WorldWideScience

Sample records for polarized radiation transfer

  1. Transient radiative transfer in a scattering slab considering polarization.

    Science.gov (United States)

    Yi, Hongliang; Ben, Xun; Tan, Heping

    2013-11-04

    The characteristics of the transient and polarization must be considered for a complete and correct description of short-pulse laser transfer in a scattering medium. A Monte Carlo (MC) method combined with a time shift and superposition principle is developed to simulate transient vector (polarized) radiative transfer in a scattering medium. The transient vector radiative transfer matrix (TVRTM) is defined to describe the transient polarization behavior of short-pulse laser propagating in the scattering medium. According to the definition of reflectivity, a new criterion of reflection at Fresnel surface is presented. In order to improve the computational efficiency and accuracy, a time shift and superposition principle is applied to the MC model for transient vector radiative transfer. The results for transient scalar radiative transfer and steady-state vector radiative transfer are compared with those in published literatures, respectively, and an excellent agreement between them is observed, which validates the correctness of the present model. Finally, transient radiative transfer is simulated considering the polarization effect of short-pulse laser in a scattering medium, and the distributions of Stokes vector in angular and temporal space are presented.

  2. Monte Carlo method for polarized radiative transfer in gradient-index media

    International Nuclear Information System (INIS)

    Zhao, J.M.; Tan, J.Y.; Liu, L.H.

    2015-01-01

    Light transfer in gradient-index media generally follows curved ray trajectories, which will cause light beam to converge or diverge during transfer and induce the rotation of polarization ellipse even when the medium is transparent. Furthermore, the combined process of scattering and transfer along curved ray path makes the problem more complex. In this paper, a Monte Carlo method is presented to simulate polarized radiative transfer in gradient-index media that only support planar ray trajectories. The ray equation is solved to the second order to address the effect induced by curved ray trajectories. Three types of test cases are presented to verify the performance of the method, which include transparent medium, Mie scattering medium with assumed gradient index distribution, and Rayleigh scattering with realistic atmosphere refractive index profile. It is demonstrated that the atmospheric refraction has significant effect for long distance polarized light transfer. - Highlights: • A Monte Carlo method for polarized radiative transfer in gradient index media. • Effect of curved ray paths on polarized radiative transfer is considered. • Importance of atmospheric refraction for polarized light transfer is demonstrated

  3. IPRT polarized radiative transfer model intercomparison project - Three-dimensional test cases (phase B)

    Science.gov (United States)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2018-04-01

    Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http

  4. Formal Solutions for Polarized Radiative Transfer. III. Stiffness and Instability

    Science.gov (United States)

    Janett, Gioele; Paganini, Alberto

    2018-04-01

    Efficient numerical approximation of the polarized radiative transfer equation is challenging because this system of ordinary differential equations exhibits stiff behavior, which potentially results in numerical instability. This negatively impacts the accuracy of formal solvers, and small step-sizes are often necessary to retrieve physical solutions. This work presents stability analyses of formal solvers for the radiative transfer equation of polarized light, identifies instability issues, and suggests practical remedies. In particular, the assumptions and the limitations of the stability analysis of Runge–Kutta methods play a crucial role. On this basis, a suitable and pragmatic formal solver is outlined and tested. An insightful comparison to the scalar radiative transfer equation is also presented.

  5. On the derivation of vector radiative transfer equation for polarized radiative transport in graded index media

    International Nuclear Information System (INIS)

    Zhao, J.M.; Tan, J.Y.; Liu, L.H.

    2012-01-01

    Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.

  6. A 1D radiative transfer benchmark with polarization via doubling and adding

    Science.gov (United States)

    Ganapol, B. D.

    2017-11-01

    Highly precise numerical solutions to the radiative transfer equation with polarization present a special challenge. Here, we establish a precise numerical solution to the radiative transfer equation with combined Rayleigh and isotropic scattering in a 1D-slab medium with simple polarization. The 2-Stokes vector solution for the fully discretized radiative transfer equation in space and direction derives from the method of doubling and adding enhanced through convergence acceleration. Updates to benchmark solutions found in the literature to seven places for reflectance and transmittance as well as for angular flux follow. Finally, we conclude with the numerical solution in a partially randomly absorbing heterogeneous medium.

  7. Polarized Radiative Transfer in Fluctuating Stochastic Media

    International Nuclear Information System (INIS)

    Sallah, M.; Degheidy, A.R.; Selim, M.M.

    2009-01-01

    The problem of polarized radiative transfer in a planar cluttered atmospheric medium (like cloudy atmosphere) is proposed. The solution is presented for an arbitrary absorption and scattering cross sections. The extinction function of the medium is assumed to be a continuous random function of position, with fluctuations about the mean taken as Gaussian distributed. The joint probability distribution function of these Gaussian random variables is used to calculate the ensemble-averaged quantities, such as reflectivity, radiative energy and radiative flux, for an arbitrary correlation function. A modified Gaussian probability distribution function is also used to average the solution in order to exclude the probable negative values of the optical variable. The problem is considered in half space medium which has specular reflecting boundary exposed to unit external incident flux. Numerical results of the average reflectivity, average radiant energy and average net flux are obtained for both Gaussian and modified Gaussian probability density functions at different degrees of polarization

  8. Arcmancer: Geodesics and polarized radiative transfer library

    Science.gov (United States)

    Pihajoki, Pauli; Mannerkoski, Matias; Nättilä, Joonas; Johansson, Peter H.

    2018-05-01

    Arcmancer computes geodesics and performs polarized radiative transfer in user-specified spacetimes. The library supports Riemannian and semi-Riemannian spaces of any dimension and metric; it also supports multiple simultaneous coordinate charts, embedded geometric shapes, local coordinate systems, and automatic parallel propagation. Arcmancer can be used to solve various problems in numerical geometry, such as solving the curve equation of motion using adaptive integration with configurable tolerances and differential equations along precomputed curves. It also provides support for curves with an arbitrary acceleration term and generic tools for generating ray initial conditions and performing parallel computation over the image, among other tools.

  9. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.

    Science.gov (United States)

    Voit, Florian; Hohmann, Ansgar; Schäfer, Jan; Kienle, Alwin

    2012-04-01

    For many research areas in biomedical optics, information about scattering of polarized light in turbid media is of increasing importance. Scattering simulations within this field are mainly performed on the basis of radiative transfer theory. In this study a polarization sensitive Monte Carlo solution of radiative transfer theory is compared to exact Maxwell solutions for all elements of the scattering Müller matrix. Different scatterer volume concentrations are modeled as a multitude of monodisperse nonabsorbing spheres randomly positioned in a cubic simulation volume which is irradiated with monochromatic incident light. For all Müller matrix elements effects due to dependent scattering and multiple scattering are analysed. The results are in overall good agreement between the two methods with deviations related to dependent scattering being prominent for high volume concentrations and high scattering angles.

  10. Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system

    International Nuclear Information System (INIS)

    Ota, Yoshifumi; Higurashi, Akiko; Nakajima, Teruyuki; Yokota, Tatsuya

    2010-01-01

    A vector radiative transfer model has been developed for a coupled atmosphere-ocean system. The radiative transfer scheme is based on the discrete ordinate and matrix operator methods. The reflection/transmission matrices and source vectors are obtained for each atmospheric or oceanic layer through the discrete ordinate solution. The vertically inhomogeneous system is constructed using the matrix operator method, which combines the radiative interaction between the layers. This radiative transfer scheme is flexible for a vertically inhomogeneous system including the oceanic layers as well as the ocean surface. Compared with the benchmark results, the computational error attributable to the radiative transfer scheme has been less than 0.1% in the case of eight discrete ordinate directions. Furthermore, increasing the number of discrete ordinate directions has produced computations with higher accuracy. Based on our radiative transfer scheme, simulations of sun glint radiation have been presented for wavelengths of 670 nm and 1.6 μm. Results of simulations have shown reasonable characteristics of the sun glint radiation such as the strongly peaked, but slightly smoothed radiation by the rough ocean surface and depolarization through multiple scattering by the aerosol-loaded atmosphere. The radiative transfer scheme of this paper has been implemented to the numerical model named Pstar as one of the OpenCLASTR/STAR radiative transfer code systems, which are widely applied to many radiative transfer problems, including the polarization effect.

  11. Formal Solutions for Polarized Radiative Transfer. II. High-order Methods

    Energy Technology Data Exchange (ETDEWEB)

    Janett, Gioele; Steiner, Oskar; Belluzzi, Luca, E-mail: gioele.janett@irsol.ch [Istituto Ricerche Solari Locarno (IRSOL), 6605 Locarno-Monti (Switzerland)

    2017-08-20

    When integrating the radiative transfer equation for polarized light, the necessity of high-order numerical methods is well known. In fact, well-performing high-order formal solvers enable higher accuracy and the use of coarser spatial grids. Aiming to provide a clear comparison between formal solvers, this work presents different high-order numerical schemes and applies the systematic analysis proposed by Janett et al., emphasizing their advantages and drawbacks in terms of order of accuracy, stability, and computational cost.

  12. BACKWARD AND FORWARD MONTE CARLO METHOD IN POLARIZED RADIATIVE TRANSFER

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Huang; Guo-Dong, Shi; Ke-Yong, Zhu, E-mail: huangy_zl@263.net [School of Aeronautical Science and Engineering, Beihang University, Beijing 100191 (China)

    2016-03-20

    In general, the Stocks vector cannot be calculated in reverse in the vector radiative transfer. This paper presents a novel backward and forward Monte Carlo simulation strategy to study the vector radiative transfer in the participated medium. A backward Monte Carlo process is used to calculate the ray trajectory and the endpoint of the ray. The Stocks vector is carried out by a forward Monte Carlo process. A one-dimensional graded index semi-transparent medium was presented as the physical model and the thermal emission consideration of polarization was studied in the medium. The solution process to non-scattering, isotropic scattering, and the anisotropic scattering medium, respectively, is discussed. The influence of the optical thickness and albedo on the Stocks vector are studied. The results show that the U, V-components of the apparent Stocks vector are very small, but the Q-component of the apparent Stocks vector is relatively larger, which cannot be ignored.

  13. Radiative transfer in atmosphere-sea ice-ocean system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Stamnes, K.; Weeks, W.F. [Univ. of Alaska, Fairbanks, AK (United States); Tsay, S.C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  14. Formal Solutions for Polarized Radiative Transfer. I. The DELO Family

    Energy Technology Data Exchange (ETDEWEB)

    Janett, Gioele; Carlin, Edgar S.; Steiner, Oskar; Belluzzi, Luca, E-mail: gioele.janett@irsol.ch [Istituto Ricerche Solari Locarno (IRSOL), 6605 Locarno-Monti (Switzerland)

    2017-05-10

    The discussion regarding the numerical integration of the polarized radiative transfer equation is still open and the comparison between the different numerical schemes proposed by different authors in the past is not fully clear. Aiming at facilitating the comprehension of the advantages and drawbacks of the different formal solvers, this work presents a reference paradigm for their characterization based on the concepts of order of accuracy , stability , and computational cost . Special attention is paid to understand the numerical methods belonging to the Diagonal Element Lambda Operator family, in an attempt to highlight their specificities.

  15. RADIATIVE TRANSFER MODELING OF THE ENIGMATIC SCATTERING POLARIZATION IN THE SOLAR Na i D{sub 1} LINE

    Energy Technology Data Exchange (ETDEWEB)

    Belluzzi, Luca [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Degl’Innocenti, Egidio Landi [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50125 Firenze (Italy)

    2015-12-01

    The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuous distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of Na i, with emphasis on the enigmatic D{sub 1} line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polarization observed in the core of the D{sub 1} line may be explained by the effect that one gets when the detailed spectral structure of the anisotropic radiation responsible for the optical pumping is taken into account. This physical ingredient is capable of introducing significant scattering polarization in the core of the Na i D{sub 1} line without the need for ground-level polarization.

  16. Radiation transfer and stellar atmospheres

    Science.gov (United States)

    Swihart, T. L.

    This is a revised and expanded version of the author's Basic Physics of Stellar Atmospheres, published in 1971. The equation of transfer is considered, taking into account the intensity and derived quantities, the absorption coefficient, the emission coefficient, the source function, and special integrals for plane media. The gray atmosphere is discussed along with the nongray atmosphere, and aspects of line formation. Topics related to polarization are explored, giving attention to pure polarized radiation, general polarized radiation, transfer in a magnetic plasma, and Rayleigh scattering and the sunlit sky. Physical and astronomical constants, and a number of problems related to the subjects of the book are presented in an appendix.

  17. THREE-DIMENSIONAL RADIATIVE TRANSFER MODELING OF THE POLARIZATION OF THE SUN'S CONTINUOUS SPECTRUM

    International Nuclear Information System (INIS)

    Bueno, Javier Trujillo; Shchukina, Nataliya

    2009-01-01

    Polarized light provides the most reliable source of information at our disposal for diagnosing the physical properties of astrophysical plasmas, including the three-dimensional (3D) structure of the solar atmosphere. Here we formulate and solve the 3D radiative transfer problem of the linear polarization of the solar continuous radiation, which is principally produced by Rayleigh and Thomson scattering. Our approach takes into account not only the anisotropy of the solar continuum radiation but also the symmetry-breaking effects caused by the horizontal atmospheric inhomogeneities produced by the solar surface convection. We show that such symmetry-breaking effects do produce observable signatures in Q/I and U/I, even at the very center of the solar disk where we observe the forward scattering case, but their detection would require obtaining very high resolution linear polarization images of the solar surface. Without spatial and/or temporal resolution U/I ∼ 0 and the only observable quantity is Q/I, whose wavelength variation at a solar disk position close to the limb has been recently determined semi-empirically. Interestingly, our 3D radiative transfer modeling of the polarization of the Sun's continuous spectrum in a well-known 3D hydrodynamical model of the solar photosphere shows remarkable agreement with the semi-empirical determination, significantly better than that obtained via the use of one-dimensional (1D) atmospheric models. Although this result confirms that the above-mentioned 3D model was indeed a suitable choice for our Hanle-effect estimation of the substantial amount of 'hidden' magnetic energy that is stored in the quiet solar photosphere, we have found however some small discrepancies whose origin may be due to uncertainties in the semi-empirical data and/or in the thermal and density structure of the 3D model. For this reason, we have paid some attention also to other (more familiar) observables, like the center-limb variation of the

  18. Exact and approximate solutions for the one-dimensional transfer of polarized radiation, and applications to X-ray pulsars

    International Nuclear Information System (INIS)

    Meszaros, P.; Nagel, W.; Ventura, J.

    1979-11-01

    Theoretical studies of the radiation from hot, strongly magnetized plasmas, as encountered in pulsars, require a knowledge of solutions to the transfer equations for polarized radiation. We present here an analytic solution of the radiative transfer equations for one-dimensional propagation across a homogeneous slab of finite depth, as well as for a semi-infinite atmosphere. Absorption, scattering and mode-exchange between the two polarizations is included, the role of this latter being crucial. A physical discussion of the solutions for certain limiting cases, and an interpretation in terms of probabilistic (quantum escape approach) arguments, fully corrobrates these solutions, and provides a better intuitive feel for the behaviour of the radiated spectra. Whereas our analytic solutions are valid for any birefringent medium (not necessarily magnetic), our numerical examples and the qualitative discussion presented refer to the particular problem of the radiation from X-ray pulsars. Large scale qualitative changes from the nonmagnetic spectra aae found, which affect both the continum and the spectral lines. (orig.) 891 WL/orig. 892 RDG

  19. Polarized scattered light from self-luminous exoplanets. Three-dimensional scattering radiative transfer with ARTES

    Science.gov (United States)

    Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.

    2017-11-01

    Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron

  20. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A

    2013-01-01

    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  1. Some issues related to polarized radiative transfer in a multilayer medium with a changing index of refraction

    International Nuclear Information System (INIS)

    Garcia, R D M

    2012-01-01

    A couple of issues raised in a recent work on Fresnel boundary and interface conditions for polarized radiative transfer are discussed. The first issue concerns a normalization that has to be performed on the transmission matrix relating the transmitted and incident Stokes vectors at a smooth interface between different materials. It was found that the normalization step is not performed in a correct way in many existing works and so the effects of the two most frequent discrepancies encountered in these works are evaluated for a simple model of an atmosphere-water system. The second issue has to do with a choice of the sign of the parallel component of the amplitude coefficient of reflection R l when constructing the reflection matrix that relates the reflected and incident Stokes vectors at a smooth interface. A computational approach based on the limit to the case with constant index of refraction is used to determine the appropriate sign of R l for polarized radiative transfer calculations in multilayers with different indices of refraction.

  2. Considering polarization in MODIS-based cloud property retrievals by using a vector radiative transfer code

    International Nuclear Information System (INIS)

    Yi, Bingqi; Huang, Xin; Yang, Ping; Baum, Bryan A.; Kattawar, George W.

    2014-01-01

    In this study, a full-vector, adding–doubling radiative transfer model is used to investigate the influence of the polarization state on cloud property retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. Two sets of lookup tables (LUTs) are developed for the retrieval purposes, both of which provide water cloud and ice cloud reflectivity functions at two wavelengths in various sun-satellite viewing geometries. However, only one of the LUTs considers polarization. The MODIS reflectivity observations at 0.65 μm (band 1) and 2.13 μm (band 7) are used to infer the cloud optical thickness and particle effective diameter, respectively. Results indicate that the retrievals for both water cloud and ice cloud show considerable sensitivity to polarization. The retrieved water and ice cloud effective diameter and optical thickness differences can vary by as much as ±15% due to polarization state considerations. In particular, the polarization state has more influence on completely smooth ice particles than on severely roughened ice particles. - Highlights: • Impact of polarization on satellite-based retrieval of water/ice cloud properties is studied. • Inclusion of polarization can change water/ice optical thickness and effective diameter values by up to ±15%. • Influence of polarization on cloud property retrievals depends on sun-satellite viewing geometries

  3. Deterministic and stochastic methods of calculation of polarization characteristics of radiation in natural environment

    Science.gov (United States)

    Strelkov, S. A.; Sushkevich, T. A.; Maksakova, S. V.

    2017-11-01

    We are talking about russian achievements of the world level in the theory of radiation transfer, taking into account its polarization in natural media and the current scientific potential developing in Russia, which adequately provides the methodological basis for theoretically-calculated research of radiation processes and radiation fields in natural media using supercomputers and mass parallelism. A new version of the matrix transfer operator is proposed for solving problems of polarized radiation transfer in heterogeneous media by the method of influence functions, when deterministic and stochastic methods can be combined.

  4. A MULTIPLE SCATTERING POLARIZED RADIATIVE TRANSFER MODEL: APPLICATION TO HD 189733b

    Energy Technology Data Exchange (ETDEWEB)

    Kopparla, Pushkar; Yung, Yuk L. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA (United States); Natraj, Vijay; Swain, Mark R. [Jet Propulsion Laboratory (NASA-JPL), Pasadena, CA (United States); Zhang, Xi [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States); Wiktorowicz, Sloane J., E-mail: pkk@gps.caltech.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States)

    2016-01-20

    We present a multiple scattering vector radiative transfer model that produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet’s atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partially covered by clouds or hazes, exhibit larger contrasts in polarized light when compared to clear atmospheres. This effect can potentially be used to identify patchy clouds in exoplanets. Given a set of full phase polarimetric measurements, this model can constrain the geometric albedo, properties of scattering particles in the atmosphere, and the longitude of the ascending node of the orbit. The model is used to interpret new polarimetric observations of HD 189733b in a companion paper.

  5. A FORMALISM FOR COVARIANT POLARIZED RADIATIVE TRANSPORT BY RAY TRACING

    International Nuclear Information System (INIS)

    Gammie, Charles F.; Leung, Po Kin

    2012-01-01

    We write down a covariant formalism for polarized radiative transfer appropriate for ray tracing through a turbulent plasma. The polarized radiation field is represented by the polarization tensor (coherency matrix) N αβ ≡ (a α k a* β k ), where a k is a Fourier coefficient for the vector potential. Using Maxwell's equations, the Liouville-Vlasov equation, and the WKB approximation, we show that the transport equation in vacuo is k μ ∇ μ N αβ = 0. We show that this is equivalent to Broderick and Blandford's formalism based on invariant Stokes parameters and a rotation coefficient, and suggest a modification that may reduce truncation error in some situations. Finally, we write down several alternative approaches to integrating the transfer equation.

  6. Markov chain formalism for generalized radiative transfer in a plane-parallel medium, accounting for polarization

    International Nuclear Information System (INIS)

    Xu, Feng; Davis, Anthony B.; Diner, David J.

    2016-01-01

    A Markov chain formalism is developed for computing the transport of polarized radiation according to Generalized Radiative Transfer (GRT) theory, which was developed recently to account for unresolved random fluctuations of scattering particle density and can also be applied to unresolved spectral variability of gaseous absorption as an improvement over the standard correlated-k method. Using Gamma distribution to describe the probability density function of the extinction or absorption coefficient, a shape parameter a that quantifies the variability is introduced, defined as the mean extinction or absorption coefficient squared divided by its variance. It controls the decay rate of a power-law transmission that replaces the usual exponential Beer-Lambert-Bouguer law. Exponential transmission, hence classic RT, is recovered when a→∞. The new approach is verified to high accuracy against numerical benchmark results obtained with a custom Monte Carlo method. For a<∞, angular reciprocity is violated to a degree that increases with the spatial variability, as observed for finite portions of real-world cloudy scenes. While the degree of linear polarization in liquid water cloudbows, supernumerary bows, and glories is affected by spatial heterogeneity, the positions in scattering angle of these features are relatively unchanged. As a result, a single-scattering model based on the assumption of subpixel homogeneity can still be used to derive droplet size distributions from polarimetric measurements of extended stratocumulus clouds. - Highlights: • A Markov chain formalism is developed for Generalized Radiative Transfer theory. • Angular reciprocity is violated to a degree that increases with spatial variability. • The positions of cloudbows and glories in scattering angle are relatively unchanged.

  7. Comparison of full-sky polarization and radiance observations to radiative transfer simulations which employ AERONET products.

    Science.gov (United States)

    Pust, Nathan J; Dahlberg, Andrew R; Thomas, Michael J; Shaw, Joseph A

    2011-09-12

    Visible-band and near infrared polarization and radiance images measured with a ground-based full-sky polarimeter are compared against a successive orders of scattering (SOS) radiative transfer model for 2009 summer cloud-free days in Bozeman, Montana, USA. The polarimeter measures radiance and polarization in 10-nm bands centered at 450 nm, 490 nm, 530 nm, 630 nm, and 700 nm. AERONET products are used to represent aerosols in the SOS model, while MISR satellite BRF products are used for the surface reflectance. While model results generally agree well with observation, the simulated degree of polarization is typically higher than observed data. Potential sources of this difference may include cloud contamination and/or underestimation of the AERONET-retrieved aerosol real refractive index. Problems with the retrieved parameters are not unexpected given the low aerosol optical depth range (0.025 to 0.17 at 500 nm) during the study and the corresponding difficulties that these conditions pose to the AERONET inversion algorithm.

  8. Comparison of discrete ordinate and Monte Carlo simulations of polarized radiative transfer in two coupled slabs with different refractive indices.

    Science.gov (United States)

    Cohen, D; Stamnes, S; Tanikawa, T; Sommersten, E R; Stamnes, J J; Lotsberg, J K; Stamnes, K

    2013-04-22

    A comparison is presented of two different methods for polarized radiative transfer in coupled media consisting of two adjacent slabs with different refractive indices, each slab being a stratified medium with no change in optical properties except in the direction of stratification. One of the methods is based on solving the integro-differential radiative transfer equation for the two coupled slabs using the discrete ordinate approximation. The other method is based on probabilistic and statistical concepts and simulates the propagation of polarized light using the Monte Carlo approach. The emphasis is on non-Rayleigh scattering for particles in the Mie regime. Comparisons with benchmark results available for a slab with constant refractive index show that both methods reproduce these benchmark results when the refractive index is set to be the same in the two slabs. Computed results for test cases with coupling (different refractive indices in the two slabs) show that the two methods produce essentially identical results for identical input in terms of absorption and scattering coefficients and scattering phase matrices.

  9. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    International Nuclear Information System (INIS)

    Liu, X. L.; Zhang, Z. M.

    2014-01-01

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  10. Iterative Methods for the Non-LTE Transfer of Polarized Radiation: Resonance Line Polarization in One-dimensional Atmospheres

    Science.gov (United States)

    Trujillo Bueno, Javier; Manso Sainz, Rafael

    1999-05-01

    This paper shows how to generalize to non-LTE polarization transfer some operator splitting methods that were originally developed for solving unpolarized transfer problems. These are the Jacobi-based accelerated Λ-iteration (ALI) method of Olson, Auer, & Buchler and the iterative schemes based on Gauss-Seidel and successive overrelaxation (SOR) iteration of Trujillo Bueno and Fabiani Bendicho. The theoretical framework chosen for the formulation of polarization transfer problems is the quantum electrodynamics (QED) theory of Landi Degl'Innocenti, which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. This first paper establishes the grounds of our numerical approach to non-LTE polarization transfer by concentrating on the standard case of scattering line polarization in a gas of two-level atoms, including the Hanle effect due to a weak microturbulent and isotropic magnetic field. We begin demonstrating that the well-known Λ-iteration method leads to the self-consistent solution of this type of problem if one initializes using the ``exact'' solution corresponding to the unpolarized case. We show then how the above-mentioned splitting methods can be easily derived from this simple Λ-iteration scheme. We show that our SOR method is 10 times faster than the Jacobi-based ALI method, while our implementation of the Gauss-Seidel method is 4 times faster. These iterative schemes lead to the self-consistent solution independently of the chosen initialization. The convergence rate of these iterative methods is very high; they do not require either the construction or the inversion of any matrix, and the computing time per iteration is similar to that of the Λ-iteration method.

  11. Polarization-based enhancement of ocean color signal for estimating suspended particulate matter: radiative transfer simulations and laboratory measurements.

    Science.gov (United States)

    Liu, Jia; He, Xianqiang; Liu, Jiahang; Bai, Yan; Wang, Difeng; Chen, Tieqiao; Wang, Yihao; Zhu, Feng

    2017-04-17

    Absorption and scattering by molecules, aerosols and hydrosols, and the reflection and transmission over the sea surface can modify the original polarization state of sunlight. However, water-leaving radiance polarization, containing embedded water constituent information, has largely been neglected. Here, the efficiency of the parallel polarization radiance (PPR) for enhancing ocean color signal of suspended particulate matter is examined via vector radiative transfer simulations and laboratory experiments. The simulation results demonstrate that the PPR has a slightly higher ocean color signal at the top-of-atmosphere as compared with that of the total radiance. Moreover, both the simulations and laboratory measurements reveal that, compared with total radiance, PPR can effectively enhance the normalized ocean color signal for a large range of observation geometries, wavelengths, and suspended particle concentrations. Thus, PPR has great potential for improving the ocean color signal detection from satellite.

  12. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  13. Polarization transfer in relativistic magnetized plasmas

    Science.gov (United States)

    Heyvaerts, Jean; Pichon, Christophe; Prunet, Simon; Thiébaut, Jérôme

    2013-04-01

    The polarization transfer coefficients of a relativistic magnetized plasma are derived. These results apply to any momentum distribution function of the particles, isotropic or anisotropic. Particles interact with the radiation either in a non-resonant mode when the frequency of the radiation exceeds their characteristic synchrotron emission frequency or quasi-resonantly otherwise. These two classes of particles contribute differently to the polarization transfer coefficients. For a given frequency, this dichotomy corresponds to a regime change in the dependence of the transfer coefficients on the parameters of the particle's population, since these parameters control the relative weight of the contribution of each class of particles. Our results apply to either regimes as well as the intermediate one. The derivation of the transfer coefficients involves an exact expression of the conductivity tensor of the relativistic magnetized plasma that has not been used hitherto in this context. Suitable expansions valid at frequencies much larger than the cyclotron frequency allow us to analytically perform the summation over all resonances at high harmonics of the relativistic gyrofrequency. The transfer coefficients are represented in the form of two-variable integrals that can be conveniently computed for any set of parameters by using Olver's expansion of high-order Bessel functions. We particularize our results to a number of distribution functions, isotropic, thermal or power law, with different multipolar anisotropies of low order, or strongly beamed. Specifically, earlier exact results for thermal distributions are recovered. For isotropic distributions, the Faraday coefficients are expressed in the form of a one-variable quadrature over energy, for which we provide the kernels in the high-frequency limit and in the asymptotic low-frequency limit. An interpolation formula extending over the full energy range is proposed for these kernels. A similar reduction to a

  14. Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, 650011 Kunming, Yunnan Province (China)

    2017-04-01

    Linear and circular polarizations of gamma-ray bursts (GRBs) have been detected recently. We adopt a simplified model to investigate GRB polarization characteristics in this paper. A compressed two-dimensional turbulent slab containing stochastic magnetic fields is considered, and jitter radiation can produce the linear polarization under this special magnetic field topology. Turbulent Faraday rotation measure (RM) of this slab makes strong wavelength-dependent depolarization. The jitter photons can also scatter with those magnetic clumps inside the turbulent slab, and a nonzero variance of the Stokes parameter V can be generated. Furthermore, the linearly and circularly polarized photons in the optical and radio bands may suffer heavy absorptions from the slab. Thus we consider the polarized jitter radiation transfer processes. Finally, we compare our model results with the optical detections of GRB 091018, GRB 121024A, and GRB 131030A. We suggest simultaneous observations of GRB multi-wavelength polarization in the future.

  15. Super-Planckian far-field radiative heat transfer

    Science.gov (United States)

    Fernández-Hurtado, V.; Fernández-Domínguez, A. I.; Feist, J.; García-Vidal, F. J.; Cuevas, J. C.

    2018-01-01

    We present here a theoretical analysis that demonstrates that the far-field radiative heat transfer between objects with dimensions smaller than the thermal wavelength can overcome the Planckian limit by orders of magnitude. To guide the search for super-Planckian far-field radiative heat transfer, we make use of the theory of fluctuational electrodynamics and derive a relation between the far-field radiative heat transfer and the directional absorption efficiency of the objects involved. Guided by this relation, and making use of state-of-the-art numerical simulations, we show that the far-field radiative heat transfer between highly anisotropic objects can largely overcome the black-body limit when some of their dimensions are smaller than the thermal wavelength. In particular, we illustrate this phenomenon in the case of suspended pads made of polar dielectrics like SiN or SiO2. These structures are widely used to measure the thermal transport through nanowires and low-dimensional systems and can be employed to test our predictions. Our work illustrates the dramatic failure of the classical theory to predict the far-field radiative heat transfer between micro- and nanodevices.

  16. Light scattering reviews 7 radiative transfer and optical properties of atmosphere and underlying surface

    CERN Document Server

    Kokhanovsky, Alexander A

    2014-01-01

    This book describes modern advances in radiative transfer and light scattering. Coverage includes fast radiative transfer techniques, use of polarization in remote sensing and recent developments in remote sensing of snow properties from space observations.

  17. Markov chain formalism for generalized radiative transfer in a plane-parallel medium, accounting for polarization

    Science.gov (United States)

    Xu, Feng; Davis, Anthony B.; Diner, David J.

    2016-11-01

    A Markov chain formalism is developed for computing the transport of polarized radiation according to Generalized Radiative Transfer (GRT) theory, which was developed recently to account for unresolved random fluctuations of scattering particle density and can also be applied to unresolved spectral variability of gaseous absorption as an improvement over the standard correlated-k method. Using Gamma distribution to describe the probability density function of the extinction or absorption coefficient, a shape parameter a that quantifies the variability is introduced, defined as the mean extinction or absorption coefficient squared divided by its variance. It controls the decay rate of a power-law transmission that replaces the usual exponential Beer-Lambert-Bouguer law. Exponential transmission, hence classic RT, is recovered when a→∞. The new approach is verified to high accuracy against numerical benchmark results obtained with a custom Monte Carlo method. For a<∞, angular reciprocity is violated to a degree that increases with the spatial variability, as observed for finite portions of real-world cloudy scenes. While the degree of linear polarization in liquid water cloudbows, supernumerary bows, and glories is affected by spatial heterogeneity, the positions in scattering angle of these features are relatively unchanged. As a result, a single-scattering model based on the assumption of subpixel homogeneity can still be used to derive droplet size distributions from polarimetric measurements of extended stratocumulus clouds.

  18. Polarized vacuum ultraviolet and X-radiation

    International Nuclear Information System (INIS)

    Samson, J.A.R.

    1978-01-01

    The most intense source of polarized vacuum UV and X-radiation is synchrotron radiation, which exhibits a degree of partially polarized light between about 80-100%. However, the radiation transmitted by vacuum UV monochromators can also be highly polarized. The Seya-Namioka type of monochromator can produce partially polarized radiation between 50-80%. For certain experiments it is necessary to know the degree of polarisation of the radiation being used. Also, when synchrotron radiation and a monochromator are combined the polarization characteristic of both should be known in order to make full use of these polarization properties. The polarizing effect on monochromators (i.e. diffraction gratings) have been measured at the Seya angle and at grazing angles for various spectral orders. The author presents the first experimental evidence that the reciprocity law holds for polarization by reflection where the angle of incidence and diffraction are unequal. These results are reviewed along with the techniques for measuring the degree of polarization. (Auth.)

  19. Polarization transfer in x-ray transitions due to photoionization in highly charged copper-like ions

    Science.gov (United States)

    Ma, Kun; Chen, Zhan-Bin; Xie, Lu-You; Dong, Chen-Zhong

    2018-02-01

    Using the density matrix theory and the multi-configuration Dirac-Fock method, the 3{d}3/2 subshell photoionization of highly charged ions is studied, together with their subsequent radiative decay. The effects of polarization transfer on the linear polarization and angular distribution of the 3{d}94{s}2{}2{D}3/2\\to 3{d}104p{}2{P}1/2 characteristic line photoemission for selected Cu-like Zn+, Ba27+, {{{W}}}45+, and {{{U}}}63+ ions are investigated. Our results show that the polarization transfer, arising from the originally polarized incident light, may lead to a considerable change in the alignment parameters and the polarization properties of the radiation, the character of which is highly sensitive to the initial photon polarization, yet virtually independent of the photon energy. These characteristics are very similar to those of the electron bremsstrahlung process reported by Märtin et al (2012 Phys. Rev. Lett. 108 264801). The present results are compared with available experimental results and show a good quantitative agreement.

  20. A new approach to radiative transfer theory using Jones's vectors. I

    International Nuclear Information System (INIS)

    Fymat, A.L.; Vasudevan, R.

    1975-01-01

    Radiative transfer of partially polarized radiation in an anisotropically scattering, inhomogeneous atmosphere containing arbitrary polydispersion of particles is described using Jones's amplitude vectors and matrices. This novel approach exploits the close analogy between the quantum mechanical states of spin 1/2 systems and the polarization states of electromagnetic radiation described by Jones's vector, and draws on the methodology of such spin 1/2 systems. The complete equivalence between the transport equation for Jones's vectors and the classical radiative transfer equation for Stokes's intensity vectors is demonstrated in two independent ways after deriving the transport equations for the polarization coherency matrices and for the quaternions corresponding to the Jones's vectors. A compact operator formulation of the theory is provided, and used to derive the necessary equations for both a local and a global description of the transport of Jones's vectors. Lastly, the integro-differential equations for the amplitude reflection and transmission matrices are derived, and related to the usual corresponding equations. The present formulation is the most succinct and the most convenient one for both theoretical and experimental studies. It yields a simpler analysis than the classical formulation since it reduces by a factor of two the dimensionality of transfer problems. It preserves information on phases, and thus can be used directly across the entire electromagnetic spectrum without any further conversion into intensities. (Auth.)

  1. Spectral element method for vector radiative transfer equation

    International Nuclear Information System (INIS)

    Zhao, J.M.; Liu, L.H.; Hsu, P.-F.; Tan, J.Y.

    2010-01-01

    A spectral element method (SEM) is developed to solve polarized radiative transfer in multidimensional participating medium. The angular discretization is based on the discrete-ordinates approach, and the spatial discretization is conducted by spectral element approach. Chebyshev polynomial is used to build basis function on each element. Four various test problems are taken as examples to verify the performance of the SEM. The effectiveness of the SEM is demonstrated. The h and the p convergence characteristics of the SEM are studied. The convergence rate of p-refinement follows the exponential decay trend and is superior to that of h-refinement. The accuracy and efficiency of the higher order approximation in the SEM is well demonstrated for the solution of the VRTE. The predicted angular distribution of brightness temperature and Stokes vector by the SEM agree very well with the benchmark solutions in references. Numerical results show that the SEM is accurate, flexible and effective to solve multidimensional polarized radiative transfer problems.

  2. Three-dimensional Radiative Transfer Simulations of the Scattering Polarization of the Hydrogen Lyalpha Line in a Magnetohydrodynamic Model of the Chromosphere-Corona Transition Region

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Jiří; Trujillo Bueno, J.; Leenaarts, J.; Carlsson, M.

    2015-01-01

    Roč. 803, č. 2 (2015), 65/1-65/15 ISSN 0004-637X R&D Projects: GA ČR GPP209/12/P741 Grant - others:EU(XE) COST action MP1104 Institutional support: RVO:67985815 Keywords : polarization * radiative transfer * scattering Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  3. Discontinuous Galerkin finite element methods for radiative transfer in spherical symmetry

    Science.gov (United States)

    Kitzmann, D.; Bolte, J.; Patzer, A. B. C.

    2016-11-01

    The discontinuous Galerkin finite element method (DG-FEM) is successfully applied to treat a broad variety of transport problems numerically. In this work, we use the full capacity of the DG-FEM to solve the radiative transfer equation in spherical symmetry. We present a discontinuous Galerkin method to directly solve the spherically symmetric radiative transfer equation as a two-dimensional problem. The transport equation in spherical atmospheres is more complicated than in the plane-parallel case owing to the appearance of an additional derivative with respect to the polar angle. The DG-FEM formalism allows for the exact integration of arbitrarily complex scattering phase functions, independent of the angular mesh resolution. We show that the discontinuous Galerkin method is able to describe accurately the radiative transfer in extended atmospheres and to capture discontinuities or complex scattering behaviour which might be present in the solution of certain radiative transfer tasks and can, therefore, cause severe numerical problems for other radiative transfer solution methods.

  4. Some fundamental considerations of the equation of radiative transfer

    International Nuclear Information System (INIS)

    Kuriyan, J.G.; Sudarshan, E.C.G.

    1978-10-01

    The radiation transfer of the vector electromagnetic field was first formulated by Chandrasekhar while deriving the polarization characteristics of a sunlit sky. There are two subtle problems underlying this treatment. The first concerns the crucial identification of a Stokes parameter with the specific intensity of radiation. While both depend on position in 3-D space, the latter has, intrinsic to it, an additional angular dependence defining the flow of the radiation field. How can this inadequacy be remedied without damaging the results obtained heretofore from Chandrasekhar's formalism. The second problem arises from the fact that the radiative transfer equation describes the transport of an incoherent radiation field through space. This, however, seems to contradict the results of the Van Cittert-Zernike-Wolf theorem which implies that an incoherent field develops coherence as it passes through free space implying, of course, that the radiative transfer equation must involve not incoherent but partially coherent fields. The vector transfer equation of the direct beam (Beer's law) is derived from first principles. The analysis of this equation provides a satisfactory resolution of these two problems. The result also shows that the Beer's law will have to be modified to a matrix law to accommodate systems that are not spherically symmetric. 13 references

  5. Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN

    International Nuclear Information System (INIS)

    Rozanov, V.V.; Rozanov, A.V.; Kokhanovsky, A.A.; Burrows, J.P.

    2014-01-01

    SCIATRAN is a comprehensive software package for the modeling of radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18–40μm) including multiple scattering processes, polarization, thermal emission and ocean–atmosphere coupling. The software is capable of modeling spectral and angular distributions of the intensity or the Stokes vector of the transmitted, scattered, reflected, and emitted radiation assuming either a plane-parallel or a spherical atmosphere. Simulations are done either in the scalar or in the vector mode (i.e. accounting for the polarization) for observations by space-, air-, ship- and balloon-borne, ground-based, and underwater instruments in various viewing geometries (nadir, off-nadir, limb, occultation, zenith-sky, off-axis). All significant radiative transfer processes are accounted for. These are, e.g. the Rayleigh scattering, scattering by aerosol and cloud particles, absorption by gaseous components, and bidirectional reflection by an underlying surface including Fresnel reflection from a flat or roughened ocean surface. The software package contains several radiative transfer solvers including finite difference and discrete-ordinate techniques, an extensive database, and a specific module for solving inverse problems. In contrast to many other radiative transfer codes, SCIATRAN incorporates an efficient approach to calculate the so-called Jacobians, i.e. derivatives of the intensity with respect to various atmospheric and surface parameters. In this paper we discuss numerical methods used in SCIATRAN to solve the scalar and vector radiative transfer equation, describe databases of atmospheric, oceanic, and surface parameters incorporated in SCIATRAN, and demonstrate how to solve some selected radiative transfer problems using the SCIATRAN package. During the last decades, a lot of studies have been published demonstrating that SCIATRAN is a valuable

  6. Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique

    International Nuclear Information System (INIS)

    Hollstein, André; Fischer, Jürgen

    2012-01-01

    Accurate radiative transfer models are the key tools for the understanding of radiative transfer processes in the atmosphere and ocean, and for the development of remote sensing algorithms. The widely used scalar approximation of radiative transfer can lead to errors in calculated top of atmosphere radiances. We show results with errors in the order of±8% for atmosphere ocean systems with case one waters. Variations in sea water salinity and temperature can lead to variations in the signal of similar magnitude. Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at Freie Universität Berlin, to treat these effects as accurately as possible. We describe our one-dimensional vector radiative transfer model for an atmosphere ocean system with a rough interface. We describe the matrix operator scheme and the bio-optical model for case one waters. We discuss some effects of neglecting polarization in radiative transfer calculations and effects of salinity changes for top of atmosphere radiances. Results are shown for the channels of the satellite instruments MERIS and OLCI from 412.5 nm to 900 nm.

  7. Polarization transfer from polarized nuclear spin to μ- spin in muonic atom

    International Nuclear Information System (INIS)

    Kuno, Yoshitaka; Nagamine, Kanetada; Yamazaki, Toshimitsu.

    1987-02-01

    A theoretical study of polarization transfer from an initially-polarized nuclear spin to a μ - spin in a muonic atom is given. The switching of the hyperfine interaction at excited muonic states as well as at the ground 1s state is taken into account. The upper state of hyperfine doublet at the muonic 1s state is considered to proceed down to the lower state. It is found that as the hyperfine interaction becomes effective at higher excited muonic orbitals, a less extent of polarization is transferred from the nuclear spin to the μ - spin. The theoretical values obtained are compared with the recent experiment of μ - repolarization in a polarized 209 Bi target. (author)

  8. GAUSS-SEIDEL AND SUCCESSIVE OVERRELAXATION METHODS FOR RADIATIVE TRANSFER WITH PARTIAL FREQUENCY REDISTRIBUTION

    International Nuclear Information System (INIS)

    Sampoorna, M.; Bueno, J. Trujillo

    2010-01-01

    The linearly polarized solar limb spectrum that is produced by scattering processes contains a wealth of information on the physical conditions and magnetic fields of the solar outer atmosphere, but the modeling of many of its strongest spectral lines requires solving an involved non-local thermodynamic equilibrium radiative transfer problem accounting for partial redistribution (PRD) effects. Fast radiative transfer methods for the numerical solution of PRD problems are also needed for a proper treatment of hydrogen lines when aiming at realistic time-dependent magnetohydrodynamic simulations of the solar chromosphere. Here we show how the two-level atom PRD problem with and without polarization can be solved accurately and efficiently via the application of highly convergent iterative schemes based on the Gauss-Seidel and successive overrelaxation (SOR) radiative transfer methods that had been previously developed for the complete redistribution case. Of particular interest is the Symmetric SOR method, which allows us to reach the fully converged solution with an order of magnitude of improvement in the total computational time with respect to the Jacobi-based local accelerated lambda iteration method.

  9. Gauss-Seidel and Successive Overrelaxation Methods for Radiative Transfer with Partial Frequency Redistribution

    Science.gov (United States)

    Sampoorna, M.; Trujillo Bueno, J.

    2010-04-01

    The linearly polarized solar limb spectrum that is produced by scattering processes contains a wealth of information on the physical conditions and magnetic fields of the solar outer atmosphere, but the modeling of many of its strongest spectral lines requires solving an involved non-local thermodynamic equilibrium radiative transfer problem accounting for partial redistribution (PRD) effects. Fast radiative transfer methods for the numerical solution of PRD problems are also needed for a proper treatment of hydrogen lines when aiming at realistic time-dependent magnetohydrodynamic simulations of the solar chromosphere. Here we show how the two-level atom PRD problem with and without polarization can be solved accurately and efficiently via the application of highly convergent iterative schemes based on the Gauss-Seidel and successive overrelaxation (SOR) radiative transfer methods that had been previously developed for the complete redistribution case. Of particular interest is the Symmetric SOR method, which allows us to reach the fully converged solution with an order of magnitude of improvement in the total computational time with respect to the Jacobi-based local accelerated lambda iteration method.

  10. Theory of radiative transfer in a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, S [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1975-07-01

    A theory is presented of the radiative transfer in a magnetized plasma with the opacity determined by the Thomson scattering. The Thomson cross section in the magnetic field is highly anisotropic and polarization-dependent. In order to cope with this situation, it is found useful to deal directly with the scattering amplitude (2x2 matrix in the polarization vector space) rather than the intensity. In this way it is possible to take into account the coherent superposition of the forward multiple-scattering amplitudes as a photon propagates. The equation of transfer is established accordingly and approximate solutions are found in the limits of small and large optical thickness. The latter solution is used to find the intensity and the polarization of thermal X-rays from a magnetic dipole star. The concept of mean free path is discussed and also it is shown that the Faraday rotation naturally comes about as a result of the multiple forward scattering.

  11. Radio galaxies radiation transfer, dynamics, stability and evolution of a synchrotron plasmon

    CERN Document Server

    Pacholczyk, A G

    1977-01-01

    Radio Galaxies: Radiation Transfer, Dynamics, Stability and Evolution of a Synchrotron Plasmon deals with the physics of a region in space containing magnetic field and thermal and relativistic particles (a plasmon). The synchrotron emission and absorption of this region are discussed, along with the properties of its spectrum; its linear and circular polarization; transfer of radiation through such a region; its dynamics and expansion; and interaction with external medium.Comprised of eight chapters, this volume explores the stability, turbulence, and acceleration of particles in a synchrotro

  12. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    2016-02-01

    Full Text Available Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  13. Probing the Magnetic Field Structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Roman; McKinney, Jonathan C. [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States); Johnson, Michael D.; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-10

    Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford–Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.

  14. Polarized radiative transfer through terrestrial atmosphere accounting for rotational Raman scattering

    Science.gov (United States)

    Lelli, Luca; Rozanov, Vladimir V.; Vountas, Marco; Burrows, John P.

    2017-10-01

    This paper is devoted to the phenomenological derivation of the vector radiative transfer equation (VRTE) accounting for first-order source terms of rotational Raman scattering (RRS), which is responsible for the in-filling of Fraunhofer and telluric lines by inelastic scattered photons. The implementation of the solution of the VRTE within the framework of the forward-adjoint method is given. For the Ca II and the oxygen A-band (O2 A) spectral windows, values of reflectance, degree of linear polarization (DOLP) and in-filling, in zenith and nadir geometry, are compared with results given in literature. Moreover, the dependence of these quantities on the columnar loading and vertical layering of non-spherical dust aerosols is investigated, together with their changes as function of two habits of ice crystals, modeled as regular icosahedra and severely rough aggregated columns. Bi-directional effects of an underlying polarizing surface are accounted for. The forward simulations are performed for one selected wavelength in the continuum and one in the strong absorption of the O2 A, as their combination can be exploited for the spaceborne retrieval of aerosol and cloud properties. For this reason, we also mimic seasonal maps of reflectance, DOLP and in-filling, that are prototypical measurements of the Ultraviolet-Visible-Near Infrared (UVN) sensor, at a nominal spectral resolution of 0.12 nm. UVN is the core payload of the upcoming European Sentinel-4 mission, that will observe Europe in geostationary orbit for air quality monitoring purposes. In general, in the core of O2 A, depending on the optical thickness and altitude of the scatterers, we find RRS-induced in-filling values ranging from 1.3% to 1.8%, while DOLP decreases by 1%. Conversely, while negligible differences of RRS in-filling are calculated with different ice crystal habits, the severely rough aggregated column model can reduce DOLP by a factor up to 10%. The UVN maps of in-filling show values varying

  15. Enhancement of molecular NMR signal induced by polarization transfer from laser-polarized 129Xe

    International Nuclear Information System (INIS)

    Sun Xianping

    2001-01-01

    There is a large non-equilibrium nuclear polarization and a longer relaxation time in the laser-polarized 129 Xe produced by means of optical pumping and spin exchange. The characteristics of the laser-polarized 129 Xe permit the transfer of the polarization to enhance the atomic nuclear spin in liquid, solid and surface of solid molecules. Therefore, the sensitivity in nuclear magnetic resonance measurements for the molecules is enhanced and applications in the investigations of materials and surface sciences are expanded. The progress in the investigations of materials and surface sciences are expanded. The progress in the investigations of the polarization transfer between laser-polarized 129 Xe and the atomic nuclei in the molecules, the relative physics and the measurement of some parameters are introduced

  16. Vector Green's function algorithm for radiative transfer in plane-parallel atmosphere

    International Nuclear Information System (INIS)

    Qin Yi; Box, Michael A.

    2006-01-01

    Green's function is a widely used approach for boundary value problems. In problems related to radiative transfer, Green's function has been found to be useful in land, ocean and atmosphere remote sensing. It is also a key element in higher order perturbation theory. This paper presents an explicit expression of the Green's function, in terms of the source and radiation field variables, for a plane-parallel atmosphere with either vacuum boundaries or a reflecting (BRDF) surface. Full polarization state is considered but the algorithm has been developed in such way that it can be easily reduced to solve scalar radiative transfer problems, which makes it possible to implement a single set of code for computing both the scalar and the vector Green's function

  17. Radiative heat transfer

    CERN Document Server

    Modest, Michael F

    2013-01-01

    The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...

  18. Thermal radiation heat transfer in participating media by finite volume discretization using collimated beam incidence

    Science.gov (United States)

    Harijishnu, R.; Jayakumar, J. S.

    2017-09-01

    The main objective of this paper is to study the heat transfer rate of thermal radiation in participating media. For that, a generated collimated beam has been passed through a two dimensional slab model of flint glass with a refractive index 2. Both Polar and azimuthal angle have been varied to generate such a beam. The Temperature of the slab and Snells law has been validated by Radiation Transfer Equation (RTE) in OpenFOAM (Open Field Operation and Manipulation), a CFD software which is the major computational tool used in Industry and research applications where the source code is modified in which radiation heat transfer equation is added to the case and different radiation heat transfer models are utilized. This work concentrates on the numerical strategies involving both transparent and participating media. Since Radiation Transfer Equation (RTE) is difficult to solve, the purpose of this paper is to use existing solver buoyantSimlpeFoam to solve radiation model in the participating media by compiling the source code to obtain the heat transfer rate inside the slab by varying the Intensity of radiation. The Finite Volume Method (FVM) is applied to solve the Radiation Transfer Equation (RTE) governing the above said physical phenomena.

  19. Radiative transfer in a strongly magnetized plasma. I. Effects of Anisotropy

    International Nuclear Information System (INIS)

    Nagel, W.

    1981-01-01

    We present results of radiative transfer calculations for radiating slabs and columns of strongly magnetized plasma. The angular dependence of the escaping radiation was found numerically by Feautrier's method, using the differential scattering cross sections derived by Ventura. We also give an approximate analytical expression for the anisotropy of the outgoing radiation, based on a system of two coupled diffusion equations for ordinary and extraordinary photons. Giving the polarization dependence of the beaming pattern of radiating slabs as well as columns, we generalize previous results of Basko and Kanno. Some implications for models of the pulsating X-ray source Her X-1 are discussed

  20. Polarization Property Measurement of the Long Undulator Radiation Using Cr/C Multilayer Polarization Elements

    International Nuclear Information System (INIS)

    Niibe, Masahito; Mukai, Mikihito; Shoji, Yoshihiko; Kimura, Hiroaki

    2004-01-01

    A rotating analyzer ellipsometry (RAE) system was developed with Cr/C multilayers that function as polarization elements for photon energy range of 110 - 280 eV. Polarization properties of a planar undulator change axisymmetrically in off-axial manner, and the second harmonic is more remarkable for the change. By using the RAE system, the polarization property of the second harmonic radiation from the NewSUBARU long undulator at the energy of 180 eV was examined. The degree of linear polarization of the on-axis radiation was over 0.996. The spatial distribution of the polarization azimuth was measured and was in fair agreement with the theoretical calculation. A peculiar behavior of the polarization property near the radiation peak of the second harmonic was observed by changing the height of the undulator gap

  1. [Intermediate energy studies of polarization transfer, polarized deuteron scattering, and (p,π+-) reactions: Rapporteur's report

    International Nuclear Information System (INIS)

    Moss, J.M.

    1985-01-01

    An overview of intermediate energy (80 to 1000 MeV) study contributions to the International Polarization Symposium in Osaka, Japan, August 1985 is presented in this report. Contributions fall into three categories: polarization transfer, polarized deuteron scattering and polarized (p,π +- ) reactions

  2. Probing membrane protein structure using water polarization transfer solid-state NMR.

    Science.gov (United States)

    Williams, Jonathan K; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. Copyright © 2014 Elsevier Inc. All

  3. SCIATRAN 3.1: A new radiative transfer model and retrieval package

    Science.gov (United States)

    Rozanov, Alexei; Rozanov, Vladimir; Kokhanovsky, Alexander; Burrows, John P.

