WorldWideScience

Sample records for polarized photons generated

  1. Knot Undulator to Generate Linearly Polarized Photons with Low on-Axis Power Density

    International Nuclear Information System (INIS)

    Qiao, S.

    2009-01-01

    Heat load on beamline optics is a serious problem to generate pure linearly polarized photons in the third generation synchrotron radiation facilities. For permanent magnet undulators, this problem can be overcome by a figure-8 operating mode. But there is still no good method to tackle this problem for electromagnetic elliptical undulators. Here, a novel operating mode is suggested, which can generate pure linearly polarized photons with very low on-axis heat load. Also the available minimum photon energy of linearly polarized photons can be extended much by this method.

  2. Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line

    International Nuclear Information System (INIS)

    Tian Long; Li Shujing; Yuan Haoxiang; Wang Hai

    2016-01-01

    Using the process of cavity-enhanced spontaneous parametric down-conversion (SPDC), we generate a narrow-band polarization-entangled photon pair resonant on the rubidium (Rb) D1 line (795 nm). The degenerate single-mode photon pair is selected by multiple temperature controlled etalons. The linewidth of generated polarization-entangled photon pairs is 15 MHz which matches the typical atomic memory bandwidth. The measured Bell parameter for the polarization-entangled photons S = 2.73 ± 0.04 which violates the Bell-CHSH inequality by ∼18 standard deviations. The presented entangled photon pair source could be utilized in quantum communication and quantum computing based on quantum memories in atomic ensemble. (author)

  3. Direct generation of linearly polarized single photons with a deterministic axis in quantum dots

    Directory of Open Access Journals (Sweden)

    Wang Tong

    2017-07-01

    Full Text Available We report the direct generation of linearly polarized single photons with a deterministic polarization axis in self-assembled quantum dots (QDs, achieved by the use of non-polar InGaN without complex device geometry engineering. Here, we present a comprehensive investigation of the polarization properties of these QDs and their origin with statistically significant experimental data and rigorous k·p modeling. The experimental study of 180 individual QDs allows us to compute an average polarization degree of 0.90, with a standard deviation of only 0.08. When coupled with theoretical insights, we show that these QDs are highly insensitive to size differences, shape anisotropies, and material content variations. Furthermore, 91% of the studied QDs exhibit a polarization axis along the crystal [1–100] axis, with the other 9% polarized orthogonal to this direction. These features give non-polar InGaN QDs unique advantages in polarization control over other materials, such as conventional polar nitride, InAs, or CdSe QDs. Hence, the ability to generate single photons with polarization control makes non-polar InGaN QDs highly attractive for quantum cryptography protocols.

  4. Direct generation of linearly polarized single photons with a deterministic axis in quantum dots

    Science.gov (United States)

    Wang, Tong; Puchtler, Tim J.; Patra, Saroj K.; Zhu, Tongtong; Ali, Muhammad; Badcock, Tom J.; Ding, Tao; Oliver, Rachel A.; Schulz, Stefan; Taylor, Robert A.

    2017-07-01

    We report the direct generation of linearly polarized single photons with a deterministic polarization axis in self-assembled quantum dots (QDs), achieved by the use of non-polar InGaN without complex device geometry engineering. Here, we present a comprehensive investigation of the polarization properties of these QDs and their origin with statistically significant experimental data and rigorous k·p modeling. The experimental study of 180 individual QDs allows us to compute an average polarization degree of 0.90, with a standard deviation of only 0.08. When coupled with theoretical insights, we show that these QDs are highly insensitive to size differences, shape anisotropies, and material content variations. Furthermore, 91% of the studied QDs exhibit a polarization axis along the crystal [1-100] axis, with the other 9% polarized orthogonal to this direction. These features give non-polar InGaN QDs unique advantages in polarization control over other materials, such as conventional polar nitride, InAs, or CdSe QDs. Hence, the ability to generate single photons with polarization control makes non-polar InGaN QDs highly attractive for quantum cryptography protocols.

  5. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field.

    Science.gov (United States)

    Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo

    2012-02-07

    Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton-exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72 ± 0.05.

  6. Undulator-Based Production of Polarized Photons

    International Nuclear Information System (INIS)

    McDonald, Kirk

    2008-01-01

    'Project Title: Undulator-Based Production of Polarized Photons' DOE Contract Number: FG02-04ER41355 Principal Investigator: Prof. Kirk McDonald Period of Performance: 09/10/2004 thru 08/31/2006 This award was to fund Princeton's activity on SLAC experiment E166, 'Undulator-Based Production of Polarized Positrons' which was performed at SLAC during June and September 2005. Princeton U. fabricated a magnetic spectrometer for this experiment, and participated in the commissioning, operation, and analysis of the experiment, for which Prof. McDonald was a co-spokesperson. The experiment demonstrated that an intense positron beam with 80% longitudinal polarization could be generated by conversion of MeVenergy circularly polarized photons in a thin target, which photons were generated by passage of high-energy electrons through a helical undulator. This technique has since been adopted as the baseline for the polarized positron source of the proposed International Linear Collider. Results of the experiment have been published in Physical Review Letters, vol 100, p 210801 (2008) (see attached .pdf file), and a longer paper is in preparation.

  7. Two-photon spin generation and detection

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2009-01-01

    A time- and polarization-resolved two-photon pump-probe investigation is performed in lightly doped GaAs. We generate spin-polarized electrons in bulk GaAs at various temperatures using right-circularly polarized two-photon excitation and detect them by probing the spin-dependent transmission of the sample. The spin polarization (P) of conduction band electrons, as measured using probe pulses with the same (right) and opposite (left) circular polarization, is measured in dependences of pump-probe delay (Δt), lattice temperature (T L ), doping density (n) as well as of the excess photon energy ΔE 2ω = ℎ2ω - E g , where E g is the band gap energy. P is found to be decayed with Δt and enhanced with the decrease in T L or the increase in n. It is also found that P decreases with the increase in ΔE 2ω and depolarizes rapidly for ΔE 2ω > ΔE SO , where ΔE SO is the spin-orbit splitting energy. The results demonstrate that due to a much longer absorption depth highly polarized spins can be generated optically by two-photon pumping of bulk semiconductors.

  8. Heavy quark pair production in polarized photon-photon collisions

    International Nuclear Information System (INIS)

    Jikia, G.; Tkabladze, A.

    2000-04-01

    We present the cross sections of the heavy quark-antiquark pair production in polarized photon photon collision for the general case of photon polarizations. The numerical results for top-antitop production cross sections together with production asymmetries are obtained for linearly polarized photon-photon collisions, including QCD radiative corrections. (orig.)

  9. Three-photon polarization ququarts: polarization, entanglement and Schmidt decompositions

    International Nuclear Information System (INIS)

    Fedorov, M V; Miklin, N I

    2015-01-01

    We consider polarization states of three photons, propagating collinearly and having equal given frequencies but with arbitrary distributed horizontal or vertical polarizations of photons. A general form of such states is a superposition of four basic three-photon polarization modes, to be referred to as the three-photon polarization ququarts (TPPQ). All such states can be considered as consisting of one- and two-photon parts, which can be entangled with each other. The degrees of entanglement and polarization, as well as the Schmidt decomposition and Stokes vectors of TPPQ are found and discussed. (paper)

  10. Entangled-photon generation from a quantum dot in cavity QED

    International Nuclear Information System (INIS)

    Ajiki, Hiroshi; Ishihara, Hajime

    2009-01-01

    We theoretically study polarization-entangled photon generation from a single quantum dot in a microcavity. Entangled-photon pairs with singlet or triplet Bell states are generated in the resonant-hyperparametric scattering via dressed states in the cavity QED. Although co-polarized non-entangled photons are also generated, the generation is dramatically suppressed in the strong-coupling limit owing to the photon blockade effect. Finite binding energy of biexciton is also important for the generation of photon pairs with high degree of entanglement. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Extension of supercontinuum spectrum, generated in polarization-maintaining photonic crystal fiber, using chirped femtosecond pulses

    Science.gov (United States)

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2018-01-01

    We present results of experimental and numerical investigation of supercontinuum (SC) generation in polarization-maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52-nJ energy, 110-fs duration pulses at 1030 nm with a 76-MHz repetition rate. The nonlinear medium was a 32-cm-long polarization-maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of a SC. We showed that by chirping pump pulses positively or negatively one can obtain a broader SC spectrum than in the case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. Numerical simulation results also indicated that pump pulse chirp yields an extension of SC spectrum.

  12. Two-photon spin generation and detection

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2009-02-21

    A time- and polarization-resolved two-photon pump-probe investigation is performed in lightly doped GaAs. We generate spin-polarized electrons in bulk GaAs at various temperatures using right-circularly polarized two-photon excitation and detect them by probing the spin-dependent transmission of the sample. The spin polarization (P) of conduction band electrons, as measured using probe pulses with the same (right) and opposite (left) circular polarization, is measured in dependences of pump-probe delay ({Delta}t), lattice temperature (T{sub L}), doping density (n) as well as of the excess photon energy {Delta}E{sub 2{omega}}= {h_bar}2{omega} - E{sub g}, where E{sub g} is the band gap energy. P is found to be decayed with {Delta}t and enhanced with the decrease in T{sub L} or the increase in n. It is also found that P decreases with the increase in {Delta}E{sub 2{omega}}and depolarizes rapidly for {Delta}E{sub 2{omega}}> {Delta}E{sub SO}, where {Delta}E{sub SO} is the spin-orbit splitting energy. The results demonstrate that due to a much longer absorption depth highly polarized spins can be generated optically by two-photon pumping of bulk semiconductors.

  13. Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses

    International Nuclear Information System (INIS)

    Nambu, Yoshihiro; Usami, Koji; Tsuda, Yoshiyuki; Matsumoto, Keiji; Nakamura, Kazuo

    2002-01-01

    We report the generation of polarization-entangled photons by femtosecond-pulse-pumped spontaneous parametric down-conversion in a cascade of two type-I crystals. Highly entangled pulsed states were obtained by introducing a temporal delay between the two orthogonal polarization components of the pump field. They exhibited high-visibility quantum interference and a large concurrence value, without the need of postselection using narrow-bandwidth spectral filters. The results are well explained by the theory which incorporates the space-time dependence of interfering two-photon amplitudes if dispersion and birefringence in the crystals are appropriately taken into account. Such a pulsed entangled photon well localized in time domain is useful for various quantum communication experiments, such as quantum cryptography and quantum teleportation

  14. Two-photon interference of polarization-entangled photons in a Franson interferometer.

    Science.gov (United States)

    Kim, Heonoh; Lee, Sang Min; Kwon, Osung; Moon, Han Seb

    2017-07-18

    We present two-photon interference experiments with polarization-entangled photon pairs in a polarization-based Franson-type interferometer. Although the two photons do not meet at a common beamsplitter, a phase-insensitive Hong-Ou-Mandel type two-photon interference peak and dip fringes are observed, resulting from the two-photon interference effect between two indistinguishable two-photon probability amplitudes leading to a coincidence detection. A spatial quantum beating fringe is also measured for nondegenerate photon pairs in the same interferometer, although the two-photon states have no frequency entanglement. When unentangled polarization-correlated photons are used as an input state, the polarization entanglement is successfully recovered through the interferometer via delayed compensation.

  15. Photonic Crystal Polarizing and Non-Polarizing Beam Splitters

    International Nuclear Information System (INIS)

    Chun-Ying, Guan; Jin-Hui, Shi; Li-Boo, Yuan

    2008-01-01

    A polarizing beam splitter (PBS) and a non-polarizing beam splitter (NPBS) based on a photonic crystal (PC) directional coupler are demonstrated. The photonic crystal directional coupler consists of a hexagonal lattice of dielectric pillars in air and has a complete photonic band gap. The photonic band structure and the band gap map are calculated using the plane wave expansion (PWE) method. The splitting properties of the splitter are investigated numerically using the finite difference time domain (FDTD) method

  16. Elliptical quantum dots as on-demand single photons sources with deterministic polarization states

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chu-Hsiang; Demory, Brandon; Ku, Pei-Cheng, E-mail: peicheng@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48105 (United States); Zhang, Lei; Hill, Tyler A.; Deng, Hui [Department of Mechanical Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, Michigan 48105 (United States)

    2015-11-09

    In quantum information, control of the single photon's polarization is essential. Here, we demonstrate single photon generation in a pre-programmed and deterministic polarization state, on a chip-scale platform, utilizing site-controlled elliptical quantum dots (QDs) synthesized by a top-down approach. The polarization from the QD emission is found to be linear with a high degree of linear polarization and parallel to the long axis of the ellipse. Single photon emission with orthogonal polarizations is achieved, and the dependence of the degree of linear polarization on the QD geometry is analyzed.

  17. Experimental generation of complex noisy photonic entanglement

    International Nuclear Information System (INIS)

    Dobek, K; Banaszek, K; Karpiński, M; Demkowicz-Dobrzański, R; Horodecki, P

    2013-01-01

    We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple-photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarization noise in the paths of the generated photons we prepare mixed-entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy. (paper)

  18. Single-photon generation with InAs quantum dots

    International Nuclear Information System (INIS)

    Santori, Charles; Fattal, David; Vuckovic, Jelena; Solomon, Glenn S; Yamamoto, Yoshihisa

    2004-01-01

    Single-photon generation using InAs quantum dots in pillar microcavities is described. The effects on performance of the excitation wavelength and polarization, and the collection bandwidth and polarization, are studied in detail. The efficiency and photon state purity of these devices have been measured, and issues affecting these parameters are discussed. Prospects for improved devices are also discussed

  19. Photonic engineering of highly linearly polarized quantum dot emission at telecommunication wavelengths

    Science.gov (United States)

    Mrowiński, P.; Emmerling, M.; Schneider, C.; Reithmaier, J. P.; Misiewicz, J.; Höfling, S.; Sek, G.

