serff & Smeed (1990) and Woods, Caulfield & Phillips (2003). Unfortunately, these conditions cannot specify the buoyant layer depth in the unforced room for which the transient evolution toward steady state must also be considered. Results from this analysis (performed in the limiting case of a plume source with zero volume flux) suggest that at steady state, the buoyant layer depth in the unforced chamber may be either larger or smaller than that of the forced chamber.
Steady-state oxygen-solubility in niobium
International Nuclear Information System (INIS)
Schulze, K.; Jehn, H.
1977-01-01
During annealing of niobium in oxygen in certain temperature and pressure ranges steady states are established between the absorption of molecular oxygen and the evaporation of volatile oxides. The oxygen concentration in the niobium-oxygen α-solid solution is a function of oxygen pressure and temperature and has been redetermined in the ranges 10 -5 - 10 -2 Pa O 2 and 2,070 - 2,470 K. It follows differing from former results the equation csub(o) = 9.1 x 10 -6 x sub(po2) x exp (502000/RT) with csub(o) in at.-ppm, sub(po2) in Pa, T in K, R = 8.31 J x mol -1 x K -1 . The existence of steady states is limited to a temperature range from 1870 to 2470 K and to oxygen concentrations below the solubility limit given by solidus and solvus lines in the T-c diagram. In the experiments high-purity niobium wires with a specific electrical ratio rho (273 K)/rho(4.2 K) > 5,000 have been gassed under isothermal-isobaric conditions until the steady state has been reached. The oxygen concentration has been determined analytically by vacuum fusion extraction with platinum-flux technique as well as by electrical residual resistivity measurements at 4.2 K. (orig.) [de
Transient and steady-state currents in epoxy resin
International Nuclear Information System (INIS)
Guillermin, Christophe; Rain, Pascal; Rowe, Stephen W
2006-01-01
Charging and discharging currents have been measured in a diglycidyl ether of bisphenol-A epoxy resin with and without silica fillers, below and above its glass transition temperature T g = 65 deg. C. Both transient and steady-state current densities have been analysed. The average applied fields ranged from 3 to 35 kV mm -1 with a sample thickness of 0.5 mm. Above T g , transient currents suggested a phenomenon of charge injection forming trapped space charges even at low fields. Steady-state currents confirmed that the behaviour was not Ohmic and suggested Schottky-type injection. Below T g , the current is not controlled by the metal-dielectric interface but by the conduction in the volume: the current is Ohmic at low fields and both transient and steady-state currents suggest a phenomenon of space-charge limited currents at high fields. The field threshold is similar in the filler-free and the filled resin. Values in the range 12-17 kV mm -1 have been measured
Myserlis, I.; Angelakis, E.; Kraus, A.; Liontas, C. A.; Marchili, N.; Aller, M. F.; Aller, H. D.; Karamanavis, V.; Fuhrmann, L.; Krichbaum, T. P.; Zensus, J. A.
2018-01-01
We present an analysis pipeline that enables the recovery of reliable information for all four Stokes parameters with high accuracy. Its novelty relies on the effective treatment of the instrumental effects even before the computation of the Stokes parameters, contrary to conventionally used methods such as that based on the Müller matrix. For instance, instrumental linear polarization is corrected across the whole telescope beam and significant Stokes Q and U can be recovered even when the recorded signals are severely corrupted by instrumental effects. The accuracy we reach in terms of polarization degree is of the order of 0.1-0.2%. The polarization angles are determined with an accuracy of almost 1°. The presented methodology was applied to recover the linear and circular polarization of around 150 active galactic nuclei, which were monitored between July 2010 and April 2016 with the Effelsberg 100-m telescope at 4.85 GHz and 8.35 GHz with a median cadence of 1.2 months. The polarized emission of the Moon was used to calibrate the polarization angle measurements. Our analysis showed a small system-induced rotation of about 1° at both observing frequencies. Over the examined period, five sources have significant and stable linear polarization; three sources remain constantly linearly unpolarized; and a total of 11 sources have stable circular polarization degree mc, four of them with non-zero mc. We also identify eight sources that maintain a stable polarization angle. All this is provided to the community for future polarization observations reference. We finally show that our analysis method is conceptually different from those traditionally used and performs better than the Müller matrix method. Although it has been developed for a system equipped with circularly polarized feeds, it can easily be generalized to systems with linearly polarized feeds as well. The data used to create Fig. C.1 are only available at the CDS via anonymous ftp to http
Steady-state responses of a belt-drive dynamical system under dual excitations
Ding, Hu
2016-02-01
The stable steady-state periodic responses of a belt-drive system with a one-way clutch are studied. For the first time, the dynamical system is investigated under dual excitations. The system is simultaneously excited by the firing pulsations of the engine and the harmonic motion of the foundation. Nonlinear discrete-continuous equations are derived for coupling the transverse vibration of the belt spans and the rotations of the driving and driven pulleys and the accessory pulley. The nonlinear dynamics is studied under equal and multiple relations between the frequency of the firing pulsations and the frequency of the foundation motion. Furthermore, translating belt spans are modeled as axially moving strings. A set of nonlinear piecewise ordinary differential equations is achieved by using the Galerkin truncation. Under various relations between the excitation frequencies, the time histories of the dynamical system are numerically simulated based on the time discretization method. Furthermore, the stable steady-state periodic response curves are calculated based on the frequency sweep. Moreover, the convergence of the Galerkin truncation is examined. Numerical results demonstrate that the one-way clutch reduces the resonance amplitude of the rotations of the driven pulley and the accessory pulley. On the other hand, numerical examples prove that the resonance areas of the belt spans are decreased by eliminating the torque-transmitting in the opposite direction. With the increasing amplitude of the foundation excitation, the damping effect of the one-way clutch will be reduced. Furthermore, as the amplitude of the firing pulsations of the engine increases, the jumping phenomena in steady-state response curves of the belt-drive system with or without a one-way clutch both occur.
Fitting Boolean networks from steady state perturbation data.
Almudevar, Anthony; McCall, Matthew N; McMurray, Helene; Land, Hartmut
2011-10-05
Gene perturbation experiments are commonly used for the reconstruction of gene regulatory networks. Typical experimental methodology imposes persistent changes on the network. The resulting data must therefore be interpreted as a steady state from an altered gene regulatory network, rather than a direct observation of the original network. In this article an implicit modeling methodology is proposed in which the unperturbed network of interest is scored by first modeling the persistent perturbation, then predicting the steady state, which may then be compared to the observed data. This results in a many-to-one inverse problem, so a computational Bayesian approach is used to assess model uncertainty. The methodology is first demonstrated on a number of synthetic networks. It is shown that the Bayesian approach correctly assigns high posterior probability to the network structure and steady state behavior. Further, it is demonstrated that where uncertainty of model features is indicated, the uncertainty may be accurately resolved with further perturbation experiments. The methodology is then applied to the modeling of a gene regulatory network using perturbation data from nine genes which have been shown to respond synergistically to known oncogenic mutations. A hypothetical model emerges which conforms to reported regulatory properties of these genes. Furthermore, the Bayesian methodology is shown to be consistent in the sense that multiple randomized applications of the fitting algorithm converge to an approximately common posterior density on the space of models. Such consistency is generally not feasible for algorithms which report only single models. We conclude that fully Bayesian methods, coupled with models which accurately account for experimental constraints, are a suitable tool for the inference of gene regulatory networks, in terms of accuracy, estimation of model uncertainty, and experimental design.
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
Directory of Open Access Journals (Sweden)
O. Raz
2016-05-01
Full Text Available Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.
A steady state tokamak operation by use of magnetic monopoles
International Nuclear Information System (INIS)
Narihara, K.
1991-12-01
A steady state tokamak operation based on a magnetic monopole circuit is considered. Circulation of a chain of iron cubes which trap magnetic monopoles generates the needed loop voltage. The monopole circuit is enclosed by a series of solenoid coils in which magnetic field is feedback controlled so that the force on the circuit balance against the mechanical friction. The driving power is supplied through the current sources of poloidal, ohmic and solenoid coils. The current drive efficiency is same as that of the ohmic current drive. (author)
On the minimum circulating power of steady state tokamaks
Energy Technology Data Exchange (ETDEWEB)
Itoh, K.; Itoh, S.; Fukuyama, A.; Yagi, M.
1995-07-01
Circulating power for the sustenance and profile control of the steady state tokamak plasmas is discussed. The simultaneous fulfillment of the MHD stability at high beta value, the improved confinement and the stationary equilibrium requires the rotation drive as well as the current drive. In addition to the current drive efficiency, the efficiency for the rotation drive is investigated. The direct rotation drive by the external torque, such as the case of beam injection, is not efficient enough. The mechanism and the magnitude of the spontaneous plasma rotation are studied. (author).
Non-steady-state heat transfer of finned surface
International Nuclear Information System (INIS)
Okamoto, Y.; Kameoka, T.
1974-01-01
For many purposes, the finned surface is being used to increase heat transfer. Heat exchangers and fuel elements of gas cooled nuclear reactors require the use of the finned surface for high flux heat transfer. The problem is analytically treated by deriving a non-steady-state equation of radiative and convective heat transfer of annular and radial fins in case of sudden change of the fin-root temperature or heat flux. The numerical solution of temperature distribution along the fin is obtained for several typical transient cases. (U.S.)
Steady State Evoked Responses as a Measure of Tracking Difficulty.
1979-11-30
8217) STEADY STATEr OKD !~PNE SAMAUE0;1 Jun 0.-30 Sep 79\\ TRACKIN& DFCUTY: HOR~a) a CONTRACT OR GRANT NUMBER(&) 7jU1HO . F960-79-C-156//j t- 3.PRFRIG...I.CONTROLLING OFFICE NAME AND ADDRESS,,.AARAA . Air Force Office of Scientific Research -(L 13. NUMBER OF PAGES Boiling AFB DC 20332 4 14...for future research were discussed. l AA SECURITY CLASIFI ATION OF TMIS PAGE(Wha, Data tateeE UM -R-X- 3 0-02 10 STEADY STATE EVOKED RESPONSES AS A
Steady-state current drive by lower hybrid waves
International Nuclear Information System (INIS)
Belyanskaya, N.V.; Dnestrovskii, Y.N.; Kostomarov, D.P.; Smirnov, A.P.
1986-01-01
Steady-state current drive in a plasma by lower-hybrid waves with a square-wave spectrum is analyzed in the linear approximation. A linearized two-dimensional kinetic equation in velocity space for the electron distribution function is reduced to a one-dimensional expansion in Legendre polynomials. A numerical solution is found for the complete equation, and an analytic solution is found for the asymptotic equation. The results can be used to determine the effect of the spectral width of the excited waves on the efficiency of the current drive. The analytic solution agrees well with the numerical solution
MARS input data for steady-state calculation of ATLAS
International Nuclear Information System (INIS)
Park, Hyun Sik; Euh, D. J.; Choi, K. Y.; Kwon, T. S.; Jeong, J. J.; Baek, W. P.
2004-12-01
An integral effect test loop for Pressurized Water Reactors (PWRs), the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), is under construction by Thermal-Hydraulics Safety Research Division in Korea Atomic Energy Research Institute (KAERI). This report includes calculation sheets of the input for the best-estimate system analysis code, the MARS code, based on the ongoing design features of ATLAS. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400. The contents of this report are divided into three parts: (1) core and reactor vessel, (2) steam generator and steam line, and (3) primary piping, pressurizer and reactor coolant pump. The steady-state analysis for the ATLAS facility will be performed based on these calculation sheets, and its results will be applied to the detailed design of ATLAS. Additionally, the calculation results will contribute to getting optimum test conditions and preliminary operational test conditions for the steady-state and transient experiments
Plasma control issues for an advanced steady state tokamak reactor
International Nuclear Information System (INIS)
Moreau, D.
2001-01-01
This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)
Concept study of the Steady State Tokamak Reactor (SSTR)
International Nuclear Information System (INIS)
1991-06-01
The Steady State Tokamak Reactor (SSTR) concept has been proposed as a realistic fusion power reactor to be built in the near future. An overall concept of SSTR is introduced which is based on a small extension of the present day physics and technologies. The major feature of SSTR is the maximum utilization of a bootstrap current in order to reduce the power required for the steady state operation. This requirement leads to the choice of moderate current (12 MA), and high βp (2.0) for the device, which are achieved by selecting high aspect ratio (A=4) and high toroidal magnetic field (16.5 T). A negative-ion-based neutral beam injection system is used both for heating and central current drive. Notable engineering features of SSTR are: the use of a uniform vacuum vessel and periodical replacements of the first wall and blanket layers and significant reduction of the electromagnetic force with the use of functionally gradient material. It is shown that a tokamak machine comparable to ITER in size can become a power reactor capable of generating about 1 GW of electricity with a plant efficiency of ∼30%. (author)
MHD stability regimes for steady state and pulsed reactors
International Nuclear Information System (INIS)
Jardin, S.C.; Kessel, C.E.; Pomphrey, N.
1994-02-01
A tokamak reactor will operate at the maximum value of β≡2μ 0 /B 2 that is compatible with MHD stability. This value depends upon the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near one, I bs /I p ∼ 1, which constrains the product of the inverse aspect ratio and the plasma poloidal beta to be near unity, ε β p ∼ 1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during the ARIES I, II/IV, and III and the PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements on the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies is also discussed
Steady state magnetic field configurations for the earth's magnetotail
International Nuclear Information System (INIS)
Hau, L.N.; Wolf, R.A.; Voigt, G.H.; Wu, C.C.
1989-01-01
The authors present a two-dimensional, force-balanced magnetic field model in which flux tubes have constant pVγ throughout an extended region of the nightside plasma sheet, between approximately 36 R E geocentric distance and the region of the inner edge of the plasma sheet. They have thus demonstrated the theoretical existence of a steady state magnetic field configuration that is force-balanced and also consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD (isotropic pressure, perfect conductivity). The numerical solution was constructed for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The primary characteristics of the steady state convection solution are (1) a pressure maximum just tailward of the inner edge of the plasma sheet and (2) a deep, broad minimum in equatorial magnetic field strength B ze , also just tailward of the inner edge. The results are consistent with Erickson's (1985) convection time sequences, which exhibited analogous pressure peaks and B ze minima. Observations do not indicate the existence of a B ze minimum, on the average. They suggest that the configurations with such deep minima in B ze may be tearing-mode unstable, thus leading to substorm onset in the inner plasma sheet
True constructive interference in the steady state (trueCISS).
Hilbert, Tom; Nguyen, Damien; Thiran, Jean-Philippe; Krueger, Gunnar; Kober, Tobias; Bieri, Oliver
2018-04-01
To introduce a novel time-efficient method, termed true constructive interference in the steady state (trueCISS), that not only solves the problem of banding artifacts for balanced steady-state free precession (bSSFP) but also provides its genuine, that is, true, on-resonant signal. After a compressed sensing reconstruction from a set of highly undersampled phase-cycled bSSFP scans, the local off-resonance, relaxation time ratio, and equilibrium magnetization are voxel-wise estimated using a dictionary-based fitting routine. Subsequently, on-resonant bSSFP images are generated using the previously estimated parameters. Due to the high undersampling factors used, the acquisition time is not prolonged with respect to a standard CISS acquisition. From a set of 16 phase-cycled SSFP scans in combination with an eightfold undersampling, both phantom and in vivo whole-brain experiments demonstrate that banding successfully can be removed. Additionally, trueCISS allows the derivation of synthetic bSSFP images with arbitrary flip angles, which enables image contrasts that may not be possible to acquire in practice due to safety constraints. TrueCISS offers banding-free bSSFP images with on-resonant signal intensity and without requiring additional acquisition time compared to conventional methods. Magn Reson Med 79:1901-1910, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Radial fast interrupted steady-state (FISS) magnetic resonance imaging.
Koktzoglou, Ioannis; Edelman, Robert R
2018-04-01
To report a highly interrupted radial variant of balanced steady-state free precession (bSSFP) imaging, termed fast interrupted steady-state (FISS), for decreasing flow artifact as well as fat signal conspicuity with respect to bSSFP, and saturation effects vis-à-vis fast low-angle shot (FLASH) imaging. Numerical simulations, phantom studies, and human studies were conducted to examine the imaging contrast, off-resonance behavior, and flow properties of FISS. Human studies applied FISS for cine cardiac imaging and ungated nonenhanced MR angiography (MRA) of the legs, neck, and brain. Comparisons were made with bSSFP and FLASH imaging. Simulations revealed that FISS retains the high signal levels of bSSFP for stationary on-resonant spins, while reducing undesirable signal heterogeneity from flowing spins. Phantom studies agreed with the simulations, and showed that FISS reduces fat signal and flow artifact with respect to bSSFP imaging. FISS imaging in human subjects agreed with the simulations and phantom studies, and showed reduced saturation artifact compared with FLASH imaging. FISS imaging reduces flow artifact and fat signal conspicuity with respect to bSSFP imaging, and ameliorates arterial signal saturation observed with FLASH imaging. Potential clinical applications include fat-suppressed cine imaging and ungated nonenhanced MRA. Magn Reson Med 79:2077-2086, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Steady-State ALPS for Real-Valued Problems
Hornby, Gregory S.
2009-01-01
The two objectives of this paper are to describe a steady-state version of the Age-Layered Population Structure (ALPS) Evolutionary Algorithm (EA) and to compare it against other GAs on real-valued problems. Motivation for this work comes from our previous success in demonstrating that a generational version of ALPS greatly improves search performance on a Genetic Programming problem. In making steady-state ALPS some modifications were made to the method for calculating age and the method for moving individuals up layers. To demonstrate that ALPS works well on real-valued problems we compare it against CMA-ES and Differential Evolution (DE) on five challenging, real-valued functions and on one real-world problem. While CMA-ES and DE outperform ALPS on the two unimodal test functions, ALPS is much better on the three multimodal test problems and on the real-world problem. Further examination shows that, unlike the other GAs, ALPS maintains a genotypically diverse population throughout the entire search process. These findings strongly suggest that the ALPS paradigm is better able to avoid premature convergence then the other GAs.
Transient and steady-state selection in the striatal microcircuit
Directory of Open Access Journals (Sweden)
Adam eTomkins
2014-01-01
Full Text Available Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's Disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.
40 CFR 86.1362-2010 - Steady-state testing with a ramped-modal cycle.
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Steady-state testing with a ramped... Exhaust Test Procedures § 86.1362-2010 Steady-state testing with a ramped-modal cycle. This section describes how to test engines under steady-state conditions. For model years through 2009, manufacturers may...
40 CFR 86.1362-2007 - Steady-state testing with a ramped-modal cycle.
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Steady-state testing with a ramped... Exhaust Test Procedures § 86.1362-2007 Steady-state testing with a ramped-modal cycle. This section describes how to test engines under steady-state conditions. Manufacturers may alternatively use the...
40 CFR 85.2225 - Steady state test exhaust analysis system-EPA 91.
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Steady state test exhaust analysis... Performance Warranty Short Tests § 85.2225 Steady state test exhaust analysis system—EPA 91. (a) Special... for steady state short tests consists, at a minimum, of a tailpipe probe; a flexible sample line; a...
40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed...(seconds) Engine speed Torque(percent) 1, 2 1a Steady-state 53 Engine governed 100. 1b Transition 20 Engine...
40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Steady-state testing with a discrete... Exhaust Test Procedures § 86.1363-2007 Steady-state testing with a discrete-mode cycle. This section describes an alternate procedure for steady-state testing that manufacturers may use through the 2009 model...
40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix..., App. II Appendix II to Part 1042—Steady-State Duty Cycles (a) The following duty cycles apply as... Time in mode(seconds) Engine speed 1, 3 Power (percent) 2, 3 1aSteady-state 229 Maximum test speed 100...
40 CFR 85.2230 - Steady state test dynamometer-EPA 91.
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Steady state test dynamometer-EPA 91... Warranty Short Tests § 85.2230 Steady state test dynamometer—EPA 91. (a) Special calendar and model year... or engines. (b) The chassis dynamometer for steady state short tests must provide the capabilities...
Stable L-band multi-wavelength SOA fiber laser based on polarization rotation.
Liu, Tonghui; Jia, Dongfang; Yang, Tianxin; Wang, Zhaoying; Liu, Ying
2017-04-01
We propose and experimentally demonstrate a stable multi-wavelength fiber ring laser operating in the L-band with wavelength spacing of 25 GHz. The mechanism is induced by a polarization rotation intensity equalizer consisting of a semiconductor optical amplifier and polarization devices. A Fabry-Perot filter is inserted into the cavity to serve as a multi-wavelength selection device. Stable L-band multi-wavelength lasing with 3 dB uniformity of 21.2 nm, and simultaneous oscillation of 101 lines with wavelength spacing of 25 GHz, is obtained.
Integrated modeling of high βN steady state scenario on DIII-D
Park, J. M.; Ferron, J. R.; Holcomb, C. T.; Buttery, R. J.; Solomon, W. M.; Batchelor, D. B.; Elwasif, W.; Green, D. L.; Kim, K.; Meneghini, O.; Murakami, M.; Snyder, P. B.
2018-01-01
Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with βN > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state (d/dt = 0) solutions and reproduces most features of DIII-D high βN discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high qmin > 2 scenario achieves stable operation at βN as high as 5 by using a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high βN steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.
Active ideal sedimentation: exact two-dimensional steady states.
Hermann, Sophie; Schmidt, Matthias
2018-02-28
We consider an ideal gas of active Brownian particles that undergo self-propelled motion and both translational and rotational diffusion under the influence of gravity. We solve analytically the corresponding Smoluchowski equation in two space dimensions for steady states. The resulting one-body density is given as a series, where each term is a product of an orientation-dependent Mathieu function and a height-dependent exponential. A lower hard wall is implemented as a no-flux boundary condition. Numerical evaluation of the suitably truncated analytical solution shows the formation of two different spatial regimes upon increasing Peclet number. These regimes differ in their mean particle orientation and in their variation of the orientation-averaged density with height.
Analysis of steady-state ductile crack growth
DEFF Research Database (Denmark)
Niordson, Christian
1999-01-01
The fracture strength under quasi-static steady-state crack growth in an elastic-plastic material joined by a laser weld is analyzed. Laser welding gives high mismatch between the yield stress within the weld and the yield stress in the base material. This is due to the fast termic cycle, which...... the finite element mesh remains fixed relative to the tip of the growing crack. Fracture is modelled using two different local crack growth criteria. One is a crack opening displacement criterion, while the other is a model in which a cohesive zone is imposed in front of the crack tip along the fracture zone....... Both models predict that in general a thinner laser weld gives higher interface strength. Furthermore, both fracture criteria show, that the preferred path of the crack is close outside the weld material; a phenomenon also observed in experiments....
Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion
Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur
2017-01-01
Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.
Nuclide Importance and the Steady-State Burnup Equation
International Nuclear Information System (INIS)
Sekimoto, Hiroshi; Nemoto, Atsushi
2000-01-01
Conventional methods for evaluating some characteristic values of nuclides relating to burnup in a given neutron spectrum are reviewed in a mathematically systematic way, and a new method based on the importance theory is proposed. In this method, these characteristic values of a nuclide are equivalent to the importances of the nuclide. By solving the equation adjoint to the steady-state burnup equation with a properly chosen source term, the importances for all nuclides are obtained simultaneously.The fission number importance, net neutron importance, fission neutron importance, and absorbed neutron importance are evaluated and discussed. The net neutron importance is a measure directly estimating neutron economy, and it can be evaluated simply by calculating the fission neutron importance minus the absorbed neutron importance, where only the absorbed neutron importance depends on the fission product. The fission neutron importance and absorbed neutron importance are analyzed separately, and detailed discussions of the fission product effects are given for the absorbed neutron importance
Fast Prediction Method for Steady-State Heat Convection
Wáng, Yì
2012-03-14
A reduced model by proper orthogonal decomposition (POD) and Galerkin projection methods for steady-state heat convection is established on a nonuniform grid. It was verified by thousands of examples that the results are in good agreement with the results obtained from the finite volume method. This model can also predict the cases where model parameters far exceed the sample scope. Moreover, the calculation time needed by the model is much shorter than that needed for the finite volume method. Thus, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering and technology, such as reaction and turbulence. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stationary Distribution and Thermodynamic Relation in Nonequilibrium Steady States
Komatsu, Teruhisa S.
2010-01-01
We describe our recent attempts toward statistical mechanics and thermodynamics for nonequilibrium steady states (NESS) realized, e.g., in a heat conducting system. Our first result is a simple expression of the probability distribution (of microscopic states) of a NESS. Our second result is a natural extension of the thermodynamic Clausius relation and a definition of an accompanying entropy in NESS. This entropy coincides with the normalization constant appearing in the above mentioned microscopic expression of NESS, and has an expression similar to the Shannon entropy (with a further symmetrization). The NESS entropy proposed here is a clearly defined measurable quantity even in a system with a large degrees of freedom. We numerically measure the NESS entropy in hardsphere fluid systems with a heat current, by observing energy exchange between the system and the heat baths when the temperatures of the baths are changed according to specified protocols.
An Adsorption Equilibria Model for Steady State Analysis
Ismail, Azhar Bin
2016-02-29
The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.
BR2 reactor core steady state transient modeling
International Nuclear Information System (INIS)
Makarenko, A.; Petrova, T.
2000-01-01
A coupled neutronics/hydraulics/heat-conduction model of the BR2 reactor core is under development at SCK-CEN. The neutron transport phenomenon has been implemented as steady state and time dependent nodal diffusion. The non-linear heat conduction equation in-side fuel elements is solved with a time dependent finite element method. To allow coupling between functional modules and to simulate subcooled regimes, a simple single-phase hydraulics has been introduced, while the two-phase hydraulics is under development. Multiple tests, general benchmark cases as well as calculation/experiment comparisons demonstrated a good accuracy of both neutronic and thermal hydraulic models, numerical reliability and full code portability. A refinement methodology has been developed and tested for better neutronic representation in hexagonal geometry. Much effort is still needed to complete the development of an extended cross section library with kinetic data and two-phase flow representation. (author)
Exploiting the steady state, continuous fueling reactor model
International Nuclear Information System (INIS)
Vondy, D.R.; Cunningham, G.W.; Fowler, T.B.
1979-01-01
A continuously fueled reactor presents an analysis challenge, especially so when the neutron accounting is sensitive to the core design and the fuel handling. A scheme was implemented to solve the steady state, continuous fueling problem. This problem is an accurate model of the reactor for assessing performance at a point in its operating history. Available capability in a modular code system developed to treat fixed fuel reactors was extended in this effort. Parametric studies have been made with this capability to assess the performance of a pebble bed power plant reactor over a wide range of fueling possibilities. The model and the calculational methods are discussed. A global iteration scheme is used to effect a solution for the critical reactor state. The schemes used to accelerate the rate of convergence of one- and two-dimensional problems are described and the interactive behavior is shown for representative problems
Creep stresses in a spherical shell under steady state temperature
Verma, Gaurav; Rana, Puneet
2017-10-01
The paper investigates the problem of creep of a spherical structure under the influence of steady state temperature. The problem of creep in spherical shell is solved by using the concept of generalized strain measures and transition hypothesis given by Seth. The problem has reduced to non-linear differential equation for creep transition. This paper deals with the non-linear behaviour of spherical shell under thermal condition. The spherical shell structures are easily vulnerable to creep, shrinkage and thermal effects; a thorough understanding of their time-dependent behaviour has been fully established. The paper aims to provide thermal creep analysis to enhance the effective design and long life of shells, and a theoretical model is developed for calculating creep stresses and strains in a spherical shell with purpose. Results obtained for the problem are depicted graphically.
Locating CVBEM collocation points for steady state heat transfer problems
Hromadka, T.V.
1985-01-01
The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.
Steady State Temperature Profile in a Cylinder Heated by Microwaves
Jackson, H. W.; Barmatz, M.; Wagner, P.
1995-01-01
A new theory has been developed to calculate the steady state temperature profile in a cylindrical sample positioned along the entire axis of a cylindrical microwave cavity. Temperature profiles where computed for- alumina rods of various radii contained in a cavity excite in one of the TM(sub OnO) modes with n = 1, 2 or 3. Calculations where also performed with a concentric outer cylindrical tube surrounding the rod to investigate hybrid heating. The parameters studies of the sample center and surface temperature where performed as a function of the total power transmitted into the cavity. Also, the total hemispherical emissivity was varied at boundaries of the rod, surrounding tube, and cavity walls. The result are discussed in the context of controlling the average rod temperature and the temperature distribution in the rod during microwave processing.
NASA Lewis Steady-State Heat Pipe Code Architecture
Mi, Ye; Tower, Leonard K.
2013-01-01
NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given
Period doubling in period-one steady states
Wang, Reuben R. W.; Xing, Bo; Carlo, Gabriel G.; Poletti, Dario
2018-02-01
Nonlinear classical dissipative systems present a rich phenomenology in their "route to chaos," including period doubling, i.e., the system evolves with a period which is twice that of the driving. However, typically the attractor of a periodically driven quantum open system evolves with a period which exactly matches that of the driving. Here, we analyze a periodically driven many-body open quantum system whose classical correspondent presents period doubling. We show that by studying the dynamical correlations, it is possible to show the occurrence of period doubling in the quantum (period-one) steady state. We also discuss that such systems are natural candidates for clean and intrinsically robust Floquet time crystals.
Quasi-steady-state regime in transient stimulated Raman scattering
International Nuclear Information System (INIS)
Ackerhalt, J.R.; Kurnit, N.A.
1987-01-01
A method is developed for studying transient stimulated Raman scattering in the quasi-steady-state regime when the input pump field consists of a repetitive periodic sequence of pulses. The method is most attractive for cases where the single-pulse duration is substantially shorter than the repetition time scale, making a straightforward numerical simulation very costly, time consuming, and potentially intractable. The method is applicable to any periodic electric field envelope including that generated by a finite number of longitudinal modes with arbitrary phase. A second numerically efficient method is developed for treating the buildup of the entire pulse train. In addition, an analytic solution is found in the undepleted-pump regime which illuminates the underlying physics of the process
Modular first wall concept for steady state operation
International Nuclear Information System (INIS)
Kotzlowski, H.E.
1981-01-01
On the basis of the limiter design proposed for ZEPHYR a first wall concept has been developed which can also be used as a large area limiter, heat shield or beam pump. Its specific feature is the thermal contact of the wall armour elements with the water-cooled base plates. The combination of radiation and contact cooling, compared with radiation only, helps to lower the steady state temperatures of the first wall by approximately 50 % and to reduce the cooling-time between discharges. Particulary the lower wall temperature give a larger margin for additional heating of the wall by plasma disruption or neutral beams until excessive erosion or damage of the armour takes place
Steady-State Density Functional Theory for Finite Bias Conductances.
Stefanucci, G; Kurth, S
2015-12-09
In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.
Plasticity, Fracture and Friction in Steady-State Plate Cutting
DEFF Research Database (Denmark)
Simonsen, Bo Cerup; Wierzbicki, Tomasz
1997-01-01
A closed form solution to the problem of steady-state wedge cutting through a ductile metal plate is presented. The considered problem is an idealization of a ship bottom raking process, i.e. a continuous cutting damage of a ship bottom by a hard knife-like rock in a grounding event. A new...... extension of the presented plate model to include more structural members as for example the stiffeners attached to a ship bottom plating. The fracture process is discussed and the model is formulated partly on the basis of the material fracture toughness. The effect of friction and the reaction force...... perpendicular to the direction of motion is derived theoretically in a consistent manner. The perpendicular reaction force is of paramount importance for prediction the structural damage of a ship hull because it governs the vertical ship motion and rock penetration which is strongly coupled with the horizontal...
Ignition phase and steady-state structures of a non-thermal air plasma
Lu Xin Pei
2003-01-01
An AC-driven, non-thermal, atmospheric pressure air plasma is generated within the gap separating a disc-shaped metal electrode and a water electrode. The ignition phase and the steady-state are studied by a high-speed CCD camera. It is found that the plasma always initiates at the surface of the water electrode. The plasma exhibits different structures depending on the polarity of the water electrode: when the water electrode plays the role of cathode, a relatively wide but visibly dim plasma column is generated. At the maximum driving voltage, the gas temperature is between 800 and 900 K, and the peak current is 67 mA; when the water electrode is anode, the plasma column narrows but increases its light emission. The gas temperature in this case is measured to be in the 1400-1500 K range, and the peak current is 81 mA.
Variation in winter diet of southern Beaufort Sea polar bears inferred from stable isotope analysis
Bentzen, T.W.; Follmann, Erich H.; Amstrup, Steven C.; York, G.S.; Wooller, M.J.; O'Hara, T. M.
2007-01-01
Ringed seals (Phoca hispida Schreber, 1775 = Pusa hispida (Schreber, 1775)) and bearded seals (Erignathus barbatus (Erxleben, 1777)) represent the majority of the polar bear (Ursus maritimus Phipps, 1774) annual diet. However, remains of lower trophic level bowhead whales (Balaena mysticetus L., 1758) are available in the southern Beaufort Sea and their dietary contribution to polar bears has been unknown. We used stable isotope (13C/12C, δ13C, 15N/14N, and δ15N) analysis to determine the diet composition of polar bears sampled along Alaska’s Beaufort Sea coast in March and April 2003 and 2004. The mean δ15N values of polar bear blood cells were 19.5‰ (SD = 0.7‰) in 2003 and 19.9‰ (SD = 0.7‰) in 2004. Mixing models indicated bowhead whales composed 11%–26% (95% CI) of the diets of sampled polar bears in 2003, and 0%–14% (95% CI) in 2004. This suggests significant variability in the proportion of lower trophic level prey in polar bear diets among individuals and between years. Polar bears depend on sea ice for hunting seals, and the temporal and spatial availabilities of sea ice are projected to decline. Consumption of low trophic level foods documented here suggests bears may increasingly scavenge such foods in the future.
A theory of nonequilibrium steady states in quantum chaotic systems
Wang, Pei
2017-09-01
Nonequilibrium steady state (NESS) is a quasistationary state, in which exist currents that continuously produce entropy, but the local observables are stationary everywhere. We propose a theory of NESS under the framework of quantum chaos. In an isolated quantum system whose density matrix follows a unitary evolution, there exist initial states for which the thermodynamic limit and the long-time limit are noncommutative. The density matrix \\hat ρ of these states displays a universal structure. Suppose that \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketα and \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketβ are different eigenstates of the Hamiltonian with energies E_α and E_β , respectively. \\renewcommand{\\bra}[1]{} \\braα\\hat ρ \\ketβ behaves as a random number which has zero mean. In thermodynamic limit, the variance of \\renewcommand{\\bra}[1]{} \\braα\\hat ρ \\ketβ is a smooth function of ≤ft\\vert E_α-E_β\\right\\vert , scaling as 1/≤ft\\vert E_α-E_β\\right\\vert 2 in the limit ≤ft\\vert E_α-E_β\\right\\vert \\to 0 . If and only if this scaling law is obeyed, the initial state evolves into NESS in the long time limit. We present numerical evidence of our hypothesis in a few chaotic models. Furthermore, we find that our hypothesis indicates the eigenstate thermalization hypothesis (ETH) for current operators in a bipartite system.
Steady State Analysis of Small Molten Salt Reactor
Yamamoto, Takahisa; Mitachi, Koshi; Suzuki, Takashi
The Molten Salt Reactor (MSR) is a thermal neutron reactor with graphite moderation and operates on the thorium-uranium fuel cycle. The feature of the MSR is that fuel salt flows inside the reactor during the nuclear fission reaction. In the previous study, the authors developed numerical model with which to simulate the effects of fuel salt flow on the reactor characteristics. In this study, we apply the model to the steady-state analysis of a small MSR system and estimate the effects of fuel flow. The model consists of two-group neutron diffusion equations for fast and thermal neutron fluxes, transport equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and the graphite moderator. The following results are obtained: (1) in the rated operation condition, the peaks of the neutron fluxes slightly move toward the bottom from the center of the reactor and the delayed neutron precursors are significantly carried by the fuel salt flow, and (2) the extension of residence time in the external-loop system and the rise of the fuel inflow temperature show weak negative reactivity effects, which decrease the neutron multiplication factor of the small MSR system.
Ising game: Nonequilibrium steady states of resource-allocation systems
Xin, C.; Yang, G.; Huang, J. P.
2017-04-01
Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.
Visual steady state in relation to age and cognitive function.
Directory of Open Access Journals (Sweden)
Anna Horwitz
Full Text Available Neocortical gamma activity is crucial for sensory perception and cognition. This study examines the value of using non-task stimulation-induced EEG oscillations to predict cognitive status in a birth cohort of healthy Danish males (Metropolit with varying cognitive ability. In particular, we examine the steady-state VEP power response (SSVEP-PR in the alpha (8Hz and gamma (36Hz bands in 54 males (avg. age: 62.0 years and compare these with 10 young healthy participants (avg. age 27.6 years. Furthermore, we correlate the individual alpha-to-gamma difference in relative visual-area power (ΔRV with cognitive scores for the older adults. We find that ΔRV decrease with age by just over one standard deviation when comparing young with old participants (p<0.01. Furthermore, intelligence is significantly negatively correlated with ΔRV in the older adult cohort, even when processing speed, global cognition, executive function, memory, and education (p<0.05. In our preferred specification, an increase in ΔRV of one standard deviation is associated with a reduction in intelligence of 48% of a standard deviation (p<0.01. Finally, we conclude that the difference in cerebral rhythmic activity between the alpha and gamma bands is associated with age and cognitive status, and that ΔRV therefore provide a non-subjective clinical tool with which to examine cognitive status in old age.
Steady-state growth of the marine diatom Thalassiosira pseudonana
International Nuclear Information System (INIS)
Olson, R.J.; SooHoo, J.B.; Kiefer, D.A.
1980-01-01
Seasonal studies of the vertical distribution of nitrate, nitrite, and phytoplankton in the oceans and studies using 15 N as a tracer of nitrate metabolism indicate that the reduction of nitrate by phytoplankton is a source of nitrite in the upper waters of the ocean. To better understand this process, the relationship between nitrate uptake and nitrite production has been examined with continuous cultures of the small marine diatom Thalassiosira pseudonana. In a turbidostat culture, the rates of nitrite production by T. Pseudonana increase with light intensity. This process is only loosely coupled to rates of nitrate assimilation since the ratio of net nitrite production to total nitrate assimilation increases with increased rates of growth. In continuous cultures where steady-state concentrations of nitrate and nitrite were varied, T. pseudonana produced nitrite at rates which increased with increasing concentrations of nitrate. Again, the rates of nitrite production were uncoupled from rates of nitrate assimilation. The study was used to derive a mathematical description of nitrate and nitrite metabolism by T. pseudonana. The validity of this model was supported by the results of a study in which 15 N-labeled nitrite was introduced into the continuous culture, and the model was used to examine patterns in distribution of nitrite in the Antarctic Ocean and the Sargasso Sea
Quasi-steady state aerodynamics of the cheetah tail
Directory of Open Access Journals (Sweden)
Amir Patel
2016-08-01
Full Text Available During high-speed pursuit of prey, the cheetah (Acinonyx jubatus has been observed to swing its tail while manoeuvring (e.g. turning or braking but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.
Attentional Modulation of Auditory Steady-State Responses
Mahajan, Yatin; Davis, Chris; Kim, Jeesun
2014-01-01
Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex. PMID:25334021
Attentional modulation of auditory steady-state responses.
Directory of Open Access Journals (Sweden)
Yatin Mahajan
Full Text Available Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR. The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence. The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.
Reactor potential of steady-state field-reversed configurations
International Nuclear Information System (INIS)
Kernbichler, W.
1990-01-01
The intrinsic potential of a Field-Reversed Configuration (FRC) for high-β operation - with β-values in the range of 50 to 100% - stimulates much interest in this device as an attractive candidate for a compact fusion device with high power density. Several additional benefits, e.g. the cylindrical geometry of the concept, the divertor action of the open field lines and the possibility for direct energy conversion of the charged particle flow, justify a closer look at the benefits and problems of FRCs. Present emphasis is on operation with D- 3 He fuel under reactor relevant conditions, whereas D-T is taken as a reference case. A steady-state version of an FRC is considered to be more attractive than its pulsed counterpart. Frequent start-up to high temperatures would be particularly detrimental for D- 3 He where start-up scenarios seem to rely on the transition from D-T to D- 3 He, with unavoidable strong tritium contamination
Quasi-steady state aerodynamics of the cheetah tail.
Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily
2016-08-15
During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. © 2016. Published by The Company of Biologists Ltd.
Prediction of steady state thermohydraulic conditions in water reactor systems
International Nuclear Information System (INIS)
Srikantiah, G.
1975-08-01
A method developed for the automatic prediction of the initial steady state conditions in reactor systems and a computer code based on this method are described. The reactor system is considered as a hydraulic network made up of the system components and their interconnections. Generalized network methods based on Graph Theory are applied to establish a set of independent equations in terms of the driving potentials and fluxes of the network. The terminal equations relating the ''across'' and ''through'' variables in the system components are derived by applying the one-dimensional drift-flux model. The resulting equations are solved by an appropriate numerical technique. Sample problems have been worked out to illustrate the advantages and the efficiency of this method. The basic advantages are: the component modeling is independent of the method of deriving the final balance equations for the system; the formulation procedure is independent of the numerical technique applied to solve the resulting set of equations, and the entire problem formulation and solution procedure requires a small amount of computer time
Avoiding electromagnetic artifacts when recording auditory steady-state responses.
Picton, Terence W; John, M Sasha
2004-09-01
Electromagnetic artifacts can occur when recording multiple auditory steady-state responses evoked by sinusoidally amplitude modulated (SAM) stimuli. High-intensity air-conducted stimuli evoked responses even when hearing was prevented by masking. Additionally, high-intensity bone-conducted stimuli evoked responses that were completely different from those evoked by air-conducted stimuli of similar sensory level. These artifacts were caused by aliasing since they did not occur when recordings used high analog-digital (AD) conversion rates or when high frequencies in the electroencephalographic (EEG) signal were attenuated by steep-slope low-pass filtering. Two possible techniques can displace aliased energy away from the response frequencies: (1) using an AD rate that is not an integer submultiple of the carrier frequencies and (2) using stimuli with frequency spectra that do not alias back to the response frequencies, such as beats or "alternating SAM" tones. Alternating SAM tones evoke responses similar to conventional SAM tones, whereas beats produce significantly smaller responses.
Steady State Turbulent Transport in Magnetic Fusion Plasmas
International Nuclear Information System (INIS)
Lee, W.W.; Ethier, S.; Kolesnikov, R.; Wang, W.X.; Tang, W.M.
2007-01-01
For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers
Shi, Junping; Wang, Xuefeng
We first study the initial value problem for a general semilinear heat equation. We prove that every bounded nonconstant radial steady state is unstable if the spatial dimension is low ( n⩽10) or if the steady state is flat enough at infinity: the solution of the heat equation either becomes unbounded as t approaches the lifespan, or eventually stays above or below another bounded radial steady state, depending on if the initial value is above or below the first steady state; moreover, the second steady state must be a constant if n⩽10. Using this instability result, we then prove that every nonconstant radial steady state of the generalized Fisher equation is a hair-trigger for two kinds of dynamical behavior: extinction and spreading. We also prove more criteria on initial values for these types of behavior. Similar results for a reaction-diffusion system modeling an isothermal autocatalytic chemical reaction are also obtained.
Steady-state stiffness of utricular hair cells depends on macular location and hair bundle structure
Spoon, Corrie; Moravec, W. J.; Rowe, M. H.; Grant, J. W.
2011-01-01
Spatial and temporal properties of head movement are encoded by vestibular hair cells in the inner ear. One of the most striking features of these receptors is the orderly structural variation in their mechanoreceptive hair bundles, but the functional significance of this diversity is poorly understood. We tested the hypothesis that hair bundle structure is a significant contributor to hair bundle mechanics by comparing structure and steady-state stiffness of 73 hair bundles at varying locations on the utricular macula. Our first major finding is that stiffness of utricular hair bundles varies systematically with macular locus. Stiffness values are highest in the striola, near the line of hair bundle polarity reversal, and decline exponentially toward the medial extrastriola. Striolar bundles are significantly more stiff than those in medial (median: 8.9 μN/m) and lateral (2.0 μN/m) extrastriolae. Within the striola, bundle stiffness is greatest in zone 2 (106.4 μN/m), a band of type II hair cells, and significantly less in zone 3 (30.6 μN/m), which contains the only type I hair cells in the macula. Bathing bundles in media that break interciliary links produced changes in bundle stiffness with predictable time course and magnitude, suggesting that links were intact in our standard media and contributed normally to bundle stiffness during measurements. Our second major finding is that bundle structure is a significant predictor of steady-state stiffness: the heights of kinocilia and the tallest stereocilia are the most important determinants of bundle stiffness. Our results suggest 1) a functional interpretation of bundle height variability in vertebrate vestibular organs, 2) a role for the striola in detecting onset of head movement, and 3) the hypothesis that differences in bundle stiffness contribute to diversity in afferent response dynamics. PMID:21918003
Evolution of Slow Dual Steady-State Optical Solitons in a Cold Three-State Medium
International Nuclear Information System (INIS)
Sun Jian-Qiang; Li Hao-Chen; Gu Xiao-Yan
2012-01-01
The generalized nonlinear Schrödinger equation, which describes the evolution of dual steady-state optical solitons in a cold three-state medium, is written as the Hamiltonian symplectic structure. The symplectic method is applied to investigate evolution of dual steady-state optical solitons. By adjusting the initial pulses, the saturation parameter variables and the distances of optical solitons, the different behaviors of dual steady-state optical solitons are analyzed. (fundamental areas of phenomenology(including applications))
Two Dimensional Steady State Eddy Current Analysis of a Spinning Conducting Cylinder
2017-03-09
UNCLASSIFIED UNCLASSIFIED AD-E403 855 Technical Report ARMET-TR-16045 TWO- DIMENSIONAL STEADY-STATE EDDY CURRENT ANALYSIS OF A...August 2014 4. TITLE AND SUBTITLE TWO- DIMENSIONAL STEADY-STATE EDDY CURRENT ANALYSIS OF A SPINNING CONDUCTING CYLINDER 5a. CONTRACT NUMBER 5b...analytical closed-form analysis performed by Michael P. Perry and Thomas B. Jones (ref. 4). Two- dimensional (2D) finite element steady state analyses
Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1
International Nuclear Information System (INIS)
Saxena, Y.C.
2000-01-01
SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)
Steady State Comparisons HAWC2 v12.2 vs HAWCStab2 v2.12
DEFF Research Database (Denmark)
Verelst, David Robert; Hansen, Morten Hartvig; Pirrung, Georg
This reports presents comparison of the steady state HAWC2 [1] [2] [3] simulation results and the HAWCStab2 computations of the DTU10MW reference turbine [4] [5]. It serves as a simple validation for the HAWCStab2 [6] [7] [8] steady state computations.......This reports presents comparison of the steady state HAWC2 [1] [2] [3] simulation results and the HAWCStab2 computations of the DTU10MW reference turbine [4] [5]. It serves as a simple validation for the HAWCStab2 [6] [7] [8] steady state computations....
A steady-state model of the lunar ejecta cloud
Christou, Apostolos
2014-05-01
Every airless body in the solar system is surrounded by a cloud of ejecta produced by the impact of interplanetary meteoroids on its surface [1]. Such ``dust exospheres'' have been observed around the Galilean satellites of Jupiter [2,3]. The prospect of long-term robotic and human operations on the Moon by the US and other countries has rekindled interest on the subject [4]. This interest has culminated with the - currently ongoing - investigation of the Moon's dust exosphere by the LADEE spacecraft [5]. Here a model is presented of a ballistic, collisionless, steady state population of ejecta launched vertically at randomly distributed times and velocities and moving under constant gravity. Assuming a uniform distribution of launch times I derive closed form solutions for the probability density functions (pdfs) of the height distribution of particles and the distribution of their speeds in a rest frame both at the surface and at altitude. The treatment is then extended to particle motion with respect to a moving platform such as an orbiting spacecraft. These expressions are compared with numerical simulations under lunar surface gravity where the underlying ejection speed distribution is (a) uniform (b) a power law. I discuss the predictions of the model, its limitations, and how it can be validated against near-surface and orbital measurements.[1] Gault, D. Shoemaker, E.M., Moore, H.J., 1963, NASA TN-D 1767. [2] Kruger, H., Krivov, A.V., Hamilton, D. P., Grun, E., 1999, Nature, 399, 558. [3] Kruger, H., Krivov, A.V., Sremcevic, M., Grun, E., 2003, Icarus, 164, 170. [4] Grun, E., Horanyi, M., Sternovsky, Z., 2011, Planetary and Space Science, 59, 1672. [5] Elphic, R.C., Hine, B., Delory, G.T., Salute, J.S., Noble, S., Colaprete, A., Horanyi, M., Mahaffy, P., and the LADEE Science Team, 2014, LPSC XLV, LPI Contr. 1777, 2677.
Human auditory steady state responses to binaural and monaural beats.
Schwarz, D W F; Taylor, P
2005-03-01
Binaural beat sensations depend upon a central combination of two different temporally encoded tones, separately presented to the two ears. We tested the feasibility to record an auditory steady state evoked response (ASSR) at the binaural beat frequency in order to find a measure for temporal coding of sound in the human EEG. We stimulated each ear with a distinct tone, both differing in frequency by 40Hz, to record a binaural beat ASSR. As control, we evoked a beat ASSR in response to both tones in the same ear. We band-pass filtered the EEG at 40Hz, averaged with respect to stimulus onset and compared ASSR amplitudes and phases, extracted from a sinusoidal non-linear regression fit to a 40Hz period average. A 40Hz binaural beat ASSR was evoked at a low mean stimulus frequency (400Hz) but became undetectable beyond 3kHz. Its amplitude was smaller than that of the acoustic beat ASSR, which was evoked at low and high frequencies. Both ASSR types had maxima at fronto-central leads and displayed a fronto-occipital phase delay of several ms. The dependence of the 40Hz binaural beat ASSR on stimuli at low, temporally coded tone frequencies suggests that it may objectively assess temporal sound coding ability. The phase shift across the electrode array is evidence for more than one origin of the 40Hz oscillations. The binaural beat ASSR is an evoked response, with novel diagnostic potential, to a signal that is not present in the stimulus, but generated within the brain.
Steady State Analysis of Multiple Effect Evaporation (MEE) Desalination Process
International Nuclear Information System (INIS)
Ahmad, S.
2012-01-01
Life without water is not possible. Like other natural resources, the global resources of fresh water are unevenly distributed. The world population is increasing at very rapid rate while the natural water resources remain constant. This gap is expected to widen dramatically in the near future. Our country like most countries in the east suffer from water stressed condition. Desalination is only the logical or available solution. In MED units, the feed seawater sprayed individually in each effect is heated to form pure vapors, which condense to form product water. Irrespective of the continuous development of the desalination industry the thermal desalination is still expensive. The study presented in this thesis is motivated by, to study the impact of various cost controlling parameters on the performance of MEE desalination process. KANUPP has two desalination plants (RO and NDDP). The NDDP has parallel feed cross flow multiple effect evaporation (MEE-PC) configurations. The study presented in this thesis describes a simplified steady state mathematical model to analyze the MED systems. The results obtained by the model are compared with the NDDP data. The developed model is used to investigate the effect of the parameters controlling the product water cost. These parameters includes thermal performance ratio, cooling water flow rate and heat transfer area. It can also be used to study the effect of variation in the operating conditions of the plant on the plant performance. The effect of the process variables on the performance of MED is carried out. This includes the effect of number of effects, intake seawater salinity and heating stream temperature, vacuum condition in term of vapor temperature of last effect. (author)
Divertor erosion study for TPX and implications for steady-state fusion reactors
International Nuclear Information System (INIS)
Brooks, J.N.
1995-01-01
A sputtering erosion analysis was performed for the tilted plate divertor design of the proposed TPX tokamak. High temperature (∼ 100 eV), non-radiative, steady-state compatible, plasma edge conditions were used as input to the REDEP erosion/redeposition code. For the reference carbon surface the results show a stable erosion profile, i.e., non-runaway self-sputtering, in spite of carbon self-sputtering coefficients that are locally in excess of unity. The resulting net erosion rates are high (peak ∼ 1--2.5 m/burn-yr) but may be acceptable for a low duty factor experimental device such as TPX. Other surface materials were also analyzed, in part to obtain insight for fusion reactor designs using a similar plasma regime. Both medium and high-Z materials are predicted not to work, due to runaway self-sputtering. Beryllium is stable but has erosion rates as high or higher than carbon. A liquid metal lithium surface has stable sputtering with a zero-erosion potential and may thus be an attractive future material choice
Divertor erosion study for TPX and implications for steady-state fusion reactors
International Nuclear Information System (INIS)
Brooks, J.N.
1995-01-01
A sputtering erosion analysis was performed for the tilted plate divertor design of the proposed TPX tokamak. High temperature (∼100 eV), non-radiative, steady-state compatible, plasma edge conditions were used as input to the REDEP erosion/redeposition code. For the reference carbon surface the results show a stable erosion profile, i.e., non-runaway self-sputtering, in spite of carbon self-sputtering coefficients that are locally in excess of unity. The resulting net erosion rates are high (peak ∼1--2.5 m/burn-yr) but may be acceptable for a low duty factor experimental device such as TPX. Other surface materials were also analyzed, in part to obtain insight for fusion reactor designs using a similar plasma regime. Both medium and high-Z materials are predicted not to work, due to runaway self-sputtering. Beryllium is stable but has erosion rates as high or higher than carbon. A liquid metal lithium surface has stable sputtering with a zero-erosion potential and may thus be an attractive future material choice
International Nuclear Information System (INIS)
Qi, Zeng; Ying-Liang, Liu; Kang, Meng; Xiang-Jie, Zhao; Shu-Feng, Wang; Qi-Huang, Gong
2009-01-01
We investigate the photo-physical properties of a series of triphenylamine-based oligomers by steady-state and picosecond transient fluorescence measurements in solvents. The oligomers are composed alternatively with triphenylamine and phenylene/thiophene/furan group, bridged by vinyl group (PNB/PNT/PNF). Their fluorescence spectra show bathochromic phenomenon with solvent polarity and viscosity increasing. The fluorescence decays are bi-exponential for PNB and PNT, and tri-exponential for PNF in THF and aniline. The strong viscosity dependence suggests conformational relaxation along the PNF chain after photo excitation. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)
Progress Towards High Performance, Steady-state Spherical Torus
International Nuclear Information System (INIS)
Ono, M.; Bell, M.G.; Bell, R.E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Choe, W.; Chrzanowski, J.; Darrow, D.S.; Diem, S.J.; Doerner, R.; Efthimion, P.C.; Ferron, J.R.; Fonck, R.J.; Fredrickson, E.D.; Garstka, G.D.; Gates, D.A.; Gray, T.; Grisham, L.R.; Heidbrink, W.; Hill, K.W.; Hoffman, D.; Jarboe, T.R.; Johnson, D.W.; Kaita, R.; Kaye, S.M.; Kessel, C.; Kim, J.H.; Kissick, M.W.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Lee, K.; Lee, S.G.; Lewicki, B.T.; Luckhardt, S.; Maingi, R.; Majeski, R.; Manickam, J.; Maqueda, R.; Mau, T.K.; Mazzucato, E.; Medley, S.S.; Menard, J.; Mueller, D.; Nelson, B.A.; Neumeyer, C.; Nishino, N.; Ostrander, C.N.; Pacella, D.; Paoletti, F.; Park, H.K.; Park, W.; Paul, S.F.; Peng, Y.-K. M.; Phillips, C.K.; Pinsker, R.; Probert, P.H.; Ramakrishnan, S.; Raman, R.; Redi, M.; Roquemore, A.L.; Rosenberg, A.; Ryan, P.M.; Sabbagh, S.A.; Schaffer, M.; Schooff, R.J.; Seraydarian, R.; Skinner, C.H.; Sontag, A.C.; Soukhanovskii, V.; Spaleta, J.; Stevenson, T.; Stutman, D.; Swain, D.W.; Synakowski, E.; Takase, Y.; Tang, X.; Taylor, G.; Timberlake, J.; Tritz, K.L.; Unterberg, E.A.; Von Halle, A.; Wilgen, J.; Williams, M.; Wilson, J.R.; Xu, X.; Zweben, S.J.; Akers, R.; Barry, R.E.; Beiersdorfer, P.; Bialek, J.M.; Blagojevic, B.; Bonoli, P.T.; Carter, M.D.; Davis, W.; Deng, B.; Dudek, L.; Egedal, J.; Ellis, R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Gilmore, M.; Goldston, R.J.; Hatcher, R.E.; Hawryluk, R.J.; Houlberg, W.; Harvey, R.; Jardin, S.C.; Hosea, J.C.; Ji, H.; Kalish, M.; Lowrance, J.; Lao, L.L.; Levinton, F.M.; Luhmann, N.C.; Marsala, R.; Mastravito, D.; Menon, M.M.; Mitarai, O.; Nagata, M.; Oliaro, G.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Porter, G.D.; Ram, A.K.; Rensink, M.; Rewoldt, G.; Roney, P.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B.C.; Vero, R.; Wampler, W.R.; Wurden, G.A.
2003-01-01
Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction (∼60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been adopted
Vlaar, Martijn P.; van der Helm, Frans C.T.; Schouten, Alfred C.
2015-01-01
A continuous somatosensory stimulation evokes a steady state response in the cortex, which can be measured using electroencephalography. We applied mechanical multisine stimulation of the wrist to investigate the properties of the steady state response in the frequency domain. Our results show a
Distance to achieve steady state walking speed in frail elderly persons
Lindemann, U.; Najafi, B.; Zijlstra, W.; Hauer, K.; Muche, R.; Becker, C.; Aminian, K.
This study aims to determine the length of the gait initiation phase before achieving steady state walking in frail older people. Based on body fixed sensors, habitual walking was analysed in 116 community-dwelling older persons (mean age 83.1 years, 84% women). The start of steady state walking was
The steady state of a particle in a vibrating box and possible ...
Indian Academy of Sciences (India)
In particular, the parameter range is found in which the particle oscillates between the walls in steady state as if the wall was static and it is showed that for these parameter ranges the particle settles to this steady state for all initial conditions. It is proposed that this phenomenon can be used to bunch charged particles in ...
40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards
2010-07-01
... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Steady-State Short Test Standards C Appendix C to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.../Maintenance Program Requirements Pt. 51, Subpt. S, App. C Appendix C to Subpart S of Part 51—Steady-State...
Steady state, erosional continuity, and the topography of landscapes developed in layered rocks
Perne, Matija; Covington, Matthew D.; Thaler, Evan A.; Myre, Joseph M.
2017-01-01
The concept of topographic steady state has substantially informed our understanding of the relationships between landscapes, tectonics, climate, and lithology. In topographic steady state, erosion rates are equal everywhere, and steepness adjusts to enable equal erosion rates in rocks of different strengths. This conceptual model makes an implicit assumption of vertical contacts between different rock types. Here we hypothesize that landscapes in layered rocks will be driven toward a state of erosional continuity, where retreat rates on either side of a contact are equal in a direction parallel to the contact rather than in the vertical direction. For vertical contacts, erosional continuity is the same as topographic steady state, whereas for horizontal contacts it is equivalent to equal rates of horizontal retreat on either side of a rock contact. Using analytical solutions and numerical simulations, we show that erosional continuity predicts the form of flux steady-state landscapes that develop in simulations with horizontally layered rocks. For stream power erosion, the nature of continuity steady state depends on the exponent, n, in the erosion model. For n = 1, the landscape cannot maintain continuity. For cases where n ≠ 1, continuity is maintained, and steepness is a function of erodibility that is predicted by the theory. The landscape in continuity steady state can be quite different from that predicted by topographic steady state. For n stream power erosion model, continuity steady state provides a general mathematical tool that may also be useful to understand landscapes that develop by other erosion processes.
A steady-state target calculation method based on "point" model for integrating processes.
Pang, Qiang; Zou, Tao; Zhang, Yanyan; Cong, Qiumei
2015-05-01
Aiming to eliminate the influences of model uncertainty on the steady-state target calculation for integrating processes, this paper presented an optimization method based on "point" model and a method determining whether or not there is a feasible solution of steady-state target. The optimization method resolves the steady-state optimization problem of integrating processes under the framework of two-stage structure, which builds a simple "point" model for the steady-state prediction, and compensates the error between "point" model and real process in each sampling interval. Simulation results illustrate that the outputs of integrating variables can be restricted within the constraints, and the calculation errors between actual outputs and optimal set-points are small, which indicate that the steady-state prediction model can predict the future outputs of integrating variables accurately. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Numerical method for three dimensional steady-state two-phase flow calculations
International Nuclear Information System (INIS)
Raymond, P.; Toumi, I.
1992-01-01
This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers
Dynamics and steady-state properties of adaptive networks
Wieland, Stefan
Collective phenomena often arise through structured interactions among a system's constituents. In the subclass of adaptive networks, the interaction structure coevolves with the dynamics it supports, yielding a feedback loop that is common in a variety of complex systems. To understand and steer such systems, modeling their asymptotic regimes is an essential prerequisite. In the particular case of a dynamic equilibrium, each node in the adaptive network experiences a perpetual change in connections and state, while a comprehensive set of measures characterizing the node ensemble are stationary. Furthermore, the dynamic equilibria of a wide class of adaptive networks appear to be unique, as their characteristic measures are insensitive to initial conditions in both state and topology. This work focuses on dynamic equilibria in adaptive networks, and while it does so in the context of two paradigmatic coevolutionary processes, obtained results easily generalize to other dynamics. In the first part, a low-dimensional framework is elaborated on using the adaptive contact process. A tentative description of the phase diagram and the steady state is obtained, and a parameter region identified where asymmetric microscopic dynamics yield a symmetry between node subensembles. This symmetry is accounted for by novel recurrence relations, which predict it for a wide range of adaptive networks. Furthermore, stationary nodeensemble distributions are analytically generated by these relations from one free parameter. Secondly, another analytic framework is put forward that detects and describes dynamic equilibria, while assigning to them general properties that must hold for a variety of adaptive networks. Modeling a single node's evolution in state and connections as a random walk, the ergodic properties of the network process are used to extract node-ensemble statistics from the node's long-term behavior. These statistical measures are composed of a variety of stationary
Recent advancement in research and planning toward high beta steady state operation in KSTAR
International Nuclear Information System (INIS)
Park, Hyeon Keo; Hong, S.; Humphreys, D.
2015-01-01
The goal of Korean Superconducting Tokamak Advanced Research (KSTAR) research is to explore stable improved confinement regimes and technical challenge for superconducting tokamak operation and thus, to establish the basis for predictable high beta steady state tokamak plasma operation. To fulfil the goal, the current KSTAR research program is composed of three elements: 1) Exploration of anticipated engineering and technology for a stable long pulse operation of high beta plasmas including Edge Localized Mode (ELM) control with the low n (=1, 2) Resonant Magnetic Perturbation (RMP) using in-vessel control coils and innovative non-inductive current drives. The achieved long pulse operation up to ∼50s and fully non-inductive current drive will be combined in the future. Study of efficient heat exhaust will be combined with an innovative divertor design/operation. 2) Exploration of the operation boundary through establishment of true stability limits of the harmful MagnetoHydroDynamic (MHD) instabilities and confinement of the tokamak plasmas in KSTAR, making use of the lowest error field and magnetic ripple simultaneously achieved among all tokamaks ever built. The intrinsic machine error field has a long history of research as the source of MHD instabilities and magnetic ripple is known to be a cause of energy loss in the plasma. The achieved high beta discharges at β N ∼4 and stable discharges at q 95 (∼2) will be further improved. 3) Validation of theoretical modeling of MHD instabilities and turbulence toward predictive capability of stable high beta plasmas. In support of these research goals, the state of the art diagnostic systems, such as Electron Cyclotron Emission Imaging (ECEI) system in addition to accurate profile diagnostics, are deployed not only to provide precise 2D/3D information of the MHD instabilities and turbulence but also to challenge unresolved physics problems such as the nature of ELMs, ELM-crash dynamics and the role of the core
Disassembly of Faceted Macrosteps in the Step Droplet Zone in Non-Equilibrium Steady State
Directory of Open Access Journals (Sweden)
Noriko Akutsu
2017-02-01
Full Text Available A Wulff figure—the polar graph of the surface tension of a crystal—with a discontinuity was calculated by applying the density matrix renormalization group method to the p-RSOS model, a restricted solid-on-solid model with a point-contact-type step–step attraction. In the step droplet zone in this model, the surface tension is discontinuous around the (111 surface and continuous around the (001 surface. The vicinal surface of 4H-SiC crystal in a Si–Cr–C solution is thought to be in the step droplet zone. The dependence of the vicinal surface growth rate and the macrostep size 〈 n 〉 on the driving force Δ μ for a typical state in the step droplet zone in non-equilibrium steady state was calculated using the Monte Carlo method. In contrast to the known step bunching phenomenon, the size of the macrostep was found to decrease with increasing driving force. The detachment of elementary steps from a macrostep was investigated, and it was found that 〈 n 〉 satisfies a scaling function. Moreover, kinetic roughening was observed for | Δ μ | > Δ μ R , where Δ μ R is the crossover driving force above which the macrostep disappears.
Experimental studies towards long pulse steady state operation in LHD
Noda, N.; Nakamura, Y.; Takeiri, Y.; Mutoh, T.; Kumazawa, R.; Sato, M.; Kawahata, K.; Yamada, S.; Shimozuma, T.; Oka, Y.; Iiyoshi, A.; Sakamoto, R.; Kubota, Y.; Masuzaki, S.; Inagaki, S.; Morisaki, T.; Suzuki, H.; Ohyabu, N.; Adachi, K.; Akaishi, K.; Ashikawa, N.; Chikaraishi, H.; de Vries, P. C.; Emoto, M.; Funaba, H.; Goto, M.; Hamaguchi, S.; Ida, K.; Idei, H.; Ikeda, K.; Imagawa, S.; Inoue, N.; Isobe, M.; Iwamoto, A.; Kado, S.; Kaneko, O.; Kitagawa, S.; Khlopenkov, K.; Kobuchi, T.; Komori, A.; Kubo, S.; Liang, Y.; Maekawa, R.; Minami, T.; Mito, T.; Miyazawa, J.; Morita, S.; Murai, K.; Murakami, S.; Muto, S.; Nagayama, Y.; Nakanishi, H.; Narihara, K.; Nishimura, A.; Nishimura, K.; Nishizawa, A.; Notake, T.; Ohdachi, S.; Okamoto, M.; Osakabe, M.; Ozaki, T.; Pavlichenko, R. O.; Peterson, B. J.; Sagara, A.; Saito, K.; Sakakibara, S.; Sasao, H.; Sasao, M.; Sato, K.; Seki, T.; Shoji, M.; Sugama, H.; Takahata, K.; Takechi, M.; Tamura, H.; Tamura, N.; Tanaka, K.; Toi, K.; Tokuzawa, T.; Torii, Y.; Tsumori, K.; Watanabe, K. Y.; Watanabe, T.; Watari, T.; Yanagi, N.; Yamada, I.; Yamada, H.; Yamaguchi, S.; Yamamoto, S.; Yamamoto, T.; Yokoyama, M.; Yoshimura, Y.; Ohtake, I.; Akiyama, R.; Haba, K.; Iima, M.; Kodaira, J.; Tsuzuki, K.; Itoh, K.; Matsuoka, K.; Ohkubo, K.; Satoh, S.; Satow, T.; Sudo, S.; Tanahashi, S.; Yamazaki, K.; Motojima, O.; Hamada, Y.; Fujiwara, M.
2001-01-01
In the Large Helical Device, stable discharges lasting longer than one minute have been obtained using the complete heating scheme, including ECH. The plasma is sustained with NBI or ICRF of 0.5-1 MW. The central plasma temperature is higher than 1.5 keV with a density of (1-2) x 10(19) m(-3)
Advancing metal-oxide-semiconductor theory: Steady-state nonequilibrium conditions
Passlack, M.; Hong, M.; Schubert, E. F.; Zydzik, G. J.; Mannaerts, J. P.; Hobson, W. S.; Harris, T. D.
1997-06-01
This article investigates steady-state nonequilibrium conditions in metal-oxide-semiconductor (MOS) capacitors. Steady-state nonequilibrium conditions are of significant interest due to the advent of wide-gap semiconductors in the arena of MOS (or metal-insulator-semiconductor) devices and due to the scaling of oxide thickness in Si technology. Two major classes of steady-state nonequilibrium conditions were studied both experimentally and theoretically: (i) steady-state deep depletion and (ii) steady-state low level optical generation. It is found that the identification and subsequent understanding of steady-state nonequilibrium conditions is of significant importance for correct interpretation of electrical measurements such as capacitance-voltage and conductance-voltage measurements. Basic implications of steady-state nonequilibrium conditions were derived for both MOS capacitors with low interfaces state density Dit and for oxide semiconductor interfaces with a pinned Fermi level. Further, a photoluminescence power spectroscopy technique is investigated as a complementary tool for direct-gap semiconductors to study Dit and to monitor the interface quality during device fabrication.
Steady state creep of Zr-Nb alloys in a temperature interval 350 to 5500C
International Nuclear Information System (INIS)
Pahutova, M.; Cadek, J.
1976-01-01
Creep of three Zr-Nb alloys (0.5, 2.5 and 4.5 wt% Nb) was investigated in a temperature interval 350 to 550 0 C using the isothermal creep test and transmission electron microscopy techniques. Relations between steady-state creep rate and applied stress were determined; the parameter of applied stress sensitivity of steady-state creep rate increases with the applied stress, reaching values sometimes greater than 30 at 350 0 C. The apparent activation energy of creep was determined and the mean effective stress in steady-state creep measured. Possible creep-rate controlling mechanisms were discussed, with the conclusion that the creep is most probably recovery-controlled. Relations between steady state flow stress and temperature suggest a significant contribution of an athermal deformation mechanism to the measured steady-state strain rate at low temperatures and high applied stresses. The creep-strengthening effect of niobium increases linearly with niobium concentration at high steady-state creep rates, while at low steady-state creep rates the optimum niobium concentration does not exceed 2.5%. This, together with the temperature sensitivity of the strengthening effect of niobium, was explained by structural stability decreasing as niobium concentration increases from 2.5 to 4.5%. Creep-controlling mechanisms for very low creep rates are discussed. (Auth.)
Assessing Quasi-Steady State in Evaporation of Sessile Drops by Diffusion Models
Martin, Cameron; Nguyen, Hoa; Kelly-Zion, Peter; Pursell, Chris
2017-11-01
The vapor distributions surrounding sessile drops of methanol are modeled as the solutions of the steady-state and transient diffusion equations using Matlab's PDE Toolbox. The goal is to determine how quickly the transient diffusive transport reaches its quasi-steady state as the droplet geometry is varied between a Weber's disc, a real droplet shape, and a spherical cap with matching thickness or contact angle. We assume that the only transport mechanism at work is diffusion. Quasi-steady state is defined using several metrics, such as differences between the transient and steady-state solutions, and change in the transient solution over time. Knowing the vapor distribution, the gradient is computed to evaluate the diffusive flux. The flux is integrated along the surface of a control volume surrounding the drop to obtain the net rate of diffusion out of the volume. Based on the differences between the transient and steady-state diffusive fluxes at the discrete points along the control-volume surface, the time to reach quasi-steady state evaporation is determined and is consistent with other proposed measurements. By varying the dimensions of the control volume, we can also assess what regimes have equivalent or different quasi-steady states for different droplet geometries. Petroleum Research Fund.
Bansal, Pikesh; Chattopadhyay, Ajit Kumar; Agrawal, Vishnu Prakash
2016-04-01
The aim of the present study is to theoretically determine the steady state characteristics of hydrodynamic oil journal bearings considering the effect of deformation of liner and with micropolar lubrication. Modified Reynolds equation based on micropolar lubrication theory is solved using finite difference method to obtain steady state film pressures. Minimum film thickness is calculated taking into consideration the deformation of the liner. Parametric study has been conducted and steady state characteristics for journal bearing with elasticity of bearing liner are plotted for various values of eccentricity ratio, deformation factor, characteristic length and coupling number.
On Steady-State Multiple Resonances for a Modified Bretherton Equation
Sun, Jianglong; Cui, Jifeng; He, Zihan; Liu, Zeng
2017-05-01
In this article, a modified Bretherton equation is considered to further check if steady-state multiple resonances exist not only for water waves but also for other dispersive medium. The linear resonance condition analysis shows that different components may interact with each other so multiple resonances may happen. Convergent steady-state solutions are obtained by solution procedure based on the homotopy analysis method (HAM) and the collocation method. Amplitude spectrum analysis confirms that more components indeed join the resonance as the nonlinearity increases. This article suggests that steady-state multiple resonance may exist in other dispersive system.
Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A
DEFF Research Database (Denmark)
Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil
2012-01-01
The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime...... for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded enzyme...
Self-consistent steady state and dust-ion-acoustic soliton propagation in inhomogeneous plasmas
International Nuclear Information System (INIS)
Li Yangfang; Ma, J.X.
2005-01-01
The steady state of an inhomogeneous collisional dusty plasma is formulated self-consistently and the dust-ion-acoustic soliton propagation in such a plasma is studied by using the reductive perturbation method. The steady state is governed by the ambipolar diffusion theory, which includes the spatially varying collisions of electrons and ions with dust grains and is solved numerically with the boundary value problem. The effects of the nonuniformity of the equilibrium quantities on the solitons are considered. It is shown that the property of the solitons, especially the characteristic width, are sensitive to the variations of the steady state
Simulation of multi-steady states in low temperature gas discharge
International Nuclear Information System (INIS)
Li Hong; Hu Xiwei
2004-01-01
This article presents hydrodynamics simulation of multi-steady states and mode transition by DC-beam-injected gas discharge, and provides a model approach to hysteresis and distinct forms of multi-steady states. The critical transition conditions of the three discharge modes (temperature limited mode, Langmuir mode, and space charge limited mode) are estimated to be dependent on the gas pressure and the filament temperature. Various forms of the multi-steady states in gas discharge can be uniformly explained by the displacement of the mutant positions. The simulation results are in a good agreement with those of the experiments. (authors)
Haematological values in sickle cell anaemia in steady state and ...
African Journals Online (AJOL)
Rsultats: Le moyen du volume de la cellule (MVC), d\\'hmoglobine cellulaire moyenne (HCM) et la concentration hmoglobine cellulaire moyenne (CHCM) dans un tat stable taient 79,38fl±22,41, 28,31pg ± 3,58 et 32,56/dl± 2,27 tandis que dans le VOC ils taient 85,50fl+- 8;14,28,79pg±33,76g/dl+- 3,44 respectivment.
Highly polarized light from stable ordered magnetic fields in GRB 120308A.
Mundell, C G; Kopač, D; Arnold, D M; Steele, I A; Gomboc, A; Kobayashi, S; Harrison, R M; Smith, R J; Guidorzi, C; Virgili, F J; Melandri, A; Japelj, J
2013-12-05
After the initial burst of γ-rays that defines a γ-ray burst (GRB), expanding ejecta collide with the circumburst medium and begin to decelerate at the onset of the afterglow, during which a forward shock travels outwards and a reverse shock propagates backwards into the oncoming collimated flow, or 'jet'. Light from the reverse shock should be highly polarized if the jet's magnetic field is globally ordered and advected from the central engine, with a position angle that is predicted to remain stable in magnetized baryonic jet models or vary randomly with time if the field is produced locally by plasma or magnetohydrodynamic instabilities. Degrees of linear polarization of P ≈ 10 per cent in the optical band have previously been detected in the early afterglow, but the lack of temporal measurements prevented definitive tests of competing jet models. Hours to days after the γ-ray burst, polarization levels are low (P GRBs contain magnetized baryonic jets with large-scale uniform fields that can survive long after the initial explosion.
Wang, Fei; Nie, Wei; Feng, Xunli; Oh, C. H.
2016-07-01
The correlated emission lasing (CEL) is experimentally demonstrated in harmonic oscillators coupled via a single three-level artificial atom [Phys. Rev. Lett. 115, 223603 (2015), 10.1103/PhysRevLett.115.223603] in which two-mode entanglement only exists in a certain time period when the harmonic oscillators are resonant with the atomic transitions. Here we examine this system and show that it is possible to obtain the steady-state entanglement when the two harmonic oscillators are resonant with Rabi sidebands. Applying dressed atomic states and Bogoliubov-mode transformation, we obtain the analytical results of the variance sum of a pair of Einstein-Podolsky-Rosen (EPR)-like operators. The stable entanglement originates from the dissipation process of the Bogoliubov modes because the atomic system can act as a reservoir in dressed state representation. We also show that the entanglement is robust against the dephasing rates of the superconducing atom, which is expected to have important applications in quantum information processing.
Exploration of steady-state scenarios for the Fusion Development Facility (FDF)
Chan, V. S.; Garofalo, A. M.; Stambaugh, R. D.; Choi, M.; Kinsey, J. E.; Lao, L. L.; Snyder, P. B.; St. John, H. E.; Turnbull, A. D.
2011-10-01
A Fusion Nuclear Science Facility (FNSF) has to operate at 105 times longer duration than that of present tokamak discharges. The scalability of plasma sustainment to such a long time is an issue that needs to be resolved by scientific understanding. We carry out steady-state (SS) scenario development of the FDF (a candidate for FNSF-AT) using an iterative process toward a self-consistent solution via alternating temperature profiles and current profile evolution. The temperature profile evolves according to a physics-based transport model GLF23. SS requires large off-axis current drive (CD). To achieve this with no NBI is highly challenging. It however simplifies tritium containment, increases area for tritium breeding, and avoids costly negative-ion NBI technology. We find that with ECH/ECCD only, too much power is required. A SS baseline equilibrium is found by adding LHCD: Qfus ~ 4 , H98 y 2 ~ 1 . 2 , fBS ~ 70 %, Pfus ~ 260 MW, PEC = 35 MW, PLH = 21 MW. The GATO ideal MHD code finds the equilibrium stable to n = 1 internal kink at κ = 2 . 3 . Work supported by General Atomics internal funds.
Khalil, Nagi; Garzó, Vicente
2018-02-01
The Navier-Stokes order hydrodynamic equations for a low-density driven granular mixture obtained previously [Khalil and Garzó, Phys. Rev. E 88, 052201 (2013), 10.1103/PhysRevE.88.052201] from the Chapman-Enskog solution to the Boltzmann equation are considered further. The four transport coefficients associated with the heat flux are obtained in terms of the mass ratio, the size ratio, composition, coefficients of restitution, and the driven parameters of the model. Their quantitative variation on the control parameters of the system is demonstrated by considering the leading terms in a Sonine polynomial expansion to solve the exact integral equations. As an application of these results, the stability of the homogeneous steady state is studied. In contrast to the results obtained in undriven granular mixtures, the stability analysis of the linearized Navier-Stokes hydrodynamic equations shows that the transversal and longitudinal modes are (linearly) stable with respect to long enough wavelength excitations. This conclusion agrees with a previous analysis made for single granular gases.
Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X
Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Bräuer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodié, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; König, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kühner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stäbler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, Ch.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K.-P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupiński, Ł.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; Eeten, P. v.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Fünfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; García Regaña, J. M.; Geiger, J.; Geißler, S.; Greuner, H.; Grahl, M.; Groß, S.; Grosman, A.; Grote, H.; Grulke, O.; Haas, M.; Haiduk, L.; Hartfuß, H.-J.; Harris, J. H.; Haus, D.; Hein, B.; Heitzenroeder, P.; Helander, P.; Heller, R.; Hidalgo, C.; Hildebrandt, D.; Höhnle, H.; Holtz, A.; Holzhauer, E.; Holzthüm, R.; Huber, A.; Hunger, H.; Hurd, F.; Ihrke, M.; Illy, S.; Ivanov, A.; Jablonski, S.; Jaksic, N.; Jakubowski, M.; Jaspers, R.; Jensen, H.; Jenzsch, H.; Kacmarczyk, J.; Kaliatk, T.; Kallmeyer, J.; Kamionka, U.; Karaleviciu, R.; Kern, S.; Keunecke, M.; Kleiber, R.; Knauer, J.; Koch, R.; Kocsis, G.; Könies, A.; Köppen, M.; Koslowski, R.; Koshurinov, J.; Krämer-Flecken, A.; Krampitz, R.; Kravtsov, Y.; Krychowiak, M.; Krzesinski, G.; Ksiazek, I.; Kubkowska, M.; Kus, A.; Langish, S.; Laube, R.; Laux, M.; Lazerson, S.; Lennartz, M.; Li, C.; Lietzow, R.; Lohs, A.; Lorenz, A.; Louche, F.; Lubyako, L.; Lumsdaine, A.; Lyssoivan, A.; Maaßberg, H.; Marek, P.; Martens, C.; Marushchenko, N.; Mayer, M.; Mendelevitch, B.; Mertens, Ph.; Mikkelsen, D.; Mishchenko, A.; Missal, B.; Mizuuchi, T.; Modrow, H.; Mönnich, T.; Morizaki, T.; Murakami, S.; Musielok, F.; Nagel, M.; Naujoks, D.; Neilson, H.; Neubauer, O.; Neuner, U.; Nocentini, R.; Noterdaeme, J.-M.; Nührenberg, C.; Obermayer, S.; Offermanns, G.; Oosterbeek, H.; Otte, M.; Panin, A.; Pap, M.; Paquay, S.; Pasch, E.; Peng, X.; Petrov, S.; Pilopp, D.; Pirsch, H.; Plaum, B.; Pompon, F.; Povilaitis, M.; Preinhaelter, J.; Prinz, O.; Purps, F.; Rajna, T.; Récsei, S.; Reiman, A.; Reiter, D.; Remmel, J.; Renard, S.; Rhode, V.; Riemann, J.; Rimkevicius, S.; Riße, K.; Rodatos, A.; Rodin, I.; Romé, M.; Roscher, H.-J.; Rummel, K.; Rummel, Th.; Runov, A.; Ryc, L.; Sachtleben, J.; Samartsev, A.; Sanchez, M.; Sano, F.; Scarabosio, A.; Schmid, M.; Schmitz, H.; Schmitz, O.; Schneider, M.; Schneider, W.; Scheibl, L.; Scholz, M.; Schröder, G.; Schröder, M.; Schruff, J.; Schumacher, H.; Shikhovtsev, I. V.; Shoji, M.; Siegl, G.; Skodzik, J.; Smirnow, M.; Speth, E.; Spong, D. A.; Stadler, R.; Sulek, Z.; Szabó, V.; Szabolics, T.; Szetefi, T.; Szökefalvi-Nagy, Z.; Tereshchenko, A.; Thomsen, H.; Thumm, M.; Timmermann, D.; Tittes, H.; Toi, K.; Tournianski, M.; Toussaint, U. v.; Tretter, J.; Tulipán, S.; Turba, P.; Uhlemann, R.; Urban, J.; Urbonavicius, E.; Urlings, P.; Valet, S.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Viebke, H.; Vilbrandt, R.; Vrancken, M.; Wauters, T.; Weissgerber, M.; Weiß, E.; Weller, A.; Wendorf, J.; Wenzel, U.; Windisch, T.; Winkler, E.; Winkler, M.; Wolowski, J.; Wolters, J.; Wrochna, G.; Xanthopoulos, P.; Yamada, H.; Yokoyama, M.; Zacharias, D.; Zajac, J.; Zangl, G.; Zarnstorff, M.; Zeplien, H.; Zoletnik, S.; Zuin, M.
2013-12-01
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.
Nonexistence of nonconstant steady-state solutions in a triangular cross-diffusion model
Lou, Yuan; Tao, Youshan; Winkler, Michael
2017-05-01
In this paper we study the Shigesada-Kawasaki-Teramoto model for two competing species with triangular cross-diffusion. We determine explicit parameter ranges within which the model exclusively possesses constant steady state solutions.
Research on Steady States of Fuzzy Cognitive Map and its Application in Three-Rivers Ecosystem
Directory of Open Access Journals (Sweden)
Zhen Peng
2016-01-01
Full Text Available Fuzzy Cognitive Map (FCM offers many advantages such intuitive knowledge representation and fast numerical reasoning ability, etc. It suits modeling and decision-making of dynamic systems. With the aims to effectively help to analyze and control system sustainable evolution, the paper defines the steady states of fixed point and limited cycle of a FCM modeling system. Accordingly, the rules of steady states of the FCM model and the factors influencing the steady states are presented and proved. The Three-Rivers represents a system including population, ecological environment, social development and their relationships. Based on the relationships, the Three-Rivers ecosystem is modeled by FCM and the Three-Rivers ecosystemsustainable evolutionis analyzed bythe rules of the steady states of FCM.
ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.
This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats" NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo." The pattern evok...
Navier-Stokes Predictions of Dynamic Stability Derivatives: Evaluation of Steady-State Methods
National Research Council Canada - National Science Library
DeSpirito, James; Silton, Sidra I; Weinacht, Paul
2008-01-01
The prediction of the dynamic stability derivatives-roll-damping, Magnus, and pitch-damping moments-were evaluated for three spin-stabilized projectiles using steady-state computational fluid dynamic (CFD) calculations...
International Nuclear Information System (INIS)
Swapnalee, B.T.; Vijayan, P.K; Sharma, Manish; Pilkhwal, D.S.; Saha, D.; Sinha, R.K.
2011-01-01
For supercritical pressure natural circulation loops, explicit correlation for steady state flow are not available. While using the subcritical natural circulation flow correlation for supercritical pressure data, it has been observed that subcritical flow correlation is not able to predict the steady state flow accurately near supercritical pressure condition. A generalized correlation has been proposed to estimate the steady state flow in supercritical pressure natural circulation loop based on a relationship between dimensionless density and dimensionless enthalpy reported in literature. This generalized correlation has been tested with the steady state supercritical pressure CO 2 data and found to be in good agreement. Subsequently supercritical pressure data for different working fluids reported in literature has also been compared with the proposed correlation. It is observed that the same generalized correlation is applicable for other fluids also. The present paper deals with the details of the test facility, the derivation of the generalized correlation and comparison with experimental data. (author)
Measurements of Gene Expression at Steady State Improve the Predictability of Part Assembly.
Zhang, Haoqian M; Chen, Shuobing; Shi, Handuo; Ji, Weiyue; Zong, Yeqing; Ouyang, Qi; Lou, Chunbo
2016-03-18
Mathematical modeling of genetic circuits generally assumes that gene expression is at steady state when measurements are performed. However, conventional methods of measurement do not necessarily guarantee that this assumption is satisfied. In this study, we reveal a bi-plateau mode of gene expression at the single-cell level in bacterial batch cultures. The first plateau is dynamically active, where gene expression is at steady state; the second plateau, however, is dynamically inactive. We further demonstrate that the predictability of assembled genetic circuits in the first plateau (steady state) is much higher than that in the second plateau where conventional measurements are often performed. By taking the nature of steady state into consideration, our method of measurement promises to directly capture the intrinsic property of biological parts/circuits regardless of circuit-host or circuit-environment interactions.
Pump two-phase performance program. Volume 5. Steady-state data. Final report
International Nuclear Information System (INIS)
Kennedy, W.G.; Jacob, M.C.; Whitehouse, J.C.; Fishburn, J.D.; Kanupka, G.J.
1980-09-01
Objective was to obtain steady-state and transient two-phase empirical data to substantiate and improve the reactor coolant pump analytical model currently used for LOCA analysis. A one-fifth scale pump was tested in steady-state runs with single- and two-phase mixtures of water and steam over ranges of operating conditions representative of postulated loss-of-coolant accidents. This volume contains tabulated data and derived parameters obtained for each of 962 selected steady-state test points conducted. A summary chronological listing of all 1322 steady-state test points actually conducted is also provided. The basic data are 67 channels of direct measurements for each test. Twenty-six derived parameters plus drift and standard deviations are calculated from the basic data and presented in the tabulation
Calibration of steady-state car-following models using macroscopic loop detector data.
2010-05-01
The paper develops procedures for calibrating the steady-state component of various car following models using : macroscopic loop detector data. The calibration procedures are developed for a number of commercially available : microscopic traffic sim...
Burn cycle requirements comparison of pulsed and steady-state tokamak reactors
International Nuclear Information System (INIS)
Brooks, J.N.; Ehst, D.A.
1983-12-01
Burn cycle parameters and energy transfer system requirements were analyzed for an 8-m commercial tokamak reactor using four types of cycles: conventional, hybrid, internal transformer, and steady state. Not surprisingly, steady state is the best burn mode if it can be achieved. The hybrid cycle is a promising alternative to the conventional. In contrast, the internal transformer cycle does not appear attractive for the size tokamak in question
Shaparin, Naum; Mehta, Neel; Kunkel, Frank; Stripp, Richard; Borg, Damon; Kolb, Elizabeth
2017-11-01
Interpretation limitations of urine drug testing and the invasiveness of blood toxicology have motivated the desire for the development of simpler methods to assess biologically active drug levels on an individualized patient basis. Oral fluid is a matrix well-suited for the challenge because collections are based on simple noninvasive procedures and drug concentrations better correlate to blood drug levels as oral fluid is a filtrate of the blood. Well-established pharmacokinetic models were utilized to generate oral fluid steady state concentration ranges to assess the interpretive value of the alternative matrix to monitor steady state plasma oxycodone levels. Paired oral fluid and plasma samples were collected from patients chronically prescribed oxycodone and quantitatively analyzed by liquid chromatography tandem mass spectrometry. Steady state plasma concentration ranges were calculated for each donor and converted to an equivalent range in oral fluid. Measured plasma and oral fluid oxycodone concentrations were compared with respective matrix-matched steady state ranges, using each plasma steady state classification as the control. A high degree of correlation was observed between matrices when classifying donors according to expected steady state oxycodone concentration. Agreement between plasma and oral fluid steady state classifications was observed in 75.6% of paired samples. This study supports novel application of basic pharmacokinetic knowledge to the pain management industry, simplifying and improving individualized drug monitoring and risk assessment through the use of oral fluid drug testing. Many benefits of established therapeutic drug monitoring in plasma can be realized in oral fluid for patients chronically prescribed oxycodone at steady state. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
2012-09-03
Numerical Solution of Polynomial Systems by Homotopy Con- tinuation Methods in Handbook of Numerical Analysis , Volume XI, Spe- cial Volume: Foundations of...A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws Wenrui Hao∗ Jonathan D. Hauenstein† Chi...robustness of the new method . Keywords homotopy continuation, hyperbolic conservation laws, WENO scheme, steady state problems. ∗Department of Applied and
Finite element modelling of creep process - steady state stresses and strains
Directory of Open Access Journals (Sweden)
Sedmak Aleksandar S.
2014-01-01
Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.
Non-existence of Steady State Equilibrium in the Neoclassical Growth Model with a Longevity Trend
DEFF Research Database (Denmark)
Hermansen, Mikkel Nørlem
of steady state equilibrium when considering the empirically observed trend in longevity. We extend a standard continuous time overlapping generations model by a longevity trend and are thereby able to study the properties of mortality-driven population growth. This turns out to be exceedingly complicated...... to handle, and it is shown that in general no steady state equilibrium exists. Consequently analytical results and long run implications cannot be obtained in a setting with a realistic demographic setup....
Carius, Lisa; Rumschinski, Philipp; Faulwasser, Timm; Flockerzi, Dietrich; Grammel, Hartmut; Findeisen, Rolf
2014-04-01
Microaerobic (oxygen-limited) conditions are critical for inducing many important microbial processes in industrial or environmental applications. At very low oxygen concentrations, however, the process performance often suffers from technical limitations. Available dissolved oxygen measurement techniques are not sensitive enough and thus control techniques, that can reliable handle these conditions, are lacking. Recently, we proposed a microaerobic process control strategy, which overcomes these restrictions and allows to assess different degrees of oxygen limitation in bioreactor batch cultivations. Here, we focus on the design of a control strategy for the automation of oxygen-limited continuous cultures using the microaerobic formation of photosynthetic membranes (PM) in Rhodospirillum rubrum as model phenomenon. We draw upon R. rubrum since the considered phenomenon depends on the optimal availability of mixed-carbon sources, hence on boundary conditions which make the process performance challenging. Empirically assessing these specific microaerobic conditions is scarcely practicable as such a process reacts highly sensitive to changes in the substrate composition and the oxygen availability in the culture broth. Therefore, we propose a model-based process control strategy which allows to stabilize steady-states of cultures grown under these conditions. As designing the appropriate strategy requires a detailed knowledge of the system behavior, we begin by deriving and validating an unstructured process model. This model is used to optimize the experimental conditions, and identify properties of the system which are critical for process performance. The derived model facilitates the good process performance via the proposed optimal control strategy. In summary the presented model-based control strategy allows to access and maintain microaerobic steady-states of interest and to precisely and efficiently transfer the culture from one stable microaerobic steady-state
Steady state effects in a two-pulse diffusion-weighted sequence.
Zubkov, Mikhail; Stait-Gardner, Timothy; Price, William S; Stilbs, Peter
2015-04-21
In conventional nuclear magnetic resonance (NMR) diffusion measurements a significant amount of experimental time is used up by magnetization recovery, serving to prevent the formation of the steady state, as in the latter case the manifestation of diffusion is modulated by multiple applications of the pulse sequence and conventional diffusion coefficient inference procedures are generally not applicable. Here, an analytical expression for diffusion-related effects in a two-pulse NMR experiment (e.g., pulsed-gradient spin echo) in the steady state mode (with repetition times less than the longitudinal relaxation time of the sample) is derived by employing a Fourier series expansion within the solution of the Bloch-Torrey equations. Considerations are given for the transition conditions between the full relaxation and the steady state experiment description. The diffusion coefficient of a polymer solution (polyethylene glycol) is measured by a two-pulse sequence in the full relaxation mode and for a range of repetition times, approaching the rapid steady state experiment. The precision of the fitting employing the presented steady state solution by far exceeds that of the conventional fitting. Additionally, numerical simulations are performed yielding results strongly supporting the proposed description of the NMR diffusion measurements in the steady state.
Steady state effects in a two-pulse diffusion-weighted sequence
International Nuclear Information System (INIS)
Zubkov, Mikhail; Stait-Gardner, Timothy; Price, William S.; Stilbs, Peter
2015-01-01
In conventional nuclear magnetic resonance (NMR) diffusion measurements a significant amount of experimental time is used up by magnetization recovery, serving to prevent the formation of the steady state, as in the latter case the manifestation of diffusion is modulated by multiple applications of the pulse sequence and conventional diffusion coefficient inference procedures are generally not applicable. Here, an analytical expression for diffusion-related effects in a two-pulse NMR experiment (e.g., pulsed-gradient spin echo) in the steady state mode (with repetition times less than the longitudinal relaxation time of the sample) is derived by employing a Fourier series expansion within the solution of the Bloch-Torrey equations. Considerations are given for the transition conditions between the full relaxation and the steady state experiment description. The diffusion coefficient of a polymer solution (polyethylene glycol) is measured by a two-pulse sequence in the full relaxation mode and for a range of repetition times, approaching the rapid steady state experiment. The precision of the fitting employing the presented steady state solution by far exceeds that of the conventional fitting. Additionally, numerical simulations are performed yielding results strongly supporting the proposed description of the NMR diffusion measurements in the steady state
When it pays to rush: interpreting morphogen gradients prior to steady-state
International Nuclear Information System (INIS)
Saunders, Timothy; Howard, Martin
2009-01-01
During development, morphogen gradients precisely determine the position of gene expression boundaries despite the inevitable presence of fluctuations. Recent experiments suggest that some morphogen gradients may be interpreted prior to reaching steady-state. Theoretical work has predicted that such systems will be more robust to embryo-to-embryo fluctuations. By analyzing two experimentally motivated models of morphogen gradient formation, we investigate the positional precision of gene expression boundaries determined by pre-steady-state morphogen gradients in the presence of embryo-to-embryo fluctuations, internal biochemical noise and variations in the timing of morphogen measurement. Morphogens that are direct transcription factors are found to be particularly sensitive to internal noise when interpreted prior to steady-state, disadvantaging early measurement, even in the presence of large embryo-to-embryo fluctuations. Morphogens interpreted by cell-surface receptors can be measured prior to steady-state without significant decrease in positional precision provided fluctuations in the timing of measurement are small. Applying our results to experiment, we predict that Bicoid, a transcription factor morphogen in Drosophila, is unlikely to be interpreted prior to reaching steady-state. We also predict that Activin in Xenopus and Nodal in zebrafish, morphogens interpreted by cell-surface receptors, can be decoded in pre-steady-state
Mannée, Denise C; Fabius, Timon M; Wagenaar, Michiel; Eijsvogel, Michiel M M; de Jongh, Frans H C
2018-01-01
In this study, the hypercapnic ventilatory response (HCVR) was measured, defined as the ventilation response to carbon dioxide tension ( P CO 2 ). We investigated which method, rebreathing or steady-state, is most suitable for measurement of the HCVR in healthy subjects, primarily based on reproducibility. Secondary outcome parameters were subject experience and duration. 20 healthy adults performed a rebreathing and steady-state HCVR measurement on two separate days. Subject experience was assessed using numeric rating scales (NRS). The intraclass correlation coefficient (ICCs) of the sensitivity to carbon dioxide above the ventilatory recruitment threshold and the projected apnoea threshold were calculated to determine the reproducibility of both methods. The ICCs of sensitivity were 0.89 (rebreathing) and 0.56 (steady-state). The ICCs of the projected apnoea threshold were 0.84 (rebreathing) and 0.25 (steady-state). The steady-state measurement was preferred by 16 out of 20 subjects; the differences in NRS scores were small. The hypercapnic ventilatory response measured using the rebreathing setup provided reproducible results, while the steady-state method did not. This may be explained by high variability in end-tidal P CO 2 . Differences in subject experience between the methods are small.
40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Discrete-mode steady-state emission... Procedures § 1033.515 Discrete-mode steady-state emission tests of locomotives and locomotive engines. This... a warm-up followed by a sequence of nominally steady-state discrete test modes, as described in...
Kosman, Daniel J.
2009-01-01
The steady-state is a fundamental aspect of biochemical pathways in cells; indeed, the concept of steady-state is a definition of life itself. In a simple enzyme kinetic scheme, the steady-state condition is easy to define analytically but experimentally often difficult to capture because of its evanescent quality; the initial, constant velocity…
Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan
2016-08-22
Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the
Steady state flow evaluations for passive auxiliary feedwater system of APR
International Nuclear Information System (INIS)
Park, Jongha; Kim, Jaeyul; Seong, Hoje; Kang, Kyoungho
2012-01-01
This paper briefly introduces a methodology to evaluate steady state flow of APR+ Passive Auxiliary Feedwater System (PAFS). The PAFS is being developed as a safety grade passive system to completely replace the existing active Auxiliary Feedwater System (AFWS). Natural circulation cooling can be generally classified into the single-phase, two-phase, and boiling-condensation modes. The PAF is designed to be operated in a boiling-condensation natural circulation mode. The steady-state flow rate should be equal to the steady-state boiling/condensation rate determined by the steady-state energy and momentum balances in the PAFS. The determined steady-state flow rate can be used in the design optimization for the natural circulation loop of the PAFS through the steady-state momentum balance. Since the retarding force, which is to be balanced by the driving force in the natural circulation system design depends on the reliable evaluation of the success of a natural circulation system design depends on the reliable evaluation of the pressure loss coefficients. In PAFS, the core decay heat is released by natural circulation flow between the S G secondary side and the Passive Condensation Heat Exchanger (PCHX) that is immersed in the Passive Condensation Cooling Tank (PCCT). The PCCT is located on the top of Auxiliary building The driving force is determined by the difference between the S/G (heat Source) secondary water level and condensation liquid (heat sink) level. It will overcome retarding force at flowrate in the system, which is determined by vaporization and condensation of the steam which is generated at the S/G by the latent heat in system. In this study, the theoretical method to estimate the steady state flow rate in boiling-condensation natural circulation system is developed and compared with test results
Energy Technology Data Exchange (ETDEWEB)
Wang, Xi-guang; Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn; Nie, Yao-zhuang; Xia, Qing-lin; Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Wang, D. [Department of Physics, National University of Defense Technology, Changsha 410073 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China)
2013-12-23
We have studied the current-induced displacement of a 180° Bloch wall by means of micromagnetic simulation and analytical approach. It is found that the adiabatic spin-transfer torque can sustain a steady-state domain wall (DW) motion in the direction opposite to that of the electron flow without Walker Breakdown when a transverse microwave field is applied. This kind of motion is very sensitive to the microwave frequency and can be resonantly enhanced by exciting the domain wall thickness oscillation mode. A one-dimensional analytical model was established to account for the microwave-assisted wall motion. These findings may be helpful for reducing the critical spin-polarized current density and designing DW-based spintronic devices.
Dynamic evolution of initial instability during non-steady-state growth.
Dong, Zhibo; Zheng, Wenjian; Wei, Yanhong; Song, Kuijing
2014-06-01
Dynamic evolution of initial instability is investigated by an analytic model obtained by modifying the theory of Warren and Langer [Phys. Rev. E 47, 2702 (1993)] and the quantitative phase-field model in directional solidification under transient conditions for realistic parameters of a dilute alloy. The evolutions of tip velocity and concentration in the liquid side of the interface predicted by the analytic model agree very well with that from the phase-field simulation in the linear growth stage of the non-steady-state growth, indicating that the model could be used as a convenient method to study the initial instability during non-steady-state growth. The influences of non-steady-state conditions which include the increasing rate of pulling speed and temperature gradient at the onset of initial instability are investigated, and we find that, the initial instability seems to depend strongly on the non-steady-state conditions and the non-steady-state history, and thus, it should be primarily considered in the study of the transient growth.
The Markov process admits a consistent steady-state thermodynamic formalism
Peng, Liangrong; Zhu, Yi; Hong, Liu
2018-01-01
The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.
Gastrup, Sandra; Stage, Tore Bjerregaard; Fruekilde, Palle Bach Nielsen; Damkier, Per
2016-04-01
Patients receiving lamotrigine therapy frequently use paracetamol concomitantly. While one study suggests a possible, clinically relevant drug-drug interaction, practical recommendations of the concomitant use are inconsistent. We performed a systematic pharmacokinetic study in healthy volunteers to quantify the effect of 4 day treatment with paracetamol on the metabolism of steady-state lamotrigine. Twelve healthy, male volunteers participated in an open label, sequential interaction study. Lamotrigine was titrated to steady-state (100 mg daily) over 36 days, and blood and urine sampling was performed in a non-randomized order with and without paracetamol (1 g four times daily). The primary endpoint was change in steady-state area under the plasma concentration-time curve of lamotrigine. Secondary endpoints were changes in total apparent oral clearance, renal clearance, trough concentration of lamotrigine and formation clearance of lamotrigine glucuronide conjugates. Co-administration of lamotrigine and paracetamol decreased the steady-state area under the plasma concentration-time curve of lamotrigine by 20% (95% CI 10%, 25%; P steady-state lamotrigine glucuronidation, resulting in a 20% decrease in total systemic exposure and a 25% decrease in trough value of lamotrigine. This interaction may be of clinical relevance in some patients. © 2015 The British Pharmacological Society.
Demonstration of the steady-state fluctuation theorem from a single trajectory
International Nuclear Information System (INIS)
Wang, G M; Carberry, D M; Reid, J C; Sevick, E M; Evans, D J
2005-01-01
The fluctuation theorem (FT) quantifies the probability of Second Law of Thermodynamics violations in small systems over short timescales. While this theorem has been experimentally demonstrated for systems that are perturbed from an initial equilibrium state, there are a number of studies suggesting that the theorem applies asymptotically in the long time limit to systems in a non-equilibrium steady state. The asymptotic application of the FT to such non-equilibrium steady-states has been referred to in the literature as the steady-state fluctuation theorem (or SSFT). In 2005 Wang et al demonstrated experimentally an integrated form of the SSFT using a colloidal bead that was weakly held in a circularly translating optical trap. Moreover, they showed that the integrated form of the FT may, for certain systems, hold under non-equilibrium steady states for all time, and not just in the long time limit, as suggested by the SSFT. While demonstration of the integrated forms of these theorems is compact and illustrative, a proper demonstration shows the theorem directly, rather than in its integrated form. In this paper, we present experimental results that demonstrate the SSFT directly, and show that the FT can hold for all time under non-equilibrium steady states
Diehl, S; Zambrano, J; Carlsson, B
2016-01-01
A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Collin Popp
2016-11-01
Full Text Available Indirect calorimetry (IC measurements to estimate resting energy expenditure (REE necessitate a stable measurement period, or steady state (SS. There is limited evidence when assessing the time to reach SS in young, healthy adults. The aims of this prospective study are to determine the approximate time to necessary reach SS using open-circuit IC and to establish the appropriate duration of SS needed to estimate REE. One hundred young, healthy participants (54 males and 46 females; age = 20.6 ± 2.1 years; body weight = 73.6 ± 16.3 kg; height 172.5 ± 9.3 cm; BMI = 24.5 ± 3.8 kg/m2 completed IC measurement for approximately 30-minutes while the volume of oxygen (VO2 and volume of carbon dioxide (VCO2 were collected. SS was defined by variations in the VO2 and VCO2 of ≤10% coefficient of variation (%CV over a period of 5- consecutive minutes. The 30-minute IC measurement was divided into six 5-minute segments, S1, S2, S3, S4, S5 and S6. The results show that SS was achieved during S2 (%CV = 6.81 ± 3.2%, and the %CV continued to met the SS criteria for the duration of the IC measurement (S3= 8.07 ± 4.4%; S4 = 7.93 ± 3.7%; S5 = 7.75 ± 4.1%; S6 = 8.60 ± 4.6%. The current study found that in a population of young, healthy adults the duration of the IC measurement period could be a minimum of 10 minutes. The first 5-minute segment was discarded, while SS occurred by the second 5-minute segment.
Computer program for the equations describing the steady state of enzyme reactions.
Varon, R; Garcia-Sevilla, F; Garcia-Moreno, M; Garcia-Canovas, F; Peyro, R; Duggleby, R G
1997-04-01
The derivation of steady-state equations is frequently carried out in enzyme kinetic studies. Done manually, this becomes tedious and prone to human error. The computer programs now available which are able to accept reaction mechanisms of some complexity are focused only on the strict steady-state approach. Here we present a computer program called REFERASS, with a short computation time and a user-friendly format for the input and output files, able to derive the strict steady-state equations and/or those corresponding to the usual assumption that one ore more of the reversible steps are in rapid equilibrium. This program handles enzyme-catalysed reactions with mechanisms involving up to 255 enzyme species connected by up to 255 reaction steps, subject to limits imposed by the memory and disk space available.
Time Reversibility, Correlation Decay and the Steady State Fluctuation Relation for Dissipation
Directory of Open Access Journals (Sweden)
Denis J. Evans
2013-04-01
Full Text Available Steady state fluctuation relations for nonequilibrium systems are under intense investigation because of their important practical implications in nanotechnology and biology. However the precise conditions under which they hold need clarification. Using the dissipation function, which is related to the entropy production of linear irreversible thermodynamics, we show time reversibility, ergodic consistency and a recently introduced form of correlation decay, called T-mixing, are sufficient conditions for steady state fluctuation relations to hold. Our results are not restricted to a particular model and show that the steady state fluctuation relation for the dissipation function holds near or far from equilibrium subject to these conditions. The dissipation function thus plays a comparable role in nonequilibrium systems to thermodynamic potentials in equilibrium systems.
Sickle cell disease painful crisis and steady state differentiation by proton magnetic resonance.
Fernández, Adolfo A; Cabal, Carlos A; Lores, Manuel A; Losada, Jorge; Pérez, Enrique R
2009-01-01
The delay time of the Hb S polymerization process was investigated in 63 patients with sickle cell disease during steady state and 10 during painful crisis starting from spin-spin proton magnetic resonance (PMR) time behavior measured at 36 degrees C and during spontaneous deoxygenation. We found a significant decrease of delay time as a result of the crisis (36 +/- 10%) and two well-differentiated ranges of values for each state: 273-354 min for steady state and 166-229 min for crisis with an uncertainty region of 15%. It is possible to use PMR as an objective and quantitative method in order to differentiate both clinical conditions of the sickle cell patient, but a more clear differentiation can be established comparing the delay time (td) value of one patient during crisis with his own td value during steady state.
Steady-state heat transfer in an inverted U-tube steam generator
International Nuclear Information System (INIS)
Boucher, T.J.
1986-01-01
Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during steady-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K hot-leg fluid temperatures, 6.2 MPa secondary pressure). The MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations
DEFF Research Database (Denmark)
Gastrup, Sandra; Stage, Tore Bjerregaard; Fruekilde, Palle Bach Nielsen
2016-01-01
AIM: Patients receiving lamotrigine therapy frequently use paracetamol concomitantly. While one study suggests a possible, clinically relevant drug-drug interaction, practical recommendations of the concomitant use are inconsistent. We performed a systematic pharmacokinetic study in healthy...... volunteers to quantify the effect of 4-day treatment of paracetamol on the metabolism of steady-state lamotrigine. METHODS: Twelve healthy, male volunteers participated in an open-label, sequential interaction study. Lamotrigine was titrated to steady state (100 mg daily) over 36 days, and blood and urine...... sampling was performed in a non-randomised order with and without paracetamol (1 g four times daily). The primary endpoint was change in steady-state area under the plasma concentration-time curve of lamotrigine. Secondary endpoints were changes in total apparent oral clearance, renal clearance...
Steady-State Magneto-Optical Trap with 100-Fold Improved Phase-Space Density
Bennetts, Shayne; Chen, Chun-Chia; Pasquiou, Benjamin; Schreck, Florian
2017-12-01
We demonstrate a continuously loaded 88Sr magneto-optical trap (MOT) with a steady-state phase-space density of 1.3 (2 )×10-3 . This is 2 orders of magnitude higher than reported in previous steady-state MOTs. Our approach is to flow atoms through a series of spatially separated laser cooling stages before capturing them in a MOT operated on the 7.4-kHz linewidth Sr intercombination line using a hybrid slower+MOT configuration. We also demonstrate producing a Bose-Einstein condensate at the MOT location, despite the presence of laser cooling light on resonance with the 30-MHz linewidth transition used to initially slow atoms in a separate chamber. Our steady-state high phase-space density MOT is an excellent starting point for a continuous atom laser and dead-time free atom interferometers or clocks.
International Nuclear Information System (INIS)
Tsuji, Naoto; Oka, Takashi; Aoki, Hideo
2010-01-01
To reveal the nature of the photoinduced insulator-metal transition, we show that an exact analysis of the Falicov-Kimball model subject to external ac electric fields becomes possible with Floquet's method combined with the nonequilibrium dynamical mean-field theory. The nonequilibrium steady state that appears during irradiation of a pump light is shown to be determined if the dissipation in a certain heat-bath model is introduced. This has enabled us to predict that novel features characteristic of the photoexcited steady states, i.e., negative weight (gain) in the low-energy region and dip structures around the photon energy of the pump light, should be observed in the optical conductivity. Special emphasis is put on the role of dissipation, for which we elaborate the dependence of the steady state on the strength of dissipation and the temperature of the heat bath.
Analysis on temperature distribution in density lock on steady state without disturbance
International Nuclear Information System (INIS)
Yu Pei; Yan Changqi; Gu Haifeng; Chen Wei
2010-01-01
Temperature distribution on steady state without disturbance in density lock is simulated experimentally in this paper, and the temperature stratification end point is discovered on the temperature curve on steady state. It separated the heat conduction layer and homoiothermy layer. Only when the temperature stratification end point is in the density lock, heat can be restrained effectually. The temperature field is simulated with three methods. The first one is a method of semi-infinite flat-panel heat conduction, the second one is a method of one dimensional steady state conduction in constant cross-section straight-fin, and the last one is calculated using Fluent calculation software. The results indicated that the method of semi-infinite flat-panel heat conduction is the best one to calculate the distribution of temperature and location of temperature stratification end point. (authors)
Steady-state response of the electron distribution function to an applied electric field
International Nuclear Information System (INIS)
Wiley, J.C.; Hinton, F.L.
1980-01-01
Steady-state solutions to the linearized Fokker--Planck equation have been numerically investigated using two models. The Kulsrud model, in which the electron-electron collision term is simplified by evaluating the integrals using a Maxwellian distribution, is considered first. It is shown that steady-state solutions of the Kulsrud model, obtained by long time integrations of the time dependent equation, can be obtained more easily by considering a separable solution. A more physically reasonable steady-state model, which consistently describes both the thermal and runaway regimes and is readily solved numerically, is developed. The resistivity, in agreement with Spitzer and Haerm, and runaway production rates, in agreement with the Kulsrud model, are obtained
Steady-state entanglement and thermalization of coupled qubits in two common heat baths
Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie
2018-03-01
In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.
The non-local Fisher–KPP equation: travelling waves and steady states
International Nuclear Information System (INIS)
Berestycki, Henri; Nadin, Grégoire; Perthame, Benoit; Ryzhik, Lenya
2009-01-01
We consider the Fisher–KPP equation with a non-local saturation effect defined through an interaction kernel φ(x) and investigate the possible differences with the standard Fisher–KPP equation. Our first concern is the existence of steady states. We prove that if the Fourier transform φ-circumflex(ξ) is positive or if the length σ of the non-local interaction is short enough, then the only steady states are u ≡ 0 and u ≡ 1. Next, we study existence of the travelling waves. We prove that this equation admits travelling wave solutions that connect u = 0 to an unknown positive steady state u ∞ (x), for all speeds c ≥ c * . The travelling wave connects to the standard state u ∞ (x) ≡ 1 under the aforementioned conditions: φ-circumflex(ξ) > 0 or σ is sufficiently small. However, the wave is not monotonic for σ large
Mechanism of Non-Steady State Dissolution of Goethite in the Presence of Siderophores
Reichard, P. U.; Kretzschmar, R.; Kraemer, S. M.
2003-12-01
Iron is an essential micronutrient for almost all known organisms. Bacteria, fungi, and graminaceous plants are capable of exuding siderophores as part of an iron acquisition strategy. The production of these strong iron chelating ligands is induced by iron limited conditions. Grasses under iron stress, for example, exude phytosiderophores into the rhizosphere in a special diurnal rhythm (Roemheld and Marschner 1986). A few hours after sunrise the exudation starts, culminates around noon and is shut down again until about 4 hours after noon. The phytosiderophores diffuse into the rhizosphere (Marschner et al. 1986) and are passively back transported to the plants by advective flow induced by high transpiration around noon. Despite a fairly short residence time of the phytosiderophores in the rhizosphere, it is a very effective strategy for iron acquisition. To investigate the effect of such pulse inputs of siderophores on iron acquisition, we studied the dissolution mechanism of goethite (alpha-FeOOH), a mineral phase common in soils, under non-steady state conditions. In consideration of the chemical complexity of the rhizosphere, we also investigated the effect of other organic ligands commonly found in the rhizosphere (e. g. oxalate) on the dissolution kinetics. The dissolution experiments were conducted in batch reactors with a constant goethite solids concentration of 2.5 g/l, an ionic strength of 0.01 M, a pH of 6 and 100 microM oxalate. To induce non-steady state conditions, 3 mM phytosiderophores were added to a batch after the goethite-oxalate suspension reacted for a certain time period. Before the siderophore was added to the goethite-oxalate suspension, no dissolution of iron was observed. But, with the addition of the siderophore, a high rate was observed for the iron mobilization under these non-steady state conditions that subsequently was followed by a slow steady state dissolution rate. The results of these non-steady state experiments are very
DEFF Research Database (Denmark)
Wagner, Manfred H.; Rolon-Garrido, Victor H.; Nielsen, Jens Kromann
2008-01-01
The transient and steady-state elongational viscosity data of three bidisperse polystyrene blends were investigated recently by Nielsen et al. [J. Rheol. 50, 453-476 (2006)]. The blends contain a monodisperse high molar mass component (M-L= 390 kg/ mol) in a matrix of a monodisperse small molar...... stretching potential of the long-chain component and an increasing steady-state elongational viscosity with increasing strain rate. In addition, in the dilution regime, a transition from affine chain stretch to nonaffine tube squeeze with decreasing strain rate is identified. The dilution regime ends......, and allowing (albeit by use of empirical linear-viscoelastic shift factors to correct the linear-viscoelastic predictions) for a quantitative description of the transient and steady-state elongational viscosities of the bidisperse polystyrene blends....
International Nuclear Information System (INIS)
Mbagwu, J.S.C.
1993-10-01
A knowledge of physical properties influencing the steady-state infiltration rates (ic) of soils is needed for the hydrologic modelling of the infiltration process. In this study evidence is provided to show that effective porosity (Pe) (i.e. the proportion of macro pore spaces with equivalent radius of > 15 μm) and dry bulk density are the most important soil physical properties controlling the steady-state infiltration rates on a tropical savannah with varying land use histories. At a macro porosity value of ≤ 5.0% the steady-state infiltration rate is zero. Total porosity and the proportion of water-retaining pores explained only a small fraction of the variation in this property. Steady-state infiltration rates can also be estimated from either the saturated hydraulic conductivity (Ks) by the equation, i c = 31.1 + 1.06 (Ks), (R 2 = 0.8104, p ≤ 0.001) or the soil water transmissivity (A) by the equation, i c = 30.0 + 29.9(A), (R 2 = 0.8228, ρ ≤ 0.001). The Philip two-parameter model under predicted steady-state infiltration rates generally. Considering the ease of determination and reliability it is suggested that effective porosity be used to estimate the steady-state infiltration rates of these other soils with similar characteristics. The model is, i c 388.7(Pe) - 10.8(R 2 = 0.7265, p ≤ 0.001) where i c is in (cm/hr) and Pe in (cm 3 /cm 3 ). (author). 20 refs, 3 figs, 4 tabs
The Energy Cost of Steady State Physical Activity in Acute Stroke.
Kramer, Sharon Flora; Cumming, Toby; Bernhardt, Julie; Johnson, Liam
2018-04-01
Cardiorespiratory fitness levels are very low after stroke, indicating that the majority of stroke survivors are unable to independently perform daily activities. Physical fitness training improves exercise capacity poststroke; however, the optimal timing and intensity of training is unclear. Understanding the energy cost of steady-state activity is necessary to guide training prescription early poststroke. We aimed to determine if acute stroke survivors can reach steady state (oxygen-uptake variability ≤2.0 mL O 2 /kg/min) during physical activity and if the energy cost of steady state activity differs from healthy controls. We recruited 23 stroke survivors less than 2 weeks poststroke. Thirteen were able to walk independently and performed a 6-minute walk (median age 78 years, interquartile range [IQR] 70-85), and 7 who were unable to walk independently performed 6 minutes of continuous sit-to-stands (median age 78 years, IQR 74-79) and we recruited 10 healthy controls (median age 73 years, IQR 70-77) who performed both 6 minutes of walking and sit-to-stands. Our primary outcome was energy cost (oxygen-uptake) during steady state activity (i.e., walking and continuous) sit-to-stands, measured by a mobile metabolic cart. All stroke survivors were able to reach steady state. Energy costs of walking was higher in stroke than in controls (mean difference .10 mL O 2 /kg/m, P = .02); the difference in energy costs during sit-to-stands was not significant (mean difference .11 mL O 2 /kg/sts, P = .45). Acute stroke survivors can reach a steady state during activity, indicating they are able to perform cardiorespiratory exercise. Acute stroke survivors require more energy per meter walked than controls. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Chen, Ye-Hong; Shi, Zhi-Cheng; Song, Jie; Xia, Yan; Zheng, Shi-Biao
2018-03-01
Based on Lyapunov control, a scheme is proposed to accelerate dissipation dynamics for the generation of high-fidelity entanglement between two Rydberg atoms in the context of cavity QED. We first use quantum Zeno dynamics and the Rydberg antiblockade to find a unique steady state (two-atom singlet state) for the system. Then, we apply additional coherent control (ACC) fields to improve the evolution speed of the dissipative system. The ACC fields are designed based on the target state and they vanish gradually along with increasing of the fidelity; thus, the system is guaranteed to be finally stable. Additionally, the current accelerated scheme is checked to be robust against systematic and amplitude-noise errors.
Analysis on the steady-state coherent synchrotron radiation with strong shielding
International Nuclear Information System (INIS)
Li, R.; Bohn, C.L.; Bisognano, J.J.
1997-01-01
There are several papers concerning shielding of coherent synchrotron radiation (CSR) emitted by a Gaussian line charge on a circular orbit centered between two parallel conducting plates. Previous asymptotic analyses in the frequency domain show that shielded steady-state CSR mainly arises from harmonics in the bunch frequency exceeding the threshold harmonic for satisfying the boundary conditions at the plates. In this paper the authors extend the frequency-domain analysis into the regime of strong shielding, in which the threshold harmonic exceeds the characteristic frequency of the bunch. The result is then compared to the shielded steady-state CSR power obtained using image charges
Steady-State PMU Compliance Test under C37.118.1a-2014
DEFF Research Database (Denmark)
Ghiga, Radu; Wu, Qiuwei; Martin, Kenneth E.