    The SCIATRAN 3.1 package is a result of further development of the SCIATRAN 2.X software family which, similar to previous versions, comprises a radiative transfer model and a retrieval block. After an implementation of the vector radiative transfer model in SCIATRAN 3.0 the spectral range covered by the model has been extended into the thermal infrared ranging to approximately 40 micrometers. Another major improvement has been done accounting for the underlying surface effects. Among others, a sophisticated representation of the water surface with a bidirectional reflection distribution function (BRDF) has been implemented accounting for the Fresnel reflection of the polarized light and for the effect of foam. A newly developed representation for a snow surface allows radiative transfer calculations to be performed within an unpolluted or soiled snow layer. Furthermore, a new approach has been implemented allowing radiative transfer calculations to be performed for a coupled atmosphere-ocean system. This means that, the underlying ocean is not considered as a purely reflecting surface any more. Instead, full radiative transfer calculations are performed within the water allowing the user to simulate the radiance within both the atmosphere and the ocean. Similar to previous versions, the simulations can be performed for any viewing geometry typi-cal for atmospheric observations in the UV-Vis-NIR-TIR spectral range (nadir, limb, off-axis, etc.) as well as for any observer location within or outside the Earth's atmosphere including underwater observations. Similar to the precursor version, the new model is freely available for non-commercial use via the web page of the University of Bremen. In this presentation a short description of the software package, especially of the new features of the radiative transfer model is given, including remarks on the availability for the scientific community. Furthermore, some application examples of the radiative transfer model are

  4. Techniques of production and analysis of polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The use of the unique polarization properties of synchrotron radiation in the hard x-ray spectral region (E>3 KeV) is becoming increasingly important to many synchrotron radiation researchers. The radiation emitted from bending magnets and conventional (planar) insertion devices (IDs) is highly linearly polarized in the plane of the particle's orbit. Elliptically polarized x-rays can also be obtained by going off axis on a bending magnet source, albeit with considerable loss of flux. The polarization properties of synchrotron radiation can be further tailored to the researcher's specific needs through the use of specialized insertion devices such as helical and crossed undulators and asymmetrical wigglers. Even with the possibility of producing a specific polarization, there is still the need to develop x-ray optical components which can manipulate the polarization for both analysis and further modification of the polarization state. A survey of techniques for producing and analyzing both linear and circular polarized x-rays will be presented with emphasis on those techniques which rely on single crystal optical components

  5. Polarization transfer in (p,n) reactions at 495 MeV

    International Nuclear Information System (INIS)

    Taddeucci, T.N.

    1991-01-01

    Polarization transfer observables have been measured with the NTOF facility at LAMPF for (p,n) reactions at 495 MeV. Measurements of the longitudinal polarization transfer parameter D LL for transitions to discrete states at 0 degrees show convincing evidence for tensor interaction effects. Complete sets of polarization transfer observables have been measured for quasifree (p,n) reactions on 2 H, 12 C, 40 Ca at a scattering angle of 18 degrees. These measurements show no evidence for an enhancement in the isovector spin longitudinal response. 19 refs., 10 figs

  6. A new vector radiative transfer model as a part of SCIATRAN 3.0 software package.

    Science.gov (United States)

    Rozanov, Alexei; Rozanov, Vladimir; Burrows, John P.

    The SCIATRAN 3.0 package is a result of further development of the SCIATRAN 2.x software family which, similar to previous versions, comprises a radiative transfer model and a retrieval block. A major improvement was achieved in comparison to previous software versions by adding the vector mode to the radiative transfer model. Thus, the well-established Discrete Ordinate solver can now be run in the vector mode to calculate the scattered solar radiation including polarization, i.e., to simulate all four components of the Stockes vector. Similar to the scalar version, the simulations can be performed for any viewing geometry typical for atmospheric observations in the UV-Vis-NIR spectral range (nadir, limb, off-axis, etc.) as well as for any observer position within or outside the Earth's atmosphere. Similar to the precursor version, the new model is freely available for non-commercial use via the web page of the University of Bremen. In this presentation a short description of the software package, especially of the new vector radiative transfer model will be given, including remarks on the availability for the scientific community. Furthermore, comparisons to other vector models will be shown and some example problems will be considered where the polarization of the observed radiation must be accounted for to obtain high quality results.

  7. Fast multilevel radiative transfer

    International Nuclear Information System (INIS)

    Paletou, Frederic; Leger, Ludovick

    2007-01-01

    The vast majority of recent advances in the field of numerical radiative transfer relies on approximate operator methods better known in astrophysics as Accelerated Lambda-Iteration (ALI). A superior class of iterative schemes, in term of rates of convergence, such as Gauss-Seidel and successive overrelaxation methods were therefore quite naturally introduced in the field of radiative transfer by Trujillo Bueno and Fabiani Bendicho [A novel iterative scheme for the very fast and accurate solution of non-LTE radiative transfer problems. Astrophys J 1995;455:646]; it was thoroughly described for the non-LTE two-level atom case. We describe hereafter in details how such methods can be generalized when dealing with non-LTE unpolarised radiation transfer with multilevel atomic models, in monodimensional geometry

  8. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Mengüç, M Pinar

    2011-01-01

    Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...

  9. [Effect of decimeter polarized electromagnetic radiation on germinating capacity of seeds].

    Science.gov (United States)

    Polevik, N D

    2013-01-01

    The effect of a polarization structure of electromagnetic radiation on the germinating capacity of seeds of such weeds as Green foxtail (Setaria viridis) and Green amaranth (Amaranthus retroflexus) has been studied. Seeds have been exposed to impulse electromagnetic radiation in a frequency of 896 MHz with linear, elliptical right-handed and elliptical left-handed polarizations at different power flux density levels. It is determined that the effect of the right-handed polarized electromagnetic radiation increases and the influence of the left-handed polarized one reduces the germinating capacity of seeds compared to the effect of the linearly polarized electromagnetic radiation. It is shown that the seeds have an amplitude polarization selectivity as evinced by the major effect of the right-handed polarized radiation on seeds. An electrodynamic model as the right-handed elliptically polarized antenna with the given quantity of the ellipticity of polarization is suggested to use in description of this selectivity.

  10. Engineering calculations in radiative heat transfer

    CERN Document Server

    Gray, W A; Hopkins, D W

    1974-01-01

    Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.

  11. Vector Green's function algorithm for radiative transfer in plane-parallel atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Qin Yi [School of Physics, University of New South Wales (Australia)]. E-mail: yi.qin@csiro.au; Box, Michael A. [School of Physics, University of New South Wales (Australia)

    2006-01-15

    Green's function is a widely used approach for boundary value problems. In problems related to radiative transfer, Green's function has been found to be useful in land, ocean and atmosphere remote sensing. It is also a key element in higher order perturbation theory. This paper presents an explicit expression of the Green's function, in terms of the source and radiation field variables, for a plane-parallel atmosphere with either vacuum boundaries or a reflecting (BRDF) surface. Full polarization state is considered but the algorithm has been developed in such way that it can be easily reduced to solve scalar radiative transfer problems, which makes it possible to implement a single set of code for computing both the scalar and the vector Green's function.

  12. Polarization transfer in (d-vector,n-vector) reactions

    International Nuclear Information System (INIS)

    Walter, R.L.; Tornow, W.

    1986-01-01

    The status of the measurements and the role of polarization transfer coefficients for (d/sup →/,n/sup →/) reactions is reviewed. Emphasis is given to reactions, involving light-nuclei systems. The importance of (d/sup →/,n/sup →/) reactions as sources of polarized neutrons is pointed out

  13. Fast multilevel radiative transfer

    Science.gov (United States)

    Paletou, Frédéric; Léger, Ludovick

    2007-01-01

    The vast majority of recent advances in the field of numerical radiative transfer relies on approximate operator methods better known in astrophysics as Accelerated Lambda-Iteration (ALI). A superior class of iterative schemes, in term of rates of convergence, such as Gauss-Seidel and Successive Overrelaxation methods were therefore quite naturally introduced in the field of radiative transfer by Trujillo Bueno & Fabiani Bendicho (1995); it was thoroughly described for the non-LTE two-level atom case. We describe hereafter in details how such methods can be generalized when dealing with non-LTE unpolarised radiation transfer with multilevel atomic models, in monodimensional geometry.

  14. Vacuum polarization and Hawking radiation

    Science.gov (United States)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  15. Charge-transfer collisions for polarized ion sources

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1983-06-01

    Charge-transfer processes relevant to polarized ion sources are discussed and results are summarized. The primary atom discussed is hydrogen, with particulr emphasis on H - formation. Heavier negative ions are briefly discussed

  16. Polarized radiation in magnetic white dwarfs

    International Nuclear Information System (INIS)

    Rosi, L.A.; Zimmerman, R.L.; Kemp, J.C.

    1976-01-01

    A model for magnetic white dwarfs is proposed which attributes the partially polarized light to synchrotron radiation. The source of the radiation is relativistic electrons trapped in the magnetosphere of a white dwarf. The white dwarf's magnetic field is assumed to be dipolar. The Stokes parameters for the synchrotron radiation are tabulated as a function of frequency, observer's orientation, and energy and spatial distribution of the relativistic electrons. The results of the synchrotron calculations are applied to the polarization observations of Grw+70degree8247 and DQ Herculis. This model can account for the major features of the polarized radiation coming from these two magnetic white dwarfs. The calculations predict for Grw+70degree8247 that the surface magnetic field is B/sub s/approximately-less-than4 x 10 6 gauss, that the incident viewing angle is 45degreeapproximately-less-thantheta 0 approximately-less-than75degree, and that the electrons are trapped with nearly an isotropic distribution about the white dwarf. For DQ Herculis the surface magnetic field is B/sub s/approximately-less-than7 x 10 6 gauss and the trapped electrons are confined to a dislike region about the white dwarf. For both cases the density of electrons in the magnetosphere falls in the range of 10 5 approximately-less-thannapproximately-less-than10 7 cm -3 with energies of about 4--35 MeV

  17. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  18. ARTS, the Atmospheric Radiative Transfer Simulator - version 2.2, the planetary toolbox edition

    Science.gov (United States)

    Buehler, Stefan A.; Mendrok, Jana; Eriksson, Patrick; Perrin, Agnès; Larsson, Richard; Lemke, Oliver

    2018-04-01

    This article describes the latest stable release (version 2.2) of the Atmospheric Radiative Transfer Simulator (ARTS), a public domain software for radiative transfer simulations in the thermal spectral range (microwave to infrared). The main feature of this release is a planetary toolbox that allows simulations for the planets Venus, Mars, and Jupiter, in addition to Earth. This required considerable model adaptations, most notably in the area of gaseous absorption calculations. Other new features are also described, notably radio link budgets (including the effect of Faraday rotation that changes the polarization state) and the treatment of Zeeman splitting for oxygen spectral lines. The latter is relevant, for example, for the various operational microwave satellite temperature sensors of the Advanced Microwave Sounding Unit (AMSU) family.

  19. Radiation and combined heat transfer in channels

    International Nuclear Information System (INIS)

    Tamonis, M.

    1986-01-01

    This book presents numerical methods of calculation of radiative and combined heat transfer in channel flows of radiating as well as nonradiating media. Results obtained in calculations for flow conditions of combustion products from organic fuel products are given and methods used in determining the spectral optical properties of molecular gases are analyzed. The book presents applications of heat transfer in solving problems. Topic covered are as follows: optical properties of molecular gases; transfer equations for combined heat transfer; experimental technique; convective heat transfer in heated gas flows; radiative heat transfer in gaseous media; combined heat transfer; and radiative and combined heat transfer in applied problems

  20. Crossed-beam energy transfer: polarization effects and evidence of saturation

    Science.gov (United States)

    Turnbull, D.; Colaïtis, A.; Follett, R. K.; Palastro, J. P.; Froula, D. H.; Michel, P.; Goyon, C.; Chapman, T.; Divol, L.; Kemp, G. E.; Mariscal, D.; Patankar, S.; Pollock, B. B.; Ross, J. S.; Moody, J. D.; Tubman, E. R.; Woolsey, N. C.

    2018-05-01

    Recent results on crossed-beam energy transfer are presented. Wavelength tuning was used to vary the amount of energy transfer between two beams in a quasi-stationary plasma with carefully controlled conditions. The amount of transfer agreed well with calculations assuming linear ion acoustic waves (IAWs) with amplitudes up to δ n/n≈ 0.015. Increasing the initial probe intensity to access larger IAW amplitudes for otherwise fixed conditions yields evidence of saturation. The ability to manipulate a beam's polarization, which results from the anisotropic nature of the interaction, is revisited; an example is provided to demonstrate how polarization effects in a multibeam situation can dramatically enhance the expected amount of energy transfer.

  1. Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2015-06-01

    Full Text Available The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength of thermal radiation. Using a rigorous fluctuational electrodynamics approach, we predict that ultra-thin films of plasmonic materials can be used to dramatically enhance near-field heat transfer. The total spectrally integrated film-to-film heat transfer is over an order of magnitude larger than between the same materials in bulk form and also exceeds the levels achievable with polar dielectrics such as SiC. We attribute this enhancement to the significant spectral broadening of radiative heat transfer due to coupling between surface plasmon polaritons (SPPs on both sides of each thin film. We show that the radiative heat flux spectrum can be further shaped by the choice of the substrate onto which the thin film is deposited. In particular, substrates supporting surface phonon polaritons (SPhP strongly modify the heat flux spectrum owing to the interactions between SPPs on thin films and SPhPs of the substrate. The use of thin film phase change materials on polar dielectric substrates allows for dynamic switching of the heat flux spectrum between SPP-mediated and SPhP-mediated peaks.

  2. Two-dimensional radiative transfer for the retrieval of limb emission measurements in the martian atmosphere

    Science.gov (United States)

    Kleinböhl, Armin; Friedson, A. James; Schofield, John T.

    2017-01-01

    The remote sounding of infrared emission from planetary atmospheres using limb-viewing geometry is a powerful technique for deriving vertical profiles of structure and composition on a global scale. Compared with nadir viewing, limb geometry provides enhanced vertical resolution and greater sensitivity to atmospheric constituents. However, standard limb profile retrieval techniques assume spherical symmetry and are vulnerable to biases produced by horizontal gradients in atmospheric parameters. We present a scheme for the correction of horizontal gradients in profile retrievals from limb observations of the martian atmosphere. It characterizes horizontal gradients in temperature, pressure, and aerosol extinction along the line-of-sight of a limb view through neighboring measurements, and represents these gradients by means of two-dimensional radiative transfer in the forward model of the retrieval. The scheme is applied to limb emission measurements from the Mars Climate Sounder instrument on Mars Reconnaissance Orbiter. Retrieval simulations using data from numerical models indicate that biases of up to 10 K in the winter polar region, obtained with standard retrievals using spherical symmetry, are reduced to about 2 K in most locations by the retrieval with two-dimensional radiative transfer. Retrievals from Mars atmospheric measurements suggest that the two-dimensional radiative transfer greatly reduces biases in temperature and aerosol opacity caused by observational geometry, predominantly in the polar winter regions.

  3. 3D Cloud Radiative Effects on Polarized Reflectances

    Science.gov (United States)

    Cornet, C.; Matar, C.; C-Labonnote, L.; Szczap, F.; Waquet, F.; Parol, F.; Riedi, J.

    2017-12-01

    As recognized in the last IPCC report, clouds have a major importance in the climate budget and need to be better characterized. Remote sensing observations are a way to obtain either global observations of cloud from satellites or a very fine description of clouds from airborne measurements. An increasing numbers of radiometers plan to measure polarized reflectances in addition to total reflectances, since this information is very helpful to obtain aerosol or cloud properties. In a near future, for example, the Multi-viewing, Multi-channel, Multi-polarization Imager (3MI) will be part the EPS-SG Eumetsat-ESA mission. It will achieve multi-angular polarimetric measurements from visible to shortwave infrared wavelengths. An airborne prototype, OSIRIS (Observing System Including Polarization in the Solar Infrared Spectrum), is also presently developed at the Laboratoire d'Optique Atmospherique and had already participated to several measurements campaigns. In order to analyze suitably the measured signal, it it necessary to have realistic and accurate models able to simulate polarized reflectances. The 3DCLOUD model (Szczap et al., 2014) was used to generate three-dimensional synthetic cloud and the 3D radiative transfer model, 3DMCPOL (Cornet et al., 2010) to compute realistic polarized reflectances. From these simulations, we investigate the effects of 3D cloud structures and heterogeneity on the polarized angular signature often used to retrieve cloud or aerosol properties. We show that 3D effects are weak for flat clouds but become quite significant for fractional clouds above ocean. The 3D effects are quite different according to the observation scale. For the airborne scale (few tens of meter), solar illumination effects can lead to polarized cloud reflectance values higher than the saturation limit predicted by the homogeneous cloud assumption. In the cloud gaps, corresponding to shadowed areas of the total reflectances, polarized signal can also be enhanced

  4. Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes: Software package SCIATRAN

    International Nuclear Information System (INIS)

    Rozanov, V.V.; Dinter, T.; Rozanov, A.V.; Wolanin, A.; Bracher, A.; Burrows, J.P.

    2017-01-01

    SCIATRAN is a comprehensive software package which is designed to model radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18–40 μm). It accounts for multiple scattering processes, polarization, thermal emission and ocean–atmosphere coupling. The main goal of this paper is to present a recently developed version of SCIATRAN which takes into account accurately inelastic radiative processes in both the atmosphere and the ocean. In the scalar version of the coupled ocean–atmosphere radiative transfer solver presented by Rozanov et al. we have implemented the simulation of the rotational Raman scattering, vibrational Raman scattering, chlorophyll and colored dissolved organic matter fluorescence. In this paper we discuss and explain the numerical methods used in SCIATRAN to solve the scalar radiative transfer equation including trans-spectral processes, and demonstrate how some selected radiative transfer problems are solved using the SCIATRAN package. In addition we present selected comparisons of SCIATRAN simulations with those published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship-borne instruments. The extended SCIATRAN software package along with a detailed User's Guide is made available for scientists and students, who are undertaking their own research typically at universities, via the web page of the Institute of Environmental Physics (IUP), University of Bremen: (http://www.iup.physik.uni-bremen.de). - Highlights: • A new version of the software package SCIATRAN is presented. • Inelastic scattering in water and atmosphere is implemented in SCIATRAN. • Raman scattering and fluorescence can be included in radiative transfer calculations. • Comparisons to other radiative transfer models show excellent agreement. • Comparisons to observations show consistent results.

  5. Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes: Software package SCIATRAN

    Science.gov (United States)

    Rozanov, V. V.; Dinter, T.; Rozanov, A. V.; Wolanin, A.; Bracher, A.; Burrows, J. P.

    2017-06-01

    SCIATRAN is a comprehensive software package which is designed to model radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18-40 μm). It accounts for multiple scattering processes, polarization, thermal emission and ocean-atmosphere coupling. The main goal of this paper is to present a recently developed version of SCIATRAN which takes into account accurately inelastic radiative processes in both the atmosphere and the ocean. In the scalar version of the coupled ocean-atmosphere radiative transfer solver presented by Rozanov et al. [61] we have implemented the simulation of the rotational Raman scattering, vibrational Raman scattering, chlorophyll and colored dissolved organic matter fluorescence. In this paper we discuss and explain the numerical methods used in SCIATRAN to solve the scalar radiative transfer equation including trans-spectral processes, and demonstrate how some selected radiative transfer problems are solved using the SCIATRAN package. In addition we present selected comparisons of SCIATRAN simulations with those published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship-borne instruments. The extended SCIATRAN software package along with a detailed User's Guide is made available for scientists and students, who are undertaking their own research typically at universities, via the web page of the Institute of Environmental Physics (IUP), University of Bremen: http://www.iup.physik.uni-bremen.de.

  6. Polarized curvature radiation in pulsar magnetosphere

    Science.gov (United States)

    Wang, P. F.; Wang, C.; Han, J. L.

    2014-07-01

    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.

  7. International symposium on radiative heat transfer: Book of abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    The international symposium on radiative heat transfer was held on 14-18 August 1995 Turkey. The specialists discussed radiation transfer in materials processing and manufacturing, solution of radiative heat transfer equation, transient radiation problem and radiation-turbulence interactions, raditive properties of gases, atmospheric and stellar radiative transfer , radiative transfer and its applications, optical and radiative properties of soot particles, inverse radiation problems, partticles, fibres,thermophoresis and waves and modelling of comprehensive systems at the meeting. Almost 79 papers were presented in the meeting

  8. Radiative corrections to the beam spin asymmetry in photon electroproduction e polarized p {yields} ep{gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Fonvieille, H.; Bensafa, I. [LPC-Clermont-Fd, Universite Blaise Pascal, F-63170 Aubiere Cedex (France)

    2006-11-15

    We have measured at MAMI the beam single spin asymmetry (SSA) in exclusive photon electroproduction (e polarized p {yields} ep{gamma}) with a longitudinally polarized beam, in the region of the {delta}(1232) resonance. In this document the value of the radiative correction to this asymmetry is obtained for our kinematics. Although the correction is expected to be very small and negligible, its value is needed as a confirmation and for the purpose of systematic error estimate. The parameter of kinematics are given as follows: four-momentum transfer of the virtual photon, Q{sup 2} = 0.35 GeV{sup 2}; total energy in the ({gamma}p) center of mass, W=1.190 GeV; polarization of the virtual photon, {epsilon}=0.48; azimuthal angle (lepton-hadron planes), {phi} = 220 angle; polar angle of Compton scattering in center of mass, {theta}{sub {gamma}}{sub {gamma}} in [0 angle, 40 angle]; incoming electron beam energy, E{sub e} = 0.88 GeV; scattered electron energy, E{sub 0}' = 0.40 GeV; polar angle of scattered electron {theta}{sub e} = 59.9 angle. The radiative correction is calculated by the radcorr code written by M. Vanderhaeghen, in a version adapted to beam spin asymmetries.In practice, the conclusions are twofold: - the asymmetry that was measured in the VCS channel does not need to be corrected for radiative effects, given the large statistical error bar attached to the experimental values (an asymmetry of 1-10 % with a statistical error bar of 3-4 %); - a systematic error {delta}SSA{sub syst} on the asymmetry will be considered, related to uncertainties in the calculation of the radiative correction (at least two of them have been mentioned here: the cross section model and the soft photon limit). To estimate this error a 100 % variation of the radiative correction was assumed. For the radiative correction itself the maximal value found was taken. Therefore one can take: {delta}SSA{sub syst} = {+-}2.7 x 10{sup -3}.

  9. Radiative corrections to the beam spin asymmetry in photon electroproduction e polarized p → epγ

    International Nuclear Information System (INIS)

    Fonvieille, H.; Bensafa, I.

    2006-11-01

    We have measured at MAMI the beam single spin asymmetry (SSA) in exclusive photon electroproduction (e polarized p → epγ) with a longitudinally polarized beam, in the region of the Δ(1232) resonance. In this document the value of the radiative correction to this asymmetry is obtained for our kinematics. Although the correction is expected to be very small and negligible, its value is needed as a confirmation and for the purpose of systematic error estimate. The parameter of kinematics are given as follows: four-momentum transfer of the virtual photon, Q 2 = 0.35 GeV 2 ; total energy in the (γp) center of mass, W=1.190 GeV; polarization of the virtual photon, ε=0.48; azimuthal angle (lepton-hadron planes), φ = 220 angle; polar angle of Compton scattering in center of mass, θ γγ in [0 angle, 40 angle]; incoming electron beam energy, E e = 0.88 GeV; scattered electron energy, E 0 ' = 0.40 GeV; polar angle of scattered electron θ e = 59.9 angle. The radiative correction is calculated by the radcorr code written by M. Vanderhaeghen, in a version adapted to beam spin asymmetries.In practice, the conclusions are twofold: - the asymmetry that was measured in the VCS channel does not need to be corrected for radiative effects, given the large statistical error bar attached to the experimental values (an asymmetry of 1-10 % with a statistical error bar of 3-4 %); - a systematic error ΔSSA syst on the asymmetry will be considered, related to uncertainties in the calculation of the radiative correction (at least two of them have been mentioned here: the cross section model and the soft photon limit). To estimate this error a 100 % variation of the radiative correction was assumed. For the radiative correction itself the maximal value found was taken. Therefore one can take: ΔSSA syst = ±2.7 x 10 -3

  10. Essentials of radiation heat transfer

    CERN Document Server

    Balaji

    2014-01-01

    Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...

  11. Infrared radiative transfer in dense disks around young stars

    International Nuclear Information System (INIS)

    Dent, W.R.F.

    1988-01-01

    A two-dimensional radiative transfer program has been used to determine the temperature distribution within cylindrically symmetric, centrally heated dust clouds. In particular, the disk-shaped structures observed around young luminous stars have been modeled. Changing the dust distribution in these disks primarily affected the observed morphology in the near-infrared and far-infrared, and at millimeter wavelengths. The overall cloud spectrum, however, was mainly determined by the characteristics of the grains themselves. Comparison with published far-infrared and molecular line data has indicated that the dust density can generally be modeled by a power-law distribution in r with index of -2 and an exponential in z with disk thickness proportional to 1/r. When observed nearly edge-on, scattered direct stellar radiation is observed in the polar regions in the form of comet-shaped lobes of emission. 26 references

  12. Comptonization of low-frequency radiation in accretion disks Angular distribution and polarization of hard X-ray radiation

    International Nuclear Information System (INIS)

    Suniaev, R.A.; Titarchuk, L.G.

    1984-01-01

    Analytical consideration is given to the comptonization of photons and its effects on the radiation emitted from accretion disks of compact X-ray sources, such as black holes and neutron stars. Attention is given to the photon distribution during escape from the disk, the angular distribution of hard radiation from the disk, the polarization of hard radiation and the electron temperature distribution over the optical depth. It is shown that the hard radiation spectrum is independent of the low-frequency photon source distribution. The angular distribution and polarization of the outgoing X-rays are a function of the optical depth. A Thomson approximation is used to estimate the angular distribution of the hard radiation and the polarization over the disk. The polarization results are compared with OSO-8 satellite data for Cyg X-1 and show good agreement at several energy levels. 17 references

  13. The Effect of Thermal Radiation on Entropy Generation Due to Micro-Polar Fluid Flow Along a Wavy Surface

    Directory of Open Access Journals (Sweden)

    Kuei-Hao Chang

    2011-09-01

    Full Text Available In this study, the effect of thermal radiation on micro-polar fluid flow over a wavy surface is studied. The optically thick limit approximation for the radiation flux is assumed. Prandtl’s transposition theorem is used to stretch the ordinary coordinate system in certain directions. The wavy surface can be transferred into a calculable plane coordinate system. The governing equations of micro-polar fluid along a wavy surface are derived from the complete Navier-Stokes equations. A simple transformation is proposed to transform the governing equations into boundary layer equations so they can be solved numerically by the cubic spline collocation method. A modified form for the entropy generation equation is derived. Effects of thermal radiation on the temperature and the vortex viscosity parameter and the effects of the wavy surface on the velocity are all included in the modified entropy generation equation.

  14. Terahertz radiation by subpicosecond spin-polarized photocurrent originating from Dirac electrons in a Rashba-type polar semiconductor

    Science.gov (United States)

    Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi

    2018-04-01

    The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.

  15. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix

    Science.gov (United States)

    Yang, Dong; Duan, Pengfei; Zhang, Li; Liu, Minghua

    2017-01-01

    Transfer of both chirality and energy information plays an important role in biological systems. Here we show a chiral donor π-gelator and assembled it with an achiral π-acceptor to see how chirality and energy can be transferred in a composite donor–acceptor system. It is found that the individual chiral gelator can self-assemble into nanohelix. In the presence of the achiral acceptor, the self-assembly can also proceed and lead to the formation of the composite nanohelix. In the composite nanohelix, an energy transfer is realized. Interestingly, in the composite nanohelix, the achiral acceptor can both capture the supramolecular chirality and collect the circularly polarized energy from the chiral donor, showing both supramolecular chirality and energy transfer amplified circularly polarized luminescence (ETACPL). PMID:28585538

  16. Radiative transfer on discrete spaces

    CERN Document Server

    Preisendorfer, Rudolph W; Stark, M; Ulam, S

    1965-01-01

    Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles.Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative tran

  17. ipole: Semianalytic scheme for relativistic polarized radiative transport

    Science.gov (United States)

    Moscibrodzka, Monika; Gammie, Charles F.

    2018-04-01

    ipole is a ray-tracing code for covariant, polarized radiative transport particularly useful for modeling Event Horizon Telescope sources, though may also be used for other relativistic transport problems. The code extends the ibothros scheme for covariant, unpolarized transport using two representations of the polarized radiation field: in the coordinate frame, it parallel transports the coherency tensor, and in the frame of the plasma, it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is as spacetime- and coordinate- independent as possible; the emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, ipole is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth.

  18. Effect of polarized radiative transfer on the Hanle magnetic field determination in prominences: Analysis of hydrogen H alpha line observations at Pic-du-Midi

    Science.gov (United States)

    Bommier, V.; Deglinnocenti, E. L.; Leroy, J. L.; Sahal-Brechot, S.

    1985-01-01

    The linear polarization of the Hydrogen H alpha line of prominences has been computed, taking into account the effect of a magnetic field (Hanle effect), of the radiative transfer in the prominence, and of the depolarization due to collisions with the surrounding electrons and protons. The corresponding formalisms are developed in a forthcoming series of papers. In this paper, the main features of the computation method are summarized. The results of computation have been used for interpretation in terms of magnetic field vector measurements from H alpha polarimetric observations in prominences performed at Pic-du-Midi coronagraph-polarimeter. Simultaneous observations in one optically thin line (He I D(3)) and one optically thick line (H alpha) give an opportunity for solving the ambiguity on the field vector determination.

  19. Line radiative transfer and statistical equilibrium*

    Directory of Open Access Journals (Sweden)

    Kamp Inga

    2015-01-01

    Full Text Available Atomic and molecular line emission from protoplanetary disks contains key information of their detailed physical and chemical structures. To unravel those structures, we need to understand line radiative transfer in dusty media and the statistical equilibrium, especially of molecules. I describe here the basic principles of statistical equilibrium and illustrate them through the two-level atom. In a second part, the fundamentals of line radiative transfer are introduced along with the various broadening mechanisms. I explain general solution methods with their drawbacks and also specific difficulties encountered in solving the line radiative transfer equation in disks (e.g. velocity gradients. I am closing with a few special cases of line emission from disks: Radiative pumping, masers and resonance scattering.

  20. Polar clouds and radiation in satellite observations, reanalyses, and climate models

    NARCIS (Netherlands)

    Lenaerts, JTM; Van Tricht, Kristof; Lhermitte, S.L.M.; L'Ecuyer, T.S.

    2017-01-01

    Clouds play a pivotal role in the surface energy budget of the polar regions. Here we use two largely independent data sets of cloud and surface downwelling radiation observations derived by satellite remote sensing (2007–2010) to evaluate simulated clouds and radiation over both polar ice sheets

  1. Space Radiation Measurement on the Polar Route onboard the Korean Commercial Flights

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2010-03-01

    Full Text Available This study was performed by the policy research project of Ministry of Land, Transport and Maritime Affairs, which title is “Developing safety standards and management of space radiation on the polar route”. In this research, total six experiments were performed using Korean commercial flights (B747. Three of those are on the polar route and the other three are on the north pacific route. Space radiation exposure measured on the polar route is the average 84.7 uSv. The simulation result using CARI-6M program gives 84.9 uSv, which is very similar to measured value. For the departure flight using the north pacific route, the measured space radiation is the average 74.4 uSv. It seems that is not so different to use the polar route or not for the return flight because the higher latitude effect causing the increase of space radiation is compensated by the shortened flight time effect causing decreasing space radiation exposure.

  2. Discrete ordinate solution of the radiative transfer equation in the 'polarization normal wave representation'

    Science.gov (United States)

    Kylling, A.

    1991-01-01

    The transfer equations for normal waves in finite, inhomogeneous and plane-parallel magnetoactive media are solved using the discrete ordinate method. The physical process of absorption, emission, and multiple scattering are accounted for, and the medium may be forced both at the top and bottom boundary by anisotropic radiation as well as by internal anisotropic sources. The computational procedure is numerically stable for arbitrarily large optical depths, and the computer time is independent of optical thickness.

  3. Application of circular polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Miyahara, Tsuneaki; Kawata, Hiroshi

    1988-03-01

    The idea of using the polarizing property of light for physical experiment by controlling it variously has been known from old time, and the Faraday effect and the research by polarizing microscopy are its examples. The light emitted from the electron orbit of an accelerator has the different polarizing characteristics from those of the light of a laboratory light source, and as far as observing it within the electron orbit plane, it becomes linearly polarized light. By utilizing this property well, research is carried out at present in synchrotron experimental facilities. Recently, the technology related to the insert type light cources using permanent magnets has advanced remarkably, and circular polarized light has become to be producible. If the light like this can be obtained with the energy not only in far ultraviolet region but also to x-ray region at high luminance, new possibility should open. At the stage that the design of an insert type light source was finished, and its manufacture was started, the research on the method of evaluating the degree of circular polarization and the research on the utilization of circular polarized synchrotron radiation are earnestly carried out. In this report, the results of researches presented at the study meeting are summarized. Moreover, the design and manufacture of the beam lines for exclusive use will be carried out. (Kako, I.)

  4. Green Wireless Power Transfer Networks

    NARCIS (Netherlands)

    Liu, Q.; Golinnski, M.; Pawelczak, P.; Warnier, M.

    2016-01-01

    wireless power transfer network (WPTN) aims to support devices with cable-less energy on-demand. Unfortunately, wireless power transfer itself-especially through radio frequency radiation rectification-is fairly inefficient due to decaying power with distance, antenna polarization, etc.

  5. Polarization of photoelectrons produced from atoms by synchrotron radiation

    International Nuclear Information System (INIS)

    Hughes, V.W.; Lu, D.C.; Huang, K.N.

    1981-01-01

    The polarization of photoelectrons from stoms has proved to be an important tool for studying correlation effects in atoms, as well as relativistic effects such as the spin-orbit interaction. Extensive experimental and theoretical studies have been made of the Fano effect, which is the production of polarized electrons by photoionization of unpolarized atoms by circularly polarized light. The experiments have dealt mostly with alkali atoms and with photon energies slightly above the ionization thresholds. Measurements that could be made to utilize polarized radiation are discussed

  6. Radiative heat transfer in the extreme near field.

    Science.gov (United States)

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  7. 3D printed polarizing grids for IR-THz synchrotron radiation

    Science.gov (United States)

    Ryu, Meguya; Linklater, Denver; Hart, William; Balčytis, Armandas; Skliutas, Edvinas; Malinauskas, Mangirdas; Appadoo, Dominique; Tan, Yaw-Ren Eugene; Ivanova, Elena P.; Morikawa, Junko; Juodkazis, Saulius

    2018-03-01

    Grid polarisers 3D-printed out of commercial acrilic resin were tested for the polariser function and showed spectral regions where the dichroic ratio {D}R> 1 and The used 3D printing method allows for fabrication of an arbitrary high aspect ratio grid polarisers. Polarization analysis of synchrotron THz radiation was carried out with a standard stretched polyethylene polariser and revealed that the linearly polarized (horizontal) component contributes up to 22% ± 5% to the circular polarized synchrotron emission extracted by a gold-coated mirror with a horizontal slit inserted near the bending magnet edge. Comparison with theoretical predictions shows a qualitative match with dominance of the edge radiation.

  8. Coherent scattering of electromagnetic radiation by a polarized particle system

    International Nuclear Information System (INIS)

    Agre, M.Ya.; Rapoport, L.P.

    1996-01-01

    The paper deals with the development of the theory of coherent scattering of electromagnetic waves by a polarized atom or molecular system. Peculiarities of the angular distribution and polarization peculiarities of scattered radiation are discussed

  9. Submandibular salivary gland transfer prevents radiation-induced xerostomia

    International Nuclear Information System (INIS)

    Jha, Naresh; Seikaly, Hadi; McGaw, Timothy; Coulter, Linda

    2000-01-01

    Background: Xerostomia is a significant morbidity of radiation therapy in the management of head and neck cancers. We hypothesized that the surgical transfer of one submandibular salivary gland to submental space, outside the proposed radiation field, prior to starting radiation treatment, would prevent xerostomia. Methods: We are conducting a prospective clinical trial where the submandibular gland is transferred as part of the surgical intervention. The patients are followed clinically, with salivary flow studies and University of Washington quality of life questionnaire. Results: We report early results of 16 patients who have undergone this procedure. Seven patients have finished and 2 patients are currently undergoing radiation treatment. In 2 patients, no postoperative radiation treatment was indicated. Two patients are waiting to start radiation treatment and 2 patients refused treatment after surgery. The surgical transfer was abandoned in 1 patient. All of the transferred salivary glands were positioned outside the proposed radiation fields and were functional. The patients did not complain of any xerostomia and developed only minimal oral mucositis. There were no surgical complications. Conclusions: Surgical transfer of a submandibular salivary gland to the submental space (outside the radiation field) preserves its function and prevents the development of radiation-induced xerostomia

  10. Effect of asymmetrical transfer coefficients of a non-polarizing beam splitter on the nonlinear error of the polarization interferometer

    Science.gov (United States)

    Zhao, Chen-Guang; Tan, Jiu-Bin; Liu, Tao

    2010-09-01

    The mechanism of a non-polarizing beam splitter (NPBS) with asymmetrical transfer coefficients causing the rotation of polarization direction is explained in principle, and the measurement nonlinear error caused by NPBS is analyzed based on Jones matrix theory. Theoretical calculations show that the nonlinear error changes periodically, and the error period and peak values increase with the deviation between transmissivities of p-polarization and s-polarization states. When the transmissivity of p-polarization is 53% and that of s-polarization is 48%, the maximum error reaches 2.7 nm. The imperfection of NPBS is one of the main error sources in simultaneous phase-shifting polarization interferometer, and its influence can not be neglected in the nanoscale ultra-precision measurement.

  11. Influence of radiation heat transfer during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Polo L, M. A., E-mail: ricardo-cazares@hotmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2016-09-15

    The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)

  12. Influence of radiation heat transfer during a severe accident

    International Nuclear Information System (INIS)

    Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A.; Polo L, M. A.

    2016-09-01

    The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)

  13. A survey of synchrotron radiation devices producing circular or variable polarization

    International Nuclear Information System (INIS)

    Kim, K.J.

    1990-01-01

    This paper reviews the properties and operating principles of the new types of synchrotron radiation devices that produce circular polarization, or polarization that can be modulated in arbitrary fashion

  14. IPOLE - semi-analytic scheme for relativistic polarized radiative transport

    Science.gov (United States)

    Mościbrodzka, M.; Gammie, C. F.

    2018-03-01

    We describe IPOLE, a new public ray-tracing code for covariant, polarized radiative transport. The code extends the IBOTHROS scheme for covariant, unpolarized transport using two representations of the polarized radiation field: In the coordinate frame, it parallel transports the coherency tensor; in the frame of the plasma it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is implemented to be as spacetime- and coordinate- independent as possible. The emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, IPOLE is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth. We show that the code matches analytic results in flat space, and that it produces results that converge to those produced by Dexter's GRTRANS polarized transport code on a complicated model problem. We expect IPOLE will mainly find applications in modelling Event Horizon Telescope sources, but it may also be useful in other relativistic transport problems such as modelling for the IXPE mission.

  15. A treatment of the Zeeman effect using Stokes formalism and its implementation in the Atmospheric Radiative Transfer Simulator (ARTS)

    International Nuclear Information System (INIS)

    Larsson, Richard; Buehler, Stefan A.; Eriksson, Patrick; Mendrok, Jana

    2014-01-01

    This paper presents the practical theory that was used to implement the Zeeman effect using Stokes formalism in the Atmospheric Radiative Transfer Simulator (ARTS). ARTS now treats the Zeeman effect in a general manner for several gas species for all polarizations and takes into account variations in both magnetic and atmospheric fields along a full 3D geometry. We present how Zeeman splitting affects polarization in radiative transfer simulations and find that the effect may be large in Earth settings for polarized receivers in limb observing geometry. We find that not taking a spatially varying magnetic field into account can result in absolute errors in the measurement vector of at least 10 K in Earth magnetic field settings. The paper also presents qualitative tests for O 2 lines against previous models (61.15 GHz line) and satellite data from Odin-SMR (487.25 GHz line), and the overall consistency between previous models, satellite data, and the new ARTS Zeeman module seems encouraging. -- Highlights: • We implement the Zeeman effect with Stokes formalism in ARTS. • We give a practical theory for the implementation. • Examples of how the Zeeman effect change RT are presented. • Qualitative Odin-SMR O 2 limb sounding model indicates the Zeeman effect is necessary

  16. Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI)

    International Nuclear Information System (INIS)

    Huang Bormin; Mielikainen, Jarno; Oh, Hyunjong; Allen Huang, Hung-Lung

    2011-01-01

    Satellite-observed radiance is a nonlinear functional of surface properties and atmospheric temperature and absorbing gas profiles as described by the radiative transfer equation (RTE). In the era of hyperspectral sounders with thousands of high-resolution channels, the computation of the radiative transfer model becomes more time-consuming. The radiative transfer model performance in operational numerical weather prediction systems still limits the number of channels we can use in hyperspectral sounders to only a few hundreds. To take the full advantage of such high-resolution infrared observations, a computationally efficient radiative transfer model is needed to facilitate satellite data assimilation. In recent years the programmable commodity graphics processing unit (GPU) has evolved into a highly parallel, multi-threaded, many-core processor with tremendous computational speed and very high memory bandwidth. The radiative transfer model is very suitable for the GPU implementation to take advantage of the hardware's efficiency and parallelism where radiances of many channels can be calculated in parallel in GPUs. In this paper, we develop a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI) launched in 2006 onboard the first European meteorological polar-orbiting satellites, METOP-A. Each IASI spectrum has 8461 spectral channels. The IASI radiative transfer model consists of three modules. The first module for computing the regression predictors takes less than 0.004% of CPU time, while the second module for transmittance computation and the third module for radiance computation take approximately 92.5% and 7.5%, respectively. Our GPU-based IASI radiative transfer model is developed to run on a low-cost personal supercomputer with four GPUs with total 960 compute cores, delivering near 4 TFlops theoretical peak performance. By massively parallelizing the second and third modules, we reached 364x

  17. The Transfer of Resonance Line Polarization with Partial Frequency Redistribution in the General Hanle–Zeeman Regime

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, E. Alsina; Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Belluzzi, L., E-mail: ealsina@iac.es [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland)

    2017-02-10

    The spectral line polarization encodes a wealth of information about the thermal and magnetic properties of the solar atmosphere. Modeling the Stokes profiles of strong resonance lines is, however, a complex problem both from a theoretical and computational point of view, especially when partial frequency redistribution (PRD) effects need to be taken into account. In this work, we consider a two-level atom in the presence of magnetic fields of arbitrary intensity (Hanle–Zeeman regime) and orientation, both deterministic and micro-structured. Working within the framework of a rigorous PRD theoretical approach, we have developed a numerical code that solves the full non-LTE radiative transfer problem for polarized radiation, in one-dimensional models of the solar atmosphere, accounting for the combined action of the Hanle and Zeeman effects, as well as for PRD phenomena. After briefly discussing the relevant equations, we describe the iterative method of solution of the problem and the numerical tools that we have developed and implemented. We finally present some illustrative applications to two resonance lines that form at different heights in the solar atmosphere, and provide a detailed physical interpretation of the calculated Stokes profiles. We find that magneto-optical effects have a strong impact on the linear polarization signals that PRD effects produce in the wings of strong resonance lines. We also show that the weak-field approximation has to be used with caution when PRD effects are considered.

  18. Radiative electron rearrangement and polarization in target K x-ray spectra

    International Nuclear Information System (INIS)

    Jamison, K.A.

    1978-01-01

    Two topics in the atomic physics of ion-atom collisions are studied. The first is an investigation of a free-atom decay process that is shown to be a two-electron one-photon decay. This two-electron decay requires an initial state with multiple inner-shell vacancies that has a high probability of creation in ion-atom collisions. Because this decay promotes one electron to a higher shell while allowing the other to fall to a lower shell, it is referred to as radiative electron rearrangement (RER). The investigation of this process includes the experimental study of the x-ray spectra region approx. 150 eV below the characteristic Kα 1 2 target radiation in third period elements when bombarded by various ion beams in the energy range 1 to 2 MeV/amu. Theoretical calculations of the transition energies, line strengths, and line widths are performed to verify the origin of the RER lines. The second topic of consideration is the study of the polarization of Kα satellite radiation from targets of Al and Si. It is shown that the polarization, which is observed experimentally with a curved-crystal polarimeter, is due to the nonstatistical population of the magnetic substates created in specific ion-atom collisions. Further, the polarization of the RER lines is studied. The connection between the polarization of the normal Kα satellite radiation and the polarization of the RER lines adds final proof to their origin as two-electron one-photon transitions

  19. Circular polarization of γ-quanta radiated in the capture of polarized neutrons by protons and the quark compound bag model

    International Nuclear Information System (INIS)

    Grach, I.L.; Shmatkov, M.Zh.

    1983-01-01

    The circular polarization Psub(γ) of γ-quanta radiated in the capture of polarized neutrons by protons is calculated The contribution of the M1 and E2 radiation of nucleons to Psub(γ) is found using the accurate wave functions of the continuous spectrum. The contribution of the six-quark bag to the polarization Psub(γ) is determined. The value of Psub(γ) is related to the admixture of the 6q-bag in the deuteron. Experimental value of Psub(γ) corresponds to small (< or approximately 0.7%) admixture of the bag

  20. Chemical aspects of radiation damage processes: radiolysis

    International Nuclear Information System (INIS)

    Asmus, K.D.

    1975-01-01

    The formation of primary species and radiation chemical yields are discussed. In a section on chemical scavenging of primary species the author considers scavenging kinetics and competition reactions and gives a brief outline of some experimental methods. The radiation chemistry of aqueous solutions is discussed as an example for polar solvents. Cyclohexane is used as an example for non-polar solvents. The importance of excited states and energy transfer is considered. Reactions in the solid state are discussed and results on linear energy transfer and average ion pair formation for various kinds of radiation are surveyed. (B.R.H.)

  1. Discrete diffusion Lyman α radiative transfer

    Science.gov (United States)

    Smith, Aaron; Tsang, Benny T.-H.; Bromm, Volker; Milosavljević, Miloš

    2018-06-01

    Due to its accuracy and generality, Monte Carlo radiative transfer (MCRT) has emerged as the prevalent method for Lyα radiative transfer in arbitrary geometries. The standard MCRT encounters a significant efficiency barrier in the high optical depth, diffusion regime. Multiple acceleration schemes have been developed to improve the efficiency of MCRT but the noise from photon packet discretization remains a challenge. The discrete diffusion Monte Carlo (DDMC) scheme has been successfully applied in state-of-the-art radiation hydrodynamics (RHD) simulations. Still, the established framework is not optimal for resonant line transfer. Inspired by the DDMC paradigm, we present a novel extension to resonant DDMC (rDDMC) in which diffusion in space and frequency are treated on equal footing. We explore the robustness of our new method and demonstrate a level of performance that justifies incorporating the method into existing Lyα codes. We present computational speedups of ˜102-106 relative to contemporary MCRT implementations with schemes that skip scattering in the core of the line profile. This is because the rDDMC runtime scales with the spatial and frequency resolution rather than the number of scatterings—the latter is typically ∝τ0 for static media, or ∝(aτ0)2/3 with core-skipping. We anticipate new frontiers in which on-the-fly Lyα radiative transfer calculations are feasible in 3D RHD. More generally, rDDMC is transferable to any computationally demanding problem amenable to a Fokker-Planck approximation of frequency redistribution.

  2. The polarization of the far-infrared radiation from the Galactic center

    Science.gov (United States)

    Werner, M. W.; Davidson, J. A.; Morris, M.; Novak, G.; Platt, S. R.

    1988-01-01

    The first detection of linear polarization of the far-infrared (100-micron) radiation from the about 3-pc-diameter dust ring surrounding the galactic nucleus is reported. The percentage of polarization is between 1 and 2 percent at the three measured positions. It is argued that the polarized radiation is produced by thermal emission from elongated interstellar grains oriented by the local magnetic field. The dust ring is optically thin at 100 microns; therefore the observations sample dust through the entire depth of the cloud and are free of confusing effects due to embedded sources, scattering, or selective absorption. These data provide the first information about the configuration of the magnetic field in the dust ring.

  3. Radiative Transfer Theory Verified by Controlled Laboratory Experiments

    Science.gov (United States)

    Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur

    2013-01-01

    We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.

  4. Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Ge, Wenjun [University of California Merced (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.

  5. Polarization transfer in inelastic scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1980-01-01

    Polarization transfer experiments are now feasible for inelastic scattering experiments on complex nuclei. Experiments thus far have dealt with the spin-flip probability; this observable is sensitive to the action of spin-spin and tensor forces in inelastic scattering. Spin-flip probabilities at E approx. 40 MeV in isoscalar transitions in 12 C(12.71 MeV) and 15 O(8.89 MeV) show considerable deviation from DWBA-shell model predictions; this deviation indicates evidence for more complex reaction mechanisms. Experiments at intermediate energies will soon be possible and will yield data of much higher precision than is possible at lower (E < 100 MeV) energies. These experiments hold exciting promise in such areas as nuclear critical opalescence. 7 figures, 1 table

  6. A relativistic radiation transfer benchmark

    International Nuclear Information System (INIS)

    Munier, A.

    1988-01-01

    We use the integral form of the radiation transfer equation in an one dimensional slab to determine the time-dependent propagation of the radiation energy, flux and pressure in a collisionless homogeneous medium. First order v/c relativistic terms are included and the solution is given in the fluid frame and the laboratory frame

  7. New developments on the generation of arbitrary polarized radiation from insertion devices

    International Nuclear Information System (INIS)

    Elleaume, P.

    1991-01-01

    The complete description of the polarization of a beam of radiation is described in terms of the total energy and three polarization rates. The polarization characteristics from conventional undulators and wigglers is recalled. A presentation is made of some new insertion devices that were proposed and/or built to generate circular polarization and more generally to improve the control of polarization. They are the asymmetric and elliptical wigglers and the helical and crossed undulators

  8. RRTM: A rapid radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  9. Neutronics methods for thermal radiative transfer

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1988-01-01

    The equations of thermal radiative transfer are time discretized in a semi-implicit manner, yielding a linear transport problem for each time step. The governing equation in this problem has the form of a neutron transport equation with fission but no scattering. Numerical methods are described, whose origins lie in neutron transport, and that have been successfully adapted to this new problem. Acceleration methods that have been developed specifically for the radiative transfer problem, but may have generalizations applicable in neutronics problems, are also discussed

  10. Radiative transfer in type I supernovae atmospheres

    International Nuclear Information System (INIS)

    Isern, J.; Lopez, R.; Simonneau, E.

    1987-01-01

    Type I Supernovae are thought to be the result of the thermonuclear explosion of a carbon oxygen white dwarf in a close binary system. As the only direct information concerning the physics and the triggering mechanism of supernova explosions comes from the spectrophotometry of the emitted radiation, it is worthwhile to put considerable effort on the understanding of the radiation transfer in the supernovae envelopes in order to set constraints on the theoretical models of such explosions. In this paper we analyze the role played by the layers curvature on the radiative transfer. (Author)

  11. Fundamental radiation effect on polymers energy transfer from radiation to polymer

    International Nuclear Information System (INIS)

    Seguchi, T.

    2007-01-01

    Polymer modification as cross-link, chain scission, and graft-polymerization by radiation is initiated by the quantum energy transferred from radiation to polymers. The active species for chemical reactions are produced through ionization or activation of polymer molecules for any radiation source. The energy transfer occurs mainly by ionic interaction between radiation and polymer molecule, and the contribution from the collision interaction is miner. The radiation of electromagnetic wave as X-ray or γ-ray generates the energetic electron which induces ionic interaction with polymer molecule. The energy loss profile along the penetration to polymer material is much different among the radiation sources of EB, γ-ray, and ion beams in the macroscopic mechanism. In this article, the behavior of single event, that is, the event induced by one electron, γ-ray, ion, and neutron is described by the macroscopic mechanism and by the microscopic mechanism. (authors)

  12. Spin transfer matrix formulation and snake resonances for polarized proton beams

    International Nuclear Information System (INIS)

    Tepikian, S.

    1986-01-01

    The polarization of a spin polarized proton beam in a circular accelerator is described by a spin transfer matrix. Using this method, they investigate three problems: (1) the crossing of multiple spin resonances, (2) resonance jumping and (3) an accelerator with Siberian snakes. When crossing two (or more) spin resonances, there are no analytic solutions available. However, they can obtain analytic expressions if the two spin resonances are well separated (nonoverlapping) or very close together (overlapping). Between these two extremes they resort to numerical solution of the spin equations. Resonance jumping can be studied using the tools developed for analyzing the cross of multiple spin resonances. These theoretical results compare favorably with experimental results obtained from the AGS at Brookhaven. For large accelerators, resonance jumping becomes impractical and other methods such as Siberian snakes must be used to keep the beam spin polarized. An accelerator with Siberian snakes and isolated spin resonances can be described with a spin transfer matrix. From this, they find a new type of spin depolarizing resonance, called snake resonances

  13. Towards linearization of atmospheric radiative transfer in spherical geometry

    International Nuclear Information System (INIS)

    Walter, Holger H.; Landgraf, Jochen

    2005-01-01

    We present a general approach for the linearization of radiative transfer in a spherical planetary atmosphere. The approach is based on the forward-adjoint perturbation theory. In the first part we develop the theoretical background for a linearization of radiative transfer in spherical geometry. Using an operator formulation of radiative transfer allows one to derive the linearization principles in a universally valid notation. The application of the derived principles is demonstrated for a radiative transfer problem in simplified spherical geometry in the second part of this paper. Here, we calculate the derivatives of the radiance at the top of the atmosphere with respect to the absorption properties of a trace gas species in the case of a nadir-viewing satellite instrument

  14. Radiative polarization in high-energy storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.

    1989-01-01

    Electron and positron beams circulating in high-energy storage rings become spontaneously polarized by the emission of synchrotron radiation. The asymptotic degree of polarization that can be attained is strongly affected by so-called depolarizing resonances. Detailed experimental measurements of the polarization were made SPEAR about ten years ago, but due to lack of a suitable theory only a limited theoretical fit to the data has so far been achieved. The author presents a general formalism for calculating depolarizing resonances, which has been coded into a computer program called SMILE, and use it to fit the SPEAR data. By the use of suitable approximations, the author is able to fit both higher order and nonlinear resonances, and thereby to interpret many hitherto unexplained features in the data, and to resolve a puzzle concerning the asymmetry of certain resonance widths seen in the data. 18 refs., 2 figs

  15. Evaluation method for radiative heat transfer in polydisperse water droplets

    International Nuclear Information System (INIS)

    Maruyama, Shigenao; Nakai, Hirotaka; Sakurai, Atsushi; Komiya, Atsuki

    2008-01-01

    Simplifications of the model for nongray radiative heat transfer analysis in participating media comprised of polydisperse water droplets are presented. Databases of the radiative properties for a water droplet over a wide range of wavelengths and diameters are constructed using rigorous Mie theory. The accuracy of the radiative properties obtained from the database interpolation is validated by comparing them with those obtained from the Mie calculations. The radiative properties of polydisperse water droplets are compared with those of monodisperse water droplets with equivalent mean diameters. Nongray radiative heat transfer in the anisotropic scattering fog layer, including direct and diffuse solar irradiations and infrared sky flux, is analyzed using REM 2 . The radiative heat fluxes within the fog layer containing polydisperse water droplets are compared with those in the layer containing monodisperse water droplets. Through numerical simulation of the radiative heat transfer, polydisperse water droplets can be approximated by using the Sauter diameter, a technique that can be useful in several research fields, such as engineering and atmospheric science. Although this approximation is valid in the case of pure radiative transfer problems, the Sauter diameter is reconfirmed to be the appropriate diameter for approximating problems in radiative heat transfer, although volume-length mean diameter shows better accordance in some cases. The CPU time for nongray radiative heat transfer analysis with a fog model is evaluated. It is proved that the CPU time is decreased by using the databases and the approximation method for polydisperse particulate media

  16. Strain-induced modulation of near-field radiative transfer.

    Science.gov (United States)

    Ghanekar, Alok; Ricci, Matthew; Tian, Yanpei; Gregory, Otto; Zheng, Yi

    2018-06-11

    In this theoretical study, we present a near-field thermal modulator that exhibits change in radiative heat transfer when subjected to mechanical stress/strain. The device has two terminals at different temperatures separated by vacuum: one fixed and one stretchable. The stretchable side contains one-dimensional grating. When subjected to mechanical strain, the effective optical properties of the stretchable side are affected upon deformation of the grating. This results in modulation of surface waves across the interfaces influencing near-field radiative heat transfer. We show that for a separation of 100 nm, it is possible to achieve 25% change in radiative heat transfer for a strain of 10%.