    2018-04-01

    In this work, we discuss a method to control the polarization anisotropy of spontaneous emission from neutral excitons confined in quantum-dot-like nanostructures, namely single epitaxial InAs quantum dashes emitting at telecom wavelengths. The nanostructures are embedded inside lithographically defined, in-plane asymmetric photonic mesa structures, which generate polarization-dependent photonic confinement. First, we study the influence of the photonic confinement on the polarization anisotropy of the emission by photoluminescence spectroscopy, and we find evidence of different contributions to a degree of linear polarization (DOLP), i.e., from the quantum dash and the photonic mesa, in total giving rise to DOLP =0.85 . Then, we perform finite-difference time-domain simulations of photonic confinement, and we calculate the DOLP in a dipole approximation showing well-matched results for the established model. Furthermore, by using numerical calculations, we demonstrate several types of photonic confinements where highly linearly polarized emission with DOLP of about 0.9 is possible by controlling the position of a quantum emitter inside the photonic structure. Then, we elaborate on anisotropic quantum emitters allowing for exceeding DOLP =0.95 in an optimized case, and we discuss the ways towards efficient linearly polarized single photon source at telecom bands.

  20. Linearly polarized photons at ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, Holger [Physikalisches Institut, Universitaet Bonn (Germany)

    2009-07-01

    To investigate the nucleon resonance regime in meson photoproduction, double polarization experiments are currently performed at the electron accelerator ELSA in Bonn. The experiments make use of a polarized target and circularly or linearly polarized photon beams. Linearly polarized photons are produced by coherent bremsstrahlung from an accurately aligned diamond crystal. The orientation of the crystal with respect to the electron beam is measured using the Stonehenge-Technique. Both, the energy of maximum polarization and the plane of polarization, can be deliberately chosen for the experiment. The linearly polarized beam provides the basis for the measurement of azimuthal beam asymmetries, such as {sigma} (unpolarized target) and G (polarized target). These observables are extracted in various single and multiple meson photoproduction channels.

  1. Two-photon spin-polarization spectroscopy in silicon-doped GaAs.

    Science.gov (United States)

    Miah, M Idrish

    2009-05-14

    We generate spin-polarized electrons in bulk GaAs using circularly polarized two-photon pumping with excess photon energy (DeltaE) and detect them by probing the spin-dependent transmission of the sample. The spin polarization of conduction band electrons is measured and is found to be strongly dependent on DeltaE. The initial polarization, pumped with DeltaE=100 meV, at liquid helium temperature is estimated to be approximately 49.5%, which is very close to the theoretical value (50%) permitted by the optical selection rules governing transitions from heavy-hole and light-hole states to conduction band states in a bulk sample. However, the polarization pumped with larger DeltaE decreases rapidly because of the exciting carriers from the split-off band.

  2. Photonic-structured fibers assembled from cellulose nanocrystals with tunable polarized selective reflection.

    Science.gov (United States)

    Meng, Xin; Pan, Hui; Lu, Tao; Chen, Zhixin; Chen, Yanru; Zhang, Di; Zhu, Shenmin

    2018-05-14

    Fibers with self-assembled photonic structures are of special interest for their unique photonic properties and potential applications in smart textile industry. Inspired by nature, photonic-structured fibers were fabricated through the self-assembly of chiral nematic cellulose nanocrystals (CNC) and the fibers show tunable brilliant and selectively reflected colors under crossed-polarization. A simple wet-spinning method was applied to prepare composite fibers of mixed CNC matrix and polyvinyl alcohol (PVA) additions. During the processing, cholesteric CNC phase formed photonic fibers through a self-assembly process. The selective reflection color of the composite fibers in polarized condition shows a typical red-shift tendency with the increase of the PVA content, which is attributed to the increased helical pitch of the CNC. Furthermore, polarized angle can also alter the reflected colors. Owing to the excellent selective reflection properties under polarized condition, CNC-based photonic fibers are promising as the next-generation smart fibers, applied in the fields of specific display and sensing. © 2018 IOP Publishing Ltd.

  3. Polarization Control for Silicon Photonic Circuits

    Science.gov (United States)

    Caspers, Jan Niklas

    In recent years, the field of silicon photonics has received much interest from researchers and companies across the world. The idea is to use photons to transmit information on a computer chip in order to increase computational speed while decreasing the power required for computation. To allow for communication between the chip and other components, such as the computer memory, these silicon photonics circuits need to be interfaced with optical fiber. Unfortunately, in order to interface an optical fiber with an integrated photonics circuit two major challenges need to be overcome: a mode-size mismatch as well as a polarization mismatch. While the problem of mode-size has been well investigated, the polarization mismatch has yet to be addressed. In order to solve the polarization mismatch one needs to gain control over the polarization of the light in a waveguide. In this thesis, I will present the components required to solve the polarization mismatch. Using a novel wave guiding structure, the hybrid plasmonic waveguide, an ultra-compact polarization rotator is designed, fabricated, and tested. The hybrid plasmonic rotator has a performance similar to purely dielectric rotators while being more than an order of magnitude smaller. Additionally, a broadband hybrid plasmonic coupler is designed and measured. This coupler has a performance similar to dielectric couplers while having a footprint an order of magnitude smaller. Finally, a system solution to the polarization mismatch is provided. The system, a polarization adapter, matches the incoming changing polarization from the fiber actively to the correct one of the silicon photonics circuit. The polarization adapter is demonstrated experimentally to prove its operation. This proof is based on dielectric components, but the aforementioned hybrid plasmonic waveguide components would make the system more compact.

  4. A versatile source of polarization entangled photons for quantum network applications

    International Nuclear Information System (INIS)

    Kaiser, Florian; Issautier, Amandine; Ngah, Lutfi A; Alibart, Olivier; Martin, Anthony; Tanzilli, Sébastien

    2013-01-01

    We report a versatile and practical approach for the generation of high-quality polarization entanglement in a fully guided-wave fashion. Our setup relies on a high-brilliance type-0 waveguide generator producing paired photons at a telecom wavelength associated with an advanced energy-time to polarization transcriber. The latter is capable of creating any pure polarization entangled state, and allows manipulation of single-photon bandwidths that can be chosen at will over five orders of magnitude, ranging from tens of MHz to several THz. We achieve excellent entanglement fidelities for particular spectral bandwidths, i.e. 25 MHz, 540 MHz and 80 GHz, proving the relevance of our approach. Our scheme stands as an ideal candidate for a wide range of network applications, ranging from dense division multiplexing quantum key distribution to heralded optical quantum memories and repeaters. (letter)

  5. Polarization of photons emitted by decaying dark matter

    Directory of Open Access Journals (Sweden)

    W. Bonivento

    2017-02-01

    Full Text Available Radiatively decaying dark matter may be searched through investigating the photon spectrum of galaxies and galaxy clusters. We explore whether the properties of dark matter can be constrained through the study of a polarization state of emitted photons. Starting from the basic principles of quantum mechanics we show that the models of symmetric dark matter are indiscernible by the photon polarization. However, we find that the asymmetric dark matter consisted of Dirac fermions is a source of circularly polarized photons, calling for the experimental determination of the photon state.

  6. Final-photon polarization in the scattering of photons by high-energy electrons

    International Nuclear Information System (INIS)

    Choi, J.; Choi, S.Y.; Ie, S.H.; Song, H.S.; Good, R.H. Jr.

    1987-01-01

    A general method for calculating the polarization of the outgoing photon beam in any reaction is presented. As an example the method is applied to the high-energy photon beam produced in Compton scattering of a laser beam by a high-energy electron beam. The Stokes parameters of the outgoing photon beam, relative to a unit vector normal to the photon momentum and including their dependence on the polarization of incident photon and electron beams, are obtained explicitly. It is expected that this method will be useful, both in photon production reactions and in the subsequent high-energy photon reactions

  7. Silicon photonic thermometer operating on multiple polarizations

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Wang, Xiaoyan; Frandsen, Lars Hagedorn

    2016-01-01

    A silicon photonics optical thermometer simultaneously operating on the multiple polarizations is designed and experimentally demonstrated. Measured sensitivities are 86pm/°C and 48pm/°C for the transverse-electric and transverse-magnetic polarizations, respectively.......A silicon photonics optical thermometer simultaneously operating on the multiple polarizations is designed and experimentally demonstrated. Measured sensitivities are 86pm/°C and 48pm/°C for the transverse-electric and transverse-magnetic polarizations, respectively....

  8. State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting

    Science.gov (United States)

    Cen, Longzhu; Zhang, Zijing; Zhang, Jiandong; Li, Shuo; Sun, Yifei; Yan, Linyu; Zhao, Yuan; Wang, Feng

    2017-11-01

    Circular polarization-entangled photons can be used to obtain an enhancement of the precision in a rotation measurement. In this paper, the method of entanglement transformation is used to produce NOON states in circular polarization from a readily generated linear polarization-entangled photon source. Detection of N -fold coincidences serves as the postselection and N -fold superoscillating fringes are obtained simultaneously. A parity strategy and conditional probabilistic statistics contribute to a better fringe, saturating the angle sensitivity to the Heisenberg limit. The impact of imperfect state preparation and detection is discussed both separately and jointly. For the separated case, the influence of each system imperfection is pronounced. For the joint case, the feasibility region for surpassing the standard quantum limit is given. Our work pushes the state preparation of circular polarization-entangled photons to the same level as that in the case of linear polarization. It is also confirmed that entanglement can be transformed into different frames for specific applications, serving as a useful scheme for using entangled sources.

  9. Highly-nonlinear polarization-maintaining As2Se3-based photonic quasi-crystal fiber for supercontinuum generation

    Science.gov (United States)

    Zhao, Tongtong; Lian, Zhenggang; Benson, Trevor; Wang, Xin; Zhang, Wan; Lou, Shuqin

    2017-11-01

    We propose an As2Se3-based photonic quasi-crystal fiber (PQF) with high nonlinearity and birefringence. By optimizing the structure parameters, a nonlinear coefficient up to 2079 W-1km-1 can be achieved at the wavelength of 2 μm; the birefringence reaches up to the order of 10-2 due to the introduction of large circular air holes in the cladding. Using an optical pulse with a peak power of 6 kW, a pulse width of 150 fs, and a central wavelength of 2.94 μm as the pump pulse, a mid-infrared polarized supercontinuum is obtained by using a 15 mm long PQF. The spectral width for x- and y-polarizations covers 1 μm-10.2 μm and 1 μm-12.5 μm, respectively. The polarization state can be well maintained when the incident angle of the input pulse changes within ±2°. The proposed PQF, with high nonlinear coefficient and birefringence, has potential applications in mid-infrared polarization-maintaining supercontinuum generation.

  10. Ultrabright Linearly Polarized Photon Generation from a Nitrogen Vacancy Center in a Nanocube Dimer Antenna

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    2017-01-01

    , while we further achieve strongly polarized emission and high single photon purity, evident by the measured autocorrelation with a g(2)(0) value of 0.08. These photon source features are key parameters for quantum technological applications, such as secure communication based on quantum key distribution...

  11. Measurement of electron beam polarization from unstrained GaAs via two-photon photoemission

    Energy Technology Data Exchange (ETDEWEB)

    McCarter, J.L., E-mail: jlm2ar@virginia.edu [Department of Physics, University of Virginia, Charlottesville, VA 22901 (United States); Afanasev, A. [Department of Physics, The George Washington University, Washington, DC 20052 (United States); Gay, T.J. [Jorgensen Hall, University of Nebraska, Lincoln, NE 68588 (United States); Hansknecht, J. [Thomas Jefferson National Accelerator Facility, 12050 Jefferson Avenue, Suite 500, Newport News, VA 23606 (United States); Kechiantz, A. [Department of Physics, The George Washington University, Washington, DC 20052 (United States); Poelker, M. [Thomas Jefferson National Accelerator Facility, 12050 Jefferson Avenue, Suite 500, Newport News, VA 23606 (United States)

    2014-02-21

    Two-photon absorption of 1560 nm light was used to generate polarized electron beams from unstrained GaAs photocathodes of varying thickness: 625 μm, 0.32 μm, and 0.18 μm. For each photocathode, the degree of spin polarization of the photoemitted beam was less than 50%, contradicting earlier predictions based on simple quantum mechanical selection rules for spherically-symmetric systems but consistent with the more sophisticated model of Bhat et al. (Phys. Rev. B 71 (2005) 035209). Polarization via two-photon absorption was the highest from the thinnest photocathode sample and comparable to that obtained via one-photon absorption (using 778 nm light), with values 40.3±1.0% and 42.6±1.0%, respectively.

  12. Characterization of our source of polarization-entangled photons

    Science.gov (United States)

    Adenier, Guillaume

    2012-12-01

    We present our source of polarization entangled photons, which consist of orthogonally polarized and collinear parametric down converted photons sent to the same input of a nonpolarizing beam splitter. We show that a too straightforward characterization of the quantum state cannot account for all the experimental observations, in particular for the behavior of the doublecounts, which are the coincidences produced whenever both photons are dispatched by the beam splitter to the same measuring station (either Alice or Bob). We argue that in order to account for all observations, the state has to be entangled in polarization before the non-polarizing beam splitter, and we discuss the intriguing and nevertheless essential role of the time-compensation required to obtain such a polarization entanglement.

  13. Absolute atomic hydrogen density distribution in a hollow cathode discharge by two-photon polarization spectroscopy

    International Nuclear Information System (INIS)

    Gonzalo, A B; Rosa, M I de la; Perez, C; Mar, S; Gruetzmacher, K

    2004-01-01

    We report on quantitative measurements of ground-state atomic hydrogen densities in a stationary plasma far off thermodynamic equilibrium, generated in a hollow cathode discharge, by two-photon polarization spectroscopy via the 1S-2S transition. Absolute densities are obtained using a well established calibration method based on the non-resonant two-photon polarization signal of xenon gas at room temperature, which serves as the reference at the wavelength of the hydrogen transition. This study is dedicated to demonstrating the capability of two-photon polarization spectroscopy close to the detection limit. Therefore, it requires single-longitudinal mode UV-laser radiation provided by an advanced UV-laser spectrometer

  14. Practical quantum key distribution with polarization-entangled photons

    International Nuclear Information System (INIS)

    Poppe, A.; Fedrizzi, A.; Boehm, H.; Ursin, R.; Loruenser, T.; Peev, M.; Maurhardt, O.; Suda, M.; Kurtsiefer, C.; Weinfurter, H.; Jennewein, T.; Zeilinger, A.