2016-01-01
This paper presents a flexible testing method and the steady-state compliance of PMUs under the C37.118.1a amendment. The work is focused on the changes made to the standard for the harmonic rejection and out-of-band interference tests for which the ROCOF Error limits have been suspended. The paper...... vendors were tested simultaneously in order to provide a fair comparison of the devices. The results for the steady state tests are discussed in the paper together with the strengths and weaknesses of the PMUs and of the test setup....
Modified fluctuation-dissipation and Einstein relation at nonequilibrium steady states.
Chaudhuri, Debasish; Chaudhuri, Abhishek
2012-02-01
Starting from the pioneering work of Agarwal [G. S. Agarwal, Zeitschrift für Physik 252, 25 (1972)], we present a unified derivation of a number of modified fluctuation-dissipation relations (MFDR) that relate response to small perturbations around nonequilibrium steady states to steady-state correlations. Using this formalism we show the equivalence of velocity forms of MFDR derived using continuum Langevin and discrete master equation dynamics. The resulting additive correction to the Einstein relation is exemplified using a flashing ratchet model of molecular motors. © 2012 American Physical Society
Local wettability reversal during steady-state two-phase flow in porous media.
Sinha, Santanu; Grøva, Morten; Ødegården, Torgeir Bryge; Skjetne, Erik; Hansen, Alex
2011-09-01
We study the effect of local wettability reversal on remobilizing immobile fluid clusters in steady-state two-phase flow in porous media. We consider a two-dimensional network model for a porous medium and introduce a wettability alteration mechanism. A qualitative change in the steady-state flow patterns, destabilizing the percolating and trapped clusters, is observed as the system wettability is varied. When capillary forces are strong, a finite wettability alteration is necessary to move the system from a single-phase to a two-phase flow regime. When both phases are mobile, we find a linear relationship between fractional flow and wettability alteration.
Steady-State Numerical Modeling of Size Effects in Wire Drawing
DEFF Research Database (Denmark)
Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof
2016-01-01
Wire drawing processes at micron scale receive increased interest as micro wires are increasingly required in micro electrical components. At the micron scale, size effects become important and have to be taken into consideration. The goal is to optimize the semi-cone angle of the tool in terms...... of drawing force. The present study employs a steady-state modelling technique that omits the transient regime, thus creating a basis for comprehensive parameter studies. The steady-state procedure is based on the streamline integration method presented by Dean and Hutchinson [1]. This approach allows...
International Nuclear Information System (INIS)
2015-01-01
This meeting has provided an appropriate forum to discuss current issues covering a wide range of technical topics related to the steady state operation issues and also to encourage forecast of the ITER performances. The technical meeting includes invited and contributed papers. The topics that have been dealt with are: 1) Superconducting devices (ITER, KSTAR, Tore-Supra, HT-7U, EAST, LHD, Wendelstein-7-X,...); 2) Long-pulse operation and advanced tokamak physics; 3) steady state fusion technologies; 4) Long pulse heating and current drive; 5) Particle control and power exhaust, and 6) ITER-related research and development issues. This document gathers the abstracts
Capitalist Diversity and De-growth Trajectories to Steady-state Economies
DEFF Research Database (Denmark)
Buch-Hansen, Hubert
2014-01-01
Growth-critical scholarship has done much to both expose the environmentally unsustainable nature of the capitalist growth-economies of the overdeveloped part of the world and to develop an alternative vision of a degrowth transition leading to a steady-state economy. However, this scholarship...... on capitalist diversity and institutional change. On the basis of a typology of different models of capitalism, the article suggests that if de-growth transitions took place they would take different forms and lead to a variety of types of steady-state economies (SSEs). To illustrate this point, three ideal...
A quaternionic map for the steady states of the Heisenberg spin-chain
International Nuclear Information System (INIS)
Mehta, Mitaxi P.; Dutta, Souvik; Tiwari, Shubhanshu
2014-01-01
We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.
Transient and steady-state analyses of an electrically heated Topaz-II Thermionic Fuel Element
International Nuclear Information System (INIS)
El-Genk, M.S.; Xue, H.
1992-01-01
Transient and steady-state analyses of electrically heated, Thermionic Fuel Elements (TFEs) for Topaz-II space power system are performed. The calculated emitter and collector temperatures, load electric power and conversion efficiency are in good agreement with reported data. In this paper the effects or Cs pressure, thermal power input, and load resistance on the steady-state performance of the TFE are also investigated. In addition, the thermal response of the ZrH moderator during a startup transient and following a change in the thermal power input is examined
A quaternionic map for the steady states of the Heisenberg spin-chain
Energy Technology Data Exchange (ETDEWEB)
Mehta, Mitaxi P., E-mail: mitaxi.mehta@ahduni.edu.in [IICT, Ahmedabad University, Opp. IIM, Navrangpura, Ahmedabad (India); Dutta, Souvik; Tiwari, Shubhanshu [BITS-Pilani, K.K. Birla Goa campus, Goa (India)
2014-01-17
We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.
International Nuclear Information System (INIS)
Gormezano, C.
1999-01-01
The seventh meeting of the ITER Physics Group on energetic particles, heating and steady state operation was held at CEN/Cadarache from 14 to 18 September 1999. This was the first meeting following the redefinition of the Expert Group structure and it was also the first meeting without participation of US physicists. The main topics covered were: 1. Energetic Particles, 2. Ion Cyclotron Resonance Heating, 3. Lower Hybrid Current Drive, 4. Electron Cyclotron Resonance Heating and Current Drive, 5. Neutral Beam Injection, 6. Steady-State Aspects
Steady-state pharmacokinetics of metformin is independent of the OCT1 genotype in healthy volunteers
DEFF Research Database (Denmark)
Christensen, Mette Marie Hougaard; Højlund, Kurt; Hother-Nielsen, Ole
2015-01-01
PURPOSE: The aim of the study was to determine the steady-state pharmacokinetics of metformin in healthy volunteers with different numbers of reduced-function alleles in the organic cation transporter 1 gene (OCT1). METHODS: The study was conducted as part of a randomized cross-over trial. Thirty......-four healthy volunteers with known OCT1 genotypes (12 with two wild-type alleles, 13 with one and 9 with two reduced-function alleles) were included. In one of the study periods, they were titrated to steady-state with 1 g metformin twice daily. RESULTS: Neither AUC(0-12), C(max) nor Cl(renal) were...
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
Energy Technology Data Exchange (ETDEWEB)
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.
S3C: EBT Steady-State Shooting code description and user's guide
International Nuclear Information System (INIS)
Downum, W.B.
1983-09-01
The Oak Ridge National Laboratory (ORNL) one-dimensional (1-D) Steady-State Shooting code (S3C) for ELMO Bumpy Torus (EBT) plasmas is described. Benchmark calculations finding the steady-state density and electron and ion temperature profiles for a known neutral density profile and known external energy sources are carried out. Good agreement is obtained with results from the ORNL Radially Resolved Time Dependent 1-D Transport code for an EBT-Q type reactor. The program logic is described, along with the physics models in each code block and the variable names used. Sample input and output files are listed, along with the main code
Steady state detection of chemical reaction networks using a simplified analytical method.
Directory of Open Access Journals (Sweden)
Ivan Martínez-Forero
Full Text Available Chemical reaction networks (CRNs are susceptible to mathematical modelling. The dynamic behavior of CRNs can be investigated by solving the polynomial equations derived from its structure. However, simple CRN give rise to non-linear polynomials that are difficult to resolve. Here we propose a procedure to locate the steady states of CRNs from a formula derived through algebraic geometry methods. We have applied this procedure to define the steady states of a classic CRN that exhibits instability, and to a model of programmed cell death.
ATC calculation with steady-state security constraints using Benders decomposition
International Nuclear Information System (INIS)
Shaaban, M.; Yan, Z.; Ni, Y.; Wu, F.; Li, W.; Liu, H.
2003-01-01
Available transfer capability (ATC) is an important indicator of the usable amount of transmission capacity accessible by assorted parties for commercial trading, ATC calculation is nontrivial when steady-state security constraints are included. In hie paper, Benders decomposition method is proposed to partition the AC problem with steady-state security constraints into a base case master problem and a series of subproblems relevant to various contingencies to include their impacts on ATC. The mathematical model is formulated and the two solution schemes are presented. Computer testing on the 4-bus system and IEEE 30-bus system shows the effectiveness of the proposed method and the solution schemes. (Author)
High-temperature expansion for nonequilibrium steady states in driven lattice gases.
Lefevere, Raphael; Tasaki, Hal
2005-05-27
We develop a controlled high-temperature expansion for nonequilibrium steady states of the driven lattice gas, the "Ising model" for nonequilibrium physics. We represent the steady state as P(eta) alpha e(-betaH(eta)-psi(eta)) and evaluate the lowest order contribution to the nonequilibrium effective interaction psi(eta). We see that, in dimensions d > or = 2, all models with nonsingular transition rates yield the same summable psi(eta), suggesting the possibility of describing the state as a Gibbs state similar to equilibrium. The models with the Metropolis rule show exceptional behavior.
Progress of design studies on an LHD-type steady-state reactor
Energy Technology Data Exchange (ETDEWEB)
Motojima, O.; Komori, A.; Sagara, A. [National Institute for Fusion Science, Toki (Japan)
2007-07-01
Helical Heliotrons such as the Large Helical Device (LHD) and Stellarators (H and S systems) have a high potential to realize a current-less steady-state and stable magnetic fusion energy reactor as an alternative to the tokamak DEMO-reactor. H and S systems ideally have an intrinsic property of Q=infinite. Here it is very important to remember that the understanding of the physics of 3-D toroidal magnetic confinement system is naturally extended to tokamak systems. The physics is universal among these two types of systems and the technology is common. We present our recent results from LHD experiments and reactor studies of a next generation LHD-type DEMO Reactor called FFHR. (1) Development of 3-D superconducting (SC) coil technology Due to the successful results of the LHD construction from 1990 to 2007, and steady operation over 8 years from 1998 to 2007, more than 2,000 hrs/year at a high field of around 3 Tesla, we have a large enough data base to demonstrate that 3D coil technology has become the standard technology for a fusion energy reactor. LHD is the largest SC fusion device in the world, contributing to the development of the SC technology necessary for fusion research. The poloidal coils of LHD adopted a super critical forced flow cooling system and their dimensions are almost the same as the ITER toroidal coils. (2) Extended physics understanding of high beta, high T, high n{sub {tau}}{sub T}, and steady state operation Recent LHD experiments have demonstrated the broad and advanced capabilities of LHD as a toroidal magnetic confinement device, which are highlighted by the achievements of 5% volume averaged beta, electron and ion temperatures of 10 keV, super high density of 10E15/cc and 1 hr discharges. We plan to increase the heating power up to 35 MW, and to use deuterium gas for confinement improvement. The n{sub {tau}}{sub T} will be improved to the design nominal value of Q=0.3 within several years and ultimately would approach unity. The key
International Nuclear Information System (INIS)
Wang, Y; Gong, M; Yan, P; Huang, L; Li, D
2009-01-01
A monolithic Nd:YAG microchip laser with [110] cut Cr 4+ :YAG is presented. The output beam is linearly polarized with polarization ratio higher than 100:1. The polarization direction is stable, independent of pump power, crystal temperature, LD temperature. In single longitudinal mode operation, stable 259 ps pulses at 2.5 kHz with 82 kW peak power and diffraction limited beam mode are output. With a simple and compact one-pass Nd:YVO 4 amplifier, 144 kW peak power is achieved. Single longitudinal and fundamental transverse mode is kept after passing through the amplifier stage. The microchip laser can be operated in two longitudinal modes with two sets of output pulses by increasing the pump power
International Nuclear Information System (INIS)
Lin, Wang; Feng-Ping, Yan; Xiang-Qiao, Mao; Shui-Sheng, Jian
2008-01-01
A new polarization-independent dual-wavelength fibre laser by fabricating a uniform FBG and a chirped FBG in a polarization-maintaining erbium-doped fibre (PM-EDF) is proposed and demonstrated. The wavelength spacing is 0.18nm and the optical signal-to-noise ratio is greater than 50dB with pump power of 246mW. Chirped FBG is used to make the reflectivity wavelengths of two PM-FBGs match easier. Since both EDF and FBGs are polarization-maintaining without splices and the two wavelengths are polarization-independent, the maximum amplitude variation and wavelength shifts for both lasing wavelength with 3-min intervals over a period of six hours are less than 0.2 dB and 0.005 nm, respectively, which shows stable dual-wavelength output
Directory of Open Access Journals (Sweden)
Juwairia Obaid
2017-02-01
Full Text Available This study investigates the emissions of various industrial facilities under start-up, shut-down, and normal operations. The industries that have been investigated include power and/or heat generation, energy-from-waste generation, nuclear power generation, sulphuric acid production, ethylene production, petrochemical production, and waste incineration. The study investigated multiple facilities worldwide for each of these industrial categories. The different potential contaminants characteristic of each industry type have been investigated and the emissions of these contaminants under non-steady state have been compared to the steady state emissions. Where available, trends have been developed to identify the circumstances, i.e., the industrial sector and contaminant, under which the assessment and consideration of emissions from start-up and shut-down events is necessary for each industry. These trends differ by industrial sector and contaminant. For example, the study shows that sulphur dioxide (SO2 emissions should be assessed for the start-up operations of sulphuric acid production plants, but may not need to be assessed for the start-up operations of a conventional power generation facility. The trends developed as part of this research paper will help air permit applicants to effectively allocate their resources when assessing emissions related to non-steady state operations. Additionally, it will ensure that emissions are assessed for the worst-case scenario. This is especially important when emissions under start-up and shut-down operations have the potential to exceed enforceable emission limits. Thus, assessing emissions for the worst-case scenario can help in preventing the emissions from adversely impacting public health and the environment.
Spear, Tyler J; Stromp, Tori A; Leung, Steve W; Vandsburger, Moriel H
2017-11-01
Emerging quantitative cardiac magnetic resonance imaging (CMRI) techniques use cine balanced steady-state free precession (bSSFP) to measure myocardial signal intensity and probe underlying physiological parameters. This correlation assumes that steady-state is maintained uniformly throughout the heart in space and time. To determine the effects of longitudinal cardiac motion and initial slice position on signal deviation in cine bSSFP imaging by comparing two-dimensional (2D) and three-dimensional (3D) acquisitions. Nine healthy volunteers completed cardiac MRI on a 1.5-T scanner. Short axis images were taken at six slice locations using both 2D and 3D cine bSSFP. 3D acquisitions spanned two slices above and below selected slice locations. Changes in myocardial signal intensity were measured across the cardiac cycle and compared to longitudinal shortening. For 2D cine bSSFP, 46% ± 9% of all frames and 84% ± 13% of end-diastolic frames remained within 10% of initial signal intensity. For 3D cine bSSFP the proportions increased to 87% ± 8% and 97% ± 5%. There was no correlation between longitudinal shortening and peak changes in myocardial signal. The initial slice position significantly impacted peak changes in signal intensity for 2D sequences ( P cine bSSFP that is only restored at the center of a 3D excitation volume. During diastole, a transient steady-state is established similar to that achieved with 3D cine bSSFP regardless of slice location.
Zhai, Xiang; Meek, Thomas D
2018-02-02
Cruzain, an important drug target for Chagas disease, is a member of clan CA of the cysteine proteases. Understanding the catalytic mechanism of cruzain is vital to the design of new inhibitors. To this end, we have determined pH-rate profiles for substrates and affinity agents and solvent kinetic isotope effects in pre-steady-state and steady-state modes using three substrates: Cbz-Phe-Arg-AMC, Cbz-Arg-Arg-AMC, and Cbz-Arg-Ala-AMC. The pH-rate profile of k cat /K m for Cbz-Arg-Arg-AMC indicated pK 1 = 6.6 (unprotonated) and pK 2 ∼ 9.6 (protonated) groups were required for catalysis. The temperature dependence of the pK = 6.2-6.6 group exhibited a ΔH ion value of 8.4 kcal/mol, typical of histidine. The pH-rate profile of inactivation by iodoacetamide confirmed that the catalytic cysteine possesses a pK a of 9.8. Normal solvent kinetic isotope effects were observed for both D 2 O k cat (1.6-2.1) and D 2 O k cat /K m (1.1-1.4) for all three substrates. Pre-steady-state kinetics revealed exponential bursts of AMC production for Cbz-Phe-Arg-AMC and Cbz-Arg-Arg-AMC, but not for Cbz-Arg-Ala-AMC. The overall solvent isotope effect on k cat can be attributed to the solvent isotope effect on the deacylation step. Our results suggest that cruzain is unique among papain-like cysteine proteases in that the catalytic cysteine and histidine have neutral charges in the free enzyme. The generation of the active thiolate of the catalytic cysteine is likely preceded (and possibly triggered) by a ligand-induced conformational change, which could bring the catalytic dyad into the proximity to effect proton transfer.
Steady-state and transient performance of HVDC link based 3-level ...
African Journals Online (AJOL)
Administrateur
testés par des simulations à l'aide de Matlab Simulink et SimPowerSystems toolbox. Mots clé : CCHT- convertisseur à base de source de tension- MLI - technique de contrôle - charge passive. Abstract. This paper investigates the steady-state and transient performance of high-voltage DC (HVDC) transmission systems ...
Einstein's steady-state theory: an abandoned model of the cosmos
O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon
2014-09-01
We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.
A partition-free approach to transient and steady-state charge currents
DEFF Research Database (Denmark)
Cornean, Horia; Gianesello, Céline; Zagrebnov, Valentin
2010-01-01
We construct a non-equilibrium steady state and calculate the corresponding current for a mesoscopic Fermi system in the partition-free setting. To this end we study a small sample coupled to a finite number of semi-infinite leads. Initially, the whole system of quasi-free fermions is in a grand-...
Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X
Bosch, H. S.; R C Wolf,; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Brauer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodie, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; Konig, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kuhner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stabler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, C.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K. P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupinski, L.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; von Eeten, P.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Funfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; Regana, J. M. G.; Geiger, J.; Geissler, S.; Greuner, H.; Grahl, M.; Gross, S.; Grosman, A.; Grote, H.; Grulke, O.; R. Jaspers,; Szabo, V.
2013-01-01
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate
Differential Cell Count of Bone Marrow Aspirates in Steady-state ...
African Journals Online (AJOL)
Bone marrow was aspirated from the posterior superior iliac spine. Slides were stained with MayGrünwald-Giemsa stain. Proportions of erythroid, myeloid, lymphoid and megakaryocytic cells out of 250 nucleated bone marrow cells were determined. Results: Steady state mean packed cell volume (PCV) was 0.2 ± 0.017 L/L.
Analysis of steady state creep of southeastern New Mexico bedded salt
International Nuclear Information System (INIS)
Herrmann, W.; Wawersik, W.R.; Lauson, H.S.
1980-03-01
Steady state creep rates have been obtained from a large suite of existing experimental creep data relating to bedded rock salt from the Salado formation of S.E. New Mexico. Experimental conditions covered an intermediate temperature range from 22 0 C to 200 0 C, and shear stresses from 1000 psi (7 MPa) to 6000 psi (31 MPa). An expression, based on a single diffusion controlled dislocation climb mechanism, has been found to fit the observed dependence of steady state creep rate on shear stress and temperature, yielding an activation energy of 12 kcal/mole (50 kJ/mole) and a stress exponent of 4.9. Multiple regression analysis revealed a dependence on stratigraphy, but no statistically significant dependence on pressure of specimen size. No consistent dilatancy or compaction associated with steady state creep was found, although some individual specimens dilated or compacted during creep. The steady state creep data were found to agree very well with creep data for both bedded and dome salt from a variety of other locations
Experimental study of vaporization effect on steady state and dynamic behavior of catalytic pellets
Kulikov, A.V.; Kuzin, N.A.; Shigarov, A.B.; Kirillov, V.A.; Westerterp, K.R.; Kronberg, Alexandre E.
2001-01-01
The impact of the combined evaporation of the liquid phase and reaction on single catalyst pellet performance has been studied experimentally. The exothermic, catalyzed hydrogenation of α-methylstyrene (AMS) to cumene has been employed as a model reaction. Steady state and dynamic experiments have
Steady State Investigations of DPF Soot Burn Rates and DPF Modeling
DEFF Research Database (Denmark)
Cordtz, Rasmus Lage; Ivarsson, Anders; Schramm, Jesper
2011-01-01
This work presents the experimental investigation of Diesel Particulate Filter (DPF) regeneration and a calibration procedure of a 1D DPF simulation model based on the commercial software AVL BOOST v. 5.1. Model constants and parameters are fitted on the basis of a number of steady state DPF expe...
Steady-State Fluorescence Anisotropy to Investigate Flavonoids Binding to Proteins
Ingersoll, Christine M.; Strollo, Christen M.
2007-01-01
The steady-state fluorescence anisotropy is employed to study the binding of protein of a model protein, human serum albumin, to a commonly used flavonoid, quercetin. The experiment describes the thermodynamics, as well as the biochemical interactions of such binding effectively.
Efficient decoding with steady-state Kalman filter in neural interface systems.
Malik, Wasim Q; Truccolo, Wilson; Brown, Emery N; Hochberg, Leigh R
2011-02-01
The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5±0.5 s (mean ±s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25±3 single units by a factor of 7.0±0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems.
Molecular control of steady-state dendritic cell maturation and immune homeostasis.
Hammer, Gianna Elena; Ma, Averil
2013-01-01
Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.
Energy Technology Data Exchange (ETDEWEB)
HU, T.A.
2005-10-27
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
Energy Technology Data Exchange (ETDEWEB)
HU TA
2009-10-26
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
Radioactivity computation of steady-state and pulsed fusion reactors operation
International Nuclear Information System (INIS)
Attaya, H.
1994-06-01
Different mathematical methods are used to calculate the nuclear transmutation in steady-state and pulsed neutron irradiation. These methods are the Schuer decomposition, the eigenvector decomposition, and the Pade approximation of the matrix exponential function. In the case of the linear decay chain approximation, a simple algorithm is used to evaluate the transition matrices
Isoforms of human cytochrome-c oxidase. Subunit composition and steady-state kinetic properties
van Kuilenburg, A. B.; Dekker, H. L.; van den Bogert, C.; Nieboer, P.; van Gelder, B. F.; Muijsers, A. O.
1991-01-01
The subunit pattern and the steady-state kinetics of cytochrome-c oxidase from human heart, muscle, kidney and liver were investigated. Polyacrylamide gel electrophoresis of immunopurified cytochrome-c oxidase preparations suggest that isoforms of subunit VIa exist, which show differences in
International Nuclear Information System (INIS)
Guerreiro, J.N.C.; Loula, A.F.D.
1988-12-01
The mixed Petrov-Galerkin finite element formulation is applied to transiente and steady state creep problems. Numerical analysis has shown additional stability of this method compared to classical Galerkin formulations. The accuracy of the new formulation is confirmed in some representative examples of two dimensional and axisymmetric problems. (author) [pt
System and method for generating steady state confining current for a toroidal plasma fusion reactor
International Nuclear Information System (INIS)
Bers, A.
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma
Analysis of Plasticity, Fracture and Friction in Steady State Plate Cutting
DEFF Research Database (Denmark)
Simonsen, Bo Cerup; Wierzbicki, Tomasz
1996-01-01
A closed form solution to the problem of steady state wedge cutting through a ductile metal plate is presented. The considered problem is an idealization of a ship bottom raking process, i.e. a continuous cutting damage of a ship bottom by a hard knife-like rock in a grounding event. A new...
Real-time dynamic hydraulic model for water distribution networks: steady state modelling
CSIR Research Space (South Africa)
Osman, Mohammad S
2016-09-01
Full Text Available steady state hydraulic model that will be used within a real-time dynamic hydraulic model (DHM). The Council for Scientific and Industrial Research (CSIR) water distribution network (WDN) is used as a pilot study for this purpose. A hydraulic analysis...
The total quasi-steady-state approximation for fully competitive enzyme reactions
DEFF Research Database (Denmark)
Pedersen, Morten Gram; Bersani, A.M.; Bersani, E.
2007-01-01
The validity of the Michaelis-Menten-Briggs-Haldane approximation for single enzyme reactions has recently been improved by the formalism of the total quasi-steady-state approximation. This approach is here extended to fully competitive systems, and a criterion for its validity is provided. We show...
DEFF Research Database (Denmark)
Nielsen, Kim Lau; Niordson, Christian Frithiof
2012-01-01
the SSV model [Suo, Z., Shih, C., Varias, A., 1993. A theory for cleavage cracking in the presence of plastic flow. Acta Metall. Mater. 41, 1551–1557] embedded in a steady state finite element formulation, here assuming plane strain conditions and small-scale yielding. Results are presented for a wide...
Spectrally selective imaging with wideband balanced steady-state free precession MRI.
Çukur, Tolga
2016-03-01
Unwanted, bright fat signals in balanced steady-state free precession sequences are commonly suppressed using spectral shaping. Here, a new spectral-shaping method is proposed to significantly improve the uniformity of stopband suppression without compromising the level of passband signals. The proposed method combines binomial-pattern excitation pulses with a wideband balanced steady-state free precession sequence kernel. It thereby increases the frequency separation between the centers of pass and stopbands by π radians, enabling improved water-fat contrast. Simulations were performed to find the optimal flip angles and subpulse spacing for the binomial pulses that maximize contrast and signal efficiency. Comparisons with a conventional binomial balanced steady-state free precession sequence were performed in simulations as well as phantom and in vivo experiments at 1.5 T and 3 T. Enhanced fat suppression is demonstrated in vivo with an average improvement of 58% in blood-fat and 68% in muscle-fat contrast (P steady-state free precession method is a promising candidate for spectrally selective imaging with enhanced reliability against field inhomogeneities. © 2015 Wiley Periodicals, Inc.
Steady state drift vortices in plasmas with shear flow in equilibrium
DEFF Research Database (Denmark)
Chakrabarti, N.
1999-01-01
The Hasegawa-Mima equation in the presence of sheared poloidal flow is solved for two-dimensional steady state vortex. It is shown that when the phase velocity of the vortex is the same as the diamagnetic drift velocity, an exact solution in the form of counter-rotating vortices may appear...
The steady state: is it a neglectable or a compulsory condition for determining renal clearance
International Nuclear Information System (INIS)
Bongartz, W.; Kuni, H.; Ridder, H.W.; Naber, K.
1975-01-01
The first part of the paper reviews critically the whole-body counter technique with falling blood activity level for measuring renal clearance. It is proved that the methodological assumption that the classic clearance formula in its differential mode can be applied is not fulfilled under routine conditions for several reasons. Therefore, that procedure has to be judged as a ''clearance-equivalent'' method. The second part describes the development of a steady-state clearance procedure to a practicable method. By using a subcutaneous (s.c.) autogenous blood depot of 51 Cr-EDTA the authors achieve a quasi constant level of blood activity which is nearly equivalent to that achievable by means of a continuous infusion technique. The third part describes a further development of this method into a ''total clearance'' method by means of a new and quantitative two-compartment analysis. The authors discuss the conditions under which the main criterion of a steady state (input equal to output) is realized and show that (1) the steady state is a condition absolutely necessary for the exact determination of renal clearance, and (2) the standard condition of constant blood level is neither sufficient to prove a steady state nor essential for a mass balance. This conception of determining renal clearance indirectly by means of a complete two-compartment analysis seems to have advantages over competitive procedures. At a reasonable expense of hardware and personnel this method involves minimal discomfort to the patient. (author)
H.R. Barnard; C.B. Graham; W.J. van Verseveld; J.R. Brooks; B.J. Bond; J.J. McDonnell
2010-01-01
Mechanistic assessment of how transpiration influences subsurface flow is necessary to advance understanding of catchment hydrology. We conducted a 24-day, steady-state irrigation experiment to quantify the relationships among soil moisture, transpiration and hillslope subsurface flow. Our objectives were to: (1) examine the time lag between maximum transpiration and...
A Steady State Visually Evoked Potential Investigation of Memory and Ageing
Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard
2009-01-01
Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and…
Molecular Control of Steady-State Dendritic Cell Maturation and Immune Homeostasis
Hammer, Gianna Elena; Ma, Averil
2014-01-01
Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation—the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease. PMID:23330953
Current Pressure Transducer Application of Model-based Prognostics Using Steady State Conditions
Teubert, Christopher; Daigle, Matthew J.
2014-01-01
Prognostics is the process of predicting a system's future states, health degradation/wear, and remaining useful life (RUL). This information plays an important role in preventing failure, reducing downtime, scheduling maintenance, and improving system utility. Prognostics relies heavily on wear estimation. In some components, the sensors used to estimate wear may not be fast enough to capture brief transient states that are indicative of wear. For this reason it is beneficial to be capable of detecting and estimating the extent of component wear using steady-state measurements. This paper details a method for estimating component wear using steady-state measurements, describes how this is used to predict future states, and presents a case study of a current/pressure (I/P) Transducer. I/P Transducer nominal and off-nominal behaviors are characterized using a physics-based model, and validated against expected and observed component behavior. This model is used to map observed steady-state responses to corresponding fault parameter values in the form of a lookup table. This method was chosen because of its fast, efficient nature, and its ability to be applied to both linear and non-linear systems. Using measurements of the steady state output, and the lookup table, wear is estimated. A regression is used to estimate the wear propagation parameter and characterize the damage progression function, which are used to predict future states and the remaining useful life of the system.
Steady-state choice between four alternatives obeys the constant-ratio rule.
Bensemann, Joshua; Lobb, Brenda; Podlesnik, Christopher A; Elliffe, Douglas
2015-07-01
We investigated why violations to the constant-ratio rule, an assumption of the generalized matching law, occur in procedures that arrange frequent changes to reinforcer ratios. Our investigation produced steady-state data and compared them with data from equivalent, frequently changing procedures. Six pigeons responded in a four-alternative concurrent-schedule experiment with an arranged reinforcer-rate ratio of 27:9:3:1. The same four variable-interval schedules were used in every condition, for 50 sessions, and the physical location of each schedule was changed across conditions. The experiment was a steady-state version of a frequently changing procedure in which the locations of four VI schedules were changed every 10 reinforcers. We found that subjects' responding was consistent with the constant-ratio rule in the steady-state procedure. Additionally, local analyses showed that preference after reinforcement was towards the alternative that was likely to produce the next reinforcer, instead of being towards the just-reinforced alternative as in frequently changing procedures. This suggests that the effect of a reinforcer on preference is fundamentally different in rapidly changing and steady-state environments. Comparing this finding to the existing literature suggests that choice is more influenced by reinforcer-generated signals when the reinforcement contingencies often change. © Society for the Experimental Analysis of Behavior.
Quantifying biases in non-steady state chamber measurements of soil-atmosphere gas exchange
Limitations of non-steady state (NSS) chamber methods for determining soil-to-atmosphere trace gas exchange rates have been recognized for several decades. Of these limitations, the so-called “chamber effect” is one of the most challenging to overcome. The chamber effect can be defined as the inhere...
Several flux-calculation (FC) schemes are available for determining soil-to-atmosphere emissions of nitrous oxide (N2O) and other trace gases using data from non-steady-state flux chambers. Recently developed methods claim to provide more accuracy in estimating the true pre-deployment flux (f0) comp...
quasi-steady state thermal performances of a solar air heater with ...
African Journals Online (AJOL)
2017-01-17
Jan 17, 2017 ... For low temperature solar heating applications two kind of solar air ... very low heat transfer rate because of small exchange surfaces ... In the study, mean temperatures and thermal performances of the solar air heater are modelled in quasi-steady state and compared to experimental data. Nomenclature.
Heidt, Timo; Courties, Gabriel; Dutta, Partha; Sager, Hendrik B.; Sebas, Matt; Iwamoto, Yoshiko; Sun, Yuan; Da Silva, Nicolas; Panizzi, Peter; van der Lahn, Anja M.; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias
2014-01-01
Macrophages populate the steady-state myocardium. Previously, all macrophages were thought to arise from monocytes; however, it emerged that, in several organs, tissue-resident macrophages may self-maintain through local proliferation. Our aim was to study the contribution of monocytes to
Transient and Steady-State Responses of an Asymmetric Nonlinear Oscillator
Directory of Open Access Journals (Sweden)
Alex Elías-Zúñiga
2013-01-01
oscillator that describes the motion of a damped, forced system supported symmetrically by simple shear springs on a smooth inclined bearing surface. We also use the percentage overshoot value to study the influence of damping and nonlinearity on the transient and steady-state oscillatory amplitudes.
A quasi-steady state shrinking core model of "whole tree" combustion
African Journals Online (AJOL)
Remember me, or Register. DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. A quasi-steady state shrinking core model of "whole tree" combustion. A. Ouédraogo, JC Mulligan, JG Cleland. Abstract. (J. de la Recherche Scientifique de l'Université de Lomé, 2000, 4(2): 199-208) ...
Incorporation of wind generation to the Mexican power grid: Steady state analysis
Energy Technology Data Exchange (ETDEWEB)
Tovar, J.H.; Guardado, J.L.; Cisneros, F. [Inst. Tecnologico de Morelia (Mexico); Cadenas, R.; Lopez, S. [Comision Federal de Electricidad, Morelia (Mexico)
1997-09-01
This paper describes a steady state analysis related with the incorporation of large amounts of eolic generation into the Mexican power system. An equivalent node is used to represent individual eolic generators in the wind farm. Possible overloads, losses, voltage and reactive profiles and estimated severe contingencies are analyzed. Finally, the conclusions of this study are presented.
System and method for generating steady state confining current for a toroidal plasma fusion reactor
International Nuclear Information System (INIS)
Fisch, N.J.
1981-01-01
A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma
DEFF Research Database (Denmark)
Christrup, Lona Louring; Bonde, J; Rasmussen, S N
1992-01-01
Single-dose and steady state pharmacokinetics of diltiazem administered in two different oral formulations were assessed with particular reference to rate and extent of absorption. Following single dose administration a significant difference in tmax was observed (2.9 +/- 1.9 and 6.8 +/- 2.6 hr r...
Comparative analysis of steady state heat transfer in a TBC and ...
Indian Academy of Sciences (India)
- etry conforming to the NACA0012 is developed which is then used in a finite element algorithm to obtain a non-linear steady state solution to the heat equation for the blade under convection and radiation boundary conditions. The effects of.
Transient and steady state photoelectronic analysis in TlInSe{sub 2} crystals
Energy Technology Data Exchange (ETDEWEB)
Qasrawi, A.F., E-mail: aqasrawi@atilim.edu.tr [Group of Physics, Faculty of Engineering, Atilim University, 06836 Ankara (Turkey); Department of Physics, Arab-American University, Jenin, West Bank, Palestine (Country Unknown); Gasanly, N.M. [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)
2011-08-15
Highlights: {yields} The steady state and time dependent photoconductivity kinetics of the TlInSe{sub 2} crystals are investigated in the temperature region of 100-350 K. {yields} The photocurrent of the sample exhibited linear, sublinear, and supralinear recombination mechanisms, at, above and below 160 K, respectively. {yields} Steady state photoconductivity revealed two recombination centres located at 234 and 94 meV. {yields} The transient photoconductivity is limited by a trapping center located at 173 meV. {yields} The capture coefficient of the trap for holes was determined as 3.11 x 10{sup -22} cm{sup -2}. -- Abstract: The temperature and illumination effects on the transient and steady state photoconductivities of TlInSe{sub 2} crystals have been studied. Namely, two recombination centres located at 234 and at 94 meV and one trap center located at 173 meV were determined from the temperature-dependent steady state and transient photoconductivities, respectively. The illumination dependence of photoconductivity indicated the domination of sublinear and supralinear recombination mechanisms above and below 160 K, respectively. The change in the recombination mechanism is attributed to the exchange of roles between the linear recombination at the surface and trapping centres in the crystal, which become dominant as temperature decreases. The transient photoconductivity measurement allowed the determination of the capture coefficient of traps for holes as 3.11 x 10{sup -22} cm{sup -2}.
Steady-state, elastic-plastic growth of slanted cracks in symmetrically loaded plates
DEFF Research Database (Denmark)
Nielsen, Kim Lau; Hutchinson, J. W.
2017-01-01
of the plate, the problem would be mode I, but due to the slant the local conditions along the crack front are a combination of mode I and mode III. A three-dimensional formulation for steady-state crack propagation is employed to generate distributions of effective stress, stress triaxiality and Lode...
Post-CHF heat transfer during steady-state and transient conditions
International Nuclear Information System (INIS)
Fung, K.K.
1978-06-01
This review extends previous reviews of steady-state post-CHF literature by Groeneveld, Gardiner, and Fung by including more recent data. A review of the literature on transient post-CHF data is also included by extending the work of Yadigaroglu
Quasi-steady state thermal performances of a solar air heater with ...
African Journals Online (AJOL)
Quasi-steady state thermal performance of a solar air heater with a combined absorber is studied. The whole energy balance equations related to the system were articulated as a linear system of temperature equations. Solutions to this linear system were assessed from program based on an iterative process. The mean ...
Coagulation profile of children with sickle cell anemia in steady state ...
African Journals Online (AJOL)
Background: Sickle cell anemia is associated with a hypercoagulable state that may lead to alterations in a coagulation profile. Measurements of coagulation factors are known to have some predictive value for clinical outcome. Objectives: To determine the coagulation profile of children with SCA in steady state and crisis ...
International Nuclear Information System (INIS)
Place, A.R.; Eccleston, J.F.
1987-01-01
The alcohol dehydrogenase (ADH) isolated from Drosophila is unique among alcohol metabolizing enzymes by not requiring metals for catalysis, by showing 4-pro-S (B-sided) hydride transfer stereospecificity, and by possessing a greater catalytic turnover rate for secondary alcohols than for primary alcohols. They have extended their studies on the kinetic mechanism for this enzyme by examining the pre-steady state transients of ternary complex interconversion using stopped-flow fluorescence methods. When enzyme and a 30-fold molar excess of NADH is mixed with excess acetadehyde, methyl ethyl ketone (MEK), or cyclohexanone a rapid (> 100 s -1 ) transient is observe before the steady-state. The rates are insensitive to isotope substitution. With the substrate MEK, the rate and amplitude suggests a single turnover of the enzyme. Similar pre-steady state transients are observed when enzyme and a 50-fold molar excess of NAD + is mixed with ethanol, 2-propanol, and cyclohexanol. The rates show a hyperbolic concentration dependence and a deuterium isotope effect. With d 6 -deuteroethanol the transient no longer occurs in the pre-steady state. When the optical isomers of secondary alcohols are used as substrates, transients are observed only in the R-(-) isomers for all chain lengths. With 2-S(+)-heptanol and 2-S(+)-octanol no transients occur
Effect of stacking fault energy on steady-state creep rate of face ...
African Journals Online (AJOL)
Continuum elastic theory was used to establish the relationships between the force of interaction required to constrict dislocation partials, energy of constriction and climb velocity of the constricted thermal jogs, in order to examine the effect of stacking fault energy (SFE) on steady state creep rate of face centered cubic ...
Steady-state transport equation resolution by particle methods, and numerical results
International Nuclear Information System (INIS)
Mercier, B.