  17. 3D radiative transfer in stellar atmospheres

    International Nuclear Information System (INIS)

    Carlsson, M

    2008-01-01

    Three-dimensional (3D) radiative transfer in stellar atmospheres is reviewed with special emphasis on the atmospheres of cool stars and applications. A short review of methods in 3D radiative transfer shows that mature methods exist, both for taking into account radiation as an energy transport mechanism in 3D (magneto-) hydrodynamical simulations of stellar atmospheres and for the diagnostic problem of calculating the emergent spectrum in more detail from such models, both assuming local thermodynamic equilibrium (LTE) and in non-LTE. Such methods have been implemented in several codes, and examples of applications are given.

  18. Lactational transfer of mercury and polychlorinated biphenyls in polar bears.

    Science.gov (United States)

    Knott, Katrina K; Boyd, Daryle; Ylitalo, Gina M; O'Hara, Todd M

    2012-07-01

    We examined concentrations of total mercury (tHg, inorganic and methylated forms) and polychlorinated biphenyls (PCBs) in blood and milk from free-ranging Southern Beaufort-Chukchi Sea polar bears (Ursus maritimus) to assess maternal transfer of contaminants during lactation and the potential health risk to nursing young. Concentrations of contaminants in the blood of dependent and juvenile animals (ages 1-5 years) ranged from 35.9 to 52.2 μg kg(-1) ww for tHg and 13.9 to 52.2 μg kg(-1) ww (3255.81-11067.79 μg kg(-1) lw) for ΣPCB(7)s, similar to those of adult females, but greater than adult males. Contaminant concentrations in milk ranged from 5.7 to 71.8 μg tHg kg(-1)ww and 160 to 690 μg ΣPCB(11)s kg(-1) ww (547-5190 μg kg(-1) lw). The daily intake levels for tHg by milk consumption estimated for dependent young were below the tolerable daily intake level (TDIL) of tHg established for adult humans. Although the daily intake levels of PCBs through milk consumption for cubs of the year exceeded the TDIL thresholds, calculated dioxin equivalents for PCBs in milk were below adverse physiological thresholds for aquatic mammals. Relatively high concentrations of non-dioxin like PCBs in polar bear milk and blood could impact endocrine function of Southern Beaufort-Chukchi Sea polar bears, but this is uncertain. Transfer of contaminants during mid to late lactation likely limits bioaccumulation of dietary contaminants in female polar bears during spring. As polar bears respond to changes in their arctic sea ice habitat, the adverse health impacts associated with nutritional stress may be exacerbated by tHg and PCBs exposure, especially in ecologically and toxicologically sensitive polar bear cohorts such as reproductive females and young. Copyright © 2012. Published by Elsevier Ltd.

  19. Polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory

    Science.gov (United States)

    Tsang, Leung; Chan, Chi Hou; Kong, Jin AU; Joseph, James

    1992-01-01

    Complete polarimetric signatures of a canopy of dielectric cylinders overlying a homogeneous half space are studied with the first and second order solutions of the vector radiative transfer theory. The vector radiative transfer equations contain a general nondiagonal extinction matrix and a phase matrix. The energy conservation issue is addressed by calculating the elements of the extinction matrix and the elements of the phase matrix in a manner that is consistent with energy conservation. Two methods are used. In the first method, the surface fields and the internal fields of the dielectric cylinder are calculated by using the fields of an infinite cylinder. The phase matrix is calculated and the extinction matrix is calculated by summing the absorption and scattering to ensure energy conservation. In the second method, the method of moments is used to calculate the elements of the extinction and phase matrices. The Mueller matrix based on the first order and second order multiple scattering solutions of the vector radiative transfer equation are calculated. Results from the two methods are compared. The vector radiative transfer equations, combined with the solution based on method of moments, obey both energy conservation and reciprocity. The polarimetric signatures, copolarized and depolarized return, degree of polarization, and phase differences are studied as a function of the orientation, sizes, and dielectric properties of the cylinders. It is shown that second order scattering is generally important for vegetation canopy at C band and can be important at L band for some cases.

  20. Transfer of polarized light in planetary atmospheres basic concepts and practical methods

    CERN Document Server

    Hovenier, Joop W; Domke, Helmut

    2004-01-01

    The principal elements of the theory of polarized light transfer in planetary atmospheres are expounded in a systematic but concise way. Basic concepts and practical methods are emphasized, both for single and multiple scattering of electromagnetic radiation by molecules and particles in the atmospheres of planets in the Solar System, including the Earth, and beyond. A large part of the book is also useful for studies of light scattering by particles in comets, the interplanetary and interstellar medium, circumstellar disks, reflection nebulae, water bodies like oceans and suspensions of particles in a gas or liquid in the laboratory. Throughout the book symmetry principles, such as the reciprocity principle and the mirror symmetry principle, are employed. In this way the theory is made more transparent and easier to understand than in most papers on the subject. In addition, significant computational reductions, resulting from symmetry principles, are presented. Hundreds of references to relevant literature ...

  1. Transfer matrix method for four-flux radiative transfer.

    Science.gov (United States)

    Slovick, Brian; Flom, Zachary; Zipp, Lucas; Krishnamurthy, Srini

    2017-07-20

    We develop a transfer matrix method for four-flux radiative transfer, which is ideally suited for studying transport through multiple scattering layers. The model predicts the specular and diffuse reflection and transmission of multilayer composite films, including interface reflections, for diffuse or collimated incidence. For spherical particles in the diffusion approximation, we derive closed-form expressions for the matrix coefficients and show remarkable agreement with numerical Monte Carlo simulations for a range of absorption values and film thicknesses, and for an example multilayer slab.

  2. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  3. Comparison of Commonly-Used Microwave Radiative Transfer Models for Snow Remote Sensing

    Science.gov (United States)

    Royer, Alain; Roy, Alexandre; Montpetit, Benoit; Saint-Jean-Rondeau, Olivier; Picard, Ghislain; Brucker, Ludovic; Langlois, Alexandre

    2017-01-01

    This paper reviews four commonly-used microwave radiative transfer models that take different electromagnetic approaches to simulate snow brightness temperature (T(sub B)): the Dense Media Radiative Transfer - Multi-Layer model (DMRT-ML), the Dense Media Radiative Transfer - Quasi-Crystalline Approximation Mie scattering of Sticky spheres (DMRT-QMS), the Helsinki University of Technology n-Layers model (HUT-nlayers) and the Microwave Emission Model of Layered Snowpacks (MEMLS). Using the same extensively measured physical snowpack properties, we compared the simulated T(sub B) at 11, 19 and 37 GHz from these four models. The analysis focuses on the impact of using different types of measured snow microstructure metrics in the simulations. In addition to density, snow microstructure is defined for each snow layer by grain optical diameter (Do) and stickiness for DMRT-ML and DMRT-QMS, mean grain geometrical maximum extent (D(sub max)) for HUT n-layers and the exponential correlation length for MEMLS. These metrics were derived from either in-situ measurements of snow specific surface area (SSA) or macrophotos of grain sizes (D(sub max)), assuming non-sticky spheres for the DMRT models. Simulated T(sub B) sensitivity analysis using the same inputs shows relatively consistent T(sub B) behavior as a function of Do and density variations for the vertical polarization (maximum deviation of 18 K and 27 K, respectively), while some divergences appear in simulated variations for the polarization ratio (PR). Comparisons with ground based radiometric measurements show that the simulations based on snow SSA measurements have to be scaled with a model-specific factor of Do in order to minimize the root mean square error (RMSE) between measured and simulated T(sub B). Results using in-situ grain size measurements (SSA or D(sub max), depending on the model) give a mean T(sub B) RMSE (19 and 37 GHz) of the order of 16-26 K, which is similar for all models when the snow

  4. Analyzing powers and proton spin transfer coefficients in the elastic scattering of 800 MeV polarized protons from an L-type polarized deuteron target at small momentum transfers

    International Nuclear Information System (INIS)

    Adams, D.L.

    1986-10-01

    Analyzing powers and spin transfer coefficients which describe the elastic scattering of polarized protons from a polarized deuteron target have been measured. The energy of the proton beam was 800 MeV and data were taken at laboratory scattering angles of 7, 11, 14, and 16.5 degrees. One analyzing power was also measured at 180 degrees. Three linearly independent orientations of the beam polarization were used and the target was polarized parallel and antiparallel to the direction of the beam momentum. The data were taken with the high resolution spectrometer at the Los Alamos Meson Physics Facility (experiment 685). The results are compared with multiple scattering predictions based on Dirac representations of the nucleon-nucleon scattering matrices. 27 refs., 28 figs., 4 tabs

  5. Investigation of resonant polarization radiation of relativistic electrons in gratings at small angles

    International Nuclear Information System (INIS)

    Aleinik, A.N.; Chefonov, O.V.; Kalinin, B.N.; Naumenko, G.A.; Potylitsyn, A.P.; Saruev, G.A.; Sharafutdinov, A.F.

    2003-01-01

    The resonant optical polarization radiation (ROPR) in the Smith-Purcell geometry and the one from the inclined grating at the Tomsk synchrotron and 6-MeV microtron have been investigated. The polarization radiation was observed at 4.2 deg. from the 200 MeV electron beam and at 5 deg. from the 6.2 MeV electron beam. Two methods of measurement of ROPR maxima in these two cases have been used. In the first case (the experiment on synchrotron) we have fixed the wavelength of radiation using an optical filter; the orientation dependence of this radiation was measured. In this dependence we have observed two peaks of radiation from electrons in gold foil grating of 0.1 mm period. The first large peak is a zeroth order peak in direction of specular reflection, and the second one is the first-order peak of resonant polarization radiation. In the experiment on microtron the spectra of ROPR from aluminum foil strip grating of 0.2 mm period in the Smith-Purcell geometry were measured, and the peak of the first-order Smith-Purcell radiation in these spectra was observed. The comparison of data obtained with the simulation results has been performed

  6. Calibration of the degree of linear polarization measurements of the polarized Sun-sky radiometer based on the POLBOX system.

    Science.gov (United States)

    Li, Zhengqiang; Li, Kaitao; Li, Li; Xu, Hua; Xie, Yisong; Ma, Yan; Li, Donghui; Goloub, Philippe; Yuan, Yinlin; Zheng, Xiaobing

    2018-02-10

    Polarization observation of sky radiation is the frontier approach to improve the remote sensing of atmospheric components, e.g., aerosol and clouds. The polarization calibration of the ground-based Sun-sky radiometer is the basis for obtaining accurate degree of linear polarization (DOLP) measurement. In this paper, a DOLP calibration method based on a laboratory polarized light source (POLBOX) is introduced in detail. Combined with the CE318-DP Sun-sky polarized radiometer, a calibration scheme for DOLP measurement is established for the spectral range of 440-1640 nm. Based on the calibration results of the Sun-sky radiometer observation network, the polarization calibration coefficient and the DOLP calibration residual are analyzed statistically. The results show that the DOLP residual of the calibration scheme is about 0.0012, and thus it can be estimated that the final DOLP calibration accuracy of this method is about 0.005. Finally, it is verified that the accuracy of the calibration results is in accordance with the expected results by comparing the simulated DOLP with the vector radiative transfer calculations.

  7. Radiometric calibration of a polarization-sensitive sensor

    International Nuclear Information System (INIS)

    Ahmad, S.P.; Markham, B.L.

    1992-01-01

    The radiometric accuracy of a sensor is adversely affected by scene polarization if its optical system is sensitive to polarization. Tests performed on the reflective bands of the NS001 Thematic Mapper simulator, an aircraft multispectral scanner, show that it is very sensitive to the polarization state of the incoming radiations. For 100 percent linearly polarized light, errors in the measured intensity vary from -40 to +40 percent, depending on the scan angle and spectral band. To estimate polarization-induced errors in the intensity measured at aircraft level, the intensity and polarization of the atmospheric radiances were simulated using a realistic earth-atmosphere radiative transfer model. For the polarization of atmospheric radiances in the solar meridian plane over a vegetated target, intensity errors may range from -10 to + 10 percent. The polarization-induced errors are highest in the shortest NS001 spectral band (0.450-0.525 microns) because of large atmospheric polarizations contributed by Rayleigh particles and small diluting effects caused by the small contributions of weakly polarized radiations coming from aerosols and the surface. Depending on the illumination and view angles, the errors in derived surface reflectance due to the radiance errors can be very large. In particular, for large off-nadir view angles in the forward scattered direction when the sun is low, the relative errors in the derived surface reflectance can be as large as 4 to 5 times the relative error in the radiances. Polarization sensitivity errors cannot be neglected for the shorter wavelengths when the surface reflectance contribution to atmospheric radiances is very small. 40 refs

  8. Atmospheric radiative transfer modeling: a summary of the AER codes

    Energy Technology Data Exchange (ETDEWEB)

    Clough, S.A. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Shephard, M.W. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States)]. E-mail: mshephar@aer.com; Mlawer, E.J. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Delamere, J.S. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Iacono, M.J. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Cady-Pereira, K. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Boukabara, S. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States); Brown, P.D. [Atmospheric and Environmental Research (AER) Inc., 131 Hartwell Avenue, Lexington, MA 02421-3126 (United States)

    2005-03-01

    The radiative transfer models developed at AER are being used extensively for a wide range of applications in the atmospheric sciences. This communication is intended to provide a coherent summary of the various radiative transfer models and associated databases publicly available from AER (http://www.rtweb.aer.com). Among the communities using the models are the remote sensing community (e.g. TES, IASI), the numerical weather prediction community (e.g. ECMWF, NCEP GFS, WRF, MM5), and the climate community (e.g. ECHAM5). Included in this communication is a description of the central features and recent updates for the following models: the line-by-line radiative transfer model (LBLRTM); the line file creation program (LNFL); the longwave and shortwave rapid radiative transfer models, RRTM{sub L}W and RRTM{sub S}W; the Monochromatic Radiative Transfer Model (MonoRTM); the MT{sub C}KD Continuum; and the Kurucz Solar Source Function. LBLRTM and the associated line parameter database (e.g. HITRAN 2000 with 2001 updates) play a central role in the suite of models. The physics adopted for LBLRTM has been extensively analyzed in the context of closure experiments involving the evaluation of the model inputs (e.g. atmospheric state), spectral radiative measurements and the spectral model output. The rapid radiative transfer models are then developed and evaluated using the validated LBLRTM model.

  9. APC: A New Code for Atmospheric Polarization Computations

    Science.gov (United States)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2014-01-01

    A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface.

  10. Extending generalized Kubelka-Munk to three-dimensional radiative transfer.

    Science.gov (United States)

    Sandoval, Christopher; Kim, Arnold D

    2015-08-10

    The generalized Kubelka-Munk (gKM) approximation is a linear transformation of the double spherical harmonics of order one (DP1) approximation of the radiative transfer equation. Here, we extend the gKM approximation to study problems in three-dimensional radiative transfer. In particular, we derive the gKM approximation for the problem of collimated beam propagation and scattering in a plane-parallel slab composed of a uniform absorbing and scattering medium. The result is an 8×8 system of partial differential equations that is much easier to solve than the radiative transfer equation. We compare the solutions of the gKM approximation with Monte Carlo simulations of the radiative transfer equation to identify the range of validity for this approximation. We find that the gKM approximation is accurate for isotropic scattering media that are sufficiently thick and much less accurate for anisotropic, forward-peaked scattering media.

  11. Observations of the polarization of the radiation of R-association stars

    International Nuclear Information System (INIS)

    Pavlova, L.A.; Rspaev, F.K.

    1987-01-01

    New observations have been made of the polarization parameters of the radiation of stars in the reflection nebulas in the regions of Cas, Per R1, Ser, CMa R1. Some stars with variable polarization have been found. For some stars, the parameters of the intrinsic circumstellar polarization have been calculated with allowance for the interstellar component using Serkowski's method. The connection between the polarization vector and the structure of the nebulas is considered. For the region CMa R1 a local magnetic field with a scale determined by the size of the association is identified

  12. Scattering Polarization in Solar Flares

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Jiří; Heinzel, Petr

    2013-01-01

    Roč. 778, č. 1 (2013), L6/1-L6/6 ISSN 2041-8205 R&D Projects: GA ČR GAP209/12/1652; GA ČR GPP209/12/P741 Institutional support: RVO:67985815 Keywords : line formation * polarization * radiative transfer Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.602, year: 2013

  13. Polarization spectrum of supernova 1987A interpreted in terms of shape asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, D J

    1987-10-01

    Polarimetry carried out on the type II supernova 1987A on 6 and 7 March 1987 showed variation in polarization across line profiles. This polarization structure is interpreted as arising from an asymmetric, homologously expanding, scattering atmosphere surrounding an asymmetric continuum-producing photosphere. Resonant scattering of radiation by ions in the atmosphere produces the line structure in the flux spectrum and polarizes the emergent radiation. The asymmetric shape of the atmosphere causes a non-zero net polarization. Sobolev-method radiative transfer calculations with axisymmetric oblate ellipsoidal models have been carried out to fit the observed data. The models are parameterized by the ratio of the symmetry axis to the perpendicular axis, c/a. The fits to the 1987A data indicate that (c/a) is approx. 0.6-0.8.

  14. Construction and performance of BL28 of the Photon Factory for circularly polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Kagoshima, Y.; Muto, S.; Miyahara, T.; Koide, T.; Yamamoto, S.; Kitamura, H.

    1992-01-01

    A branch beamline, BL28A, has been constructed for the application of circularly polarized vacuum ultraviolet radiation. The radiation can be obtained in the helical undulator operation mode of an insertion device, EMPW number-sign 28, which is also cut for elliptically polarized hard x-ray radiation. T first harmonic of the helical undulator radiation can be tuned from 40 to 350 eV with its corresponding K value from 3 to 0.2. A monochromator working basically with constant deviation optics was installed, and has started its operation. A circularly polarized flux of ∼10 10 photons/s has been achieved with energy resolution of around 500--1000 at the first harmonic peak. The circular polarization after the monochromator was estimated to be higher than 70% by comparing theory and experiment on the magnetic circular dichroism of nickel films in the 3p-3d excitation region. The design philosophy of the beamline and recent results on the performance tests are presented

  15. Construction and performance of BL28 of the Photon Factory for circularly polarized synchrotron radiation

    Science.gov (United States)

    Kagoshima, Yasushi; Muto, Sadatsugu; Miyahara, Tsuneaki; Koide, Tsuneharu; Yamamoto, Shigeru; Kitamura, Hideo

    1992-01-01

    A branch beamline, BL28A, has been constructed for the application of circularly polarized vacuum ultraviolet radiation. The radiation can be obtained in the helical undulator operation mode of an insertion device, EMPW♯28, which is also cut for elliptically polarized hard x-ray radiation. T first harmonic of the helical undulator radiation can be tuned from 40 to 350 eV with its corresponding K value from 3 to 0.2. A monochromator working basically with constant deviation optics was installed, and has started its operation. A circularly polarized flux of ˜1010 photons/s has been achieved with energy resolution of around 500-1000 at the first harmonic peak. The circular polarization after the monochromator was estimated to be higher than 70% by comparing theory and experiment on the magnetic circular dichroism of nickel films in the 3p-3d excitation region. The design philosophy of the beamline and recent results on the performance tests are presented.

  16. [The Effect of Observation Geometry on Polarized Skylight Spectrum].

    Science.gov (United States)

    Zhang, Ren-bin; Wang, Ling-mei; Gao, Jun; Wang, Chi

    2015-03-01

    Study on polarized skylight spectral characters while observation geometry changing in different solar zenith angles (SZA), viewing zenith angles (VZA) or relative azimuth angles (RAA). Simulation calculation of cloudless daylight polarimetric spectrum is realized based on the solver, vector discrete ordinate method, of radiative transfer equation. In the Sun's principal and perpendicular plane, the spectral irradiance data, varying at wavelengths in the range between 0.4 and 3 μm, are calculated to extend the atmospheric polarization spectral information under the conditions: the MODTRAN solar reference spectrur is the only illuminant source; the main influencing factors of polarized radiative transfer include underlying surface albedo, aerosol layers and components, and the absorption of trace gases. Simulation analysis results: (1) While the relative azimuth angle is zero, the magnitude of spectrum U/I is lower than 10(-7) and V/I is negligible, the degree of polarization and the spectrum Q/I are shaped like the letter V or mirror-writing U. (2) In twilight, when the Sun is not in FOV of the detector, the polarization of the daytime sky has two maximum near 0.51 and 2.75 μm, and a minimum near 1.5 μm. For arbitrary observation geometry, the spectral signal of V/I may be ignored. According to observation geometry, choosing different spectral bands or polarized signal will be propitious to targets detection.

  17. The origin of polarized blackbody radiation from resistively heated multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Aliev, Ali E.; Kuznetsov, Alexander A.

    2008-01-01

    We observed very pronounced polarization of light emitted by highly aligned free-standing multiwall carbon nanotube (MWNT) sheet in axial direction which is turned to the perpendicular polarization when a number of layers are increased. The radiation spectrum of resistively heated MWNT sheet closely follows to the Plank's blackbody radiation distribution. The obtained polarization features can be described by a classical dielectric cylindrical shell model, taking into consideration the contribution of delocalized π-electrons (π surface plasmons). In absorption (emission) the optical transverse polarizability, which is much smaller than longitudinal one, is substantially suppressed by depolarization effect due to screening by induced charges. This phenomenon suggests very simple and precise method to estimate the alignment of nanotubes in bundles or large assemblies

  18. A passive and active microwave-vector radiative transfer (PAM-VRT) model

    International Nuclear Information System (INIS)

    Yang, Jun; Min, Qilong

    2015-01-01

    A passive and active microwave vector radiative transfer (PAM-VRT) package has been developed. This fast and accurate forward microwave model, with flexible and versatile input and output components, self-consistently and realistically simulates measurements/radiation of passive and active microwave sensors. The core PAM-VRT, microwave radiative transfer model, consists of five modules: gas absorption (two line-by-line databases and four fast models); hydrometeor property of water droplets and ice (spherical and nonspherical) particles; surface emissivity (from Community Radiative Transfer Model (CRTM)); vector radiative transfer of successive order of scattering (VSOS); and passive and active microwave simulation. The PAM-VRT package has been validated against other existing models, demonstrating good accuracy. The PAM-VRT not only can be used to simulate or assimilate measurements of existing microwave sensors, but also can be used to simulate observation results at some new microwave sensors. - Highlights: • A novel microwave vector radiative transfer model is developed. • It can simulate passive and active microwave radiative transfer simultaneously. • It can be applied to simulate measurements for different types of viewing geometry. • The accuracy of this model has been validated against other existing models

  19. Detecting Super-Thin Clouds With Polarized Light

    Science.gov (United States)

    Sun, Wenbo; Videen, Gorden; Mishchenko, Michael I.

    2014-01-01

    We report a novel method for detecting cloud particles in the atmosphere. Solar radiation backscattered from clouds is studied with both satellite data and a radiative transfer model. A distinct feature is found in the angle of linear polarization of solar radiation that is backscattered from clouds. The dominant backscattered electric field from the clear-sky Earth-atmosphere system is nearly parallel to the Earth surface. However, when clouds are present, this electric field can rotate significantly away from the parallel direction. Model results demonstrate that this polarization feature can be used to detect super-thin cirrus clouds having an optical depth of only 0.06 and super-thin liquid water clouds having an optical depth of only 0.01. Such clouds are too thin to be sensed using any current passive satellite instruments.

  20. Polarization tunable photogenerated carrier transfer of CH3NH3PbI3/polyvinylidene fluoride heterostructure

    Science.gov (United States)

    Yang, Kang; Deng, Zun-Yi; Feng, Hong-Jian

    2017-10-01

    The integration of ferroelectrics and organic-inorganic halide perovskites could be a promising way to facilitate the separation of electron-hole pairs and charge extraction for the application of solar cells. To explore the effect of the external ferroelectric layer on the CH3NH3PbI3 (MAPbI3) side, we perform first-principles calculations to study the charge transfer properties of the MAPbI3/polyvinylidene fluoride (PVDF) heterostructure. Our calculations demonstrate that the ferroelectric polarization pointing to the PVDF side can clearly facilitate the separation of photo-induced carriers and enhance charge extraction from MAPbI3, while opposite polarization direction hinders the charge extraction and collection. Notably, the carrier behavior at the interface is strongly tuned by the electric field associated with the ferroelectric polarization. In addition, excited state simulation confirms the tunable charge transfer of the MAPbI3/PVDF heterojunction. Therefore, the polarization-driven charge transfer mechanism provides a route for fabricating the ferroelectrics-based high-efficiency photovoltaics and switchable diode devices.

  1. Spin transfers for baryon production in polarized pp collisions at RHIC-BNL

    International Nuclear Information System (INIS)

    Ma BoQiang; Schmidt, Ivan; Soffer, Jacques; Yang Jianjun

    2002-01-01

    We consider the inclusive production of longitudinally polarized baryons in p→p collisions at RHIC-BNL, with one longitudinally polarized proton. We study the spin transfer between the initial proton and the produced baryon as a function of its rapidity and we elucidate its sensitivity to the quark helicity distributions of the proton and to the polarized fragmentation functions of the quark into the baryon. We make predictions using an SU(6) quark spectator model and a perturbative QCD (pQCD) based model. We discuss these different predictions, and what can be learned from them, in view of the forthcoming experiments at RHIC-BNL

  2. Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method

    Science.gov (United States)

    Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.

    2005-01-01

    The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.

  3. Direct and indirect effects of radiation on polar solid solutions

    International Nuclear Information System (INIS)

    Ershov, V.G.; Gaponova, I.S.

    1982-01-01

    Radiation-chemical decomposition of a solute is due to the direct effect of ionizing radiation on it and also to its reaction with radical-ion products of radiolysis of the solution. At low temperature, the movement of the reagents is limited, and thus it is possible to isolate and evaluate the contribution of direct and indirect effects of radiation on the solute. The present paper is devoted to an investigation of the mechanism of formation of radicals from a solute (LiNO 2 ) in a polar solid solution (CH 3 OH) under the effect of γ-radiation

  4. SEURAT: SPH scheme extended with ultraviolet line radiative transfer

    Science.gov (United States)

    Abe, Makito; Suzuki, Hiroyuki; Hasegawa, Kenji; Semelin, Benoit; Yajima, Hidenobu; Umemura, Masayuki

    2018-05-01

    We present a novel Lyman alpha (Ly α) radiative transfer code, SEURAT (SPH scheme Extended with Ultraviolet line RAdiative Transfer), where line scatterings are solved adaptively with the resolution of the smoothed particle hydrodynamics (SPH). The radiative transfer method implemented in SEURAT is based on a Monte Carlo algorithm in which the scattering and absorption by dust are also incorporated. We perform standard test calculations to verify the validity of the code; (i) emergent spectra from a static uniform sphere, (ii) emergent spectra from an expanding uniform sphere, and (iii) escape fraction from a dusty slab. Thereby, we demonstrate that our code solves the {Ly} α radiative transfer with sufficient accuracy. We emphasize that SEURAT can treat the transfer of {Ly} α photons even in highly complex systems that have significantly inhomogeneous density fields. The high adaptivity of SEURAT is desirable to solve the propagation of {Ly} α photons in the interstellar medium of young star-forming galaxies like {Ly} α emitters (LAEs). Thus, SEURAT provides a powerful tool to model the emergent spectra of {Ly} α emission, which can be compared to the observations of LAEs.

  5. Maximal near-field radiative heat transfer between two plates

    Science.gov (United States)

    Nefzaoui, Elyes; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl

    2013-09-01

    Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the radiative heat flux are reported and compared to real materials usually considered in similar studies, silicon carbide and heavily doped silicon in this case. Results are obtained by exact and approximate (in the extreme near-field regime and the electrostatic limit hypothesis) calculations. The two methods are compared in terms of accuracy and CPU resources consumption. Their differences are explained according to a mesoscopic description of nearfield radiative heat transfer. Finally, the frequently assumed hypothesis which states a maximal radiative heat transfer when the two semi-infinite planes are of identical materials is numerically confirmed. Its subsequent practical constraints are then discussed. Presented results enlighten relevant paths to follow in order to choose or design materials maximizing nano-TPV devices performances.

  6. High-order solution methods for grey discrete ordinates thermal radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Maginot, Peter G., E-mail: maginot1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States); Morel, Jim E., E-mail: morel@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2016-12-15

    This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation is accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.

  7. Coherent polarization radiation of relativistic electrons in crystals

    International Nuclear Information System (INIS)

    Morokhovskii, V.L.

    2014-01-01

    A brief narration about the history of those heated arguments and discussions around the nature of so-called parametric X-radiation, which were concluded by the recognition of the discovery the phenomenon of coherent polarization bremsstrahlung of relativistic charged particles in crystals. Some important information and comments, which stay over of notice of specialists till now are reported.

  8. Polarization mechanism for Bremsstrahlung and radiative recombination in a plasma with heavy ions

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Bureeva, L.A.; Lisitsa, V.S.

    2002-01-01

    Contribution of polarization channel into radiation and recombination of electrons in plasma with heavy ions is investigated. Cases of hot plasma with temperature T e = 0.5 keV and Fe, Mo, W, U ions and relatively cold plasma with temperature 0.1-10 eV are considered. Calculations of spectral characteristics, full cross sections and recombination rates in plasma are made, bearing in mind its real ionization equilibrium. The calculations are made on the basis of quasiclassical approximation for electron scattering and statistical model of ions. It is shown that contribution of polarization channel is essential both for effective radiation and full rate of radiative recombination [ru

  9. Polarization measurements of auroral kilometric radiation by Dynamics Explorer-1

    International Nuclear Information System (INIS)

    Shawhan, S.D.; Gurnett, D.A.

    1982-01-01

    The plasma wave instrument (PWI) on the Dynamics Explorer-1 has been used to measure polarization of auroral kilometric radiation (AKR) at frequencies of 50 to 400 kHz in both the northern and the southern nightside auroral regions at altitudes of 1 to 3 R/sub E/ above the AKR source regions. The AKR polarization sense is found to be the same as the right hand polarized auroral hiss found in the frequency range of 0.8 to 6.4 kHz. Consequently, these unambiguous direct polarization measurements of AKR lead to the conclusion that AKR escapes the magnetosphere in the R-X mode. Since DE-1 is close to the source region, it can be inferred that AKR is generated predominately in the R-X mode

  10. Order-α radiative corrections for semileptonic decays of polarized baryons

    International Nuclear Information System (INIS)

    Glueck, F.; Toth, K.

    1992-01-01

    Model independent radiative corrections are calculated for the Σ - → neν-bar, Λ → neν-bar and n → peν-bar decays with polarized initial baryons. The method of polarization asymmetry calculations is outlined, and the most important formulae are presented. Numerical results for the corrections to two- and one-dimensional asymmetry distributions and totally integrated asymmetries are tabulated for the electron, neutrino, hadron, α and β asymmetries. (author) 73 refs.; 5 tabs

  11. Evaluation of radiative spin polarization in an electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A W [Stanford Linear Accelerator Center, CA (USA)

    1981-02-15

    We have developed a matrix formalism that provides an accurate way of evaluating the degree of spin polarization built up through the process of synchrotron radiation under a wide variety of storage ring operation conditions.

  12. Atmospheres and spectra of strongly magnetized neutron stars - II. The effect of vacuum polarization

    Science.gov (United States)

    Ho, Wynn C. G.; Lai, Dong

    2003-01-01

    We study the effect of vacuum polarization on the atmosphere structure and radiation spectra of neutron stars with surface magnetic fields B= 1014-1015 G, as appropriate for magnetars. Vacuum polarization modifies the dielectric property of the medium and gives rise to a resonance feature in the opacity; this feature is narrow and occurs at a photon energy that depends on the plasma density. Vacuum polarization can also induce resonant conversion of photon modes via a mechanism analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism for neutrino oscillation. We construct atmosphere models in radiative equilibrium with an effective temperature of a few ×106 K by solving the full radiative transfer equations for both polarization modes in a fully ionized hydrogen plasma. We discuss the subtleties in treating the vacuum polarization effects in the atmosphere models and present approximate solutions to the radiative transfer problem which bracket the true answer. We show from both analytic considerations and numerical calculations that vacuum polarization produces a broad depression in the X-ray flux at high energies (a few keV <~E<~ a few tens of keV) as compared to models without vacuum polarization; this arises from the density dependence of the vacuum resonance feature and the large density gradient present in the atmosphere. Thus the vacuum polarization effect softens the high-energy tail of the thermal spectrum, although the atmospheric emission is still harder than the blackbody spectrum because of the non-grey opacities. We also show that the depression of continuum flux strongly suppresses the equivalent width of the ion cyclotron line and therefore makes the line more difficult to observe.

  13. Radiative heat transfer in low-dimensional systems -- microscopic mode

    Science.gov (United States)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  14. The effect of turbulence-radiation interaction on radiative entropy generation and heat transfer

    International Nuclear Information System (INIS)

    Caldas, Miguel; Semiao, Viriato

    2007-01-01

    The analysis under the second law of thermodynamics is the gateway for optimisation in thermal equipments and systems. Through entropy minimisation techniques it is possible to increase the efficiency and overall performance of all kinds of thermal systems. Radiation, being the dominant mechanism of heat transfer in high-temperature systems, plays a determinant role in entropy generation within such equipments. Turbulence is also known to be a major player in the phenomenon of entropy generation. Therefore, turbulence-radiation interaction is expected to have a determinant effect on entropy generation. However, this is a subject that has not been dealt with so far, at least to the extent of the authors' knowledge. The present work attempts to fill that void, by studying the effect of turbulence-radiation interaction on entropy generation. All calculations are approached in such a way as to make them totally compatible with standard engineering methods for radiative heat transfer, namely the discrete ordinates method. It was found that turbulence-radiation interaction does not significantly change the spatial pattern of entropy generation, or heat transfer, but does change significantly their magnitude, in a way approximately proportional to the square of the intensity of turbulence

  15. Radiative transfer in molecular lines

    Science.gov (United States)

    Asensio Ramos, A.; Trujillo Bueno, J.; Cernicharo, J.

    2001-07-01

    The highly convergent iterative methods developed by Trujillo Bueno and Fabiani Bendicho (1995) for radiative transfer (RT) applications are generalized to spherical symmetry with velocity fields. These RT methods are based on Jacobi, Gauss-Seidel (GS), and SOR iteration and they form the basis of a new NLTE multilevel transfer code for atomic and molecular lines. The benchmark tests carried out so far are presented and discussed. The main aim is to develop a number of powerful RT tools for the theoretical interpretation of molecular spectra.

  16. Active and Passive 3D Vector Radiative Transfer with Preferentially-Aligned Ice Particles

    Science.gov (United States)

    Adams, I. S.; Munchak, S. J.; Pelissier, C.; Kuo, K. S.; Heymsfield, G. M.

    2017-12-01

    To support the observation of clouds and precipitation using combinations of radars and radiometers, a forward model capable of representing diverse sensing geometries for active and passive instruments is necessary for correctly interpreting and consistently combining multi-sensor measurements from ground-based, airborne, and spaceborne platforms. As such, the Atmospheric Radiative Transfer Simulator (ARTS) uses Monte Carlo integration to produce radar reflectivities and radiometric brightness temperatures for three-dimensional cloud and precipitation input fields. This radiative transfer framework is capable of efficiently sampling Gaussian antenna beams and fully accounting for multiple scattering. By relying on common ray-tracing tools, gaseous absorption models, and scattering properties, the model reproduces accurate and consistent radar and radiometer observables. While such a framework is an important component for simulating remote sensing observables, the key driver for self-consistent radiative transfer calculations of clouds and precipitation is scattering data. Research over the past decade has demonstrated that spheroidal models of frozen hydrometeors cannot accurately reproduce all necessary scattering properties at all desired frequencies. The discrete dipole approximation offers flexibility in calculating scattering for arbitrary particle geometries, but at great computational expense. When considering scattering for certain pristine ice particles, the Extended Boundary Condition Method, or T-Matrix, is much more computationally efficient; however, convergence for T-Matrix calculations fails at large size parameters and high aspect ratios. To address these deficiencies, we implemented the Invariant Imbedding T-Matrix Method (IITM). A brief overview of ARTS and IITM will be given, including details for handling preferentially-aligned hydrometeors. Examples highlighting the performance of the model for simulating space-based and airborne measurements

  17. Production of spin-polarized unstable nuclei by using polarized electron capture process

    International Nuclear Information System (INIS)

    Shimizu, S.

    1998-01-01

    Measurements of emitted radiation from spin polarized nuclei are used to get information on electromagnetic moment of ground state unstable nuclei together with spin or parity state of excited states of their decayed (daughter) nuclei. These data are known to be useful for experimental investigation into the structure of unstable nuclei far from the stability line. The present study aims to establish a general method applicable to 11 Be and 16 N nuclei. To produce spin polarization, a new method in which the electron spin polarization of Rb is firstly produced by laser pumping, then the electron is transferred to the unstable nuclear beam (RNB) when they passes through the Rb vapor is proposed. Finally the polarized RNB will be implanted into superfluid helium to remain with a long spin-relaxation time. Future experimental set up for the above measurement adopted in the available radioactive nuclear beam facilities is briefly described. (Ohno, S.)

  18. Three-dimensional transfer of solar radiation in clouds

    International Nuclear Information System (INIS)

    Davies, R.

    1976-01-01

    The results of a theoretical study of the effects of cloud geometry on the transfer of incident solar radiation is presented. These results indicate that a three-dimensional description of cloud geometry is a necessary prerequisite to the accurate determination of the emerging radiation field. Models which make the plane parallel assumption are therefore frequently inadequate. Both a Monte Carlo method and an analytic method were used to model the three-dimensional transfer of radiation. At the expense of considerable computation time the Monte Carlo model provides accurate values of the fluxes and intensities (averages over π/30 steradians) emerging from clouds which can be described as a set of connected cuboidal cells, each cell being homogeneous with respect to extinction coefficient, single scatter albedo and phase function. The analytic model, based on an extension of Eddington's approximation to three dimensions and to anisotropic scattering, is efficient to use, but is restricted to clouds made up of a single cuboidal cell and is more accurate for large clouds than small ones. By an iterated approach, involving integration of the source function along line of sight, the analytic model provides both fluxes and intensities of the emerging radiation at any specified point on the cloud's surface. These models were both applied to a systematic study of the transfer of solar radiation in isolated cuboidal clouds of arbitraty dimensions, the results of which illustrate the importance of considering the total cloud geometry in any attempt at realistic modelling. A study of the transfer of radiation in stratiform clouds with turretted top surfaces also indicated that even for these clouds the plane parallel assumption was often not tenable

  19. Jeans instability in collisional strongly coupled dusty plasma with radiative condensation and polarization force

    International Nuclear Information System (INIS)

    Prajapati, R. P.; Bhakta, S.; Chhajlani, R. K.

    2016-01-01

    The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss, but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.

  20. Comptonization in Ultra-Strong Magnetic Fields: Numerical Solution to the Radiative Transfer Problem

    Science.gov (United States)

    Ceccobello, C.; Farinelli, R.; Titarchuk, L.

    2014-01-01

    We consider the radiative transfer problem in a plane-parallel slab of thermal electrons in the presence of an ultra-strong magnetic field (B approximately greater than B(sub c) approx. = 4.4 x 10(exp 13) G). Under these conditions, the magnetic field behaves like a birefringent medium for the propagating photons, and the electromagnetic radiation is split into two polarization modes, ordinary and extraordinary, that have different cross-sections. When the optical depth of the slab is large, the ordinary-mode photons are strongly Comptonized and the photon field is dominated by an isotropic component. Aims. The radiative transfer problem in strong magnetic fields presents many mathematical issues and analytical or numerical solutions can be obtained only under some given approximations. We investigate this problem both from the analytical and numerical point of view, provide a test of the previous analytical estimates, and extend these results with numerical techniques. Methods. We consider here the case of low temperature black-body photons propagating in a sub-relativistic temperature plasma, which allows us to deal with a semi-Fokker-Planck approximation of the radiative transfer equation. The problem can then be treated with the variable separation method, and we use a numerical technique to find solutions to the eigenvalue problem in the case of a singular kernel of the space operator. The singularity of the space kernel is the result of the strong angular dependence of the electron cross-section in the presence of a strong magnetic field. Results. We provide the numerical solution obtained for eigenvalues and eigenfunctions of the space operator, and the emerging Comptonization spectrum of the ordinary-mode photons for any eigenvalue of the space equation and for energies significantly lesser than the cyclotron energy, which is on the order of MeV for the intensity of the magnetic field here considered. Conclusions. We derived the specific intensity of the

  1. Simulation of solar radiative transfer in cumulus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.

  2. Radiative heat transfer by the Monte Carlo method

    CERN Document Server

    Hartnett †, James P; Cho, Young I; Greene, George A; Taniguchi, Hiroshi; Yang, Wen-Jei; Kudo, Kazuhiko

    1995-01-01

    This book presents the basic principles and applications of radiative heat transfer used in energy, space, and geo-environmental engineering, and can serve as a reference book for engineers and scientists in researchand development. A PC disk containing software for numerical analyses by the Monte Carlo method is included to provide hands-on practice in analyzing actual radiative heat transfer problems.Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university level textbooks by providing in-depth review articles over a broader scope than journals or texts usually allow.Key Features* Offers solution methods for integro-differential formulation to help avoid difficulties* Includes a computer disk for numerical analyses by PC* Discusses energy absorption by gas and scattering effects by particles* Treats non-gray radiative gases* Provides example problems for direct applications in energy, space, and geo-environmental engineering

  3. Radiation effects on heat transfer in heat exchangers, (2)

    International Nuclear Information System (INIS)

    Mori, Yasuo; Watanabe, Kenji; Taira, Tatsuji.

    1980-01-01

    In a high temperature gas-cooled reactor system, in which the working fluid exchanges heat at high temperature near 1000 deg C, the heat transfer acceleration by positively utilizing the radiation heat transfer between solid surfaces should be considered. This paper reports on the results of experiment and analysis for the effects of radiant heat on the heat transfer performance at elevated temperature by applying the heat transfer-accelerating method using radiators to the heat exchanger with tube bundle composed of two channels of heating and heated sides. As the test heat exchangers, a parallel counter flow exchanger and the cross flow exchanger simulating helical tubes were employed, and the results studied on the characteristics of each heat exchanger are described. The plates placed in parallel to flow in every space of the tube bundle arranged in a matrix were used as the heat transfer accelerator. The effects of acceleration with the plates were the increase of heat transmission from 12 to 24% and 12 to 38% in the parallel flow and cross flow heat exchangers, respectively. Also, it was clarified that the theoretical analysis, in which it was assumed that the region within pitch S and two radiator plates, with a heat-transferring tube placed at the center, is the minimum domain for calculation, and that the heat exchange by radiation occurs only between the domain and the adjacent domains, can estimate the heat transfer-accelerating effect and the temperature distribution in a heat exchanger with sufficient accuracy. (Wakatsuki, Y.)

  4. COST meeting - Polarization and AGN II - Abstracts and slides

    International Nuclear Information System (INIS)

    Kishimoto, M.; Rouan, D.; Tadhunter, C.; Lopez Rodriguez, E.; Braibant, L.; Pasetto, A.; Matt, G.; Afanasiev, V.; Lira, P.; Hutsemekers, D.; Sluse, D.; Marin, F.; Tamborra, F.; Yankova, K.; Laing, R.; Lico, R.; Agudo, I.; Hovatta, T.; Jermak, H.; Chen, X.; Myserlis, I.; Cellone, S.A.; Chidiac, C.; Chakraborty, N.; Bozhilov, V.

    2016-01-01

    This meeting is the 2. COST workshop on Polarization and Active Galactic Nuclei (AGN). Accreting supermassive black holes in active galactic nuclei are the most powerful, long-lasting sources in the universe. Emitting over ten orders of magnitude in photon energy or more, the radiation of AGN encodes information about a multitude of astrophysical processes: accretion, thermal and non-thermal radiative transfer, acceleration of outflows and jets, shock physics, special and general relativity. Observationally, AGN appear as numerous types and polarization studies have played a key role in establishing the idea of a unifying AGN geometry. The topics covered at the meeting include the following: 1) Polarimetry of AGN from the radio to gamma-rays; 2) Tools for modeling and data analysis of AGN polarization; 3) Polarization due to magnetic fields and dust in AGN; 4) Polarization of AGN inflows, outflows and jets; 5) Spectropolarimetry and polarization variability of AGN; and 6) From Sgr A* to the most luminous quasars: what can polarimetry do for AGN (super-)unification? This document is made up of the abstracts and slides of the presentations

  5. Heat transfer in Rockwool modelling and method of measurement. Modelling radiative heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the

  6. Polar transfer alignment of shipborne SINS with a large misalignment angle

    International Nuclear Information System (INIS)

    Cheng, Jianhua; Wang, Tongda; Guan, Dongxue; Li, Meiling

    2016-01-01

    Existing polar transfer alignment (TA) algorithms are designed based on linear Kalman filters (KF) to estimate misalignment angles. In the case of a large misalignment angle, these algorithms cannot be applied in order to achieve accurate TA. In this paper, a TA algorithm based on an unscented Kalman filter (UKF) is proposed to solve the problem of the large misalignment angle in the polar region. Based on a large misalignment angle, nonlinear navigation error equations, which are the UKF dynamic models, are derived under grid frames. This paper chooses the velocity plus attitude matching method as the TA matching method and errors of velocity and attitude as observations. The misalignment angle can be estimated by the designed UKF. The simulation results have demonstrated that the polar TA algorithm can be effective in improving the TA accuracy, especially when large misalignment angles occur. (paper)

  7. Determination of Atmospheric Aerosol Characteristics from the Polarization of Scattered Radiation

    Science.gov (United States)

    Harris, F. S., Jr.; McCormick, M. P.

    1973-01-01

    Aerosols affect the polarization of radiation in scattering, hence measured polarization can be used to infer the nature of the particles. Size distribution, particle shape, real and absorption parts of the complex refractive index affect the scattering. From Lorenz-Mie calculations of the 4-Stokes parameters as a function of scattering angle for various wavelengths the following polarization parameters were plotted: total intensity, intensity of polarization in plane of observation, intensity perpendicular to the plane of observation, polarization ratio, polarization (using all 4-Stokes parameters), plane of the polarization ellipse and its ellipticity. A six-component log-Gaussian size distribution model was used to study the effects of the nature of the polarization due to variations in the size distribution and complex refractive index. Though a rigorous inversion from measurements of scattering to detailed specification of aerosol characteristics is not possible, considerable information about the nature of the aerosols can be obtained. Only single scattering from aerosols was used in this paper. Also, the background due to Rayleigh gas scattering, the reduction of effects as a result of multiple scattering and polarization effects of possible ground background (airborne platforms) were not included.

  8. Radiation heat transfer within an open-cycle MHD generator channel

    Science.gov (United States)

    Delil, A. A. M.

    1983-05-01

    Radiation heat transfer in an MHD generator was modeled using the Sparrow and Cess model for radiation in an emitting, absorbing and scattering medium. The resulting general equations can be considerably reduced by introducing simplifying approximations for the channel and MHD gas properties. The simplifications lead to an engineering model, which is very useful for one-dimensional channel flow approximation. The model can estimate thermo-optical MHD gas properties, which can be substituted in the energy equation. The model considers the contribution of solid particles in the MHD gas to radiation heat transfer, considerable in coal-fired closed cycle MHD generators. The modeling is applicable also for other types of flow at elevated temperatures, where radiation heat transfer is an important quantity.

  9. Polarized Radiative Transfer of a Cirrus Cloud Consisting of Randomly Oriented Hexagonal Ice Crystals: The 3 x 3 Approximation for Non-Spherical Particles

    Science.gov (United States)

    Stamnes, S.; Ou, S. C.; Lin, Z.; Takano, Y.; Tsay, S. C.; Liou, K.N.; Stamnes, K.

    2016-01-01

    The reflection and transmission of polarized light for a cirrus cloud consisting of randomly oriented hexagonal columns were calculated by two very different vector radiative transfer models. The forward peak of the phase function for the ensemble-averaged ice crystals has a value of order 6 x 10(exp 3) so a truncation procedure was used to help produce numerically efficient yet accurate results. One of these models, the Vectorized Line-by-Line Equivalent model (VLBLE), is based on the doubling- adding principle, while the other is based on a vector discrete ordinates method (VDISORT). A comparison shows that the two models provide very close although not entirely identical results, which can be explained by differences in treatment of single scattering and the representation of the scattering phase matrix. The relative differences in the reflected I and Q Stokes parameters are within 0.5 for I and within 1.5 for Q for all viewing angles. In 1971 Hansen showed that for scattering by spherical particles the 3 x 3 approximation is sufficient to produce accurate results for the reflected radiance I and the degree of polarization (DOP), and he conjectured that these results would hold also for non-spherical particles. Simulations were conducted to test Hansen's conjecture for the cirrus cloud particles considered in this study. It was found that the 3 x 3 approximation also gives accurate results for the transmitted light, and for Q and U in addition to I and DOP. For these non-spherical ice particles the 3 x 3 approximation leads to an absolute error 2 x 10(exp -6) for the reflected and transmitted I, Q and U Stokes parameters. Hence, it appears to be an excellent approximation, which significantly reduces the computational complexity and burden required for multiple scattering calculations.

  10. Boundary and interface conditions for polarized radiation transport in a multilayer medium

    International Nuclear Information System (INIS)

    Garcia, R.D.M.

    2011-01-01

    In many applications of radiation transport, it is important to consider the changes in the index of refraction that occur when the physical domain being studied consists of material regions with distinct electromagnetic properties. When polarization effects are taken into account, the radiation eld is characterized by a vector of four components known as Stokes vector. At an interface between two different material regions, the reflected and transmitted Stokes vectors are related to the incident Stokes vector by means of reflection and transmission matrices, which are derived from the Fresnel formulas for the amplitude coefficients of reflection and transmission. Having seen that most works on polarized radiation transport that allow for changes in the index of refraction exhibit discrepancies in their expressions for the transmission matrix, we present in this work a careful derivation of the relations between the reflected and transmitted Stokes vectors and the Stokes vector incident on an interface. We obtain a general form of a transmission factor that is required to ensure conservation of energy and we show that most of the discrepancies encountered in existing works are due to the use of improper forms of this factor. In addition, we derive explicit and compact expressions for the Fresnel boundary and interface conditions appropriate to the study of polarized radiation transport in a multilayer medium. (author)

  11. FRET structure with non-radiative acceptor provided by dye-linker-glass surface complex and single-molecule photodynamics by TIRFM-polarized imaging

    International Nuclear Information System (INIS)

    Tani, Toshiro; Mashimo, Kei; Suzuki, Tetsu; Horiuchi, Hiromi; Oda, Masaru

    2008-01-01

    We present our recent study of microscopic single-molecule imaging on the artificial complex of tetramethylrhodamine linked with a propyl chain onto silica glass surface, i.e. an asymmetric fluorescence resonance energy transfer (FRET) structure with non-radiative acceptor. In the synthesis of the complex, we used a mixture of two kinds of isomers to introduce rather small photodynamic difference among them. This isomeric structure change will provide more or less a distinctive photophysical change in e.g. non-radiative relaxation rate. Our recent observation at room temperatures, so far, shows that such contributions can be discriminated in the histograms of the fluorescent spot intensities; broad but distinctive multi-components appear. To identify the isomeric difference as a cause of structures, some configurational assumptions are necessary. One such basic prerequisite is that the transition dipoles of the chromophores should be oriented almost parallel to the glass surface. In order to make clear the modeling, we also provide preliminary experiments on the polarization dependence of the imaging under rotating polarization in epi-illumination

  12. Radiation heat transfer model for the SCDAP code

    International Nuclear Information System (INIS)

    Sohal, M.S.

    1984-01-01

    A radiation heat transfer model has been developed for severe fuel damage analysis which accounts for anisotropic effects of reflected radiation. The model simplifies the view factor calculation which results in significant savings in computational cost with little loss of accuracy. Radiation heat transfer rates calculated by the isotropic and anisotropic models compare reasonably well with those calculated by other models. The model is applied to an experimental nuclear rod bundle during a slow boiloff of the coolant liquid, a situation encountered during a loss of coolant accident with severe fuel damage. At lower temperatures and also lower temperature gradients in the core, the anisotropic effect was not found to be significant

  13. Radiation self-polarization of electrons moving in a magnetic field. [Vector spin operator, relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V G; Dorofeev, O F; Sokolov, A A; Ternov, I M; Khalilov, V R [Moskovskij Gosudarstvennyj Univ. (USSR)

    1975-03-11

    When electrons move in a magnetic field, synchrotron radiation gives rise to transitions accompanied by the electron spin reorientation. In this case, it is essential that the transition probability depends on the spin orientation; as a result electron polarization takes place with the spin orientation being predominantly opposite to the direction of the magnetic field. This effect has been called ''radiative self-polarization of electrons''. The present work is concerned with the question how the choice of the spin operator will affect the self-polarization degree and relaxation time. The problem has been solved for a vector spin operator.