    2005-01-01

    Full text: We present an entangled-state quantum cryptography system that operated for the first time in a real-world application scenario. The full key generation protocol was performed in real-time between two distributed embedded hardware devices, which were connected by 1.45 km of optical fiber, installed for this experiment in the Vienna sewage system. A source for polarization-entangled photons delivered about 8200 entangled photon pairs per second. After transmission to the distant receivers, a mean value of 468 pairs per second remained for the generation of a raw key, which showed an average qubit error rate of 6.4 %. The raw key was sifted and subsequently processed by a classical protocol which included error correction and privacy amplification. The final secure key bit rate was about 76 bits per second. The generated quantum key was then handed over and used by a secure communication application. (author)

  15. Unambiguous modification of nonorthogonal single- and two-photon polarization states

    International Nuclear Information System (INIS)

    Torres-Ruiz, F. A.; Aguirre, J.; Delgado, A.; Lima, G.; Neves, L.; Roa, L.; Saavedra, C.; Padua, S.

    2009-01-01

    In this paper we propose a probabilistic method which allows an unambiguous modification of two nonorthogonal quantum states. We experimentally implement this protocol by using two-photon polarization states generated in the process of spontaneous parametric down conversion. In the experiment, for codifying initial quantum states, we consider single-photon states and heralded detection. We show that the application of this protocol to entangled states allows a fine control of the amount of entanglement of the initial state.

  16. A Study of the use of a Crystal as a `Quarter-Wave Plate' to Produce High Energy Circularly Polarized Photons

    CERN Multimedia

    Kononets, I

    2002-01-01

    %NA59 %title\\\\ \\\\We present a proposal to study the use of a crystal as a `quarter-wave plate' to produce high energy circularly polarized photons, starting from unpolarized electrons. The intention is to generate linearly polarized photons by letting electrons pass a crystalline target, where they interact coherently with the lattice nuclei. The photon polarization is subsequently turned into circular polarization after passing another crystal, which acts as a `quarter-wave plate'.

  17. On the spallation of a polarized photon on a nonpolarized electron

    International Nuclear Information System (INIS)

    Bozrikov, P.V.; Kopytov, G.F.

    1978-01-01

    Considered is the process of the spallation of a polarized photon of the plane electromagnet wave into two polarized photons on a nonpolarized electron. One of these photons is considered as an emitted one, another as a photon of a plane wave. The degrees of circular and linear polarization of the emitted photon are studied in detail. It is shown that the degree of linear polarization does not depend on the type of circular polarization of the initial plane wave photon. At a relativistic electron moving in the direction of the plane wave, totally linearly polarized radiation appears. The analogy between the following two processes is made: (1) γ 1 +e - → γ 2 + γ tilde +e' - (where γ 1 , γ 2 are photons of the plane wave, and γ tilde is an emitted photon) and (2) γ 1 +e - → γ 2 +γ 3 +e' - . From the correspondence between the processes it follows that the results of the investigation may be applied to the double Compton effect. Besides, it appears to be possible to study the correlation between polarization states of all three photons participating in the double Compton scattering

  18. Generation of a mid-infrared broadband polarized supercontinuum in As2Se3 photonic crystal fibers

    International Nuclear Information System (INIS)

    Wang Xiao-Yan; Li Shu-Guang; Liu Shuo; Yin Guo-Bing; Li Jian-She

    2012-01-01

    A simplified structure of birefringent chalcogenide As 2 Se 3 photonic crystal fiber (PCF) is designed. Properties of birefringence, polarization extinction ratio, chromatic dispersion, nonlinear coefficient, and transmission are studied by using the multipole method, the finite-difference beam propagation method, and the adaptive split-step Fourier method. Considering that the zero dispersion wavelength of our proposed fiber is about 4 μm, we have analysed the mechanism of spectral broadening in PCFs with different pitches in detail, with femtosecond pulses at a wavelength of 4 μm as the pump pulses. Especially, mid-infrared broadband polarized supercontinuums are obtained in a 3-cm PCF with an optimal pitch of 2 μm. Their spectral width at −20 dB reaches up to 12 μm. In the birefringent PCF, we find that the supercontinuum generation changes with the pump alignment angle. Research results show that no coupling between eigenpolarization modes are observed at the maximum average power (i.e., 37 mW), which indicates that the polarization state is well maintained. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Applications of photon-in, photon-out spectroscopy with third-generation, synchrotron-radiation sources

    International Nuclear Information System (INIS)

    Lindle, D.W.; Perera, R.C.C.

    1991-01-01

    This report discusses the following topics: Mother nature's finest test probe; soft x-ray emission spectroscopy with high-brightness synchrotron radiation sources; anisotropy and polarization of x-ray emission from atoms and molecules; valence-hole fluorescence from molecular photoions as a probe of shape-resonance ionization: progress and prospects; structural biophysics on third-generation synchrotron sources; ultra-soft x-ray fluorescence-yield XAFS: an in situ photon-in, photon-out spectroscopy; and x-ray microprobe: an analytical tool for imaging elemental composition and microstructure

  20. Capsize of polarization in dilute photonic crystals.

    Science.gov (United States)

    Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio

    2017-11-29

    We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.

  1. Polarized tagged photons

    International Nuclear Information System (INIS)

    Maximon, L.C.; Ganz, Eric; Aniel, Thierry; Miniac, Arlette de.

    1982-03-01

    We consider in detail the differential cross section for polarized bremsstrahlung for angles and energies in the range of interest for a tagging system and derive a high energy, small angle approximation for this cross section. We use these approximations to determine the maxima and minima of the cross sections for these two polarization states, dσperpendicular and dσparallel, and to evaluate these cross sections at the extrema. It is shown that both dσperpendicular and dσparallel have a very sharp dip in the region of small momentum transfers. However, their behavior in the region of the dip, as a function of the azimuthal angle phi, is quite different over most of the photon spectrum. The cross section dσperpendicular behaves similarly to the cross section for unpolarized photons in that as phi increases, the sharp dip vanishes, the minimum fuses with the second maximum, and the cross section then has only a single maximum. In contrast, the sharp dip in the cross section dσparallel remains as phi increases. Coulomb corrections to the Born approximation are considered, and do not fill in these dips

  2. Wide-band polarization controller for Si photonic integrated circuits.

    Science.gov (United States)

    Velha, P; Sorianello, V; Preite, M V; De Angelis, G; Cassese, T; Bianchi, A; Testa, F; Romagnoli, M

    2016-12-15

    A circuit for the management of any arbitrary polarization state of light is demonstrated on an integrated silicon (Si) photonics platform. This circuit allows us to adapt any polarization into the standard fundamental TE mode of a Si waveguide and, conversely, to control the polarization and set it to any arbitrary polarization state. In addition, the integrated thermal tuning allows kilohertz speed which can be used to perform a polarization scrambler. The circuit was used in a WDM link and successfully used to adapt four channels into a standard Si photonic integrated circuit.

  3. Room Temperature Memory for Few Photon Polarization Qubits

    Science.gov (United States)

    Kupchak, Connor; Mittiga, Thomas; Jordan, Bertus; Nazami, Mehdi; Nolleke, Christian; Figueroa, Eden

    2014-05-01

    We have developed a room temperature quantum memory device based on Electromagnetically Induced Transparency capable of reliably storing and retrieving polarization qubits on the few photon level. Our system is realized in a vapor of 87Rb atoms utilizing a Λ-type energy level scheme. We create a dual-rail storage scheme mediated by an intense control field to allow storage and retrieval of any arbitrary polarization state. Upon retrieval, we employ a filtering system to sufficiently remove the strong pump field, and subject retrieved light states to polarization tomography. To date, our system has produced signal-to-noise ratios near unity with a memory fidelity of >80 % using coherent state qubits containing four photons on average. Our results thus demonstrate the feasibility of room temperature systems for the storage of single-photon-level photonic qubits. Such room temperature systems will be attractive for future long distance quantum communication schemes.

  4. Polarization control of multi-photon absorption under intermediate femtosecond laser field

    International Nuclear Information System (INIS)

    Cheng Wenjing; Liang Guo; Wu Ping; Liu Pei; Jia Tianqing; Sun Zhenrong; Zhang Shian

    2017-01-01

    It has been shown that the femtosecond laser polarization modulation is a very simple and well-established method to control the multi-photon absorption process by the light–matter interaction. Previous studies mainly focused on the multi-photon absorption control in the weak field. In this paper, we further explore the polarization control behavior of multi-photon absorption process in the intermediate femtosecond laser field. In the weak femtosecond laser field, the second-order perturbation theory can well describe the non-resonant two-photon absorption process. However, the higher order nonlinear effect (e.g., four-photon absorption) can occur in the intermediate femtosecond laser field, and thus it is necessary to establish new theoretical model to describe the multi-photon absorption process, which includes the two-photon and four-photon transitions. Here, we construct a fourth-order perturbation theory to study the polarization control behavior of this multi-photon absorption under the intermediate femtosecond laser field excitation, and our theoretical results show that the two-photon and four-photon excitation pathways can induce a coherent interference, while the coherent interference is constructive or destructive that depends on the femtosecond laser center frequency. Moreover, the two-photon and four-photon transitions have the different polarization control efficiency, and the four-photon absorption can obtain the higher polarization control efficiency. Thus, the polarization control efficiency of the whole excitation process can be increased or decreased by properly designing the femtosecond laser field intensity and laser center frequency. These studies can provide a clear physical picture for understanding and controlling the multi-photon absorption process in the intermediate femtosecond laser field, and also can provide a theoretical guidance for the future experimental realization. (paper)

  5. Design of ultra compact polarization splitter based on complete photonic band gap

    Science.gov (United States)

    Sinha, R. K.; Nagpal, Yogita

    2005-11-01

    Certain select structures in photonic crystals (PhCs) exhibit complete photonic band gap i.e. a frequency region where the photonic band gaps for both polarizations (i.e. transverse electric and transverse magnetic modes) exist and overlap. One of the most fundamental applications of the photonic band gap structures is the design of photonic crystal waveguides, which can be made by inserting linear defects in the photonic crystal structures. By setting closely two parallel 2D PhC waveguides, a directional waveguide coupler can be designed, which can be used to design a polarization splitter. In this paper we design a polarization splitter in a photonic crystal structure composed of two dimensional honeycomb pattern of dielectric rods in air. This photonic crystal structure exhibits a complete photonic band gap that extends from λ = 1.49 μm to λ = 1.61 μm, where lambda is the wavelength in free space, providing a large bandwidth of 120 nm. A polarization splitter can be made by designing a polarization selective coupler. The coupling lengths at various wavelengths for both polarizations have been calculated using the Finite Difference Time Domain method. It has been shown that the coupling length, for TE polarization is much smaller as compared to that for the TM polarization. This principle is used to design a polarization splitter of length 32 μm at λ = 1.55 μm. Further, the spectral response of the extinction ratios for both polarizations in the two waveguides at propagation distance of 32 μm has been studied.

  6. Second-order polarization-mode dispersion in photonic crystal fibers

    DEFF Research Database (Denmark)

    Larsen, T; Bjarklev, Anders Overgaard; Peterson, A

    2003-01-01

    We report the first experimental measurements of second-order polarization-mode dispersion in two successive 900 meter pulls of a silica photonic crystal fiber.......We report the first experimental measurements of second-order polarization-mode dispersion in two successive 900 meter pulls of a silica photonic crystal fiber....

  7. Polarization and ellipticity of high-order harmonics from aligned molecules generated by linearly polarized intense laser pulses

    International Nuclear Information System (INIS)

    Le, Anh-Thu; Lin, C. D.; Lucchese, R. R.

    2010-01-01

    We present theoretical calculations for polarization and ellipticity of high-order harmonics from aligned N 2 , CO 2 , and O 2 molecules generated by linearly polarized lasers. Within the rescattering model, the two polarization amplitudes of the harmonics are determined by the photo-recombination amplitudes for photons emitted with polarization parallel or perpendicular to the direction of the same returning electron wave packet. Our results show clear species-dependent polarization states, in excellent agreement with experiments. We further note that the measured polarization ellipse of the harmonic furnishes the needed parameters for a 'complete' experiment in molecules.

  8. Polarized photon facilities - windows to new physics

    International Nuclear Information System (INIS)

    Sandorfi, A.M.

    1995-01-01

    The status of new and proposed sources of intermediate-energy polarized photons is reviewed. The N → δ transition is discussed as an example of new physics that can be addressed at these facilities through precision measurements of polarization observables

  9. Single photon detector with high polarization sensitivity.

    Science.gov (United States)

    Guo, Qi; Li, Hao; You, LiXing; Zhang, WeiJun; Zhang, Lu; Wang, Zhen; Xie, XiaoMing; Qi, Ming

    2015-04-15

    Polarization is one of the key parameters of light. Most optical detectors are intensity detectors that are insensitive to the polarization of light. A superconducting nanowire single photon detector (SNSPD) is naturally sensitive to polarization due to its nanowire structure. Previous studies focused on producing a polarization-insensitive SNSPD. In this study, by adjusting the width and pitch of the nanowire, we systematically investigate the preparation of an SNSPD with high polarization sensitivity. Subsequently, an SNSPD with a system detection efficiency of 12% and a polarization extinction ratio of 22 was successfully prepared.

  10. Photonic crystal based polarization insensitive flat lens

    International Nuclear Information System (INIS)

    Turduev, M; Bor, E; Kurt, H

    2017-01-01

    The paper proposes a new design of an inhomogeneous artificially created photonic crystal lens structure consisting of annular dielectric rods to efficiently focus both transverse electric and transverse magnetic polarizations of light into the same focal point. The locations of each individual cell that contains the annular dielectric rods are determined according to a nonlinear distribution function. The inner and outer radii of the annular photonic dielectric rods are optimized with respect to the polarization insensitive frequency response of the transmission spectrum of the lens structure. The physical background of the polarization insensitive focusing mechanism is investigated in both spatial and frequency domains. Moreover, polarization independent wavefront transformation/focusing has been explored in detail by investigating the dispersion relation of the structure. Corresponding phase index distribution of the lens is attained for polarization insensitive normalized frequency range of a / λ   =  0.280 and a / λ   =  0.300, where a denotes the lattice constant of the designed structure and λ denotes the wavelength of the incident light. We show the wave transformation performance and focal point movement dynamics for both polarizations of the lens structure by specially adjusting the length of the structure. The 3D finite-difference time domain numerical analysis is also performed to verifiy that the proposed design is able to focus the wave regardless of polarization into approximately the same focal point (difference between focal distances of both polarizations stays below 0.25 λ ) with an operating bandwidth of 4.30% between 1476 nm and 1541 nm at telecom wavelengths. The main superiorities of the proposed lens structure are being all dielectric and compact, and having flat front and back surfaces, rendering the proposed lens design more practical in the photonic integration process in various applications such as optical switch

  11. Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution.