1985-10-01
A method to solve steady-state transport equation has been given. Principles of the method are given. The method is studied in two different cases; estimations given by the theory are compared to numerical results. Results got in 1-D (spherical geometry) and in 2-D (axisymmetric geometry) are given [fr
Hargrove, James L; Heinz, Grete; Heinz, Otto
2008-10-07
This study evaluated whether the changes in several anthropometric and functional measures during caloric restriction combined with walking and treadmill exercise would fit a simple model of approach to steady state (a plateau) that can be solved using spreadsheet software (Microsoft Excel). We hypothesized that transitions in waist girth and several body compartments would fit a simple exponential model that approaches a stable steady-state. The model (an equation) was applied to outcomes reported in the Minnesota starvation experiment using Microsoft Excel's Solver function to derive rate parameters (k) and projected steady state values. However, data for most end-points were available only at t = 0, 12 and 24 weeks of caloric restriction. Therefore, we derived 2 new equations that enable model solutions to be calculated from 3 equally spaced data points. For the group of male subjects in the Minnesota study, body mass declined with a first order rate constant of about 0.079 wk-1. The fractional rate of loss of fat free mass, which includes components that remained almost constant during starvation, was 0.064 wk-1, compared to a rate of loss of fat mass of 0.103 wk-1. The rate of loss of abdominal fat, as exemplified by the change in the waist girth, was 0.213 wk-1.On average, 0.77 kg was lost per cm of waist girth. Other girths showed rates of loss between 0.085 and 0.131 wk-1. Resting energy expenditure (REE) declined at 0.131 wk-1. Changes in heart volume, hand strength, work capacity and N excretion showed rates of loss in the same range. The group of 32 subjects was close to steady state or had already reached steady state for the variables under consideration at the end of semi-starvation. When energy intake is changed to new, relatively constant levels, while physical activity is maintained, changes in several anthropometric and physiological measures can be modeled as an exponential approach to steady state using software that is widely available. The 3
FORMULATION OF NON-STEADY-STATE DUST FORMATION PROCESS IN ASTROPHYSICAL ENVIRONMENTS
International Nuclear Information System (INIS)
Nozawa, Takaya; Kozasa, Takashi
2013-01-01
The non-steady-state formation of small clusters and the growth of grains accompanied by chemical reactions are formulated under the consideration that the collision of key gas species (key molecule) controls the kinetics of dust formation process. The formula allows us to evaluate the size distribution and condensation efficiency of dust formed in astrophysical environments. We apply the formulation to the formation of C and MgSiO 3 grains in the ejecta of supernovae, as an example, to investigate how the non-steady effect influences the formation process, condensation efficiency f con, ∞ , and average radius a ave, ∞ of newly formed grains in comparison with the results calculated with the steady-state nucleation rate. We show that the steady-state nucleation rate is a good approximation if the collision timescale of key molecule τ coll is much smaller than the timescale τ sat with which the supersaturation ratio increases; otherwise the effect of the non-steady state becomes remarkable, leading to a lower f con, ∞ and a larger a ave, ∞ . Examining the results of calculations, we reveal that the steady-state nucleation rate is applicable if the cooling gas satisfies Λ ≡ τ sat /τ coll ∼> 30 during the formation of dust, and find that f con, ∞ and a ave, ∞ are uniquely determined by Λ on at the onset time t on of dust formation. The approximation formulae for f con, ∞ and a ave, ∞ as a function of Λ on could be useful in estimating the mass and typical size of newly formed grains from observed or model-predicted physical properties not only in supernova ejecta but also in mass-loss winds from evolved stars
Steady-state analysis of the nickel oxide in neutral and weakly alkaline solutions
International Nuclear Information System (INIS)
Albu, C.; Deconinck, D.; Hotoiu, L.; Deconinck, J.; Topa, V.
2013-01-01
Thin passive nickel oxides are investigated in neutral and weakly alkaline pH solutions under steady-state conditions. The chemical species considered in the oxide film are nickel interstitials and vacancies, as well as oxygen vacancies. The set of differential equations used in this study is solved using the finite element method (FEM) and is able to reproduce the experimental data present in the literature. Steady-state oxide thickness variation with the applied electrode potential presents a linear behavior with an average slope of 2 nm/V. The role of dominant species in these thin films is investigated in terms of current density produced by the reactions at the interfaces, the reactions involving production and consumption of Ni 2+ vacancies playing a major role in the steady-state properties of the oxide. We show that the mass transport of species in the oxide is influenced more by the migration component of the flux than the diffusion component. Our results also show that the flux of Ni 2+ vacancies is approximately two orders of magnitude higher than the flux of oxygen vacancies and Ni 2+ interstitials, making them the dominant defects in the oxide (thus the p-type electronic character is present). Also, the Ni 2+ vacancies were found to have density levels of 10 20 –10 21 cm −3 close to the metal–film interface. Variations of the steady-state thickness and logarithm of the current density with the electrolyte pH, show a linear increase and decrease respectively. Some of these results are compared with data from experiments and simulations done on the iron oxide, showing that Ni forms steady-state passive films that are thinner than the ones formed on Fe under the same environment conditions (pH, temperature, and applied potential)
STEADY-STATE RELATIVISTIC STELLAR DYNAMICS AROUND A MASSIVE BLACK HOLE
International Nuclear Information System (INIS)
Bar-Or, Ben; Alexander, Tal
2016-01-01
A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the “loss cone,” which take them into the MBH, or close enough to interact strongly with it. The resulting phenomena, e.g., tidal heating and disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, can produce observable signatures and thereby reveal the MBH, affect its mass and spin evolution, test strong gravity, and probe stars and gas near the MBH. These continuous stellar loss and resupply processes shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss cone of a non-spinning MBH in steady state, analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclosed stellar mass, in-plane precession due to general relativity, dissipation by GW, uncorrelated two-body relaxation, correlated resonant relaxation (RR), and adiabatic invariance due to secular precession, using a rigorously derived description of correlated post-Newtonian dynamics in the diffusion limit. We argue that general maximal entropy considerations strongly constrain the orbital diffusion in steady state, irrespective of the relaxation mechanism. We identify the exact phase-space separatrix between plunges and inspirals, and predict their steady-state rates. We derive the dependence of the rates on the mass of the MBH, show that the contribution of RR in steady state is small, and discuss special cases where unquenched RR in restricted volumes of phase-space may affect the steady state substantially
Horinaka, Shigeo; Sugawara, Rie; Yonezawa, Yutaka; Ishimitsu, Toshihiko
2018-01-01
The aim of the present study was to demonstrate evidence of reduced thrombin generation at the trough plasma rivaroxaban concentration. A single-centre, prospective, nonrandomized, drug-intervention, self-controlled study was conducted in 51 anticoagulation therapy-naïve patients with nonvalvular atrial fibrillation. Plasma rivaroxaban concentration was measured by liquid chromatography tandem mass spectrometry (LC-MS/MS) and the anti-factor Xa chromogenic assay. Partial thrombin time (PT), protein C activity, and protein S antigen, prothrombin fragment 1 + 2 (F1 + 2), D-dimer, thrombomodulin (TM), thrombin-antithrombin complex (TAT), plasminogen activator inhibitor-1 (PAI-1) and tissue factor pathway inhibitor (TFPI) levels were also measured at the trough steady state after 4 weeks of rivaroxaban treatment and compared with baseline. Plasma concentrations obtained by the LC-MS/MS and anti-Xa assays were correlated (r = 0.841, P steady state was 23.6 ng ml -1 , at which F1 + 2, TAT and D-dimer had decreased from the baseline values (P steady state in the first to third quartile groups (+0.79 pg ml -1 , P = 0.048). By contrast, PAI-1, protein C activity, protein S antigen and TM remained within the normal range at the trough steady state. Residual plasma rivaroxaban at the trough steady state may explain the antithrombin effect of rivaroxaban in patients with nonvalvular atrial fibrillation. © 2017 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Tasaki, S
2002-01-01
For an infinitely extended system divisable into a finite subsystem and several reservoirs, the time evolution of initial states, where the reservoirs are in equilibrium with different temperatures and chemical potentials, is studied. Under the assumption that the time evolution is $L^1$-asymptotic abelian, (i) \\ the existence of the steady states, (ii) \\ the division independence of the steady states and their relative entropy production, and (iii) \\ the stability of steady states against local perturbations are shown. The explicit expression of the relative entropy production and a KMS characterization of the steady states are given. Without the $L^1$-asymptotic abelian property, a noncommutative analog to the fluctuation theorem is derived as well.
Breden, Maxime; Castelli, Roberto
2018-05-01
In this paper, we present and apply a computer-assisted method to study steady states of a triangular cross-diffusion system. Our approach consist in an a posteriori validation procedure, that is based on using a fixed point argument around a numerically computed solution, in the spirit of the Newton-Kantorovich theorem. It allows to prove the existence of various non homogeneous steady states for different parameter values. In some situations, we obtain as many as 13 coexisting steady states. We also apply the a posteriori validation procedure to study the linear stability of the obtained steady states, proving that many of them are in fact unstable.
A pre-steady state and steady state kinetic analysis of the N-ribosyl hydrolase activity of hCD157.
Preugschat, Frank; Carter, Luke H; Boros, Eric E; Porter, David J T; Stewart, Eugene L; Shewchuk, Lisa M
2014-12-15
hCD157 catalyzes the hydrolysis of nicotinamide riboside (NR) and nicotinic acid riboside (NAR). The release of nicotinamide or nicotinic acid from NR or NAR was confirmed by spectrophotometric, HPLC and NMR analyses. hCD157 is inactivated by a mechanism-based inhibitor, 2'-deoxy-2'-fluoro-nicotinamide arabinoside (fNR). Modification of the enzyme during the catalytic cycle by NR, NAR, or fNR increased the intrinsic protein fluorescence by approximately 50%. Pre-steady state and steady state data were used to derive a minimal kinetic scheme for the hydrolysis of NR. After initial complex formation a reversible step (360 and 30s(-1)) is followed by a slow irreversible step (0.1s(-1)) that defined the rate limiting step, or kcat. The calculated KMapp value for NR in the hydrolytic reaction is 6nM. The values of the kinetic constants suggest that one biological function of cell-surface hCD157 is to bind and slowly hydrolyze NR, possibly converting it to a ligand-activated receptor. Differences in substrate preference between hCD157 and hCD38 were rationalized through a comparison of the crystal structures of the two proteins. This comparison identified several residues in hCD157 (F108 and F173) that can potentially hinder the binding of dinucleotide substrates (NAD+). Copyright © 2014 Elsevier Inc. All rights reserved.
Isotopic steady state of transpired water in wheat leaves grown under different watering regimes
Hu, J.; Simonin, K.; Barbour, M.
2013-12-01
Stable oxygen isotopes have been used to answer a range of ecological, hydrological, and climate questions. One important application is to use oxygen isotopes to partition ecosystem evapotranspiration (ET), since the two components, transpiration and evaporation have distinctly different isotopic compositions (δ18O). However, in order to partition ET using isotopes, accurate measurements or modeling of evaporation and transpiration, are needed. Many studies use the Craig-Gordon Model to model the isotopic composition of transpired water (δ18OT), which assume plants are transpiring at isotopic steady state (ISS), such that the isotopic composition of transpired water (δ18OT) is equal to the δ18O of stem water. However, many studies are questioning the assumption that plants are transpiring at ISS, especially across diurnal time scales. A significant motivation for assuming ISS is the difficulty of collecting transpired water for isotopic analysis. However, with the introduction of laser based spectroscopy methods for isotope analysis, we can now measure δ18O of water vapor at high frequency. Furthermore, these laser based instruments can also be coupled with gas exchange systems to not only measure the isotopic composition of δ18OT, but also to examine the physiological and environmental variables that influence the isotope values, and directly test process-based models. In our study, our first objective was to assess how quickly plants reached isotopic constancy (IC) under a range of environmental conditions. We used two different wheat cultivars that had different stomatal conductance (gs) and subjected them to two different watering treatments to extend the range of gs. Our second objective was to compare δ18OT at IC with δ18O of irrigation water to understand the difference between ISS and IC. We found a significant positive relationship between gs and time to IC (pirrigation water; in other words, δ18OT never reached ISS. This has implications for
Energy Technology Data Exchange (ETDEWEB)
Fleishman, Gregory D. [Center For Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Kuznetsov, Alexey A. [Institute of Solar-Terrestrial Physics, Irkutsk 664033 (Russian Federation)
2014-02-01
Currently there is a concern about the ability of the classical thermal (Maxwellian) distribution to describe quasi-steady-state plasma in the solar atmosphere, including active regions. In particular, other distributions have been proposed to better fit observations, for example, kappa- and n-distributions. If present, these distributions will generate radio emissions with different observable properties compared with the classical gyroresonance (GR) or free-free emission, which implies a way of remotely detecting these non-Maxwellian distributions in the radio observations. Here we present analytically derived GR and free-free emissivities and absorption coefficients for the kappa- and n-distributions, and discuss their properties, which are in fact remarkably different from each other and from the classical Maxwellian plasma. In particular, the radio brightness temperature from a gyrolayer increases with the optical depth τ for kappa-distribution, but decreases with τ for n-distribution. This property has a remarkable consequence allowing a straightforward observational test: the GR radio emission from the non-Maxwellian distributions is supposed to be noticeably polarized even in the optically thick case, where the emission would have strictly zero polarization in the case of Maxwellian plasma. This offers a way of remote probing the plasma distribution in astrophysical sources, including solar active regions as a vivid example.
Buzi, L.; De Temmerman, G.; Huisman, A. E.; Bardin, S.; Morgan, T. W.; Rasinski, M.; Pitts, R. A.; Van Oost, G.
2017-01-01
The effect of helium (He) plasma exposure, and associated surface modifications, on the thermal shock resistance of tungsten (W) under ITER relevant steady state and transient heat and particle loads was studied. W samples were exposed to steady state and pulsed He plasmas at surface base
Method development for detecting divertor failures during steady state operation of Wendelstein 7X
Energy Technology Data Exchange (ETDEWEB)
Rodatos, Alexander; Jakubowski, Marcin; Sunn Pedersen, Thomas [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, Greifswald (Germany); Greuner, Henri [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, Garching (Germany)
2015-05-01
Wendelstein 7-X (W7-X) is stellarator fusion experiment, which will start operation in 2015. One of its goals is the demonstration of the stellarator concepts steady state capability while operating with fusion relevant plasma parameters. For particle and heat exhaust from the plasma a set of 10 island divertor units is installed in the machine. During the steady state operation they are exposed to a heat flux of up to 10MW/m{sup 2} for up to 30 min. Transient, even higher heat fluxes are possible. To guarantee the save operation of W7-X a continues surveillance of the divertor is mandatory, which is realized by a set of 10 infrared cameras observing the divertor surface. These data needs to be evaluated during the experiment identifying defects, surface layers and actual hot spots caused by overheating.
An equation oriented approach to steady state flowsheeting of methanol synthesis loop
International Nuclear Information System (INIS)
Fathikalajahi, J.; Baniadam, M.; Rahimpour, M.R.
2008-01-01
An equation-oriented approach was developed for steady state flowsheeting of a commercial methanol plant. The loop consists of fixed bed reactor, flash separator, preheater, coolers, and compressor. For steady sate flowsheeting of the plant mathematical model of reactor and other units are needed. Reactor used in loop is a Lurgi type and its configuration is rather complex. Previously reactor and flash separator are modeled as two important units of plant. The model is based on mass and energy balances in each equipment and utilizing some auxiliary equations such as rate of reaction and thermodynamics model for activity coefficients of liquid. In order to validate the mathematical model for the synthesis loop, some simulation data were performed using operating conditions and characteristics of the commercial plant. The good agreement between the steady state simulation results and the plant data shows the validity of the model
Comparing Interval Management Control Laws for Steady-State Errors and String Stability
Weitz, Lesley A.; Swieringa, Kurt A.
2018-01-01
Interval Management (IM) is a future airborne spacing concept that leverages avionics to provide speed guidance to an aircraft to achieve and maintain a specified spacing interval from another aircraft. The design of a speed control law to achieve the spacing goal is a key aspect in the research and development of the IM concept. In this paper, two control laws that are used in much of the contemporary IM research are analyzed and compared to characterize steady-state errors and string stability. Numerical results are used to illustrate how the choice of control laws gains impacts the size of steady-state errors and string performance and the potential trade-offs between those performance characteristics.
Directory of Open Access Journals (Sweden)
Nehal M. El Azaly
2017-12-01
Full Text Available Cognitive radio wireless networks CRNs have been considered as an efficient communication paradigm to the utilization of scarce spectrum. The main purpose of channel reservation of dynamic spectrum access (DSA is to access these idle channels intelligently which are specialized for primary users (PUS to be used by unlicensed users temporarily, which are called secondary users (SUS without causing critical interference to the licensed userâs activity. In this paper, continuous-time Markov chain paradigm is improved via channel reservation to show the best usage of the radio spectrum bands, and the transition matrix are deduced for the proposed model. Moreover, the probability state vector is proved by performing steady state analysis. The deduced expressions of the suggested model are illustrated in the numerical results section. Keywords: Cognitive radio networks, Dynamic spectrum access, Channel reservation, Continuous-time Markov chain, Steady-state analysis
Steady-State Somatosensory Evoked Potential for Brain-Computer Interface–Present and Future
Directory of Open Access Journals (Sweden)
Sangtae eAhn
2016-01-01
Full Text Available Brain-computer interface (BCI performance has achieved continued improvement over recent decades, and sensorimotor rhythm-based BCIs that use motor function have been popular subjects of investigation. However, it remains problematic to introduce them to the public market because of their low reliability. As an alternative resolution to this issue, visual-based BCIs that use P300 or steady-state visually evoked potentials seem promising; however, the inherent visual fatigue that occurs with these BCIs may be unavoidable. For these reasons, steady-state somatosensory evoked potential (SSSEP BCIs, which are based on tactile selective attention, have gained increasing attention recently. These may reduce the fatigue induced by visual attention and overcome the low reliability of motor activity. In this literature survey, recent findings on SSSEP and its methodological uses in BCI are reviewed. Further, existing limitations of SSSEP BCI and potential future directions for the technique are discussed.
Steady-state and transient heat transfer through fins of complex geometry
Directory of Open Access Journals (Sweden)
Taler Dawid
2014-06-01
Full Text Available Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.
Energy Technology Data Exchange (ETDEWEB)
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
2017-12-01
We present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.
Composing Problem Solvers for Simulation Experimentation: A Case Study on Steady State Estimation
Leye, Stefan; Ewald, Roland; Uhrmacher, Adelinde M.
2014-01-01
Simulation experiments involve various sub-tasks, e.g., parameter optimization, simulation execution, or output data analysis. Many algorithms can be applied to such tasks, but their performance depends on the given problem. Steady state estimation in systems biology is a typical example for this: several estimators have been proposed, each with its own (dis-)advantages. Experimenters, therefore, must choose from the available options, even though they may not be aware of the consequences. To support those users, we propose a general scheme to aggregate such algorithms to so-called synthetic problem solvers, which exploit algorithm differences to improve overall performance. Our approach subsumes various aggregation mechanisms, supports automatic configuration from training data (e.g., via ensemble learning or portfolio selection), and extends the plugin system of the open source modeling and simulation framework James II. We show the benefits of our approach by applying it to steady state estimation for cell-biological models. PMID:24705453
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
2017-12-01
We present a novel approach for solving steady-state stochastic partial differential equations in high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that accurate global solutions can be obtained with significantly reduced computational costs.
PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code
Energy Technology Data Exchange (ETDEWEB)
Vondy, D.R.
1981-09-01
This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity. The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.
Methods of computing steady-state voltage stability margins of power systems
Energy Technology Data Exchange (ETDEWEB)
Chow, Joe Hong; Ghiocel, Scott Gordon
2018-03-20
In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.
Steady State Thermo-Hydrodynamic Analysis of Two-Axial groove and Multilobe Hydrodynamic Bearings
Directory of Open Access Journals (Sweden)
C. Bhagat
2014-12-01
Full Text Available Steady state thermo-hydrodynamic analysis of two axial groove and multi lobe oil journal bearings is performed in this paper. To study the steady state thermo-hydrodynamic characteristics Reynolds equation is solved simultaneously along with the energy equation and heat conduction equation in bush and shaft. The effect of groove geometry, cavitation in the fluid film, the recirculation of lubricant, shaft speed has also been taken into account. Film temperature in case of three-lobe bearing is found to be high as compared to other studied bearing configurations. The data obtained from this analysis can be used conveniently in the design of such bearings, which are presented in dimensionless form.
Rheological behavior of semi-solid 7075 aluminum alloy at steady state
Directory of Open Access Journals (Sweden)
Li Yageng
2014-03-01
Full Text Available The further application of semi-solid processing lies in the in-depth fundamental study like rheological behavior. In this research, the apparent viscosity of the semi-solid slurry of 7075 alloy was measured using a Couette type viscometer. The effects of solid fraction and shearing rate on the apparent viscosity of this alloy were investigated under different processing conditions. It can be seen that the apparent viscosity increases with an increase in the solid fraction from 10% to 50% (temperature 620 篊 to 630 篊 at steady state. When the solid fraction was fixed, the apparent viscosity can be decreased by altering the shearing rate from 61.235 s-1 to 489.88 s-1 at steady state. An empirical equation that shows the effects of solid fraction and shearing rate on the apparent viscosity is fitted. The microstructure of quenched samples was examined to understand the alloy抯 rheological behavior.
Robust random number generation using steady-state emission of gain-switched laser diodes
International Nuclear Information System (INIS)
Yuan, Z. L.; Lucamarini, M.; Dynes, J. F.; Fröhlich, B.; Plews, A.; Shields, A. J.
2014-01-01
We demonstrate robust, high-speed random number generation using interference of the steady-state emission of guaranteed random phases, obtained through gain-switching a semiconductor laser diode. Steady-state emission tolerates large temporal pulse misalignments and therefore significantly improves the interference quality. Using an 8-bit digitizer followed by a finite-impulse-response unbiasing algorithm, we achieve random number generation rates of 8 and 20 Gb/s, for laser repetition rates of 1 and 2.5 GHz, respectively, with a ±20% tolerance in the interferometer differential delay. We also report a generation rate of 80 Gb/s using partially phase-correlated short pulses. In relation to the field of quantum key distribution, our results confirm the gain-switched laser diode as a suitable light source, capable of providing phase-randomized coherent pulses at a clock rate of up to 2.5 GHz.
Steady-state work fluctuations of a dragged particle under external and thermal noise.
Baule, A; Cohen, E G D
2009-07-01
We consider a particle, confined to a moving harmonic potential, under the influence of friction and external asymmetric Poissonian shot noise (PSN). We study the fluctuations of the work done to maintain this system in a nonequilibrium steady state. PSN generalizes the usual Gaussian noise and can be considered to be a paradigm of external noise, where fluctuation and dissipation originate from physically independent mechanisms. We consider two scenarios: (i) the noise is given purely by PSN and (ii) in addition to PSN the particle is subject to white Gaussian noise. In both cases we derive exact expressions for the large deviation form of the work distribution, which are characterized by the time scales of the system. We show that the usual steady-state fluctuation theorem does not apply in our model and that in a certain parameter regime large negative work fluctuations are more likely to occur than the corresponding positive ones, though the average work is always positive.
DEFF Research Database (Denmark)
Olsen, M H; Andersen, U B; Wachtell, K
1999-01-01
We wanted to investigate whether time to steady state was reached within 2 h of insulin infusion during isoglycemic hyperinsulinemic clamp, comparing the glucose uptake index (M/IG) with Bergman's insulin sensitivity index (Sip). We performed a 2-h oral glucose tolerance test and a 3-h isoglycemic...... hyperinsulinemic clamp in 26 young, healthy subjects and 43 elderly patients with unmedicated essential hypertension and left ventricular hypertrophy. The 3-h Sip correlated strongly with the 2-h M/IG in the patients (r = 0.88, p .... Because the 2-h M/IG correlated strongly with the 3-h Sip with relatively narrow limits of agreement, it is a good measure of insulin sensitivity. However, a 2-h clamp results in lower insulin sensitivity values in elderly, hypertensive patients due to the fact that steady state is not reached...
Yee, H. C.; Sweby, P. K.
1995-01-01
The global asymptotic nonlinear behavior of 11 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDEs.
Yee, H. C.; Sweby, P. K.
1995-01-01
The global asymptotic nonlinear behavior of 1 1 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODES) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDES.
A fully implicit method for 3D quasi-steady state magnetic advection-diffusion.
Energy Technology Data Exchange (ETDEWEB)
Siefert, Christopher; Robinson, Allen Conrad
2009-09-01
We describe the implementation of a prototype fully implicit method for solving three-dimensional quasi-steady state magnetic advection-diffusion problems. This method allows us to solve the magnetic advection diffusion equations in an Eulerian frame with a fixed, user-prescribed velocity field. We have verified the correctness of method and implementation on two standard verification problems, the Solberg-White magnetic shear problem and the Perry-Jones-White rotating cylinder problem.
Large Amplitude Oscillatory Shear Rheology of Living Fibroblasts: Path-Dependent Steady States.
Sander, Mathias; Dobicki, Heike; Ott, Albrecht
2017-10-03
Mechanical properties of biological cells play a role in cell locomotion, embryonic tissue formation, and tumor migration among many other processes. Cells exhibit a complex nonlinear response to mechanical cues that is not understood. Cells may stiffen as well as soften, depending on the exact type of stimulus. Here we apply large-amplitude oscillatory shear to a monolayer of separated fibroblast cells suspended between two plates. Although we apply identical steady-state excitations, in response we observe different typical regimes that exhibit cell softening or cell stiffening to varying degrees. This degeneracy of the cell response can be linked to the initial paths that the instrument takes to go from cell rest to steady state. A model of cross-linked, force-bearing filaments submitted to steady-state excitation renders the different observed regimes with minor changes in parameters if the filaments are permitted to self-organize and form different spatially organized structures. We suggest that rather than a complex viscoelastic or plastic response, the different observed regimes reflect the emergence of different steady-state cytoskeletal conformations. A high sensitivity of the cytoskeletal rheology and structure to minor changes in parameters or initial conditions enables a cell to respond to mechanical requirements quickly and in various ways with only minor biochemical intervention. Probing path-dependent rheological changes constitutes a possibly very sensitive assessment of the cell cytoskeleton as a possible tool for medical diagnosis. Our observations show that the memory of subtle differences in earlier deformation paths must be taken into account when deciphering the cell mechanical response to large-amplitude deformations. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Restitution slope is principally determined by steady-state action potential duration.
Shattock, Michael J; Park, Kyung Chan; Yang, Hsiang-Yu; Lee, Angela W C; Niederer, Steven; MacLeod, Kenneth T; Winter, James
2017-06-01
The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM - to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on
Andersen, Claus A; Perfetti, Paolo; Nibbio, Martina; Bellini, Marta; Angelini, Roberto; Fornasier, Massenzio
2014-07-30
For CNS drugs, brain disposition is of critical importance during drug discovery. In vitro methods are used early followed by more predictive in vivo methods later on in the drug discovery process. Current in vivo methods are costly, have long turnover times or do not measure brain disposition at steady state. A new method to evaluate drug brain disposition in vivo was developed in anaesthetized rats. Seven reference compounds were administered as an initial IV bolus (loading dose) followed by IV infusion for 4.5 h in order to obtain a steady state plasma concentration before brain sampling. The loading dose was estimated from a preliminary single dose IV pharmacokinetic study and was found to successfully bring plasma concentrations to steady state for compounds exhibiting either mono- or bi-compartmental pharmacokinetics. Using this method, a steady state lasting at least 2h was obtained, thus making the in vivo method robust with respect to differences in the pharmacokinetics and/or blood-to-brain equilibration rate of the compounds tested. The method produced highly reproducible results, with substantial advantages in terms of cost, turnaround time and animal welfare. The results agreed with those reported in other, more elaborate preclinical models and in humans, enabling brain disposition to be assessed in a simple, efficient and robust in vivo model for new chemical entities. Introducing the presented method in drug discovery allows brain disposition to be assessed earlier in the drug discovery pipeline and thus facilitate the selection of potent and penetrant CNS drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Infinite product expansion of the Fokker-Planck equation with steady-state solution.
Martin, R J; Craster, R V; Kearney, M J
2015-07-08
We present an analytical technique for solving Fokker-Planck equations that have a steady-state solution by representing the solution as an infinite product rather than, as usual, an infinite sum. This method has many advantages: automatically ensuring positivity of the resulting approximation, and by design exactly matching both the short- and long-term behaviour. The efficacy of the technique is demonstrated via comparisons with computations of typical examples.
Mimicking Nonequilibrium Steady States with Time-Periodic Driving (Open Source)
2016-05-18
8,9]: A reaction such as ATP hydrolysis ( ATP → ADPþ Pi) produces entropy in the surrounding solution, and the chemical potential difference between...kinetic proofreading is achieved through breaking detailed balance, e.g., coupling the w ↔ x transition to the hydrolysis of ATP into ADP , whose...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences — reaches a steady state in
Steady State Crack Propagation in Layered Material Systems Displaying Visco-plastic Behaviour
DEFF Research Database (Denmark)
Nielsen, Kim Lau
2012-01-01
The steady state fracture toughness of elastic visco-plastic materials is studied numerically, using both a conventional and a higher order model. Focus is on the combined effect of strain hardening, strain gradient hardening and strain rate hardening on cracking in layered material systems......, and predictions for the crack tip shielding ratio is brought forward. Included is a novel procedure for extracting information on the rate-independent toughness without approaching this numerically cumbersome limit....
When can time-dependent currents be reproduced by the Landauer steady-state approximation?
Carey, Rachel; Chen, Liping; Gu, Bing; Franco, Ignacio
2017-05-07
We establish well-defined limits in which the time-dependent electronic currents across a molecular junction subject to a fluctuating environment can be quantitatively captured via the Landauer steady-state approximation. For this, we calculate the exact time-dependent non-equilibrium Green's function (TD-NEGF) current along a model two-site molecular junction, in which the site energies are subject to correlated noise, and contrast it with that obtained from the Landauer approach. The ability of the steady-state approximation to capture the TD-NEGF behavior at each instant of time is quantified via the same-time correlation function of the currents obtained from the two methods, while their global agreement is quantified by examining differences in the average currents. The Landauer steady-state approach is found to be a useful approximation when (i) the fluctuations do not disrupt the degree of delocalization of the molecular eigenstates responsible for transport and (ii) the characteristic time for charge exchange between the molecule and leads is fast with respect to the molecular correlation time. For resonant transport, when these conditions are satisfied, the Landauer approach is found to accurately describe the current, both on average and at each instant of time. For non-resonant transport, we find that while the steady-state approach fails to capture the time-dependent transport at each instant of time, it still provides a good approximation to the average currents. These criteria can be employed to adopt effective modeling strategies for transport through molecular junctions in interaction with a fluctuating environment, as is necessary to describe experiments.
Differential equation methods for simulation of GFP kinetics in non-steady state experiments.
Phair, Robert D
2018-03-15
Genetically encoded fluorescent proteins, combined with fluorescence microscopy, are widely used in cell biology to collect kinetic data on intracellular trafficking. Methods for extraction of quantitative information from these data are based on the mathematics of diffusion and tracer kinetics. Current methods, although useful and powerful, depend on the assumption that the cellular system being studied is in a steady state, that is, the assumption that all the molecular concentrations and fluxes are constant for the duration of the experiment. Here, we derive new tracer kinetic analytical methods for non-steady state biological systems by constructing mechanistic nonlinear differential equation models of the underlying cell biological processes and linking them to a separate set of differential equations governing the kinetics of the fluorescent tracer. Linking the two sets of equations is based on a new application of the fundamental tracer principle of indistinguishability and, unlike current methods, supports correct dependence of tracer kinetics on cellular dynamics. This approach thus provides a general mathematical framework for applications of GFP fluorescence microscopy (including photobleaching [FRAP, FLIP] and photoactivation to frequently encountered experimental protocols involving physiological or pharmacological perturbations (e.g., growth factors, neurotransmitters, acute knockouts, inhibitors, hormones, cytokines, and metabolites) that initiate mechanistically informative intracellular transients. When a new steady state is achieved, these methods automatically reduce to classical steady state tracer kinetic analysis. © 2018 Phair. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Steady-state fission gas behavior in uranium-plutonium-zirconium metal fuel elements
International Nuclear Information System (INIS)
Steele, W.G.; Wazzan, A.R.; Okrent, D.
1989-01-01
An analysis of fission gas release and induced swelling in steady state irradiated U-Pu-Zr metal fuels is developed and computer coded. The code is used to simulate, with fair success, some gas release and induced swelling data obtained under the IFR program. It is determined that fuel microstructural changes resulting from zirconium migration, anisotropic swelling, and thermal variations are major factors affecting swelling and gas release behavior. (orig.)
Non-steady-state transport of superthermal electrons in the plasmasphere
Energy Technology Data Exchange (ETDEWEB)
Khazanov, G.V.; Liemohn, M.W.; Gombosi, T.I.; Nagy, A.F. (Univ. of Michigan, Ann Arbor, MI (United States))
1993-12-23
Numerical solutions to the time-dependent kinetic equation, which describes the transport of superthermal electrons in the plasmasphere between the two conjugate ionospheres, are presented. The model calculates the distribution function as a function of time, field-aligned distance, energy, and pitch-angle. The processes of refilling, depleting, and establishing steady-state conditions of superthermal electrons in the plasmasphere are discussed. 10 refs., 6 figs.
Majeed, Muhammad Usman
2017-07-19
Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.
Steady-state tokamak reactor with non-divertor impurity control: STARFIRE
International Nuclear Information System (INIS)
Baker, C.C.
1980-01-01
STARFIRE is a conceptual design study of a commercial tokamak fusion electric power plant. Particular emphasis has been placed on simplifying the reactor concept by developing design concepts to produce a steady-state tokamak with non-divertor impurity control and helium ash removal. The concepts of plasma current drive using lower hybrid rf waves and a limiter/vacuum system for reactor applications are described
Bauman, Grzegorz; Pusterla, Orso; Santini, Francesco; Bieri, Oliver
2018-02-01
To demonstrate the feasibility of oxygen-dependent relaxometry in human lung using an inversion recovery ultra-fast steady-state free precession (IR-ufSSFP) technique. Electrocardiogram-triggered pulmonary relaxometry with IR-ufSSFP was performed in 7 healthy human subjects at 1.5 T. The data were acquired under both normoxic and hyperoxic conditions. In a single breath-hold of less than 9 seconds, 30 transient state IR-ufSSFP images were acquired, yielding longitudinal (T1) and transversal (T2) relaxometry parameter maps using voxel-wise nonlinear fitting. Possible spatial misalignments between consecutive IR-ufSSFP parameter maps were corrected using elastic image registration. Furthermore, dynamic relaxometry oxygen wash-in and wash-out scans were performed in one volunteer. From this, T 1 -related wash-in and wash-out time constants (τ wi , τ wo ) were calculated voxel-wise on registered maps using an exponential fitting model. For healthy lung, observed T1 values were 1399 ± 77 and 1290 ± 76 ms under normoxic and hyperoxic conditions, respectively. Oxygen-related reduction of T1 was statistically significant in every volunteer. No statistically significant change, however, was observed in T2, with normoxic and hyperoxic T2 values of 55 ± 16 and 56 ± 17 ms, respectively. The observed average τ wi was 87.0 ± 28.7 seconds, whereas the average τ wo was 73.5 ± 21.6 seconds. IR-ufSSFP allows fast, steady-state, and dynamic oxygen-dependent relaxometry of the human lung. Magn Reson Med 79:839-845, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Tromberg, Bruce J [Irvine, CA; Berger, Andrew J [Rochester, NY; Cerussi, Albert E [Lake Forest, CA; Bevilacqua, Frederic [Costa Mesa, CA; Jakubowski, Dorota [Irvine, CA
2008-09-23
A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.
Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling
Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang
2017-12-01
Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.
Steady-state ozone concentrations in radiation induced noble gas-oxygen discharges
International Nuclear Information System (INIS)
Elsayed-Ali, H.E.; Miley, G.H.
1985-01-01
Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O/sub 2/ and noble gas-o/sub 2/-SF/sub 6/ mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10/sup 15/ eV . cm/sup -3/ . s/sup -1/. The experimental apparatus and procedure were previously described. The experimentally observed steady-state ozone concentrations in noble gas-O/sub 2/ discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O/sub 2/-SF/sub 6/ mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF/sub 6/ addition. This observation was contrary to only a small increase observed after SF/sub 6/ addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O/sub 2/ discharges
Steady-state and transient analysis of a squeeze film damper bearing for rotor stability
Barrett, L. E.; Gunter, E. J.
1975-01-01
A study of the steady-state and transient response of the squeeze film damper bearing is presented. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived. The bearing equivalent stiffness and damping coefficients are determined by steady-state equations. These coefficients are used to find the bearing configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The transient analysis of rotor-bearing systems is performed by coupling the bearing and journal equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included in the analysis. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed with emphasis on solving the system characteristic frequency equation and on producing stability maps. It is shown that for optimum stability and low force transmissability the squeeze bearing should operate at an eccentricity ratio epsilon 0.4.
Ako, Olga Y; Kitamura, Y; Intabon, K; Satake, T
2008-09-01
A Monod model has been used to describe the steady state characteristics of the acclimated mesophilic hydrogenotrophic methanogens in experimental chemostat reactors. The bacteria were fed with mineral salts and specific trace metals and a H(2)/CO(2) supply was used as a single limited substrate. Under steady state conditions, the growth yield (Y(CH4)) reached 11.66 g cells per mmol of H(2)/CO(2) consumed. The daily cells generation average was 5.67 x 10(11), 5.25 x 10(11), 4.2 x 10(11) and 2.1 x 10(11) cells/l-culture for the dilutions 0.071/d, 0.083/d, 0.1/d and 0.125/d, respectively. The maximum specific growth rate (mu(max)) and the Monod half-saturation coefficient (K(S)) were 0.15/d and 0.82 g/L, respectively. Using these results, the reactor performance was simulated. During the steady state, the simulation predicts the dependence of the H(2)/CO(2) concentration (S) and the cell concentration (X) on the dilution rate. The model fitted the experimental data well and was able to yield a maximum methanogenic activity of 0.24 L CH(4)/g VSS.d. The dilution rate was estimated to be 0.1/d. At the dilution rate of 0.14/d, the exponential cells washout was achieved.
On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.
Directory of Open Access Journals (Sweden)
Zhongfan Zhu
Full Text Available The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size.
On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.
Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie
2016-01-01
The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size.
Diffusion dynamics and steady states of systems of hard rods on a square lattice
Patra, Saugata; Das, Dibyendu; Rajesh, R.; Mitra, Mithun K.
2018-02-01
It is known from grand canonical simulations of a system of hard rods on two-dimensional lattices that an orientationally ordered nematic phase exists only when the length of the rods is at least seven. However, a recent microcanonical simulation with diffusion kinetics, conserving both total density and zero nematic order, reported the existence of a nematically phase-segregated steady state with interfaces in the diagonal direction for rods of length six [Phys. Rev. E 95, 052130 (2017), 10.1103/PhysRevE.95.052130], violating the equivalence of different ensembles for systems in equilibrium. We resolve this inconsistency by demonstrating that the kinetics violate detailed balance condition and drives the system to a nonequilibrium steady state. By implementing diffusion kinetics that drive the system to equilibrium, even within this constrained ensemble, we recover earlier results showing phase segregation only for rods of length greater than or equal to seven. Furthermore, in contrast to the nonequilibrium steady state, the interface has no preferred orientational direction. In addition, by implementing different nonequilibrium kinetics, we show that the interface between the phase segregated states can lie in different directions depending on the choice of kinetics.
Directory of Open Access Journals (Sweden)
Carl Foster, Courtney V. Farland, Flavia Guidotti, Michelle Harbin, Brianna Roberts, Jeff Schuette, Andrew Tuuri, Scott T. Doberstein, John P. Porcari
2015-12-01
Full Text Available High intensity interval training (HIIT has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly. Steady-state (n = 19 exercised (cycle ergometer 20 minutes at 90% of ventilatory threshold (VT. Tabata (n = 21 completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15 completed 13 sets of 30s (20 min @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p < 0.05 increases in VO2max (+19, +18 and +18% and PPO (+17, +24 and +14% for each training group, as well as significant increases in peak (+8, + 9 and +5% & mean (+4, +7 and +6% power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05 than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05 across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults.
Nahmad, Marcos
2011-01-01
Morphogen-mediated patterning is the predominant mechanism by which positional information is established during animal development. In the classical view, the interpretation of positional signals depends on the equilibrium distribution of a morphogen, regardless of the dynamics of gradient formation. The problem of whether or not morphogen dynamics contribute to developmental patterning has not been explored in detail, partly because genetic experiments, which selectively affect signalling dynamics while maintaining unchanged the steady-state morphogen profile, are difficult to design and interpret. Here, I present a modelling-based approach to identify genetic mutations in developmental patterning that may affect the transient, but leave invariant the steady-state signalling gradient. As a case study, this approach is used to explore the dynamic properties of Hedgehog (Hh) signalling in the developing wing of the fruitfly, Drosophila melanogaster. This analysis provides insights into how different properties of the Hh gradient dynamics, such as the duration of exposure to the signal or the maximum width of the transient gradient, can be genetically perturbed without affecting the steady-state distribution of the Hh concentration profile. I propose that this method can be used as an experimental design tool to investigate the role of transient morphogen gradients in developmental patterning and discuss the generality of these ideas in other problems. PMID:21421746
Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone
Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.