  14. A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface

    International Nuclear Information System (INIS)

    Zhai Pengwang; Hu Yongxiang; Chowdhary, Jacek; Trepte, Charles R.; Lucker, Patricia L.; Josset, Damien B.

    2010-01-01

    We report on an exact vector (polarized) radiative transfer (VRT) model for coupled atmosphere and ocean systems. This VRT model is based on the successive order of scattering (SOS) method, which virtually takes all the multiple scattering processes into account, including atmospheric scattering, oceanic scattering, reflection and transmission through the rough ocean surface. The isotropic Cox-Munk wave model is used to derive the ref and transmission matrices for the rough ocean surface. Shadowing effects are included by the shadowing function. We validated the SOS results by comparing them with those calculated by two independent codes based on the doubling/adding and Monte Carlo methods. Two error analyses related to the ocean color remote sensing are performed in the coupled atmosphere and ocean systems. One is the scalar error caused by ignoring the polarization in the whole system. The other is the error introduced by ignoring the polarization of the light transmitted through the ocean interface. Both errors are significant for the cases studied. This code fits for the next generation of ocean color study because it converges fast for absorbing medium as, for instance, ocean.

  15. Generation of linearly polarized resonant transition radiation X-ray beam

    International Nuclear Information System (INIS)

    Yajima, Kazuaki; Awata, Takaaki; Ikeda, Mitsuharu; Ikeda, Kenichi; Yogo, Akifumi; Itoh, Akio; Imanishi, Nobutsugu

    2000-01-01

    We have proposed a method to generate almost linearly polarized resonant transition radiation X rays by using a rectangular slit placed on an electron beam axis. Our calculation predicted that the linearity is 93.5% for the resonant transition radiation X-ray beam extracted through a slit of 0.5 mrad long and 0.2 mrad wide in case of 1-GeV electron beam irradiating a 7.5-μm thick Kapton foil stack. (author)

  16. Generation of linearly polarized resonant transition radiation X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Yajima, Kazuaki; Awata, Takaaki; Ikeda, Mitsuharu; Ikeda, Kenichi; Yogo, Akifumi; Itoh, Akio; Imanishi, Nobutsugu [Kyoto Univ. (Japan). Dept. of Nuclear Engineering

    2000-03-01

    We have proposed a method to generate almost linearly polarized resonant transition radiation X rays by using a rectangular slit placed on an electron beam axis. Our calculation predicted that the linearity is 93.5% for the resonant transition radiation X-ray beam extracted through a slit of 0.5 mrad long and 0.2 mrad wide in case of 1-GeV electron beam irradiating a 7.5-{mu}m thick Kapton foil stack. (author)

  17. POLARIZED LINE FORMATION WITH LOWER-LEVEL POLARIZATION AND PARTIAL FREQUENCY REDISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Supriya, H. D.; Sampoorna, M.; Nagendra, K. N.; Ravindra, B. [Indian Institute of Astrophysics, Bangalore 560034 (India); Stenflo, J. O. [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2016-09-10

    In the well-established theories of polarized line formation with partial frequency redistribution (PRD) for a two-level and two-term atom, it is generally assumed that the lower level of the scattering transition is unpolarized. However, the existence of unexplained spectral features in some lines of the Second Solar Spectrum points toward a need to relax this assumption. There exists a density matrix theory that accounts for the polarization of all the atomic levels, but it is based on the flat-spectrum approximation (corresponding to complete frequency redistribution). In the present paper we propose a numerical algorithm to solve the problem of polarized line formation in magnetized media, which includes both the effects of PRD and the lower level polarization (LLP) for a two-level atom. First we derive a collisionless redistribution matrix that includes the combined effects of the PRD and the LLP. We then solve the relevant transfer equation using a two-stage approach. For illustration purposes, we consider two case studies in the non-magnetic regime, namely, the J {sub a} = 1, J {sub b} = 0 and J {sub a} = J {sub b} = 1, where J {sub a} and J {sub b} represent the total angular momentum quantum numbers of the lower and upper states, respectively. Our studies show that the effects of LLP are significant only in the line core. This leads us to propose a simplified numerical approach to solve the concerned radiative transfer problem.

  18. Cirrus clouds properties derived from polarized micro pulse lidar (p-mpl) observations at the atmospheric observatory `el arenosillo' (sw iberian peninsula): a case study for radiative implications

    Science.gov (United States)

    Águila, Ana del; Gómez, Laura; Vilaplana, José Manuel; Sorribas, Mar; Córdoba-Jabonero, Carmen

    2018-04-01

    Cirrus (Ci) clouds are involved in Climate Change concerns since they affect the radiative balance of the atmosphere. Recently, a polarized Micro Pulse Lidar (P-MPL), standard system within NASA/MPLNET has been deployed at the INTA/Atmospheric Observatory `El Arenosillo' (ARN), located in the SW Iberian Peninsula. Hence, the INTA/P-MPL system is used for Ci detection over that station for the first time. Radiative effects of a Ci case observed over ARN are examined, as reference for future long-term Ci observations. Optical and macrophysical properties are retrieved, and used for radiative transfer simulations. Data are compared to the measured surface radiation levels and all-sky images simultaneously performed at the ARN station.

  19. Near-field radiative heat transfer between clusters of dielectric nanoparticles

    International Nuclear Information System (INIS)

    Dong, J.; Zhao, J.M.; Liu, L.H.

    2017-01-01

    In this work, we explore the near-field radiative heat transfer between two clusters of silicon carbide (SiC) nanoparticles using the many-body radiative heat transfer theory. The effects of fractal dimension of clusters, many-body interaction between nanoparticles and relative orientation of clusters on the thermal conductance are studied. Meanwhile, the applicability of the equivalent volume spheres (EVS) approximation for near-field radiative heat transfer between clusters is examined. It is observed that the thermal conductance is larger for clusters with larger fractal dimension, which is more significant in the near-field. The thermal conductance of EVS resembles that of the clusters, but EVS overestimates the conductance of clusters, especially in the near-field. Compared to the case of two nanoparticles, the conductance of nanoparticle clusters decays much slower with increasing distance in the near-field, but shares similar dependence on the distance in the far-field. The thermal conductance of SiC nanoparticle clusters is inhibited by the many-body interaction when surface phonon polariton is supported but enhanced at frequencies close to the resonance frequency. The total thermal conductance is decreased due to many-body interaction among particles in the cluster. The relative orientation between the clusters is also an important factor in the near-field, especially for clusters with lower fractal dimension. - Highlights: • Near-field radiative heat transfer between clusters of nanoparticles is studied. • The many-body radiative heat transfer theory is applied for rigorous analysis. • The accuracy of equivalent volume spheres approximation is examined. • Clusters with larger fractal dimension have larger radiative thermal conductance. • Many-body interaction inhibits the total radiative thermal conductance.

  20. Maximal near-field radiative heat transfer between two plates

    OpenAIRE

    Nefzaoui, Elyes; Ezzahri, Younès; Drevillon, Jérémie; Joulain, Karl

    2013-01-01

    International audience; Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the r...

  1. Investigation of vacuum polarization in t-channel radiative Bhabha scattering

    CERN Document Server

    Karlen, D A

    2001-01-01

    We discuss the possibility of a precision measurement of vacuum polarization in t-channel radiative Bhabha scattering at a high luminosity collider. For illustration, the achievable precision is estimated for the BaBar experiment at PEP-II and for the OPAL experiment at LEP.

  2. A 1.5--4 Kelvin detachable cold-sample transfer system: Application to inertially confined fusion with spin-polarized hydrogens fuels

    International Nuclear Information System (INIS)

    Alexander, N.; Barden, J.; Fan, Q.; Honig, A.

    1990-01-01

    A compact cold-transfer apparatus for engaging and retrieving samples at liquid helium temperatures (1.5--4K), maintaining the samples at such temperatures for periods of hours, and subsequently inserting them in diverse apparatuses followed by disengagement, is described. The properties of several thermal radiation-insulating shrouds, necessary for very low sample temperatures, are presented. The immediate intended application is transportable target-shells containing highly spin-polarized deuterons in solid HD or D 2 for inertially confined fusion (ICF) experiments. The system is also valuable for unpolarized high-density fusion fuels, as well as for other applications which are discussed. 9 refs., 6 figs

  3. Emission of circularly polarized recombination radiation from p-doped GaAs and GaAs0.62P0.38 under the impact of polarized electrons

    International Nuclear Information System (INIS)

    Fromme, B.; Baum, G.; Goeckel, D.; Raith, W.

    1989-01-01

    Circularly polarized light is emitted in radiative transitions of polarized electrons from the conduction to the valence band in GaAs or GaAs 1-x P x crystals. The degree of light polarization is directly related to the polarization of the conduction-band electrons at the instant of recombination and allows conclusions about the depolarization of electrons in the conduction band. The depolarization is caused by spin-relaxation processes. The efficiency of these processes depends on crystal type, crystal temperature, degree of doping, and kinetic energy of the electrons. Highly p-doped GaAs and GaAs 0.62 P 0.38 crystals (N A >1x10 19 atoms/cm 3 ) were bombarded with polarized electrons (initial polarization 38%), and the spectral distribution and the circular polarization of the emitted recombination radiation were measured. The initial kinetic energy of the electrons in the conduction band was varied between 5 and 1000 eV. The measurements of the spectral distribution show that the electrons are thermalized before recombination occurs, independent of their initial energy. An important thermalization process in this energy range is the excitation of crystal electrons by electron-hole pair creation. The circular polarization of the recombination radiation lies below 1% in the whole energy range. It decreases with increasing electron energy but is still of measurable magnitude at 100 eV in the case of GaAs 0.62 P 0.38 . The circular polarization is smaller for GaAs than for GaAs 0.62 P 0.38 , which we attribute to more efficient spin relaxation in GaAs

  4. Utrecht Radiative Transfer Courses

    Science.gov (United States)

    Rutten, R. J.

    2003-01-01

    The Utrecht course ``The Generation and Transport of Radiation'' teaches basic radiative transfer to second-year students. It is a much-expanded version of the first chapter of Rybicki & Lightman's ``Radiative Processes in Astrophysics''. After this course, students understand why intensity is measured per steradian, have an Eddington-Barbier feel for optically thick line formation, and know that scattering upsets LTE. The text is a computer-aided translation by Ruth Peterson of my 1992 Dutch-language course. My aim is to rewrite this course in non-computer English and make it web-available at some time. In the meantime, copies of the Peterson translation are made yearly at Uppsala -- ask them, not me. Eventually it should become a textbook. The Utrecht course ``Radiative Transfer in Stellar Atmospheres'' is a 30-hour course for third-year students. It treats NLTE line formation in plane-parallel stellar atmospheres at a level intermediate between the books by Novotny and Boehm-Vitense, and Mihalas' ``Stellar Atmospheres''. After this course, students appreciate that epsilon is small, that radiation can heat or cool, and that computers have changed the field. This course is web-available since 1995 and is regularly improved -- but remains incomplete. Eventually it should become a textbook. The three Utrecht exercise sets ``Stellar Spectra A: Basic Line Formation'', ``Stellar Spectra B: LTE Line Formation'', and ``Stellar Spectra C: NLTE Line Formation'' are IDL-based computer exercises for first-year, second-year, and third-year students, respectively. They treat spectral classification, Saha-Boltzmann population statistics, the curve of growth, the FAL-C solar atmosphere model, the role of H-minus in the solar continuum, LTE formation of Fraunhofer lines, inversion tactics, the Feautrier method, classical lambda iteration, and ALI computation. The first two sets are web-available since 1998; the third will follow. Acknowledgement. Both courses owe much to previous

  5. Photoconductive detector of circularly polarized radiation based on a MIS structure with a CoPt layer

    Science.gov (United States)

    Kudrin, A. V.; Dorokhin, M. V.; Zdoroveishchev, A. V.; Demina, P. B.; Vikhrova, O. V.; Kalent'eva, I. L.; Ved', M. V.

    2017-11-01

    A photoconductive detector of circularly polarized radiation based on the metal-insulator-semiconductor structure of CoPt/(Al2O3/SiO2/Al2O3)/InGaAs/GaAs is created. The efficiency of detection of circularly polarized radiation is 0.75% at room temperature. The operation of the detector is based on the manifestation of the effect of magnetic circular dichroism in the CoPt layer, that is, the dependence of the CoPt transmission coefficient on the sign of the circular polarization of light and magnetization.

  6. One-dimensional transient radiative transfer by lattice Boltzmann method.

    Science.gov (United States)

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2013-10-21

    The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.

  7. The Polarized Radiation Imaging and Spectroscopy Mission

    CERN Document Server

    André, Philippe; Banday, Anthony; Barbosa, Domingos; Barreiro, Belen; Bartlett, James; Bartolo, Nicola; Battistelli, Elia; Battye, Richard; Bendo, George; Benoȋt, Alain; Bernard, Jean-Philippe; Bersanelli, Marco; Béthermin, Matthieu; Bielewicz, Pawel; Bonaldi, Anna; Bouchet, François; Boulanger, François; Brand, Jan; Bucher, Martin; Burigana, Carlo; Cai, Zhen-Yi; Camus, Philippe; Casas, Francisco; Casasola, Viviana; Castex, Guillaume; Challinor, Anthony; Chluba, Jens; Chon, Gayoung; Colafrancesco, Sergio; Comis, Barbara; Cuttaia, Francesco; D'Alessandro, Giuseppe; Da Silva, Antonio; Davis, Richard; de Avillez, Miguel; de Bernardis, Paolo; de Petris, Marco; de Rosa, Adriano; de Zotti, Gianfranco; Delabrouille, Jacques; Désert, François-Xavier; Dickinson, Clive; Diego, Jose Maria; Dunkley, Joanna; Enßlin, Torsten; Errard, Josquin; Falgarone, Edith; Ferreira, Pedro; Ferrière, Katia; Finelli, Fabio; Fletcher, Andrew; Fosalba, Pablo; Fuller, Gary; Galli, Silvia; Ganga, Ken; García-Bellido, Juan; Ghribi, Adnan; Giard, Martin; Giraud-Héraud, Yannick; Gonzalez-Nuevo, Joaquin; Grainge, Keith; Gruppuso, Alessandro; Hall, Alex; Hamilton, Jean-Christophe; Haverkorn, Marijke; Hernandez-Monteagudo, Carlos; Herranz, Diego; Jackson, Mark; Jaffe, Andrew; Khatri, Rishi; Kunz, Martin; Lamagna, Luca; Lattanzi, Massimiliano; Leahy, Paddy; Lesgourgues, Julien; Liguori, Michele; Liuzzo, Elisabetta; Lopez-Caniego, Marcos; Macias-Perez, Juan; Maffei, Bruno; Maino, Davide; Mangilli, Anna; Martinez-Gonzalez, Enrique; Martins, Carlos J.A.P.; Masi, Silvia; Massardi, Marcella; Matarrese, Sabino; Melchiorri, Alessandro; Melin, Jean-Baptiste; Mennella, Aniello; Mignano, Arturo; Miville-Deschênes, Marc-Antoine; Monfardini, Alessandro; Murphy, Anthony; Naselsky, Pavel; Nati, Federico; Natoli, Paolo; Negrello, Mattia; Noviello, Fabio; O'Sullivan, Créidhe; Paci, Francesco; Pagano, Luca; Paladino, Rosita; Palanque-Delabrouille, Nathalie; Paoletti, Daniela; Peiris, Hiranya; Perrotta, Francesca; Piacentini, Francesco; Piat, Michel; Piccirillo, Lucio; Pisano, Giampaolo; Polenta, Gianluca; Pollo, Agnieszka; Ponthieu, Nicolas; Remazeilles, Mathieu; Ricciardi, Sara; Roman, Matthieu; Rosset, Cyrille; Rubino-Martin, Jose-Alberto; Salatino, Maria; Schillaci, Alessandro; Shellard, Paul; Silk, Joseph; Starobinsky, Alexei; Stompor, Radek; Sunyaev, Rashid; Tartari, Andrea; Terenzi, Luca; Toffolatti, Luigi; Tomasi, Maurizio; Trappe, Neil; Tristram, Matthieu; Trombetti, Tiziana; Tucci, Marco; Van de Weijgaert, Rien; Van Tent, Bartjan; Verde, Licia; Vielva, Patricio; Wandelt, Ben; Watson, Robert; Withington, Stafford; Cabrera, Nicolas

    2014-01-01

    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM's main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM

  8. Effect of magnetic field and radiative condensation on the Jeans instability of dusty plasma with polarization force

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2013-01-01

    The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.

  9. Specular, diffuse and polarized imagery of an oat canopy

    Science.gov (United States)

    Vanderbilt, Vern C.; De Venecia, Kurt J.

    1988-01-01

    Light, polarized by specular reflection, has been found to be an important part of the light scattered by several measured plant canopies. The authors investigate for one canopy the relative importance of specularly reflected sunlight, specularly reflected light from other sources including skylight, and diffusely upwelling light. Polarization images are used to gain increased understanding of the radiation transfer process in a plant canopy. Analysis of the results suggests that properly analyzed polarized remotely sensed data, acquired under specific atmospheric conditions by a specially designed sensor, potentially provide measures of physiological and morphological states of plants in a canopy.

  10. Line radiative transfer and statistical equilibrium

    NARCIS (Netherlands)

    Kamp, Inga

    Atomic and molecular line emission from protoplanetary disks contains key information of their detailed physical and chemical structures. To unravel those structures, we need to understand line radiative transfer in dusty media and the statistical equilibrium, especially of molecules. I describe

  11. Live births after polar body biopsy and frozen-thawed cleavage stage embryo transfer: case report.

    Science.gov (United States)

    Guimarães, Fernando; Roque, Matheus; Valle, Marcello; Kostolias, Alessandra; Azevedo, Rodrigo A de; Martinhago, Ciro D; Sampaio, Marcos; Geber, Selmo

    2016-12-01

    Pre-implantation genetic diagnosis (PGD) or screening (PGS) technology, has emerged and developed in the past few years, benefiting couples as it allows the selection and transfer of healthy embryos during IVF treatments. These techniques can be performed in oocytes (polar-body biopsy) or embryos (blastomere or trophectoderm biopsy). In this case report, we describe the first two live births to be published in Brazil after a polar-body (PB) biopsy. In case 1, a 42-year-old was submitted to PB biopsy with PGS due to advanced maternal age and poor ovarian reserve. Five MII oocytes underwent first and second polar body biopsy and four cleavage embryos were cryopreserved. The PGS analysis resulted in two euploid embryos (next generation sequence). A frozen-thawed embryo transfer (FET) was performed after endometrial priming and a healthy baby was delivered after a cesarean section (37 weeks, female, 3390g, 47.5 cm). In case 2, a 40-year old patient with balanced translocation and poor ovarian response was submitted to PB biopsy. Two MII oocytes underwent first and second polar body biopsy and two embryos were cryopreserved in cleavage stage. The analysis resulted in one euploid embryo that was transferred after endometrial priming. A preterm healthy baby (34 weeks, female, 2100g, 40 cm) was delivered via cesarean section. In conclusion, although the blastocyst biopsy is the norm when performing PGS/PGD during IVF treatments, other alternatives (as PB biopsy) should be considered in some specific situations.

  12. Numerical studies of heat transfer by simultaneous radiative-conduction and radiative-convection in a two dimensional semi-transparent medium

    International Nuclear Information System (INIS)

    Draoui, Abdeslam

    1989-01-01

    The works we present here are on numerical approaches of heat transfer coupling radiation-conduction and radiation-convection within semi-transparent two-dimensional medium. The first part deals with a review of equations of radiative transfer and introduces three numerical methods (Pl, P3, Hottel's zones) which enable one to solve this problem in a two-dimensional environment. After comparing the three methods in the case where radiation is the only mode of transfer, we introduce in the second chapter a study of the coupling of radiation with conduction. So, a fourth method is used to solve this problem. These comparisons lead us to various methods which enable us to show the interest of the spherical harmonics approximations. In the third part, the Pl approximation is kept because it is simple to use, moreover it enables us to introduce both the coupling of radiative transfers with laminar convective equations in a thermally driven two-dimensional cavity. The results show a significant influence of the radiative participation of the fluid on heat and dynamic transfer we met in this type of problem. (author) [fr

  13. The impact of Faraday effects on polarized black hole images of Sagittarius A*.

    Science.gov (United States)

    Jiménez-Rosales, Alejandra; Dexter, Jason

    2018-05-01

    We study model images and polarization maps of Sagittarius A* at 230 GHz. We post-process GRMHD simulations and perform a fully relativistic radiative transfer calculation of the emitted synchrotron radiation to obtain polarized images for a range of mass accretion rates and electron temperatures. At low accretion rates, the polarization map traces the underlying toroidal magnetic field geometry. At high accretion rates, we find that Faraday rotation internal to the emission region can depolarize and scramble the map. We measure the net linear polarization fraction and find that high accretion rate "jet-disc" models are heavily depolarized and are therefore disfavoured. We show how Event Horizon Telescope measurements of the polarized "correlation length" over the image provide a model-independent upper limit on the strength of these Faraday effects, and constrain plasma properties like the electron temperature and magnetic field strength.

  14. Ground-based Polarization Remote Sensing of Atmospheric Aerosols and the Correlation between Polarization Degree and PM2.5

    International Nuclear Information System (INIS)

    Cheng, Chen; Zhengqiang, Li; Weizhen, Hou; Yisong, Xie; Donghui, Li; Kaitao, Li; Ying, Zhang

    2014-01-01

    The ground-based polarization remote sensing adds the polarization dimension information to traditional intensity detection, which provides a new method to detect atmospheric aerosols properties. In this paper, the polarization measurements achieved by a new multi-wavelength sun photometer, CE318-DP, are used for the ground-based remote sensing of atmospheric aerosols. In addition, a polarized vector radiative transfer model is introduced to simulate the DOLP (Degree Of Linear Polarization) under different sky conditions. At last, the correlative analysis between mass density of PM 2.5 and multi-wavelength and multi-angular DOLP is carried out. The result shows that DOLP has a high correlation with mass density of PM 2.5 , R 2 >0.85. As a consequence, this work provides a new method to estimate the mass density of PM 2.5 by using the comprehensive network of ground-based sun photometer

  15. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  16. On similarity and scaling of the radiative transfer equation

    International Nuclear Information System (INIS)

    Mitrescu, C.; Stephens, G.L.

    2004-01-01

    The present paper shows how the well-known similarity and scaling concepts are properties of the radiative transfer equation and not specifically of the degree of anisotropy of the phase function. It is shown that the key assumption regarding the angular dependence of the radiative field is essential in determining both the value for the parameter used to scale the radiative transfer, as well as the number of streams used in calculating the radiances for various atmospheric problems. Simulations performed on realistic type of cirrus clouds, characterized by strongly anisotropic functions, demonstrates the superior computational advantage for accurately simulating radiances. A new approach for determining the scaling parameter is introduced

  17. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.

    2011-01-01

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique. (author)

  18. Heat transfer augmentation of a car radiator using nanofluids

    Science.gov (United States)

    Hussein, Adnan M.; Bakar, R. A.; Kadirgama, K.; Sharma, K. V.

    2014-05-01

    The car radiator heat transfer enhancement by using TiO2 and SiO2 nanoparticles dispersed in water as a base fluid was studied experimentally. The test rig is setup as a car radiator with tubes and container. The range of Reynolds number and volume fraction are (250-1,750) and (1.0-2.5 %) respectively. Results showed that the heat transfer increases with increasing of nanofluid volume fraction. The experimental data is agreed with other investigator.

  19. A study of Monte Carlo radiative transfer through fractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P. [Univ. of California, Santa Barbara, CA (United States)] [and others

    1996-04-01

    An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.

  20. A fast infrared radiative transfer model for overlapping clouds

    International Nuclear Information System (INIS)

    Niu Jianguo; Yang Ping; Huang Hunglung; Davies, James E.; Li Jun; Baum, Bryan A.; Hu, Yong X.

    2007-01-01

    A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: (1) clear-sky (2) single-layered ice or water cloud, and (3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3-1179.5 cm -1 ) and the short-to-medium wave (SMW) band (1180.1-2228.9 cm -1 ). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD (F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model

  1. Radiative Forcing from Emissivity Response in Polar Regions

    Science.gov (United States)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Chen, X.; Yang, P.; Kuo, C.

    2016-12-01

    A detailed assessment of the radiative balance and its controlling factors in polar regions is a critical prerequisite for understanding and predicting the polar amplification of climate change. Accordingly, we investigate the role of infrared surface emissivity in polar regions as a potential feedback mechanism following Feldman et al, 2014. In this work, we investigate the climatic response of the Community Earth System Model (CESM) with spectral emissivity values that are implemented in a physically consistent manner for non-vegetated surfaces. In a control model run where 1850 CO2 volume mixing ratio (vmr) is fixed, the updated spectral emissivity values are imposed for modified surface boundary conditions in the atmospheric model component. Climatic stability in the emergent globally averaged surface temperature is observed on decadal scales for an unforced (control) run. Analytic kernels representing the change in top of the atmosphere OLR given changes in emissivity are calculated on-line during the model runs, incorporating spatially and temporally varied humidity profiles impactful to transmission. Globally averaged kernels of the sensitivity of OLR to surface emissivity calculated for control and ramped CO2 runs exhibit temporal evolution with statistically significant differences in shape. Additionally, kernel and spectrally-averaged emissivity differences between monthly-averaged maps of control and ramped runs demonstrate a seasonal cycle. Similar to the treatment of cryosphere radiative forcing in Flanner et al, 2011, we define emissivity response as the product of the emissivity kernel and the change in month-to-month emissivity. At the end of 20th century, the 10-year emissivity forcing averaged at latitudes > 60°, is found to be negative (positive) in January (July), due to increasing (decreasing) sea-ice. These findings indicate that differences in surface emissivity between frozen and unfrozen surfaces decrease wintertime and increase summertime

  2. Gas Temperature and Radiative Heat Transfer in Oxy-fuel Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas

    This work presents measurements of the gas temperature, including fluctuations, and its influence on the radiative heat transfer in oxy-fuel flames. The measurements were carried out in the Chalmers 100 kW oxy-fuel test unit. The in-furnace gas temperature was measured by a suction pyrometer...... on the radiative heat transfer shows no effect of turbulence-radiation interaction. However, by comparing with temperature fluctuations in other flames it can be seen that the fluctuations measured here are relatively small. Further research is needed to clarify to which extent the applied methods can account...

  3. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    Science.gov (United States)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  4. Measurement of the circular polarization of gamma radiation from heavy ion collisions

    International Nuclear Information System (INIS)

    Lauterbach, C.

    1981-01-01

    For the nuclear reactions 16 O + 27 Al, 16 O + 58 Ni, 16 O + 62 Ni, 40 Ar + sup(nat)Ag, 86 Kr + sup(nat)Ag, and 86 Kr + 197 Au at incident energies of about 7 MeV/nucleon the circular polarization of the #betta# radiation emitted by the reaction products was measured. The projectile - like reaction products were detected by a δE-E telescope at a fixed angle of 35 0 relative to the beam axis. It is shown that the sign of the scattering angle for the classical orbit of the reaction partners can be determined by the experimental detection of circularly polarized #betta#-radiation from the decay of the highly excited reaction products. In the performed experiments for the first time extensive polarization phenomena in deep inelastic reactions were observed. The dominance of negative scattering angles was verified for a large range of light and medium-heavy systems. The results are compared with the predictions of theoretical models in which statistical or quantum mechanical fluctuations of the dynamical quantities are regarded. (orig./HSI) [de

  5. Influence of aerosols, clouds, and sunglint on polarization spectra of Earthshine

    Science.gov (United States)

    Emde, Claudia; Buras-Schnell, Robert; Sterzik, Michael; Bagnulo, Stefano

    2017-08-01

    Context. Ground-based observations of the Earthshine, I.e., the light scattered by Earth to the Moon, and then reflected back to Earth, simulate space observations of our planet and represent a powerful benchmark for the studies of Earth-like planets. Earthshine spectra are strongly linearly polarized, owing to scattering by molecules and small particles in the atmosphere of the Earth and surface reflection, and may allow us to measure global atmospheric and surface properties of planet Earth. Aims: We aim to interpret already published spectropolarimetric observations of the Earthshine by comparing them with new radiative transfer model simulations including a fully realistic three-dimensional (3D) surface-atmosphere model for planet Earth. Methods: We used the highly advanced Monte Carlo radiative transfer model MYSTIC to simulate polarized radiative transfer in the atmosphere of the Earth without approximations regarding the geometry, taking into account the polarization from surface reflection and multiple scattering by molecules, aerosol particles, cloud droplets, and ice crystals. Results: We have shown that Earth spectropolarimetry is highly sensitive to all these input parameters, and we have presented simulations of a fully realistic Earth atmosphere-surface model including 3D cloud fields and two-dimensional (2D) surface property maps. Our modeling results show that scattering in high ice water clouds and reflection from the ocean surface are crucial to explain the continuum polarization at longer wavelengths as has been reported in Earthshine observations taken at the Very Large Telescope in 2011 (3.8% and 6.6% at 800 nm, depending on which part of Earth was visible from the Moon at the time of the observations). We found that the relatively high degree of polarization of 6.6% can be attributed to light reflected by the ocean surface in the sunglint region. High ice-water clouds reduce the amount of absorption in the O2A band and thus explain the weak O2

  6. Near-field radiative heat transfer between graphene-covered hyperbolic metamaterials

    Science.gov (United States)

    Hong, Xiao-Juan; Li, Jian-Wen; Wang, Tong-Biao; Zhang, De-Jian; Liu, Wen-Xing; Liao, Qing-Hua; Yu, Tian-Bao; Liu, Nian-Hua

    2018-04-01

    We propose the use of graphene-covered silicon carbide (SiC) nanowire arrays (NWAs) for theoretical studies of near-field radiative heat transfer. The SiC NWAs exhibit a hyperbolic characteristic at an appropriately selected filling-volume fraction. The surface plasmon supported by graphene and the hyperbolic modes supported by SiC NWAs significantly affect radiative heat transfer. The heat-transfer coefficient (HTC) between the proposed structures is larger than that between SiC NWAs. We also find that the chemical potential of graphene plays an important role in modulating the HTC. The tunability of chemical potential through gate voltage enables flexible control of heat transfer using the graphene-covered SiC NWAs.

  7. Polarization effects in radiative recombination of an electron with a highly charged ion

    International Nuclear Information System (INIS)

    Klasnikov, A.E.; Shabaev, V.M.; Artemyev, A.N.; Kovtun, A.V.; Stoehlker, T.

    2005-01-01

    The radiative recombination of an unpolarized electron with a polarized highly charged H-like ion in its ground state is studied. The absolute and relative values of the electron spin-flip contribution to the cross section of the process for various scattering angles and photon polarizations are calculated. It is shown that, in addition to the forward and backward directions, there are some other scattering angles of the emitted photon, where, at a fixed linear photon polarization, the spin-flip transition gives a dominant contribution to the differential cross section

  8. Radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, the ray goes along a curved path determined by Fermat principle, and the curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectory, the methods not based on ray-tracing technique need to be developed for the solution of radiative transfer in graded index medium. For this purpose, in this paper the streaming operator along a curved ray trajectory in original radiative transfer equation for graded index medium is transformed and expressed in spatial and angular ordinates and the radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems are derived. The conservative and the non-conservative forms of radiative transfer equation for three-dimensional graded index medium are given, which can be used as base equations to develop the numerical simulation methods, such as finite volume method, discrete ordinates method, and finite element method, for radiative transfer in graded index medium in cylindrical and spherical coordinate systems

  9. Radiative corrections to chargino production in electron-positron collisions with polarized beams

    International Nuclear Information System (INIS)

    Diaz, Marco A.; King, Stephen F.; Ross, Douglas A.

    2001-01-01

    We study radiative corrections to chargino production at linear colliders with polarized electron beams. We calculate the one-loop corrected cross sections for polarized electon beams due to three families of quarks and squarks, working in the {ovr MS} scheme, extending our previous calculation of the unpolarized cross section with one-loop corrections due to the third family of quarks and squarks. In some cases we find rather large corrections to the tree-level cross sections. For example, for the case of right-handed polarized electrons and large tanβ the corrections can be of order 30%, allowing sensitivity to the squark mass parameters

  10. APC: A new code for Atmospheric Polarization Computations

    International Nuclear Information System (INIS)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2013-01-01

    A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface. -- Highlights: •A new code, APC, has been developed. •The code was validated against well-known codes. •The BPDF for an arbitrary Mueller matrix is computed

  11. Polarization sensitive detection of 100 GHz radiation by high mobility field-effect transistors

    International Nuclear Information System (INIS)

    Sakowicz, M.; Lusakowski, J.; Karpierz, K.; Grynberg, M.; Knap, W.; Gwarek, W.

    2008-01-01

    Detection of 100 GHz electromagnetic radiation by a GaAs/AlGaAs high electron mobility field-effect transistor was investigated at 300 K as a function of the angle α between the direction of linear polarization of the radiation and the symmetry axis of the transistor. The angular dependence of the detected signal was found to be A 0 cos 2 (α-α 0 )+C with A 0 , α 0 , and C dependent on the electrical polarization of the transistor gate. This dependence is interpreted as due to excitation of two crossed phase-shifted oscillators. A response of the transistor chip (including bonding wires and the substrate) to 100 GHz radiation was numerically simulated. Results of calculations confirmed experimentally observed dependencies and showed that the two oscillators result from an interplay of 100 GHz currents defined by the transistor impedance together with bonding wires and substrate related modes

  12. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    Science.gov (United States)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  13. PRISM (Polarized Radiation Imaging and Spectroscopy Mission): an extended white paper

    NARCIS (Netherlands)

    André, Philippe; Baccigalupi, Carlo; Banday, Anthony; Barbosa, Domingos; Barreiro, Belen; Bartlett, James; Bartolo, Nicola; Battistelli, Elia; Battye, Richard; Bendo, George; Benoît, Alain; Bernard, Jean-Philippe; Bersanelli, Marco; Béthermin, Matthieu; Bielewicz, Pawel; Bonaldi, Anna; Bouchet, François; Boulanger, François; Brand, Jan; Bucher, Martin; Burigana, Carlo; Cai, Zhen-Yi; Camus, Philippe; Casas, Francisco; Casasola, Viviana; Castex, Guillaume; Challinor, Anthony; Chluba, Jens; Chon, Gayoung; Colafrancesco, Sergio; Comis, Barbara; Cuttaia, Francesco; D'Alessandro, Giuseppe; Da Silva, Antonio; Davis, Richard; de Avillez, Miguel; de Bernardis, Paolo; de Petris, Marco; de Rosa, Adriano; de Zotti, Gianfranco; Delabrouille, Jacques; Désert, François-Xavier; Dickinson, Clive; Diego, Jose Maria; Dunkley, Joanna; Enßlin, Torsten; Errard, Josquin; Falgarone, Edith; Ferreira, Pedro; Ferrière, Katia; Finelli, Fabio; Fletcher, Andrew; Fosalba, Pablo; Fuller, Gary; Galli, Silvia; Ganga, Ken; García-Bellido, Juan; Ghribi, Adnan; Giard, Martin; Giraud-Héraud, Yannick; Gonzalez-Nuevo, Joaquin; Grainge, Keith; Gruppuso, Alessandro; Hall, Alex; Hamilton, Jean-Christophe; Haverkorn, Marijke; Hernandez-Monteagudo, Carlos; Herranz, Diego; Jackson, Mark; Jaffe, Andrew; Khatri, Rishi; Kunz, Martin; Lamagna, Luca; Lattanzi, Massimiliano; Leahy, Paddy; Lesgourgues, Julien; Liguori, Michele; Liuzzo, Elisabetta; Lopez-Caniego, Marcos; Macias-Perez, Juan; Maffei, Bruno; Maino, Davide; Mangilli, Anna; Martinez-Gonzalez, Enrique; Martins, Carlos J. A. P.; Masi, Silvia; Massardi, Marcella; Matarrese, Sabino; Melchiorri, Alessandro; Melin, Jean-Baptiste; Mennella, Aniello; Mignano, Arturo; Miville-Deschênes, Marc-Antoine; Monfardini, Alessandro; Murphy, Anthony; Naselsky, Pavel; Nati, Federico; Natoli, Paolo; Negrello, Mattia; Noviello, Fabio; O'Sullivan, Créidhe; Paci, Francesco; Pagano, Luca; Paladino, Rosita; Palanque-Delabrouille, Nathalie; Paoletti, Daniela; Peiris, Hiranya; Perrotta, Francesca; Piacentini, Francesco; Piat, Michel; Piccirillo, Lucio; Pisano, Giampaolo; Polenta, Gianluca; Pollo, Agnieszka; Ponthieu, Nicolas; Remazeilles, Mathieu; Ricciardi, Sara; Roman, Matthieu; Rosset, Cyrille; Rubino-Martin, Jose-Alberto; Salatino, Maria; Schillaci, Alessandro; Shellard, Paul; Silk, Joseph; Starobinsky, Alexei; Stompor, Radek; Sunyaev, Rashid; Tartari, Andrea; Terenzi, Luca; Toffolatti, Luigi; Tomasi, Maurizio; Trappe, Neil; Tristram, Matthieu; Trombetti, Tiziana; Tucci, Marco; Van de Weijgaert, Rien; Van Tent, Bartjan; Verde, Licia; Vielva, Patricio; Wandelt, Ben; Watson, Robert; Withington, Stafford

    2014-01-01

    PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations

  14. Cirrus clouds properties derived from polarized micro pulse lidar (p-mpl observations at the atmospheric observatory ‘el arenosillo’ (sw iberian peninsula: a case study for radiative implications

    Directory of Open Access Journals (Sweden)

    Águila Ana del

    2018-01-01

    Full Text Available Cirrus (Ci clouds are involved in Climate Change concerns since they affect the radiative balance of the atmosphere. Recently, a polarized Micro Pulse Lidar (P-MPL, standard system within NASA/MPLNET has been deployed at the INTA/Atmospheric Observatory ‘El Arenosillo’ (ARN, located in the SW Iberian Peninsula. Hence, the INTA/P-MPL system is used for Ci detection over that station for the first time. Radiative effects of a Ci case observed over ARN are examined, as reference for future long-term Ci observations. Optical and macrophysical properties are retrieved, and used for radiative transfer simulations. Data are compared to the measured surface radiation levels and all-sky images simultaneously performed at the ARN station.

  15. Three-dimensional inhomogeneous rain fields: implications for the distribution of intensity and polarization of the microwave thermal radiation.

    Science.gov (United States)

    Ilyushin, Yaroslaw; Kutuza, Boris

    Observations and mapping of the upwelling thermal radiation of the Earth is the very promising remote sensing technique for the global monitoring of the weather and precipitations. For reliable interpretation of the observation data, numerical model of the microwave radiative transfer in the precipitating atmosphere is necessary. In the present work, numerical simulations of thermal microwave radiation in the rain have been performed at three wavelengths (3, 8 and 22 mm). Radiative properties of the rain have been simulated using public accessible T-matrix codes (Mishchenko, Moroz) for non-spherical particles of fixed orientation and realistic raindrop size distributions (Marshall-Palmer) within the range of rain intensity 1-100 mm/h. Thermal radiation of infinite flat slab medium and isolated rain cell of kilometer size has been simulated with finite difference scheme for the vectorial radiative transfer equation (VRTE) in dichroic scattering medium. Principal role of cell structure of the rain field in the formation of angular and spatial distribution of the intensity and polarization of the upwelling thermal radiation has been established. Possible approaches to interpretation of satellite data are also discussed. It is necessary that spatial resolution of microwave radiometers be less than rain cell size. At the present time the resolution is approximately 15 km. It can be considerably improved, for example by two-dimensional synthetic aperture millimeter-wave radiometric interferometer for measuring full-component Stokes vector of emission from hydrometeors. The estimates show that in millimeter band it is possible to develop such equipment with spatial resolution of the order of 1-2 km, which is significantly less than the size of rain cell, with sensitivity 0.3-0.5 K. Under this condition the second Stokes parameter may by successfully measured and may be used for investigation of precipitation regions. Y-shaped phased array antenna is the most promising to

  16. Free Thyroid Transfer: A Novel Procedure to Prevent Radiation-induced Hypothyroidism

    International Nuclear Information System (INIS)

    Harris, Jeffrey; Almarzouki, Hani; Barber, Brittany; Scrimger, Rufus; Romney, Jacques; O'Connell, Daniel; Urken, Mark; Seikaly, Hadi

    2016-01-01

    Purpose: The incidence of hypothyroidism after radiation therapy for head and neck cancer (HNC) has been found to be ≤53%. Medical treatment of hypothyroidism can be costly and difficult to titrate. The aim of the present study was to assess the feasibility of free thyroid transfer as a strategy for the prevention of radiation-induced damage to the thyroid gland during radiation therapy for HNC. Methods and Materials: A prospective feasibility study was performed involving 10 patients with a new diagnosis of advanced HNC undergoing ablative surgery, radial forearm free-tissue transfer reconstruction, and postoperative adjuvant radiation therapy. During the neck dissection, hemithyroid dissection was completed with preservation of the thyroid arterial and venous supply for implantation into the donor forearm site. All patients underwent a diagnostic thyroid technetium scan 6 weeks and 12 months postoperatively to examine the functional integrity of the transferred thyroid tissue. Results: Free thyroid transfer was executed in 9 of the 10 recruited patients with advanced HNC. The postoperative technetium scans demonstrated strong uptake of technetium at the forearm donor site at 6 weeks and 12 months for all 9 of the transplanted patients. Conclusions: The thyroid gland can be transferred as a microvascular free transfer with maintenance of function. This technique could represent a novel strategy for maintenance of thyroid function after head and neck irradiation.

  17. Free Thyroid Transfer: A Novel Procedure to Prevent Radiation-induced Hypothyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Jeffrey [Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta (Canada); Almarzouki, Hani [Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta (Canada); Department of Otolaryngology-Head and Neck Surgery, King Abdulaziz University, Jeddah (Saudi Arabia); Barber, Brittany, E-mail: brittanybarber0@gmail.com [Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta (Canada); Scrimger, Rufus [Division of Radiation Oncology, Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Romney, Jacques [Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta (Canada); O' Connell, Daniel [Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta (Canada); Urken, Mark [Institute for Head and Neck and Thyroid Cancers, Icahn School of Medicine, Mount Sinai Hospital, New York, New York (United States); Seikaly, Hadi [Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta (Canada)

    2016-09-01

    Purpose: The incidence of hypothyroidism after radiation therapy for head and neck cancer (HNC) has been found to be ≤53%. Medical treatment of hypothyroidism can be costly and difficult to titrate. The aim of the present study was to assess the feasibility of free thyroid transfer as a strategy for the prevention of radiation-induced damage to the thyroid gland during radiation therapy for HNC. Methods and Materials: A prospective feasibility study was performed involving 10 patients with a new diagnosis of advanced HNC undergoing ablative surgery, radial forearm free-tissue transfer reconstruction, and postoperative adjuvant radiation therapy. During the neck dissection, hemithyroid dissection was completed with preservation of the thyroid arterial and venous supply for implantation into the donor forearm site. All patients underwent a diagnostic thyroid technetium scan 6 weeks and 12 months postoperatively to examine the functional integrity of the transferred thyroid tissue. Results: Free thyroid transfer was executed in 9 of the 10 recruited patients with advanced HNC. The postoperative technetium scans demonstrated strong uptake of technetium at the forearm donor site at 6 weeks and 12 months for all 9 of the transplanted patients. Conclusions: The thyroid gland can be transferred as a microvascular free transfer with maintenance of function. This technique could represent a novel strategy for maintenance of thyroid function after head and neck irradiation.

  18. Best estimate radiation heat transfer model developed for TRAC-BD1

    International Nuclear Information System (INIS)

    Spore, J.W.; Giles, M.M.; Shumway, R.W.

    1981-01-01

    A best estimate radiation heat transfer model for analysis of BWR fuel bundles has been developed and compared with 8 x 8 fuel bundle data. The model includes surface-to-surface and surface-to-two-phase fluid radiation heat transfer. A simple method of correcting for anisotropic reflection effects has been included in the model

  19. Joule heating and spin-transfer torque investigated on the atomic scale using a spin-polarized scanning tunneling microscope.

    Science.gov (United States)

    Krause, S; Herzog, G; Schlenhoff, A; Sonntag, A; Wiesendanger, R

    2011-10-28

    The influence of a high spin-polarized tunnel current onto the switching behavior of a superparamagnetic nanoisland on a nonmagnetic substrate is investigated by means of spin-polarized scanning tunneling microscopy. A detailed lifetime analysis allows for a quantification of the effective temperature rise of the nanoisland and the modification of the activation energy barrier for magnetization reversal, thereby using the nanoisland as a local thermometer and spin-transfer torque analyzer. Both the Joule heating and spin-transfer torque are found to scale linearly with the tunnel current. The results are compared to experiments performed on lithographically fabricated magneto-tunnel junctions, revealing a very high spin-transfer torque switching efficiency in our experiments.

  20. Polarization transfer between oriented metastable helium atoms and neon atoms. A comparison of even and odd isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D M; Wang, H T.M.

    1983-11-01

    Collision-induced polarization transfer from optically pumped helium to excited states of neon is studied using various combinations of even and odd isotopes. It is found that, within our experimental accuracy of 10%, the resultant polarization is independent of the isotopic composition of the binary mixture. Possible applications using this mechanism are discussed.

  1. Near-field radiative heat transfer in mesoporous alumina

    International Nuclear Information System (INIS)

    Li Jing; Feng Yan-Hui; Zhang Xin-Xin; Huang Cong-Liang; Wang Ge

    2015-01-01

    The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2∼4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. (paper)

  2. Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme

    Science.gov (United States)

    Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2018-06-01

    The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.

  3. Benchmark results in radiative transfer

    International Nuclear Information System (INIS)

    Garcia, R.D.M.; Siewert, C.E.

    1986-02-01

    Several aspects of the F N method are reported, and the method is used to solve accurately some benchmark problems in radiative transfer in the field of atmospheric physics. The method was modified to solve cases of pure scattering and an improved process was developed for computing the radiation intensity. An algorithms for computing several quantities used in the F N method was done. An improved scheme to evaluate certain integrals relevant to the method is done, and a two-term recursion relation that has proved useful for the numerical evaluation of matrix elements, basic for the method, is given. The methods used to solve the encountered linear algebric equations are discussed, and the numerical results are evaluated. (M.C.K.) [pt

  4. Near-field radiative heat transfer between metasurfaces

    DEFF Research Database (Denmark)

    Dai, Jin; Dyakov, Sergey A.; Bozhevolnyi, Sergey I.

    2016-01-01

    Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve a controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two...... and highly geometrically tailorable. Our simulation also reveals thermally excited nonresonant surface waves in constituent metallic materials may play a prevailing role for RHT at an extremely small separation between two metal plates, rendering metamaterial modes insignificant for the energy-transfer...

  5. On the spectrum and polarization of magnetar flare emission

    Science.gov (United States)

    Taverna, R.; Turolla, R.

    2017-08-01

    Bursts and flares are among the distinctive observational manifestations of magnetars, isolated neutron stars endowed with an ultrastrong magnetic field (B ≈ 1014-1015 G). It is believed that these events arise in a hot electron-positron plasma that remains trapped within the closed magnetic field lines. We developed a simple radiative transfer model to simulate magnetar flare emission in the case of a steady trapped fireball. After dividing the fireball surface in a number of plane-parallel slabs, the local spectral and polarization properties are obtained integrating the radiative transfer equations for the two normal modes. We assume that magnetic Thomson scattering is the dominant source of opacity, and neglect contributions from second-order radiative processes, although double-Compton scattering is accounted for in establishing local thermal equilibrium in the fireball atmospheric layers. The observed spectral and polarization properties as measured by a distant observer are obtained by summing the contributions from the patches that are visible for a given viewing geometry by means of a ray-tracing code. The spectra we obtained in the 1-100 keV energy range are thermal and can be described in terms of the superposition of two blackbodies. The blackbody temperature and the emitting area ratio are in broad agreement with the available observations. The predicted linear polarization degree is, in general, greater than 80 per cent over the entire energy range and should be easily detectable by new-generation X-ray polarimeters, such as IXPE, XIPE and eXTP.

  6. Propagation of Polarized Cosmic Microwave Background Radiation in an Anisotropic Magnetized Plasma

    International Nuclear Information System (INIS)

    Moskaliuk, S. S.

    2010-01-01

    The polarization plane of the cosmic microwave background radiation (CMBR) can be rotated either in a space-time with metric of anisotropic type and in a magnetized plasma or in the presence of a quintessential background with pseudoscalar coupling to electromagnetism. A unified treatment of these three phenomena is presented for cold anisotropic plasma at the pre-recombination epoch. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the cosmic microwave background polarization.

  7. Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces

    Science.gov (United States)

    Zheng, Zhiheng; Wang, Ao; Xuan, Yimin

    2018-03-01

    When two gratings are respectively covered by a layer of graphene sheet, the near-field radiative heat transfer between two parallel gratings made of silica (SiO2) could be greatly improved. As the material properties of doped silicon (n-type doping concentration is 1020 cm-3, marked as Si-20) and SiO2 differ greatly, we theoretically investigate the near-field radiative heat transfer between two parallel graphene-covered gratings made of Si-20 to explore some different phenomena, especially for modulating the spectral properties. The radiative heat flux between two parallel bulks made of Si-20 can be enhanced by using gratings instead of bulks. When the two gratings are respectively covered by a layer of graphene sheet, the radiative heat flux between two gratings made of Si-20 can be further enhanced. By tuning graphene chemical potential μ and grating filling factor f, due to the interaction between surface plasmon polaritons (SPPs) of graphene sheets and grating structures, the spectral properties of the radiative heat flux between two parallel graphene-covered gratings can be effectively regulated. This work will develop and supplement the effects of materials on the near-field radiative heat transfer for this kind of system configuration, paving a way to modulate the spectral properties of near-field radiative heat transfer.

  8. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    Science.gov (United States)

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  9. Improper ferroelectric polarization in a perovskite driven by intersite charge transfer and ordering

    Science.gov (United States)

    Chen, Wei-Tin; Wang, Chin-Wei; Wu, Hung-Cheng; Chou, Fang-Cheng; Yang, Hung-Duen; Simonov, Arkadiy; Senn, M. S.

    2018-04-01

    It is of great interest to design and make materials in which ferroelectric polarization is coupled to other order parameters such as lattice, magnetic, and electronic instabilities. Such materials will be invaluable in next-generation data storage devices. Recently, remarkable progress has been made in understanding improper ferroelectric coupling mechanisms that arise from lattice and magnetic instabilities. However, although theoretically predicted, a compact lattice coupling between electronic and ferroelectric (polar) instabilities has yet to be realized. Here we report detailed crystallographic studies of a perovskite HgAMn3A'Mn4BO12 that is found to exhibit a polar ground state on account of such couplings that arise from charge and orbital ordering on both the A'- and B-sites, which are themselves driven by a highly unusual MnA '-MnB intersite charge transfer. The inherent coupling of polar, charge, orbital, and hence magnetic degrees of freedom make this a system of great fundamental interest, and demonstrating ferroelectric switching in this and a host of recently reported hybrid improper ferroelectrics remains a substantial challenge.

  10. Non-grey benchmark results for two temperature non-equilibrium radiative transfer

    International Nuclear Information System (INIS)

    Su, B.; Olson, G.L.

    1999-01-01

    Benchmark solutions to time-dependent radiative transfer problems involving non-equilibrium coupling to the material temperature field are crucial for validating time-dependent radiation transport codes. Previous efforts on generating analytical solutions to non-equilibrium radiative transfer problems were all restricted to the one-group grey model. In this paper, a non-grey model, namely the picket-fence model, is considered for a two temperature non-equilibrium radiative transfer problem in an infinite medium. The analytical solutions, as functions of space and time, are constructed in the form of infinite integrals for both the diffusion description and transport description. These expressions are evaluated numerically and the benchmark results are generated. The asymptotic solutions for large and small times are also derived in terms of elementary functions and are compared with the exact results. Comparisons are given between the transport and diffusion solutions and between the grey and non-grey solutions. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Principles of the radiosity method versus radiative transfer for canopy reflectance modeling

    Science.gov (United States)

    Gerstl, Siegfried A. W.; Borel, Christoph C.

    1992-01-01

    The radiosity method is introduced to plant canopy reflectance modeling. We review the physics principles of the radiosity method which originates in thermal radiative transfer analyses when hot and cold surfaces are considered within a given enclosure. The radiosity equation, which is an energy balance equation for discrete surfaces, is described and contrasted with the radiative transfer equation, which is a volumetric energy balance equation. Comparing the strengths and weaknesses of the radiosity method and the radiative transfer method, we conclude that both methods are complementary to each other. Results of sample calculations are given for canopy models with up to 20,000 discrete leaves.

  12. Variety of Polarized Line Profiles in Interacting Supernovae

    Science.gov (United States)

    Hoffman, Jennifer L.; Huk, L. N.; Peters, C. L.

    2013-01-01

    The dense circumstellar material that creates strong emission lines in the spectra of interacting supernovae also gives rise to complex line polarization behavior. Viewed in polarized light, the emission line profiles of these supernovae encode information about the geometrical and optical characteristics of their surrounding circumstellar material (CSM) that is inaccessible by other observational techniques. To facilitate quantitative interpretation of these spectropolarimetric signatures, we have created a large grid of model polarized line profiles using a three-dimensional radiative transfer code that simulates polarization via electron and resonant/fluorescent line scattering. The simulated polarized lines take on an array of profile shapes that vary with viewing angle and CSM properties. We present the major results from the grid and investigate the dependence of polarized line profiles on CSM characteristics including temperature, optical depth, and geometry. These results will allow more straightforward interpretation of polarized line profiles in interacting supernovae than has previously been possible. This research is supported by the National Science Foundation through the AAG program and the XSEDE collaboration, and uses the resources of the Texas Advanced Computing Center.