    Science.gov (United States)

    Cai, Hong; Long, Christopher M; DeRose, Christopher T; Boynton, Nicholas; Urayama, Junji; Camacho, Ryan; Pomerene, Andrew; Starbuck, Andrew L; Trotter, Douglas C; Davids, Paul S; Lentine, Anthony L

    2017-05-29

    We demonstrate a silicon photonic transceiver circuit for high-speed discrete variable quantum key distribution that employs a common structure for transmit and receive functions. The device is intended for use in polarization-based quantum cryptographic protocols, such as BB84. Our characterization indicates that the circuit can generate the four BB84 states (TE/TM/45°/135° linear polarizations) with >30 dB polarization extinction ratios and gigabit per second modulation speed, and is capable of decoding any polarization bases differing by 90° with high extinction ratios.

  12. Efficient scheme for three-photon Greenberger–Horne–Zeilinger state generation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dong [College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang, 050024 (China); Department of Basic Curriculum, North China Institute of Science and Technology, Beijing, 101601 (China); Yan, Feng-Li, E-mail: flyan@hebtu.edu.cn [College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang, 050024 (China)

    2013-06-17

    We propose an efficient scheme for the generation of three-photon Greenberger–Horne–Zeilinger (GHZ) state with linear optics, nonlinear optics and postselection. Several devices are designed and a two-mode quantum nondemolition detection is introduced to obtain the desired state. It is worth noting that the states which have entanglement in both polarization and spatial degrees of freedom are created in one of the designed setups. The method described in the present scheme can create a large number of three-photon GHZ states in principle. We also discuss an approach to generate the desired GHZ state in the presence of channel noise.

  13. Efficient scheme for three-photon Greenberger–Horne–Zeilinger state generation

    International Nuclear Information System (INIS)

    Ding, Dong; Yan, Feng-Li

    2013-01-01

    We propose an efficient scheme for the generation of three-photon Greenberger–Horne–Zeilinger (GHZ) state with linear optics, nonlinear optics and postselection. Several devices are designed and a two-mode quantum nondemolition detection is introduced to obtain the desired state. It is worth noting that the states which have entanglement in both polarization and spatial degrees of freedom are created in one of the designed setups. The method described in the present scheme can create a large number of three-photon GHZ states in principle. We also discuss an approach to generate the desired GHZ state in the presence of channel noise.

  14. Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Thorhauge, Morten

    2003-01-01

    We have investigated the properties of TM polarized light in planar photonic crystal waveguide structures, which exhibit photonic band gaps for TE polarized light. Straight and bent photonic crystal waveguides and couplers have been fabricated in silicon-on-insulator material and modelled using a 3......D finite-difference-time-domain method. The simulated spectra are in excellent agreement with the experimental results, which show a propagation loss as low as 2.5±4 dB/mm around 1525 nm and bend losses at 2.9±0.2 dB for TM polarized light. We demonstrate a high coupling for TM polarized light...

  15. Possibility of producing the event-ready two-photon polarization entangled state with normal photon detectors

    International Nuclear Information System (INIS)

    Wang Xiangbin

    2003-01-01

    We propose a scheme to produce the maximally two-photon polarization entangled state with single-photon sources and the passive linear optics devices. In particular, our scheme only requires the normal photon detectors which distinguish the vacuum and non-vacuum Fock number states. A sophisticated photon detector distinguishing between one-photon state and two-photon state is unnecessary in the scheme

  16. Compact electrically controlled broadband liquid crystal photonic bandgap fiber polarizer

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm.......An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm....

  17. Cross section and linear polarization of tagged photons

    International Nuclear Information System (INIS)

    Asai, J.; Caplan, H.S.; Skopik, D.M.; DelBianco, W.; Maximon, L.C.

    1988-01-01

    Formulae for bremsstrahlung cross sections and polarizations are usually presented in coordinate systems not very suitable for application by experimental physicists to devices such as photon-tagging monochromators. In this paper the transformations between the different coordinate systems are presented, along with examples of the calculated cross sections and polarizations in a form convenient from the experimental standpoint. These examples also give the predicted characteristics of the photon tagger currently under construction at the Saskatchewan Accelerator Laboratory. (16 refs., 19 figs., tab.)

  18. Generating multi-photon W-like states for perfect quantum teleportation and superdense coding

    Science.gov (United States)

    Li, Ke; Kong, Fan-Zhen; Yang, Ming; Ozaydin, Fatih; Yang, Qing; Cao, Zhuo-Liang

    2016-08-01

    An interesting aspect of multipartite entanglement is that for perfect teleportation and superdense coding, not the maximally entangled W states but a special class of non-maximally entangled W-like states are required. Therefore, efficient preparation of such W-like states is of great importance in quantum communications, which has not been studied as much as the preparation of W states. In this paper, we propose a simple optical scheme for efficient preparation of large-scale polarization-based entangled W-like states by fusing two W-like states or expanding a W-like state with an ancilla photon. Our scheme can also generate large-scale W states by fusing or expanding W or even W-like states. The cost analysis shows that in generating large-scale W states, the fusion mechanism achieves a higher efficiency with non-maximally entangled W-like states than maximally entangled W states. Our scheme can also start fusion or expansion with Bell states, and it is composed of a polarization-dependent beam splitter, two polarizing beam splitters and photon detectors. Requiring no ancilla photon or controlled gate to operate, our scheme can be realized with the current photonics technology and we believe it enable advances in quantum teleportation and superdense coding in multipartite settings.

  19. Room-Temperature Single-photon level Memory for Polarization States

    Science.gov (United States)

    Kupchak, Connor; Mittiga, Thomas; Jordaan, Bertus; Namazi, Mehdi; Nölleke, Christian; Figueroa, Eden

    2015-01-01

    An optical quantum memory is a stationary device that is capable of storing and recreating photonic qubits with a higher fidelity than any classical device. Thus far, these two requirements have been fulfilled for polarization qubits in systems based on cold atoms and cryogenically cooled crystals. Here, we report a room-temperature memory capable of storing arbitrary polarization qubits with a signal-to-background ratio higher than 1 and an average fidelity surpassing the classical benchmark for weak laser pulses containing 1.6 photons on average, without taking into account non-unitary operation. Our results demonstrate that a common vapor cell can reach the low background noise levels necessary for polarization qubit storage using single-photon level light, and propels atomic-vapor systems towards a level of functionality akin to other quantum information processing architectures.

  20. Study of the exotic Θ+ with polarized photon beams

    International Nuclear Information System (INIS)

    Zhao Qiang

    2004-01-01

    We carry out an analysis of the pentaquark Θ + photoproduction with polarized photon beams. Kinematical and dynamical aspects are examined for the purpose of determining Θ + 's spin and parity. It shows that the polarized photon beam asymmetry in association with certain dynamical properties of the production mechanism would provide further information on its quantum numbers. Facilities at SPring-8, JLab, ELSA, and ESRF will have access to them

  1. On measurement of photon polarization by triplet production differential cross sections

    International Nuclear Information System (INIS)

    Vinokurov, E.A.; Boldyshev, V.F.

    1984-01-01

    Dependence of triplet production by linearly polarized photon (the recoil electron momenta being p 1 >=p 10 ) upon the electron pair invariant mass Δ (in the ranges of 0.1 mc 10 2 2 ) is studied aiming to analyze possible use of triplet photoproduction to measure polarization of high-energy photon beams. It is shown that the regions 2m 2 and 2m 200 mc 2 are optimum and provide a 17-35% accuracy improvement for the photon beam polarization measurement, the number of events decreasing by a factor of 2.4-4.4

  2. A Polarization Maintaining Filter based on a Liquid-Crystal-Photonic-Bandgap-Fiber

    DEFF Research Database (Denmark)

    Scolari, Lara; Olausson, Christina Bjarnal Thulin; Turchinovich, Dmitry

    2008-01-01

    A polarization maintaining filter based on a liquid-crystal-photonic-bandgap-fiber is demonstrated. Its polarization extinction ratio is 14 dB at 1550 nm. Its tunability is 150 nm.......A polarization maintaining filter based on a liquid-crystal-photonic-bandgap-fiber is demonstrated. Its polarization extinction ratio is 14 dB at 1550 nm. Its tunability is 150 nm....

  3. Jet cross sections in polarized photon-hadron collisions

    CERN Document Server

    de Florian, Daniel

    1999-01-01

    We present a computation of one- and two-jet cross sections in polarized photon-hadron collisions, which is accurate to next-to-leading order in QCD. Our results can be used to compute photoproduction cross sections in electron-proton scattering. To this purpose, we investigate the structure of the polarized Weizsaecker-Williams function, where we include a universal, non-logarithmic term, neglected in the literature. We construct a Monte Carlo code, within the framework of the subtraction method, and we use it to study the phenomenology of jet production in the energy range relevant to HERA. In particular, we investigate the perturbative stability of our results, and we discuss the possibility of constraining polarized parton densities of the proton and the photon using jet data.

  4. Generation of circular polarization of the cosmic microwave background

    International Nuclear Information System (INIS)

    Alexander, Stephon; Ochoa, Joseph; Kosowsky, Arthur

    2009-01-01

    The standard cosmological model, which includes only Compton scattering photon interactions at energy scales near recombination, results in zero primordial circular polarization of the cosmic microwave background. In this paper we consider a particular renormalizable and gauge-invariant standard model extension coupling photons to an external vector field via a Chern-Simons term, which arises as a radiative correction if gravitational torsion couples to fermions. We compute the transport equations for polarized photons from a Boltzmann-like equation, showing that such a coupling will source circular polarization of the microwave background. For the particular coupling considered here, the circular polarization effect is always negligible compared to the rotation of the linear polarization orientation, also derived using the same formalism. We note the possibility that limits on microwave background circular polarization may probe other photon interactions and related fundamental effects such as violations of Lorentz invariance.

  5. Heralded noiseless amplification for single-photon entangled state with polarization feature

    Science.gov (United States)

    Wang, Dan-Dan; Jin, Yu-Yu; Qin, Sheng-Xian; Zu, Hao; Zhou, Lan; Zhong, Wei; Sheng, Yu-Bo

    2018-03-01

    Heralded noiseless amplification is a promising method to overcome the transmission photon loss in practical noisy quantum channel and can effectively lengthen the quantum communication distance. Single-photon entanglement is an important resource in current quantum communications. Here, we construct two single-photon-assisted heralded noiseless amplification protocols for the single-photon two-mode entangled state and single-photon three-mode W state, respectively, where the single-photon qubit has an arbitrary unknown polarization feature. After the amplification, the fidelity of the single-photon entangled state can be increased, while the polarization feature of the single-photon qubit can be well remained. Both the two protocols only require the linear optical elements, so that they can be realized under current experimental condition. Our protocols may be useful in current and future quantum information processing.

  6. Azimuthal asymmetry in processes of nonlinear QED for linearly polarized photon

    International Nuclear Information System (INIS)

    Bajer, V.N.; Mil'shtejn, A.I.

    1994-01-01

    Cross sections of nonlinear QED processes (photon-photon scattering, photon splitting in a Coulomb field, and Delbrueck scattering) are considered for linearly polarized initial photon. The cross sections have sizeable azimuthal asymmetry. 15 refs.; 3 figs

  7. Self-collimating photonic crystal polarization beam splitter.

    Science.gov (United States)

    Zabelin, V; Dunbar, L A; Le Thomas, N; Houdré, R; Kotlyar, M V; O'Faolain, L; Krauss, T F

    2007-03-01

    We present theoretical and experimental results of a polarization splitter device that consists of a photonic crystal (PhC) slab, which exhibits a large reflection coefficient for TE and a high transmission coefficient for TM polarization. The slab is embedded in a PhC tile operating in the self-collimation mode. Embedding the polarization-discriminating slab in a PhC with identical lattice symmetry suppresses the in-plane diffraction losses at the PhC-non-PhC interface. The optimization of the PhC-non-PhC interface is thereby decoupled from the optimization of the polarizing function. Transmissions as high as 35% for TM- and 30% for TE-polarized light are reported.

  8. Generation and control of spin-polarized photocurrents in GaMnAs heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Anibal T., E-mail: anibal@df.ufscar.br; Farinas, Paulo F.; Studart, Nelson [Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); DISSE - Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutores, CNPq/MCT, Rio de Janeiro, RJ (Brazil); Castelano, Leonardo K. [Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Degani, Marcos H.; Maialle, Marcelo Z. [Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, 13484-350 Limeira, SP (Brazil); DISSE - Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutores, CNPq/MCT, Rio de Janeiro, RJ (Brazil)

    2014-01-13

    Photocurrents are calculated for a specially designed GaMnAs semiconductor heterostructure. The results reveal regions in the infrared range of the energy spectrum, in which the proposed structure is remarkably spin-selective. For such photon energies, the generated photocurrents are strongly spin-polarized. Application of a relatively small static bias in the growth direction of the structure is predicted to efficiently reverse the spin-polarization for some photon energies. This behavior suggests the possibility of conveniently simple switching mechanisms. The physics underlying the results is studied and understood in terms of the spin-dependent properties emerging from the particular potential profile of the structure.

  9. One-bit photon polarization in two-photon experiments. An information mechanics perspective

    International Nuclear Information System (INIS)

    Kantor, F.W.

    1991-01-01

    In this paper is presented a detailed treatment of amount and representation of photon polarization information in the two-photon experiments of Aspect, Grangier, and Roger, seeking to test Einstein, Podolsky, and Rosen's thought experiment. Newton's mechanics, Einstein's relativistic mechanics, and quantum mechanics do not treat as fundamental the amount and representation of information in physical systems. The line of reasoning presented here was reached via Kantor's information mechanics. The information bookkeeping presented here appears to offer a simple, physical insight into what the apparatus and the photons are doing together

  10. Photonic Heterostructures with Properties of Ferroelectrics and Light Polarizers

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Draginda, Yu A [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-11-15

    The optical and electro-optical properties of a new type of photonic heterostructure composed of alternating ferroelectric molecular layers and optically anisotropic layers of another material are considered. A numerical simulation of the real prototype of this heterostructure, which can be prepared by the Langmuir-Blodgett method from layers of a ferroelectric copolymer (polyvinylidene fluoride trifluoroethylene) and an azo dye with photoinduced optical anisotropy, has been performed. It is shown that this heterostructure has pronounced polarization optical properties and yields a significant change in the polarization state of light at the photonic band edges in the ranges of the maximum density of photon states. The latter property can be used to obtain an enhanced electro-optic effect at small spectral shifts of the photonic band (the latter can be provided by the piezoelectric effect in ferroelectric layers).