2017-01-01
To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ∼110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.
Amri, Amina; Pulko, Susan Helen; Wilkinson, Anthony James
2016-01-01
Breast thermography still has inherent limitations that prevent it from being fully accepted as a breast screening modality in medicine. The main challenges of breast thermography are to reduce false positive results and to increase the sensitivity of a thermogram. Further, it is still difficult to obtain information about tumour parameters such as metabolic heat, tumour depth and diameter from a thermogram. However, infrared technology and image processing have advanced significantly and recent clinical studies have shown increased sensitivity of thermography in cancer diagnosis. The aim of this paper is to study numerically the possibilities of extracting information about the tumour depth from steady state thermography and transient thermography after cold stress with no need to use any specific inversion technique. Both methods are based on the numerical solution of Pennes bioheat equation for a simple three-dimensional breast model. The effectiveness of two approaches used for depth detection from steady state thermography is assessed. The effect of breast density on the steady state thermal contrast has also been studied. The use of a cold stress test and the recording of transient contrasts during rewarming were found to be potentially suitable for tumour depth detection during the rewarming process. Sensitivity to parameters such as cold stress temperature and cooling time is investigated using the numerical model and simulation results reveal two prominent depth-related characteristic times which do not strongly depend on the temperature of the cold stress or on the cooling period. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Transient and Steady State Phenomena of Opposing Buoyant Jets in a Ceiling Vented Room
Landreth, Glen; Caulfield, C. P.
2001-11-01
A ceiling vented room with opposing sources of fluid of different densities is considered. Analytical steady state solutions are found from conservation principles, and are considered for varied source velocities, volume fluxes and densities. Ultimately, a two-layer density profile is predicted to develop, and solutions are found to be independent of initial ambient density within the room. Transient effects are considered by numerically solving the governing equations for the plumes in an evolving, ventilated room. Source velocities, volume fluxes and densities are again significant, as is initial ambient density in the transient behavior of the room ambient density. Phenomena such as plume collapse and mixing driven by static instability are predicted in specific cases, and the numerical and analytical solutions are found to agree in steady state. Experimental verifications, using analogue salt bath laboratory experiments have been performed for both steady state and time dependent phenomena. Conclusions including the applicability to hybrid or mixed-mode ventilation of real buildings will be discussed.
Astumian, R D
2018-01-11
In the absence of input energy, a chemical reaction in a closed system ineluctably relaxes toward an equilibrium state governed by a Boltzmann distribution. The addition of a catalyst to the system provides a way for more rapid equilibration toward this distribution, but the catalyst can never, in and of itself, drive the system away from equilibrium. In the presence of external fluctuations, however, a macromolecular catalyst (e.g., an enzyme) can absorb energy and drive the formation of a steady state between reactant and product that is not determined solely by their relative energies. Due to the ubiquity of non-equilibrium steady states in living systems, the development of a theory for the effects of external fluctuations on chemical systems has been a longstanding focus of non-equilibrium thermodynamics. The theory of stochastic pumping has provided insight into how a non-equilibrium steady-state can be formed and maintained in the presence of dissipation and kinetic asymmetry. This effort has been greatly enhanced by a confluence of experimental and theoretical work on synthetic molecular machines designed explicitly to harness external energy to drive non-equilibrium transport and self-assembly.
Steady State and Transient Fuel Rod Performance Analyses by Pad and Transuranus Codes
International Nuclear Information System (INIS)
Slyeptsov, O.; Slyeptsov, S.; Kulish, G.; Ostapov, A.; Chernov, I.
2013-01-01
The report performed under IAEA research contract No.15370/L2 describes the analysis results of WWER and PWR fuel rod performance at steady state operation and transients by means of PAD and TRANSURANUS codes. The code TRANSURANUS v1m1j09 developed by Institute for of Transuranium Elements (ITU) was used based on the Licensing Agreement N31302. The code PAD 4.0 developed by Westinghouse Electric Company was utilized in the frame of the Ukraine Nuclear Fuel Qualification Project for safety substantiation for the use of Westinghouse fuel assemblies in the mixed core of WWER-1000 reactor. The experimental data for the Russian fuel rod behavior obtained during the steady-state operation in the WWER-440 core of reactor Kola-3 and during the power transients in the core of MIR research reactor were taken from the IFPE database of the OECD/NEA and utilized for assessing the codes themselves during simulation of such properties as fuel burnup, fuel centerline temperature (FCT), fuel swelling, cladding strain, fission gas release (FGR) and rod internal pressure (RIP) in the rod burnup range of (41 - 60) GWD/MTU. The experimental data of fuel behavior at steady-state operation during seven reactor cycles presented by AREVA for the standard PWR fuel rod design were used to examine the code FGR model in the fuel burnup range of (37 - 81) GWD/MTU. (author)
Coherent control of long-distance steady-state entanglement in lossy resonator arrays
Angelakis, D. G.; Dai, L.; Kwek, L. C.
2010-07-01
We show that coherent control of the steady-state long-distance entanglement between pairs of cavity-atom systems in an array of lossy and driven coupled resonators is possible. The cavities are doped with atoms and are connected through waveguides, other cavities or fibers depending on the implementation. We find that the steady-state entanglement can be coherently controlled through the tuning of the phase difference between the driving fields. It can also be surprisingly high in spite of the pumps being classical fields. For some implementations where the connecting element can be a fiber, long-distance steady-state quantum correlations can be established. Furthermore, the maximal of entanglement for any pair is achieved when their corresponding direct coupling is much smaller than their individual couplings to the third party. This effect is reminiscent of the establishment of coherence between otherwise uncoupled atomic levels using classical coherent fields. We suggest a method to measure this entanglement by analyzing the correlations of the emitted photons from the array and also analyze the above results for a range of values of the system parameters, different network geometries and possible implementation technologies.
Effects of governing parameters on steady-state inter-wrapper flow in an LMFBR
International Nuclear Information System (INIS)
Moriya, Shoichi
2001-01-01
Hydraulic experiments were performed using a 1/8th scale rectangular model, based on a Japanese demonstration fast breeder reactor design, in order to study fundamental characteristics of interwrapper flows occurring under steady state conditions in an LMFBR. The steady state interwrapper flow of which direction was downward in the center region and upward in the peripheral region of a core barrel was observed because of the radial static pressure gradient in the upper part of the core barrel, produced by a core blockage effect resulting from an above core structure with a perforated skirt. Thermal stratification phenomena were moreover observed in the interwrapper region, created by the hot steady state interwrapper flow from an upper plenum and the cold leakage flow through the separated plate of the core barrel. The thermal interface was generated in higher part of the core barrel when the core blockage effect was smaller and Richardson number and the leakage flow rate ratio were larger. Significant temperature fluctuations occurred in the peripheral region of the core barrel, when the difference between the interface elevations in the center and peripheral regions of the core barrel was enough large. (author)
Cardona-Marek, Tamara; Knott, Katrina K; Meyer, Benjamin E; O'Hara, Todd M
2009-07-01
Total Hg concentration was measured in hair and whole blood of 52 adult Southern Beaufort Sea polar bears (Ursus maritimus) captured in the spring of 2005. Stable isotopic signatures (i.e., 13C/12C, delta13C; 15N/14N, delta15N) in hair and two blood compartments (packed blood cells/clot and serum) were determined to assess the variation of Hg concentrations among polar bears in relation to their feeding ecology and other biological factors. Concentrations of Hg in hair and blood (2.2-23.9 microg/g dry wt and 0.007-0.213 microg/g wet wt, respectively) were within the range of values previously reported for polar bears in Canada and East Greenland. Mercury concentration in hair from females was higher than that in hair from males, and concentration was related to interactions between delta13C, delta15N, and longitude of capture location. Mercury concentrations in hair were inversely correlated to delta13C in hair and blood, suggesting that polar bears with greater total Hg concentrations fed more on pelagic prey, such as ringed seals or beluga whale, than on benthic prey. Variability in Hg concentrations in polar bear hair and blood may be the result of intraspecific or regional variation in prey selection rather than strictly trophic level interactions.
Shinozaki, Yukino; Yamaji, Minoru; Arai, Tatsuo
2018-01-01
2‧-Hydroxychalcone (HC) analogues 1 and 2 having a diene part tethering the phenyl and naphthyl chromophores, respectively, were prepared, and their photochemical and photophysical properties were studied. Fluorescence from these compounds was absent in solution and the solid state. Based on the results obtained upon steady state and laser flash photolyses, compound 2 was found to be substantially stable on photoirradiation without undergoing intersystem crossing to the triplet state whereas compounds 1 showed transient absorption due to the triplet tautomer. The deactivation processes in the excited states were discussed by considering energetic reaction diagrams for the corresponding tautomers and isomers.
Cerebral vasomotor reactivity: steady-state versus transient changes in carbon dioxide tension
Brothers, R Matthew; Lucas, Rebekah A I; Zhu, Yong-Sheng; Crandall, Craig G; Zhang, Rong
2014-01-01
New Findings What is the central question of this study? The relationship between changes in cerebral blood flow and arterial carbon dioxide tension is used to assess cerebrovascular function. Hypercapnia is generally evoked by two methods, i.e. steady-state and transient increases in carbon dioxide tension. In some cases, the hypercapnia is immediately preceded by a period of hypocapnia. It is unknown whether the cerebrovascular response differs between these methods and whether a period of hypocapnia blunts the subsequent response to hypercapnia. What is the main finding and its importance? The cerebrovascular response is similar between steady-state and transient hypercapnia. However, hyperventilation-induced hypocapnia attenuates the cerebral vasodilatory responses during a subsequent period of rebreathing-induced hypercapnia. Cerebral vasomotor reactivity (CVMR) to changes in arterial carbon dioxide tension () is assessed during steady-state or transient changes in . This study tested the following two hypotheses: (i) that CVMR during steady-state changes differs from that during transient changes in ; and (ii) that CVMR during rebreathing-induced hypercapnia would be blunted when preceded by a period of hyperventilation. For each hypothesis, end-tidal carbon dioxide tension () middle cerebral artery blood velocity (CBFV), cerebrovascular conductance index (CVCI; CBFV/mean arterial pressure) and CVMR (slope of the linear regression between changes in CBFV and CVCI versus ) were assessed in eight individuals. To address the first hypothesis, measurements were made during the following two conditions (randomized): (i) steady-state increases in of 5 and 10 Torr above baseline; and (ii) rebreathing-induced transient breath-by-breath increases in . The linear regression for CBFV versus (P = 0.65) and CVCI versus (P = 0.44) was similar between methods; however, individual variability in CBFV or CVCI responses existed among subjects. To address the second
The technology and science of steady-state operation in magnetically confined plasmas
International Nuclear Information System (INIS)
Becoulet, A; Hoang, G T
2008-01-01
The steady-state operation of magnetically confined fusion plasmas is considered as one of the 'grand challenges' of future decades, if not the ultimate goal of the research and development activities towards a new source of energy. Reaching such a goal requires the high-level integration of both science and technology aspects of magnetic fusion into self-consistent plasma regimes in fusion-grade devices. On the physics side, the first constraint addresses the magnetic confinement itself which must be made persistent. This means to either rely on intrinsically steady-state configurations, like the stellarator one, or turn the inductively driven tokamak configuration into a fully non-inductive one, through a mix of additional current sources. The low efficiency of the external current drive methods and the necessity to minimize the re-circulating power claim for a current mix strongly weighted by the internal 'pressure driven' bootstrap current, itself strongly sensitive to the heat and particle transport properties of the plasma. A virtuous circle may form as the heat and particle transport properties are themselves sensitive to the current profile conditions. Note that several other factors, e.g. plasma rotation profile, magneto-hydro-dynamics activity, also influence the equilibrium state. In the present tokamak devices, several examples of such 'advanced tokamak' physics research demonstrate the feasibility of steady-state regimes, though with a number of open questions still under investigation. The modelling activity also progresses quite fast in this domain and supports understanding and extrapolation. This high level of physics sophistication of the plasma scenario however needs to be combined with steady-state technological constraints. The technology constraints for steady-state operation are basically twofold: the specific technologies required to reach the steady-state plasma conditions and the generic technologies linked to the long pulse operation of a
Damodaran, Anoop R.; Pandya, Shishir; Qi, Yubo; Hsu, Shang-Lin; Liu, Shi; Nelson, Christopher; Dasgupta, Arvind; Ercius, Peter; Ophus, Colin; Dedon, Liv R.; Agar, Josh C.; Lu, Hongling; Zhang, Jialan; Minor, Andrew M.; Rappe, Andrew M.; Martin, Lane W.
2017-05-01
A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (TC). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba1-xSrxTiO3 films which result in spatial polarization gradients as large as 35 μC cm-2 across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss (εr~775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.
Dubbert, Maren; Cuntz, Matthias; Piayda, Arndt; Werner, Christiane
2014-09-01
The oxygen isotope signature of water is a powerful tracer of water movement from plants to the global scale. However, little is known about the short-term variability of oxygen isotopes leaving the ecosystem via transpiration, as high-frequency measurements are lacking. A laser spectrometer was coupled to a gas-exchange chamber directly estimating branch-level fluxes in order to evaluate the short-term variability of the isotopic composition of transpiration (δE ) and to investigate the role of isotopic non-steady-state transpiration under natural conditions in cork-oak trees (Quercus suber) during distinct Mediterranean seasons. The measured δ(18) O of transpiration (δE ) deviated from isotopic steady state throughout most of the day even when leaf water at the evaporating sites was near isotopic steady state. High agreement was found between estimated and modeled δE values assuming non-steady-state enrichment of leaf water. Isoforcing, that is, the influence of the transpirational δ(18) O flux on atmospheric values, deviated from steady-state calculations but daily means were similar between steady state and non-steady state. However, strong daytime isoforcing on the atmosphere implies that short-term variations in δE are likely to have consequences for large-scale applications, for example, partitioning of ecosystem fluxes or satellite-based applications. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Shanmugarajan, Anitha; Alwarappan, Subbiah; Rajendran, Lakshmanan
2011-05-05
A mathematical model of trienzyme biosensor at an internal diffusion limitation for a non-steady-state condition has been developed. The model is based on diffusion equations containing a linear term related to Michaelis-Menten kinetics of the enzymatic reaction. Analytical expressions of concentrations and current of compounds in trienzyme membrane are derived. An excellent agreement with simulation data is noted. When time tends to infinity, the analytical expression of non-steady-state concentration and current approaches the steady-state value, thereby confirming the validity of the mathematical analysis. Furthermore, in this work we employ the complex inversion formula to solve the boundary value problem.
International Nuclear Information System (INIS)
Yordanov, A.
2010-01-01
An input deck of the PSB-WWER facility has been prepared using the delivered input data. The input deck has been stabilized using the steady state option. A qualification of the steady state has been performed. The results show that: 1) A steady state is reached; 2) The calculated values for the main parameters (pressures, temperatures) are within the accuracy band of the measured values. Bigger differences are observed for pressure differences and the possible source of the difference is identified. The input deck is ready for beginning of transient calculations. The first run of the SBO scenario will be ready by the end of 2009. (authors)
Stable isotope-resolved analysis with quantitative dissolution dynamic nuclear polarization
DEFF Research Database (Denmark)
Lerche, Mathilde Hauge; Yigit, Demet; Frahm, Anne Birk
2018-01-01
Metabolite profiles and their isotopomer distributions can be studied non-invasively in complex mixtures with NMR. The advent of dissolution Dynamic Nuclear Polarization (dDNP) and isotope enrichment add sensitivity and resolution to such met-abolic studies. Metabolic pathways and networks can...
Seeing the talker's face supports executive processing of speech in steady state noise.
Mishra, Sushmit; Lunner, Thomas; Stenfelt, Stefan; Rönnberg, Jerker; Rudner, Mary
2013-01-01
Listening to speech in noise depletes cognitive resources, affecting speech processing. The present study investigated how remaining resources or cognitive spare capacity (CSC) can be deployed by young adults with normal hearing. We administered a test of CSC (CSCT; Mishra et al., 2013) along with a battery of established cognitive tests to 20 participants with normal hearing. In the CSCT, lists of two-digit numbers were presented with and without visual cues in quiet, as well as in steady-state and speech-like noise at a high intelligibility level. In low load conditions, two numbers were recalled according to instructions inducing executive processing (updating, inhibition) and in high load conditions the participants were additionally instructed to recall one extra number, which was the always the first item in the list. In line with previous findings, results showed that CSC was sensitive to memory load and executive function but generally not related to working memory capacity (WMC). Furthermore, CSCT scores in quiet were lowered by visual cues, probably due to distraction. In steady-state noise, the presence of visual cues improved CSCT scores, probably by enabling better encoding. Contrary to our expectation, CSCT performance was disrupted more in steady-state than speech-like noise, although only without visual cues, possibly because selective attention could be used to ignore the speech-like background and provide an enriched representation of target items in working memory similar to that obtained in quiet. This interpretation is supported by a consistent association between CSCT scores and updating skills.
Quasi-steady State Reduction of Molecular Motor-Based Models of Directed Intermittent Search
Newby, Jay M.
2010-02-19
We present a quasi-steady state reduction of a linear reaction-hyperbolic master equation describing the directed intermittent search for a hidden target by a motor-driven particle moving on a one-dimensional filament track. The particle is injected at one end of the track and randomly switches between stationary search phases and mobile nonsearch phases that are biased in the anterograde direction. There is a finite possibility that the particle fails to find the target due to an absorbing boundary at the other end of the track. Such a scenario is exemplified by the motor-driven transport of vesicular cargo to synaptic targets located on the axon or dendrites of a neuron. The reduced model is described by a scalar Fokker-Planck (FP) equation, which has an additional inhomogeneous decay term that takes into account absorption by the target. The FP equation is used to compute the probability of finding the hidden target (hitting probability) and the corresponding conditional mean first passage time (MFPT) in terms of the effective drift velocity V, diffusivity D, and target absorption rate λ of the random search. The quasi-steady state reduction determines V, D, and λ in terms of the various biophysical parameters of the underlying motor transport model. We first apply our analysis to a simple 3-state model and show that our quasi-steady state reduction yields results that are in excellent agreement with Monte Carlo simulations of the full system under physiologically reasonable conditions. We then consider a more complex multiple motor model of bidirectional transport, in which opposing motors compete in a "tug-of-war", and use this to explore how ATP concentration might regulate the delivery of cargo to synaptic targets. © 2010 Society for Mathematical Biology.
Modeling of the blood rheology in steady-state shear flows
International Nuclear Information System (INIS)
Apostolidis, Alex J.; Beris, Antony N.
2014-01-01
We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling
Mass, momentum, and energy flux conservation between linear and nonlinear steady-state wave groups
Liu, Zeng; Xu, Dali; Liao, Shijun
2017-12-01
This paper provides a mass, momentum, and energy flux conservation analysis between the linear and nonlinear steady-state wave groups. Convergent high-order solutions for nonlinear wave groups with multiple steady-state near resonances in deep water have been obtained by means of the homotopy analysis method. The small divisors associated with nearly resonant components are transformed to singularities that are originally caused by exact resonances by a piecewise auxiliary linear operator. Both two primary components and other nearly resonant ones are considered in the initial guess to search for finite amplitude wave groups. It is found that as nonlinearity of wave groups increases, more wave components appear in the spectrum due to the nearly resonant interactions. The nonlinear wave fields change from the initial bi-chromatic waves that contain only two nontrivial primary components into the steady-state resonant waves that contain both two primary components and other nearly resonant ones. The conservation of mean rates of mass, momentum, and energy fluxes is established between the nonlinear wave groups and linear waves that are combined by two primary components with the same frequencies as in nonlinear wave groups. Comparison of the linear and nonlinear wave fields shows that the nearly resonant components influence the wave field distribution significantly: the nonlinear free surfaces have more peaked crests, steeper troughs, and more flatten wave nodes, and the related velocities at the crests and troughs increase more rapidly with the nonlinearity. All of these findings are helpful to enrich and deepen our understanding about nonlinear wave groups.
Steady-State Diffusion of Water through Soft-Contact LensMaterials
Energy Technology Data Exchange (ETDEWEB)
Fornasiero, Francesco; Krull, Florian; Radke, Clayton J.; Prausnitz, JohnM.
2005-01-31
Water transport through soft contact lenses (SCL) is important for acceptable performance on the human eye. Chemical-potential gradient-driven diffusion rates of water through soft-contact-lens materials are measured with an evaporation-cell technique. Water is evaporated from the bottom surface of a lens membrane by impinging air at controlled flow rate and humidity. The resulting weight loss of a water reservoir covering the top surface of the contact-lens material is recorded as a function of time. New results are reported for a conventional hydrogel material (SofLens{trademark} One Day, hilafilcon A, water content at saturation W{sub 10} = 70 weight %) and a silicone hydrogel material (PureVision{trademark}, balafilcon A, W{sub 10} = 36 %), with and without surface oxygen plasma treatment. Also, previously reported data for a conventional HEMA-SCL (W{sub 10} = 38 %) hydrogel are reexamined and compared with those for SofLens{trademark} One Day and PureVision{trademark} hydrogels. Measured steady-state water fluxes are largest for SofLens{trademark} One Day, followed by PureVision{trademark} and HEMA. In some cases, the measured steady-state water fluxes increase with rising relative air humidity. This increase, due to an apparent mass-transfer resistance at the surface (trapping skinning), is associated with formation of a glassy skin at the air/membrane interface when the relative humidity is below 55-75%. Steady-state water-fluxes are interpreted through an extended Maxwell-Stefan diffusion model for a mixture of species starkly different in size. Thermodynamic nonideality is considered through Flory-Rehner polymer-solution theory. Shrinking/swelling is self-consistently modeled by conservation of the total polymer mass. Fitted Maxwell-Stefan diffusivities increase significantly with water concentration in the contact lens.
Sleep disturbances and health-related quality of life in adults with steady-state bronchiectasis.
Directory of Open Access Journals (Sweden)
Yonghua Gao
Full Text Available Sleep disturbances are common in patients with chronic lung diseases, but little is known about the prevalence in patients with bronchiectasis. A cross sectional study was conducted to investigate the prevalence and determinants associated with sleep disturbances, and the correlation between sleep disturbances and quality of life (QoL in adults with steady-state bronchiectasis.One hundred and forty-four bronchiectasis patients and eighty healthy subjects were enrolled. Sleep disturbances, daytime sleepiness, and QoL were measured by utilizing the Pittsburgh Sleep Quality Index (PSQI, Epworth Sleepiness Scale (ESS and St. George Respiratory Questionnaire (SGRQ, respectively. Demographic, clinical indices, radiology, spirometry, bacteriology, anxiety and depression were also assessed.Adults with steady-state bronchiectasis had a higher prevalence of sleep disturbances (PSQI>5 (57% vs. 29%, P<0.001, but not daytime sleepiness (ESS≥10 (32% vs. 30%, P = 0.76, compared with healthy subjects. In the multivariate model, determinants associated with sleep disturbances in bronchiectasis patients included depression (OR, 10.09; 95% CI, 3.46-29.37; P<0.001, nocturnal cough (OR, 1.89; 95% CI, 1.13-3.18; P = 0.016, aging (OR, 1.04; 95% CI, 1.01-1.07; P = 0.009 and increased 24-hour sputum volume (OR, 2.01; 95% CI, 1.22-3.33; P = 0.006. Patients with sleep disturbances had more significantly impaired QoL affecting all domains than those without. Only 6.2% of patients reported using a sleep medication at least weekly.In adults with steady-state bronchiectasis, sleep disturbances are more common than in healthy subjects and are related to poorer QoL. Determinants associated with sleep disturbances include depression, aging, nighttime cough and increased sputum volume. Assessment and intervention of sleep disturbances are warranted and may improve QoL.
Mirzaev, Inom; Bortz, David M
2017-08-01
Structured population models are a class of general evolution equations which are widely used in the study of biological systems. Many theoretical methods are available for establishing existence and stability of steady states of general evolution equations. However, except for very special cases, finding an analytical form of stationary solutions for evolution equations is a challenging task. In the present paper, we develop a numerical framework for computing approximations to stationary solutions of general evolution equations, which can also be used to produce approximate existence and stability regions for steady states. In particular, we use the Trotter-Kato Theorem to approximate the infinitesimal generator of an evolution equation on a finite dimensional space, which in turn reduces the evolution equation into a system of ordinary differential equations. Consequently, we approximate and study the asymptotic behavior of stationary solutions. We illustrate the convergence of our numerical framework by applying it to a linear Sinko-Streifer structured population model for which the exact form of the steady state is known. To further illustrate the utility of our approach, we apply our framework to nonlinear population balance equation, which is an extension of well-known Smoluchowski coagulation-fragmentation model to biological populations. We also demonstrate that our numerical framework can be used to gain insight about the theoretical stability of the stationary solutions of the evolution equations. Furthermore, the open source Python program that we have developed for our numerical simulations is freely available from our GitHub repository (github.com/MathBioCU).
Tore-Supra infrared thermography system, a real steady-state diagnostic
International Nuclear Information System (INIS)
Guilhem, D.; Bondil, J.L.; Bertrand, B.; Desgranges, C.; Lipa, M.; Messina, P.; Missirlian, M.; Portafaix, C.; Reichle, R.; Roche, H.; Saille, A.
2005-01-01
Tore-Supra Tokamak (I p = 1.5 MA, B t = 4 T) has been constructed with a steady-state magnetic field using super-conducting magnets and water-cooled plasma facing components (PFCs) for high-performance long pulse plasma discharges. When not actively cooled, plasma facing components can only accumulate a limited amount of energy since the temperature increases continuously during the discharge until radiation cooling equals the incoming heat flux. Such an environment is found in the JET Tokamak [JET Team, IAEA-CN-60/A1-3, Seville, 1994] and on TRIAM [M. Sakamoto, H. Nakashima, S. Kawasaki, A. Iyomasa, S.V. Kulkarni, M. Hasegawa, E. Jotaki, H. Zushi, K. Nakamura, K. Hanada, S. Itoh, Static and dynamic properties of wall recycling in TRIAM-1M, J. Nucl. Mater. 313-316 (2003) 519-523] [Y. Kamada, et al., Nucl. Fusion 3 (1999) 1845]. In Tore-Supra, the surface temperature of the actively cooled plasma facing components reach steady state within a second. We present here the Tore-Supra thermographic system, made of seven endoscope bodies equipped so far with eight infrared (IR) cameras. It has to be noted that this diagnostic is the first diagnostic to be actively cooled, as required for steady state. The main purpose of such a diagnostic is to prevent the plasma to damage the actively cooled plasma facing components (ACPFCs), which consist of the toroidal pumped limiter (TPL), 7 m 2 , and of five radio-frequency antennae, 1.5 m 2 each
Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.
Fernandez-de-Cossio-Diaz, Jorge; Leon, Kalet; Mulet, Roberto
2017-11-01
In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.
Microstructural Characteristics of Deformed Quartz Under Non-Steady-State Conditions
Soleymani, H.; Kidder, S. B.; Hirth, G.
2017-12-01
Analysis of rock deformation experiments can be used to better inform studies of the stress history of geologic fault zones. While it is thought that many geological processes are slow enough to reach steady-state, however, the impact of non-steady-state conditions can be significant. For instance it is thought that most rocks experience a gradual increase in stress as they approach the brittle-ductile transition during exhumation, however experiments simulating a gradual stress increase during dislocation creep were not previously carried out. Similarly, while numerical models of earthquakes on major plate boundary fault zones indicate temporarily elevated differential stress and strain-rates below the fault edge in the ductile crust/upper-mantle, few experimental studies have explored the effects of such episodic stress and strain-rates on microstructural evolution. We carried out general-shear and axial compression Griggs rig experiments on Black Hills quartzite (grain size ≈ 100 µm) and synthesized quartz aggregates (grain size ≈ 20 µm) both annealed at 900 °C and confining pressure of 1GPa. The first series of experiments was designed to simulate the stress history of rapidly exhumed rocks. Stress was increased during the experiments by gradually decreasing the temperature from 900 °C to 800 °C at various constant displacement rates. The second series of experiments explores the microstructural and rheological characteristics of quartz deformed to strains of γ ≈ 4 via alternating fast strain rate ( ≈ 1 × 10-3 sec-1 ) and relaxation intervals. Preliminarily mechanical data suggest that our techniques successfully simulate exhumation stress paths and episodic stress pulses. Detailed microstructural analysis of the experimental samples and comparisons to natural samples will be presented to explore the degree to which non-steady-state behavior may be recorded in exhumed rocks.
Seeing the talker’s face supports executive processing of speech in steady state noise
Directory of Open Access Journals (Sweden)
Sushmit eMishra
2013-11-01
Full Text Available Listening to speech in noise depletes cognitive resources, affecting speech processing. The present study investigated how remaining resources or cognitive spare capacity (CSC can be deployed by young adults with normal hearing. We administered a test of CSC (CSCT, Mishra et al., 2013 along with a battery of established cognitive tests to 20 participants with normal hearing. In the CSCT, lists of two-digit numbers were presented with and without visual cues in quiet, as well as in steady-state and speech-like noise at a high intelligibility level. In low load conditions, two numbers were recalled according to instructions inducing executive processing (updating, inhibition and in high load conditions the participants were additionally instructed to recall one extra number, which was the always the first item in the list. In line with previous findings, results showed that CSC was sensitive to memory load and executive function but generally not related to working memory capacity. Furthermore, CSCT scores in quiet were lowered by visual cues, probably due to distraction. In steady-state noise, the presence of visual cues improved CSCT scores, probably by enabling better encoding. Contrary to our expectation, CSCT performance was disrupted more in steady-state than speech-like noise, although only without visual cues, possibly because selective attention could be used to ignore the speech-like background and provide an enriched representation of target items in working memory similar to that obtained in quiet. This interpretation is supported by a consistent association between CSCT scores and updating skills.
Seeing the talker’s face supports executive processing of speech in steady state noise
Mishra, Sushmit; Lunner, Thomas; Stenfelt, Stefan; Rönnberg, Jerker; Rudner, Mary
2013-01-01
Listening to speech in noise depletes cognitive resources, affecting speech processing. The present study investigated how remaining resources or cognitive spare capacity (CSC) can be deployed by young adults with normal hearing. We administered a test of CSC (CSCT; Mishra et al., 2013) along with a battery of established cognitive tests to 20 participants with normal hearing. In the CSCT, lists of two-digit numbers were presented with and without visual cues in quiet, as well as in steady-state and speech-like noise at a high intelligibility level. In low load conditions, two numbers were recalled according to instructions inducing executive processing (updating, inhibition) and in high load conditions the participants were additionally instructed to recall one extra number, which was the always the first item in the list. In line with previous findings, results showed that CSC was sensitive to memory load and executive function but generally not related to working memory capacity (WMC). Furthermore, CSCT scores in quiet were lowered by visual cues, probably due to distraction. In steady-state noise, the presence of visual cues improved CSCT scores, probably by enabling better encoding. Contrary to our expectation, CSCT performance was disrupted more in steady-state than speech-like noise, although only without visual cues, possibly because selective attention could be used to ignore the speech-like background and provide an enriched representation of target items in working memory similar to that obtained in quiet. This interpretation is supported by a consistent association between CSCT scores and updating skills. PMID:24324411
Venkiteshwaran, K; Milferstedt, K; Hamelin, J; Zitomer, D H
2016-11-01
Nine anaerobic digesters, each seeded with biomass from a different source, were operated identically and their quasi steady state function was compared. Subsequently, digesters were bioaugmented with a methanogenic culture previously shown to increase specific methanogenic activity. Before bioaugmentation, different seed biomass resulted in different quasi steady state function, with digesters clustering into three groups distinguished by methane (CH 4 ) production. Digesters with similar functional performance contained similar archaeal communities based on clustering of Illumina sequence data of the V4V5 region of the 16S rRNA gene. High CH 4 production correlated with neutral pH and high Methanosarcina abundance, whereas low CH 4 production correlated to low pH as well as high Methanobacterium and DHVEG 6 family abundance. After bioaugmentation, CH 4 production from the high CH 4 producing digesters transiently increased by 11 ± 3% relative to non-bioaugmented controls (p digesters that all had pH higher than 6.7. The CH 4 production increase after bioaugmentation was correlated to increased relative abundance of Methanosaeta and Methaospirillum originating from the bioaugment culture. In conclusion, different anaerobic digester seed biomass can result in different quasi steady state CH 4 production, SCOD removal, pH and effluent VFA concentration in the timeframe studied. The bioaugmentation employed can result in a period of increased methane production. Future research should address extending the period of increased CH 4 production by employing pH and VFA control concomitant with bioaugmentation, developing improved bioaugments, or employing a membrane bioreactor to retain the bioaugment. Copyright © 2016 Elsevier Ltd. All rights reserved.
New Methods for Processing and Quantifying VO2 Kinetics to Steady State: VO2 Onset Kinetics
Directory of Open Access Journals (Sweden)
Craig R. McNulty
2017-09-01
Full Text Available Current methods of oxygen uptake (VO2 kinetics data handling may be too simplistic for the complex physiology involved in the underlying physiological processes. Therefore, the aim of this study was to quantify the VO2 kinetics to steady state across the full range of sub-ventilatory threshold work rates, with a particular focus on the VO2 onset kinetics. Ten healthy, moderately trained males participated in five bouts of cycling. Each bout involved 10 min at a percentage of the subject's ventilation threshold (30, 45, 60, 75, 90% from unloaded cycling. The VO2 kinetics was quantified using the conventional mono-exponential time constant (tau, τ, as well as the new methods for VO2 onset kinetics. Compared to linear modeling, non-linear modeling caused a deterioration of goodness of fit (main effect, p < 0.001 across all exercise intensities. Remainder kinetics were also improved using a modified application of the mono-exponential model (main effect, p < 0.001. Interestingly, the slope from the linear regression of the onset kinetics data is similar across all subjects and absolute exercise intensities, and thereby independent of subject fitness and τ. This could indicate that there are no functional limitations between subjects during this onset phase, with limitations occurring for the latter transition to steady state. Finally, the continuing use of mono-exponential modeling could mask important underlying physiology of more instantaneous VO2 responses to steady state. Consequently, further research should be conducted on this new approach to VO2 onset kinetics.
Blood flow patterns during incremental and steady-state aerobic exercise.
Coovert, Daniel; Evans, LeVisa D; Jarrett, Steven; Lima, Carla; Lima, Natalia; Gurovich, Alvaro N
2017-05-30
Endothelial shear stress (ESS) is a physiological stimulus for vascular homeostasis, highly dependent on blood flow patterns. Exercise-induced ESS might be beneficial on vascular health. However, it is unclear what type of ESS aerobic exercise (AX) produces. The aims of this study are to characterize exercise-induced blood flow patterns during incremental and steady-state AX. We expect blood flow pattern during exercise will be intensity-dependent and bidirectional. Six college-aged students (2 males and 4 females) were recruited to perform 2 exercise tests on cycleergometer. First, an 8-12-min incremental test (Test 1) where oxygen uptake (VO2), heart rate (HR), blood pressure (BP), and blood lactate (La) were measured at rest and after each 2-min step. Then, at least 48-hr. after the first test, a 3-step steady state exercise test (Test 2) was performed measuring VO2, HR, BP, and La. The three steps were performed at the following exercise intensities according to La: 0-2 mmol/L, 2-4 mmol/L, and 4-6 mmol/L. During both tests, blood flow patterns were determined by high-definition ultrasound and Doppler on the brachial artery. These measurements allowed to determine blood flow velocities and directions during exercise. On Test 1 VO2, HR, BP, La, and antegrade blood flow velocity significantly increased in an intensity-dependent manner (repeated measures ANOVA, pblood flow velocity did not significantly change during Test 1. On Test 2 all the previous variables significantly increased in an intensity-dependent manner (repeated measures ANOVA, pblood flow patterns during incremental and steady-state exercises include both antegrade and retrograde blood flows.
Comparison of steady-state oscillation and non-stationary oscillation in MR elastography
International Nuclear Information System (INIS)
Oida, Takenori; Fujiwara, Takuya; Amano, Akira; Matsuda, Tetsuya; Kang, Yubong; Tsutsumi, Sadami
2006-01-01
Magnetic resonance elastography (MRE) is one of the non-invasive methods to measure the viscoelastic properties of tissue. In MRE measurement, viscoelastic properties are estimated from the wavelength and damping factor of the viscoelastic waves in the object; however, the influence of reflection and refraction are not considered in the estimation methods applied (e.g., algebraic inversion of the differential equation and elastic wave fitting). Therefore, in general reflection and refraction are avoided by shortening the interval between object oscillation and acquisition of the MRE signal. However, the viscoelastic properties of transient-state oscillation can be measured using this method, since a specific time period is necessary to realize steady-state oscillation. This may lead to a less accurate measurement of the viscoelastic properties. In this paper, we first show that the viscoelastic properties in transient-state oscillation are measured when the interval between object oscillation and MRE signal acquisition is short, and show that the accuracy of viscoelastic properties is high when using steady-state oscillation. Then, we propose a reflection reduction method using a spatio-temporal directional filter (STDF). The experiments using a silicon gel phantom showed that the viscoelastic properties during transient-state oscillation were measured when the interval between object oscillation and MRE signal acquisition was short. These results suggest that steady-state oscillation improves the accuracy of viscoelastic property measurement. In addition, the reflection wave could be reduced using the STDF, which leads improved accuracy in measuring the viscoelastic properties of MRE images with reflected waves. (author)
Modeling of the blood rheology in steady-state shear flows
Energy Technology Data Exchange (ETDEWEB)
Apostolidis, Alex J.; Beris, Antony N., E-mail: beris@udel.edu [Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716 (United States)
2014-05-15
We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling.
Pfoh, Jamie R; Tymko, Michael M; Abrosimova, Maria; Boulet, Lindsey M; Foster, Glen E; Bain, Anthony R; Ainslie, Philip N; Steinback, Craig D; Bruce, Christina D; Day, Trevor A
2016-03-01
What is the central question of this study? We aimed to characterize the cardiorespiratory and cerebrovascular responses to transient and steady-state tests of the peripheral chemoreflex and to compare the hypoxic ventilatory responses (HVRs) between these tests. What is the main finding and its importance? The cardiovascular and cerebrovascular responses to transient tests were small in magnitude and short in duration. The steady-state isocapnic hypoxia test elicited a larger HVR than the transient 100% N(2) test, but the response magnitudes were correlated within individuals. The transient test of the HVR elicits fewer systemic effects than steady-state techniques and may have greater experimental utility than previously appreciated. Carotid chemoreceptors detect changes in arterial PO(2) and PCO(2), eliciting a peripheral chemoreflex (PCR). Steady-state (SS) hypoxia tests using dynamic end-tidal forcing (DEF) have been used to assess the hypoxic ventilatory response (HVR) but may be confounded by concomitant systemic effects. Transient tests of the PCR have also been developed but are not widely used, nor have the cardiovascular and cerebrovascular responses been characterized. We characterized the cardiorespiratory and cerebrovascular responses to transient tests of the PCR and compared the HVR between transient and SS-DEF tests. We hypothesized that the cardiovascular and cerebrovascular responses to the transient tests would be minimal and that the respiratory responses elicited from the transient and SS-DEF tests would be different in magnitude and not well correlated within individuals. Participants underwent five consecutive trials of two transient tests [three-breath 100% N(2) (TT-N(2)) and a single-breath 13% CO(2), in air] and two 10 min SS-DEF tests [isocapnic (SS-ISO) and poikilocapnic (SS-POI) hypoxia]. In response to the transient tests, heart rate, mean arterial pressure and the middle and posterior cerebral artery blood velocity increased (all P
User's manual for EVITS: a steady state fluids code for complex two-dimensional geometries
International Nuclear Information System (INIS)
Domanus, H.M.