  13. Validation of the community radiative transfer model

    International Nuclear Information System (INIS)

    Ding Shouguo; Yang Ping; Weng Fuzhong; Liu Quanhua; Han Yong; Delst, Paul van; Li Jun; Baum, Bryan

    2011-01-01

    To validate the Community Radiative Transfer Model (CRTM) developed by the U.S. Joint Center for Satellite Data Assimilation (JCSDA), the discrete ordinate radiative transfer (DISORT) model and the line-by-line radiative transfer model (LBLRTM) are combined in order to provide a reference benchmark. Compared with the benchmark, the CRTM appears quite accurate for both clear sky and ice cloud radiance simulations with RMS errors below 0.2 K, except for clouds with small ice particles. In a computer CPU run time comparison, the CRTM is faster than DISORT by approximately two orders of magnitude. Using the operational MODIS cloud products and the European Center for Medium-range Weather Forecasting (ECMWF) atmospheric profiles as an input, the CRTM is employed to simulate the Atmospheric Infrared Sounder (AIRS) radiances. The CRTM simulations are shown to be in reasonably close agreement with the AIRS measurements (the discrepancies are within 2 K in terms of brightness temperature difference). Furthermore, the impact of uncertainties in the input cloud properties and atmospheric profiles on the CRTM simulations has been assessed. The CRTM-based brightness temperatures (BTs) at the top of the atmosphere (TOA), for both thin (τ 30) clouds, are highly sensitive to uncertainties in atmospheric temperature and cloud top pressure. However, for an optically thick cloud, the CRTM-based BTs are not sensitive to the uncertainties of cloud optical thickness, effective particle size, and atmospheric humidity profiles. On the contrary, the uncertainties of the CRTM-based TOA BTs resulting from effective particle size and optical thickness are not negligible in an optically thin cloud.

  14. Efficient weakly-radiative wireless energy transfer: An EIT-like approach

    International Nuclear Information System (INIS)

    Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, J.D.; Soljacic, Marin

    2009-01-01

    Inspired by a quantum interference phenomenon known in the atomic physics community as electromagnetically induced transparency (EIT), we propose an efficient weakly radiative wireless energy transfer scheme between two identical classical resonant objects, strongly coupled to an intermediate classical resonant object of substantially different properties, but with the same resonance frequency. The transfer mechanism essentially makes use of the adiabatic evolution of an instantaneous (so called 'dark') eigenstate of the coupled 3-object system. Our analysis is based on temporal coupled mode theory (CMT), and is general enough to be valid for various possible sorts of coupling, including the resonant inductive coupling on which witricity-type wireless energy transfer is based. We show that in certain parameter regimes of interest, this scheme can be more efficient, and/or less radiative than other, more conventional approaches. A concrete example of wireless energy transfer between capacitively-loaded metallic loops is illustrated at the beginning, as a motivation for the more general case. We also explore the performance of the currently proposed EIT-like scheme, in terms of improving efficiency and reducing radiation, as the relevant parameters of the system are varied.

  15. Exploring the Effects of Cloud Vertical Structure on Cloud Microphysical Retrievals based on Polarized Reflectances

    Science.gov (United States)

    Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.; Cornet, C.; Baum, B. A.

    2013-12-01

    A polarized cloud reflectance simulator was developed by coupling an LES cloud model with a polarized radiative transfer model to assess the capabilities of polarimetric cloud retrievals. With future remote sensing campaigns like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important for the cloud remote sensing community to understand the retrievable information available and the related systematic/methodical limitations. The cloud retrieval simulator we have developed allows us to probe these important questions in a realistically relevant test bed. Our simulator utilizes a polarized adding-doubling radiative transfer model and an LES cloud field from a DHARMA simulation (Ackerman et al. 2004) with cloud properties based on the stratocumulus clouds observed during the DYCOMS-II field campaign. In this study we will focus on how the vertical structure of cloud microphysics can influence polarized cloud effective radius retrievals. Numerous previous studies have explored how retrievals based on total reflectance are affected by cloud vertical structure (Platnick 2000, Chang and Li 2002) but no such studies about the effects of vertical structure on polarized retrievals exist. Unlike the total cloud reflectance, which is predominantly multiply scattered light, the polarized reflectance is primarily the result of singly scattered photons. Thus the polarized reflectance is sensitive to only the uppermost region of the cloud (tau~influencer on the microphysical development of cloud droplets, can be potentially studied with polarimetric retrievals.

  16. Dynamical nuclear polarization using multi-colour control of color centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pengcheng [Huazhong University of Science and Technology, School of Physics, Wuhan (China); Huazhong University of Science and Technology, Center for Quantum Optical Science, Wuhan (China); Plenio, Martin B. [Universitaet Ulm, Institut fuer Theoretische Physik, Ulm (Germany); Universitaet Ulm, Center for Integrated Quantum Science and Technology, Ulm (Germany); Cai, Jianming [Huazhong University of Science and Technology, School of Physics, Wuhan (China); Huazhong University of Science and Technology, Center for Quantum Optical Science, Wuhan (China); Universitaet Ulm, Institut fuer Theoretische Physik, Ulm (Germany); Universitaet Ulm, Center for Integrated Quantum Science and Technology, Ulm (Germany)

    2016-12-15

    Dynamical nuclear polarization (DNP) transfers the polarization of electron spins at cryogenic temperatures to achieve strong nuclear polarization for applications in nuclear magnetic resonance. Recently introduced approaches employ optical pumping of nitrogen-vacancy (NV) centers in diamond to achieve DNP even at ambient temperatures. In such schemes microwave radiation is used to establish a Hartmann-Hahn condition between the NV electron spin and proximal nuclear spins to facilitate polarization transfer. For a single monochromatic microwave driving field, the Hartmann-Hahn condition cannot be satisfied for an ensemble of NV centers due to inhomogeneous broadening and reduces significantly the overall efficiency of dynamical nuclear polarization using an ensemble of NV centers. Here, we adopt generalized Hartmann-Hahn type dynamical nuclear polarization schemes by applying microwave driving fields with (multiple) time-modulated frequencies. We show that it is possible to enhance the effective coupling between an ensemble of NV center spins with inhomogeneous broadening and nuclear spins, thereby improving significantly the overall efficiency of dynamical nuclear polarization. This approach can also be used to achieve dynamical nuclear polarization of an ensemble of nuclei with a distribution of Larmor frequencies, which would be helpful in magnetic resonance spectroscopy using a single NV spin sensor. (orig.)

  17. An anisotropic diffusion approximation to thermal radiative transfer

    International Nuclear Information System (INIS)

    Johnson, Seth R.; Larsen, Edward W.

    2011-01-01

    This paper describes an anisotropic diffusion (AD) method that uses transport-calculated AD coefficients to efficiently and accurately solve the thermal radiative transfer (TRT) equations. By assuming weak gradients and angular moments in the radiation intensity, we derive an expression for the radiation energy density that depends on a non-local function of the opacity. This nonlocal function is the solution of a transport equation that can be solved with a single steady-state transport sweep once per time step, and the function's second angular moment is the anisotropic diffusion tensor. To demonstrate the AD method's efficacy, we model radiation flow down a channel in 'flatland' geometry. (author)

  18. Microwave radiative transfer intercomparison study for 3-D dichroic media

    International Nuclear Information System (INIS)

    Battaglia, A.; Davis, C.P.; Emde, C.; Simmer, C.

    2007-01-01

    Three different numerical methods capable of solving the radiative transfer of microwave radiation within 3-D dichroic media are compared. A case study, represented by an intense rain shaft populated by perfectly oriented oblate raindrops, is analysed in detail, including a discussion of the behaviour of all four Stokes components. Results demonstrate an acceptable agreement between all Monte Carlo methods. The method based on a discrete ordinates scheme agrees only qualitatively with the Monte Carlo outputs. Because of its lower computational cost the backward Monte Carlo technique based on importance sampling represents the most efficient way to face passive microwave radiative transfer problems related to optically thick 3-D structured clouds including non-spherical preferentially oriented hydrometeors

  19. Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids

    OpenAIRE

    Ali Hafiz Muhammad; Azhar Muhammad Danish; Saleem Musab; Saeed Qazi Samie; Saieed Ahmed

    2015-01-01

    The focus of this research paper is on the application of water based MgO nanofluids for thermal management of a car radiator. Nanofluids of different volumetric concentrations (i.e. 0.06%, 0.09% and 0.12%) were prepared and then experimentally tested for their heat transfer performance in a car radiator. All concentrations showed enhancement in heat transfer compared to the pure base fluid. A peak heat transfer enhancement of 31% was obtained at 0.12 % vol...

  20. High-flux normal incidence monochromator for circularly polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Schaefers, F.; Peatman, W.; Eyers, A.; Heckenkamp, C.; Schoenhense, G.; Heinzmann, U.

    1986-01-01

    A 6.5-m normal incidence monochromator installed at the storage ring BESSY, which is optimized for a high throughput of circularly polarized off-plane radiation at moderate resolution is described. The monochromator employs two exit slits and is specially designed and used for low-signal experiments such as spin- and angle-resolved photoelectron spectroscopy on solids, adsorbates, free atoms, and molecules. The Monk--Gillieson mounting (plane grating in a convergent light beam) allows for large apertures with relatively little astigmatism. With two gratings, a flux of more than 10 11 photons s -1 bandwidth -1 (0.2--0.5 nm) with a circular polarization of more than 90% in the wavelength range from 35 to 675 nm is achieved

  1. Modeling and parameterization of photoelectrons emitted in condensed matter by linearly polarized synchrotron radiation

    Science.gov (United States)

    Jablonski, A.

    2018-01-01

    Growing availability of synchrotron facilities stimulates an interest in quantitative applications of hard X-ray photoemission spectroscopy (HAXPES) using linearly polarized radiation. An advantage of this approach is the possibility of continuous variation of radiation energy that makes it possible to control the sampling depth for a measurement. Quantitative applications are based on accurate and reliable theory relating the measured spectral features to needed characteristics of the surface region of solids. A major complication in the case of polarized radiation is an involved structure of the photoemission cross-section for hard X-rays. In the present work, details of the relevant formalism are described and algorithms implementing this formalism for different experimental configurations are proposed. The photoelectron signal intensity may be considerably affected by variation in the positioning of the polarization vector with respect to the surface plane. This information is critical for any quantitative application of HAXPES by polarized X-rays. Different quantitative applications based on photoelectrons with energies up to 10 keV are considered here: (i) determination of surface composition, (ii) estimation of sampling depth, and (iii) measurements of an overlayer thickness. Parameters facilitating these applications (mean escape depths, information depths, effective attenuation lengths) were calculated for a number of photoelectron lines in four elemental solids (Si, Cu, Ag and Au) in different experimental configurations and locations of the polarization vector. One of the considered configurations, with polarization vector located in a plane perpendicular to the surface, was recommended for quantitative applications of HAXPES. In this configurations, it was found that the considered parameters vary weakly in the range of photoelectron emission angles from normal emission to about 50° with respect to the surface normal. The averaged values of the mean

  2. The evolution of tensor polarization

    International Nuclear Information System (INIS)

    Huang, H.; Lee, S.Y.; Ratner, L.

    1993-01-01

    By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake

  3. Polarized particles in storage rings

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Kondratenko, A.M.; Serednyakov, S.I.; Skrinskij, A.N.; Tumajkin, G.M.; Shatunov, Yu.M.

    1977-01-01

    Experiments with polarized beams on the VEPP-2M and SPEAK storage rings are described. Possible methods of producing polarized particle beams in storage rings as well as method of polarization monitoring are counted. Considered are the processes of radiation polarization of electrons and positrons. It is shown, that to preserve radiation polarization the introduction of regions with a strong sign-variable magnetic field is recommended. Methods of polarization measurement are counted. It is suggested for high energies to use dependence of synchrotron radiation power on transverse polarization of electrons and positrons. Examples of using polarizability of colliding beams in storage rings are presented

  4. A Compendium of AGN inclinations with corresponding UV/optical continuum polarization measurements

    Czech Academy of Sciences Publication Activity Database

    Marin, Frederic

    2014-01-01

    Roč. 441, č. 1 (2014), s. 551-564 ISSN 0035-8711 Grant - others:ANR(FR) JS56-013-01; EU(XE) COST Action MP1104 Institutional support: RVO:67985815 Keywords : polarization * active galacticnuclei * radiative transfer Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 5.107, year: 2014

  5. Radiation parameters of the X-ray binary A 0535+26=HDE 245770 from the polarization and photometric data

    International Nuclear Information System (INIS)

    Larionov, V.M.

    1987-01-01

    An analysis of Shakhovskay et al's observations of the X-ray binary A 0535+26=HDE 245770 made it possible to distinguish in its radiation the two components connected with the visible star (O9 III) and the accretion disc around the neutron star. The interstellar polarization parameters are in accordance with Serkowski's formula and the observations of the field stars. The IR and optical variability can be explained in terms of variable accretion disc radiation. The intrinsic polarization parameters obtained can be used to predict, in the model proposed, the directions of the polarization vectors in the IR and X-ray bands

  6. Spin Transfer in Inclusive Λ0 Production by Transversely Polarized Protons at 200GeV/c

    International Nuclear Information System (INIS)

    Grosnick, D.P.; Hill, D.A.; Laghai, M.; Lopiano, D.; Ohashi, Y.; Spinka, H.; Stanek, R.W.; Underwood, D.G.; Yokosawa, A.; Bystricky, J.; Lehar, F.; Lesquen, A. de; Rossum, L. van; Cossairt, J.D.; Read, A.L.; Iwatani, K.; Belikov, N.I.; Derevschikov, A.A.; Grachov, O.A.; Matulenko, Y.A.; Meschanin, A.P.; Nurushev, S.B.; Patalakha, D.I.; Rykov, V.L.; Solovyanov, V.L.; Vasiliev, A.N.; Akchurin, N.; Onel, Y.; Maki, T.; Enyo, H.; Funahashi, H.; Goto, Y.; Iijima, T.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Takashima, R.; Takeutchi, F.; Kuroda, K.; Michalowicz, A.; Rappazzo, G.F.; Salvato, G.; Luehring, F.C.; Miller, D.H.; Tamura, N.; Yoshida, T.; Adams, D.L.; Bonner, B.E.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Roberts, J.B.; Skeens, J.; White, J.L.; Bravar, A.

    1997-01-01

    Surprisingly large polarizations in hyperon production by unpolarized protons have been known for a long time. The spin dynamics of the production process can be further investigated with polarized beams. Recently, a negative asymmetry A N was found in inclusive Λ 0 production with a 200GeV/c transversely polarized proton beam. The depolarization D NN in p↑+p→Λ 0 +X has been measured with the same beam over a wide x F range and at moderate p T . D NN reaches positive values of about 30% at high x F and p T ∼1.0GeV/c . This result shows a sizable spin transfer from the incident polarized proton to the outgoing Λ 0 . copyright 1997 The American Physical Society

  7. A three-dimensional model of solar radiation transfer in a non-uniform plant canopy

    Science.gov (United States)

    Levashova, N. T.; Mukhartova, Yu V.

    2018-01-01

    A three-dimensional (3D) model of solar radiation transfer in a non-uniform plant canopy was developed. It is based on radiative transfer equations and a so-called turbid medium assumption. The model takes into account the multiple scattering contributions of plant elements in radiation fluxes. These enable more accurate descriptions of plant canopy reflectance and transmission in different spectral bands. The model was applied to assess the effects of plant canopy heterogeneity on solar radiation transmission and to quantify the difference in a radiation transfer between photosynthetically active radiation PAR (=0.39-0.72 μm) and near infrared solar radiation NIR (Δλ = 0.72-3.00 μm). Comparisons of the radiative transfer fluxes simulated by the 3D model within a plant canopy consisted of sparsely planted fruit trees (plant area index, PAI - 0.96 m2 m-2) with radiation fluxes simulated by a one-dimensional (1D) approach, assumed horizontal homogeneity of plant and leaf area distributions, showed that, for sunny weather conditions with a high solar elevation angle, an application of a simplified 1D approach can result in an underestimation of transmitted solar radiation by about 22% for PAR, and by about 26% for NIR.

  8. Enhancing radiative energy transfer through thermal extraction

    Directory of Open Access Journals (Sweden)

    Tan Yixuan

    2016-06-01

    Full Text Available Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a. In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics.

  9. Linearized vector radiative transfer model MCC++ for a spherical atmosphere

    International Nuclear Information System (INIS)

    Postylyakov, O.V.

    2004-01-01

    Application of radiative transfer models has shown that optical remote sensing requires extra characteristics of radiance field in addition to the radiance intensity itself. Simulation of spectral measurements, analysis of retrieval errors and development of retrieval algorithms are in need of derivatives of radiance with respect to atmospheric constituents under investigation. The presented vector spherical radiative transfer model MCC++ was linearized, which allows the calculation of derivatives of all elements of the Stokes vector with respect to the volume absorption coefficient simultaneously with radiance calculation. The model MCC++ employs Monte Carlo algorithm for radiative transfer simulation and takes into account aerosol and molecular scattering, gas and aerosol absorption, and Lambertian surface albedo. The model treats a spherically symmetrical atmosphere. Relation of the estimated derivatives with other forms of radiance derivatives: the weighting functions used in gas retrieval and the air mass factors used in the DOAS retrieval algorithms, is obtained. Validation of the model against other radiative models is overviewed. The computing time of the intensity for the MCC++ model is about that for radiative models treating sphericity of the atmosphere approximately and is significantly shorter than that for the full spherical models used in the comparisons. The simultaneous calculation of all derivatives (i.e. with respect to absorption in all model atmosphere layers) and the intensity is only 1.2-2 times longer than the calculation of the intensity only

  10. Off-axis irradiation and the polarization of broad emission lines in active galactic nuclei

    Czech Academy of Sciences Publication Activity Database

    Goosmann, R. W.; Gaskell, C.M.; Marin, Frederic

    2014-01-01

    Roč. 54, č. 7 (2014), s. 1341-1346 ISSN 0273-1177 Institutional support: RVO:67985815 Keywords : polarization * radiative transfer * R line profiles Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 1.358, year: 2014

  11. Enhancing radiative energy transfer through thermal extraction

    Science.gov (United States)

    Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu

    2016-06-01

    Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal

  12. Adaptation of the delta-m and δ-fit truncation methods to vector radiative transfer: Effect of truncation on radiative transfer accuracy

    International Nuclear Information System (INIS)

    Sanghavi, Suniti; Stephens, Graeme

    2015-01-01

    In the presence of aerosol and/or clouds, the use of appropriate truncation methods becomes indispensable for accurate but cost-efficient radiative transfer computations. Truncation methods allow the reduction of the large number (usually several hundreds) of Fourier components associated with particulate scattering functions to a more manageable number, thereby making it possible to carry out radiative transfer computations with a modest number of streams. While several truncation methods have been discussed for scalar radiative transfer, few rigorous studies have been made of truncation methods for the vector case. Here, we formally derive the vector form of Wiscombe's delta-m truncation method. Two main sources of error associated with delta-m truncation are identified as the delta-separation error (DSE) and the phase-truncation error (PTE). The view angles most affected by truncation error occur in the vicinity of the direction of exact backscatter. This view geometry occurs commonly in satellite based remote sensing applications, and is hence of considerable importance. In order to deal with these errors, we adapt the δ-fit approach of Hu et al. (2000) [17] to vector radiative transfer. The resulting δBGE-fit is compared with the vectorized delta-m method. For truncation at l=25 of an original phase matrix consisting of over 300 Fourier components, the use of the δBGE-fit minimizes the error due to truncation at these view angles, while practically eliminating error at other angles. We also show how truncation errors have a distorting effect on hyperspectral absorption line shapes. The choice of the δBGE-fit method over delta-m truncation minimizes errors in absorption line depths, thus affording greater accuracy for sensitive retrievals such as those of XCO 2 from OCO-2 or GOSAT measurements. - Highlights: • Derives vector form for delta-m truncation method. • Adapts δ-fit truncation approach to vector RTE as δBGE-fit. • Compares truncation

  13. Practical applications of radiative wireless power transfer

    NARCIS (Netherlands)

    Pflug, H.; Visser, H.J.; Keyrouz, S.

    2015-01-01

    For practical use of radiative wireless power transfer (WPT), it is necessary to design a system which is able to supply circuits with a dynamic loading characteristic. In this paper we present a practical way to obtain efficiency and dc output power characteristics of a WPT system. An Avago

  14. OSOAA: A Vector Radiative Transfer Model of Coupled Atmosphere-Ocean System for a Rough Sea Surface Application to the Estimates of the Directional Variations of the Water Leaving Reflectance to Better Process Multi-angular Satellite Sensors Data Over the Ocean

    Science.gov (United States)

    Chami, Malik; LaFrance, Bruno; Fougnie, Bertrand; Chowdhary, Jacek; Harmel, Tristan; Waquet, Fabien

    2015-01-01

    In this study, we present a radiative transfer model, so-called OSOAA, that is able to predict the radiance and degree of polarization within the coupled atmosphere-ocean system in the presence of a rough sea surface. The OSOAA model solves the radiative transfer equation using the successive orders of scattering method. Comparisons with another operational radiative transfer model showed a satisfactory agreement within 0.8%. The OSOAA model has been designed with a graphical user interface to make it user friendly for the community. The radiance and degree of polarization are provided at any level, from the top of atmosphere to the ocean bottom. An application of the OSOAA model is carried out to quantify the directional variations of the water leaving reflectance and degree of polarization for phytoplankton and mineral-like dominated waters. The difference between the water leaving reflectance at a given geometry and that obtained for the nadir direction could reach 40%, thus questioning the Lambertian assumption of the sea surface that is used by inverse satellite algorithms dedicated to multi-angular sensors. It is shown as well that the directional features of the water leaving reflectance are weakly dependent on wind speed. The quantification of the directional variations of the water leaving reflectance obtained in this study should help to correctly exploit the satellite data that will be acquired by the current or forthcoming multi-angular satellite sensors.

  15. Research and development on optically pumped polarized ion sources. Technical progress report, July 1, 1985-June 30, 1986

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1986-07-01

    The development of an optically pumped polarized 23 Na target is discussed. The three categories of research are: (1) electron spin relaxation of the 23 Na due to wall collisions; (2) effects of radiation trapping on the polarization that can be produced in an alkali target by optical pumping; and (3) the effects of spin exchange collisions in the polarization of a fast H 0 beam formed by charge transfer as an H + beam passes through a polarized alkali target. 90 refs., 7 figs

  16. SMRT: A new, modular snow microwave radiative transfer model

    Science.gov (United States)

    Picard, Ghislain; Sandells, Melody; Löwe, Henning; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas

    2017-04-01

    Forward models of radiative transfer processes are needed to interpret remote sensing data and derive measurements of snow properties such as snow mass. A key requirement and challenge for microwave emission and scattering models is an accurate description of the snow microstructure. The snow microwave radiative transfer model (SMRT) was designed to cater for potential future active and/or passive satellite missions and developed to improve understanding of how to parameterize snow microstructure. SMRT is implemented in Python and is modular to allow easy intercomparison of different theoretical approaches. Separate modules are included for the snow microstructure model, electromagnetic module, radiative transfer solver, substrate, interface reflectivities, atmosphere and permittivities. An object-oriented approach is used with carefully specified exchanges between modules to allow future extensibility i.e. without constraining the parameter list requirements. This presentation illustrates the capabilities of SMRT. At present, five different snow microstructure models have been implemented, and direct insertion of the autocorrelation function from microtomography data is also foreseen with SMRT. Three electromagnetic modules are currently available. While DMRT-QCA and Rayleigh models need specific microstructure models, the Improved Born Approximation may be used with any microstructure representation. A discrete ordinates approach with stream connection is used to solve the radiative transfer equations, although future inclusion of 6-flux and 2-flux solvers are envisioned. Wrappers have been included to allow existing microwave emission models (MEMLS, HUT, DMRT-QMS) to be run with the same inputs and minimal extra code (2 lines). Comparisons between theoretical approaches will be shown, and evaluation against field experiments in the frequency range 5-150 GHz. SMRT is simple and elegant to use whilst providing a framework for future development within the

  17. RAPTOR. I. Time-dependent radiative transfer in arbitrary spacetimes

    Science.gov (United States)

    Bronzwaer, T.; Davelaar, J.; Younsi, Z.; Mościbrodzka, M.; Falcke, H.; Kramer, M.; Rezzolla, L.

    2018-05-01

    Context. Observational efforts to image the immediate environment of a black hole at the scale of the event horizon benefit from the development of efficient imaging codes that are capable of producing synthetic data, which may be compared with observational data. Aims: We aim to present RAPTOR, a new public code that produces accurate images, animations, and spectra of relativistic plasmas in strong gravity by numerically integrating the equations of motion of light rays and performing time-dependent radiative transfer calculations along the rays. The code is compatible with any analytical or numerical spacetime. It is hardware-agnostic and may be compiled and run both on GPUs and CPUs. Methods: We describe the algorithms used in RAPTOR and test the code's performance. We have performed a detailed comparison of RAPTOR output with that of other radiative-transfer codes and demonstrate convergence of the results. We then applied RAPTOR to study accretion models of supermassive black holes, performing time-dependent radiative transfer through general relativistic magneto-hydrodynamical (GRMHD) simulations and investigating the expected observational differences between the so-called fast-light and slow-light paradigms. Results: Using RAPTOR to produce synthetic images and light curves of a GRMHD model of an accreting black hole, we find that the relative difference between fast-light and slow-light light curves is less than 5%. Using two distinct radiative-transfer codes to process the same data, we find integrated flux densities with a relative difference less than 0.01%. Conclusions: For two-dimensional GRMHD models, such as those examined in this paper, the fast-light approximation suffices as long as errors of a few percent are acceptable. The convergence of the results of two different codes demonstrates that they are, at a minimum, consistent. The public version of RAPTOR is available at the following URL: http://https://github.com/tbronzwaer/raptor

  18. Heat transfer including radiation and slag particles evolution in MHD channel-I

    International Nuclear Information System (INIS)

    Im, K.H.; Ahluwalia, R.K.

    1980-01-01

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed

  19. On radiative transfer in water spray curtains using the discrete ordinates method

    Energy Technology Data Exchange (ETDEWEB)

    Collin, A. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France); Boulet, P. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France)]. E-mail: Pascal.Boulet@lemta.uhp-nancy.fr; Lacroix, D. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France); Jeandel, G. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France)

    2005-04-15

    Radiative transfer through water spray curtains has been presently addressed in conditions similar to devices used in fire protection systems. The radiation propagation from the heat source through the medium is simulated using a 2D Discrete Ordinates Method. The curtain is treated as an absorbing and anisotropically scattering medium, made of droplets injected in a mixing of air, water vapor and carbon dioxide. Such a participating medium requires a careful treatment of its spectral response in order to model the radiative transfer accurately. This particular problem is dealt with using a correlated-K method. Radiative properties for the droplets are calculated applying the Mie theory. Transmissivities under realistic conditions are then simulated after a validation thanks to comparisons with some experimental data available in the literature. Owing to promising results which are already observed in this case of uncoupled radiative problem, next step will be to combine the present study with a companion work dedicated to the careful treatment of the spray dynamics and of the induced heat transfer phenomena.

  20. Application of nonlinear Krylov acceleration to radiative transfer problems

    International Nuclear Information System (INIS)

    Till, A. T.; Adams, M. L.; Morel, J. E.

    2013-01-01

    The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)

  1. Application of the Radiative Transfer Equation (RTE) to Scattering by ...

    African Journals Online (AJOL)

    Application of the Radiative Transfer Equation (RTE) to Scattering by a Dust Aerosol Layer. ... Incident radiation in its journey through the atmosphere before reaching the earth surface encounters particles of different sizes and composition such as dust aerosols resulting in interactions that lead to absorption and scattering.

  2. Radiative heat transfer analysis in pure water heater used for semiconductor processing

    International Nuclear Information System (INIS)

    Liu, L.H.; Kudo, K.; Mochida, A.; Ogawa, T.; Kadotani, K.

    2004-01-01

    A simplified one-dimensional model is presented to analyze the non-gray radiative transfer in pure water heater used in the rinsing processes within semiconductor production lines, and the ray-tracing method is extended to simulate the radiative heat transfer. To examine the accuracy of the simplified model, the distribution of radiation absorption is determined by the ray-tracing method based the simplified model and compared with the data obtained by three-dimensional non-gray model in combination with Monte Carlo method in reference, and the effects of the water thickness on the radiation absorption are analyzed. The results show that the simplified model has a good accuracy in solving the radiation absorption in the pure water heater. The radiation absorption increases with the water thickness, but when the water thickness is greater than 50 mm, the radiation absorption increases very slowly with the water thickness

  3. Review of polarized ammonium target

    International Nuclear Information System (INIS)

    Matsuda, Tatsuo

    1987-01-01

    Recently, ammonia (NH 3 ) and deutron ammonia (ND 3 ), instead of conventional alcohol substances, have been used more frequently as a polarized target substance for experiments of polarization at high energy regions. This article reviews major features of the polarized (deutron) ammonia targets. The dynamic nuclear polarization (DNT) method is widely used in high energy polarization experiments. While only a low polarization degree of hydrogen nucleus of 1.7 percent can be obtained by the Brute force method, DNP can produce polarization as high as ∼ 90 percent (2.5 T, ∼ 200 mK). In 1979, ammonia was irradiated with radiations to form NH 2 free radicals, resulting in the achievement of a high polarization degree of greater than 90 percent (hydrogen). Since then, ammonia and deutron ammonia have increasingly been replacing alcohols including butanol. Irradiation of a target substance with radiations destroys the structure of the substance, leading to a decrease in polarization degree. However, ammonia produces unpaired electrons as a result of irradiation, allowing it to be highly resistant to radiation. This report also present some study results, including observations on effects of radiation on the polarization degree of a target, effects of annealing, and polarization of 14 N. A process for producing an ammonia target is also described. (Nogami, K.)

  4. Finite element method for radiation heat transfer in multi-dimensional graded index medium

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium

  5. Fast and simple model for atmospheric radiative transfer

    NARCIS (Netherlands)

    Seidel, F.C.; Kokhanovsky, A.A.; Schaepman, M.E.

    2010-01-01

    Radiative transfer models (RTMs) are of utmost importance for quantitative remote sensing, especially for compensating atmospheric perturbation. A persistent trade-off exists between approaches that prefer accuracy at the cost of computational complexity, versus those favouring simplicity at the

  6. Development of dual stream PCRTM-SOLAR for fast and accurate radiative transfer modeling in the cloudy atmosphere with solar radiation

    Science.gov (United States)

    Yang, Q.; Liu, X.; Wu, W.; Kizer, S.; Baize, R. R.

    2016-12-01

    Fast and accurate radiative transfer model is the key for satellite data assimilation and observation system simulation experiments for numerical weather prediction and climate study applications. We proposed and developed a dual stream PCRTM-SOLAR model which may simulate radiative transfer in the cloudy atmosphere with solar radiation quickly and accurately. Multi-scattering of multiple layers of clouds/aerosols is included in the model. The root-mean-square errors are usually less than 5x10-4 mW/cm2.sr.cm-1. The computation speed is 3 to 4 orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This model will enable a vast new set of scientific calculations that were previously limited due to the computational expenses of available radiative transfer models.

  7. Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids

    Directory of Open Access Journals (Sweden)

    Ali Hafiz Muhammad

    2015-01-01

    Full Text Available The focus of this research paper is on the application of water based MgO nanofluids for thermal management of a car radiator. Nanofluids of different volumetric concentrations (i.e. 0.06%, 0.09% and 0.12% were prepared and then experimentally tested for their heat transfer performance in a car radiator. All concentrations showed enhancement in heat transfer compared to the pure base fluid. A peak heat transfer enhancement of 31% was obtained at 0.12 % volumetric concentration of MgO in basefluid. The fluid flow rate was kept in a range of 8-16 liter per minute. Lower flow rates resulted in greater heat transfer rates as compared to heat transfer rates at higher flow rates for the same volumetric concentration. Heat transfer rates were found weakly dependent on the inlet fluid temperature. An increase of 8°C in inlet temperature showed only a 6% increase in heat transfer rate.

  8. Radiatively-suppressed spherical accretion under relativistic radiative transfer

    Science.gov (United States)

    Fukue, Jun

    2018-03-01

    We numerically examine radiatively-suppressed relativistic spherical accretion flows on to a central object with mass M under Newtonian gravity and special relativity. We simultaneously solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double iteration process in the case of the intermediate optical depth. We find that the accretion flow is suppressed, compared with the freefall case in the nonrelativistic regime. For example, in the case of accretion on to a luminous core with accretion luminosity L*, the freefall velocity v normalized by the speed of light c under the radiative force in the nonrelativistic regime is β (\\hat{r}) = v/c = -√{(1-Γ _*)/(\\hat{r}+1-Γ _*)}, where Γ* (≡ L*/LE, LE being the Eddington luminosity) is the Eddington parameter and \\hat{r} (= r/rS, rS being the Schwarzschild radius) the normalized radius, whereas the infall speed at the central core is ˜0.7β(1), irrespective of the mass-accretion rate. This is due to the relativistic effect; the comoving flux is enhanced by the advective flux. We briefly examine and discuss an isothermal case, where the emission takes place in the entire space.

  9. A difference quotient-numerical integration method for solving radiative transfer problems

    International Nuclear Information System (INIS)

    Ding Peizhu

    1992-01-01

    A difference quotient-numerical integration method is adopted to solve radiative transfer problems in an anisotropic scattering slab medium. By using the method, the radiative transfer problem is separated into a system of linear algebraic equations and the coefficient matrix of the system is a band matrix, so the method is very simple to evaluate on computer and to deduce formulae and easy to master for experimentalists. An example is evaluated and it is shown that the method is precise

  10. Imaging and modeling of collagen architecture in living tissue with polarized light transfer (Conference Presentation)

    Science.gov (United States)

    Ramella-Roman, Jessica C.; Stoff, Susan; Chue-Sang, Joseph; Bai, Yuqiang

    2016-03-01

    The extra-cellular space in connective tissue of animals and humans alike is comprised in large part of collagen. Monitoring of collagen arrangement and cross-linking has been utilized to diagnose a variety of medical conditions and guide surgical intervention. For example, collagen monitoring is useful in the assessment and treatment of cervical cancer, skin cancer, myocardial infarction, and non-arteritic anterior ischemic optic neuropathy. We have developed a suite of tools and models based on polarized light transfer for the assessment of collagen presence, cross-linking, and orientation in living tissue. Here we will present some example of such approach applied to the human cervix. We will illustrate a novel Mueller Matrix (MM) imaging system for the study of cervical tissue; furthermore we will show how our model of polarized light transfer through cervical tissue compares to the experimental findings. Finally we will show validation of the methodology through histological results and Second Harmonic imaging microscopy.

  11. Investigation of PTFE transfer films by infrared emission spectroscopy and phase-locked ellipsometry

    Science.gov (United States)

    Lauer, James L.; Bunting, Bruce G.; Jones, William R., Jr.

    1988-01-01

    When a PTFE sheet was rubbed unidirectionally over a smooth surface of stainless steel an essentially monomolecular transfer film was formed. by ellipsometric and emission infrared spectroscopic techniques it was shown that the film was 10 to 15 A thick and birefringent. From the intensity differences of infrared bands obtained with a polarizer passing radiation polarized in mutually perpendicular planes, it was possible to deduce transfer film orientation with the direction of rubbing. After standing in air for several weeks the transfer films apparently increased in thickness by as much as threefold. At the same time both the index of refraction and the absorption index decreased. Examination of the surfaces by optical and electron microscopies showed that the films had become porous and flaky. These observations were consistent with previous tribological measurements. The coefficients of friction decreased with the formation of the transfer film but increased again as the film developed breaks. The applicability of the ellipsometric and polarized infrared emission techniques to the identification of monomolecular tribological transfer films of polymers such as PTFE has been demonstrated.

  12. Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores

    International Nuclear Information System (INIS)

    El Ganaoui, K.

    2006-09-01

    In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)

  13. Numerical simulations of a coupled radiative?conductive heat transfer model using a modified Monte Carlo method

    KAUST Repository

    Kovtanyuk, Andrey E.; Botkin, Nikolai D.; Hoffmann, Karl-Heinz

    2012-01-01

    Radiative-conductive heat transfer in a medium bounded by two reflecting and radiating plane surfaces is considered. This process is described by a nonlinear system of two differential equations: an equation of the radiative heat transfer

  14. Extracting and Using Photon Polarization Information in Radiative B Decays

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Yuval

    2000-05-09

    The authors discuss the uses of conversion electron pairs for extracting photon polarization information in weak radiative B decays. Both cases of leptons produced through a virtual and real photon are considered. Measurements of the angular correlation between the (K-pi) and (e{sup +}e{sup {minus}}) decay planes in B --> K*(--> K-pi)gamma (*)(--> e{sup +}e{sup {minus}}) decays can be used to determine the helicity amplitudes in the radiative B --> K*gamma decays. A large right-handed helicity amplitude in B-bar decays is a signal of new physics. The time-dependent CP asymmetry in the B{sup 0} decay angular correlation is shown to measure sin 2-beta and cos 2-beta with little hadronic uncertainty.

  15. Computing Radiative Transfer in a 3D Medium

    Science.gov (United States)

    Von Allmen, Paul; Lee, Seungwon

    2012-01-01

    A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.

  16. Radiative Transfer Modeling in Proto-planetary Disks

    Science.gov (United States)

    Kasper, David; Jang-Condell, Hannah; Kloster, Dylan

    2016-01-01

    Young Stellar Objects (YSOs) are rich astronomical research environments. Planets form in circumstellar disks of gas and dust around YSOs. With ever increasing capabilities of the observational instruments designed to look at these proto-planetary disks, most notably GPI, SPHERE, and ALMA, more accurate interfaces must be made to connect modeling of the disks with observation. PaRTY (Parallel Radiative Transfer in YSOs) is a code developed previously to model the observable density and temperature structure of such a disk by self-consistently calculating the structure of the disk based on radiative transfer physics. We present upgrades we are implementing to the PaRTY code to improve its accuracy and flexibility. These upgrades include: creating a two-sided disk model, implementing a spherical coordinate system, and implementing wavelength-dependent opacities. These upgrades will address problems in the PaRTY code of infinite optical thickness, calculation under/over-resolution, and wavelength-independent photon penetration depths, respectively. The upgraded code will be used to better model disk perturbations resulting from planet formation.

  17. Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    Science.gov (United States)

    Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.

    2018-02-01

    Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.

  18. A non-local-thermodynamic equilibrium formulation of the transport equation for polarized light in the presence of weak magnetic fields. Doctoral thesis

    International Nuclear Information System (INIS)

    McNamara, D.J.

    1977-01-01

    The present work is motivated by the desire to better understand solar magnetism. Just as stellar astrophysics and radiative transfer have been coupled in the history of research in physics, so too has the study of radiative transfer of polarized light in magnetic fields and solar magnetism been a history of mutual growth. The Stokes parameters characterize the state of polarization of a beam of radiation. The author considers the changes in polarization, and therefore in the Stokes parameters, due to the transport of a beam through an optically thick medium in a weak magnetic field. The transport equation is derived from a general density matrix equation of motion. This allows the possibility of interference effects arising from the mixing of atomic sublevels in a weak magnetic field to be taken into account. The statistical equilibrium equations are similarly derived. Finally, the coupled system of equations is presented, and the order of magnitude of the interference effects, shown. Collisional effects are not considered. The magnitude of the interference effects in magnetic field measurements of the sun may be evaluated

  19. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. II. RADIATIVE TRANSFER VIA THE TWO-STREAM APPROXIMATION

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin; Mendonça, João M.; Lee, Jae-Min, E-mail: kevin.heng@csh.unibe.ch, E-mail: joao.mendonca@csh.unibe.ch, E-mail: lee@physik.uzh.ch [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-11-01

    We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.

  20. Mathematical models of the theory of the radiative transfer

    International Nuclear Information System (INIS)

    Lin, Ch.

    2007-06-01

    We are interested in various different models arising in radiative transfer, which describe the interactions between the medium and the photons. The radiation is described in terms of energy and energy flux in the macroscopic view, the material being described by the Euler equations (radiative hydrodynamic model). In another way, the radiation can be seen as a collection of photons, in the microscopic view point; the photons can be absorbed or emitted by the material. The absorption and the emission of photons depend on the internal excitation and ionization state of the material. We begin with the local existence (in time) of smooth solutions to a system coupling the Euler equations and the transfer equation. This system describes the exchange of energy and moment between the radiation and the material. Next, we give an asymptotic discussion for this model in the NON-LTE regime and get a simple system: coupling the Euler equations with an elliptic equation. We show the existence of (smooth) shock profiles to this system and the regularity of the shock profile as a function of the strength of the shock. Then we study the asymptotic stability of the shock profile. Finally, we study a system describing the radiation and the internal state of the material, in the microscopic view point. We prove the existence of the solution to this system and study the convergence towards the statistical equilibrium. The theoretical results are illustrated by numerical simulations. (author)

  1. Radiative transfer model for heterogeneous 3-D scenes

    Science.gov (United States)

    Kimes, D. S.; Kirchner, J. A.

    1982-01-01

    A general mathematical framework for simulating processes in heterogeneous 3-D scenes is presented. Specifically, a model was designed and coded for application to radiative transfers in vegetative scenes. The model is unique in that it predicts (1) the directional spectral reflectance factors as a function of the sensor's azimuth and zenith angles and the sensor's position above the canopy, (2) the spectral absorption as a function of location within the scene, and (3) the directional spectral radiance as a function of the sensor's location within the scene. The model was shown to follow known physical principles of radiative transfer. Initial verification of the model as applied to a soybean row crop showed that the simulated directional reflectance data corresponded relatively well in gross trends to the measured data. However, the model can be greatly improved by incorporating more sophisticated and realistic anisotropic scattering algorithms

  2. General relativistic radiative transfer code in rotating black hole space-time: ARTIST

    Science.gov (United States)

    Takahashi, Rohta; Umemura, Masayuki

    2017-02-01

    We present a general relativistic radiative transfer code, ARTIST (Authentic Radiative Transfer In Space-Time), that is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of ARTIST is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole that was originally explored by Hanni. This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the ARTIST turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90 M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hotspot problem. All the simulations in this study are performed in the equatorial plane around a Kerr black hole. The ARTIST is the first step to realize the general relativistic radiation hydrodynamics.

  3. Radiative Transfer Through Discs of Cataclysmic Variables

    Czech Academy of Sciences Publication Activity Database

    Korčáková, Daniela; Nagel, T.; Werner, K.; Suleimanov, V.; Votruba, Viktor

    2010-01-01

    Roč. 1273, - (2010), s. 350-353 ISSN 1551-7616. [European White Dwarf Workshop /17./. Tübingen, 16.08.2010-20.08.2010] R&D Projects: GA ČR GP205/09/P476 Institutional research plan: CEZ:AV0Z10030501 Keywords : radiative transfer * Doppler effect, * accretion disks Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  4. Measuring the influence of aerosols and albedo on sky polarization.

    Science.gov (United States)

    Kreuter, A; Emde, C; Blumthaler, M

    2010-11-01

    All-sky distributions of the polarized radiance are measured using an automated fish-eye camera system with a rotating polarizer. For a large range of aerosol and surface albedo situations, the influence on the degree of polarization and sky radiance is investigated. The range of aerosol optical depth and albedo is 0.05-0.5 and 0.1-0.75, respectively. For this range of parameters, a reduction of the degree of polarization from about 0.7 to 0.4 was observed. The analysis is done for 90° scattering angle in the principal plane under clear sky conditions for a broadband channel of 450 ± 25 nm and solar zenith angles between 55° and 60°. Radiative transfer calculations considering three different aerosol mixtures are performed and and agree with the measurements within the statistical error.

  5. Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1985-01-01

    Advantages and disadvantages of modern discrete-ordinates finite-element methods for the solution of radiative transfer problems in meteorology, climatology, and remote sensing applications are evaluated. After the common basis of the formulation of radiative transfer problems in the fields of neutron transport and atmospheric optics is established, the essential features of the discrete-ordinates finite-element method are described including the limitations of the method and their remedies. Numerical results are presented for 1-D and 2-D atmospheric radiative transfer problems where integral as well as angular dependent quantities are compared with published results from other calculations and with measured data. These comparisons provide a verification of the discrete-ordinates results for a wide spectrum of cases with varying degrees of absorption, scattering, and anisotropic phase functions. Accuracy and computational speed are also discussed. Since practically all discrete-ordinates codes offer a builtin adjoint capability, the general concept of the adjoint method is described and illustrated by sample problems. Our general conclusion is that the strengths of the discrete-ordinates finite-element method outweight its weaknesses. We demonstrate that existing general-purpose discrete-ordinates codes can provide a powerful tool to analyze radiative transfer problems through the atmosphere, especially when 2-D geometries must be considered

  6. Contribution of parsec-scale material onto the polarized X-ray spectrum of type-1 Seyfert galaxies

    Science.gov (United States)

    Marin, F.; Dovčiak, M.; Kammoun, E. S.

    2018-04-01

    Type-1 radio-quiet active galactic nuclei (AGN) are seen from the polar direction and offer a direct view of their central X-ray engine. If most of X-ray photons have traveled from the primary source to the observer with minimum light-matter interaction, a fraction of radiation is emitted at different directions and is reprocessed by the parsec-scale equatorial circumnuclear region or the polar outflows. It is still unclear how much the polarization expected from type-1 AGN is affected by radiation that have scattered on the distant AGN components. In this paper, we examine the contribution of remote material onto the polarized X-ray spectrum of type-1 Seyfert galaxies using radiative transfer Monte Carlo codes. We find that the observed X-ray polarization strongly depends on the initial polarization emerging from the disk-corona system. For unpolarized and parallelly polarized photons (parallel to the disk), the contribution is negligible below 3 keV and tends to increase the polarization degree by up to one percentage points at higher energies, smoothing out the energy-dependent variations of the polarization angle. For perpendicularly polarized corona photons, the addition of the circumnuclear scattered (parallel) component adds to the polarization above 10keV, decreases polarization below 10 keV and shifts the expected 90° rotation of the polarization angle to lower energies. In conclusion, we found that simulations of Seyfert-1s that do not account for reprocessing on the parsec-scale equatorial and polar material are under- or over-estimating the X-ray polarization by 0.1 - 1 percentage points.

  7. The Norwegian Radiation Protection Authority's Environmental Unit - 10 years in the Polar Environmental Centre, Tromsoe

    International Nuclear Information System (INIS)

    2009-01-01

    The Norwegian Radiation Protection Authority (NRPA) established an Environmental Unit at the Polar Environmental Centre in Tromsoe in the summer of 1999. The aim of establishing the unit in Tromsoe was to further the monitoring programmes of the NRPA in the Arctic and to the promote collaboration within the Polar Environmental Centre. Over the last 10 years, the NRPA's Environmental Unit has undertaken a range of research and monitoring activities in close cooperation with other institutes in the Polar Environmental Centre that have helped to further understand the current radiological status of the Norwegian Arctic. (Author)

  8. Radiative transfer in silylidene molecule

    Directory of Open Access Journals (Sweden)

    Sharma M.

    2014-01-01

    Full Text Available In order to search for silylidene (H2CSi in the interstellar medium, Izuha et al. (1996 recorded microwave spectrum of H2CSi in laboratory and made an unsuccessful attempt of its identification in IRC +10216, Ori KL, Sgr B2, through its 717-616 transition at 222.055 GHz. For finding out if there are other transitions of H2CSi which may help in its identification in the interstellar medium, we have considered 25 rotational levels of ortho-H2CSi connected by collisional transitions and 35 radiative transitions, and solved radiative transfer problem using the LVG approximation. We have found that the brightness temperatures of 919-818, 918-817, 101,10-919, 1019-918, 111,11-101,10, 111,10-1019 and 121,12-111,11 transition are larger than that of 717-616 transition. Thus, these transitions may help in detection of H2CSi in the interstellar medium.

  9. Mathematical and numerical analysis of systems of compressible hydrodynamics and photonics with polar coordinates

    International Nuclear Information System (INIS)

    Meltz, Bertrand

    2015-01-01

    This thesis deals with the mathematical and numerical analysis of the systems of compressible hydrodynamics and radiative transfer. More precisely, we study the derivation of numerical methods with 2D polar coordinates (one for the radius, one for the angle) where equations are discretized on regular polar grids. On one hand, these methods are well-suited for the simulation of flows with polar symmetries since they preserve these symmetries by construction. On the other hand, such coordinates systems introduce geometrical singularities as well as geometrical source terms which must be carefully treated. The first part of this document is devoted to the study of hydrodynamics equations, or Euler equations. We propose a new class of arbitrary high-order numerical schemes in both space and time and rely on directional splitting methods for the resolution of 2D equations. Each sub-system is solved using a Lagrange+Remap solver. We study the influence of the r=0 geometrical singularities of the cylindrical and spherical coordinates systems on the precision of the 2D numerical solutions. The second part of this document is devoted to the study of radiative transfer equations. In these equations, the unknowns depend on a large number of variables and a stiff source term is involved. The main difficulty consists in capturing the correct asymptotic behavior on coarse grids. We first construct a class of models where the radiative intensity is projected on a truncated spherical harmonics basis in order to lower the number of mathematical dimensions. Then we propose an Asymptotic Preserving scheme built in polar coordinates and we show that the scheme capture the correct diffusion limit in the radial direction as well as in the polar direction. (author) [fr

  10. X-ray polarization fluctuations induced by cloud eclipses in active galactic nuclei

    Czech Academy of Sciences Publication Activity Database

    Marin, Frederic; Dovčiak, Michal

    2015-01-01

    Roč. 573, January (2015), A60/1-A60/8 ISSN 0004-6361 R&D Projects: GA MŠk LD12010 Grant - others:EU(XE) COST action MP1104 Institutional support: RVO:67985815 Keywords : galaxies: Seyfert * polarization * radiative transfer * relativistic processes * scattering * X-rays: general Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  11. Modeling spin selectivity in charge transfer across the DNA/Gold interface

    Energy Technology Data Exchange (ETDEWEB)

    Behnia, S., E-mail: s.behnia@sci.uut.ac.ir [Department of Physics, Urmia University of Technology, Urmia (Iran, Islamic Republic of); Fathizadeh, S. [Department of Physics, Urmia University of Technology, Urmia (Iran, Islamic Republic of); Akhshani, A. [Department of Physics, Urmia Branch, Islamic Azad University, Urmia (Iran, Islamic Republic of)

    2016-09-30

    Highlights: • DNA in spintronics is applied. Nearly pure spin current is observed in the system. • A combined spin-polaronic PBH model is proposed for spin transfer in DNA molecule. • Spin Hall effect in DNA due to spin–orbit coupling is verified. • The temperature dependence of Hall conductivity is appeared. • Regions of parameters were determined that polarization of spin current is maximum. - Abstract: Experimental results show that the photoelectrons emitted from the gold substrate due to laser radiation, passe through DNA nanowires with spin-polarized nature. This study proposes the use of chiral DNA molecule in spintronics and information processing. To investigate the spin transfer in DNA molecules, we established a theoretical model based on a combined spin-polaronic Peyrard–Bishop–Holstein model. Accordingly, a nearly pure spin current is appeared. The simultaneous effects of the incident radiation and external magnetic field create characteristic islands corresponding to the pure spin currents, which can be predicted and detected using the multifractal dimensions spectrum. We can verify the spin Hall effect on DNA oligomers through spin–orbit coupling. As such, we can proceed to our significant purpose, which is to create a nearly pure spin current for information transfer and determine the regions of parameter values from which the maximal polarization in spin current emerges.

  12. Light scattering reviews 9 light scattering and radiative transfer

    CERN Document Server

    Kokhanovsky, Alexander A

    2014-01-01

    This book details modern methods of the radiative transfer theory. It presents recent advances in light scattering (measurements and theory) and highlights the newest developments in remote sensing of aerosol and cloud properties.

  13. Ultra thin metallic coatings to control near field radiative heat transfer

    Science.gov (United States)

    Esquivel-Sirvent, R.

    2016-09-01

    We present a theoretical calculation of the changes in the near field radiative heat transfer between two surfaces due to the presence of ultra thin metallic coatings on semiconductors. Depending on the substrates, the radiative heat transfer is modulated by the thickness of the ultra thin film. In particular we consider gold thin films with thicknesses varying from 4 to 20 nm. The ultra-thin film has an insulator-conductor transition close to a critical thickness of dc = 6.4 nm and there is an increase in the near field spectral heat transfer just before the percolation transition. Depending on the substrates (Si or SiC) and the thickness of the metallic coatings we show how the near field heat transfer can be increased or decreased as a function of the metallic coating thickness. The calculations are based on available experimental data for the optical properties of ultrathin coatings.

  14. PRECONDITIONED BI-CONJUGATE GRADIENT METHOD FOR RADIATIVE TRANSFER IN SPHERICAL MEDIA

    International Nuclear Information System (INIS)

    Anusha, L. S.; Nagendra, K. N.; Paletou, F.; Leger, L.

    2009-01-01

    A robust numerical method called the Preconditioned Bi-Conjugate Gradient (Pre-BiCG) method is proposed for the solution of the radiative transfer equation in spherical geometry. A variant of this method called Stabilized Preconditioned Bi-Conjugate Gradient (Pre-BiCG-STAB) is also presented. These are iterative methods based on the construction of a set of bi-orthogonal vectors. The application of the Pre-BiCG method in some benchmark tests shows that the method is quite versatile, and can handle difficult problems that may arise in astrophysical radiative transfer theory.

  15. First Experimental Study of Photon Polarization in Radiative B-s(0) Decays

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Romeu, J. Arnau; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baszczyk, M.; Batozskaya, V.; Batsukh, B.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M. -O.; van Beuzekom, M.; Bezshyiko, I.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Gomez, M. Calvo; Camboni, A.; Camboni, A.; Campana, P.; Perez, D. Campora; Perez, D. H. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Akiba, K. Carvalho; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Cheung, S. -F.; Chobanova, V.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Sobral, C. M. Costa; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. -T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dordei, F.; Dorigo, M.; Suarez, A. Dosil; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Deleage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Lima, V. Franco; Frei, C.; Furfaro, E.; Farber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Garcia Martin, L. M.; Garcia Pardinas, J.; Tico, J. Garra; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Giani, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gorelov, I. V.; Gotti, C.; Gandara, M. Grabalosa; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Cazon, B. R. Gruberg; Grunberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Gobel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, H.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koppenburg, P.; Kosmyntseva, A.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. -P.; Leflat, A.; Lefrancois, J.; Lefevre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; Meadows, B.; Meier, F.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M. -N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Mueller, J.; Mueller, K.; Mueller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Goicochea, J. M. Otalora; Otto, A.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palombo, F.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Olloqui, E. Picatoste; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Rodrigues, A. B.; Rodrigues, E.; Lopez, J. A. Rodriguez; Perez, P. Rodriguez; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M. -H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Coutinho, R. Silva; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, I. T.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevenson, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voss, C.; Vazquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhukov, V.; Zucchelli, S.