  11. Generation of photon number states

    International Nuclear Information System (INIS)

    Waks, Edo; Diamanti, Eleni; Yamamoto, Yoshihisa

    2006-01-01

    The visible light photon counter (VLPC) has the capability to discriminate photon number states, in contrast to conventional photon counters which can only detect the presence or absence of photons. We use this capability, along with the process of parametric down-conversion, to generate photon number states. We experimentally demonstrate generation of states containing 1, 2, 3 and 4 photons with high fidelity. We then explore the effect the detection efficiency of the VLPC has on the generation rate and fidelity of the created states

  12. Integrated Sources of Polarization Entangled Photon Pair States via Spontaneous Four-Wave Mixing in AlGaAs Waveguides

    Science.gov (United States)

    Kultavewuti, Pisek

    Polarization-entangled photon pair states (PESs) are indispensable in several quantum protocols that should be implemented in an integrated photonic circuit for realizing a practical quantum technology. Preparing such states in integrated waveguides is in fact a challenge due to polarization mode dispersion. Unlike other conventional ways that are plagued with complications in fabrication or in state generation, in this thesis, the scheme based on parallel spontaneous four-wave mixing processes of two polarization waveguide modes is thoroughly studied in theory and experimentation for the polarization entanglement generation. The scheme in fact needs the modal dispersion, contradictory to the general perception, as revealed by a full quantum mechanical framework. The proper modal dispersion balances the effects of temporal walk-off and state factorizability. The study also shows that the popular standard platform such as a silicon-on-insulator wafer is far from suitable to implement the proposed simple generation technique. Proven by the quantum state tomography, the technique produces a highly-entangled state with a maximum concurrence of 0.97 +/- 0:01 from AlGaAs waveguides. In addition, the devices directly generated Bell states with an observed fidelity of 0.92 +/- 0:01 without any post-generation compensating steps. Novel suspended device structures, including their components, are then investigated numerically and experimentally characterized in pursuit of finding the geometry with the optimal dispersion property. The 700 nm x 1100 nm suspended rectangular waveguide is identified as the best geometry with a predicted maximum concurrence of 0.976 and a generation bandwidth of 3.3 THz. The suspended waveguide fabrication procedure adds about 15 dB/cm and 10 dB/cm of propagation loss to the TE and TM mode respectively, on top of the loss in corresponding full-cladding waveguides. Bridges, which structurally support the suspended waveguides, are optimized using

  13. Understanding interference experiments with polarized light through photon trajectories

    International Nuclear Information System (INIS)

    Sanz, A.S.; Davidovic, M.; Bozic, M.; Miret-Artes, S.

    2010-01-01

    Bohmian mechanics allows to visualize and understand the quantum-mechanical behavior of massive particles in terms of trajectories. As shown by Bialynicki-Birula, Electromagnetism also admits a hydrodynamical formulation when the existence of a wave function for photons (properly defined) is assumed. This formulation thus provides an alternative interpretation of optical phenomena in terms of photon trajectories, whose flow yields a pictorial view of the evolution of the electromagnetic energy density in configuration space. This trajectory-based theoretical framework is considered here to study and analyze the outcome from Young-type diffraction experiments within the context of the Arago-Fresnel laws. More specifically, photon trajectories in the region behind the two slits are obtained in the case where the slits are illuminated by a polarized monochromatic plane wave. Expressions to determine electromagnetic energy flow lines and photon trajectories within this scenario are provided, as well as a procedure to compute them in the particular case of gratings totally transparent inside the slits and completely absorbing outside them. As is shown, the electromagnetic energy flow lines obtained allow to monitor at each point of space the behavior of the electromagnetic energy flow and, therefore, to evaluate the effects caused on it by the presence (right behind each slit) of polarizers with the same or different polarization axes. This leads to a trajectory-based picture of the Arago-Fresnel laws for the interference of polarized light.

  14. CMOS-compatible photonic devices for single-photon generation

    Directory of Open Access Journals (Sweden)

    Xiong Chunle

    2016-09-01

    Full Text Available Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal–oxide–semiconductor (CMOS-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  15. Polarized photons from quark-gluon plasma

    International Nuclear Information System (INIS)

    Goloviznin, V.V.; Snigirev, A.M.; Zinov'ev, G.M.

    1988-01-01

    The degree of polarization of magnetic bremsstrahlung radiation resulting from the interaction of escaping quarks with a collective confining color field is calculated. For a wide rapidity interval the angle at which the photon is registered and constitutes about 25%. This could signal about quark-gluon plasma formation

  16. Photon harvesting, coloring and polarizing in photovoltaic cell integrated color filters: efficient energy routing strategies for power-saving displays.

    Science.gov (United States)

    Wen, Long; Chen, Qin; Song, Shichao; Yu, Yan; Jin, Lin; Hu, Xin

    2015-07-03

    We describe the integral electro-optical strategies that combine the functionalities of photovoltaic (PV) electricity generation and color filtering as well as polarizing to realize more efficient energy routing in display technology. Unlike the conventional pigment-based filters and polarizers, which absorb substantial amounts of unwanted spectral components and dissipate them in the form of heat, we propose converting the energy of those photons into electricity by constructing PV cell-integrated color filters based on a selectively transmitting aluminum (Al) rear electrode perforated with nanoholes (NHs). Combining with a dielectric-metal-dielectric (DMD) front electrode, the devices were optimized to enable efficient cavity-enhanced photon recycling in the PV functional layers. We perform a comprehensive theoretical and numerical analysis to explore the extraordinary optical transmission (EOT) through the Al NHs and identify basic design rules for achieving structural coloring or polarizing in our PV color filters. We show that the addition of thin photoactive polymer layers on the symmetrically configured Al NH electrode narrows the bandwidth of the EOT-assisted high-pass light filtering due to the strongly damped anti-symmetric coupling of the surface modes excited on the front and rear surface of the Al NHs, which facilitates the whole visible coloring with relatively high purity for the devices. By engineering the cut-off characteristics of the plasmonic waveguide mode supported by the circular or ellipsoidal Al NHs, beyond the photon recycling capacity, PV color filters and PV polarizing color filters that allow polarization-insensitive and strong polarization-anisotropic color filtering were demonstrated. The findings presented here may shed some light on expanding the utilization of PV electricity generation across new-generation energy-saving electrical display devices.

  17. Polarization and pressure effects in caesium 6S-8S two-photon spectroscopy

    International Nuclear Information System (INIS)

    Lee, Yi-Chi; Tsai, Chin-Chun; Chui, Hsiang-Chen; Chang, Yi-Hsiu; Chen, Ying-Yu

    2010-01-01

    This work analyses the effects of polarization and pressure in caesium 6S-8S two-photon spectroscopy. The linewidth was broadened and the frequency was shifted by a change of polarization states. The frequency shift and the linewidth broadening of the caesium 6S-8S two-photon transition were measured as a function of laser power using one single-frequency Ti:sapphire ring cavity laser, two caesium cells and two quarter-wave plates to ensure polarization states of light, and we showed that the linewidth cannot be evaluated just by fitting data to a Lorentzian shape. As determined by fitting the data to a Voigt profile, the natural linewidth is independent of the polarization states of the pump beams, the laser power and the pressure. Caesium 6S-8S two-photon transitions pumped by a circularly polarized beam have narrower linewidths and smaller shifts than those pumped by a linearly polarized beam. The light shift obtained by pumping with the circularly polarized beam is -6.75(57) Hz (mW mm -2 ) -1 , and that obtained by pumping with a linearly polarized beam is -7.25(45) Hz (mW mm -2 ) -1 . These results agree closely with theoretical calculations. The pressure shift is -588(387) Hz mPa -1 . This work shows how to evaluate two-photon transitions with a Voigt profile, and then helps us to understand two-photon transitions with different polarization states, and improve the signal quality obtained when they are used as frequency markers.

  18. Optical field-strength polarization of two-mode single-photon states

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J; Nistal, M C; Barral, D; Moreno, V, E-mail: suso.linares.beiras@usc.e [Optics Area, Department of Applied Physics, Faculty of Physics and School of Optics and Optometry, University of Santiago de Compostela, Campus Universitario Sur s/n, 15782-Santiago de Compostela, Galicia (Spain)

    2010-09-15

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  19. Optical field-strength polarization of two-mode single-photon states

    International Nuclear Information System (INIS)

    Linares, J; Nistal, M C; Barral, D; Moreno, V

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  20. Measurement of the Asymmetry of Photoproduction of π- Mesons on Linearly Polarized Deuterons by Linearly Polarized Photons

    Science.gov (United States)

    Gauzshtein, V. V.; Zevakov, S. A.; Levchuk, M. I.; Loginov, A. Yu.; Nikolenko, D. M.; Rachek, I. A.; Sadykov, R. Sh.; Toporkov, D. K.; Shestakov, Yu. V.

    2018-05-01

    The first results of a double polarization experiment to extract the asymmetry of the reaction of photoproduction of a π- meson by a linearly polarized photon on a tensor-polarized deuteron in the energy range of the virtual photon (300-700 MeV) are presented. The measurements were performed on an internal tensor-polarized deuterium target in the VEPP-3 electron-positron storage ring for the electron beam energy equal to 2 GeV. The experiment employed the method of recording two protons and the scattered electron in coincidence. The obtained measurement results are compared with the theoretical predictions obtained in the momentum approximation with allowance for πN and NN rescattering in the final state.

  1. LHCb: Probing photon polarization in Bs->phi gamma decay at LHCb

    CERN Multimedia

    Shchutska, L

    2008-01-01

    The radiative decay Bs->phi gamma is one of the benchmark channels in the physics programme of the LHCb experiment. It provides the possibility to test the Standard Model through the indirect measurement of the photon polarization in b->s gamma transition. The statistical uncertainty in the wrong polarization fraction of photons is estimated to be ~0.2 with the 2 fb^{-1} of integrated luminosity.

  2. Production of positive pions from polarized protons by linearly polarized photons in the energy region 300--420 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Get' man, V.A.; Gorbenko, V.G.; Grushin, V.F.; Derkach, A.Y.; Zhebrovskii, Y.V.; Karnaukhov, I.M.; Kolesnikov, L.Y.; Luchanin, A.A.; Rubashkin, A.L.; Sanin, V.M.; Sorokin, P.V.; Sporov, E.A.; Telegin, Y.N.; Shalatskii, S.V.

    1980-10-01

    A technique for measurement of the polarization observables ..sigma.., P, and T for the reaction ..gamma..p..-->..n..pi../sup +/ in a doubly polarized experiment (polarized proton target + linearly polarized photon beam) is described. Measurements of the angular distributions of these observables in the range of pion emission angles 30--150/sup 0/ are presented for four photon energies from 300 to 420 MeV. Inclusion of the new experimental data in an energy-independent multipole analysis of photoproduction from protons permits a more reliable selection of solutions to be made.

  3. Polarized-photon frequency filter in double-ferromagnetic barrier silicene junction

    Energy Technology Data Exchange (ETDEWEB)

    Chantngarm, Peerasak; Yamada, Kou [Domain of Mechanical Science and Technology, Graduate School of Science and Technology, Gunma University, Gunma (Japan); Soodchomshom, Bumned, E-mail: Bumned@hotmail.com [Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 (Thailand)

    2017-05-01

    We present an analytical study of effects from circularly polarized light illumination on controlling spin-valley currents in a dual ferromagnetic-gated silicene. Two different perpendicular electric fields are applied into the ferromagnetic (FM) gates and the photo-irradiated normal (NM) area between the gates. One parallel (P) and two anti-parallel (AP) configurations of exchange fields applied along with chemical potential to the gates are used in this investigation. Interestingly, the studied junction might give rise to polarized-photon frequency filter. Spin-valley filtering can be achieved at the off-resonant frequency region with appropriate direction of electric fields and the configuration of exchange fields (AP-1 or AP-2). Under the photo irradiation, this study found that tunneling magnetoresistance (TMR) is controllable to achieve giant magnetoresistance (GMR) by adjusting electric fields or chemical potentials. Our study suggests the potential of photo-sensing devices in spin-valleytronics realm. - Highlights: • Photon-frequency control of spin-valley currents in silicene is investigated. • Complete photon frequency filtering effect is predicted. • Giant magnetoresistance induced by polarized photon is also found. • The junction is applicable for photo-sensing devices in spin-valleytronics realm.

  4. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates

    International Nuclear Information System (INIS)

    Chen, Peng; Ji, Wei; Wei, Bing-Yan; Hu, Wei; Lu, Yan-Qing; Chigrinov, Vladimir

    2015-01-01

    Arbitrary vector beams (VBs) are realized by the designed polarization converters and corresponding vector-photoaligned q-plates. The polarization converter is a specific twisted nematic cell with one substrate homogeneously aligned and the other space-variantly aligned. By combining a polarization-sensitive alignment agent with a dynamic micro-lithography system, various categories of liquid crystal polarization converters are demonstrated. Besides, traditional radially/azimuthally polarized light, high-order and multi-ringed VBs, and a VB array with different orders are generated. The obtained converters are further utilized as polarization masks to implement vector-photoaligning. The technique facilitates both the volume duplication of these converters and the generation of another promising optical element, the q-plate, which is suitable for the generation of VBs for coherent lasers. The combination of proposed polarization converters and correspondingly fabricated q-plates would drastically enhance the capability of polarization control and may bring more possibilities for the design of photonic devices

  5. Self-error-rejecting photonic qubit transmission in polarization-spatial modes with linear optical elements

    Science.gov (United States)

    Jiang, YuXiao; Guo, PengLiang; Gao, ChengYan; Wang, HaiBo; Alzahrani, Faris; Hobiny, Aatef; Deng, FuGuo

    2017-12-01

    We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple linear-optical elements, including half-wave plates, 50:50 beam splitters, and polarization beam splitters, to convert spatial-polarization modes into different time bins. By using postselection in different time bins, the success probability of obtaining the uncorrupted states approaches 1/4 for single-photon transmission, which is not influenced by the coefficients of noisy channels. Our self-error-rejecting transmission scheme can be generalized to hyperentangled n-photon systems and is useful in practical high-capacity quantum communications with photon systems in two degrees of freedom.

  6. Three experimental tests of Bell's inequalities by measurement of polarization correlation of photons

    International Nuclear Information System (INIS)

    Aspect, A.