1976-07-01
A 2-D computer code, EVITS, has been developed for estimating steady state, incompressible, isothermal flow fields in complex geometries. A vorticity-stream function formulation is used along with a model to resolve viscous effects at solid boundaries. Sufficient geometry and boundary type options are included within the code so that a large number of flow situations can be specified without modifying the program. All instructions to the code are via an input dataset. Detailed instructions for preparing the user oriented input, along with examples, are included in this users' manual
The Method of the Sensitivity Comparison of the Tin Dioxide Gas Sensor in Periodic Steady State
Directory of Open Access Journals (Sweden)
Libor Gajdosik
2017-01-01
Full Text Available The formulas for the time dependency of the electrical conductivity of the sensor in thermal periodic steady state in the clean air atmosphere were derived herein. The created model of the sensor was experimentally verified and enables to compare the sensitivity to the tested substance at the frequencies at which the tests were carried out. The experiments were carried out with the sensors MQR 1003, SP 11, and TGS813. The sensors were tested in the clean air atmosphere and subsequently in the presence of ethanol, acetone and toluene vapour in the air at three different frequencies.
Multiple-steady-state growth models explaining twin-peak empirics?
Ziesemer, T.H.W.
2003-01-01
The explanation of twin peak empirics through multiple-steady-state growth models has one serious implication: Whenever a model generates twin peaks in GDP per capita it also generates twin peaks in other variables. We check for some multiple steadystate models whether or not they have twin peaks in the other variables besides GDP per capita. It turns out that the required twin peaks do not exist for the textbook version of the population trap model but a modified version cannot be dismissed....
YAMAMOTO, Takahisa; MITACHI, Koshi; SUZUKI, Takashi
2005-01-01
The Molten Salt Reactor (MSR) is a thermal neutron reactor with graphite moderation and operates on the thorium-uranium fuel cycle. The feature of the MSR is that fuel salt flows inside the reactor during the nuclear fission reaction. In the previous study, the authors developed numerical model with which to simulate the effects of fuel salt flow on the reactor characteristics. In this study, we apply the model to the steady-state analysis of a small MSR system and estimate the effects of fue...
Investigation of component failure rates for pulsed versus steady state tokamak operation
International Nuclear Information System (INIS)
Cadwallader, L.C.
1992-07-01
This report presents component failure rate data sources applicable to magnetic fusion systems, and defines multiplicative factors to adjust these data for specific use on magnetic fusion experiment designs. The multipliers address both long pulse and steady state tokamak operation. Thermal fatigue and radiation damage are among the leading reasons for large multiplier values in pulsed operation applications. Field failure rate values for graphite protective tiles are presented, and beryllium tile failure rates in laboratory testing are also given. All of these data can be used for reliability studies, safety analyses, design tradeoff studies, and risk assessments
Vulcan: A steady-state tokamak for reactor-relevant plasma–material interaction science
International Nuclear Information System (INIS)
Olynyk, G.M.; Hartwig, Z.S.; Whyte, D.G.; Barnard, H.S.; Bonoli, P.T.; Bromberg, L.; Garrett, M.L.; Haakonsen, C.B.; Mumgaard, R.T.; Podpaly, Y.A.
2012-01-01
Highlights: ► A new scaling for obtaining reactor similarity in the divertor of scaled tokamaks. ► Conceptual design for a tokamak (“Vulcan”) to implement this new scaling. ► Demountable superconducting coils and compact neutron shielding. ► Helium-cooled high-temperature vacuum vessel and first wall. ► High-field-side lower hybrid current drive for non-inductive operation. - Abstract: An economically viable magnetic-confinement fusion reactor will require steady-state operation and high areal power density for sufficient energy output, and elevated wall/blanket temperatures for efficient energy conversion. These three requirements frame, and couple to, the challenge of plasma–material interaction (PMI) for fusion energy sciences. Present and planned tokamaks are not designed to simultaneously meet these criteria. A new and expanded set of dimensionless figures of merit for PMI have been developed. The key feature of the scaling is that the power flux across the last closed flux surface P/S ≃ 1 MW m −2 is to be held constant, while scaling the core volume-averaged density weakly with major radius, n ∼ R −2/7 . While complete similarity is not possible, this new “P/S” or “PMI” scaling provides similarity for the most critical reactor PMI issues, compatible with sufficient current drive efficiency for non-inductive steady-state core scenarios. A conceptual design is developed for Vulcan, a compact steady-state deuterium main-ion tokamak which implements the P/S scaling rules. A zero-dimensional core analysis is used to determine R = 1.2 m, with a conventional reactor aspect ratio R/a = 4.0, as the minimum feasible size for Vulcan. Scoping studies of innovative fusion technologies to support the Vulcan PMI mission were carried out for three critical areas: a high-temperature, helium-cooled vacuum vessel and divertor design; a demountable superconducting toroidal field magnet system; and a steady-state lower hybrid current drive system
Steady-State Crack Growth in Rate-Sensitive Single Crystals
DEFF Research Database (Denmark)
Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof
2016-01-01
The characteristics of the active plastic zone surrounding a crack growingin a single crystal (FCC, BCC, and HCP) at constant velocity is investigated for ModeI loading under plane strain assumptions. The framework builds upon a steady-state relation bringing the desired solution out in a frame...... translating with the crack tip. In the study, the shielding of the crack tip that follows from plastic slip is investigated by adopting the SSV-model. High resolution plots of the plastic zones are obtained and a detailed study confirms the existence of analytically determined velocity discontinuities from...
Output Regulation of Large-Scale Hydraulic Networks with Minimal Steady State Power Consumption
DEFF Research Database (Denmark)
Jensen, Tom Nørgaard; Wisniewski, Rafal; De Persis, Claudio
2014-01-01
that the system is overactuated is exploited for minimizing the steady state electrical power consumption of the pumps in the system, while output regulation is maintained. The proposed control actions are decentralized in order to make changes in the structure of the hydraulic network easy to implement.......An industrial case study involving a large-scale hydraulic network is examined. The hydraulic network underlies a district heating system, with an arbitrary number of end-users. The problem of output regulation is addressed along with a optimization criterion for the control. The fact...
A method for statistical steady state thermal analysis of reactor cores
International Nuclear Information System (INIS)
Whetton, P.A.
1981-01-01
In a previous publication the author presented a method for undertaking statistical steady state thermal analyses of reactor cores. The present paper extends the technique to an assessment of confidence limits for the resulting probability functions which define the probability that a given thermal response value will be exceeded in a reactor core. Establishing such confidence limits is considered an integral part of any statistical thermal analysis and essential if such analysis are to be considered in any regulatory process. In certain applications the use of a best estimate probability function may be justifiable but it is recognised that a demonstrably conservative probability function is required for any regulatory considerations. (orig.)
Impact of electric vehicles in the steady state operation of distribution systems
Erasmo Saraiva de Castro
2015-01-01
This work aims to quantify the impact in the steady state operation of a distribution system when electric vehicles are connected. It is worth noting that the connection of them may cause significant changes in the voltage profile, in the degree of voltage unbalance and in the electrical losses of the system. In order to make this analysis, a three-phase power flow program was developed in MATLAB language. This program is based on the Ladder Iterative Technique and it contains models of overh...
New analytical solution for solving steady-state heat conduction problems with singularities
Directory of Open Access Journals (Sweden)
Laraqi Najib
2013-01-01
Full Text Available A problem of steady-state heat conduction which presents singularities is solved in this paper by using the conformal mapping method. The principle of this method is based on the Schwarz-Christoffel transformation. The considered problem is a semi-infinite medium with two different isothermal surfaces separated by an adiabatic annular disc. We show that the thermal resistance can be determined without solving the governing equations. We determine a simple and exact expression that provides the thermal resistance as a function of the ratio of annular disc radii.
Importance of fragmentation on the steady state combustion of wood char in a bubbling fluidized bed
Energy Technology Data Exchange (ETDEWEB)
Pinho, Carlos [Universidade do Porto (CEFT/FEUP), Porto (Portugal). Faculdade de Engenharia. Centro de Estudos de Fenomenos de Transporte], E-mail: ctp@fe.up.pt
2010-07-01
A simple mathematical model for the analysis of the steady state behavior of a bubbling fluidized bed burner is presented, with the main intention of evaluating the importance of the primary fragmentation of fuel particles on the performance of this type of burners. This model has pedagogical advantages because of its simplicity and easiness of application to the analysis of realistic situations. The model is based upon the classical models used for the study of batch combustion processes in fluidized bed reactors. Experimental data from studies of fluidized bed combustion of portuguese vegetable chars are used to support the analysis of the performance of a 1 m diameter fluidized bed combustor. (author)
Study of NPP core thermal-hydraulics design of ABWR on steady state condition
International Nuclear Information System (INIS)
Isnaini, M. D.
1998-01-01
The core thermal-hydraulics calculation of ABWR on steady state condition using COBRA IV-1 code has been carried out. For simplifying the problem, the calculation was done on a fuel bundle of ABWR as a model. The calculation used several data design as input, such as the reactor power 3926 MWt, the core coolant flowrate 115.1 Mlb/hr and coolant enthalpy at core inlet 527.7 Btu/lb. From this simple calculation was hope that it could be used as an introduction to studi the thermohydraulics design of ABWR
Steady State Visual Evoked Potential Based Brain-Computer Interface for Cognitive Assessment
DEFF Research Database (Denmark)
Westergren, Nicolai; Bendtsen, Rasmus L.; Kjær, Troels W.
2016-01-01
decline is important. Cognitive decline may be detected using fullyautomated computerized assessment. Such systems will provide inexpensive and widely available screenings of cognitive ability. The aim of this pilot study is to develop a real time steady state visual evoked potential (SSVEP) based brain......-computer interface (BCI) for neurological cognitive assessment. It is intended for use by patients who suffer from diseases impairing their motor skills, but are still able to control their gaze. Results are based on 11 healthy test subjects. The system performance have an average accuracy of 100% ± 0%. The test...
A novel multivariate STeady-state index during general ANesthesia (STAN).
Castro, Ana; de Almeida, Fernando Gomes; Amorim, Pedro; Nunes, Catarina S
2017-08-01
The assessment of the adequacy of general anesthesia for surgery, namely the nociception/anti-nociception balance, has received wide attention from the scientific community. Monitoring systems based on the frontal EEG/EMG, or autonomic state reactions (e.g. heart rate and blood pressure) have been developed aiming to objectively assess this balance. In this study a new multivariate indicator of patients' steady-state during anesthesia (STAN) is proposed, based on wavelet analysis of signals linked to noxious activation. A clinical protocol was designed to analyze precise noxious stimuli (laryngoscopy/intubation, tetanic, and incision), under three different analgesic doses; patients were randomized to receive either remifentanil 2.0, 3.0 or 4.0 ng/ml. ECG, PPG, BP, BIS, EMG and [Formula: see text] were continuously recorded. ECG, PPG and BP were processed to extract beat-to-beat information, and [Formula: see text] curve used to estimate the respiration rate. A combined steady-state index based on wavelet analysis of these variables, was applied and compared between the three study groups and stimuli (Wilcoxon signed ranks, Kruskal-Wallis and Mann-Whitney tests). Following institutional approval and signing the informed consent thirty four patients were enrolled in this study (3 excluded due to signal loss during data collection). The BIS index of the EEG, frontal EMG, heart rate, BP, and PPG wave amplitude changed in response to different noxious stimuli. Laryngoscopy/intubation was the stimulus with the more pronounced response [Formula: see text]. These variables were used in the construction of the combined index STAN; STAN responded adequately to noxious stimuli, with a more pronounced response to laryngoscopy/intubation (18.5-43.1 %, [Formula: see text]), and the attenuation provided by the analgesic, detecting steady-state periods in the different physiological signals analyzed (approximately 50 % of the total study time). A new multivariate approach for
Formulation and validation of a two-dimensional steady-state model of desiccant wheels
DEFF Research Database (Denmark)
Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin R.
2015-01-01
systems. A steady-state two-dimensional model is formulated and implemented, aiming to obtain good accuracy and short computational times with the purpose of inclusion in complete system models. The model includes mass and energy balances and correlations for heat and mass transfer based on empirical...... relations from the scientific literature. Convective heat and mass transfer coefficients are computed locally accounting for the entrance length effects. Mass diffusion inside the desiccant material is neglected. Comparison with experimental data from the literature shows that the model reproduces...
Salant, Richard F.; Wolff, Paul; Navon, Samuel
1994-01-01
An electronically-controlled mechanial seal, for use as the purge gas seal in a liquid oxygen turbopump, has been designed, analyzed, and built. The thickness of the lubricating film between the faces is controlled by adjusting the coning of the carbon face. This is done by applying a voltage across a piezoelectric element to which the carbon face is bound. Steady state tests have shown that the leakage rate (and film thickness) can be adjusted over a substantial range, utilizing the available range of voltage.
Salant, Richard F.; Wolff, Paul; Navon, Samuel
1994-01-01
An electronically-controlled mechanial seal, for use as the purge gas seal in a liquid oxygen turbopump, has been designed, analyzed, and built. The thickness of the lubricating film between the faces is controlled by adjusting the coning of the carbon face. This is done by applying a voltage across a piezoelectric element to which the carbon face is bound. Steady state tests have shown that the leakage rate (and film thickness) can be adjusted over a substantial range, utilizing the available range of voltage.
Linear combination of auditory steady-state responses evoked by co-modulated tones
DEFF Research Database (Denmark)
Guérit, François; Marozeau, Jeremy; Epp, Bastian
2017-01-01
Up to medium intensities and in the 80–100-Hz region, the auditory steady-state response (ASSR) to a multi-tone carrier is commonly considered to be a linear sum of the dipoles from each tone specific ASSR generator. Here, this hypothesis was investigated when a unique modulation frequency is used...... for all carrier components. Listeners were presented with a co-modulated dual-frequency carrier (1 and 4 kHz), from which the modulator starting phase Ui of the 1-kHz component was systematically varied. The results support the hypothesis of a linear superposition of the dipoles originating from different...
Steady-state bifurcations of the three-dimensional Kolmogorov problem
Directory of Open Access Journals (Sweden)
Zhi-Min Chen
2000-08-01
Full Text Available This paper studies the spatially periodic incompressible fluid motion in $mathbb R^3$ excited by the external force $k^2(sin kz, 0,0$ with $kgeq 2$ an integer. This driving force gives rise to the existence of the unidirectional basic steady flow $u_0=(sin kz,0, 0$ for any Reynolds number. It is shown in Theorem 1.1 that there exist a number of critical Reynolds numbers such that $u_0$ bifurcates into either 4 or 8 or 16 different steady states, when the Reynolds number increases across each of such numbers.
Asymptotics of steady states of a selection–mutation equation for small mutation rate
Calsina, Àngel
2013-12-01
We consider a selection-mutation equation for the density of individuals with respect to a continuous phenotypic evolutionary trait. We assume that the competition term for an individual with a given trait depends on the traits of all the other individuals, therefore giving an infinite-dimensional nonlinearity. Mutations are modelled by means of an integral operator. We prove existence of steady states and show that, when the mutation rate goes to zero, the asymptotic profile of the population is a Cauchy distribution. © Royal Society of Edinburgh 2013.
DEFF Research Database (Denmark)
Deng, Yu-Jia; Wiberg, Gustav Karl Henrik; Zana, Alessandro
2017-01-01
In this work, we have synthesized tetrahexahedral (THH) Pt nanoparticles (NPs) enclosed with {730} high-index facets using a one-step square wave potential procedure. The catalytic activity of the THH NPs toward the oxygen reduction reaction (ORR) is studied under both transient and steady......-state conditions. As a benchmark, the ORR activity is compared with those of polycrystalline Pt and a commercial Pt/C catalyst. The results show that, under transient conditions, the catalytic performance of the THH Pt NPs and Pt/C are approximately the same and about 2 times lower than that of polycrystalline Pt...
Steady-state nucleate pool boiling mechanism at low heat fluxes
International Nuclear Information System (INIS)
Bastos, L.E.G.
1979-01-01
Heat is transfered in the steady state to a horizontal cooper disc inmersed in water at saturation temperature. Levels of heat flux are controlled so that convection and the nucleate boiling can be observed. The value of heat flux is determined experimentally and high speed film is used to record bubble growth. In order to explain the phenomenon the oretical model is proposed in which part of the heat is transfered by free convection during nucleate boiling regime. Agreement between the experiments and the theoretical model is good. (Author) [pt
Adiabatic non-equilibrium steady states in the partition free approach
DEFF Research Database (Denmark)
Cornean, Horia; Duclos, Pierre; Purice, Radu
2012-01-01
Consider a small sample coupled to a finite number of leads and assume that the total (continuous) system is at thermal equilibrium in the remote past. We construct a non-equilibrium steady state (NESS) by adiabatically turning on an electrical bias between the leads. The main mathematical...... challenge is to show that certain adiabatic wave operators exist and to identify their strong limit when the adiabatic parameter tends to zero. Our NESS is different from, though closely related with the NESS provided by the Jakic–Pillet–Ruelle approach. Thus we partly settle a question asked by Caroli et...
Numerical Investigation of the Steady State of a Driven Thin Film Equation
Directory of Open Access Journals (Sweden)
A. J. Hutchinson
2013-01-01
Full Text Available A third-order ordinary differential equation with application in the flow of a thin liquid film is considered. The boundary conditions come from Tanner's problem for the surface tension driven flow of a thin film. Symmetric and nonsymmetric finite difference schemes are implemented in order to obtain steady state solutions. We show that a central difference approximation to the third derivative in the model equation produces a solution curve with oscillations. A difference scheme based on a combination of forward and backward differences produces a smooth accurate solution curve. The stability of these schemes is analysed through the use of a von Neumann stability analysis.
Determination of longitudinal aerodynamic derivatives from steady-state measurement of an aircraft
Klein, V.
1977-01-01
A method for the estimation of aerodynamic derivatives from steady-state symmetric flight data is developed. The derivatives considered are the longitudinal static stability and control derivatives, damping derivatives due to tail, and the derivatives expressing the speed effect on the lift and pitching moment coefficients. The method is an extension of the well known theory of longitudinal static stability and control, and corresponding flight data interpretation. Measured data is assumed in the form of trim curves and lift vs angle of attack. The expressions for the derivative estimates are in the form of algebraic relationships containing known constants, and directly or indirectly measured quantities.
International Nuclear Information System (INIS)
Tagliafico, Luca A.; Scarpa, Federico; Valsuani, Federico
2014-01-01
Traditional thermal solar panel technologies have limited efficiency and the required economic investments make them noncompetitive in the space heating market. The greatest limit to the diffusion of thermal solar systems is the characteristic temperatures they can reach: the strong connection between the user temperature and the collector temperature makes it possible to achieve high thermal (collector) efficiency only at low, often useless, user temperatures. By using solar collectors as thermal exchange units (evaporators) in a heat pump system (direct expansion solar assisted heat pump, DX-SAHP), the overall efficiency greatly increases with a significative cut of the associated investment in terms of pay-back time. In this study, an approach is proposed to the steady state analysis of DX-SAHP, which is based on the simplified inverse Carnot cycle and on the second law efficiency concept. This method, without the need of calculating the refrigerant fluid properties and the detailed processes occurring in the refrigeration device, allows us to link the main features of the plant to its relevant interactions with the surroundings. The very nature of the proposed method makes the relationship explicit and meaningful among all the involved variables. The paper, after the description of the method, presents an explanatory application of this technique by reviewing various aspects of the performance of a typical DX-SAHP in which the savings on primary energy consumption is regarded as the main feature of the plant and highlighted in a monthly averaged analysis. Results agree to those coming from a common standard steady state thermodynamic analysis. The application to a typical DX-SAHP system demonstrates that a mean saved primary energy of about 50% with respect to standard gas burner can be achieved for the same user needs. Such a result is almost independent from the type of flat plate solar panel used (double or single glazed, or even bare panels) as a result of
Parallel shooting methods for finding steady state solutions to engine simulation models
DEFF Research Database (Denmark)
Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik
2007-01-01
Parallel single- and multiple shooting methods were tested for finding periodic steady state solutions to a Stirling engine model. The model was used to illustrate features of the methods and possibilities for optimisations. Performance was measured using simulation of an experimental data set...... as test case. A parallel speedup factor of 23 on 33 processors was achieved with multiple shooting. But fast transients at the beginnings of sub intervals caused significant overhead for the multiple shooting methods and limited the best speedup to 3.8 relative to the fastest sequential method: Single...
Harrison, David K; Fasching, Mario; Fontana-Ayoub, Mona; Gnaiger, Erich
2015-11-15
Mitochondrial control of cellular redox states is a fundamental component of cell signaling in the coordination of core energy metabolism and homeostasis during normoxia and hypoxia. We investigated the relationship between cytochrome redox states and mitochondrial oxygen consumption at steady-state levels of hypoxia in mitochondria isolated from beef and mouse heart (BHImt, MHImt), comparing two species with different cardiac dynamics and local oxygen demands. A low-noise, rapid spectrophotometric system using visible light for the measurement of cytochrome redox states was combined with high-resolution respirometry. Monophasic hyperbolic relationships were observed between oxygen consumption, JO2, and oxygen partial pressure, Po2, within the range cytochromes aa3 and c were biphasic hyperbolic functions of Po2. The relationship between cytochrome oxidation state and oxygen consumption revealed a separation of distinct phases from mild to severe and deep hypoxia. When cytochrome c oxidation increased from fully reduced to 45% oxidized at 0.1 Jmax, Po2 was as low as 0.002 kPa (0.02 μM), and trace amounts of oxygen are sufficient to partially oxidize the cytochromes. At higher Po2 under severe hypoxia, respiration increases steeply, whereas redox changes are small. Under mild hypoxia, the steep slope of oxidation of cytochrome c when flux remains more stable represents a cushioning mechanism that helps to maintain respiration high at the onset of hypoxia. Copyright © 2015 the American Physiological Society.
Tejedor, Alejandro; Longjas, Anthony; Zaliapin, Ilya; Foufoula-Georgiou, Efi
2015-06-01
River deltas are intricate landscapes with complex channel networks that self-organize to deliver water, sediment, and nutrients from the apex to the delta top and eventually to the coastal zone. The natural balance of material and energy fluxes, which maintains a stable hydrologic, geomorphologic, and ecological state of a river delta, is often disrupted by external perturbations causing topological and dynamical changes in the delta structure and function. A formal quantitative framework for studying delta channel network connectivity and transport dynamics and their response to change is lacking. Here we present such a framework based on spectral graph theory and demonstrate its value in computing delta's steady state fluxes and identifying upstream (contributing) and downstream (nourishment) areas and fluxes from any point in the network. We use this framework to construct vulnerability maps that quantify the relative change of sediment and water delivery to the shoreline outlets in response to possible perturbations in hundreds of upstream links. The framework is applied to the Wax Lake delta in the Louisiana coast of the U.S. and the Niger delta in West Africa. In a companion paper, we present a comprehensive suite of metrics that quantify topologic and dynamic complexity of delta channel networks and, via application to seven deltas in diverse environments, demonstrate their potential to reveal delta morphodynamics and relate to notions of vulnerability and robustness.
DEFF Research Database (Denmark)
Deng, Yujia
attransient and steady state conditions. At steady state conditions the dominant potential rangefor the adsorption of the different oxygenated species is elucidated by employing anelectrochemical stripping method. The results indicate that below 0.6 VRHE, the surface of Ptis free from oxygenated species...... the reactive sites for the ORR, thus leading toa decrease in activity as compared to that in HClO4 electrolyte solution. At steady state theORR activity is inhibited in all the three acid electrolyte solutions as compared to transientconditions. The ORR can reach its diffusion limited current in both HClO4...... layers, the strain effectbecomes the predominant factor, thus decreasing the catalytic activity.The last part of this thesis focuses on combining steady state tests and the design of catalysts.Shaped-controlled synthesized tetrahexahedral (THH) Pt nanoparticles are employed asmodel catalysts...
International Nuclear Information System (INIS)
Vijayan, P.K.; Mehta, S.K.; Date, A.W.
1990-01-01
The one dimensional energy and momentum conservation equations applicable to thermosyphon with throughflow are solved with suitable assumptions for a figure-of-eight loop and analytical solutions are obtained for the steady state case for different throughflow inlet and outlet points. It is also examined whether hot leg or cold leg injection is preferred for the nuclear reactors during thermosyphon with throughflow. Comparison of predicted steady state flow rates with experimental data shows agreement within +15%. (author). 14 refs., 9 figs
A high-density EEG investigation into steady state binaural beat stimulation.
Directory of Open Access Journals (Sweden)
Peter Goodin
Full Text Available Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz or Beta (16 Hz frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others.
Relative contributions of transient and steady state infiltration during ephemeral streamflow
Blasch, Kyle W.; Ferré, Ty P.A.; Hoffmann, John P.; Fleming, John B.
2006-01-01
Simulations of infiltration during three ephemeral streamflow events in a coarse‐grained alluvial channel overlying a less permeable basin‐fill layer were conducted to determine the relative contribution of transient infiltration at the onset of streamflow to cumulative infiltration for the event. Water content, temperature, and piezometric measurements from 2.5‐m vertical profiles within the alluvial sediments were used to constrain a variably saturated water flow and heat transport model. Simulated and measured transient infiltration rates at the onset of streamflow were about two to three orders of magnitude greater than steady state infiltration rates. The duration of simulated transient infiltration ranged from 1.8 to 20 hours, compared with steady state flow periods of 231 to 307 hours. Cumulative infiltration during the transient period represented 10 to 26% of the total cumulative infiltration, with an average contribution of approximately 18%. Cumulative infiltration error for the simulated streamflow events ranged from 9 to 25%. Cumulative infiltration error for typical streamflow events of about 8 hours in duration in is about 90%. This analysis indicates that when estimating total cumulative infiltration in coarse‐grained ephemeral stream channels, consideration of the transient infiltration at the onset of streamflow will improve predictions of the total volume of infiltration that may become groundwater recharge.
Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances
International Nuclear Information System (INIS)
Perez Polo, Manuel F.; Perez Molina, Manuel
2007-01-01
Chaotic and steady state motions of a nonlinear controlled gimbals suspension gyro used to stabilize an external body are studied in this paper. The equations of the gyro without nonlinear control are deduced from the Euler-Lagrange equations by using the nutation theory. The equations of the system show that a cyclic variable appears. Its elimination allows us to find an auxiliary nonlinear system from which it is possible to deduce a nonlinear control law in order to obtain a desired equilibrium point. From the analysis of the nonlinear control law it is possible to show that due to both harmonic disturbances in the platform of the gyro and in the body to stabilize, regular and chaotic motions can appear. The chaotic motion is researched by means of chaos maps, bifurcation diagrams, sensitivity to initial conditions, Lyapunov exponents and Fourier spectrum density. The transition from chaotic to steady state motion by eliminating the harmonic disturbances from the modification of the initial nonlinear control law is also researched. Next, the paper shows how to use the chaotic motion in order to obtain small input signals so that the desired equilibrium state of the gyro can be reached. The developed methodology and its compared performance are evaluated through analytical methods and numerical simulations
A two-step computer-assisted method for deriving steady-state rate equations.
Fromm, S J; Fromm, H J
1999-11-19
A number of computer-assisted methods have been described for the derivation of enzyme-catalyzed steady-state rate equations [K. R. Runyan and R. B. Gunn (1989) Methods Enzymol. 171, 164-190; R. Varon, F. Garcia-Seville, M. Garvia-Moreno, F. Garcia-Canovas, R. Peyro, and R. G. Duggleby (1997) Comput. Appl. Biosci. 13, 159-167]; however, the required programs are either not readily available or require special software. We present here a two-step computer-assisted procedure for deriving steady-state rate equations using the widely available program Mathematica. In the first step, the differential equations for a particular kinetic mechanism that describe changes in enzyme concentration as a function of time are set equal to zero and entered into Mathematica in matrix form. In the second step, a single command allows for the computation of the distribution equations for the free enzyme and each enzyme-ligand complex. Copyright 1999 Academic Press.
Peinado, A B; Filho, Dm Pessôa; Díaz, V; Benito, P J; Álvarez-Sánchez, M; Zapico, A G; Calderón, F J
2016-12-01
The aim was to determine whether the midpoint between ventilatory thresholds (MPVT) corresponds to maximal lactate steady state (MLSS). Twelve amateur cyclists (21.0 ± 2.6 years old; 72.2 ± 9.0 kg; 179.8 ± 7.5 cm) performed an incremental test (25 W·min -1 ) until exhaustion and several constant load tests of 30 minutes to determine MLSS, on different occasions. Using MLSS determination as the reference method, the agreement with five other parameters (MPVT; first and second ventilatory thresholds: VT1 and VT2; respiratory exchange ratio equal to 1: RER = 1.00; and Maximum) was analysed by the Bland-Altman method. The difference between workload at MLSS and VT1, VT2, RER=1.00 and Maximum was 31.1 ± 20.0, -86.0 ± 18.3, -63.6 ± 26.3 and -192.3 ± 48.6 W, respectively. MLSS was underestimated from VT1 and overestimated from VT2, RER = 1.00 and Maximum. The smallest difference (-27.5 ± 15.1 W) between workload at MLSS and MPVT was in better agreement than other analysed parameters of intensity in cycling. The main finding is that MPVT approached the workload at MLSS in amateur cyclists, and can be used to estimate maximal steady state.
International Nuclear Information System (INIS)
Nichols, T. T.; Barnes, C. M.; Lauerhass, L.; Taylor, D. D.
2001-01-01
The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from ''road tests'' that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment
Uniform sampling of steady states in metabolic networks: heterogeneous scales and rounding.
Directory of Open Access Journals (Sweden)
Daniele De Martino
Full Text Available The uniform sampling of convex polytopes is an interesting computational problem with many applications in inference from linear constraints, but the performances of sampling algorithms can be affected by ill-conditioning. This is the case of inferring the feasible steady states in models of metabolic networks, since they can show heterogeneous time scales. In this work we focus on rounding procedures based on building an ellipsoid that closely matches the sampling space, that can be used to define an efficient hit-and-run (HR Markov Chain Monte Carlo. In this way the uniformity of the sampling of the convex space of interest is rigorously guaranteed, at odds with non markovian methods. We analyze and compare three rounding methods in order to sample the feasible steady states of metabolic networks of three models of growing size up to genomic scale. The first is based on principal component analysis (PCA, the second on linear programming (LP and finally we employ the Lovazs ellipsoid method (LEM. Our results show that a rounding procedure dramatically improves the performances of the HR in these inference problems and suggest that a combination of LEM or LP with a subsequent PCA perform the best. We finally compare the distributions of the HR with that of two heuristics based on the Artificially Centered hit-and-run (ACHR, gpSampler and optGpSampler. They show a good agreement with the results of the HR for the small network, while on genome scale models present inconsistencies.
Energy Technology Data Exchange (ETDEWEB)
Nunes, Luiza M.S. [Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13560-070 (Brazil); Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, São Paulo 13560-970 (Brazil); Moraes, Tiago B. [Embrapa Instrumentação, Rua XV de Novembro 1452, São Carlos, São Paulo 13560-970 (Brazil); Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13566-590 (Brazil); Barbosa, Lucio L. [Departamento de Química, Universidade Federal do Espírito Santo, Avenida Fernando Ferrari 514, Vitória, Espírito Santo 29075-910 (Brazil); Mazo, Luiz H. [Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13560-070 (Brazil); and others
2014-11-19
Highlights: • Analysis of electrochemical reaction in situ by 13C NMR spectroscopy was demonstrated. • {sup 13}C NMR signals are obtained in few minutes, using steady-state free precession (SSFP) pulse sequence. • The analysis is performed in standard NMR spectrometer. • KBDM can be an alternative to Fourier Transform to process SSFP signal. - Abstract: All attempts to use in situ{sup 13}C NMR in spectroelectrochemical studies, using static cells and unlabeled substrates, have failed due to the very long average time (several hours). In this paper, we demonstrated that steady-state free precession (SSFP) pulse sequence can enhance signal to noise ratio and reduces the average time of {sup 13}C NMR signals by more than one order of magnitude. The results showed that each {sup 13}C NMR spectrum during the electrochemical reduction of 9-chloroanthracene, in a static cell, can be acquired in eleven minutes. This short averaging time allowed the analysis of the reaction every 30 min during 3 h. The phase and truncation anomalies present in SSFP spectra were minimized using Traff apodization function and Krylov basis diagonalization method (KBDM)
The steady-state modeling and optimization of a refrigeration system for high heat flux removal
International Nuclear Information System (INIS)
Zhou Rongliang; Zhang Tiejun; Catano, Juan; Wen, John T.; Michna, Gregory J.; Peles, Yoav; Jensen, Michael K.
2010-01-01
Steady-state modeling and optimization of a refrigeration system for high heat flux removal, such as electronics cooling, is studied. The refrigeration cycle proposed consists of multiple evaporators, liquid accumulator, compressor, condenser and expansion valves. To obtain more efficient heat transfer and higher critical heat flux (CHF), the evaporators operate with two-phase flow only. This unique operating condition necessitates the inclusion of a liquid accumulator with integrated heater for the safe operation of the compressor. Due to the projected incorporation of microchannels into the system to enhance the heat transfer in heat sinks, the momentum balance equation, rarely seen in previous vapor compression cycle heat exchangers modeling efforts, is utilized in addition to the mass and energy balance equations to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Using the steady-state model developed, a parametric study is performed to study the effect of various external inputs on the system performance. The Pareto optimization is applied to find the optimal system operating conditions for given heat loads such that the system coefficient of performance (COP) is optimized while satisfying the CHF and other system operation constraints. Initial validation efforts show the good agreement between the experimental data and model predictions.
A mathematical model of liver metabolism: from steady state to dynamic
Energy Technology Data Exchange (ETDEWEB)
Calvetti, D; Kuceyeski, A [Case Western Reserve University, Department of Mathematics, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Somersalo, E [Helsinki University of Technology, Institute of Mathematics, P. O. Box 1100, FIN-02015 HUT (Finland)], E-mail: daniela.calvetti@case.edu, E-mail: amy.kuceyeski@case.edu, E-mail: erkki.somersalo@hut.fi
2008-07-15
The increase in Type 2 diabetes and other metabolic disorders has led to an intense focus on the areas of research related to metabolism. Because the liver is essential in regulating metabolite concentrations that maintain life, it is especially important to have good knowledge of the functions within this organ. In silico mathematical models that can adequately describe metabolite concentrations, flux and transport rates in the liver in vivo can be a useful predictive tool. Fully dynamic models, which contain expressions for Michaelis-Menten reaction kinetics can be utilized to investigate different metabolic states, for example exercise, fed or starved state. In this paper we describe a two compartment (blood and tissue) spatially lumped liver metabolism model. First, we use Bayesian Flux Balance Analysis (BFBA) to estimate the values of flux and transport rates at steady state, which agree closely with values from the literature. These values are then used to find a set of Michaelis-Menten parameters and initial concentrations which identify a dynamic model that can be used for exploring different metabolic states. In particular, we investigate the effect of doubling the concentration of lactate entering the system via the hepatic artery and portal vein. This change in lactate concentration forces the system to a new steady state, where glucose production is increased.
Steady-state ozone concentration in radiation induced noble gas-oxygen discharges
International Nuclear Information System (INIS)
Elsayed-Ali, H.E.; Miley, G.H.
1985-01-01
Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O 2 and noble gas-O 2 -SF 6 mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10 15 eV.cm -3 .s -1 . The experimental apparatus and proceedure were previously described. The experimentally observed stead-state ozone concentrations in noble gas-O 2 discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O 2 -SF 6 mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF 6 addition. This observation was contrary to only a small increase observed after SF 6 addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O 2 discharges
Numerical investigation of steady-state thermal behavior of an infrared detector cryo chamber
Directory of Open Access Journals (Sweden)
Singhal Mayank
2017-01-01
Full Text Available An infrared (IR detector is simply a transducer of radiant energy, converting radiant energy into a measurable form. Since radiation does not rely on visible light, it offers the possibility of seeing in the dark or through obscured conditions, by detecting the IR energy emitted by objects. One of the prime applications of IR detector systems for military use is in target acquisition and tracking of projectile systems. The IR detectors also have great potential in commercial market. Typically, IR detectors perform best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes makes the application of IR detectors extremely complex. Further, prior to proceeding on to a full blown transient thermal analysis it is worthwhile to perform a steady-state numerical analysis for ascertaining the effect of variation in viz., material, gas conduction coefficient, h, emissivity, ε, on the temperature profile along the cryo chamber length. This would enable understanding the interaction between the cryo chamber and its environment. Hence, the present work focuses on the development of steady-state numerical models for thermal analysis of IR cryo chamber using MATLAB. The numerical results show that gas conduction coefficient has marked influence on the temperature profile of the cryo chamber whereas the emissivity has a weak effect. The experimental validation of numerical results has also been presented.
Michailidis, George
2014-01-01
Reconstructing transcriptional regulatory networks is an important task in functional genomics. Data obtained from experiments that perturb genes by knockouts or RNA interference contain useful information for addressing this reconstruction problem. However, such data can be limited in size and/or are expensive to acquire. On the other hand, observational data of the organism in steady state (e.g., wild-type) are more readily available, but their informational content is inadequate for the task at hand. We develop a computational approach to appropriately utilize both data sources for estimating a regulatory network. The proposed approach is based on a three-step algorithm to estimate the underlying directed but cyclic network, that uses as input both perturbation screens and steady state gene expression data. In the first step, the algorithm determines causal orderings of the genes that are consistent with the perturbation data, by combining an exhaustive search method with a fast heuristic that in turn couples a Monte Carlo technique with a fast search algorithm. In the second step, for each obtained causal ordering, a regulatory network is estimated using a penalized likelihood based method, while in the third step a consensus network is constructed from the highest scored ones. Extensive computational experiments show that the algorithm performs well in reconstructing the underlying network and clearly outperforms competing approaches that rely only on a single data source. Further, it is established that the algorithm produces a consistent estimate of the regulatory network. PMID:24586224
A high-density EEG investigation into steady state binaural beat stimulation.
Goodin, Peter; Ciorciari, Joseph; Baker, Kate; Carey, Anne-Marie; Carrey, Anne-Marie; Harper, Michelle; Kaufman, Jordy
2012-01-01
Binaural beats are an auditory phenomenon that has been suggested to alter physiological and cognitive processes including vigilance and brainwave entrainment. Some personality traits measured by the NEO Five Factor Model have been found to alter entrainment using pulsing light stimuli, but as yet no studies have examined if this occurs using steady state presentation of binaural beats for a relatively short presentation of two minutes. This study aimed to examine if binaural beat stimulation altered vigilance or cortical frequencies and if personality traits were involved. Thirty-one participants were played binaural beat stimuli designed to elicit a response at either the Theta (7 Hz) or Beta (16 Hz) frequency bands while undertaking a zero-back vigilance task. EEG was recorded from a high-density electrode cap. No significant differences were found in vigilance or cortical frequency power during binaural beat stimulation compared to a white noise control period. Furthermore, no significant relationships were detected between the above and the Big Five personality traits. This suggests a short presentation of steady state binaural beats are not sufficient to alter vigilance or entrain cortical frequencies at the two bands examined and that certain personality traits were not more susceptible than others.
Data acquisition system for steady state experiments at multi-sites
International Nuclear Information System (INIS)
Nakanishi, H.; Emoto, M.; Nagayama, Y.
2010-11-01
A high-performance data acquisition system (LABCOM system) has been developed for steady state fusion experiments in Large Helical Device (LHD). The most important characteristics of this system are the 110 MB/s high-speed real-time data acquisition capability and also the scalability on its performance by using unlimited number of data acquisition (DAQ) units. It can also acquire experimental data from multiple remote sites through the 1 Gbps fusion-dedicated virtual private network (SNET) in Japan. In LHD steady-state experiments, the DAQ cluster has established the world record of acquired data amount of 90 GB/shot which almost reaches the ITER data estimate. Since all the DAQ, storage, and data clients of LABCOM system are distributed on the local area network (LAN), remote experimental data can be also acquired simply by extending the LAN to the wide-area SNET. The speed lowering problem in long-distance TCP/IP data transfer has been improved by using an optimized congestion control and packet pacing method. Japan-France and Japan-US network bandwidth tests have revealed that this method actually utilize 90% of ideal throughput in both cases. Toward the fusion goal, a common data access platform is indispensable so that detailed physics data can be easily compared between multiple large and small experiments. The demonstrated bilateral collaboration scheme will be analogous to that of ITER and the supporting machines. (author)
Weathering rates and steady-state critical loads for forest soils in the Georgia Basin
Energy Technology Data Exchange (ETDEWEB)
Mongeon, A.; Aherne, J.; Watmough, S. [Trent Univ., Peterborough, ON (Canada). Watershed Science Centre
2007-07-01
Sulphur and nitrogen emissions in the Georgia Basin resulting from expansions in urban and industrial development are now leading to the acidification of soils in the region. This study used weathering rates to evaluate the sensitivity of soils and to determine weathering rates for rooting zones at 19 sites within the Georgia Basin. Soils with low weathering rates are sensitive to acid deposition. A process-oriented soil chemical weathering model was used to calculate weathering rates for each study site as well as to determine steady-state critical loads for acid deposition. Soils at the sites were mainly podzols or brunisols, with forests composed of Douglas Fir, Western Hemlock, Western Red Cedar, Amablis Fir, Sitka Spruce, and Paper Birch. Sites ranged in elevation between 100 m to 1370 m. A steady-state simple mass balance model (SSMB) was used to estimate critical loads. The sites exhibited a large range in estimated weathering rates. Sixteen sites had weathering rates lower than 1.50 keq/ha/yr. Estimated critical loads also exhibited a large range of values. It was concluded that sulphur and nitrogen deposition at various sites with low weathering rates exceeded estimated critical loads. Further acidification studies in various regions were recommended. 30 refs., 3 tabs., 1 fig.