    2017-01-01

    The polarization of photons produced in radiative B-s(0) decays is studied for the first time. The data are recorded by the LHCb experiment in pp collisions corresponding to an integrated luminosity of 3 fb(-1) at center-of-mass energies of 7 and 8 TeV. A time-dependent analysis of the B-s(0) ->phi

  16. A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers

    International Nuclear Information System (INIS)

    Li, L.; Li, Z.; Li, K.; Blarel, L.; Wendisch, M.

    2014-01-01

    The polarized CIMEL sun/sky radiometers have been routinely operated within the Sun/sky-radiometer Observation NETwork (SONET) in China and some sites of the AErosol RObotic NETwork (AERONET) around the world. However, the polarization measurements are not yet widely used due to in a certain degree the lack of Stokes parameters derived directly from these polarization measurements. Meanwhile, it have been shown that retrievals of several microphysical properties of aerosol particles can be significantly improved by using degree of linear polarization (DoLP) measurements of polarized CIMEL sun/sky radiometers (CE318-DP). The Stokes parameters Q and U, as well as angle of polarization (AoP) contain additional information about linear polarization and its orientation. A method to calculate Stokes parameters Q, U, and AoP from CE318-DP polarized skylight measurements is introduced in this study. A new polarized almucantar geometry based on CE318-DP is measured to illustrate abundant variation features of these parameters. The polarization parameters calculated in this study are consistent with previous results of DoLP and I, and also comparable to vector radiative transfer simulations. - Highlights: • The CE318-DP polarized measurements are not yet widely used except DoLP. • Compared with DoLP and I, difficulty in calculating Stokes Q and U is discussed. • A new polarized almucantar observation geometry based on CE318-DP is executed. • We derive Stokes Q, U, and AoP both in principal and almucantar plane geometries. • The results are comparable with previous DoLP and I, as well as model simulations

  17. Asymptotic theory of circular polarization memory.

    Science.gov (United States)

    Dark, Julia P; Kim, Arnold D

    2017-09-01

    We establish a quantitative theory of circular polarization memory, which is the unexpected persistence of the incident circular polarization state in a strongly scattering medium. Using an asymptotic analysis of the three-dimensional vector radiative transfer equation (VRTE) in the limit of strong scattering, we find that circular polarization memory must occur in a boundary layer near the portion of the boundary on which polarized light is incident. The boundary layer solution satisfies a one-dimensional conservative scattering VRTE. Through a spectral analysis of this boundary layer problem, we introduce the dominant mode, which is the slowest-decaying mode in the boundary layer. To observe circular polarization memory for a particular set of optical parameters, we find that this dominant mode must pass three tests: (1) this dominant mode is given by the largest, discrete eigenvalue of a reduced problem that corresponds to Fourier mode k=0 in the azimuthal angle, and depends only on Stokes parameters U and V; (2) the polarization state of this dominant mode is largely circular polarized so that |V|≫|U|; and (3) the circular polarization of this dominant mode is maintained for all directions so that V is sign-definite. By applying these three tests to numerical calculations for monodisperse distributions of Mie scatterers, we determine the values of the size and relative refractive index when circular polarization memory occurs. In addition, we identify a reduced, scalar-like problem that provides an accurate approximation for the dominant mode when circular polarization memory occurs.

  18. Polarization transfer in the 3H(rvec p,rvec n)3He reaction and the 0- level in 4He

    International Nuclear Information System (INIS)

    Walston, J.R.; Gould, C.R.; Haase, D.G.; Raichle, B.W.; Seely, M.L.; Walston, J.R.; Keith, C.D.; Gould, C.R.; Haase, D.G.; Raichle, B.W.; Seely, M.L.; Tornow, W.; Wilburn, W.S.; Keith, C.D.; Tornow, W.; Wilburn, W.S.; Hoffmann, G.W.; Penttilae, S.I.

    1998-01-01

    Longitudinal polarization-transfer coefficients for the 3 H(rvec p,rvec n) 3 He reaction have been measured at zero degrees for proton energies of 1.3 endash 2.8 MeV. The results show a striking resonance behavior for energies corresponding to excitation of the 0 - level in 4 He at 21.0 MeV. In agreement with R-matrix calculations, the value approaches unity at 1.52 MeV, the peak of the resonance. Near this same energy, at 1.62 MeV, the transverse polarization-transfer coefficient was measured to be consistent with zero. copyright 1998 The American Physical Society

  19. Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves.

    Science.gov (United States)

    Bhattacharya, Kaushik; Mohanty, Subhendra; Nautiyal, Akhilesh

    2006-12-22

    If inflation was preceded by a radiation era, then at the time of inflation there will exist a decoupled thermal distribution of gravitons. Gravitational waves generated during inflation will be amplified by the process of stimulated emission into the existing thermal distribution of gravitons. Consequently, the usual zero temperature scale invariant tensor spectrum is modified by a temperature dependent factor. This thermal correction factor amplifies the B-mode polarization of the cosmic microwave background radiation by an order of magnitude at large angles, which may now be in the range of observability of the Wilkinson Microwave Anisotropy Probe.

  20. Central powering of the largest Lyman-α nebula is revealed by polarized radiation.

    Science.gov (United States)

    Hayes, Matthew; Scarlata, Claudia; Siana, Brian

    2011-08-17

    High-redshift Lyman-α (Lyα) blobs are extended, luminous but rare structures that seem to be associated with the highest peaks in the matter density of the Universe. Their energy output and morphology are similar to those of powerful radio galaxies, but the source of the luminosity is unclear. Some blobs are associated with ultraviolet or infrared bright galaxies, suggesting an extreme starburst event or accretion onto a central black hole. Another possibility is gas that is shock-excited by supernovae. But not all blobs are associated with galaxies, and these ones may instead be heated by gas falling into a dark-matter halo. The polarization of the Lyα emission can in principle distinguish between these options, but a previous attempt to detect this signature returned a null detection. Here we report observations of polarized Lyα from the blob LAB1 (ref. 2). Although the central region shows no measurable polarization, the polarized fraction (P) increases to ∼20 per cent at a radius of 45 kiloparsecs, forming an almost complete polarized ring. The detection of polarized radiation is inconsistent with the in situ production of Lyα photons, and we conclude that they must have been produced in the galaxies hosted within the nebula, and re-scattered by neutral hydrogen.

  1. System for selection of radiation source transfer trucks

    International Nuclear Information System (INIS)

    Tanimoto, Yoshinori; Ito, Kojiro.

    1970-01-01

    A device for selection of trucks each of which load and transfer a radiation source to an irradiation room above a water pool is installed at the end of a pair of rails fixed to the bottom of the pool. This device is equipped with a number of laterally shiftable rail pairs which may be brought into successive alignment with the fixed rails and is adapted to receive, carry and fix a truck on each rail pair. If one of said trucks is selected for irradiation in a desired irradiation room, the rail pair carrying this truck is shifted to align and couple with the fixed rail pair whereupon the truck is driven and transferred to a position on the fixed rails below the desired room and elevated thereinto. Accordingly, a plurality of trucks can optionally be shunted on a line of fixed rails without unloading the respective radiation sources. (Ohno, Y.)

  2. Fuel Transfer Cask; Procedure Option and Radiation Protection during Transferring the Spent Fuel

    International Nuclear Information System (INIS)

    Muhammad Khairul Ariff Mustafa; Nurhayati Ramli; Ahmad Nabil Abdul Rahim; Mohd Fazli Zakaria

    2011-01-01

    Reactor TRIGA PUSPATI (RTP) has been operating almost 30 years. Many components are ageing. Nuclear Malaysia has taken an initiative to manage this ageing problem to prolong the life of the reactor. Hence, reactor upgrading project already commence started with the reactor console. To upgrade the core, all the fuel must be taken out from the core. A conceptual design of fuel transfer cask already done. This paper will discuss about the option of safe working procedure for transferring the fuel to the spent fuel pool for temporary. Hence, radiation protection for operator should be considered during the process. (author)

  3. Sources of linear polarized x-rays

    International Nuclear Information System (INIS)

    Aiginger, H.; Wobrauschek, P.

    1989-01-01

    Linear polarized X-rays are used in X-ray fluorescence analysis to decrease the background caused by scattered photons. Various experiments, calculations and constructions have demonstrated the possibility to produce polarized radiation in an analytical laboratory with an X-ray tube and polarizer-analyzer facilities as auxiliary equipment. The results obtained with Bragg-polarizers of flat and curved focussing geometry and of Barkla-polarizers are presented. The advantages and disadvantages of the method are discussed and compared with the respective quality of synchrotron radiation. Polarization by scattering reduces the intensity of the primary radiation. Recently much effort is devoted to the construction of integrated high power X-ray tube polarizer-analyzer arrangements. The detailed design, geometry and performance of such a facility is described. (author)

  4. A second order radiative transfer equation and its solution by meshless method with application to strongly inhomogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.M., E-mail: jmzhao@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, People' s Republic of China (China); Tan, J.Y., E-mail: tanjy@hit.edu.cn [School of Auto Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, People' s Republic of China (China); Liu, L.H., E-mail: lhliu@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, People' s Republic of China (China); School of Auto Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, People' s Republic of China (China)

    2013-01-01

    A new second order form of radiative transfer equation (named MSORTE) is proposed, which overcomes the singularity problem of a previously proposed second order radiative transfer equation [J.E. Morel, B.T. Adams, T. Noh, J.M. McGhee, T.M. Evans, T.J. Urbatsch, Spatial discretizations for self-adjoint forms of the radiative transfer equations, J. Comput. Phys. 214 (1) (2006) 12-40 (where it was termed SAAI), J.M. Zhao, L.H. Liu, Second order radiative transfer equation and its properties of numerical solution using finite element method, Numer. Heat Transfer B 51 (2007) 391-409] in dealing with inhomogeneous media where some locations have very small/zero extinction coefficient. The MSORTE contains a naturally introduced diffusion (or second order) term which provides better numerical property than the classic first order radiative transfer equation (RTE). The stability and convergence characteristics of the MSORTE discretized by central difference scheme is analyzed theoretically, and the better numerical stability of the second order form radiative transfer equations than the RTE when discretized by the central difference type method is proved. A collocation meshless method is developed based on the MSORTE to solve radiative transfer in inhomogeneous media. Several critical test cases are taken to verify the performance of the presented method. The collocation meshless method based on the MSORTE is demonstrated to be capable of stably and accurately solve radiative transfer in strongly inhomogeneous media, media with void region and even with discontinuous extinction coefficient.

  5. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  6. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    CERN Document Server

    Shvets, G

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.

  7. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    International Nuclear Information System (INIS)

    G. Shvets; N.J. Fisch; J.-M. Rax

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation

  8. Polarization Study for NLC Positron Source Using EGS4

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C

    2000-09-20

    SLAC is exploring a polarized positron source to study new physics for the NLC project. The positron source envisioned in this paper consists of a polarized electron source, a 50-MeV electron accelerator, a thin target less-than-or-equal-to 0.2 radiation length for positron production, and a capture system for high-energy, small angular divergence positrons. The EGS4 code was used to study the yield, energy spectra, emission-angle distribution, and the mean polarization of the positrons emanating from W-Re and Ti targets hit by longitudinally polarized electron and photon beams. To account for polarization within the EGS4 code a method devised by Flottmann was used, which takes into account polarization transfer for pair production, bremsstrahlung, and Compton interactions. A mean polarization of 0.85 for positrons with energies greater than 25 MeV was obtained. Most of the high-energy positrons were emitted within a forward angle of 20 degrees. The yield of positrons above 25 MeV per incident photon was 0.034, which was about 70 times higher than that obtained with an electron beam.

  9. Parametric plasma surface instabilities with s-polarized radiation

    International Nuclear Information System (INIS)

    Rappaport, H.L.

    1994-01-01

    The authors argue that parametric plasma surface mode excitation is a viable broadband instability mechanism in the microwave regime since the wavelength of incident radiation ca be large compared to plasma ion density gradient scale lengths. They restrict their attention to plasmas which are uniform in the planes perpendicular to the density gradients. The boundary is characterized by three parameters: (1) the ion density gradient scale length, (2) the electron Debye length, and (3) the excursion of boundary electrons as they move in response to monochromatic radiation. For s-polarized radiation, equilibrium fluid motion is parallel to the boundary when the ratio of the pump quiver velocity to the speed of light is small. In this case, an abruptly bounded plasma may be modeled with no transition width. If in this case the cold fluid approximation is used as well, the specular and diffuse boundary approximations become the same. A new formation is presented in which pump induced perturbations are expressed as an explicit superposition of linear and non-linear plasma half-space modes. A four-wave interaction is found to produce instability as well as surface wave frequency-shift. This mode is compared against other modes known to exist in this geometry. The theory of surface wave linear mode conversion is reviewed with special attention paid to power flow and energy conservation in this system

  10. Use of radiation to transfer alien chromosome segments to wheat

    International Nuclear Information System (INIS)

    Sears, E.R.

    1993-01-01

    Ionizing radiation can accomplish the transfer of genetic information from species so distantly related to wheat (Triticum aestivum L. em Thell.) that their chromosomes pair very little, if at all, with those of wheat, even in the absence of the homoeologous-pairing suppressor Ph1. In a successful transfer, the alien segment must almost always replace a homoeologous wheat segment, but radiation induces translocations largely at random; therefore automatic selection in favor of desirable translocations must be provided if the size of the project is to be kept within reasonable limits. Pollen selection will occur if seeds or plants monosomic for both an alien chromosome and one of its wheat homoeologues are irradiated. Making the plants also deficient for Ph1 may increase the number of suitable transfers. High-frequency occurrence of the desired alien character in M2 head-rows from plants grown from irradiated seed can identify favorable transfers with little cytological work. Irradiation of plants shortly before meiosis, using them to pollinate ditelosomics or double ditelosomics for the wheat arm or chromosome concerned, and cytologically examining offspring which have the alien character can not only identify the desirable transfers, but also reveal the lengths of the alien segments involved

  11. Casimir friction and near-field radiative heat transfer in graphene structures

    Energy Technology Data Exchange (ETDEWEB)

    Volokitin, A.I. [Forschungszentrum Juelich (Germany). Peter Gruenberg Inst.; Samara State Technical Univ. (Russian Federation). Physical Dept.

    2017-05-01

    The dependence of the Casimir friction force between a graphene sheet and a (amorphous) SiO{sub 2} substrate on the drift velocity of the electrons in the graphene sheet is studied. It is shown that the Casimir friction is strongly enhanced for the drift velocity above the threshold velocity when the friction is determined by the resonant excitation of the surface phonon-polaritons in the SiO{sub 2} substrate and the electron-hole pairs in graphene. The theory agrees well with the experimental data for the current-voltage dependence for unsuspended graphene on the SiO{sub 2} substrate. The theories of the Casimir friction and the near-field radiative energy transfer are used to study the heat generation and dissipation in graphene due to the interaction with phonon-polaritons in the (amorphous) SiO{sub 2} substrate and acoustic phonons in graphene. For suspended graphene, the energy transfer coefficient at nanoscale gap is ∝ three orders of magnitude larger than the radiative heat transfer coefficient of the blackbody radiation limit.

  12. Casimir friction and near-field radiative heat transfer in graphene structures

    International Nuclear Information System (INIS)

    Volokitin, A.I.; Samara State Technical Univ.

    2017-01-01

    The dependence of the Casimir friction force between a graphene sheet and a (amorphous) SiO 2 substrate on the drift velocity of the electrons in the graphene sheet is studied. It is shown that the Casimir friction is strongly enhanced for the drift velocity above the threshold velocity when the friction is determined by the resonant excitation of the surface phonon-polaritons in the SiO 2 substrate and the electron-hole pairs in graphene. The theory agrees well with the experimental data for the current-voltage dependence for unsuspended graphene on the SiO 2 substrate. The theories of the Casimir friction and the near-field radiative energy transfer are used to study the heat generation and dissipation in graphene due to the interaction with phonon-polaritons in the (amorphous) SiO 2 substrate and acoustic phonons in graphene. For suspended graphene, the energy transfer coefficient at nanoscale gap is ∝ three orders of magnitude larger than the radiative heat transfer coefficient of the blackbody radiation limit.

  13. Recombination dynamics of excitons with low non-radiative component in semi-polar (10-11)-oriented GaN/AlGaN multiple quantum wells

    Science.gov (United States)

    Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B.; Izyumskaya, N.; Monavarian, M.; Zhang, F.; Okur, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2014-09-01

    Optical properties of GaN/Al0.2Ga0.8N multiple quantum wells grown with semi-polar (10-11) orientation on patterned 7°-off Si (001) substrates have been investigated. Studies performed at 8 K reveal the in-plane anisotropic behavior of the QW photoluminescence (PL) intensity for this semi-polar orientation. The time resolved PL measurements were carried out in the temperature range from 8 to 295 K to deduce the effective recombination decay times, with respective radiative and non-radiative contributions. The non-radiative component remains relatively weak with increasing temperature, indicative of high crystalline quality. The radiative decay time is a consequence of contribution from both localized and free excitons. We report an effective density of interfacial defects of 2.3 × 1012 cm-2 and a radiative recombination time of τloc = 355 ps for the localized excitons. This latter value is significantly larger than those reported for the non-polar structures, which we attribute to the presence of a weak residual electric field in the semi-polar QW layers.

  14. A Note on the Radiative and Collisional Branching Ratios in Polarized Radiation Transport with Coherent Scattering

    Science.gov (United States)

    Casini, R.; del Pino Alemán, T.; Manso Sainz, R.

    2017-02-01

    We discuss the implementation of physically meaningful branching ratios between the CRD and partial redistribution contributions to the emissivity of a polarized multi-term atom in the presence of both inelastic and elastic collisions. Our derivation is based on a recent theoretical formulation of partially coherent scattering, and it relies on a heuristic diagrammatic analysis of the various radiative and collisional processes to determine the proper form of the branching ratios. The expression we obtain for the emissivity is {\\boldsymbol{\\varepsilon }}=[{{\\boldsymbol{\\varepsilon }}}(1)-{{\\boldsymbol{\\varepsilon }}}{{f}.{{s}}.}(2)]+{{\\boldsymbol{\\varepsilon }}}(2), where {{\\boldsymbol{\\varepsilon }}}(1) and {{\\boldsymbol{\\varepsilon }}}(2) are the emissivity terms for the redistributed and partially coherent radiation, respectively, and where “f.s.” implies that the corresponding term must be evaluated assuming a flat-spectrum average of the incident radiation. This result is shown to be in agreement with prior literature on the subject in the limit of the unpolarized multi-level atom.

  15. Wideband metamaterial array with polarization-independent and wide incident angle for harvesting ambient electromagnetic energy and wireless power transfer

    Science.gov (United States)

    Zhong, Hui-Teng; Yang, Xue-Xia; Song, Xing-Tang; Guo, Zhen-Yue; Yu, Fan

    2017-11-01

    In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz-21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.

  16. Simulating of spectrum and polarization characteristics of ultrarelativistic - electron coherent radiation in a diamond crystal

    International Nuclear Information System (INIS)

    Truten', V.I.

    2000-01-01

    On the base of the computer simulation method it is shown that new maxima of ultrarelativistic electron radiation spectrum in aligned crystals may appear in a low-frequency region together with the ordinary coherent maxima. The appearance of these maxima is the result of the high-index-crystal-plane effect. These maxima manifest themselves in spectral as well as in polarization features of radiation [ru

  17. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Science.gov (United States)

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10-15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM). Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  18. Modeling Loss-of-Flow Accidents and Their Impact on Radiation Heat Transfer

    Directory of Open Access Journals (Sweden)

    Jivan Khatry

    2017-01-01

    Full Text Available Long-term high payload missions necessitate the need for nuclear space propulsion. The National Aeronautics and Space Administration (NASA investigated several reactor designs from 1959 to 1973 in order to develop the Nuclear Engine for Rocket Vehicle Application (NERVA. Study of planned/unplanned transients on nuclear thermal rockets is important due to the need for long-term missions. In this work, a system model based on RELAP5 is developed to simulate loss-of-flow accidents on the Pewee I test reactor. This paper investigates the radiation heat transfer between the fuel elements and the structures around it. In addition, the impact on the core fuel element temperature and average core pressure was also investigated. The following expected results were achieved: (i greater than normal fuel element temperatures, (ii fuel element temperatures exceeding the uranium carbide melting point, and (iii average core pressure less than normal. Results show that the radiation heat transfer rate between fuel elements and cold surfaces increases with decreasing flow rate through the reactor system. However, radiation heat transfer decreases when there is a complete LOFA. When there is a complete LOFA, the peripheral coolant channels of the fuel elements handle most of the radiation heat transfer. A safety system needs to be designed to counteract the decay heat resulting from a post-LOFA reactor scram.

  19. User's Manual: Routines for Radiative Heat Transfer and Thermometry

    Science.gov (United States)

    Risch, Timothy K.

    2016-01-01

    Determining the intensity and spectral distribution of radiation emanating from a heated surface has applications in many areas of science and engineering. Areas of research in which the quantification of spectral radiation is used routinely include thermal radiation heat transfer, infrared signature analysis, and radiation thermometry. In the analysis of radiation, it is helpful to be able to predict the radiative intensity and the spectral distribution of the emitted energy. Presented in this report is a set of routines written in Microsoft Visual Basic for Applications (VBA) (Microsoft Corporation, Redmond, Washington) and incorporating functions specific to Microsoft Excel (Microsoft Corporation, Redmond, Washington) that are useful for predicting the radiative behavior of heated surfaces. These routines include functions for calculating quantities of primary importance to engineers and scientists. In addition, the routines also provide the capability to use such information to determine surface temperatures from spectral intensities and for calculating the sensitivity of the surface temperature measurements to unknowns in the input parameters.

  20. Natural element method for radiative heat transfer in a semitransparent medium with irregular geometries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Yi, Hong-Liang, E-mail: yihongliang@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Tan, He-Ping, E-mail: tanheping@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)

    2013-05-15

    This paper develops a numerical solution to the radiative heat transfer problem coupled with conduction in an absorbing, emitting and isotropically scattering medium with the irregular geometries using the natural element method (NEM). The walls of the enclosures, having temperature and mixed boundary conditions, are considered to be opaque, diffuse as well as gray. The NEM as a meshless method is a new numerical scheme in the field of computational mechanics. Different from most of other meshless methods such as element-free Galerkin method or those based on radial basis functions, the shape functions used in NEM are constructed by the natural neighbor interpolations, which are strictly interpolant and the essential boundary conditions can be imposed directly. The natural element solutions in dealing with the coupled heat transfer problem for the mixed boundary conditions have been validated by comparison with those from Monte Carlo method (MCM) generated by the authors. For the validation of the NEM solution to radiative heat transfer in the semicircular medium with an inner circle, the results by NEM have been compared with those reported in the literatures. For pure radiative transfer, the upwind scheme is employed to overcome the oscillatory behavior of the solutions in some conditions. The steady state and transient heat transfer problem combined with radiation and conduction in the semicircular enclosure with an inner circle are studied. Effects of various parameters such as the extinction coefficient, the scattering albedo, the conduction–radiation parameter and the boundary emissivity are analyzed on the radiative and conductive heat fluxes and transient temperature distributions.

  1. Effects of multiple scattering and atmospheric aerosol on the polarization of the twilight sky

    International Nuclear Information System (INIS)

    Ugolnikov, Oleg S.; Postylyakov, Oleg V.; Maslov, Igor A.

    2004-01-01

    The paper presents a review of a number of wide-angle polarization CCD-measurements of the twilight sky in V and R color bands with effective wavelengths 550 and 700nm. The basic factors affecting (usually decreasing) the polarization of the twilight sky are the atmospheric aerosol scattering and multiple scattering. These effects were distinguished from each other, and a method of multiple-scattering separation is discussed. The results are compared with the data of numerical simulation of radiative transfer in the atmosphere for different aerosol models. The whole twilight period is divided into different stages with different mechanisms forming the twilight-sky polarization properties

  2. Modelling radiative heat transfer inside a basin type solar still

    International Nuclear Information System (INIS)

    Madhlopa, A.

    2014-01-01

    Radiative heat transfer inside a basin type solar still has been investigated using two models with (model 1) and without (model 2) taking into account optical view factors. The coefficient of radiative heat exchange (h r,w-gc ) between the water and cover surfaces of a practical solar still was computed using the two models. Simulation results show that model 1 yields lower values of h r,w-gc and the root mean square error than model 2. It is therefore concluded that the accuracy of modelling the performance of a basin-type solar still can be improved by incorporating view factors. - Highlights: • Radiative heat transfer in a basin type solar still has been investigated. • Two models with and without view factors were used. • The model with view factors exhibits a lower magnitude of root mean square error. • View factors affect the accuracy of modelling the performance of the solar still

  3. A RADIATION TRANSFER SOLVER FOR ATHENA USING SHORT CHARACTERISTICS

    International Nuclear Information System (INIS)

    Davis, Shane W.; Stone, James M.; Jiang Yanfei

    2012-01-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.

  4. Light scattering by multiple spheres: comparison between Maxwell theory and radiative-transfer-theory calculations.

    Science.gov (United States)

    Voit, Florian; Schäfer, Jan; Kienle, Alwin

    2009-09-01

    We present a methodology to compare results of classical radiative transfer theory against exact solutions of Maxwell theory for a high number of spheres. We calculated light propagation in a cubic scattering region (20 x 20 x 20 microm(3)) consisting of different concentrations of polystyrene spheres in water (diameter 2 microm) by an analytical solution of Maxwell theory and by a numerical solution of radiative transfer theory. The relative deviation of differential as well as total scattering cross sections obtained by both approaches was evaluated for each sphere concentration. For the considered case, we found that deviations due to radiative transfer theory remain small, even for concentrations up to ca. 20 vol. %.

  5. H- ion current from a polarized vapor target

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1984-01-01

    A method of determining the polarization transferred to hydrogen atoms in charge-exchange reactions is outlined. The method also provides a means of determining target polarizations once the polarization transfer function is known

  6. Radiative heat transfer in 2D Dirac materials

    International Nuclear Information System (INIS)

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-01-01

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials. (paper)

  7. Stochastic radiative transfer model for mixture of discontinuous vegetation canopies

    International Nuclear Information System (INIS)

    Shabanov, Nikolay V.; Huang, D.; Knjazikhin, Y.; Dickinson, R.E.; Myneni, Ranga B.

    2007-01-01

    Modeling of the radiation regime of a mixture of vegetation species is a fundamental problem of the Earth's land remote sensing and climate applications. The major existing approaches, including the linear mixture model and the turbid medium (TM) mixture radiative transfer model, provide only an approximate solution to this problem. In this study, we developed the stochastic mixture radiative transfer (SMRT) model, a mathematically exact tool to evaluate radiation regime in a natural canopy with spatially varying optical properties, that is, canopy, which exhibits a structured mixture of vegetation species and gaps. The model solves for the radiation quantities, direct input to the remote sensing/climate applications: mean radiation fluxes over whole mixture and over individual species. The canopy structure is parameterized in the SMRT model in terms of two stochastic moments: the probability of finding species and the conditional pair-correlation of species. The second moment is responsible for the 3D radiation effects, namely, radiation streaming through gaps without interaction with vegetation and variation of the radiation fluxes between different species. We performed analytical and numerical analysis of the radiation effects, simulated with the SMRT model for the three cases of canopy structure: (a) non-ordered mixture of species and gaps (TM); (b) ordered mixture of species without gaps; and (c) ordered mixture of species with gaps. The analysis indicates that the variation of radiation fluxes between different species is proportional to the variation of species optical properties (leaf albedo, density of foliage, etc.) Gaps introduce significant disturbance to the radiation regime in the canopy as their optical properties constitute major contrast to those of any vegetation species. The SMRT model resolves deficiencies of the major existing mixture models: ignorance of species radiation coupling via multiple scattering of photons (the linear mixture model

  8. Entropy flow and generation in radiative transfer between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.M.; Basu, S. [Georgia Institute of Technolgy, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

    2007-02-15

    Entropy of radiation has been used to derive the laws of blackbody radiation and determine the maximum efficiency of solar energy conversion. Along with the advancement in thermophotovoltaic technologies and nanoscale heat radiation, there is an urgent need to determine the entropy flow and generation in radiative transfer between nonideal surfaces when multiple reflections are significant. This paper investigates entropy flow and generation when incoherent multiple reflections are included, without considering the effects of interference and photon tunneling. The concept of partial equilibrium is applied to interpret the monochromatic radiation temperature of thermal radiation, T{sub l}(l,{omega}), which is dependent on both wavelength l and direction {omega}. The entropy flux and generation can thus be evaluated for nonideal surfaces. It is shown that several approximate expressions found in the literature can result in significant errors in entropy analysis even for diffuse-gray surfaces. The present study advances the thermodynamics of nonequilibrium thermal radiation and will have a significant impact on the future development of thermophotovoltaic and other radiative energy conversion devices. (author)

  9. Fractional integration and radiative transfer in a multifractal atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Naud, C.; Schertzer, D. [Universite Pierre et Marie Curie, Paris (France); Lovejoy, S. [McGill Univ., Montreal (Canada)

    1996-04-01

    Recently, Cess et al. (1995) and Ramathan et al. (1995) cited observations which exhibit an anomalous absorption of cloudy skies in comparison with the value predicted by usual models and which thus introduce large uncertainties for climatic change assessments. These observation raise questions concerning the way general circulation models have been tuned for decades, relying on classical methods, of both radiative transfer and dynamical modeling. The observations also tend to demonstrate that homogeneous models are simply not relevant in relating the highly variable properties of clouds and radiation fields. However smoothed, the intensity of cloud`s multi-scattered radiation fields reflect this extreme variability.

  10. First experimental study of photon polarization in radiative $B^{0}_{s}$ decays

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baszczyk, Mateusz; Batozskaya, Varvara; Batsukh, Baasansuren; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chobanova, Veronika; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Déléage, Nicolas; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Ferguson, Dianne; Fernandez Albor, Victor; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Furfaro, Emiliano; Färber, Christian; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, V.V.; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Griffith, Peter; Grillo, Lucia; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hatch, Mark; He, Jibo; Head, Timothy; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hombach, Christoph; Hopchev, P H; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Koliiev, Serhii; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kosmyntseva, Alena; Kozachuk, Anastasiia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Mussini, Manuel; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubert, Konstantin; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavorima; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Toriello, Francis; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Vernet, Maxime; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhang, Yu; Zhelezov, Alexey; Zheng, Yangheng; Zhokhov, Anatoly; Zhu, Xianglei; Zhukov, Valery; Zucchelli, Stefano

    2017-01-09

    The polarization of photons produced in radiative $B^{0}_{s}$ decays is studied for the first time. The data are recorded by the LHCb experiment in $pp$ collisions corresponding to an integrated luminosity of 3fb$^{-1}$ at center-of-mass energies of $7$ and $8$TeV. A time-dependent analysis of the $B^{0}_{s} \\to \\phi \\gamma$ decay rate is conducted to determine the parameter ${\\mathcal{A}}^\\Delta$, which is related to the ratio of right- over left-handed photon polarization amplitudes in $b \\to s \\gamma$ transitions. A value of ${\\mathcal{A}}^\\Delta=-0.98^{\\,+0.46\\,+0.23}_{\\,-0.52\\,-0.20}$ is measured. This result is consistent with the Standard Model prediction within two standard deviations.

  11. First Experimental Study of Photon Polarization in Radiative B_{s}^{0} Decays.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, I; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhu, X; Zhukov, V; Zucchelli, S

    2017-01-13

    The polarization of photons produced in radiative B_{s}^{0} decays is studied for the first time. The data are recorded by the LHCb experiment in pp collisions corresponding to an integrated luminosity of 3  fb^{-1} at center-of-mass energies of 7 and 8 TeV. A time-dependent analysis of the B_{s}^{0}→ϕγ decay rate is conducted to determine the parameter A^{Δ}, which is related to the ratio of right- over left-handed photon polarization amplitudes in b→sγ transitions. A value of A^{Δ}=-0.98_{-0.52}^{+0.46}_{-0.20}^{+0.23} is measured. This result is consistent with the standard model prediction within 2 standard deviations.

  12. Investigating dust trapping in transition disks with millimeter-wave polarization

    Science.gov (United States)

    Pohl, A.; Kataoka, A.; Pinilla, P.; Dullemond, C. P.; Henning, Th.; Birnstiel, T.

    2016-08-01

    Context. Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, which is becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. Aims: We study the dust polarization at mm wavelengths in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. Methods: We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. Results: Dust self-scattering has been proven to be a viable mechanism for producing polarized mm-wave radiation. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three-ring structure. Two narrow inner rings are located at the planet gap edges. A third wider ring of polarization is situated in the outer disk beyond 100 au. For increasing observing wavelengths, all three rings change their position slightly, where the innermost and outermost rings move inward. This distance is detectable when comparing the results at ALMA bands 3, 6, and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For

  13. Recombination dynamics of excitons with low non-radiative component in semi-polar (10-11)-oriented GaN/AlGaN multiple quantum wells

    International Nuclear Information System (INIS)

    Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B.; Izyumskaya, N.; Monavarian, M.; Zhang, F.; Okur, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2014-01-01

    Optical properties of GaN/Al 0.2 Ga 0.8 N multiple quantum wells grown with semi-polar (10-11) orientation on patterned 7°-off Si (001) substrates have been investigated. Studies performed at 8 K reveal the in-plane anisotropic behavior of the QW photoluminescence (PL) intensity for this semi-polar orientation. The time resolved PL measurements were carried out in the temperature range from 8 to 295 K to deduce the effective recombination decay times, with respective radiative and non-radiative contributions. The non-radiative component remains relatively weak with increasing temperature, indicative of high crystalline quality. The radiative decay time is a consequence of contribution from both localized and free excitons. We report an effective density of interfacial defects of 2.3 × 10 12 cm −2 and a radiative recombination time of τ loc  = 355 ps for the localized excitons. This latter value is significantly larger than those reported for the non-polar structures, which we attribute to the presence of a weak residual electric field in the semi-polar QW layers

  14. Recombination dynamics of excitons with low non-radiative component in semi-polar (10-11)-oriented GaN/AlGaN multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B. [CNRS, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France); Université Montpellier 2, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France); Izyumskaya, N.; Monavarian, M.; Zhang, F.; Okur, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H. [Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23238 (United States)

    2014-09-07

    Optical properties of GaN/Al{sub 0.2}Ga{sub 0.8}N multiple quantum wells grown with semi-polar (10-11) orientation on patterned 7°-off Si (001) substrates have been investigated. Studies performed at 8 K reveal the in-plane anisotropic behavior of the QW photoluminescence (PL) intensity for this semi-polar orientation. The time resolved PL measurements were carried out in the temperature range from 8 to 295 K to deduce the effective recombination decay times, with respective radiative and non-radiative contributions. The non-radiative component remains relatively weak with increasing temperature, indicative of high crystalline quality. The radiative decay time is a consequence of contribution from both localized and free excitons. We report an effective density of interfacial defects of 2.3 × 10{sup 12} cm{sup −2} and a radiative recombination time of τ{sub loc} = 355 ps for the localized excitons. This latter value is significantly larger than those reported for the non-polar structures, which we attribute to the presence of a weak residual electric field in the semi-polar QW layers.

  15. Direct Collapse to Supermassive Black Hole Seeds with Radiation Transfer: Cosmological Halos

    Science.gov (United States)

    Ardaneh, Kazem; Luo, Yang; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.

    2018-06-01

    We have modeled direct collapse of a primordial gas within dark matter halos in the presence of radiative transfer, in high-resolution zoom-in simulations in a cosmological framework, down to the formation of the photosphere and the central object. Radiative transfer has been implemented in the flux-limited diffusion (FLD) approximation. Adiabatic models were run for comparison. We find that (a) the FLD flow forms an irregular central structure and does not exhibit fragmentation, contrary to adiabatic flow which forms a thick disk, driving a pair of spiral shocks, subject to Kelvin-Helmholtz shear instability forming fragments; (b) the growing central core in the FLD flow quickly reaches ˜10 M⊙ and a highly variable luminosity of 1038 - 1039 erg s-1, comparable to the Eddington luminosity. It experiences massive recurrent outflows driven by radiation force and thermal pressure gradients, which mix with the accretion flow and transfer the angular momentum outwards; and (c) the interplay between these processes and a massive accretion, results in photosphere at ˜10 AU. We conclude that in the FLD model (1) the central object exhibits dynamically insignificant rotation and slower than adiabatic temperature rise with density; (2) does not experience fragmentation leading to star formation, thus promoting the fast track formation of a supermassive black hole (SMBH) seed; (3) inclusion of radiation force leads to outflows, resulting in the mass accumulation within the central 10-3 pc, which is ˜100 times larger than characteristic scale of star formation. The inclusion of radiative transfer reveals complex early stages of formation and growth of the central structure in the direct collapse scenario of SMBH seed formation.

  16. Transient-field strength measurements for 52Cr traversing Fe hosts at high velocity and polarization transfer mechanisms

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Doran, C.E.; Byrne, A.P.; Bolotin, H.H.; Dracoulis, G.D.

    1986-12-01

    Transient-field strengths were measured for 52 Cr ions traversing polarized Fe hosts at velocities up to 12v>=o (v>=o = c/137 = Bohr velocity). The results are compared with predictions of various transient field parametrizations and discussed in terms of possible mechanisms by which polarization might be transferred from the Fe host to inner vacancies of the moving Cr ions. The g-factor of the first 2 + state of 52 Cr was also measured by the transient field technique and found to be in accord with shell-model calculations

  17. Exciton distribution function and secondary radiation in polar semiconductors

    International Nuclear Information System (INIS)

    Trallero Giner, C.; Sotolongo Costa, O.

    1985-07-01

    An explicit non-equilibrium distribution function for excitons in the ground state n=1 in the case when the fundamental interaction is with acoustical phonons is calculated for polar semiconductors. Using it, a general expression for the secondary radiation cross-section (valid for Raman, hot and thermalized luminescence processes), is obtained. The results are applied to explain the temperature dependence of the 1LO and 2LO luminescence lines half-width in CdS single crystals. The relative contributions of 3LO Raman and luminescence intensities and the variation of the secondary emission spectrum as function of exciton life-time are studied. Comparison with experimental results yields quantitative agreement. (author)

  18. Photoinduced electron transfer in covalent ruthenium-anthraquinone dyads: relative importance of driving-force, solvent polarity, and donor-bridge energy gap.

    Science.gov (United States)

    Hankache, Jihane; Wenger, Oliver S

    2012-02-28

    Four rigid rod-like molecules comprised of a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) photosensitizer, a 9,10-anthraquinone electron acceptor, and a molecular bridge connecting the two redox partners were synthesized and investigated by optical spectroscopic and electrochemical means. An attempt was made to assess the relative importance of driving-force, solvent polarity, and bridge variation on the rates of photoinduced electron transfer in these molecules. Expectedly, introduction of tert-butyl substituents in the bipyridine ligands of the ruthenium complex and a change in solvent from dichloromethane to acetonitrile lead to a significant acceleration of charge transfer rates. In dichloromethane, photoinduced electron transfer is not competitive with the inherent excited-state deactivation processes of the photosensitizer. In acetonitrile, an increase in driving-force by 0.2 eV through attachment of tert-butyl substituents to the bpy ancillary ligands causes an increase in electron transfer rates by an order of magnitude. Replacement of a p-xylene bridge by a p-dimethoxybenzene spacer entails an acceleration of charge transfer rates by a factor of 3.5. In the dyads from this study, the relative order of importance of individual influences on electron transfer rates is therefore as follows: solvent polarity ≥ driving-force > donor-bridge energy gap.

  19. Transfer of ERR for radiation-related leukemia from Japanese population to Chinese population

    International Nuclear Information System (INIS)

    Huang Liqiong; Sun Zhijuan; Zhao Yongcheng; Wang Jixian

    2011-01-01

    Objective: To establish a transfer model for excess relative risk (ERR) for radiation-related leukemia from Japanese population to Chinese population. Methods: Combined ERR of several subtypes of leukemia published in 1994, with the corresponding leukemia baseline incidence rates obtained from Cancer Incidence in Five Continents Vol. Ⅸ (CI5-Ⅸ) for Japanese population and Chinese population, a weighted risk transfer model was employed between an additive model and a multiplicative model, to execute ERR transfer. Results: A range of weighing factors was proposed for risk transfer models: weighing factor was 0.4 for male and 0.3 for female, acute lymphoblastic leukemia, acute myeloid leukemia and chronic myeloid leukemia. The uncertainty for ERR transfer was characterized by lognormal distribution. Conclusions: Based on the difference of baseline incidence rate for subtypes of leukemia between Japanese population and Chinese population, the transfer model and these weighing factors discussed in the present study could be applicable to transfer ERR for radiation-related leukemia from Japanese population to Chinese population. (authors)

  20. THE HANLE AND ZEEMAN POLARIZATION SIGNALS OF THE SOLAR Ca II 8542 Å LINE

    Energy Technology Data Exchange (ETDEWEB)

    Štěpán, Jiri [Astronomical Institute ASCR, Fričova 298, 251 65 Ondřejov (Czech Republic); Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2016-07-20

    We highlight the main results of a three-dimensional (3D) multilevel radiative transfer investigation about the solar disk-center polarization of the Ca ii 8542 Å line. First, through the use of a 3D model of the solar atmosphere, we investigate the linear polarization that occurs due to the atomic level polarization produced by the absorption and scattering of anisotropic radiation, taking into account the symmetry-breaking effects caused by its thermal, dynamic, and magnetic structure. Second, we study the contribution of the Zeeman effect to the linear and circular polarization. Finally, we show examples of the Stokes profiles produced by the joint action of the atomic level polarization and the Hanle and Zeeman effects. We find that the Zeeman effect tends to dominate the linear polarization signals only in the localized patches of opposite magnetic polarity, where the magnetic field is relatively strong and slightly inclined; outside such very localized patches, the linear polarization is often dominated by the contribution of atomic level polarization. We demonstrate that a correct modeling of this last contribution requires taking into account the symmetry-breaking effects caused by the thermal, dynamic, and magnetic structure of the solar atmosphere, and that in the 3D model used the Hanle effect in forward-scattering geometry (disk-center observation) mainly reduces the polarization corresponding to the zero-field case. We emphasize that, in general, a reliable modeling of the linear polarization in the Ca ii 8542 Å line requires taking into account the joint action of atomic level polarization and the Hanle and Zeeman effects.

  1. A rapid radiative transfer model for reflection of solar radiation

    Science.gov (United States)

    Xiang, X.; Smith, E. A.; Justus, C. G.

    1994-01-01

    A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.

  2. The Hanle and Zeeman Polarization Signals of the Solar Ca II 8542 angstromLine

    Czech Academy of Sciences Publication Activity Database

    Štěpán, Jiří; Trujillo Bueno, J.

    2016-01-01

    Roč. 826, č. 1 (2016), L10/1-L10/6 ISSN 2041-8205 R&D Projects: GA ČR(CZ) GA16-16861S Grant - others:COST Action(XE) MP1104 Institutional support: RVO:67985815 Keywords : line profiles * polarization * radiative transfer Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.522, year: 2016

  3. Matrix-exponential description of radiative transfer

    International Nuclear Information System (INIS)

    Waterman, P.C.

    1981-01-01

    By appling the matrix-exponential operator technique to the radiative-transfer equation in discrete form, new analytical solutions are obtained for the transmission and reflection matrices in the limiting cases x >1, where x is the optical depth of the layer. Orthongonality of the eigenvectors of the matrix exponential apparently yields new conditions for determining. Chandrasekhar's characteristic roots. The exact law of reflection for the discrete eigenfunctions is also obtained. Finally, when used in conjuction with the doubling method, the matrix exponential should result in reduction in both computation time and loss of precision

  4. Scattering and emission from inhomogeneous vegetation canopy and alien target beneath by using three-dimensional vector radiative transfer (3D-VRT) equation

    International Nuclear Information System (INIS)

    Jin Yaqiu; Liang Zichang

    2005-01-01

    To solve the 3D-VRT equation for the model of spatially inhomogeneous scatter media, the finite enclosure of the scatter media is geometrically divided, in both vertical z and transversal (x,y) directions, to form very thin multi-boxes. The zeroth order emission, first-order Mueller matrix of each thin box and an iterative approach of high-order radiative transfer are applied to derive high-order scattering and emission of whole inhomogeneous scatter media. Numerical results of polarized brightness temperature at microwave frequency and under different radiometer resolutions from inhomogeneous scatter model such as vegetation canopy and alien target beneath canopy are simulated and discussed

  5. Simulating the spectrum and the polarization characteristics of coherent radiation from ultrarelativistic electrons in a diamond crystal

    International Nuclear Information System (INIS)

    Truten', V.I.

    2000-01-01

    On the basis of a computer simulation, it is shown that, in the spectrum of radiation from ultrarelativistic electrons in oriented crystals, new maxima can appear in the low-frequency region in addition to ordinary coherent maxima. This effect is due to the influence of high-index planes on the radiation in question. The aforementioned new maxima manifest themselves not only in the spectrum but also in the polarization characteristics of the radiation

  6. Advanced Computational Methods for Thermal Radiative Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  7. Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

    Directory of Open Access Journals (Sweden)

    Hanuszkiewicz-Drapała Małgorzata

    2016-03-01

    Full Text Available A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.

  8. 3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure

    Science.gov (United States)

    Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.

    2003-04-01

    Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev

  9. Stochastic Radiative Transfer Model for Contaminated Rough Surfaces: A Framework for Detection System Design

    Science.gov (United States)

    2013-11-01

    example for the detection of a potassium chlorate contaminated “car” with a CO2 tunable laser system. 15. SUBJECT TERMS Radiative transfer...detector m-out-of-n detector Potassium chlorate Probability theory System performance Probability of detection and false alarm iii...for the detection of a potassium chlorate contaminated “car” with a CO2 tunable laser system. Subject Terms Radiative transfer, contaminated

  10. Interference-exact radiative transfer equation

    DEFF Research Database (Denmark)

    Partanen, Mikko; Haÿrynen, Teppo; Oksanen, Jani

    2017-01-01

    Maxwell's equations with stochastic or quantum optical source terms accounting for the quantum nature of light. We show that both the nonlocal wave and local particle features associated with interference and emission of propagating fields in stratified geometries can be fully captured by local damping...... and scattering coefficients derived from the recently introduced quantized fluctuational electrodynamics (QFED) framework. In addition to describing the nonlocal optical interference processes as local directionally resolved effects, this allows reformulating the well known and widely used radiative transfer...... equation (RTE) as a physically transparent interference-exact model that extends the useful range of computationally efficient and quantum optically accurate interference-aware optical models from simple structures to full optical devices....

  11. Bivariational calculations for radiation transfer in an inhomogeneous participating media

    International Nuclear Information System (INIS)

    El Wakil, S.A.; Machali, H.M.; Haggag, M.H.; Attia, M.T.

    1986-07-01

    Equations for radiation transfer are obtained for dispersive media with space dependent albedo. Bivariational bound principle is used to calculate the reflection and transmission coefficients for such media. Numerical results are given and compared. (author)

  12. Thermosolutal MHD flow and radiative heat transfer with viscous ...

    African Journals Online (AJOL)

    This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...

  13. Analytical heat transfer modeling of a new radiation calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obame Ndong, Elysée [Department of Industrial Engineering and Maintenance, University of Sciences and Technology of Masuku (USTM), BP 941 Franceville (Gabon); Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Gallot-Lavallée, Olivier [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Aitken, Frédéric, E-mail: frederic.aitken@g2elab.grenoble-inp.fr [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France)

    2016-06-10

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  14. Analytical heat transfer modeling of a new radiation calorimeter

    International Nuclear Information System (INIS)

    Obame Ndong, Elysée; Gallot-Lavallée, Olivier; Aitken, Frédéric

    2016-01-01

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  15. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Meraner

    2018-01-01

    Full Text Available Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10–15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  16. Performance Analysis of GFDL's GCM Line-By-Line Radiative Transfer Model on GPU and MIC Architectures

    Science.gov (United States)

    Menzel, R.; Paynter, D.; Jones, A. L.

    2017-12-01

    Due to their relatively low computational cost, radiative transfer models in global climate models (GCMs) run on traditional CPU architectures generally consist of shortwave and longwave parameterizations over a small number of wavelength bands. With the rise of newer GPU and MIC architectures, however, the performance of high resolution line-by-line radiative transfer models may soon approach those of the physical parameterizations currently employed in GCMs. Here we present an analysis of the current performance of a new line-by-line radiative transfer model currently under development at GFDL. Although originally designed to specifically exploit GPU architectures through the use of CUDA, the radiative transfer model has recently been extended to include OpenMP in an effort to also effectively target MIC architectures such as Intel's Xeon Phi. Using input data provided by the upcoming Radiative Forcing Model Intercomparison Project (RFMIP, as part of CMIP 6), we compare model results and performance data for various model configurations and spectral resolutions run on both GPU and Intel Knights Landing architectures to analogous runs of the standard Oxford Reference Forward Model on traditional CPUs.

  17. Nuclear polarization potential due to particle transfer in heavy-ion collisions

    International Nuclear Information System (INIS)

    Landowne, S.; Dasso, C.H.; Winther, A.; Pollarolo, G.

    1986-01-01

    The effective interaction which determines the elastic scattering of heavy composite systems consists of a ''bare'' real potential V, noramally identified with the folding model, a renormalization term or ''polarization potential'' ΔV and an imaginary ''absorptive potential'' iW. The latter contributions originate from the couplings to intrinsic degrees of freedom. While iW is a conspicuous feature of all optical model analyses, the related term ΔV has received relatively little attention until recently. The microscopic structure of ΔV + iW is examined using second-order semi-classical perturbation theory. Focus is on the long-range part of ΔV which is governed by single-particle transfer reactions between the colliding systems

  18. Nuclear polarization potential due to particle transfer in heavy-ion collisions

    International Nuclear Information System (INIS)

    Landowne, S.; Dasso, C.H.; Winther, A.; Pollarolo, G.

    1986-01-01

    The effective interaction which determines the elastic scattering of heavy composite systems consists of a bare real potential V, normally identified with the folding model, a renormalization term or polarization potential ΔV and an imaginary absorptive potential iW. The latter contributions originate from the couplings to intrinsic degrees of freedom. While iW is a conspicuous feature of all optical model analyses, the related term ΔV has received relatively little attention until recently. Here the authors examine the microscopic structure of ΔV + IW using second-order semi-classical perturbation theory. In particular, they focus on the long-range part of ΔV which is governed by single-particle transfer reactions between the colliding systems

  19. Study of nuclear isovector spin responses from polarization transfer in (p,n) reactions at intermediate energies

    International Nuclear Information System (INIS)

    Wakasa, Tomotsugu

    1997-01-01

    We have measured a complete set of polarization transfer observables has been measured for quasi-free (p vector, n vector) reactions on 2 H, 6 Li, 12 C, 40 Ca, and 208 Pb at a bombarding energy of 346MeV and a laboratory scattering angle of 22deg (q=1.7 fm -1 ). The polarization transfer observables for all five targets are remarkably similar. These polarization observables yield separated spin-longitudinal (σ·q) and spin-transverse (σxq) nuclear responses. These results are compared to the spin-transverse responses measured in deep-inelastic electron scattering as well as to nuclear responses based on the random phase approximation. Such a comparison reveals an enhancement in the (p vector, n vector) spin-transverse channel, which masks the effect of pionic correlations in the response ratio. Second, the double differential cross sections at θ lab between 0deg and 12.3deg and the polarization transfer D NN at 0deg for the 90 Zr(p,n) reaction are measured at a bombarding energy of 295MeV. The Gamow-Teller(GT) strength B(GT) in the continuum deduced from the L=0 cross section is compared both with the perturbative calculation by Bertsch and Hamamoto and with the second-order random phase approximation calculation by Drozdz et al. The sum of B(GT) values up to 50MeV excitation becomes S β- =28.0±1.6 after subtracting the contribution of the isovector spin-monopole strength. This S β- value of 28.0±1.6 corresponds to about (93±5)% of the minimum value of the sum-rule 3(N-Z)=30. Last, first measurements of D NN (0deg) for (p vector, n vector) reactions at 295MeV yield large negative values up to 50MeV excitation for the 6 Li, 11 B, 12 C, 13 C(p vector, n vector) reactions. DWIA calculations using the Franey and Love (FL) 270MeV interaction reproduce differential cross sections and D NN (0deg) values, while the FL 325MeV interaction yield D NN (0deg) values less negative than the experimental values. (J.P.N.)

  20. Numerical simulation of heat transfer process in solar enhanced natural draft dry cooling tower with radiation model

    International Nuclear Information System (INIS)

    Wang, Qiuhuan; Zhu, Jialing; Lu, Xinli

    2017-01-01

    Graphical abstract: A 3-D numerical model integrated with a discrete ordinate (DO) solar radiation model (considering solar radiation effect in the room of solar collector) was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of the SENDDCT. Our study shows that introducing such a radiation model can more accurately simulate the heat transfer process in the SENDDCT. Calculation results indicate that previous simulations overestimated solar energy obtained by the solar collector and underestimated the heat loss. The cooling performance is improved when the solar radiation intensity or ambient pressure is high. Air temperature and velocity increase with the increase of solar radiation intensity. But ambient pressure has inverse effects on the changes of air temperature and velocity. Under a condition that the solar load increases but the ambient pressure decreases, the increased rate of heat transferred in the heat exchanger is not obvious. Thus the performance of the SENDDCT not only depends on the solar radiation intensity but also depends on the ambient pressure. - Highlights: • A radiation model has been introduced to accurately simulate heat transfer process. • Heat transfer rate would be overestimated if the radiation model was not introduced. • The heat transfer rate is approximately proportional to solar radiation intensity. • The higher the solar radiation or ambient pressure, the better SENDDCT performance. - Abstract: Solar enhanced natural draft dry cooling tower (SENDDCT) is more efficient than natural draft dry cooling tower by utilizing solar radiation in arid region. A three-dimensional numerical model considering solar radiation effect was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of SENDDCT. The numerical simulation outcomes reveal that a model with consideration of

  1. Radiative and conductive heat transfer in a nongrey semitransparent medium. Application to fire protection curtains

    Energy Technology Data Exchange (ETDEWEB)

    Berour, Nacer; Lacroix, David E-mail: david.lacroix@lemta.uhp-nancy.fr; Boulet, Pascal; Jeandel, Gerard

    2004-06-01

    This paper deals with heat transfer in nongrey media which scatter, absorb and emit radiation. Considering a two dimensional geometry, radiative and conductive phenomena through the medium have been taken into account. The radiative part of the problem was solved using the discrete ordinate method with classical S{sub n} quadratures. The absorption and scattering coefficients involved in the radiative transfer equation (RTE) were obtained from the Mie theory. Conduction inside the medium was linked to the RTE through the energy conservation. Validation of the model has been achieved with several simulation of water spray curtains used as fire protection walls.