    1983-02-01

    We have performed three experimental tests of Bell's inequalities by measuring the linear-polarization correlation of photons emitted by pairs in the 4p 2 1 S 0 → 4s4p 1 P 1 → 4s 2 1 S 0 radiative cascade of calcium. The first part of this dissertation reminds the theoretical background (Bell's theorem), and the experimental situation (previous experiments). We then describe our apparatus: the source (calcium atomic beam selectively excited by two-photon absorption), the optics, the photon coincidence-counting system. Our first experiment, analogous to previous ones (but more precise) involves one-channel polarizers. Our second experiment, based on a conceptually simpler scheme, uses two-channel polarizers. The third experiment involves acousto-optical switches followed by two linear polarizers: these devices act as time-varying polarizers, the orientation of which is changed during the time of flight of photons. In the three experiments, the results are in good agreement with the Quantum mechanical predictions, and they distinctly violate the relevant Bell's inequalities [fr

  7. Measurement of neutron spectra for photonuclear reaction with linearly polarized photons

    Directory of Open Access Journals (Sweden)

    Kirihara Yoichi

    2017-01-01

    Full Text Available Spectra of neutrons produced by a photonuclear reaction from a 197Au target were measured using 16.95 MeV linearly and circularly polarized photon beams at NewSUBARU-BL01 using a time-of-flight method. The difference in the neutron spectra between the cases of a linearly and circularly polarized photon was measured. The difference in the neutron yield increased with the neutron energy and was approximately threefold at the maximum neutron energy. In a direction perpendicular to that of the linear polarization, the neutron yields decreased as the neutron energy increased.

  8. Multi-user distribution of polarization entangled photon pairs

    Energy Technology Data Exchange (ETDEWEB)

    Trapateau, J.; Orieux, A.; Diamanti, E.; Zaquine, I., E-mail: isabelle.zaquine@telecom-paristech.fr [LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013 Paris (France); Ghalbouni, J. [Applied Physics Laboratory, Faculty of Sciences 2, Lebanese University, Campus Fanar, BP 90656 Jdeidet (Lebanon)

    2015-10-14

    We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on the demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.

  9. Thomson scattering of polarized photons in an intense laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  10. Entangled, guided photon generation in (1+1)-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Sciscione, L.; Centini, M.; Sibilia, C.; Bertolotti, M.; Scalora, M.

    2006-01-01

    A scheme based on photonic crystal technology is proposed as an ultrabright source of entangled photons on a miniaturized scale. The geometry consists of a multilayer microcavity, excited by a resonant pump frequency, such that the emitted photons are guided transversally to the direction of the incident pump. The entanglement occurs in direction, frequency, and polarization, and the bandwidth of the emitted photons is of the order of 1 nm. We propose a feasible design based on Al 0.3 Ga 0.7 As/Al 2 O 3 structures and predict an emission rate 10 5 pairs per second with 100 mW pump power. These results are promising for realization of chip and future quantum computer applications

  11. Setting Single Photon Detectors for Use with an Entangled Photon Distribution System

    Science.gov (United States)

    2017-12-01

    EPA software). 5) If a TPI measurement is to be performed, the polarization of the PAs must first be adjusted to account for the birefringence of the... measurement of the entangled photon pairs generated by an entangled photon pair source require at least 2 SPDs operating at their highest possible...v 1. Introduction 1 2. Generation, Detection, and Measurement of Entangled Photon Pairs 1 2.1 Generation of Entangled Photon Pairs 2 2.2

  12. Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber : toward a practical coherent fiber supercontinuum laser

    DEFF Research Database (Denmark)

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin

    2012-01-01

    Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC generat...... of polarization-maintaining DFDD-ANDi fibers to avoid these adverse effects in pursuing a practical coherent fiber SC laser.......Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC...... generation have been ignored. This birefringence is widely present in nonlinear non-polarization maintaining fibers with a typical core size of 2 µm, presumably due to the structural symmetry breaks introduced in the fiber drawing process. We find that an intrinsic form-birefringence on the order of 10...

  13. Electromagnetic corrections to the hadronic vacuum polarization of the photon within QEDL and QEDM

    Science.gov (United States)

    Bussone, Andrea; Della Morte, Michele; Janowski, Tadeusz

    2018-03-01

    We compute the leading QED corrections to the hadronic vacuum polarization (HVP) of the photon, relevant for the determination of leptonic anomalous magnetic moments, al. We work in the electroquenched approximation and use dynamical QCD configurations generated by the CLS initiative with two degenerate flavors of nonperturbatively O(a)-improved Wilson fermions. We consider QEDL and QEDM to deal with the finite-volume zero modes. We compare results for the Wilson loops with exact analytical determinations. In addition we make sure that the volumes and photon masses used in QEDM are such that the correct dispersion relation is reproduced by the energy levels extracted from the charged pions two-point functions. Finally we compare results for pion masses and the HVP between QEDL and QEDM. For the vacuum polarization, corrections with respect to the pure QCD case, at fixed pion masses, turn out to be at the percent level.

  14. Investigation of photon detection probability dependence of SPADnet-I digital photon counter as a function of angle of incidence, wavelength and polarization

    Energy Technology Data Exchange (ETDEWEB)

    Játékos, Balázs, E-mail: jatekosb@eik.bme.hu; Ujhelyi, Ferenc; Lőrincz, Emőke; Erdei, Gábor

    2015-01-01

    SPADnet-I is a prototype, fully digital, high spatial and temporal resolution silicon photon counter, based on standard CMOS imaging technology, developed by the SPADnet consortium. Being a novel device, the exact dependence of photon detection probability (PDP) of SPADnet-I was not known as a function of angle of incidence, wavelength and polarization of the incident light. Our targeted application area of this sensor is next generation PET detector modules, where they will be used along with LYSO:Ce scintillators. Hence, we performed an extended investigation of PDP in a wide range of angle of incidence (0° to 80°), concentrating onto a 60 nm broad wavelength interval around the characteristic emission peak (λ=420 nm) of the scintillator. In the case where the sensor was optically coupled to a scintillator, our experiments showed a notable dependence of PDP on angle, polarization and wavelength. The sensor has an average PDP of approximately 30% from 0° to 60° angle of incidence, where it starts to drop rapidly. The PDP turned out not to be polarization dependent below 30°. If the sensor is used without a scintillator (i.e. the light source is in air), the polarization dependence is much less expressed, it begins only from 50°.

  15. POLAR on board of the Tiangong 2 Chinese space station: measuring the polarization of hard X-rays photons, in particular the polarization of prompt photons from gamma ray bursts.

    Science.gov (United States)

    Produit, Nicolas

    2012-07-01

    POLAR is an homogeneous wide field Compton polarimeter using plastic scintillators and multichannel photomultipliers. The goal of this polarimeter is to measure with controlled systematics the polarization of hard X-ray emitted by unpredictable transient sources The instrument energy range sensitivity is optimized for the detection of the prompt emission of Gamma-Ray Bursts (GRB). Monte-Carlo studies and calibration data collected in polarized photon beams predict that POLAR will be able to measure the polarization degree of 10 GRB per year with a combined systematics and statistical accuracy of better then 10%. POLAR will be mounted outside of the Tiangong 2 Chinese space station that will be launched in space in 2014.

  16. Three-color Sagnac source of polarization-entangled photon pairs.

    Science.gov (United States)

    Hentschel, Michael; Hübel, Hannes; Poppe, Andreas; Zeilinger, Anton

    2009-12-07

    We demonstrate a compact and stable source of polarization-entangled pairs of photons, one at 810 nm wavelength for high detection efficiency and the other at 1550 nm for long-distance fiber communication networks. Due to a novel Sagnac-based design of the interferometer no active stabilization is needed. Using only one 30 mm ppKTP bulk crystal the source produces photons with a spectral brightness of 1.13 x 10(6) pairs/s/mW/THz with an entanglement fidelity of 98.2%. Both photons are single-mode fiber coupled and ready to be used in quantum key distribution (QKD) or transmission of photonic quantum states over large distances.

  17. Photon generator

    Science.gov (United States)

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  18. Optical Field-Strength Polarization of Two-Mode Single-Photon States

    Science.gov (United States)

    Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…

  19. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process

    International Nuclear Information System (INIS)

    Xu, Shuwu; Yao, Yunhua; Jia, Tianqing; Ding, Jingxin; Zhang, Shian; Sun, Zhenrong; Huang, Yunxia

    2015-01-01

    We theoretically and experimentally demonstrate the control of the intermediate state absorption in an (n + m) resonance-mediated multi-photon absorption process by the polarization-modulated femtosecond laser pulse. An analytical solution of the intermediate state absorption in a resonance-mediated multi-photon absorption process is obtained based on the time-dependent perturbation theory. Our theoretical results show that the control efficiency of the intermediate state absorption by the polarization modulation is independent of the laser intensity when the transition from the intermediate state to the final state is coupled by the single-photon absorption, but will be affected by the laser intensity when this transition is coupled by the non-resonant multi-photon absorption. These theoretical results are experimentally confirmed via a two-photon fluorescence control in (2 + 1) resonance-mediated three-photon absorption of Coumarin 480 dye and a single-photon fluorescence control in (1 + 2) resonance-mediated three-photon absorption of IR 125 dye. (paper)

  20. Extension of supercontinuum spectrum generated in photonic crystal fiber by using chirped femtosecond pulses

    Science.gov (United States)

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2017-08-01

    We present results of experimental and numerical investigation of supercontinuum generation in polarization maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52 nJ energy 110 fs duration pulses at 1030 nm with 76 MHz repetition rate. The nonlinear medium was a 32 cm long polarization maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of supercontinuum. We showed that by chirping pump pulses positively or negatively one can obtain broader supercontinuum spectrum than in case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. In our case the supercontinuum spectrum width was extended by up to 115 nm (at maximum chirp value of +10500 fs2 that we could achieve in our setup) compared to the case of unchirped pump at the same peak power.

  1. The polarization-angular structure and elliptical dichroism of the cross sections for three-photon bound-bound transitions in atoms

    International Nuclear Information System (INIS)

    Manakov, N.L.; Merem'yanin, A.V.

    1997-01-01

    Using the electric dipole approximation, we present, in invariant form, the cross section of an arbitrary three-photon transition between the discrete states of an atom with total angular momenta J i and J f . The cross section contains scalar and mixed products of the photon polarization vectors, and invariant atomic parameters dependent only on the photon frequencies. We determine the number of independent atomic parameters at fixed values of J i and J f and obtain their explicit expressions in terms of the reduced composite dipole matrix elements. The polarization dependence of the cross sections is expressed in terms of the degrees l and ξ of linear and circular photon polarizations. We analyze the phenomenon of dissipation-induced circular dichroism in three-photon processes, i.e., the difference Δ of the cross sections for opposite signs of the degree of circular polarization of all the photons. We study in detail the case of two identical photons and the phenomenon of elliptical dichroism, when Δ∼lξ holds and dichroism occurs only when the photons are elliptically polarized, with 0< vertical bar ξ vertical bar <1. Finally, we discuss the dissipation-induced effects of atom polarization in three-photon processes involving linearly polarized or unpolarized photons

  2. Asymmetry of prompt photon production in polarized pp collisions at RHIC

    International Nuclear Information System (INIS)

    Skoro, G.P.; Zupan, M.; Tokarev, M.V.

    1999-01-01

    The prompt photon production in polarized pp collision at high energies is studied. The double-spin asymmetry A LL of the process of calculated by using the Monte Carlo code SPHINX. A possibility to discriminate the spin-dependent gluon distributions and to determine the sign of ΔG id discussed. A detailed study of the expected background, such as π 0 production and decay, is given. Predictions for the longitudinal asymmetry A LL of the prompt photons and π 0 -meson production in the polarized pp collisions at RHIC energies have been made

  3. Design Studies for Flux and Polarization Measurements of Photons and Positrons for SLAC Proposal E166: An experiment to test polarized positron production in the FFTB (LCC-0107)

    Energy Technology Data Exchange (ETDEWEB)

    Woods, M

    2003-10-02

    We present results from design studies carried out to investigate measurements of the flux, spectrum and polarization of undulator photons for SLAC Proposal E166. A transmission Compton polarimeter is considered for measuring the photon circular polarization. We also present results for measuring the flux and spectrum of positrons produced by the undulator photons in an 0.5X{sub 0} Titanium target. And we present some considerations for use of a transmission Compton polarimeter to measure the circular polarization of bremsstrahlung photons emitted by the polarized positrons in a thin radiator.

  4. Measurement of the photon polarization using ${B_s^0\\to \\phi\\gamma}$ at LHCb.

    CERN Document Server

    Hoballah, Mostafa; Deschamps, Olivier

    This thesis is dedicated to the study of the photon polarization in ${B_s^0\\to \\phi\\gamma}$ decays at LHCb. At the quark level, such decays proceed via a $b \\to s \\gamma$ penguin transition and are sensitive to possible virtual contributions from New Physics. The measurement of the photon polarization stands also as a test of the $V-A$ structure of the Standard Model coupling in the processes mediated by loop penguin diagrams. The measurement of the photon polarization can be done through a study of the time-dependent decay rate of the $B$ meson. A delicate treatment has been done to understand the proper time distribution and the selection acceptance affecting it. To control the proper time acceptance, data driven control methods have been developed. Several possible strategies to measure the photon polarization are introduced and preliminary blinded results are presented. A study of some of the systematic effects is discussed. In the context of studying radiative decays, the author has developed a new photo...

  5. Polarized two-photon photoselection in EGFP: Theory and experiment.

    Science.gov (United States)

    Masters, T A; Marsh, R J; Blacker, T S; Armoogum, D A; Larijani, B; Bain, A J

    2018-04-07

    In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S 0 → S 1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S 0 → S 1 transition.

  6. Polarized two-photon photoselection in EGFP: Theory and experiment

    Science.gov (United States)

    Masters, T. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.

    2018-04-01

    In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S0 → S1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S0 → S1 transition.