Inferring the parameters of a Markov process from snapshots of the steady state
Dettmer, Simon L.; Berg, Johannes
2018-02-01
We seek to infer the parameters of an ergodic Markov process from samples taken independently from the steady state. Our focus is on non-equilibrium processes, where the steady state is not described by the Boltzmann measure, but is generally unknown and hard to compute, which prevents the application of established equilibrium inference methods. We propose a quantity we call propagator likelihood, which takes on the role of the likelihood in equilibrium processes. This propagator likelihood is based on fictitious transitions between those configurations of the system which occur in the samples. The propagator likelihood can be derived by minimising the relative entropy between the empirical distribution and a distribution generated by propagating the empirical distribution forward in time. Maximising the propagator likelihood leads to an efficient reconstruction of the parameters of the underlying model in different systems, both with discrete configurations and with continuous configurations. We apply the method to non-equilibrium models from statistical physics and theoretical biology, including the asymmetric simple exclusion process (ASEP), the kinetic Ising model, and replicator dynamics.
Hampson, Karen M.; Mallen, Edward A. H.
2012-07-01
When fixating on a stationary object, the human eye exhibits microfluctuations in accommodation. Changes in the magnitude of these fluctuations reflect changes in the accommodation control system. We used adaptive optics to determine the effect of monochromatic aberration dynamics on the control of steady-state accommodation of four subjects. The subjects viewed a stationary stimulus at 2 D while selective Zernike aberrations were corrected. The fluctuations in accommodation were characterised using a wavelet-based multifractal formalism approach. We found that for all subjects, and all experimental conditions, the accommodative fluctuations were multifractal. For one subject, we found that the width of the multifractal spectrum was statistically significantly larger when even-order aberrations were corrected as compared to no aberrations corrected. Hence, in general, for the subjects tested, the multifractal nature of steady-state accommodation control is unaffected by the manipulation of monochromatic aberration dynamics. Averaging across all subjects and experimental conditions, the mean spectrum was right-skewed with a most frequently occurring Hölder exponent of 0.31 ± 0.08. Future applications of multifractal analysis to accommodation control are discussed.
Data system design considerations for a pseudo-steady-state device
International Nuclear Information System (INIS)
Wing, W.R.
1981-01-01
The Advanced Toroidal Facility is being designed to run in a steady state. This places stringent requirements on a data system, since it must provide steady-state support that is equivalent to the support users are accustomed to from pulsed experiments; i.e., enough capacity to reduce diagnostic data for live presentation. Parameters such as density, position, and temperature must be presented live (i.e., within 0.1 s). Quantities such as plasma shape or internal structure should be available with a minimum of delay. The traditional solution to providing such capabilities is to use distributed processing to off-load data acquisition from the analysis computers. However, this suffers in a real-time environment because of the necessity of moving large quantities of data from acquisition to analysis. We expect to solve the problem by using a pipelined design that will acquire data directly into shared memory, where any one of four CPU's (VAX 11/780's) can proceed with analysis
Current status and prospect of plasma control system for steady-state operation on QUEST
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, Makoto, E-mail: hasegawa@triam.kyushu-u.ac.jp; Nakamura, Kazuo; Zushi, Hideki; Hanada, Kazuaki; Fujisawa, Akihide; Tokunaga, Kazutoshi; Idei, Hiroshi; Nagashima, Yoshihiko; Kawasaki, Shoji; Nakashima, Hisatoshi; Higashijima, Aki
2016-11-15
Highlights: • Overall configuration of plasma control system on QUEST are presented. • Multi core system and reflective memories are used for the real-time control. • Hall sensors are used for the identification of plasma current and its position. • Repetitive gas fueling with the feed-back control of Hα signal is implemented. - Abstract: The plasma control system (PCS) of QUEST is developed according to the progress of QUEST project. Since one of the critical goals of the project is to achieve the steady-state operation with high temperature vacuum vessel wall, the PCS is also required to have the capability to control the plasma for a long period. For the increase of the loads to processing power of the PCS, the PCS is decentralized with the use of reflective memories (RFMs). The PCS controls the plasma edge position with the real-time identification of plasma current and its position. This identification is done with not only flux loops but also hall sensors. The gas fueling method by piezo valve with monitoring the Hα signal filtered by a digital low-pass filter are proposed and suitable for the steady-state operation on QUEST. The present status and prospect of the PCS are presented with recent topics.
International Nuclear Information System (INIS)
Kalwarf, D.R.; Nielson, K.K.; Rich, D.C.; Rogers, V.C.
1982-11-01
A method was developed and used to determine radon diffusion coefficients in compacted soils by transient-diffusion measurements. A relative standard deviation of 12% was observed in repeated measurements with a dry soil by the transient-diffusion method, and a 40% uncertainty was determined for moistures exceeding 50% of saturation. Excellent agreement was also obtained between values of the diffusion coefficient for radon in air, as measured by the transient-diffusion method, and those in the published literature. Good agreement was also obtained with diffusion coefficients measured by a steady-state method on the same soils. The agreement was best at low moistures, averaging less than ten percent difference, but differences of up to a factor of two were observed at high moistures. The comparison of the transient-diffusion and steady-state methods at low moistures provides an excellent verification of the theoretical validity and technical accuracy of these approaches, which are based on completely independent experimental conditions, measurement methods and mathematical interpretations
International Nuclear Information System (INIS)
Mladin, Mirea; Mladin, Daniela; Prodea, Ilie
2010-01-01
In 2008, IAEA started a Coordinated Research Project for benchmarking the thermalhydraulic and neutronic computer codes for research reactor analysis against the experimental data. In this framework, for the first year of research contract, the Institute for Nuclear Research engaged in steady-state analysis of SPERT-III reactor and also in the simulation of the reactivity insertion tests performed in this reactor during mid sixties. In the first part, the paper describes a Monte Carlo input model of the oxide core selected for investigation and the results of the steady-state neutronic calculations with respect to hot and cold core reactivity excess and control rods worth. Also, prompt neutron life and reactivity feed-back coefficients were examined. These results were compared with the data provided in the reactor specification document concerning neutronic design calculated data. The second part of the paper is dedicated to calculation of the reactivity insertion transients with RELAP5 and CATHARE2 thermalhydraulic codes, both including point reactor kinetics models, and to comparison with experimental data. (authors)
Test-retest reliability of the 40 Hz EEG auditory steady-state response.
Directory of Open Access Journals (Sweden)
Kristina L McFadden
Full Text Available Auditory evoked steady-state responses are increasingly being used as a marker of brain function and dysfunction in various neuropsychiatric disorders, but research investigating the test-retest reliability of this response is lacking. The purpose of this study was to assess the consistency of the auditory steady-state response (ASSR across sessions. Furthermore, the current study aimed to investigate how the reliability of the ASSR is impacted by stimulus parameters and analysis method employed. The consistency of this response across two sessions spaced approximately 1 week apart was measured in nineteen healthy adults using electroencephalography (EEG. The ASSR was entrained by both 40 Hz amplitude-modulated white noise and click train stimuli. Correlations between sessions were assessed with two separate analytical techniques: a channel-level analysis across the whole-head array and b signal-space projection from auditory dipoles. Overall, the ASSR was significantly correlated between sessions 1 and 2 (p<0.05, multiple comparison corrected, suggesting adequate test-retest reliability of this response. The current study also suggests that measures of inter-trial phase coherence may be more reliable between sessions than measures of evoked power. Results were similar between the two analysis methods, but reliability varied depending on the presented stimulus, with click train stimuli producing more consistent responses than white noise stimuli.
Steady-state and accident analyses of PBMR with the computer code SPECTRA
International Nuclear Information System (INIS)
Stempniewicz, Marek M.
2002-01-01
The SPECTRA code is an accident analysis code developed at NRG. It is designed for thermal-hydraulic analyses of nuclear or conventional power plants. The code is capable of analysing the whole power plant, including reactor vessel, primary system, various control and safety systems, containment and reactor building. The aim of the work presented in this paper was to prepare a preliminary thermal-hydraulic model of PBMR for SPECTRA, and perform steady state and accident analyses. In order to assess SPECTRA capability to model the PBMR reactors, a model of the INCOGEN system has been prepared first. Steady state and accident scenarios were analyzed for INCOGEN configuration. Results were compared to the results obtained earlier with INAS and OCTOPUS/PANTHERMIX. A good agreement was obtained. Results of accident analyses with PBMR model showed qualitatively good results. It is concluded that SPECTRA is a suitable tool for analyzing High Temperature Reactors, such as INCOGEN or for example PBMR (Pebble Bed Modular Reactor). Analyses of INCOGEN and PBMR systems showed that in all analyzed cases the fuel temperatures remained within the acceptable limits. Consequently there is no danger of release of radioactivity to the environment. It may be concluded that those are promising designs for future safe industrial reactors. (author)
Implications of rf current drive theory for next step steady-state tokamak design
International Nuclear Information System (INIS)
Schultz, J.H.
1985-06-01
Two missions have been identified for a next-step tokamak experiment in the United States. The more ambitious Mission II device would be a superconducting tokamak, capable of doing long-pulse ignition demonstrations, and hopefully capable of also being able to achieve steady-state burn. A few interesting lines of approach have been identified, using a combination of logical design criteria and parametric system scans [SC85]. These include: (1) TIBER: A point-design suggested by Lawrence Livermore, that proposes a machine with the capability of demonstrating ignition, high beta (10%) and high Q (=10), using high frequency, fast-wave current drive. The TIBER topology uses moderate aspect ratio and high triangularity to achieve high beta. (2) JET Scale-up. (3) Magic5: It is argued here that an aspect ratio of 5 is a magic number for a good steady-state current drive experiment. A moderately-sized machine that achieves ignition and is capable of high Q, using either fast wave or slow wave current drive is described. (4) ET-II: The concept of a highly elongated tokamak (ET) was first proposed as a low-cost approach to Mission I, because of the possibility of achieving ohmic ignition with low-stress copper magnets. We propose that its best application is really for commercial tokamaks, using fast-wave current drive, and suggest a Mission II experiment that would be prototypical of such a reactor
Hsu, Ruey-Fen; Ho, Chi-Kung; Lu, Sheng-Nan; Chen, Shun-Sheng
2010-10-01
An objective investigation is needed to verify the existence and severity of hearing impairments resulting from work-related, noise-induced hearing loss in arbitration of medicolegal aspects. We investigated the accuracy of multiple-frequency auditory steady-state responses (Mf-ASSRs) between subjects with sensorineural hearing loss (SNHL) with and without occupational noise exposure. Cross-sectional study. Tertiary referral medical centre. Pure-tone audiometry and Mf-ASSRs were recorded in 88 subjects (34 patients had occupational noise-induced hearing loss [NIHL], 36 patients had SNHL without noise exposure, and 18 volunteers were normal controls). Inter- and intragroup comparisons were made. A predicting equation was derived using multiple linear regression analysis. ASSRs and pure-tone thresholds (PTTs) showed a strong correlation for all subjects (r = .77 ≈ .94). The relationship is demonstrated by the equationThe differences between the ASSR and PTT were significantly higher for the NIHL group than for the subjects with non-noise-induced SNHL (p hearing thresholds. Predictive value may be lower in subjects with occupational hearing loss. Regardless of carrier frequencies, the severity of hearing loss affects the steady-state response. Moreover, the ASSR may assist in detecting noise-induced injury of the auditory pathway. A multiple linear regression equation to accurately predict thresholds was shown that takes into consideration all effect factors.
Energy Technology Data Exchange (ETDEWEB)
Nichols, Todd Travis; Barnes, Charles Marshall; Lauerhass, Lance; Taylor, Dean Dalton
2001-06-01
The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from "road tests" that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment.
Energy Technology Data Exchange (ETDEWEB)
Nichols, T. T.; Barnes, C. M.; Lauerhass, L.; Taylor, D. D.
2001-06-01
The process used for selecting a steady-state process simulator under conditions of high uncertainty and limited time is described. Multiple waste forms, treatment ambiguity, and the uniqueness of both the waste chemistries and alternative treatment technologies result in a large set of potential technical requirements that no commercial simulator can totally satisfy. The aim of the selection process was two-fold. First, determine the steady-state simulation software that best, albeit not completely, satisfies the requirements envelope. And second, determine if the best is good enough to justify the cost. Twelve simulators were investigated with varying degrees of scrutiny. The candidate list was narrowed to three final contenders: ASPEN Plus 10.2, PRO/II 5.11, and CHEMCAD 5.1.0. It was concluded from ''road tests'' that ASPEN Plus appears to satisfy the project's technical requirements the best and is worth acquiring. The final software decisions provide flexibility: they involve annual rather than multi-year licensing, and they include periodic re-assessment.
Tolerogenic Transcriptional Signatures of Steady-State and Pathogen-Induced Dendritic Cells.
Vendelova, Emilia; Ashour, Diyaaeldin; Blank, Patrick; Erhard, Florian; Saliba, Antoine-Emmanuel; Kalinke, Ulrich; Lutz, Manfred B
2018-01-01
Dendritic cells (DCs) are key directors of tolerogenic and immunogenic immune responses. During the steady state, DCs maintain T cell tolerance to self-antigens by multiple mechanisms including inducing anergy, deletion, and Treg activity. All of these mechanisms help to prevent autoimmune diseases or other hyperreactivities. Different DC subsets contribute to pathogen recognition by expression of different subsets of pattern recognition receptors, including Toll-like receptors or C-type lectins. In addition to the triggering of immune responses in infected hosts, most pathogens have evolved mechanisms for evasion of targeted responses. One such strategy is characterized by adopting the host's T cell tolerance mechanisms. Understanding these tolerogenic mechanisms is of utmost importance for therapeutic approaches to treat immune pathologies, tumors and infections. Transcriptional profiling has developed into a potent tool for DC subset identification. Here, we review and compile pathogen-induced tolerogenic transcriptional signatures from mRNA profiling data of currently available bacterial- or helminth-induced transcriptional signatures. We compare them with signatures of tolerogenic steady-state DC subtypes to identify common and divergent strategies of pathogen induced immune evasion. Candidate molecules are discussed in detail. Our analysis provides further insights into tolerogenic DC signatures and their exploitation by different pathogens.
Analysis of steady-state creep of Fe-Mo alloys from the viewpoint of recovery
International Nuclear Information System (INIS)
Maruyama, K.; Karashima, S.; Oikawa, H.
1979-01-01
A theoretical equation to d evaluate the steady-state creep-rates, d epsilon/dtsub(s), based on a recovery creep model is derived: epsilonsub(s)/dt proportional to r/sigma 2 sub(a) x lambda 2 , where r is the recovery rate, which can be determined from results of stress-reduction tests, deltasub(a) the applied stress, and lambda the dislocation link-length. Two cases of recovery are considered, i.e., recovery of dislocation networks at sub-boundaries and that of three-dimensional networks within subgrains. The high-temperature steady-state creep of Fe-Mo solid solutions, creep characteristics of which have been reported to be well rationalized as viscous glide creep, is analyzed using this equation. It is shown that stress dependence of d epsilon/dtsub(s) is well explained from the viewpoint of recovery, in which the activation and the annihilation of dislocations at sub-boundaries are considered to take place. (orig.) [de
The steady-state ECRH-system at Wendelstein7-X
International Nuclear Information System (INIS)
Laqua, H.P.; Erckmann, V.; Brakel, R.; Braune, H.; Maassberg, H.; Marushchenko, N.; Michel, G.; Turkin, Y.; Ullrich, S.; Dammertz, G.; Thumm, M.; Brand, P.; Gantenbein, G.; Kasparek, W.
2005-01-01
Electron Cyclotron Resonance Heating (ECRH) is the main heating system for the Wendelstein7-X (W7-X) stellarator and the only one for CW-operation in the first stage. The mission of W7-X, which is presently under construction at IPP-Greifswald, is to demonstrate the inherent steady state capability of stellarators at reactor relevant plasma parameters. A modular 10 MW ECRH plant at 140 GHz with 1 MW CW-capability power for each module is under construction to meet the scientific objectives. Simulations of different ECRH scenarios, which are foreseen for W7-X operation and base on ray- tracing calculations and confinement studies, will be presented. A steady state ECRH has specific requirements on the stellarator machine itself, on the ECRH-sources, transmissions elements and on the experimental environment. In particular all elements have to be sufficiently cooled, screened and armoured against microwaves. The commissioning of the ECRH plant is well under way, the strategy and status of the project will be reported. First full power, CW integral tests of one ECRH module have been performed. A large microwave stray radiation chamber for integrated in-vessel component tests had been brought into operation. A bi-axially movable, motor driven ECRH antenna mock-up was build and is tested for reliability now. A strategy for the commissioning and the first experimental campaign at W7-X has been developed. (author)
Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances
Energy Technology Data Exchange (ETDEWEB)
Perez Polo, Manuel F. [Department of Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Escuela Politecnica Superior, Campus de San Vicente, 03071 Alicante (Spain)]. E-mail: manolo@dfists.ua.es; Perez Molina, Manuel [Facultad de Ciencias Matematicas, Universidad Nacional de Educacion a Distancia, UNED, C/Boyero 12-1A, Alicante 03007 (Spain)]. E-mail: ma_perez_m@hotmail.com
2007-07-15
Chaotic and steady state motions of a nonlinear controlled gimbals suspension gyro used to stabilize an external body are studied in this paper. The equations of the gyro without nonlinear control are deduced from the Euler-Lagrange equations by using the nutation theory. The equations of the system show that a cyclic variable appears. Its elimination allows us to find an auxiliary nonlinear system from which it is possible to deduce a nonlinear control law in order to obtain a desired equilibrium point. From the analysis of the nonlinear control law it is possible to show that due to both harmonic disturbances in the platform of the gyro and in the body to stabilize, regular and chaotic motions can appear. The chaotic motion is researched by means of chaos maps, bifurcation diagrams, sensitivity to initial conditions, Lyapunov exponents and Fourier spectrum density. The transition from chaotic to steady state motion by eliminating the harmonic disturbances from the modification of the initial nonlinear control law is also researched. Next, the paper shows how to use the chaotic motion in order to obtain small input signals so that the desired equilibrium state of the gyro can be reached. The developed methodology and its compared performance are evaluated through analytical methods and numerical simulations.
Stochastic theory of nonequilibrium steady states and its applications. Part I
International Nuclear Information System (INIS)
Zhang Xuejuan; Qian Hong; Qian Min
2012-01-01
The concepts of equilibrium and nonequilibrium steady states are introduced in the present review as mathematical concepts associated with stationary Markov processes. For both discrete stochastic systems with master equations and continuous diffusion processes with Fokker–Planck equations, the nonequilibrium steady state (NESS) is characterized in terms of several key notions which are originated from nonequilibrium physics: time irreversibility, breakdown of detailed balance, free energy dissipation, and positive entropy production rate. After presenting this NESS theory in pedagogically accessible mathematical terms that require only a minimal amount of prerequisites in nonlinear differential equations and the theory of probability, it is applied, in Part I, to two widely studied problems: the stochastic resonance (also known as coherent resonance) and molecular motors (also known as Brownian ratchet). Although both areas have advanced rapidly on their own with a vast amount of literature, the theory of NESS provides them with a unifying mathematical foundation. Part II of this review contains applications of the NESS theory to processes from cellular biochemistry, ranging from enzyme catalyzed reactions, kinetic proofreading, to zeroth-order ultrasensitivity.
Lower bounds for ballistic current and noise in non-equilibrium quantum steady states
Directory of Open Access Journals (Sweden)
Benjamin Doyon
2015-03-01
Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.
Steady state in a gas of inelastic rough spheres heated by a uniform stochastic force
Energy Technology Data Exchange (ETDEWEB)
Vega Reyes, Francisco, E-mail: fvega@unex.es; Santos, Andrés, E-mail: andres@unex.es [Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, 06071 Badajoz (Spain)
2015-11-15
We study here the steady state attained in a granular gas of inelastic rough spheres that is subject to a spatially uniform random volume force. The stochastic force has the form of the so-called white noise and acts by adding impulse to the particle translational velocities. We work out an analytical solution of the corresponding velocity distribution function from a Sonine polynomial expansion that displays energy non-equipartition between the translational and rotational modes, translational and rotational kurtoses, and translational-rotational velocity correlations. By comparison with a numerical solution of the Boltzmann kinetic equation (by means of the direct simulation Monte Carlo method), we show that our analytical solution provides a good description that is quantitatively very accurate in certain ranges of inelasticity and roughness. We also find three important features that make the forced granular gas steady state very different from the homogeneous cooling state (attained by an unforced granular gas). First, the marginal velocity distributions are always close to a Maxwellian. Second, there is a continuous transition to the purely smooth limit (where the effects of particle rotations are ignored). And third, the angular translational-rotational velocity correlations show a preference for a quasiperpendicular mutual orientation (which is called “lifted-tennis-ball” behavior)
Parametric study of the primary and secondary systems of the CAREM-25 reactor on steady state
International Nuclear Information System (INIS)
Halpert, Silvia; Vazquez, Luis
2000-01-01
In the CAREM-25 reactor the primary coolant flows by natural convection that's why the flow is established when the balance between the buoyancy force and friction pressure drop through circuit is obtained. This paper presents a parametric study on primary and secondary systems of the reactor on steady state, for different values of some thermohydraulics parameters: safety factor on friction loss pressure calculations (f), steam generator heat transfer area (A T ) and primary pressure (P P ). The ESCAREM 2.08 thermohydraulic code, which calculates the primary system behavior for steady state conditions, was used for this study. The conclusions of this study are: -) There was a variation of the 15% on the primary coolant flow when the safety factor was changed a 50 %; -) The primary and secondary systems conditions do not change when the power is less than 100 MW; -) Between 100 and 110 MW the decrease of the heat transfer area produces an important change on the secondary systems conditions: the outlet steam generator temperature decrease and there is an important rice in the flow; -) The primary pressure could decrease up to 11.4 MPa without violating turbine requirements. (author)
Steady state and dynamic modelling for a hybrid approach to post combustion capture
Energy Technology Data Exchange (ETDEWEB)
Stephenson, P.; Tian, J. [RWE npower (United Kingdom); Jovanovich, S.; Tian, X. [BOC Linde, Munich (Germany)
2009-07-01
This poster presentation illustrated a hybrid method for carbon-capture, which includes features of both oxyfuel and post-combustion capture. The method was developed jointly by BOC Linde and RWE npower as part of the ECO-COPPS project funded by the UK Government. The method involves the use of an air separation unit (ASU) to enrich the oxygen level in the gas entering the furnace. This increases the CO{sub 2} concentration in the flue gas and decreases the flue gas mass flow rate. The method should therefore require a smaller ASU than oxyfuel and a smaller post-combustion capture plant than with air-firing. The objective is to lower costs. The project involves both steady-state and dynamic modelling of the overall process. Although Doosan Babcock and the University of Leeds are also involved in the modelling aspects of the project, this presentation focused only on the modelling conducted by RWE and BOC of various aspects of the process, such as ASUs or the furnace/steam cycle or the post-combustion capture, using codes such as HYSYS or PROMAX or gPROMS. A simple steady state model was developed to determine if the ECO-COPPS hybrid idea is worth pursuing. RWE and BOC have also examined the potential requirements for dynamic response and the plant issues that may pose a challenge in meeting these requirements. RWE is in the process of developing simple dynamic models to simulate plant flexibility and effects of load changes.
Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation.
Directory of Open Access Journals (Sweden)
Andrea Ciliberto
2007-03-01
Full Text Available In metabolic networks, metabolites are usually present in great excess over the enzymes that catalyze their interconversion, and describing the rates of these reactions by using the Michaelis-Menten rate law is perfectly valid. This rate law assumes that the concentration of enzyme-substrate complex (C is much less than the free substrate concentration (S0. However, in protein interaction networks, the enzymes and substrates are all proteins in comparable concentrations, and neglecting C with respect to S0 is not valid. Borghans, DeBoer, and Segel developed an alternative description of enzyme kinetics that is valid when C is comparable to S0. We extend this description, which Borghans et al. call the total quasi-steady state approximation, to networks of coupled enzymatic reactions. First, we analyze an isolated Goldbeter-Koshland switch when enzymes and substrates are present in comparable concentrations. Then, on the basis of a real example of the molecular network governing cell cycle progression, we couple two and three Goldbeter-Koshland switches together to study the effects of feedback in networks of protein kinases and phosphatases. Our analysis shows that the total quasi-steady state approximation provides an excellent kinetic formalism for protein interaction networks, because (1 it unveils the modular structure of the enzymatic reactions, (2 it suggests a simple algorithm to formulate correct kinetic equations, and (3 contrary to classical Michaelis-Menten kinetics, it succeeds in faithfully reproducing the dynamics of the network both qualitatively and quantitatively.
Role of conformational dynamics in kinetics of an enzymatic cycle in a nonequilibrium steady state
Min, Wei; Xie, X. Sunney; Bagchi, Biman
2009-08-01
Enzyme is a dynamic entity with diverse time scales, ranging from picoseconds to seconds or even longer. Here we develop a rate theory for enzyme catalysis that includes conformational dynamics as cycling on a two-dimensional (2D) reaction free energy surface involving an intrinsic reaction coordinate (X) and an enzyme conformational coordinate (Q). The validity of Michaelis-Menten (MM) equation, i.e., substrate concentration dependence of enzymatic velocity, is examined under a nonequilibrium steady state. Under certain conditions, the classic MM equation holds but with generalized microscopic interpretations of kinetic parameters. However, under other conditions, our rate theory predicts either positive (sigmoidal-like) or negative (biphasic-like) kinetic cooperativity due to the modified effective 2D reaction pathway on X-Q surface, which can explain non-MM dependence previously observed on many monomeric enzymes that involve slow or hysteretic conformational transitions. Furthermore, we find that a slow conformational relaxation during product release could retain the enzyme in a favorable configuration, such that enzymatic turnover is dynamically accelerated at high substrate concentrations. The effect of such conformation retainment in a nonequilibrium steady state is evaluated.
Wang, Yi Kan; Hurley, Daniel G; Schnell, Santiago; Print, Cristin G; Crampin, Edmund J
2013-01-01
We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data.
Martin, Catherine; Naidoo, Nicolette P; Venter, W D Francois; Jaffer, Ambereen; Barker, Pierre M
2014-05-12
Target setting is useful in planning, assessing and improving antiretroviral treatment (ART) programmes. In the past 4 years, the ART initiation environment has been transformed due to the change in eligibility criteria (starting ART at a CD4+ count steady-state need for ART initiation and backlog in a North West Province district, accounting for the shift in eligibility. Comparison of actual v. targeted ART initiations was undertaken. The change in CD4+ count threshold adds a once-off group of newly eligible patients to the pool requiring ART - the backlog. The steady-state remains unchanged as it is determined by the annual rate of new HIV infections in previous years. The steady-state need for the district was 639 initiations/month, and the backlog was ~15,388 patients. After the shift in eligibility in September 2011, the steady-state target was exceeded over several months with some backlog addressed. Of the total backlog for this district, 72% remains to be cleared. South Africa has two pools of patients who need ART: the steady-state of HIV-infected patients entering the programme each year, determined by historical infection rates; and the backlog created by the shift in eligibility. The healthcare system needs to build long- term capacity to meet the steady-state need for ART and additional capacity to address the backlog.
Lack of linear correlation between dynamic and steady-state cerebral autoregulation.
de Jong, Daan L K; Tarumi, Takashi; Liu, Jie; Zhang, Rong; Claassen, Jurgen A H R
2017-08-15
For correct application and interpretation of cerebral autoregulation (CA) measurements in research and in clinical care, it is essential to understand differences and similarities between dynamic and steady-state CA. The present study found no correlation between dynamic and steady-state CA indices in healthy older adults. There was variability between individuals in all (steady-state and dynamic) autoregulatory indices, ranging from low (almost absent) to highly efficient CA in this healthy population. These findings challenge the assumption that assessment of a single CA parameter or a single set of parameters can be generalized to overall CA functioning. Therefore, depending on specific research purposes, the choice for either steady-state or dynamic measures or both should be weighed carefully. The present study aimed to investigate the relationship between dynamic (dCA) and steady-state cerebral autoregulation (sCA). In 28 healthy older adults, sCA was quantified by a linear regression slope of proportionate (%) changes in cerebrovascular resistance (CVR) in response to proportionate (%) changes in mean blood pressure (BP) induced by stepwise sodium nitroprusside (SNP) and phenylephrine (PhE) infusion. Cerebral blood flow (CBF) was measured at the internal carotid artery (ICA) and vertebral artery (VA) and CBF velocity at the middle cerebral artery (MCA). With CVR = BP/CBF, Slope-CVR ICA , Slope-CVR VA and Slope-CVRi MCA were derived. dCA was assessed (i) in supine rest, analysed with transfer function analysis (gain and phase) and autoregulatory index (ARI) fit from spontaneous oscillations (ARI Baseline ), and (ii) with transient changes in BP using a bolus injection of SNP (ARI SNP ) and PhE (ARI PhE ). Comparison of sCA and dCA parameters (using Pearson's r for continuous and Spearman's ρ for ordinal parameters) demonstrated a lack of linear correlations between sCA and dCA measures. However, comparisons of parameters within dCA and within sCA were
Yamori, Wataru; Masumoto, Chisato; Fukayama, Hiroshi; Makino, Amane
2012-09-01
The role of Rubisco activase in steady-state and non-steady-state photosynthesis was analyzed in wild-type (Oryza sativa) and transgenic rice that expressed different amounts of Rubisco activase. Below 25°C, the Rubisco activation state and steady-state photosynthesis were only affected when Rubisco activase was reduced by more than 70%. However, at 40°C, smaller reductions in Rubisco activase content were linked to a reduced Rubisco activation state and steady-state photosynthesis. As a result, overexpression of maize Rubisco activase in rice did not lead to an increase of the Rubisco activation state, nor to an increase in photosynthetic rate below 25°C, but had a small stimulatory effect at 40°C. On the other hand, the rate at which photosynthesis approached the steady state following an increase in light intensity was rapid in Rubisco activase-overexpressing plants, intermediate in the wild-type, and slowest in antisense plants at any leaf temperature. In Rubisco activase-overexpressing plants, Rubisco activation state at low light was maintained at higher levels than in the wild-type. Thus, rapid regulation by Rubisco activase following an increase in light intensity and/or maintenance of a high Rubisco activation state at low light would result in a rapid increase in Rubisco activation state and photosynthetic rate following an increase in light intensity. It is concluded that Rubisco activase plays an important role in the regulation of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
Minimal gain marching schemes: searching for unstable steady-states with unsteady solvers
de S. Teixeira, Renan; S. de B. Alves, Leonardo
2017-12-01
Reference solutions are important in several applications. They are used as base states in linear stability analyses as well as initial conditions and reference states for sponge zones in numerical simulations, just to name a few examples. Their accuracy is also paramount in both fields, leading to more reliable analyses and efficient simulations, respectively. Hence, steady-states usually make the best reference solutions. Unfortunately, standard marching schemes utilized for accurate unsteady simulations almost never reach steady-states of unstable flows. Steady governing equations could be solved instead, by employing Newton-type methods often coupled with continuation techniques. However, such iterative approaches do require large computational resources and very good initial guesses to converge. These difficulties motivated the development of a technique known as selective frequency damping (SFD) (Åkervik et al. in Phys Fluids 18(6):068102, 2006). It adds a source term to the unsteady governing equations that filters out the unstable frequencies, allowing a steady-state to be reached. This approach does not require a good initial condition and works well for self-excited flows, where a single nonzero excitation frequency is selected by either absolute or global instability mechanisms. On the other hand, it seems unable to damp stationary disturbances. Furthermore, flows with a broad unstable frequency spectrum might require the use of multiple filters, which delays convergence significantly. Both scenarios appear in convectively, absolutely or globally unstable flows. An alternative approach is proposed in the present paper. It modifies the coefficients of a marching scheme in such a way that makes the absolute value of its linear gain smaller than one within the required unstable frequency spectra, allowing the respective disturbance amplitudes to decay given enough time. These ideas are applied here to implicit multi-step schemes. A few chosen test cases
Pu recycling in a full Th-MOX PWR core. Part I: Steady state analysis
International Nuclear Information System (INIS)
Fridman, E.; Kliem, S.
2011-01-01
Research highlights: → Detailed 3D 100% Th-MOX PWR core design is developed. → Pu incineration increased by a factor of 2 as compared to a full MOX PWR core. → The core controllability under steady state conditions is demonstrated. - Abstract: Current practice of Pu recycling in existing Light Water Reactors (LWRs) in the form of U-Pu mixed oxide fuel (MOX) is not efficient due to continuous Pu production from U-238. The use of Th-Pu mixed oxide (TOX) fuel will considerably improve Pu consumption rates because virtually no new Pu is generated from thorium. In this study, the feasibility of Pu recycling in a typical pressurized water reactor (PWR) fully loaded with TOX fuel is investigated. Detailed 3-dimensional 100% TOX and 100% MOX PWR core designs are developed. The full MOX core is considered for comparison purposes. The design stages included determination of Pu loading required to achieve 18-month fuel cycle assuming three-batch fuel management scheme, selection of poison materials, development of the core loading pattern, optimization of burnable poison loadings, evaluation of critical boron concentration requirements, estimation of reactivity coefficients, core kinetic parameters, and shutdown margin. The performance of the MOX and TOX cores under steady-state condition and during selected reactivity initiated accidents (RIAs) is compared with that of the actual uranium oxide (UOX) PWR core. Part I of this paper describes the full TOX and MOX PWR core designs and reports the results of steady state analysis. The TOX core requires a slightly higher initial Pu loading than the MOX core to achieve the target fuel cycle length. However, the TOX core exhibits superior Pu incineration capabilities. The significantly degraded worth of control materials in Pu cores is partially addressed by the use of enriched soluble boron and B 4 C as a control rod absorbing material. Wet annular burnable absorber (WABA) rods are used to flatten radial power distribution
Human neuromagnetic steady-state responses to amplitude-modulated tones, speech, and music.
Lamminmäki, Satu; Parkkonen, Lauri; Hari, Riitta
2014-01-01
Auditory steady-state responses that can be elicited by various periodic sounds inform about subcortical and early cortical auditory processing. Steady-state responses to amplitude-modulated pure tones have been used to scrutinize binaural interaction by frequency-tagging the two ears' inputs at different frequencies. Unlike pure tones, speech and music are physically very complex, as they include many frequency components, pauses, and large temporal variations. To examine the utility of magnetoencephalographic (MEG) steady-state fields (SSFs) in the study of early cortical processing of complex natural sounds, the authors tested the extent to which amplitude-modulated speech and music can elicit reliable SSFs. MEG responses were recorded to 90-s-long binaural tones, speech, and music, amplitude-modulated at 41.1 Hz at four different depths (25, 50, 75, and 100%). The subjects were 11 healthy, normal-hearing adults. MEG signals were averaged in phase with the modulation frequency, and the sources of the resulting SSFs were modeled by current dipoles. After the MEG recording, intelligibility of the speech, musical quality of the music stimuli, naturalness of music and speech stimuli, and the perceived deterioration caused by the modulation were evaluated on visual analog scales. The perceived quality of the stimuli decreased as a function of increasing modulation depth, more strongly for music than speech; yet, all subjects considered the speech intelligible even at the 100% modulation. SSFs were the strongest to tones and the weakest to speech stimuli; the amplitudes increased with increasing modulation depth for all stimuli. SSFs to tones were reliably detectable at all modulation depths (in all subjects in the right hemisphere, in 9 subjects in the left hemisphere) and to music stimuli at 50 to 100% depths, whereas speech usually elicited clear SSFs only at 100% depth.The hemispheric balance of SSFs was toward the right hemisphere for tones and speech, whereas
High Beta Steady State Research and Future Directions on JT-60U and JFT-2M
Ishida, Shinichi
2003-10-01
JT-60U and JFT-2M research is focused on high beta steady state operation towards economically and environmentally attractive reactors. In JT-60U, a high-βp H-mode plasma was sustained with βN 2.7 for 7.4 s in which neoclassical tearing modes (NTMs) limited the attainable β_N. Real-time tracking NTM stabilization system using ECCD demonstrated complete suppression of NTM leading to recovery of βN before onset of NTM. Performance in a fully non-inductive H-mode plasma was improved up to n_i(0) τE T_i(0) = 3.1 x 10^20 keV s m-3 using N-NBCD with βN 2.4, HH_y,2=1.2 and bootstrap fraction f_BS 0.5. ECH experiments extended the confinement enhancement for dominantly electron heated reversed shear plasmas up to HH_y,2 2 at T_e/Ti 1.25. A world record ECCD efficiency, 4.2 x 10^18 A/W/m^2, was achieved at Te 23 keV with a highly localized central current density. Innovative initiation and current build-up without center solenoid currents were established by LHCD/ECH and bootstrap current up to f_BS 0.9. In JFT-2M, the inside of the vacuum vessel wall was fully covered with low-activation ferritic steel plates to investigate their use in plasmas near fusion conditions. High βN plasmas were produced up to βN = 3.3 with an internal transport barrier (ITB) and a steady H-mode edge. A new H-mode regime with steady high recycling (HRS) and an ITB was exploited leading to βN H_89P 6.2 at n_e/nG 0.7. In 2003, JT-60U will be able to operate for the duration up to 65 s at 1 MA/2.7 T and the heating/current-drive duration up to 30 s at 17 MW to prolong high-βN and/or high-f_BS discharges with feedback controls. JFT-2M is planning to implement wall stabilization experiments in 2004 to pursue plasmas above the ideal no-wall limit using a ferritic wall. The modification of JT-60 to a fully superconducting tokamak is under discussion to explore high-β steady state operation in collision-less plasmas well above no-wall limit with ferritic wall in a steady state.
Directory of Open Access Journals (Sweden)
Xiaodan Tan
2017-12-01
Full Text Available The auditory steady-state response (ASSR is one of the main approaches in clinic for health screening and frequency-specific hearing assessment. However, its generation mechanism is still of much controversy. In the present study, the linear superposition hypothesis for the generation of ASSRs was investigated by comparing the relationships between the classical 40 Hz ASSR and three synthetic ASSRs obtained from three different templates for transient auditory evoked potential (AEP. These three AEPs are the traditional AEP at 5 Hz and two 40 Hz AEPs derived from two deconvolution algorithms using stimulus sequences, i.e., continuous loop averaging deconvolution (CLAD and multi-rate steady-state average deconvolution (MSAD. CLAD requires irregular inter-stimulus intervals (ISIs in the sequence while MSAD uses the same ISIs but evenly-spaced stimulus sequences which mimics the classical 40 Hz ASSR. It has been reported that these reconstructed templates show similar patterns but significant difference in morphology and distinct frequency characteristics in synthetic ASSRs. The prediction accuracies of ASSR using these templates show significant differences (p < 0.05 in 45.95, 36.28, and 10.84% of total time points within four cycles of ASSR for the traditional, CLAD, and MSAD templates, respectively, as compared with the classical 40 Hz ASSR, and the ASSR synthesized from the MSAD transient AEP suggests the best similarity. And such a similarity is also demonstrated at individuals only in MSAD showing no statistically significant difference (Hotelling's T2 test, T2 = 6.96, F = 0.80, p = 0.592 as compared with the classical 40 Hz ASSR. The present results indicate that both stimulation rate and sequencing factor (ISI variation affect transient AEP reconstructions from steady-state stimulation protocols. Furthermore, both auditory brainstem response (ABR and middle latency response (MLR are observed in contributing to the composition of ASSR but