  2. Atomic processes relevant to polarization plasma spectroscopy

    International Nuclear Information System (INIS)

    Fujimoto, T.; Koike, F.; Sakimoto, K.; Okasaka, R.; Kawasaki, K.; Takiyama, K.; Oda, T.; Kato, T.

    1992-04-01

    When atoms (ions) are excited anisotropically, polarized excited atoms are produced and the radiation emitted by these atoms is polarized. From the standpoint of plasma spectroscopy research, we review the existing data for various atomic processes that are related to the polarization phenomena. These processes are: electron impact excitation, excitation by atomic and ionic collisions, photoexcitation, radiative recombination and bremsstrahlung. Collisional and radiative relaxation processes of atomic polarization follow. Other topics included are: electric-field measurement, self alignment, Lyman doublet intensity ratio, and magnetic-field measurement of the solar prominence. (author)

  3. Radiative Heat Transfer with Nanowire/Nanohole Metamaterials for Thermal Energy Harvesting Applications

    Science.gov (United States)

    Chang, Jui-Yung

    Recently, nanostructured metamaterials have attracted lots of attentions due to its tunable artificial properties. In particular, nanowire/nanohole based metamaterials which are known of the capability of large area fabrication were intensively studied. Most of the studies are only based on the electrical responses of the metamaterials; however, magnetic response, is usually neglected since magnetic material does not exist naturally within the visible or infrared range. For the past few years, artificial magnetic response from nanostructure based metamaterials has been proposed. This reveals the possibility of exciting resonance modes based on magnetic responses in nanowire/nanohole metamaterials which can potentially provide additional enhancement on radiative transport. On the other hand, beyond classical far-field radiative heat transfer, near-field radiation which is known of exceeding the Planck's blackbody limit has also become a hot topic in the field. This PhD dissertation aims to obtain a deep fundamental understanding of nanowire/nanohole based metamaterials in both far-field and near-field in terms of both electrical and magnetic responses. The underlying mechanisms that can be excited by nanowire/nanohole metamaterials such as electrical surface plasmon polariton, magnetic hyperbolic mode, magnetic polariton, etc., will be theoretically studied in both far-field and near-field. Furthermore, other than conventional effective medium theory which only considers the electrical response of metamaterials, the artificial magnetic response of metamaterials will also be studied through parameter retrieval of far-field optical and radiative properties for studying near-field radiative transport. Moreover, a custom-made AFM tip based metrology will be employed to experimentally study near-field radiative transfer between a plate and a sphere separated by nanometer vacuum gaps in vacuum. This transformative research will break new ground in nanoscale radiative heat

  4. Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.

    Science.gov (United States)

    Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa

    2009-01-01

    UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).

  5. Radiative transfer equation accounting for rotational Raman scattering and its solution by the discrete-ordinates method

    International Nuclear Information System (INIS)

    Rozanov, Vladimir V.; Vountas, Marco

    2014-01-01

    Rotational Raman scattering of solar light in Earth's atmosphere leads to the filling-in of Fraunhofer and telluric lines observed in the reflected spectrum. The phenomenological derivation of the inelastic radiative transfer equation including rotational Raman scattering is presented. The different forms of the approximate radiative transfer equation with first-order rotational Raman scattering terms are obtained employing the Cabannes, Rayleigh, and Cabannes–Rayleigh scattering models. The solution of these equations is considered in the framework of the discrete-ordinates method using rigorous and approximate approaches to derive particular integrals. An alternative forward-adjoint technique is suggested as well. A detailed description of the model including the exact spectral matching and a binning scheme that significantly speeds up the calculations is given. The considered solution techniques are implemented in the radiative transfer software package SCIATRAN and a specified benchmark setup is presented to enable readers to compare with own results transparently. -- Highlights: • We derived the radiative transfer equation accounting for rotational Raman scattering. • Different approximate radiative transfer approaches with first order scattering were used. • Rigorous and approximate approaches are shown to derive particular integrals. • An alternative forward-adjoint technique is suggested as well. • An additional spectral binning scheme which speeds up the calculations is presented

  6. Numerical simulations of a coupled radiative?conductive heat transfer model using a modified Monte Carlo method

    KAUST Repository

    Kovtanyuk, Andrey E.

    2012-01-01

    Radiative-conductive heat transfer in a medium bounded by two reflecting and radiating plane surfaces is considered. This process is described by a nonlinear system of two differential equations: an equation of the radiative heat transfer and an equation of the conductive heat exchange. The problem is characterized by anisotropic scattering of the medium and by specularly and diffusely reflecting boundaries. For the computation of solutions of this problem, two approaches based on iterative techniques are considered. First, a recursive algorithm based on some modification of the Monte Carlo method is proposed. Second, the diffusion approximation of the radiative transfer equation is utilized. Numerical comparisons of the approaches proposed are given in the case of isotropic scattering. © 2011 Elsevier Ltd. All rights reserved.

  7. Quantitative analysis of polarization phenomena in CdTe radiation detectors

    International Nuclear Information System (INIS)

    Toyama, Hiroyuki; Higa, Akira; Yamazato, Masaaki; Maehama, Takehiro; Toguchi, Minoru; Ohno, Ryoichi

    2006-01-01

    Polarization phenomena in a Schottky-type CdTe radiation detector were studied. We evaluated the distribution of electric field in a biased CdTe detector by measuring the progressive change of Schottky barrier lowering with time. The parameters of deep acceptors such as detrapping time, concentration, and the depth of the energy level were quantitatively evaluated. In the case of applying the conventional model of charge accumulation, the obtained result shows that the CdTe bulk is never undepleted. We modified the charge accumulation model by taking account of the occupation state of the deep acceptor level. When a modified model is applied, the time that the depletion width in the bulk begins to diminish closely fits the time that the photopeak position begins to shift in radiation measurements. In this paper, we present a distribution of electric field during biasing and a simple method for the evaluation of the parameters of deep acceptors in CdTe bulk. (author)

  8. Parametric plasma surface instabilities with p-polarized radiation

    International Nuclear Information System (INIS)

    Rappaport, H.L.

    1994-01-01

    The authors argue that parametric plasma surface mode excitation is a viable broadband instability mechanism in the microwave regime since the wavelength of incident radiation can be large compared to plasma ion density gradient scale lengths. The authors restrict their attention to plasmas which are uniform in the planes perpendicular to the density gradients. The boundary region is characterized by three parameters: (1) the ion density gradient length; (2) the electron Debye length; and (3) the excursion of boundary electrons as they move in response to monochromatic p-polarized radiation. A thin vacuum plasma transition layer, in which the ion density gradient scale length is large compared with the Debye length and the electron excursion, is included in the analysis of plasma stability. The recently proposed Lagrangian Frame Two-Plasmon Decay mode (LFTPD) is investigated in the regime in which the instability is not resonantly coupled to surface waves propagating along the boundary region. In this case they have found both spatially dependent growth rate profiles and spatially dependent transit layer magnetic fields due to nonlinear surface currents. LFTPD growth rate profiles are displayed as a function of pump amplitude. The results of a time domain simulation of this mode is also shown

  9. Alignment of Ar+ [3P]4p2P03/2 satellite state from the polarization analysis of fluorescent radiation after photoionization

    International Nuclear Information System (INIS)

    Yenen, O.; McLaughlin, K.W.; Jaecks, D.H.

    1997-01-01

    The measurement of the polarization of radiation from satellite states of Ar + formed after the photoionization of Ar provides detailed information about the nature of doubly excited states, magnetic sublevel cross sections and partial wave ratios of the photo-ejected electrons. Since the formation of these satellite states is a weak process, it is necessary to use a high flux beam of incoming photons. In addition, in order to resolve the many narrow doubly excited Ar resonances, the incoming photons must have a high resolution. The characteristics of the beam line 9.0.1 of the Advanced Light Source fulfill these requirements. The authors determined the polarization of 4765 Angstrom fluorescence from the Ar + [ 3 P] 4p 2 P 3/2 0 satellite state formed after photoionization of Ar by photons from the 9.0.1 beam line of ALS in the 35.620-38.261 eV energy range using a resolution of approximately 12,700. This is accomplished by measuring the intensities of the fluorescent light polarized parallel (I parallel) and perpendicular (I perpendicular) to the polarization axis of the incident synchrotron radiation using a Sterling Optics 105MB polarizing filter. The optical system placed at 90 degrees with respect to the polarization axis of the incident light had a narrow band interference filter (δλ=0.3 nm) to isolate the fluorescent radiation

  10. Homogenization of a Conductive-Radiative Heat Transfer Problem

    Directory of Open Access Journals (Sweden)

    Habibi Zakaria

    2012-04-01

    Full Text Available This paper focuses on the contribution of the second order corrector in periodic homogenization applied to a conductive-radiative heat transfer problem. Especially, for a heat conduction problem in a periodically perforated domain with a non-local boundary condition modelling the radiative heat transfer, if this model contains an oscillating thermal source and a thermal exchange with the perforations, the second order corrector helps us to model the gradients which appear between the source area and the perforations. Ce papier est consacré à montrer l’influence du correcteur de second ordre en homogénéisation périodique. Dans l’homogénéisation d’un problème de conduction rayonnement dans un domaine périodiquement perforé par plusieurs trous, on peut voir une contribution non négligeable de ce correcteur lors de la présence d’une source thermique oscillante et d’un échange thermique dans les perforations. Ce correcteur nous permet de modéliser les gradients qui apparaissent entre la zone de la source thermique et les perforations.

  11. Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer

    International Nuclear Information System (INIS)

    David Abbott; Abdellah Ahmidouch; Heinz Anklin; Francois Arvieux; Jacques Ball; Beedoe, S.; Elizabeth Beise; Louis Bimbot; Werner Boeglin; Herbert Breuer; Roger Carlini; Nicholas Chant; Samuel Danagoulian; Dow, K.; Jean-Eric Ducret; James Dunne; Lars Ewell; Laurent Eyraud; Christophe Furget; Michel Garcon; Ronald Gilman; Charles Glashausser; Paul Gueye; Kenneth Gustafsson; Kawtar Hafidi; Adrian Honegger; Juerg Jourdan; Serge Kox; Gerfried Kumbartzki; Lu, L.; Allison Lung; David Mack; Pete Markowitz; Justin McIntyre; David Meekins; Fernand Merchez; Joseph Mitchell; Mohring, R.; Sekazi Mtingwa; Hamlet Mkrtchyan; David Pitz; Liming Qin; Ronald Ransome; Jean-Sebastien Real; Philip Roos; Paul Rutt; Reyad Sawafta; Samuel Stepanyan; Raphael Tieulent; Egle Tomasi-Gustafsson; William Turchinetz; Kelley Vansyoc; Jochen Volmer; Eric Voutier; William Vulcan; Claude Williamson; Stephen Wood; Chen Yan; Jie Zhao; Wenxia Zhao

    2000-01-01

    Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c) 2 . The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q 2 the deuteron charge form factors G C and G Q . They are in good agreement with relativistic calculations and disagree with pQCD predictions

  12. The variable polarity plasma arc welding process: Characteristics and performance

    Science.gov (United States)

    Hung, R. J.; Zhu, G. J.

    1991-01-01

    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. The power distribution was analyzed for an argon plasma gas flow constituting the fluid in the VPPA Welding Process. The major heat loss at the torch nozzle is convective heat transfer; in the space between the outlet of the nozzle and the workpiece; radiative heat transfer; and in the keyhole in the workpiece, convective heat transfer. The power absorbed at the workpiece produces the molten puddle that solidifies into the weld bead. Crown and root widths, and crown and root heights of the weld bead are predicted. The basis is provided for an algorithm for automatic control of VPPA welding machine parameters to obtain desired weld bead dimensions.

  13. Polarization transfer in elastic p-d scattering at E sub. rho. = 22. 7 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Gruebler, W.; Clajus, M.; Egun, P.M.; Hautle, P.; Weber, A. (Eidgenoessische Technische Hochschule, Zurich (CH). Inst. fuer Mittelenergiephysik); Schmelzbach, P.A. (Paul Scherrer Inst. (PSI), Villigen (CH)); Slaus, I. (Institut Ruder Boskovic, Zagreb. (YU)); Vuaridel, B. (Michigan Univ., Ann Arbor, MI (US)); Sperisen, F. (Indiana Univ. Cyclotron Facility, Bloomington, IN (US)); Kretschmer, W.; Karschnick, R.O.; Rauscher, A.; Weidmann, R.; Walter, T. (Erlangen-Nuernberg Univ., Erlangen (DE). Physikalisches Inst.); Bruno, M.; Cannata, F.; d' Agostino, M. (Istituto Nazionale di Fisica Nucleare, Bologna (IT))

    1990-11-15

    The proton-deuteron elastic scattering has been investigated at E{sub p}=22.7 MeV by comparison of rigorous Faddeev calculations with experimental results. From the calculations it was found that polarization transfer coefficients are more sensitive to details of the nucleon-nucleon potentials than the analyzing powers. Therefore we measured the proton to proton transfer coefficients K{sup y'}{sub y} and K{sup x'}{sub z}. The observable most sensitive to the tensor force is K{sup y'}{sub y}. The angular distributions of K{sup y'}{sub y} and, to a smaller extent, K{sup x'}{sub z} clearly favour the Bonn A potential.

  14. Spectral collocation method with a flexible angular discretization scheme for radiative transfer in multi-layer graded index medium

    Science.gov (United States)

    Wei, Linyang; Qi, Hong; Sun, Jianping; Ren, Yatao; Ruan, Liming

    2017-05-01

    The spectral collocation method (SCM) is employed to solve the radiative transfer in multi-layer semitransparent medium with graded index. A new flexible angular discretization scheme is employed to discretize the solid angle domain freely to overcome the limit of the number of discrete radiative direction when adopting traditional SN discrete ordinate scheme. Three radial basis function interpolation approaches, named as multi-quadric (MQ), inverse multi-quadric (IMQ) and inverse quadratic (IQ) interpolation, are employed to couple the radiative intensity at the interface between two adjacent layers and numerical experiments show that MQ interpolation has the highest accuracy and best stability. Variable radiative transfer problems in double-layer semitransparent media with different thermophysical properties are investigated and the influence of these thermophysical properties on the radiative transfer procedure in double-layer semitransparent media is also analyzed. All the simulated results show that the present SCM with the new angular discretization scheme can predict the radiative transfer in multi-layer semitransparent medium with graded index efficiently and accurately.

  15. Benchmark numerical solutions for radiative heat transfer in two-dimensional medium with graded index distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.H. [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)]. E-mail: lhliu@hit.edu.cn

    2006-11-15

    In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.

  16. Polarization Measurements in High-Energy Deuteron Photodisintegration

    International Nuclear Information System (INIS)

    Adam Sarty; Andrei Afanasev; Arunava Saha; Bogdan Wojtsekhowski; Brendan Fox; Chang, C.; Cathleen Jones; Charles Glashausser; Charles Perdrisat; Cornelis De Jager; Cornelis De Jager; Cornelis de Jager; Crovelli, D.; Daniel Simon; David Meekins; Demetrius Margaziotis; Dipangkar Dutta; Edgar Kooijman; Edward Brash; Edward Kinney; Elaine Schulte; Eugene Chudakov; Feng Xiong; Franco Garibaldi; Garth Huber; Gerfried Kumbartzki; Guido Urciuoli; Haiyan Gao; James Kelly; Javier Gomez; Jens-Ole Hansen; Jian-Ping Chen; John Calarco; John LeRose; Jordan Hovdebo; Joseph Mitchell; Juncai Gao; Kamal Benslama; Kathy McCormick; Kevin Fissum; Konrad Aniol; Krishni Wijesooriya; Louis Bimbot; Ludyvine Morand; Luminita Todor; Marat Rvachev; Mark Jones; Martin Epstein; Meihua Liang; Michael Kuss; Moskov Amarian; Nilanga Liyanage; Oleksandr Glamazdin; Olivier Gayou; Paul Ulmer; Pete Markowitz; Peter Bosted; Holt, R.; Riad Suleiman; Richard Lindgren; Rikki Roche; Robert Michaels; Roman Pomatsalyuk; Ronald Gilman; Ronald Ransome; Salvatore Frullani; Scott Dumalski; Seonho Choi; Sergey Malov; Sonja Dieterich; Steffen Strauch; Stephen Becher; Steve Churchwell; Ting Chang; Viktor Gorbenko; Vina Punjabi; Xiaodong Jiang; Zein-Eddine Meziani; Zhengwei Chai; Wang Xu

    2001-01-01

    We present measurements of the recoil proton polarization for the d(polarized y, polarized p)n reaction at thetac.m. = 90 degrees for photon energies up to 2.4 GeV. These are the first data in this reaction for polarization transfer with circularly polarized photons. The induced polarization py vanishes above 1 GeV, contrary to meson-baryon model expectations, in which resonances lead to large polarizations. However, the polarization transfer Cx does not vanish above 1 GeV, inconsistent with hadron helicity conservation. Thus, we show that the scaling behavior observed in the d(y,p)n cross sections is not a result of perturbative QCD. These data should provide important tests of new nonperturbative calculations in the intermediate energy regime

  17. Directional radiometry and radiative transfer: A new paradigm

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.

    2011-01-01

    Measurements with directional radiometers and calculations based on the radiative transfer equation (RTE) have been at the very heart of weather and climate modeling and terrestrial remote sensing. The quantification of the energy budget of the Earth's climate system requires exquisite measurements and computations of the incoming and outgoing electromagnetic energy, while global characterization of climate system's components relies heavily on theoretical inversions of observational data obtained with various passive and active instruments. The same basic problems involving electromagnetic energy transport and its use for diagnostic and characterization purposes are encountered in numerous other areas of science, biomedicine, and engineering. Yet both the discipline of directional radiometry and the radiative transfer theory (RTT) have traditionally been based on phenomenological concepts many of which turn out to be profound misconceptions. Contrary to the widespread belief, a collimated radiometer does not, in general, measure the flow of electromagnetic energy along its optical axis, while the specific intensity does not quantify the amount of electromagnetic energy transported in a given direction. The recently developed microphysical approach to radiative transfer and directional radiometry is explicitly based on the Maxwell equations and clarifies the physical nature of measurements with collimated radiometers and the actual content of the RTE. It reveals that the specific intensity has no fundamental physical meaning besides being a mathematical solution of the RTE, while the RTE itself is nothing more than an intermediate auxiliary equation. Only under special circumstances detailed in this review can the solution of the RTE be used to compute the time-averaged local Poynting vector as well as be measured by a collimated radiometer. These firmly established facts make the combination of the RTE and a collimated radiometer useful in a well-defined range of

  18. Free convection effects and radiative heat transfer in MHD Stokes ...

    Indian Academy of Sciences (India)

    ... radiative heat transfer is useful for predicting the heat feedback to the burning surface ... petroleum technology, to study the movement of natural gas, oil and water ... (e.g. sea water, rain water, and sewage) past an impulsively started infinite ...

  19. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Jiang, Song, E-mail: jiang@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Xu, Kun, E-mail: makxu@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong (China); Li, Shu, E-mail: li_shu@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China)

    2015-12-01

    This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region the transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP

  20. Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids

    International Nuclear Information System (INIS)

    Ali, Hafiz Muhammad; Ali, Hassan; Liaquat, Hassan; Bin Maqsood, Hafiz Talha; Nadir, Malik Ahmed

    2015-01-01

    New experimental data are reported for water based nanofluids to enhance the heat transfer performance of a car radiator. ZnO nanoparticles have been added into base fluid in different volumetric concentrations (0.01%, 0.08%, 0.2% and 0.3%). The effect of these volumetric concentrations on the heat transfer performance for car radiator is determined experimentally. Fluid flow rate has been varied in a range of 7–11 LPM (liter per minute) (corresponding Reynolds number range was 17,500–27,600). Nanofluids showed heat transfer enhancement compared to the base fluid for all concentrations tested. The best heat transfer enhancement up to 46% was found compared to base fluid at 0.2% volumetric concentration. A further increase in volumetric concentration to 0.3% has shown a decrease in heat transfer enhancement compared to 0.2% volumetric concentration. Fluid inlet temperature was kept in a range of 45–55 °C. An increase in fluid inlet temperature from 45 °C to 55 °C showed increase in heat transfer rate up to 4%. - Highlights: • ZnO–water nanofluids were used for car radiator thermal enhancement. • Heat transfer enhancement up to 46% was achieved comparing pure water. • 0.2% vol. concentration of ZnO found to be optimum for heat transfer. • Heat transfer was found weakly dependant on the fluid inlet temperature

  1. The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, K.-L.; Ke, M.-T.; Ku, S.-S.

    2009-01-01

    The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.

  2. Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator

    International Nuclear Information System (INIS)

    Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Naraki, M.; Vermahmoudi, Y.

    2013-01-01

    Heat transfer of coolant flow through the automobile radiators is of great importance for the optimization of fuel consumption. In this study, the heat transfer performance of the automobile radiator is evaluated experimentally by calculating the overall heat transfer coefficient (U) according to the conventional ε-NTU technique. Copper oxide (CuO) and Iron oxide (Fe 2 O 3 ) nanoparticles are added to the water at three concentrations 0.15, 0.4, and 0.65 vol.% with considering the best pH for longer stability. In these experiments, the liquid side Reynolds number is varied in the range of 50–1000 and the inlet liquid to the radiator has a constant temperature which is changed at 50, 65 and 80 °C. The ambient air for cooling of the hot liquid is used at constant temperature and the air Reynolds number is varied between 500 and 700. However, the effects of these variables on the overall heat transfer coefficient are deeply investigated. Results demonstrate that both nanofluids show greater overall heat transfer coefficient in comparison with water up to 9%. Furthermore, increasing the nanoparticle concentration, air velocity, and nanofluid velocity enhances the overall heat transfer coefficient. In contrast, increasing the nanofluid inlet temperature, lower overall heat transfer coefficient was recorded. -- Highlights: ► Overall heat transfer coefficient in the car radiator measured experimentally. ► Nanofluids showed greater heat transfer performance comparing with water. ► Increasing liquid and air Re increases the overall heat transfer coefficient. ► Increasing the inlet liquid temperature decreases the overall heat transfer coefficient

  3. Polarized electrode enhances biological direct interspecies electron transfer for methane production in upflow anaerobic bioelectrochemical reactor.

    Science.gov (United States)

    Feng, Qing; Song, Young-Chae; Yoo, Kyuseon; Kuppanan, Nanthakumar; Subudhi, Sanjukta; Lal, Banwari

    2018-08-01

    The influence of polarized electrodes on the methane production, which depends on the sludge concentration, was investigated in upflow anaerobic bioelectrochemical (UABE) reactor. When the polarized electrode was placed in the bottom zone with a high sludge concentration, the methane production was 5.34 L/L.d, which was 53% higher than upflow anaerobic sludge blanket (UASB) reactor. However, the methane production was reduced to 4.34 L/L.d by placing the electrode in the upper zone of the UABE reactor with lower sludge concentration. In the UABE reactor, the methane production was mainly improved by the enhanced biological direct interspecies electron transfer (bDIET) pathway, and the methane production via the electrode was a minor fraction of less than 4% of total methane production. The polarized electrodes that placed in the bottom zone with a high sludge concentration enhance the bDIET for methane production in the UABE reactor and greatly improve the methane production. Copyright © 2018. Published by Elsevier Ltd.

  4. Fluorescence quenching of 9-cyanoanthracene in presence of zinc tetraphenylporphyrin in a polar liquid medium

    International Nuclear Information System (INIS)

    Mandal, Paulami; Tiwari, Sanat Kumar; Ganguly, Tapan; Sinha, Subrata

    2009-01-01

    Steady-state and time-resolved techniques are used to study photoinduced electron and/or excitational energy transfer processes involved within a novel donor (zinc tetraphenylporphyrin)-acceptor (9-cyanoanthracene) system in a polar liquid medium (acetonitrile) at the ambient temperature (300 K). After photoexcitation of 9-cyanoanthracene, its fluorescence emission as well as lifetime are found to be quenched in presence of zinc tetraphenylporphyrin. The fluorescence quenching is ascribed to be due to the combined effect of electron transfer from zinc tetraphenylporphyrin to 9-cyanoanthracene and energy transfer (radiative as well as non-radiative) from 9-cyanoanthracene to zinc tetraphenylporphyrin. The highly exergonic values of Gibbs free energy change for both forward electron transfer reaction (-1.15 eV) and charge recombination reaction (-1.94 eV) indicate the possibilities of occurrences of these two processes in the Marcus inverted region. The fluorescence quenching rate due to photoinduced electron transfer reaction is found to be close to the diffusion-controlled limit within the present donor-acceptor system upon excitation of the acceptor molecules.

  5. Evaluation of radiation heat transfer in porous medial: Application for a pebble bed modular reactor cooled by CO2 gas

    Directory of Open Access Journals (Sweden)

    Sidi-Ali Kamel

    2013-01-01

    Full Text Available This work analyses the contribution of radiation heat transfer in the cooling of a pebble bed modular reactor. The mathematical model, developed for a porous medium, is based on a set of equations applied to an annular geometry. Previous major works dealing with the subject have considered the forced convection mode and often did not take into account the radiation heat transfer. In this work, only free convection and radiation heat transfer are considered. This can occur during the removal of residual heat after shutdown or during an emergency situation. In order to derive the governing equations of radiation heat transfer, a steady-state in an isotropic and emissive porous medium (CO2 is considered. The obtained system of equations is written in a dimensionless form and then solved. In order to evaluate the effect of radiation heat transfer on the total heat removed, an analytical method for solving the system of equations is used. The results allow quantifying both radiation and free convection heat transfer. For the studied situation, they show that, in a pebble bed modular reactor, more than 70% of heat is removed by radiation heat transfer when CO2 is used as the coolant gas.

  6. A NUMERICAL SCHEME FOR SPECIAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS BASED ON SOLVING THE TIME-DEPENDENT RADIATIVE TRANSFER EQUATION

    Energy Technology Data Exchange (ETDEWEB)

    Ohsuga, Ken; Takahashi, Hiroyuki R. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-02-20

    We develop a numerical scheme for solving the equations of fully special relativistic, radiation magnetohydrodynamics (MHDs), in which the frequency-integrated, time-dependent radiation transfer equation is solved to calculate the specific intensity. The radiation energy density, the radiation flux, and the radiation stress tensor are obtained by the angular quadrature of the intensity. In the present method, conservation of total mass, momentum, and energy of the radiation magnetofluids is guaranteed. We treat not only the isotropic scattering but also the Thomson scattering. The numerical method of MHDs is the same as that of our previous work. The advection terms are explicitly solved, and the source terms, which describe the gas–radiation interaction, are implicitly integrated. Our code is suitable for massive parallel computing. We present that our code shows reasonable results in some numerical tests for propagating radiation and radiation hydrodynamics. Particularly, the correct solution is given even in the optically very thin or moderately thin regimes, and the special relativistic effects are nicely reproduced.

  7. Charge-Transfer States in Organic Solar Cells: Understanding the Impact of Polarization, Delocalization, and Disorder

    KAUST Repository

    Zheng, Zilong

    2017-05-08

    We investigate the impact of electronic polarization, charge delocalization, and energetic disorder on the charge-transfer (CT) states formed at a planar C60/pentacene interface. The ability to examine large complexes containing up to seven pentacene molecules and three C60 molecules allows us to take explicitly into account the electronic polarization effects. These complexes are extracted from a bilayer architecture modeled by molecular dynamics simulations and evaluated by means of electronic-structure calculations based on long-range-separated functionals (ωB97XD and BNL) with optimized range-separation parameters. The energies of the lowest charge-transfer states derived for the large complexes are in very good agreement with the experimentally reported values. The average singlet-triplet energy splittings of the lowest CT states are calculated not to exceed 10 meV. The rates of geminate recombination as well as of dissociation of the triplet excitons are also evaluated. In line with experiment, our results indicate that the pentacene triplet excitons generated through singlet fission can dissociate into separated charges on a picosecond time scale, despite the fact that their energy in C60/pentacene heterojunctions is slightly lower than the energies of the lowest CT triplet states.

  8. The representation of neutron polarization

    International Nuclear Information System (INIS)

    Byrne, J.

    1979-01-01

    Neutron beam polarization representation is discussed under the headings; transfer matrices, coherent parity violation for neutrons, neutron spin rotation in helical magnetic fields, polarization and interference. (UK)

  9. Polarized and persistent Ca²⁺ plumes define loci for formation of wall ingrowth papillae in transfer cells.

    Science.gov (United States)

    Zhang, Hui-Ming; Imtiaz, Mohammad S; Laver, Derek R; McCurdy, David W; Offler, Christina E; van Helden, Dirk F; Patrick, John W

    2015-03-01

    Transfer cell morphology is characterized by a polarized ingrowth wall comprising a uniform wall upon which wall ingrowth papillae develop at right angles into the cytoplasm. The hypothesis that positional information directing construction of wall ingrowth papillae is mediated by Ca(2+) signals generated by spatiotemporal alterations in cytosolic Ca(2+) ([Ca(2+)]cyt) of cells trans-differentiating to a transfer cell morphology was tested. This hypothesis was examined using Vicia faba cotyledons. On transferring cotyledons to culture, their adaxial epidermal cells synchronously trans-differentiate to epidermal transfer cells. A polarized and persistent Ca(2+) signal, generated during epidermal cell trans-differentiation, was found to co-localize with the site of ingrowth wall formation. Dampening Ca(2+) signal intensity, by withdrawing extracellular Ca(2+) or blocking Ca(2+) channel activity, inhibited formation of wall ingrowth papillae. Maintenance of Ca(2+) signal polarity and persistence depended upon a rapid turnover (minutes) of cytosolic Ca(2+) by co-operative functioning of plasma membrane Ca(2+)-permeable channels and Ca(2+)-ATPases. Viewed paradermally, and proximal to the cytosol-plasma membrane interface, the Ca(2+) signal was organized into discrete patches that aligned spatially with clusters of Ca(2+)-permeable channels. Mathematical modelling demonstrated that these patches of cytosolic Ca(2+) were consistent with inward-directed plumes of elevated [Ca(2+)]cyt. Plume formation depended upon an alternating distribution of Ca(2+)-permeable channels and Ca(2+)-ATPase clusters. On further inward diffusion, the Ca(2+) plumes coalesced into a uniform Ca(2+) signal. Blocking or dispersing the Ca(2+) plumes inhibited deposition of wall ingrowth papillae, while uniform wall formation remained unaltered. A working model envisages that cytosolic Ca(2+) plumes define the loci at which wall ingrowth papillae are deposited. © The Author 2014. Published by Oxford

  10. Modeling of the coupled radiative and conductive heat transfer within fibrous media at high temperature

    International Nuclear Information System (INIS)

    Dauvois, Yann

    2016-01-01

    In the present work, the effective heat transfer properties of fibrous medium are determined by taking into account a coupling of heat conduction and radiation. A virtual, statistically homogeneous, two-phase fibrous sample has been built by stacking finite absorbing cylinders in vacuum. These cylinders are dispersed according to prescribed distribution functions defining the cylinder positions and orientations. Cylinder overlappings are allowed. Extinction, absorption and scattering are characterised by radiative statistical functions which allow the Beerian behaviour of a medium to be assessed (or not). They are accurately determined with a Monte Carlo method. Whereas the gaseous phase exhibits a Beerian behaviour, the fibre phase is strongly non Beerian. The radiative power field deposited within the fibrous material is calculated by resolving a model which couples a Generalized Radiative Transfer Equation (GRTE) and a classic Radiative Transfer Equation (RTE). The model of conduction transfer is based on a random walk method without meshing. The simulation of Brownian motion of walkers in fibres allows the energy equation to be solved. The idea of the method is to characterize the temperature in an elementary volume by the density of walkers, which roam the medium. The problem is governed by boundary conditions; A constant concentration of walkers (or a constant flux) is associated with a fixed temperature (or flux). (author) [fr

  11. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  12. Modeling Polarized Emission from Black Hole Jets: Application to M87 Core Jet

    Directory of Open Access Journals (Sweden)

    Monika Mościbrodzka

    2017-09-01

    Full Text Available We combine three-dimensional general-relativistic numerical models of hot, magnetized Advection Dominated Accretion Flows around a supermassive black hole and the corresponding outflows from them with a general relativistic polarized radiative transfer model to produce synthetic radio images and spectra of jet outflows. We apply the model to the underluminous core of M87 galaxy. The assumptions and results of the calculations are discussed in context of millimeter observations of the M87 jet launching zone. Our ab initio polarized emission and rotation measure models allow us to address the constrains on the mass accretion rate onto the M87 supermassive black hole.

  13. DUAL POLARIZATION ANTENNA ARRAY WITH VERY LOW CROSS POLARIZATION AND LOW SIDE LOBES

    DEFF Research Database (Denmark)

    1997-01-01

    The present invention relates to an antenna array adapted to radiate or receive electromagnetic waves of one or two polarizations with very low cross polarization and low side lobes. An antenna array comprising many antenna elements, e.g. more than ten antenna elements, is provided in which...... formation of grating lobes are inhibited in selected directions of the radiation and cross polarization within the main lobe is suppressed at least 30 dB below the main lobe peak value. According to a preferred embodiment of the invention, the antenna elements of the antenna array comprise probe-fed patches...

  14. A statewide teleradiology system reduces radiation exposure and charges in transferred trauma patients.

    Science.gov (United States)

    Watson, Justin J J; Moren, Alexis; Diggs, Brian; Houser, Ben; Eastes, Lynn; Brand, Dawn; Bilyeu, Pamela; Schreiber, Martin; Kiraly, Laszlo

    2016-05-01

    Trauma transfer patients routinely undergo repeat imaging because of inefficiencies within the radiology system. In 2009, the virtual private network (VPN) telemedicine system was adopted throughout Oregon allowing virtual image transfer between hospitals. The startup cost was a nominal $3,000 per hospital. A retrospective review from 2007 to 2012 included 400 randomly selected adult trauma transfer patients based on a power analysis (200 pre/200 post). The primary outcome evaluated was reduction in repeat computed tomography (CT) scans. Secondary outcomes included cost savings, emergency department (ED) length of stay (LOS), and spared radiation. All data were analyzed using Mann-Whitney U and chi-square tests. P less than .05 indicated significance. Spared radiation was calculated as a weighted average per body region, and savings was calculated using charges obtained from Oregon Health and Science University radiology current procedural terminology codes. Four-hundred patients were included. Injury Severity Score, age, ED and overall LOS, mortality, trauma type, and gender were not statistically different between groups. The percentage of patients with repeat CT scans decreased after VPN implementation: CT abdomen (13.2% vs 2.8%, P < .01) and cervical spine (34.4% vs 18.2%, P < .01). Post-VPN, the total charges saved in 2012 for trauma transfer patients was $333,500, whereas the average radiation dose spared per person was 1.8 mSV. Length of stay in the ED for patients with Injury Severity Score less than 15 transferring to the ICU was decreased (P < .05). Implementation of a statewide teleradiology network resulted in fewer total repeat CT scans, significant savings, decrease in radiation exposure, and decreased LOS in the ED for patients with less complex injuries. The potential for health care savings by widespread adoption of a VPN is significant. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Multiangular hyperspectral investigation of polarized light in case 2 waters

    Science.gov (United States)

    Tonizzo, A.; Zhou, J.; Gilerson, A.; Chowdhary, J.; Gross, B.; Moshary, F.; Ahmed, S.

    2009-09-01

    The focus of this work is on the dependence of in situ hyperspectral and multiangular polarized data on the size distribution and refractive index of the suspended particles. Underwater polarization measurements were obtained using a polarimeter developed at the Optical Remote Sensing Laboratory of the City College of New York, NY. The degree of polarization (DOP) of the underwater light field in coastal environments was measured and the water-leaving polarized radiance was derived. In-water optical properties were also measured with an ac-9 (WET Labs). Absorption and attenuation spectra are then used to derive information on the dissolved and suspend components in the water medium which are used in a vector radiative transfer code which provides the upwelling radiance. The model was run for various values of the refractive index of mineral particles until the modeled DOP matched the measured one. The relationship between the intensity of the maximum of the DOP and both the refractive index of the mineral particles and the shapes of their size distributions is analyzed in detail.

  16. Calculations of combined radiation and convection heat transfer in rod bundles under emergency cooling conditions

    International Nuclear Information System (INIS)

    Sun, K.H.; Gonzalez-Santalo, J.M.; Tien, C.L.

    1976-01-01

    A model has been developed to calculate the heat transfer coefficients from the fuel rods to the steam-droplet mixture typical of Boiling Water Reactors under Emergency Core Cooling System (ECCS) operation conditions during a postulated loss-of-coolant accident. The model includes the heat transfer by convection to the vapor, the radiation from the surfaces to both the water droplets and the vapor, and the effects of droplet evaporation. The combined convection and radiation heat transfer coefficient can be evaluated with respect to the characteristic droplet size. Calculations of the heat transfer coefficient based on the droplet sizes obtained from the existing literature are consistent with those determined empirically from the Full-Length-Emergency-Cooling-Heat-Transfer (FLECHT) program. The present model can also be used to assess the effects of geometrical distortions (or deviations from nominal dimensions) on the heat transfer to the cooling medium in a rod bundle

  17. New radiative transfer models for obscuring tori in active galaxies

    NARCIS (Netherlands)

    van Bemmel, IM; Dullemond, CP

    Two-dimensional radiative transfer is employed to obtain the broad-band infrared spectrum of active galaxies. In the models we vary the geometry and size of the obscuring medium, the surface density, the opacity and the grain size distribution. Resulting spectral energy distributions are constructed

  18. Polarized Uniform Linear Array System: Beam Radiation Pattern, Beamforming Diversity Order, and Channel Capacity

    Directory of Open Access Journals (Sweden)

    Xin Su

    2015-01-01

    Full Text Available There have been many studies regarding antenna polarization; however, there have been few publications on the analysis of the channel capacity for polarized antenna systems using the beamforming technique. According to Chung et al., the channel capacity is determined by the density of scatterers and the transmission power, which is obtained based on the assumption that scatterers are uniformly distributed on a 3D spherical scattering model. However, it contradicts the practical scenario, where scatterers may not be uniformly distributed under outdoor environment, and lacks the consideration of fading channel gain. In this study, we derive the channel capacity of polarized uniform linear array (PULA systems using the beamforming technique in a practical scattering environment. The results show that, for PULA systems, the channel capacity, which is boosted by beamforming diversity, can be determined using the channel gain, beam radiation pattern, and beamforming diversity order (BDO, where the BDO is dependent on the antenna characteristics and array configurations.

  19. Semi-analog Monte Carlo (SMC) method for time-dependent non-linear three-dimensional heterogeneous radiative transfer problems

    International Nuclear Information System (INIS)

    Yun, Sung Hwan

    2004-02-01

    Radiative transfer is a complex phenomenon in which radiation field interacts with material. This thermal radiative transfer phenomenon is composed of two equations which are the balance equation of photons and the material energy balance equation. The two equations involve non-linearity due to the temperature and that makes the radiative transfer equation more difficult to solve. During the last several years, there have been many efforts to solve the non-linear radiative transfer problems by Monte Carlo method. Among them, it is known that Semi-Analog Monte Carlo (SMC) method developed by Ahrens and Larsen is accurate regard-less of the time step size in low temperature region. But their works are limited to one-dimensional, low temperature problems. In this thesis, we suggest some method to remove their limitations in the SMC method and apply to the more realistic problems. An initially cold problem was solved over entire temperature region by using piecewise linear interpolation of the heat capacity, while heat capacity is still fitted as a cubic curve within the lowest temperature region. If we assume the heat capacity to be linear in each temperature region, the non-linearity still remains in the radiative transfer equations. We then introduce the first-order Taylor expansion to linearize the non-linear radiative transfer equations. During the linearization procedure, absorption-reemission phenomena may be described by a conventional reemission time sampling scheme which is similar to the repetitive sampling scheme in particle transport Monte Carlo method. But this scheme causes significant stochastic errors, which necessitates many histories. Thus, we present a new reemission time sampling scheme which reduces stochastic errors by storing the information of absorption times. The results of the comparison of the two schemes show that the new scheme has less stochastic errors. Therefore, the improved SMC method is able to solve more realistic problems with

  20. Directional radiometry and radiative transfer: The convoluted path from centuries-old phenomenology to physical optics

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.

    2014-01-01

    This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics. - Highlights: • History of phenomenological radiometry and radiative transfer is described. • Fundamental weaknesses of these disciplines are discussed. • The process of their conversion into legitimate branches of physical optics is summarized

  1. Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method

    International Nuclear Information System (INIS)

    Mishra, Subhash C.; Roy, Hillol K.

    2007-01-01

    The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The finite volume method (FVM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the FVM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 1-D planar and 2-D rectangular geometries were considered. In order to establish the suitability of the LBM, the energy equations of the two problems were also solved using the FVM of the computational fluid dynamics. The FVM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FVM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the FVM for the radiative information, results were analyzed for the effects of various parameters such as the scattering albedo, the conduction-radiation parameter and the boundary emissivity. The results of the LBM-FVM combination were found to be in excellent agreement with the FVM-FVM combination. The number of iterations and CPU times in both the combinations were found comparable

  2. CFD analysis of heat transfer performance of graphene based hybrid nanofluid in radiators

    Science.gov (United States)

    Bharadwaj, Bharath R.; Sanketh Mogeraya, K.; Manjunath, D. M.; Rao Ponangi, Babu; Rajendra Prasad, K. S.; Krishna, V.

    2018-04-01

    For Improved performance of an automobile engine, Cooling systems are one of the critical systems that need attention. With increased capacity to carry away large amounts of wasted heat, performance of an engine is increased. Current research on Nano-fluids suggests that they offer higher heat transfer rate compared to that of conventional coolants. Hence this project seeks to investigate the use of hybrid-nanofluids in radiators so as to increase its heat transfer performance. Carboxyl Graphene and Graphene Oxide based nanoparticles were selected due to the very high thermal conductivity of Graphene. System Analysis of the radiator was performed by considering a small part of the whole automobile radiator modelled using SEIMENS NX. CFD analysis was conducted using ANSYS FLUENT® for the nanofluid defined and the increase in effectiveness was compared to that of conventional coolants. Usage of such nanofluids for a fixed cooling requirement in the future can lead to significant downsizing of the radiator.

  3. Comparison of Two Models for Radiative Heat Transfer in High Temperature Thermal Plasmas

    Directory of Open Access Journals (Sweden)

    Matthieu Melot

    2011-01-01

    Full Text Available Numerical simulation of the arc-flow interaction in high-voltage circuit breakers requires a radiation model capable of handling high-temperature participating thermal plasmas. The modeling of the radiative transfer plays a critical role in the overall accuracy of such CFD simulations. As a result of the increase of computational power, CPU intensive methods based on the radiative transfer equation, leading to more accurate results, are now becoming attractive alternatives to current approximate models. In this paper, the predictive capabilities of the finite volume method (RTE-FVM and the P1 model are investigated. A systematic comparison between these two models and analytical solutions are presented for a variety of relevant test cases. Two implementations of each approach are compared, and a critical evaluation is presented.

  4. Analysis of radiative heat transfer in the presence of obscurations

    International Nuclear Information System (INIS)

    Finkelstein, L.; Weissman, Y.

    1981-05-01

    Numerical simulation of radiative heat transfer problems in general axisymmetric geometry in the presence of an active gas is considered. Such simulation requires subdivision of the radiating surfaces into discrete elements, which are in the present case radiating rings. While the effect of a participating medium is easily taken into account by integration along the lines of vision between the surface elements, the calculation of the different obscurations poses the main difficulty. We have written a closed expression which formulates the problem exactly, and then developed a systematic and compact computational approach to the obscuration problem in complex configurations. The present procedure is particularly suited to computer calculations associated with engineering applications in the aircraft and furnace industries. (author)

  5. Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media

    Science.gov (United States)

    Liu, L. H.; Tan, J. Y.

    2007-02-01

    A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.

  6. Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media

    International Nuclear Information System (INIS)

    Liu, L.H.; Tan, J.Y.

    2007-01-01

    A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media

  7. Underground processing method for radiation-contaminated material and transferring method for buffer molding material

    International Nuclear Information System (INIS)

    Akasaka, Hidenari; Shimura, Satoshi; Asano, Eiichi; Yamagata, Junji; Ninomiya, Nobuo; Kawakami, Susumu.

    1995-01-01

    A bottomed molding material (buffer molding material) is formed into a bottomed cylindrical shape by solidifying, under pressure, powders such as of bentonite into a highly dense state by a cold isotropic pressing or the like, having a hole for accepting and containing a vessel for radiation-contaminated materials. The bottomed cylindrical molding material is loaded on a transferring vessel, and transferred to a position near the site for underground disposal. The bottomed cylindrical molding material having a upwarded containing hole is buried in the cave for disposal. The container for radiation-contaminated material is loaded and contained in the containing hole of the bottomed cylindrical molding material. A next container for radiation-contaminated materials is juxtaposed thereover. Then, a bottomed cylindrical molding material having a downwarded containing hole is covered to the container for the radiation-contaminated material in a state being protruded upwardly. The radiation-contaminated material is thus closed by a buffer material of the same material at the circumference thereof. (I.N.)

  8. $\\Lambda$ and $\\bar{\\Lambda}$ polarization at COMPASS

    CERN Document Server

    Kang, Donghee

    2010-01-01

    At the COMPASS experiment $\\Lambda$ and $\\bar{\\Lambda}$ particles are produced with high statistics in deep inelastic scattering (DIS) processes of 160 GeV/c polarized muons. Since both, beam and target, are polarized, various studies on the $\\Lambda$ polarization are possible. We present results on the longitudinal polarization transfer from muons to $\\Lambda$ hyperons produced by scattering off an unpolarized isoscalar target and preliminary results on the transverse $\\Lambda$ polarization with a transversely polarized proton target. The $\\Lambda$ and $\\bar{\\Lambda}$ polarization can be studied by measuring the acceptance corrected angular distribution of its decay products. The longitudinal spin transfers to $\\Lambda$ and $\\bar{\\Lambda}$ produced in the current fragmentation region exhibit different behaviours as a function of $x_{Bj}$ and $x_{F}$. The $x_{Bj}$ and $x_{F}$ dependences of $\\Lambda$ polarization are compatible with zero, while $\\bar{\\Lambda}$ polarization tends to increase with $x_{F}$. Info...

  9. Incorporation of Three-dimensional Radiative Transfer into a Very High Resolution Simulation of Horizontally Inhomogeneous Clouds

    Science.gov (United States)

    Ishida, H.; Ota, Y.; Sekiguchi, M.; Sato, Y.

    2016-12-01

    A three-dimensional (3D) radiative transfer calculation scheme is developed to estimate horizontal transport of radiation energy in a very high resolution (with the order of 10 m in spatial grid) simulation of cloud evolution, especially for horizontally inhomogeneous clouds such as shallow cumulus and stratocumulus. Horizontal radiative transfer due to inhomogeneous clouds seems to cause local heating/cooling in an atmosphere with a fine spatial scale. It is, however, usually difficult to estimate the 3D effects, because the 3D radiative transfer often needs a large resource for computation compared to a plane-parallel approximation. This study attempts to incorporate a solution scheme that explicitly solves the 3D radiative transfer equation into a numerical simulation, because this scheme has an advantage in calculation for a sequence of time evolution (i.e., the scene at a time is little different from that at the previous time step). This scheme is also appropriate to calculation of radiation with strong absorption, such as the infrared regions. For efficient computation, this scheme utilizes several techniques, e.g., the multigrid method for iteration solution, and a correlated-k distribution method refined for efficient approximation of the wavelength integration. For a case study, the scheme is applied to an infrared broadband radiation calculation in a broken cloud field generated with a large eddy simulation model. The horizontal transport of infrared radiation, which cannot be estimated by the plane-parallel approximation, and its variation in time can be retrieved. The calculation result elucidates that the horizontal divergences and convergences of infrared radiation flux are not negligible, especially at the boundaries of clouds and within optically thin clouds, and the radiative cooling at lateral boundaries of clouds may reduce infrared radiative heating in clouds. In a future work, the 3D effects on radiative heating/cooling will be able to be

  10. Radiative transfer in disc galaxies - V. The accuracy of the KB approximation

    Science.gov (United States)

    Lee, Dukhang; Baes, Maarten; Seon, Kwang-Il; Camps, Peter; Verstocken, Sam; Han, Wonyong

    2016-12-01

    We investigate the accuracy of an approximate radiative transfer technique that was first proposed by Kylafis & Bahcall (hereafter the KB approximation) and has been popular in modelling dusty late-type galaxies. We compare realistic galaxy models calculated with the KB approximation with those of a three-dimensional Monte Carlo radiative transfer code SKIRT. The SKIRT code fully takes into account of the contribution of multiple scattering whereas the KB approximation calculates only single scattered intensity and multiple scattering components are approximated. We find that the KB approximation gives fairly accurate results if optically thin, face-on galaxies are considered. However, for highly inclined (I ≳ 85°) and/or optically thick (central face-on optical depth ≳1) galaxy models, the approximation can give rise to substantial errors, sometimes, up to ≳40 per cent. Moreover, it is also found that the KB approximation is not always physical, sometimes producing infinite intensities at lines of sight with high optical depth in edge-on galaxy models. There is no `simple recipe' to correct the errors of the KB approximation that is universally applicable to any galaxy models. Therefore, it is recommended that the full radiative transfer calculation be used, even though it is slower than the KB approximation.

  11. General Eulerian formulation of the comoving-frame equation of radiative transfer

    International Nuclear Information System (INIS)

    Riffert, H.

    1986-01-01

    For a wide range of problems in radiation hydrodynamics the motion of the matter is best described in an Eulerian coordinate system, and here a comoving-frame equation of radiation transfer in such fixed coordinates is derived, using the radiation quantities measured in the comoving frame. The choice of coordinates is arbitrary, and the equation is given explicitly for an arbitrary diagonal metric, correct to all orders in v/c. All comoving frame equations derived earlier are included as special cases. An example is given for the case of a spherically symmetric flow in a Schwarzschild metric. 9 references

  12. Laser radiation in active amplifying media treated as a transport problem - Transfer equation derived and exactly solved

    Science.gov (United States)

    Gupta, S. R. D.; Gupta, Santanu D.

    1991-10-01

    The flow of laser radiation in a plane-parallel cylindrical slab of active amplifying medium with axial symmetry is treated as a problem in radiative transfer. The appropriate one-dimensional transfer equation describing the transfer of laser radiation has been derived by an appeal to Einstein's A, B coefficients (describing the processes of stimulated line absorption, spontaneous line emission, and stimulated line emission sustained by population inversion in the medium) and considering the 'rate equations' to completely establish the rational of the transfer equation obtained. The equation is then exactly solved and the angular distribution of the emergent laser beam intensity is obtained; its numerically computed values are given in tables and plotted in graphs showing the nature of peaks of the emerging laser beam intensity about the axis of the laser cylinder.

  13. Fire Intensity Data for Validation of the Radiative Transfer Equation

    Energy Technology Data Exchange (ETDEWEB)

    Blanchat, Thomas K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jernigan, Dann A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.

  14. Analytical properties of the radiance in atmospheric radiative transfer theory

    International Nuclear Information System (INIS)

    Otto, Sebastian

    2014-01-01

    It is demonstrated mathematically strictly that state density functions, as the radiance (specific intensity), exist to describe certain state properties of transported photons on microscopic and the state of the radiation field on macroscopic scale, which have independent physical meanings. Analytical properties as boundedness, continuity, differentiability and integrability of these functions to describe the photon transport are discussed. It is shown that the density functions may be derived based on the assumption of photons as real particles of non-zero and finite size, independently of usual electrodynamics, and certain historically postulated functional relationships between them were proved, that is, these functions can be derived mathematically strictly and consistently within the framework of the theory of the phenomenological radiative transfer if one takes the theory seriously by really assuming photons as particles. In this sense these functions may be treated as fundamental physical quantities within the scope of this theory, if one considers the possibility of the existence of photons. -- Highlights: • Proof of existence of the radiance within the scope of the theory of atmospheric radiative transfer. • Proof of relations between the photon number and photon energy density function and the radiance. • Strictly mathematical derivation of the analytical properties of these state density functions

  15. Report of the polarization group

    International Nuclear Information System (INIS)

    Ford, W.; Kondo, K.; Martin, F.; Manning, G.; Miller, D.; Prescott, C.

    1975-01-01

    The use of longitudinal polarization in the reaction e + e - → μ + μ - was studied. Modifications of the magnetic insertion which could reduce synchrotron radiation by two or more were considered. In addition, a specific design is suggested which incorporates the optimized magnetic configuration; it is assumed that no particle detection is necessary near the interaction vertex and the synchrotron radiation is ''dumped'' up - and downstream. Also considered were vacuum chambers in which the synchrotron radiation is absorbed locally so that shielded regions are provided for detectors near the interaction vertex. A scheme for rotating the polarization outside the experiment areas is detailed; in this way the design of experiments is greatly simplified. Local intense ionization of residual gas in the interaction region due to synchrotron radiation at the insertion was studied. Finally, some general considerations in the production and measurement of beam polarization are summarized. 2 figures

  16. Hybrid finite volume/ finite element method for radiative heat transfer in graded index media

    Science.gov (United States)

    Zhang, L.; Zhao, J. M.; Liu, L. H.; Wang, S. Y.

    2012-09-01

    The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.

  17. Hybrid finite volume/ finite element method for radiative heat transfer in graded index media

    International Nuclear Information System (INIS)

    Zhang, L.; Zhao, J.M.; Liu, L.H.; Wang, S.Y.

    2012-01-01

    The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.

  18. Global existence of a generalized solution for the radiative transfer equations

    International Nuclear Information System (INIS)

    Golse, F.; Perthame, B.

    1984-01-01

    We prove global existence of a generalized solution of the radiative transfer equations, extending Mercier's result to the case of a layer with an initially cold area. Our Theorem relies on the results of Crandall and Ligett [fr

  19. Hydrogen-transfer and charge-transfer in photochemical and radiation induced reactions. Progress report, November 1, 1975--October 31, 1976

    International Nuclear Information System (INIS)

    Cohen, S.G.