  7. Asymmetry of prompt photon production in polarized pp collisions at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Skoro, G.P.; Zupan, M. [Institute of Nuclear Science ' Vinca' , Faculty of Physics University of Belgrade, (Yugoslavia); Tokarev, M.V. [Laboratory of High Energies, Joint Institute of Nuclear Research Dubna, Moscow Region (Russian Federation)

    1999-08-01

    The prompt photon production in polarized pp collision at high energies is studied. The double-spin asymmetry A{sub LL} of the process of calculated by using the Monte Carlo code Sphinx. A possibility to discriminate the spin-dependent gluon distributions and to determine the sign of {delta}G is discussed. A detailed study of the expected background, such as {pi}{sup 0} production and decay, is given. Predictions for the longitudinal asymmetry A{sub LL} of the prompt photons and {pi}{sup 0}-meson production in the polarized pp collisions at RHIC energies have been made.

  8. A novel method for polarization squeezing with Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Milanovic, Josip; Lassen, Mikael Østergaard; Andersen, Ulrik Lund

    2010-01-01

    Photonic Crystal Fibers can be tailored to increase the effective Kerr nonlinearity, while producing smaller amounts of excess noise compared to standard silicon fibers. Using these features of Photonic Crystal Fibers we create polarization squeezed states with increased purity compared to standa...... Stokes parameter squeezing of −3.9 ±0.3dB and anti-squeezing of 16.2 ±0.3dB....

  9. Polarization entanglement of sum-frequency photons: A tool to probe the Markovian limit

    Science.gov (United States)

    Volkov, Victor; Chelli, Riccardo

    2015-06-01

    The article addresses the possibility of entanglement-specific infrared-visible sum-frequency generation spectroscopy. In the case of an anisotropic interface, it is possible to employ SSS and PSS polarizations to detect responses not only specific to χY Y Y and χX Y Y nonlinearities, but also to higher-order χ(Y Y Y )(X Y Y ) and χ(X Y Y )(Y Y Y ) nonlinearities. Using quantum mechanical studies of the rhenium complex [Re (OH) 3(CO) 3] as a molecular model, we demonstrate that if such complexes would form an anisotropic orientational distribution at a surface, under the considered geometry and the polarization settings, we may prepare quantum correlated C =O vibrational states to emit polarization-entangled photons. Accordingly, we explore the possibility of a polarization-measurement protocol to extract spectral signatures of the entangled states. The response would be informative on intramolecular interactions. As a result, we discuss the possible practical implications in probing dynamics at interfaces, and different opportunities in the preparation of entangled vibrational states of quantified fidelity.

  10. Research on generating various polarization-modes in polarized illumination system

    Science.gov (United States)

    Huang, Jinping; Lin, Wumei; Fan, Zhenjie

    2013-08-01

    With the increase of the numerical aperture (NA), the polarization of light affects the imaging quality of projection lens more significantly. On the contrary, according to the mask pattern, the resolution of projection lens can be improved by using the polarized illumination. That is to say, using the corresponding polarized beam (or polarization-mode) along with the off-axis illumination will improve the resolution and the imaging quality of the of projection lens. Therefore, the research on the generation of various polarization modes and its conversion methods become more and more important. In order to realize various polarization modes in polarized illumination system, after read a lot of references, we provide a way that fitting for the illumination system with the wavelength of 193nm.Six polarization-modes and a depolarized mode are probably considered. Wave-plate stack is used to generate linearly polarization-mode, which have a higher degree polarization. In order to generate X-Y and Y-X polarization mode, the equipment consisting of four sectors of λ/2 wave plate was used. We combined 16 sectors of λ/2 wave plate which have different orientations of the "slow" axis to generate radial and azimuthal polarization. Finally, a multi-polarization control device was designed. Using the kind of multi-polarization control device which applying this method could help to choose the polarization modes conveniently and flexibility for the illumination system.

  11. Polarization effects for pair creation by photon in oriented crystals at high energy

    International Nuclear Information System (INIS)

    Baier, V.N.; Katkov, V.M.

    2006-01-01

    Pair creation by a photon in an oriented crystal is considered in the frame of the quasiclassical operator method, which includes processes with polarized particles. Under some quite generic assumptions the general expression is derived for the probability of pair creation of longitudinally polarized electron (positron) by circularly polarized photon in oriented crystal. In the particular cases θ > V /m (θ is the angle of incidence, angle between the momentum of the initial photon and axis (plane) of crystal, V is the scale of a potential of axis or a plane relative to which the angle θ is defined) one has the constant field approximation and the coherent pair production theory correspondingly. Side by side with coherent process the probability of incoherent pair creation is calculated, which differs essentially from amorphous one. At high energy the pair creation in oriented crystal is strongly enhanced comparing with the amorphous medium. In the corresponding appendixes the integral polarization of positron is found in an external field and for the coherent and incoherent mechanisms

  12. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal

    International Nuclear Information System (INIS)

    Chen Xi-Yao; Lin Gui-Min; Li Jun-Jun; Xu Xiao-Fu; Jiang Jun-Zhen; Qiang Ze-Xuan; Qiu Yi-Shen; Li Hui

    2012-01-01

    A polarization beam splitter based on a self-collimation Michelson interferometer (SMI) in a hole-type silicon photonic crystal is proposed and numerically demonstrated. Utilizing the polarization dependence of the transmission spectra of the SMI and polarization peak matching method, the SMI can work as a polarization beam splitter (PBS) by selecting an appropriate path length difference in the structure. Based on its novel polarization beam splitting mechanics, the polarization extinction ratios (PERs) for TM and TE modes are as high as 18.4 dB and 24.3 dB, respectively. Since its dimensions are only several operating wavelengths, the PBS may have practical applications in photonic integrated circuits. (fundamental areas of phenomenology(including applications))

  13. Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate.

    Science.gov (United States)

    Saleh, Mohammed F; Di Giuseppe, Giovanni; Saleh, Bahaa E A; Teich, Malvin Carl

    2010-09-13

    Lithium niobate photonic circuits have the salutary property of permitting the generation, transmission, and processing of photons to be accommodated on a single chip. Compact photonic circuits such as these, with multiple components integrated on a single chip, are crucial for efficiently implementing quantum information processing schemes.We present a set of basic transformations that are useful for manipulating modal qubits in Ti:LiNbO(3) photonic quantum circuits. These include the mode analyzer, a device that separates the even and odd components of a state into two separate spatial paths; the mode rotator, which rotates the state by an angle in mode space; and modal Pauli spin operators that effect related operations. We also describe the design of a deterministic, two-qubit, single-photon, CNOT gate, a key element in certain sets of universal quantum logic gates. It is implemented as a Ti:LiNbO(3) photonic quantum circuit in which the polarization and mode number of a single photon serve as the control and target qubits, respectively. It is shown that the effects of dispersion in the CNOT circuit can be mitigated by augmenting it with an additional path. The performance of all of these components are confirmed by numerical simulations. The implementation of these transformations relies on selective and controllable power coupling among single- and two-mode waveguides, as well as the polarization sensitivity of the Pockels coefficients in LiNbO(3).

  14. Nuclear-optical methods for production of polarized photons with energies of a few hundred GeV

    International Nuclear Information System (INIS)

    Ispiryan, K.A.; Ispiryan, M.K.

    1985-01-01

    The absorption coefficients of linearly polarized photons passing through a crystal in parallel to its crystallographic planes are calculated. The methods of determination of the obtainable degree of polarization as well as of the intensity losses for the cases when non-polarized photon beams pass through various crystals in parallel to the planes (110) are described. The energy dependence of the thickness of the quarter-wave plate crystals transforming the linear polarization of the beam into circular one is obtained

  15. LHCb Observation of photon polarization in the $b\\rightarrow s\\gamma$ transition

    CERN Multimedia

    Veneziano, Giovanni

    2014-01-01

    The Standard Model (SM) predicts that the photon emitted in $b\\rightarrow s\\gamma$ transitions is predominantly left-handed. While the measured inclusive $b\\rightarrow s\\gamma$ rate agrees with the SM calculations, no direct evidence exists for a nonzero photon polarization $\\lambda_\\gamma$ in this type of decays. Several extensions of the SM, compatible with all current measurements, predict that the photon acquires a significant right-handed component.

  16. Integration of a photonic crystal polarization beam splitter and waveguide bend.

    Science.gov (United States)

    Zheng, Wanhua; Xing, Mingxin; Ren, Gang; Johnson, Steven G; Zhou, Wenjun; Chen, Wei; Chen, Lianghui

    2009-05-11

    In this work, we present the design of an integrated photonic-crystal polarization beam splitter (PC-PBS) and a low-loss photonic-crystal 60 degrees waveguide bend. Firstly, the modal properties of the PC-PBS and the mechanism of the low-loss waveguide bend are investigated by the two-dimensional finite-difference time-domain (FDTD) method, and then the integration of the two devices is studied. It shows that, although the individual devices perform well separately, the performance of the integrated circuit is poor due to the multi-mode property of the PC-PBS. By introducing deformed airhole structures, a single-mode PC-PBS is proposed, which significantly enhance the performance of the circuit with the extinction ratios remaining above 20 dB for both transverse-electric (TE) and transverse-magnetic (TM) polarizations. Both the specific result and the general idea of integration design are promising in the photonic crystal integrated circuits in the future.

  17. Polarization dependence of two-photon transition intensities in rare-earth doped crystals

    Energy Technology Data Exchange (ETDEWEB)

    Le Nguyen, An-Dien [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    A polarization dependence technique has been developed as a tool to investigate phonon scattering (PS), electronic Raman scattering (ERS), and two-photon absorption (TPA) transition intensities in vanadate and phosphate crystals. A general theory for the polarization dependence (PD) of two-photon transition intensities has been given. Expressions for the polarization dependent behavior of two-photon transition intensities have been tabulated for the 32 crystallographic point groups. When the wavefunctions for the initial and final states of a rare-earth doped in crystals are known, explicit PD expressions with no unknown parameters can be obtained. A spectroscopic method for measuring and interpreting phonon and ERS intensities has been developed to study PrVO4, NdVO4, ErVO4, and TmVO4 crystals. Relative phonon intensities with the polarization of the incident and scattered light arbitrarily varied were accurately predicted and subsequently used for alignment and calibration in ERS measurements in these systems for the first time. Since ERS and PS intensities generally follow different polarization curves as a function of polar angles, the two can be uniquely identified by comparing their respective polarization behavior. The most crucial application of the technique in ERS spectroscopy is the establishment of a stringent test for the Axe theory. For the first time, the F1/F2 ratio extracted from the experimental fits of the ERS intensities were compared with those predicted by theories which include both the second- and third-order contributions. Relatively good agreement between the fitted values of F1/F2 and the predicted values using the second-order theory has been found.

  18. A polarized {sup 3}He target for the photon beam at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J., E-mail: j.krimmer@ipnl.in2p3.fr [Institut fuer Physik, Johannes Gutenberg-Universitaet, Staudinger Weg 7, 55099 Mainz (Germany); Institut de Physique Nucleaire de Lyon, 4 rue Enrico Fermi, 69622 Villeurbanne cedex (France); Aguar Bartolome, P.; Ahrens, J. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Johann-Joachim-Becher-Weg 45, 55099 Mainz (Germany); Altieri, S. [INFN Sezione di Pavia, Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Universita di Pavia, Pavia (Italy); Arends, H.J. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Johann-Joachim-Becher-Weg 45, 55099 Mainz (Germany); Heil, W.; Karpuk, S.; Otten, E.W. [Institut fuer Physik, Johannes Gutenberg-Universitaet, Staudinger Weg 7, 55099 Mainz (Germany); Pedroni, P. [INFN Sezione di Pavia, Pavia (Italy); Salhi, Z. [Institut fuer Physik, Johannes Gutenberg-Universitaet, Staudinger Weg 7, 55099 Mainz (Germany); Thomas, A. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Johann-Joachim-Becher-Weg 45, 55099 Mainz (Germany)

    2011-08-21

    A polarized {sup 3}He target has been installed for the first time inside the 4{pi} Crystal Ball detector at the tagged photon beam of the MAinz MIcrotron (MAMI). It has been demonstrated that the system works reliably and that the polarization losses during handling of the polarized gas are under control. Initial polarization values up to 70% and total relaxation times up to 20 h could be obtained during a first test beam time devoted to the measurement of the double polarized photoabsorption cross-section in the {Delta}(1232) baryon resonance region.

  19. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  20. Two-photon polarization Fourier spectroscopy of metastable atomic hydrogen

    International Nuclear Information System (INIS)

    Duncan, A.J.; Beyer, H.-J.; Kleinpoppen, H.; Sheikh, Z.A,; B-Z Univ., Multan

    1997-01-01

    A novel Fourier-transform spectroscopic method using two-photon polarization to determine the spectral distribution of the two photons emitted in the spontaneous decay of metastable atomic hydrogen is described. The method uses birefringent retardation plates and takes advantage of the subtle interplay between the spectral properties and the entangled polarization properties of the radiation emitted in the decay. Assuming the validity of the theoretical spectral distribution, it is shown that the experimental results agree well with theory. On the other hand, success in solving the inverse problem of determining the spectral distribution from the experimental results is limited by the small number of experimental points. However, making reasonable assumptions it is deduced that the observed spectrum is characterized by a broadband signal of width (0.43 ± 0.06) x 10 16 rad s -1 and centre angular frequency (0.77 ± 0.03) x 10 16 rad s -1 in good agreement with the predictions of 0.489 x 10 16 rad s -1 and 0.775 x 10 16 rad s -1 , respectively, obtained from the theoretical spectral distribution modified to take account of the absorption of the two-photon radiation in air. The values of 1.5 fs for the coherence time and 440 nm for the coherence length for single photons of the two-photon pair which are obtained from the measured bandwidth imply that, in the ideal case, these values are determined by the essentially zero lifetime of the virtual intermediate state of the decay process rather than the long lifetime of the metastable state which, it is suggested, determines the coherence time and coherence length appropriate to certain types of fourth-order interference experiments. (Author)

  1. Theory of the effect of third-harmonic generation on three-photon resonantly enhanced multiphoton ionization in focused beams

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.