    1976-10-01

    The relative importance of light absorption, quenching of triplet, and hydrogen transfer repair has been examined in retardation by mercaptans of photoreduction of aromatic ketones by alcohols. In the reduction of benzophenone by 2-propanol, retardation is efficient and, after correction for the first two effects, is due entirely to hydrogen-transfer repair, as indicated by deuterium labeling. In reduction of acetophenone by α-methylbenzyl alcohol, repair by hydrogen transfer is also operative. In reduction of benzophenone by benzhydrol, retardation is less efficient and is due to quenching, as the ketyl radical does not abstract hydrogen from mercaptan rapidly in competition with coupling. Deuterium isotope effects are discussed in terms of competitive reactions. Photoreduction of benzophenone by 2-butylamine and by triethylamine is retarded by aromatic mercaptans and disulfides. Of the retardation not due to light absorption and triplet quenching by the sulfur compounds, half is due to hydrogen-transfer repair, as indicated by racemization and deuterium labeling. The remainder is attributed to quenching by the sulfur compound of the charge-transfer-complex intermediate. Photoreduction by primary and secondary amines, but not by tertiary amines, is accelerated by aliphatic mercaptans. The acceleration is attributed to catalysis of hydrogen transfer by the mercaptan in the charge-transfer complex. The effect is large in hydrocarbon solvent, less in polar organic solvents and absent in water

  20. Asymptotic equilibrium diffusion analysis of time-dependent Monte Carlo methods for grey radiative transfer

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Larsen, Edward W.

    2004-01-01

    The equations of nonlinear, time-dependent radiative transfer are known to yield the equilibrium diffusion equation as the leading-order solution of an asymptotic analysis when the mean-free path and mean-free time of a photon become small. We apply this same analysis to the Fleck-Cummings, Carter-Forest, and N'kaoua Monte Carlo approximations for grey (frequency-independent) radiative transfer. Although Monte Carlo simulation usually does not require the discretizations found in deterministic transport techniques, Monte Carlo methods for radiative transfer require a time discretization due to the nonlinearities of the problem. If an asymptotic analysis of the equations used by a particular Monte Carlo method yields an accurate time-discretized version of the equilibrium diffusion equation, the method should generate accurate solutions if a time discretization is chosen that resolves temperature changes, even if the time steps are much larger than the mean-free time of a photon. This analysis is of interest because in many radiative transfer problems, it is a practical necessity to use time steps that are large compared to a mean-free time. Our asymptotic analysis shows that: (i) the N'kaoua method has the equilibrium diffusion limit, (ii) the Carter-Forest method has the equilibrium diffusion limit if the material temperature change during a time step is small, and (iii) the Fleck-Cummings method does not have the equilibrium diffusion limit. We include numerical results that verify our theoretical predictions

  1. Heat transfer enhancement

    International Nuclear Information System (INIS)

    Hasatani, Masanobu; Itaya, Yoshinori

    1985-01-01

    In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)

  2. Polarization in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Papadichev, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)

    1995-12-31

    Polarization of electromagnetic radiation is required very often in numerous scientific and industrial applications: studying of crystals, molecules and intermolecular interaction high-temperature superconductivity, semiconductors and their transitions, polymers and liquid crystals. Using polarized radiation allows to obtain important data (otherwise inaccessible) in astrophysics, meteorology and oceanology. It is promising in chemistry and biology for selective influence on definite parts of molecules in chain synthesis reactions, precise control of various processes at cell and subcell levels, genetic engineering etc. Though polarization methods are well elaborated in optics, they can fail in far-infrared, vacuum-ultraviolet and X-ray regions because of lack of suitable non-absorbing materials and damaging of optical elements at high specific power levels. Therefore, it is of some interest to analyse polarization of untreated FEL radiation obtained with various types of undulators, with and without axial magnetic field. The polarization is studied using solutions for electron orbits in various cases: plane or helical undulator with or without axial magnetic field, two plane undulators, a combination of right- and left-handed helical undulators with equal periods, but different field amplitudes. Some examples of how a desired polarization (elliptical circular or linear) can be obtained or changed quickly, which is necessary in many experiments, are given.

  3. The Radiative Heat Transfer Properties of Molten Salts and Their Relevance to the Design of Advanced Reactors

    Science.gov (United States)

    Chaleff, Ethan Solomon

    Molten salts, such as the fluoride salt eutectic LiF-NaF-KF (FLiNaK) or the transition metal fluoride salt KF-ZrF4, have been proposed as coolants for numerous advanced reactor concepts. These reactors are designed to operate at high temperatures where radiative heat transfer may play a significant role. If this is the case, the radiative heat transfer properties of the salt coolants are required to be known for heat transfer calculations to be performed accurately. Chapter 1 describes the existing literature and experimental efforts pertaining to radiative heat transfer in molten salts. The physics governing photon absorption by halide salts is discussed first, followed by a more specific description of experimental results pertaining to salts of interest. The phonon absorption edge in LiF-based salts such as FLiNaK is estimated and the technique described for potential use in other salts. A description is given of various spectral measurement techniques which might plausibly be employed in the present effort, as well as an argument for the use of integral techniques. Chapter 2 discusses the mathematical treatments required to approximate and solve for the radiative flux in participating materials. The differential approximation and the exact solutions to the radiative flux are examined, and methods are given to solve radiative and energy equations simultaneously. A coupled solution is used to examine radiative heat transfer to molten salt coolants. A map is generated of pipe diameters, wall temperatures, and average absorption coefficients where radiative heat transfer will increase expected heat transfer by more than 10% compared to convective methods alone. Chapter 3 presents the design and analysis of the Integral Radiative Absorption Chamber (IRAC). The IRAC employs an integral technique for the measurement of the entire electromagnetic spectrum, negating some of the challenges associated with the methods discussed in Chapter 1 at the loss of spectral

  4. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    International Nuclear Information System (INIS)

    Ito, Kota; Miura, Atsushi; Iizuka, Hideo; Toshiyoshi, Hiroshi

    2015-01-01

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics

  5. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp [Toyota Central Research and Development Laboratories, Nagakute, Aichi 480-1192 (Japan); Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Miura, Atsushi; Iizuka, Hideo [Toyota Central Research and Development Laboratories, Nagakute, Aichi 480-1192 (Japan); Toshiyoshi, Hiroshi [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-02-23

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.

  6. Improved results for the 2H(d, n)3He transverse vector polarization-transfer coefficient Kyy'(0o) at low energies

    International Nuclear Information System (INIS)

    Roper, C.D.; Dunham, J.D.; Clegg, T.B.; Mendez, A.J.; Tornow, W.; Walter, R.L.

    2010-01-01

    Measurements of the 2 H(d, n) 3 He transverse vector polarization-transfer coefficient K y y' at 0 o . are reported for 29 outgoing neutron energies between 3.94 and 8.47 MeV. Our new results determine K y y' (0 o ) more accurately than previous data, especially for neutron energies below 5 MeV. Low-energy data for this reaction are important both as a high-intensity source of highly polarized neutrons for nuclear physics studies with polarized neutron beams, and as a test of the emerging theoretical descriptions of the four-body system, where recently substantial progress has been made. (author)

  7. Radiative heat transfer in honeycomb structures-New simple analytical and numerical approaches

    International Nuclear Information System (INIS)

    Baillis, D; Coquard, R; Randrianalisoa, J

    2012-01-01

    Porous Honeycomb Structures present the interest of combining, at the same time, high thermal insulating properties, low density and sufficient mechanical resistance. However, their thermal properties remain relatively unexplored. The aim of this study is the modelling of the combined heat transfer and especially radiative heat transfer through this type of anisotropic porous material. The equivalent radiative properties of the material are determined using ray-tracing procedures inside the honeycomb porous structure. From computational ray-tracing results, simple new analytical relations have been deduced. These useful analytical relations permit to determine radiative properties such as extinction, absorption and scattering coefficients and phase function functions of cell dimensions and optical properties of cell walls. The radiative properties of honeycomb material strongly depend on the direction of propagation. From the radiative properties computed, we have estimated the radiative heat flux passing through slabs of honeycomb core materials submitted to a 1-D temperature difference between a hot and a cold plate. We have compared numerical results obtained from Discrete Ordinate Method with analytical results obtained from Rosseland-Deissler approximation. This approximation is usually used in the case of isotropic materials. We have extended it to anisotropic honeycomb materials. Indeed a mean over incident directions of Rosseland extinction coefficient is proposed. Results tend to show that Rosseland-Deissler extended approximation can be used as a first approximation. Deviation on radiative conductivity obtained from Rosseland-Deissler approximation and from the Discrete Ordinated Method are lower than 6.7% for all the cases studied.

  8. Polarization of the coherent radio emission from pulsars

    International Nuclear Information System (INIS)

    Ardavan, H.

    1982-01-01

    The polarization characteristics of the radiation from a quasi-steady pulsar magnetosphere are calculated using the amplitude-modulated-noise interpretation of the data on pulse structures. The total emission consists of three incoherently mixed radiation streams. Two of the independent polarization states are elliptically polarized (modes I and II) and one is linearly polarized (mode III). In the regime where the length scale of the radial distribution of the electric current density is appreciably longer than the wavelength of the radiation, the position angles of modes I and II are orthogonal and those of modes I and III coincident. However, the senses of circular polarization of modes I and II are in general uncorrelated. The degrees of circular polarization of the 'orthogonal' modes are decreasing functions of frequency and both approach zero in the limit where the frequency of the radiation is much higher than the rotation frequency of the pulsar. Longitudinal changes in the position angle and in the sense of circular polarization of each of the elliptically polarized modes are shown to arise, together with mode transitions, in part from the stochastic fluctuations and in part from the systematic variations of the electric current density with the azimuthal angle, in a narrow emitting region adjacent to the light cylinder. (author)

  9. Polarized wiggler for NSLS x-ray ring design considerations

    International Nuclear Information System (INIS)

    Friedman, A.; Krinsky, S.; Blum, E.

    1992-03-01

    We examine the properties of an elliptically polarized wiggler that will generate circularly polarized photons with energy spectrum of 3--12 KeV. The vertical wiggler magnetic field is produced by permanent magnets while the horizontal wiggler field is generated by electric coils capable of AC excitation. The radiation parameters of the wiggler are presented, including photon flux, circular and linear polarization and spectrum. These parameters are compared to the synchrotron radiation from a bending magnet. Numerical values are calculated for radiation from the wiggler and bending magnet for the NSLS X-ray ring parameters. A conceptual design for such a wiggler is discussed and several different alternatives are analyzed. We consider AC excitation of the wiggler to produce the time modulation of the elliptic polarization, and also to produce time modulated linearly polarized radiation

  10. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations

    International Nuclear Information System (INIS)

    Sun, Wenjun; Jiang, Song; Xu, Kun

    2015-01-01

    The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transport equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach

  11. The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer

    International Nuclear Information System (INIS)

    Modest, M.F.

    1991-01-01

    In this paper the weighted-sum-of-gray-gases approach for radiative transfer in non-gray participating media, first developed by Hottel in the context of the zonal method, has been shown to be applicable to the general radiative equation of transfer. Within the limits of the weighted-sum-of-gray-gases model (non-scattering media within a black-walled enclosure) any non-gray radiation problem can be solved by any desired solution method after replacing the medium by an equivalent small number of gray media with constant absorption coefficients. Some examples are presented for isothermal media and media at radiative equilibrium, using the exact integral equations as well as the popular P-1 approximation of the equivalent gray media solution. The results demonstrate the equivalency of the method with the quadrature of spectral results, as well as the tremendous computer times savings (by a minimum of 95%) which are achieved

  12. Dual descriptors within the framework of spin-polarized density functional theory.

    Science.gov (United States)

    Chamorro, E; Pérez, P; Duque, M; De Proft, F; Geerlings, P

    2008-08-14

    Spin-polarized density functional theory (SP-DFT) allows both the analysis of charge-transfer (e.g., electrophilic and nucleophilic reactivity) and of spin-polarization processes (e.g., photophysical changes arising from electron transitions). In analogy with the dual descriptor introduced by Morell et al. [J. Phys. Chem. A 109, 205 (2005)], we introduce new dual descriptors intended to simultaneously give information of the molecular regions where the spin-polarization process linking states of different multiplicity will drive electron density and spin density changes. The electronic charge and spin rearrangement in the spin forbidden radiative transitions S(0)-->T(n,pi(*)) and S(0)-->T(pi,pi(*)) in formaldehyde and ethylene, respectively, have been used as benchmark examples illustrating the usefulness of the new spin-polarization dual descriptors. These quantities indicate those regions where spin-orbit coupling effects are at work in such processes. Additionally, the qualitative relationship between the topology of the spin-polarization dual descriptors and the vertical singlet triplet energy gap in simple substituted carbene series has been also discussed. It is shown that the electron density and spin density rearrangements arise in agreement with spectroscopic experimental evidence and other theoretical results on the selected target systems.

  13. SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations

    Science.gov (United States)

    Baes, M.; Camps, P.

    2015-09-01

    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.

  14. Radiation Heat Transfer Effect on Thermal Sizing of Air-Cooling Heat Exchanger of Emergency Cooldown Tank

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyung; Kim, Young In; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Myoung Jun; Lee, Hee Joon [School of Mechanical Eng., Kookmin University, Seoul (Korea, Republic of)

    2014-10-15

    An attempt has begun to extend the life time of emergency cooldown tank (ECT) by Korea Atomic Energy Research Institute (KAERI) researchers. Moon et al. recently reported a basic concept upon how to keep the ECT in operation beyond 72 hours after an accident occurs without any active corrective actions for the postulated design basis accidents. When the SMART (System-integrated Modular Advanced Reac-Tor) received its Standard Design Approval (SDA) for the first time in the world, hybrid safety systems are applied. However, the passive safety systems of SMART are being enforced in response to the public concern for much safer reactors since the Fukushima accident occurred. The ECT is a major component of a passive residual heat removal system (PRHRS), which is one of the most important systems to enhance the safety of SMART. It is being developed in a SMART safety enhancement project to contain enough cooling water to remove a sensible heat and a decay heat from reactor core for 72 hours since an accident occurs. Moon et al. offered to install another heat exchanger above the ECT and to recirculate an evaporated steam into water, which enables the ECT to be in operation, theoretically, indefinitely. An investigation was made to determine how long and how many tubes were required to meet the purpose of the study. In their calculation, however, a radiation heat transfer effect was neglected. The present study is to consider the radiation heat transfer for the design of air-cooling heat exchanger. Radiation heat transfer is normally ignored in many situations, but this is not the case for the present study. Kim et al. conducted thermal sizing of scaled-down ECT heat exchanger, which will be used to validate experimentally the basic concept of the present study. Their calculation is also examined to see if a radiation heat transfer effect was taken into consideration. The thermal sizing of an air-cooling heat exchanger was conducted including radiation heat transfer

  15. Performance tuning Weather Research and Forecasting (WRF) Goddard longwave radiative transfer scheme on Intel Xeon Phi

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2015-10-01

    Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.

  16. Prevention of radiation induced xerostomia by surgical transfer of submandibular salivary gland into the submental space

    International Nuclear Information System (INIS)

    Jha, Naresh; Seikaly, Hadi; Harris, Jeff; Williams, David; Liu, Richard; McGaw, Timothy; Hofmann, Henry; Robinson, Don; Hanson, John; Barnaby, Pam

    2003-01-01

    Background and purpose: Xerostomia is a significant morbidity of radiation treatment in the management of head and neck cancers. We hypothesized that the surgical transfer of one submandibular salivary gland to the submental space, where it can be shielded from radiation treatment (XRT), would prevent xerostomia. Materials and methods: We conducted a prospective Phase II clinical trial and the patients were followed clinically with salivary flow studies and the University of Washington Quality of Life questionnaire. Results: We report the results on 76 evaluable patients. The salivary gland transfer was done in 60 patients. Nine patients (of 60) did not have postoperative XRT and in eight patients (of 60) the transferred gland was not shielded from XRT due to proximity of disease. The median follow up is 14 months. Of the 43 patients with the salivary gland transfer and post-operative XRT with protection of the transferred gland, 81% have none or minimal xerostomia, and 19% developed moderate to severe xerostomia. Three patients (6.9%) developed local recurrence, five patients (11.6%) developed distant metastases and five patients (11.6%) have died. There were no complications attributed to the surgical procedure. Conclusion: Surgical transfer of a submandibular salivary gland to the submental space preserves its function and prevents the development of radiation induced xerostomia

  17. Linear energy transfer (LET) effects in the radiation-induced inactivation of papain

    International Nuclear Information System (INIS)

    Bisby, R.H.; Cundall, R.B.; Sims, H.E.; Burns, W.G.

    1977-01-01

    The inactivation of dilute aqueous solutions of papain by radiations of varying linear energy transfer has been studied in N 2 , N 2 0 and O 2 -saturated solutions. The results obtained with low LET radiation are very similar to those previously reported by Lin et al (Radiation Res.;62:438(1975)). The additional data obtained at higher LET, when radical product yields are reduced and the yield of hydrogen peroxide is increased, show that the hydrogen atom is more important in the inactivation of papain than previously considered. (author)

  18. Monte Carlo generator ELRADGEN 2.0 for simulation of radiative events in elastic ep-scattering of polarized particles

    Science.gov (United States)

    Akushevich, I.; Filoti, O. F.; Ilyichev, A.; Shumeiko, N.

    2012-07-01

    The structure and algorithms of the Monte Carlo generator ELRADGEN 2.0 designed to simulate radiative events in polarized ep-scattering are presented. The full set of analytical expressions for the QED radiative corrections is presented and discussed in detail. Algorithmic improvements implemented to provide faster simulation of hard real photon events are described. Numerical tests show high quality of generation of photonic variables and radiatively corrected cross section. The comparison of the elastic radiative tail simulated within the kinematical conditions of the BLAST experiment at MIT BATES shows a good agreement with experimental data. Catalogue identifier: AELO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1299 No. of bytes in distributed program, including test data, etc.: 11 348 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: All Operating system: Any RAM: 1 MB Classification: 11.2, 11.4 Nature of problem: Simulation of radiative events in polarized ep-scattering. Solution method: Monte Carlo simulation according to the distributions of the real photon kinematic variables that are calculated by the covariant method of QED radiative correction estimation. The approach provides rather fast and accurate generation. Running time: The simulation of 108 radiative events for itest:=1 takes up to 52 seconds on Pentium(R) Dual-Core 2.00 GHz processor.

  19. Multi-channel polarized thermal emitter

    Science.gov (United States)

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  20. Nonlinear response matrix methods for radiative transfer

    International Nuclear Information System (INIS)

    Miller, W.F. Jr.; Lewis, E.E.

    1987-01-01

    A nonlinear response matrix formalism is presented for the solution of time-dependent radiative transfer problems. The essential feature of the method is that within each computational cell the temperature is calculated in response to the incoming photons from all frequency groups. Thus the updating of the temperature distribution is placed within the iterative solution of the spaceangle transport problem, instead of being placed outside of it. The method is formulated for both grey and multifrequency problems and applied in slab geometry. The method is compared to the more conventional source iteration technique. 7 refs., 1 fig., 4 tabs

  1. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    International Nuclear Information System (INIS)

    Mahdi, M.; Ebrahimi, R.; Shams, M.

    2011-01-01

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack. -- Highlights: → Heat transfer and ionization energy losses were analyzed in the cavitation bubble. → Radiation of hydrodynamic bubble was approximately equal to the black body. → Radiation heat transfer did not affect the bubble dynamic. → Conduction decreased the bubble pressure and increased the bubble temperature. → Ionization decreased the temperature and increased the pressure in the bubble.

  2. One-dimensional solar radiative transfer: Perturbation approach and its application to independent-pixel calculations for realistic cloud fields

    International Nuclear Information System (INIS)

    Jerg, Matthias; Trautmann, Thomas

    2007-01-01

    The radiative transfer perturbation theory (RTPT), which has already been introduced in atmospheric radiative transfer several years ago, is applied to cloud related problems. The RTPT requires the solution of the radiative transfer equation in the forward and the adjoint mode. The basic principles of this technique are presented as well as its extensions to isotropic surface reflection and its conjunction with the Hermite interpolation. This set of methods is applied to different atmospheric conditions including realistic cloud scenes. The results are compared with the usual (forward) independent-pixel calculations with respect to errors of individual pixels and domain-averaged values. The RTPT turns out to be sufficiently accurate in the case the clouds' internal vertical variations remain moderate. It is also shown that, depending on the specific radiative transfer problem, the RTPT can offer some advantages on computational speed. However, the limitations of the RTPT with regard to realistic clouds are addressed as well

  3. Cost-effective computational method for radiation heat transfer in semi-crystalline polymers

    Science.gov (United States)

    Boztepe, Sinan; Gilblas, Rémi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2018-05-01

    This paper introduces a cost-effective numerical model for infrared (IR) heating of semi-crystalline polymers. For the numerical and experimental studies presented here semi-crystalline polyethylene (PE) was used. The optical properties of PE were experimentally analyzed under varying temperature and the obtained results were used as input in the numerical studies. The model was built based on optically homogeneous medium assumption whereas the strong variation in the thermo-optical properties of semi-crystalline PE under heating was taken into account. Thus, the change in the amount radiative energy absorbed by the PE medium was introduced in the model induced by its temperature-dependent thermo-optical properties. The computational study was carried out considering an iterative closed-loop computation, where the absorbed radiation was computed using an in-house developed radiation heat transfer algorithm -RAYHEAT- and the computed results was transferred into the commercial software -COMSOL Multiphysics- for solving transient heat transfer problem to predict temperature field. The predicted temperature field was used to iterate the thermo-optical properties of PE that varies under heating. In order to analyze the accuracy of the numerical model experimental analyses were carried out performing IR-thermographic measurements during the heating of the PE plate. The applicability of the model in terms of computational cost, number of numerical input and accuracy was highlighted.

  4. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    International Nuclear Information System (INIS)

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT + colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references

  5. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  6. Pomarning-eddington approximation for time-dependent radiation transfer in finite slab media

    International Nuclear Information System (INIS)

    El-Wakil, S.A.; Degheidy, A.R.; Sallah, M.

    2005-01-01

    The time-dependent monoenergetic radiation transfer equation with linear anisotropic scattering is proposed. Pomraning-Eddington approximation is used to calculate the radiation intensity in finite plane-parallel media. Numerical results are done for the isotropic media. Shielding calculations are shown for reflectivity and transmissivity at different times. The medium is assumed to have specular-reflecting boundaries. Two different weight functions are introduced to force the boundary conditions to be fulfilled

  7. Radiation transfer effects on the spectra of laser-generated plasmas

    Czech Academy of Sciences Publication Activity Database

    Renner, Oldřich; Kerr, F.M.; Wolfrum, E.; Hawreliak, J.; Chambers, D.; Rose, S. J.; Wark, J. S.; Scott, H.A.; Patel, P.

    2006-01-01

    Roč. 96, č. 18 (2006), 185002/1-185002/4 ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-produced plasma * spectral line shapes * plasma modeling * radiative transfer effects Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.072, year: 2006

  8. Free convection effects and radiative heat transfer in MHD Stokes ...

    Indian Academy of Sciences (India)

    The present note deals with the effects of radiative heat transfer and free convection in MHD for a flow of an electrically conducting, incompressible, dusty viscous fluid past an impulsively started vertical non-conducting plate, under the influence of transversely applied magnetic field. The heat due to viscous dissipation and ...

  9. Thermal radiation influence on MHD flow of a rotating fluid with heat transfer through EFGM solutions

    Science.gov (United States)

    Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa

    2018-05-01

    The aim of this research work is to find the EFGM solutions of the unsteady magnetohydromagnetic natural convection heat transfer flow of a rotating, incompressible, viscous, Boussinesq fluid is presented in this study in the presence of radiative heat transfer. The Rosseland approximation for an optically thick fluid is invoked to describe the radiative flux. Numerical results obtained show that a decrease in the temperature boundary layer occurs when the Prandtl number and the radiation parameter are increased and the flow velocity approaches steady state as the time parameter t is increased. These findings are in quantitative agreement with earlier reported studies.

  10. Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation

    Science.gov (United States)

    Eid, Mohamed R.; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar

    Characteristics of heat transfer of gold nanoparticles (Au-NPs) in flow past a power-law stretching surface are discussed. Sisko bio-nanofluid flow (with blood as a base fluid) in existence of non-linear thermal radiation is studied. The resulting equations system is abbreviated to model the suggested problem in non-linear PDEs. Along with initial and boundary-conditions, the equations are made non-dimensional and then resolved numerically utilizing 4th-5th order Runge-Kutta-Fehlberg (RKF45) technique with shooting integration procedure. Various flow quantities behaviors are examined for parametric consideration such as the Au-NPs volume fraction, the exponentially stretching and thermal radiation parameters. It is observed that radiation drives to shortage the thermal boundary-layer thickness and therefore resulted in better heat transfer at surface.

  11. Polarization singularities of the object field of skin surface

    International Nuclear Information System (INIS)

    Angelsky, O V; Ushenko, A G; Ushenko, Yu A; Ushenko, Ye G

    2006-01-01

    The paper deals with the investigation of formation mechanisms of laser radiation polarization structure scattered by an optically thin surface layer of human skin in two registration zones: a boundary field and a far zone of Fraunhofer diffraction. The conditions of forming polarization singularities by such an object in the scattered radiation field have been defined. Statistical and fractal polarization structure of object fields of physiologically normal and pathologically changed skin has been studied. It has been shown that polarization singularities of radiation scattered by physiologically normal skin samples have a fractal coordinate structure. It is characteristic for fields of pathologically changed skin to have a statistical coordinate structure of polarization singularities in all diffraction zones

  12. A research program on radiative transfer model development in support of the ARM program

    International Nuclear Information System (INIS)

    Clough, S.A.

    1993-01-01

    The objective of this research effort is to develop radiative transfer models that are consistent with ARM spectral radiance measurements for clear and cloudy atmospheres. Our approach is to develop the model physics and related databases with a line-by-line model in the context of available spectral radiance measurements. The line-by-line model then functions as an intermediate standard to both develop and validate rapid radiative transfer models appropriate to GCM applications. A preprint of an extended abstract for the 1994 AMS volume describing a Quality Measurement Experiment using the ARM spectral data is included as an attachment

  13. The Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP: experimental design and protocols

    Directory of Open Access Journals (Sweden)

    C. Goldblatt

    2017-11-01

    Full Text Available Accurate radiative transfer calculation is fundamental to all climate modelling. For deep palaeoclimate, and increasingly terrestrial exoplanet climate science, this brings both the joy and the challenge of exotic atmospheric compositions. The challenge here is that most standard radiation codes for climate modelling have been developed for modern atmospheric conditions and may perform poorly away from these. The palaeoclimate or exoclimate modeller must either rely on these or use bespoke radiation codes, and in both cases rely on either blind faith or ad hoc testing of the code. In this paper, we describe the protocols for the Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP to systematically address this. This will compare as many radiation codes used for palaeoclimate or exoplanets as possible, with the aim of identifying the ranges of far-from-modern atmospheric compositions in which the codes perform well. This paper describes the experimental protocol and invites community participation in the project through 2017–2018.

  14. Polarization phenomena in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J. [Stanford Univ., CA (United States)

    1994-12-01

    The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and nonperturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g{sub A} on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x{sub bj}; (b) consequences of the principle of hadron retention in high x{sub F} inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. The author also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A{sub NN} observed in large angle proton-proton scattering, the anomalously large {rho}{pi} branching ratio of the J/{psi}, and the rapidly changing polarization dependence of both J/{psi} and continuum lepton pair hadroproduction observed at large x{sub F}. The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron.

  15. Polarization phenomena in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1994-03-01

    The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and non-perturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g A on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x bj ; (b) consequences of the principle of hadron helicity retention in high x F inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. He also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A NN observed in large angle proton-proton scattering, the anomalously large ρπ branching ratio of the J/ψ, and the rapidly changing polarization dependence of both J/ψ and continuum lepton pair hadroproduction observed at large x F . The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron

  16. Modified compensation algorithm of lever-arm effect and flexural deformation for polar shipborne transfer alignment based on improved adaptive Kalman filter

    International Nuclear Information System (INIS)

    Wang, Tongda; Cheng, Jianhua; Guan, Dongxue; Kang, Yingyao; Zhang, Wei

    2017-01-01

    Due to the lever-arm effect and flexural deformation in the practical application of transfer alignment (TA), the TA performance is decreased. The existing polar TA algorithm only compensates a fixed lever-arm without considering the dynamic lever-arm caused by flexural deformation; traditional non-polar TA algorithms also have some limitations. Thus, the performance of existing compensation algorithms is unsatisfactory. In this paper, a modified compensation algorithm of the lever-arm effect and flexural deformation is proposed to promote the accuracy and speed of the polar TA. On the basis of a dynamic lever-arm model and a noise compensation method for flexural deformation, polar TA equations are derived in grid frames. Based on the velocity-plus-attitude matching method, the filter models of polar TA are designed. An adaptive Kalman filter (AKF) is improved to promote the robustness and accuracy of the system, and then applied to the estimation of the misalignment angles. Simulation and experiment results have demonstrated that the modified compensation algorithm based on the improved AKF for polar TA can effectively compensate the lever-arm effect and flexural deformation, and then improve the accuracy and speed of TA in the polar region. (paper)

  17. Repeated CT scans in trauma transfers: An analysis of indications, radiation dose exposure, and costs

    International Nuclear Information System (INIS)

    Hinzpeter, Ricarda; Sprengel, Kai; Wanner, Guido A.; Mildenberger, Peter; Alkadhi, Hatem

    2017-01-01

    Highlights: • Repetition of CT in trauma patients occurs relatively often. • Repetition of CT is mainly caused by inadequate image data transfer. • Potentially preventable CT examinations add radiation dose to patients. • Repeated CT is associated with excess costs to the health care system. - Abstract: Objectives: To identify the number of CT scans repeated in acute trauma patients receiving imaging before being referred to a trauma center, to define indications, and to assess radiation doses and costs of repeated CT. Methods: This retrospective study included all adult trauma patients transferred from other hospitals to a Level-I trauma center during 2014. Indications for repeated CT scans were categorized into: inadequate CT image data transfer, poor image quality, repetition of head CT after head injury together with completion to whole-body CT (WBCT), and follow-up of injury known from previous CT. Radiation doses from repeated CT were determined; costs were calculated using a nation-wide fee schedule. Results: Within one year, 85/298 (28.5%) trauma patients were transferred from another hospital because of severe head injury (n = 45,53%) and major body trauma (n = 23;27%) not manageable in the referring hospital, repatriation from a foreign country (n = 14;16.5%), and no ICU-capacity (n = 3;3.5%). Of these 85 patients, 74 (87%) had repeated CT in our center because of inadequate CT data transfer (n = 29;39%), repetition of head CT with completion to WBCT (n = 24;32.5%), and follow-up of known injury (n = 21;28.5%). None occurred because of poor image quality. Cumulative dose length product (DLP) and annual costs of potential preventable, repeated CT (inadequate data transfer) was 631mSv (81′304mGy*cm) and 35′233€, respectively. Conclusion: A considerable number of transferred trauma patients undergo potentially preventable, repeated CT, adding radiation dose to patients and costs to the health care system.

  18. Repeated CT scans in trauma transfers: An analysis of indications, radiation dose exposure, and costs

    Energy Technology Data Exchange (ETDEWEB)

    Hinzpeter, Ricarda, E-mail: Ricarda.Hinzpeter@usz.ch [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, Zurich CH-8091 (Switzerland); Sprengel, Kai, E-mail: Kai.Sprengel@usz.ch [Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich (Switzerland); Wanner, Guido A., E-mail: Guido.Wanner@sbk-vs.de [Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, University of Zurich, Raemistr. 100, CH-8091 Zurich (Switzerland); Department of General Surgery, Schwarzwald-Baar Klinikum, University of Freiburg, Klinikstr. 11, D-78052 Villingen-Schwenningen (Germany); Mildenberger, Peter, E-mail: peter.mildenberger@unimedizin-mainz.de [Department of Diagnostic and Interventional Radiology, University Hospital of Mainz, Langenbeckstr. 1, D-55131 Mainz (Germany); Alkadhi, Hatem, E-mail: hatem.alkadhi@usz.ch [Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr. 100, Zurich CH-8091 (Switzerland)

    2017-03-15

    Highlights: • Repetition of CT in trauma patients occurs relatively often. • Repetition of CT is mainly caused by inadequate image data transfer. • Potentially preventable CT examinations add radiation dose to patients. • Repeated CT is associated with excess costs to the health care system. - Abstract: Objectives: To identify the number of CT scans repeated in acute trauma patients receiving imaging before being referred to a trauma center, to define indications, and to assess radiation doses and costs of repeated CT. Methods: This retrospective study included all adult trauma patients transferred from other hospitals to a Level-I trauma center during 2014. Indications for repeated CT scans were categorized into: inadequate CT image data transfer, poor image quality, repetition of head CT after head injury together with completion to whole-body CT (WBCT), and follow-up of injury known from previous CT. Radiation doses from repeated CT were determined; costs were calculated using a nation-wide fee schedule. Results: Within one year, 85/298 (28.5%) trauma patients were transferred from another hospital because of severe head injury (n = 45,53%) and major body trauma (n = 23;27%) not manageable in the referring hospital, repatriation from a foreign country (n = 14;16.5%), and no ICU-capacity (n = 3;3.5%). Of these 85 patients, 74 (87%) had repeated CT in our center because of inadequate CT data transfer (n = 29;39%), repetition of head CT with completion to WBCT (n = 24;32.5%), and follow-up of known injury (n = 21;28.5%). None occurred because of poor image quality. Cumulative dose length product (DLP) and annual costs of potential preventable, repeated CT (inadequate data transfer) was 631mSv (81′304mGy*cm) and 35′233€, respectively. Conclusion: A considerable number of transferred trauma patients undergo potentially preventable, repeated CT, adding radiation dose to patients and costs to the health care system.

  19. Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer

    Science.gov (United States)

    Pikichyan, H. V.

    2017-07-01

    In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.

  20. Radiative heat transfer in a heat generating and turbulently convecting fluid layer

    International Nuclear Information System (INIS)

    Cheung, F.B.; Chan, S.H.; Chawla, T.C.; Cho, D.H.

    1980-01-01

    The coupled problem of radiative transport and turbulent natural convection in a volumetrically heated, horizontal gray fluid medium, bounded from above by a rigid, isothermal wall and below by a rigid, adiabatic wall, is investigated analytically. An approximate method based upon the boundary layer approach is employed to obtain the dependence of heat transfer at the upper wall on the principal parameters of the problem, which, for moderate Prandtl number, are the Rayleigh number, Ra, the optical thickness, KL, and the conduction-radiation coupling parameter, N. Also obtained in this study is the behaviour of the thermal boundary layer at the upper wall. At large kL, the contribution of thermal radiation to heat transfer in the layer is found to be negligible for N > 10, moderate for N approximately 1, and overwhelming for N < 0.1. However, at small kL, thermal radiation is found to be important only for N < 0.01. While a higher level of turbulence results in a thinner boundary layer, a larger effect of radiation is found to result in a thicker one. Thus, in the presence of strong thermal radiation, a much larger value of Ra is required for the boundary layer approach to remain valid. Under severe radiation conditions, no boundary layer flow regime is found to exist even at very high Rayleigh numbers. Accordingly, the ranges of applicability of the present results are determined and the approximate method justified. In particular, the validity of the present analysis is tested in three limiting cases, ie those of kL → infinity, N → infinity, and Ra → infinity, and is further confirmed by comparison with the numerical solution (author)

  1. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  2. Comparison of vibrational conductivity and radiative energy transfer methods

    Science.gov (United States)

    Le Bot, A.

    2005-05-01

    This paper is concerned with the comparison of two methods well suited for the prediction of the wideband response of built-up structures subjected to high-frequency vibrational excitation. The first method is sometimes called the vibrational conductivity method and the second one is rather known as the radiosity method in the field of acoustics, or the radiative energy transfer method. Both are based on quite similar physical assumptions i.e. uncorrelated sources, mean response and high-frequency excitation. Both are based on analogies with some equations encountered in the field of heat transfer. However these models do not lead to similar results. This paper compares the two methods. Some numerical simulations on a pair of plates joined along one edge are provided to illustrate the discussion.

  3. Radiative charge-transfer lifetime of the excited state of (NaCa)+

    International Nuclear Information System (INIS)

    Makarov, Oleg P.; Cote, R.; Michels, H.; Smith, W.W.

    2003-01-01

    New experiments were proposed recently to investigate the regime of cold atomic and molecular ion-atom collision processes in a special hybrid neutral-atom-ion trap under high-vacuum conditions. We study the collisional cooling of laser precooled Ca + ions by ultracold Na atoms. Modeling this process requires knowledge of the radiative lifetime of the excited singlet A 1 Σ + state of the (NaCa) + molecular system. We calculate the rate coefficient for radiative charge transfer using a semiclassical approach. The dipole radial matrix elements between the ground and the excited states, and the potential curves were calculated using complete active space self-consistent field and Moeller-Plesset second-order perturbation theory with an extended Gaussian basis, 6-311+G (3df). The semiclassical charge-transfer rate coefficient was averaged over a thermal Maxwellian distribution. In addition, we also present elastic collision cross sections and the spin-exchange cross section. The rate coefficient for charge transfer was found to be 2.3x10 -16 cm 3 /sec, while those for the elastic and spin-exchange cross sections were found to be several orders of magnitude higher (1.1x10 -8 cm 3 /sec and 2.3x10 -9 cm 3 /sec, respectively). This confirms our assumption that the milli-Kelvin regime of collisional cooling of calcium ions by sodium atoms is favorable with the respect to low loss of calcium ions due to the charge transfer

  4. Radiative transfer configuration factor catalog: A listing of relations for common geometries

    International Nuclear Information System (INIS)

    Howell, John R.; Menguec, M. Pinar

    2011-01-01

    An on-line compilation of radiation configuration factors for over 300 common geometries is provided as a supplementary material from the JQSRT web site at doi: (10.1016/j.jqsrt.2010.10.002). The factors are gathered from references across the radiative transfer and illumination engineering literature, as well as from applications in such diverse fields from combustion systems to human factors engineering. These factors are useful in standard surface-surface radiation exchange calculations, and are based on the assumptions that the surfaces exchanging radiation are diffuse, and that the radiosity from each surface is uniform across that surface. The catalog is updated annually, and can be downloaded from JQSRT in .PDF format.

  5. A New Polar Transfer Alignment Algorithm with the Aid of a Star Sensor and Based on an Adaptive Unscented Kalman Filter

    Directory of Open Access Journals (Sweden)

    Jianhua Cheng

    2017-10-01

    Full Text Available Because of the harsh polar environment, the master strapdown inertial navigation system (SINS has low accuracy and the system model information becomes abnormal. In this case, existing polar transfer alignment (TA algorithms which use the measurement information provided by master SINS would lose their effectiveness. In this paper, a new polar TA algorithm with the aid of a star sensor and based on an adaptive unscented Kalman filter (AUKF is proposed to deal with the problems. Since the measurement information provided by master SINS is inaccurate, the accurate information provided by the star sensor is chosen as the measurement. With the compensation of lever-arm effect and the model of star sensor, the nonlinear navigation equations are derived. Combined with the attitude matching method, the filter models for polar TA are designed. An AUKF is introduced to solve the abnormal information of system model. Then, the AUKF is used to estimate the states of TA. Results have demonstrated that the performance of the new polar TA algorithm is better than the state-of-the-art polar TA algorithms. Therefore, the new polar TA algorithm proposed in this paper is effectively to ensure and improve the accuracy of TA in the harsh polar environment.

  6. A New Polar Transfer Alignment Algorithm with the Aid of a Star Sensor and Based on an Adaptive Unscented Kalman Filter.

    Science.gov (United States)

    Cheng, Jianhua; Wang, Tongda; Wang, Lu; Wang, Zhenmin

    2017-10-23

    Because of the harsh polar environment, the master strapdown inertial navigation system (SINS) has low accuracy and the system model information becomes abnormal. In this case, existing polar transfer alignment (TA) algorithms which use the measurement information provided by master SINS would lose their effectiveness. In this paper, a new polar TA algorithm with the aid of a star sensor and based on an adaptive unscented Kalman filter (AUKF) is proposed to deal with the problems. Since the measurement information provided by master SINS is inaccurate, the accurate information provided by the star sensor is chosen as the measurement. With the compensation of lever-arm effect and the model of star sensor, the nonlinear navigation equations are derived. Combined with the attitude matching method, the filter models for polar TA are designed. An AUKF is introduced to solve the abnormal information of system model. Then, the AUKF is used to estimate the states of TA. Results have demonstrated that the performance of the new polar TA algorithm is better than the state-of-the-art polar TA algorithms. Therefore, the new polar TA algorithm proposed in this paper is effectively to ensure and improve the accuracy of TA in the harsh polar environment.

  7. Combined Natural Convection and Radiation Heat Transfer of Various Absorbing-Emitting-Scattering Media in a Square Cavity

    Directory of Open Access Journals (Sweden)

    Xianglong Liu

    2014-01-01

    Full Text Available A numerical model is developed to simulate combined natural convection and radiation heat transfer of various anisotropic absorbing-emitting-scattering media in a 2D square cavity based on the discrete ordinate (DO method and Boussinesq assumption. The effects of Rayleigh number, optical thickness, scattering ratio, scattering phase function, and aspect ratio of square cavity on the behaviors of heat transfer are studied. The results show that the heat transfer of absorbing-emitting-scattering media is the combined results of radiation and natural convection, which depends on the physical properties and the aspect ratio of the cavity. When the natural convection becomes significant, the convection heat transfer is enhanced, and the distributions of NuR and Nuc along the walls are obviously distorted. As the optical thickness increases, NuR along the hot wall decreases. As the scattering ratio decreases, the NuR along the walls decreases. At the higher aspect ratio, the more intensive thermal radiation and natural convection are formed, which increase the radiation and convection heat fluxes. This paper provides the theoretical research for the optimal thermal design and practical operation of the high temperature industrial equipments.

  8. Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis

    Science.gov (United States)

    Liu, X.; Wu, W.; Yang, Q.

    2017-12-01

    Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.

  9. A polarization-insensitive plasmonic photoconductive terahertz emitter

    KAUST Repository

    Li, Xurong

    2017-11-16

    We present a polarization-insensitive plasmonic photoconductive terahertz emitter that uses a two-dimensional array of nanoscale cross-shaped apertures as the plasmonic contact electrodes. The geometry of the cross-shaped apertures is set to maximize optical pump absorption in close proximity to the contact electrodes. The two-dimensional symmetry of the cross-shaped apertures offers a polarization-insensitive interaction between the plasmonic contact electrodes and optical pump beam. We experimentally demonstrate a polarization-insensitive terahertz radiation from the presented emitter in response to a femtosecond optical pump beam and similar terahertz radiation powers compared to previously demonstrated polarization-sensitive photoconductive emitters with plasmonic contact electrode gratings at the optimum optical pump polarization.

  10. New theory of radiative energy transfer in free electromagnetic fields

    International Nuclear Information System (INIS)

    Wolf, E.

    1976-01-01

    A new theory of radiative energy transfer in free, statistically stationary electromagnetic fields is presented. It provides a model for energy transport that is rigorous both within the framework of the stochastic theory of the classical field as well as within the framework of the theory of the quantized field. Unlike the usual phenomenological model of radiative energy transfer that centers around a single scalar quantity (the specific intensity of radiation), our theory brings into evidence the need for characterizing the energy transport by means of two (related) quantities: a scalar and a vector that may be identified, in a well-defined sense, with ''angular components'' of the average electromagnetic energy density and of the average Poynting vector, respectively. Both of them are defined in terms of invariants of certain new electromagnetic correlation tensors. In the special case when the field is statistically homogeneous, our model reduces to the usual one and our angular component of the average electromagnetic energy density, when multiplied by the vacuum speed of light, then acquires all the properties of the specific intensity of radiation. When the field is not statistically homogeneous our model approximates to the usual phenomenological one, provided that the angular correlations between plane wave modes of the field extend over a sufficiently small solid angle of directions about the direction of propagation of each mode. It is tentatively suggested that, when suitably normalized, our angular component of the average electromagnetic energy density may be interpreted as a quasi-probability (general quantum-mechancial phase-space distribution function, such as Wigner's) for the position and the momentum of a photon

  11. Application of advanced model of radiative heat transfer in a rod geometry to QUENCH and PARAMETER tests

    International Nuclear Information System (INIS)

    Vasiliev, A.D.; Kobelev, G.V.; Astafieva, V.O.

    2007-01-01

    Radiative heat transfer is very important in different fields of mechanical engineering and related technologies including nuclear reactors, heat transfer in furnaces, aerospace, different high-temperature assemblies. In particular, in the course of a hypothetical severe accident at PWR-type nuclear reactor the temperatures inside the reactor vessel reach high values at which taking into account of radiative heat exchange between the structures of reactor (including core and other reactor vessel elements) gets important. Radiative heat transfer dominates the late phase of severe accident because radiative heat fluxes (proportional to T4, where T is the temperature) are generally considerably higher than convective and conductive heat fluxes in a system. In particular, heat transfer due to radiation determines the heating and degradation of the core and surrounding steel in-vessel structures and finally influences the composition, temperature and mass of materials pouring out of the reactor vessel after its loss of integrity. Existing models of radiative heat exchange use many limitations and approximations: approximate estimation of view factors and beam lengths; the geometry change in the course of the accident is neglected; the database for emissivities of materials is not complete; absorption/emission by steam-noncondensable medium is taken into account approximately. The module MRAD was developed in this paper to model the radiative heat exchange in rod-like geometry typical of PWR-type reactor. Radiative heat exchange is computed using dividing on zones (zonal method) as in existing radiation models implemented to severe accident numerical codes such as ICARE, SCDAP/RELAP, MELCOR but improved in following aspects: new approach to evaluation of view factors and mean beam length; detailed evaluation of gas absorptivity and emissivity; account of effective radiative thermal conductivity for the large core; account of geometry modification in the course of severe

  12. Reduction of coating induced polarization aberrations by controlling the polarization state variation

    International Nuclear Information System (INIS)

    Li, Yanghui; Shen, Weidong; Zheng, Zhenrong; Zhang, Yueguang; Liu, Xu; Hao, Xiang

    2011-01-01

    The mechanism of coating induced polarization state variation is analysed by the Jones matrix. Pauli spin matrices are used to establish the relationship between coating induced polarization state variation and polarization aberrations. To reduce coating induced polarization aberrations, we propose that δ = 0 and T s = T p at arbitrary incident angle should be appended as two additional optimization goals of optical coating design when the requirements of transmittance are met. Two typical anti-reflection (AR) coatings are designed and the polarization state variation induced by them is simulated. The MTF (modulation transfer function) calculated by polarization ray tracing is applied to evaluate the polarization aberrations of the practical lithography objective system with the two AR coatings. All the obtained results show that the coating induced polarization aberrations can be reduced by optimizing the angle dependent properties of the optical coating without additional optical elements

  13. Radiative Grain Alignment in Protoplanetary Disks: Implications for Polarimetric Observations

    Energy Technology Data Exchange (ETDEWEB)

    Tazaki, Ryo [Department of Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606–8502 (Japan); Lazarian, Alexandre [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Nomura, Hideko, E-mail: rtazaki@kusastro.kyoto-u.ac.jp [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152–8551 (Japan)

    2017-04-10

    We apply the theory of radiative torque (RAT) alignment for studying protoplanetary disks around a T-Tauri star and perform 3D radiative transfer calculations to provide the expected maps of polarized radiation to be compared with observations, such as with ALMA. We revisit the issue of grain alignment for large grains expected in the protoplanetary disks and find that mm-sized grains at the midplane do not align with the magnetic field since the Larmor precession timescale for such large grains becomes longer than the gaseous damping timescale. Hence, for these grains the RAT theory predicts that the alignment axis is determined by the grain precession with respect to the radiative flux. As a result, we expect that the polarization will be in the azimuthal direction for a face-on disk. It is also shown that if dust grains have superparamagnetic inclusions, magnetic field alignment is possible for (sub-)micron grains at the surface layer of disks, and this can be tested by mid-infrared polarimetric observations.

  14. DART: Recent Advances in Remote Sensing Data Modeling With Atmosphere, Polarization, and Chlorophyll Fluorescence

    Science.gov (United States)

    Gastellu-Etchegorry, Jean-Phil; Lauret, Nicolas; Yin, Tiangang; Landier, Lucas; Kallel, Abdelaziz; Malenovsky, Zbynek; Bitar, Ahmad Al; Aval, Josselin; Benhmida, Sahar; Qi, Jianbo; hide

    2017-01-01

    To better understand the life-essential cycles and processes of our planet and to further develop remote sensing (RS) technology, there is an increasing need for models that simulate the radiative budget (RB) and RS acquisitions of urban and natural landscapes using physical approaches and considering the three-dimensional (3-D) architecture of Earth surfaces. Discrete anisotropic radiative transfer (DART) is one of the most comprehensive physically based 3-D models of Earth-atmosphere radiative transfer, covering the spectral domain from ultraviolet to thermal infrared wavelengths. It simulates the optical 3-DRB and optical signals of proximal, aerial, and satellite imaging spectrometers and laser scanners, for any urban and/or natural landscapes and for any experimental and instrumental configurations. It is freely available for research and teaching activities. In this paper, we briefly introduce DART theory and present recent advances in simulated sensors (LiDAR and cameras with finite field of view) and modeling mechanisms (atmosphere, specular reflectance with polarization and chlorophyll fluorescence). A case study demonstrating a novel application of DART to investigate urban landscapes is also presented.

  15. Theory of many-body radiative heat transfer without the constraint of reciprocity

    Science.gov (United States)

    Zhu, Linxiao; Guo, Yu; Fan, Shanhui

    2018-03-01

    Using a self-consistent scattered field approach based on fluctuational electrodynamics, we develop compact formulas for radiative heat transfer in many-body systems without the constraint of reciprocity. The formulas allow for efficient numerical calculation for a system consisting of a large number of bodies, and are in principle exact. As a demonstration, for a nonreciprocal many-body system, we investigate persistent heat current at thermal equilibrium and directional heat transfer when the system is away from thermal equilibrium.

  16. Radiative transfer with finite elements. Pt. 1. Basic method and tests

    Energy Technology Data Exchange (ETDEWEB)

    Richling, S. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik; Meinkoehn, E. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik]|[Heidelberg Univ. (Germany). Inst. fuer Angewandte Mathematik; Kryzhevoi, N. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik]|[Heidelberg Univ. (DE). Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR); Kanschat, G. [Heidelberg Univ. (Germany). Inst. fuer Angewandte Mathematik]|[Heidelberg Univ. (DE). Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR)

    2001-10-01

    A finite element method for solving the monochromatic radiation transfer equation including scattering in three dimensions is presented. The algorithm employs unstructured grids which are adaptively refined. Adaptivity as well as ordinate parallelization reduce memory requirements and execution time and make it possible to calculate the radiation field across several length scales for objects with strong opacity gradients. An a posteriori error estimate for one particular quantity is obtained by solving the dual problem. The application to a sample of test problems reveals the properties of the implementation. (orig.)

  17. Effect of radiation heat transfer on the performance of high temperature heat exchanger, (2)

    International Nuclear Information System (INIS)

    Yamada, Yukio; Mori, Yasuo; Hijikata, Kunio.

    1977-01-01

    In high temperature helium gas-cooled reactors, the nuclear energy can be utilized effectively, and the safety is excellent as compared with conventional reactors. They are advantageous also in view of environmental problems. In this report, the high temperature heat exchanger used for heating steam with the helium from a high temperature gas reactor is modeled, and the case that radiating gas flow between parallel plates is considered. Analysis was made on the case of one channel and constant heat flux and on the model for a counter-flow type heat exchanger with two channels, and the effect of radiation on the heat transfer in laminar flow and turbulent flow regions was clarified theoretically. The basic equations, the method of approximate solution and the results of calculation are explained. When one dimensional radiation was considered, the representative temperature Tr regarding fluid radiation was introduced, and its relation to mean mixing temperature Tm was determined. It was clarified that the large error in the result did not arise even if Tr was taken equally to Tm, especially in case of turbulent flow. The error was practically negligible when the rate of forced convection heat transfer in case of radiating medium flow was taken same as that in the case without radiation. (Kako, I.)

  18. Unravelling radiative energy transfer in solid-state lighting

    Science.gov (United States)

    Melikov, Rustamzhon; Press, Daniel Aaron; Ganesh Kumar, Baskaran; Sadeghi, Sadra; Nizamoglu, Sedat

    2018-01-01

    Today, a wide variety of organic and inorganic luminescent materials (e.g., phosphors, quantum dots, etc.) are being used for lighting and new materials (e.g., graphene, perovskite, etc.) are currently under investigation. However, the understanding of radiative energy transfer is limited, even though it is critical to understand and improve the performance levels of solid-state lighting devices. In this study, we derived a matrix approach that includes absorption, reabsorption, inter-absorption and their iterative and combinatorial interactions for one and multiple types of fluorophores, which is simplified to an analytical matrix. This mathematical approach gives results that agree well with the measured spectral and efficiency characteristics of color-conversion light-emitting diodes. Moreover, it also provides a deep physical insight by uncovering the entire radiative interactions and their contribution to the output optical spectrum. The model is universal and applicable for all kinds of fluorophores.

  19. The polarization of the decimeter radiation and the magnetic field of jupiter

    International Nuclear Information System (INIS)

    Neidhoefer, J.

    1977-01-01

    In the frame of polarization measurements with the newly developed Double-Channel-Korrelation-System, there were measurements conducted of the decimeter radiation of Jupiter at wavelengths of 11 and 18cm with the 100m telescope of the MPIFR. The operating mode, the construction, influences of errors and their elimination during operation described in such a receiving system. The most important particular components are investigated including their limits of performance. Measurement of antenna properties of the Effelsberg-telescope are presented at three wavelengths (18, 11 and 3.3 cm) including high-sensitivity antenna diagrams for all Stokes-parameter. (orig./WL) [de

  20. Investigation of transient conduction–radiation heat transfer in a ...

    Indian Academy of Sciences (India)

    Mohammad Mehdi Keshtkar

    2018-04-17

    Apr 17, 2018 ... For absorbing, emitting and anisotropically scattering medium, the radiative heat transfer in any discrete direction s_m with direction index m is given as. dIm dsm. ¼ s_m. :rImрr; s_m. ЮјАbIm ю Sm. р16Ю .... thermore, V is the volume of the cell defined as dx В dy and. Im p and Sm p are the intensities and ...