    1983-01-01

    Multiphoton ionization in the region near a three-photon resonance is treated for focused, plane-polarized Gaussian beams with diffraction-limited beam divergence. In this situation, a third-harmonic field is generated within the laser beam. At, and very near, three-photon resonance the driving rate for the upper-state probability amplitude due to one-photon absorption of third-harmonic light becomes nearly equal to the corresponding three-photon rate due to the laser field, but these effects are 180 0 out of phase. As a consequence of this cancellation between two pumping terms, the three-photon resonance line essentially disappears at moderate concentrations and the observed ionization has a line shape that is close to the phase-matching curve for third-harmonic generation. The ionization signal, near but not on the resonance, is due almost entirely to absorption of third-harmonic photons plus other laser photons; three-photon resonantly enhanced multiphoton ionization by the laser is much weaker. This is particularly true on the blue side of the three-photon resonance at detunings where phase matching occurs. The problem is treated quite generally with predictions of the full line shape for n-photon ionization and third-harmonic light generation near three-photon resonance, including the rather strong influences of positively dispersive buffer gases. We also show that the cancellation between the one-photon and the three-photon process is partially spoiled in the presence of a counterpropagating beam at the same frequency

  2. The Slope Imaging Multi-Polarization Photon-Counting Lidar: Development and Performance Results

    Science.gov (United States)

    Dabney, Phillip

    2010-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar is an airborne instrument developed to demonstrate laser altimetry measurement methods that will enable more efficient observations of topography and surface properties from space. The instrument was developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryosphere remote sensing. The SIMPL transmitter is an 11 KHz, 1064 nm, plane-polarized micropulse laser transmitter that is frequency doubled to 532 nm and split into four push-broom beams. The receiver employs single-photon, polarimetric ranging at 532 and 1064 nm using Single Photon Counting Modules in order to achieve simultaneous sampling of surface elevation, slope, roughness and depolarizing scattering properties, the latter used to differentiate surface types. Data acquired over ice-covered Lake Erie in February, 2009 are documenting SIMPL s measurement performance and capabilities, demonstrating differentiation of open water and several ice cover types. ICESat-2 will employ several of the technologies advanced by SIMPL, including micropulse, single photon ranging in a multi-beam, push-broom configuration operating at 532 nm.

  3. Measurement of Coherent Emission and Linear Polarization of Photons by Electrons in the Strong Fields of Aligned Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2004-01-01

    We present new results regarding the features of high energy photon emission by an electron beam of 178 GeV penetrating a 1.5 cm thick single Si crystal aligned at the Strings-Of-Strings (SOS) orientation. This concerns a special case of coherent bremsstrahlung where the electron interacts with the strong fields of successive atomic strings in a plane and for which the largest enhancement of the highest energy photons is expected. The polarization of the resulting photon beam was measured by the asymmetry of electron-positron pair production in an aligned diamond crystal analyzer. By the selection of a single pair the energy and the polarization of individual photons could be measured in an the environment of multiple photons produced in the radiator crystal. Photons in the high energy region show less than 20% linear polarization at the 90% confidence level.

  4. Efficient generation of single and entangled photons on a silicon photonic integrated chip

    International Nuclear Information System (INIS)

    Mower, Jacob; Englund, Dirk

    2011-01-01

    We present a protocol for generating on-demand, indistinguishable single photons on a silicon photonic integrated chip. The source is a time-multiplexed spontaneous parametric down-conversion element that allows optimization of single-photon versus multiphoton emission while realizing high output rate and indistinguishability. We minimize both the scaling of active elements and the scaling of active element loss with multiplexing. We then discuss detection strategies and data processing to further optimize the procedure. We simulate an improvement in single-photon-generation efficiency over previous time-multiplexing protocols, assuming existing fabrication capabilities. We then apply this system to generate heralded Bell states. The generation efficiency of both nonclassical states could be increased substantially with improved fabrication procedures.

  5. One photon exchange processes and the calibration of polarization of high energy protons

    International Nuclear Information System (INIS)

    Margolis, B.; Thomas, G.H.

    1978-01-01

    Polarization phenomena in small momentum transfer high energy one-photon exchange processes in the reaction p + A → X + A where A is a complex nucleus and X is anything are examined. It is shown that these polarizations can be related directly to photoproduction polarization effects in the reaction γ + p → X at low energies. Explicit formulae are written for polarization effects in the case where X → π 0 + p

  6. Features of possible polarized photon beams at high energy and corresponding physics programme or the proton structure function using real photons

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1980-01-01

    In the range of electron energies available at Fermilab, 100 GeV less than or equal to E less than or equal to 500 GeV, coherent Bremsstrahlung in crystals, particularly diamond, gives a huge enhancement to the equivalent photon spectrum at large values of x where x = k/E. The photons in this enhancement are polarized. Requirements on electron beam energy spread, angular divergence and spot size imposed by the use of a diamond as a radiator are discussed. The physics program emphasizes hard processes and tests of QCD using polarization

  7. Two-Photon Luminescence and Second Harmonic Generation from Gold Micro-Plates

    Directory of Open Access Journals (Sweden)

    Xu Wang

    2014-09-01

    Full Text Available Micron-sized gold plates were prepared by reducing chloroauric acid with lemongrass extract. Their two-photon luminescence (TPL and second harmonic generation (SHG were investigated. The results show that the TPL and SHG intensity of gold plates is dependent on the wavelength and polarization of excitation laser. The TPL intensity of gold plates decreases with the increase of the excitation wavelength except for a small peak around 820–840 nm, while SHG intensity increases with the excitation wavelength redshift. In addition, it is found that the TPL intensity of the gold plate’s edge is related with the angle between the edge orientation and the polarization direction of the excitation light. The TPL intensity increases with the angle increase from 0° to 90°.

  8. Wigner representation for experiments on quantum cryptography using two-photon polarization entanglement produced in parametric down-conversion

    International Nuclear Information System (INIS)

    Casado, A; Guerra, S; Placido, J

    2008-01-01

    In this paper, the theory of parametric down-conversion in the Wigner representation is applied to Ekert's quantum cryptography protocol. We analyse the relation between two-photon entanglement and (non-secure) quantum key distribution within the Wigner framework in the Heisenberg picture. Experiments using two-qubit polarization entanglement generated in nonlinear crystals are analysed in this formalism, along with the effects of eavesdropping attacks in the case of projective measurements

  9. Quantum interface between an atom and a photon

    International Nuclear Information System (INIS)

    Wilk, Tatjana

    2008-02-01

    A single atom strongly coupled to a high-finesse optical cavity is a versatile tool for quantum information processing. Utilized as a single-photon source, it allows one to generate single photons very efficiently in a well de ned spatio-temporal mode. In a first experiment, polarization-control over the photons is shown. A time-resolved two-photon interference experiment proves the indistinguishability of these photons - required in various quantum information processing schemes. Moreover, in a second experiment, entanglement between the polarization of the emitted photon and the population of the atomic Zeeman levels is created. Subsequent state mapping of the atomic state onto another photon results in a pair of polarization-entangled photons emitted one after the other from the cavity. Although these schemes are in principle possible in free space, the cavity boosts the efficiency by several orders of magnitude. (orig.)

  10. Room-temperature single-photon sources with definite circular and linear polarizations based on single-emitter fluorescence in liquid crystal hosts

    International Nuclear Information System (INIS)

    Winkler, Justin M; Lukishova, Svetlana G; Bissell, Luke J

    2013-01-01

    Definite circular and linear polarizations of room-temperature single-photon sources, which can serve as polarization bases for quantum key distribution, are produced by doping planar-aligned liquid crystal hosts with single fluorescence emitters. Chiral 1-D photonic bandgap microcavities for a single handedness of circularly polarized light were prepared from both monomeric and oligomeric cholesteric liquid crystals. Fluorescent emitters, such as nanocrystal quantum dots, nitrogen vacancy color centers in nanodiamonds, and rare-earth ions in nanocrystals, were doped into these microcavity structures and used to produce circularly polarized fluorescence of definite handedness. Additionally, we observed circularly polarized resonances in the spectrum of nanocrystal quantum dot fluorescence at the edge of the cholesteric microcavity's photonic stopband. For this polarization we obtained a ∼4.9 enhancement of intensity compared to the polarization of the opposite handedness that propagates without photonic bandgap microcavity effects. Such a resonance is indicative of coupling of quantum dot fluorescence to the cholesteric microcavity mode. We have also used planar-aligned nematic liquid crystal hosts to align DiI dye molecules doped into the host, thereby providing a single-photon source of linear polarization of definite direction. Antibunching is demonstrated for fluorescence of nanocrystal quantum dots, nitrogen vacancy color centers, and dye molecules in these liquid crystal structures.

  11. Polarizing neutron by light-irradiated graphene

    International Nuclear Information System (INIS)

    Peng, Feng

    2015-01-01

    We study the spin orientation of the neutron scattered by light-irradiated graphene and calculate the average value of spin z-component of the neutron in terms of a generating functional technique. Our calculation results indicate that there is a remarkable neutron polarization effect when a neutron penetrates graphene irradiated by a circularly polarized light. We analyse the dynamical source of generating this effect from the aspect of photon-mediated interaction between the neutron spin and valley pseudospin. By comparing with the polarization induced by a magnetic field, we find that this polarization may be equivalent to the one led by a magnetic field of several hundred Teslas if the photon frequency is in the X-ray frequency range. This provides an approach of polarizing neutrons. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Wigner representation for experiments on quantum cryptography using two-photon polarization entanglement produced in parametric down-conversion

    Energy Technology Data Exchange (ETDEWEB)

    Casado, A [Departamento de Fisica Aplicada III, Escuela Superior de Ingenieros, Universidad de Sevilla, 41092 Sevilla (Spain); Guerra, S [Centro Asociado de la Universidad Nacional de Educacion a Distancia de Las Palmas de Gran Canaria (Spain); Placido, J [Departamento de Fisica, Universidad de Las Palmas de Gran Canaria (Spain)], E-mail: acasado@us.es

    2008-02-28

    In this paper, the theory of parametric down-conversion in the Wigner representation is applied to Ekert's quantum cryptography protocol. We analyse the relation between two-photon entanglement and (non-secure) quantum key distribution within the Wigner framework in the Heisenberg picture. Experiments using two-qubit polarization entanglement generated in nonlinear crystals are analysed in this formalism, along with the effects of eavesdropping attacks in the case of projective measurements.

  13. Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal

    International Nuclear Information System (INIS)

    Gong, Yan-Xiao; Xie, Zhen-Da; Xu, Ping; Zhu, Shi-Ning; Yu, Xiao-Qiang; Xue, Peng

    2011-01-01

    We propose a scheme for the generation of counterpropagating polarization-entangled photon pairs from a dual-periodically-poled crystal. Compared with the usual forward-wave-type source, this source, in the backward-wave way, has a much narrower bandwidth. With a 2-cm-long bulk crystal, the bandwidths of the example sources are estimated to be 3.6 GHz, and the spectral brightnesses are more than 100 pairs/(s GHz mW). Two concurrent quasi-phase-matched spontaneous parametric down-conversion processes in a single crystal enable our source to be compact and stable. This scheme does not rely on any state projection and applies to both degenerate and nondegenerate cases, facilitating applications of the entangled photons.

  14. Light trapping and circularly polarization at a Dirac point in 2D plasma photonic crystals

    Science.gov (United States)

    Li, Qian; Hu, Lei; Mao, Qiuping; Jiang, Haiming; Hu, Zhijia; Xie, Kang; Wei, Zhang

    2018-03-01

    Light trapping at the Dirac point in 2D plasma photonic crystal has been obtained. The new localized mode, Dirac mode, is attributable to neither photonic bandgap nor total internal reflection. It exhibits a unique algebraic profile and possesses a high-Q factor resonator of about 105. The Dirac point could be modulated by tuning the filling factor, plasma frequency and plasma cyclotron frequency, respectively. When a magnetic field parallel to the wave vector is applied, Dirac modes for right circularly polarized and left circularly polarized waves could be obtained at different frequencies, and the Q factor could be tuned. This property will add more controllability and flexibility to the design and modulation of novel photonic devices. It is also valuable for the possibilities of Dirac modes in photonic crystal containing other kinds of metamaterials.

  15. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure.

    Science.gov (United States)

    Zhuang, Leimeng; Beeker, Willem; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-02-11

    We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.

  16. Intrinsically narrowband pair photon generation in microstructured fibres

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Alex; Bell, Bryn; Fulconis, Jeremie; Halder, Matthaeus M; Cemlyn, Ben; Rarity, John G [Centre for Communications Research, Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB (United Kingdom); Alibart, Olivier [Laboratoire de Physique de la Matiere Condensee, Unite Mixte de Recherche 6622, Centre National de la Recherche Scientifique, Universite de Nice-Sophia Antipolis, Parc Valrose 06108, Nice 2 (France); Xiong Chunle; Wadsworth, William J, E-mail: alex.clark@bristol.ac.uk [Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2011-06-15

    In this paper, we study the tailoring of photon spectral properties generated by four-wave mixing in a birefringent photonic crystal fibre (PCF). The aim is to produce intrinsically narrow-band photons and hence to achieve high non-classical interference visibility and generate high-fidelity entanglement without any requirement for spectral filtering, leading to high effective detection efficiencies. We show unfiltered Hong-Ou-Mandel interference visibilities of 77% between photons from the same PCF and 80% between separate sources. We compare results from modelling the PCF to these experiments and analyse photon purities.

  17. Spin- and valley-polarized one-way Klein tunneling in photonic topological insulators.

    Science.gov (United States)

    Ni, Xiang; Purtseladze, David; Smirnova, Daria A; Slobozhanyuk, Alexey; Alù, Andrea; Khanikaev, Alexander B

    2018-05-01

    Recent advances in condensed matter physics have shown that the spin degree of freedom of electrons can be efficiently exploited in the emergent field of spintronics, offering unique opportunities for efficient data transfer, computing, and storage ( 1 - 3 ). These concepts have been inspiring analogous approaches in photonics, where the manipulation of an artificially engineered pseudospin degree of freedom can be enabled by synthetic gauge fields acting on light ( 4 - 6 ). The ability to control these degrees of freedom significantly expands the landscape of available optical responses, which may revolutionize optical computing and the basic means of controlling light in photonic devices across the entire electromagnetic spectrum. We demonstrate a new class of photonic systems, described by effective Hamiltonians in which competing synthetic gauge fields, engineered in pseudospin, chirality/sublattice, and valley subspaces, result in bandgap opening at one of the valleys, whereas the other valley exhibits Dirac-like conical dispersion. We show that this effective response has marked implications on photon transport, among which are as follows: (i) a robust pseudospin- and valley-polarized one-way Klein tunneling and (ii) topological edge states that coexist within the Dirac continuum for opposite valley and pseudospin polarizations. These phenomena offer new ways to control light in photonics, in particular, for on-chip optical isolation, filtering, and wave-division multiplexing by selective action on their pseudospin and valley degrees of freedom.

  18. Observation of photon polarization in the b → sγ transition at LHCb

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The Standard Model predicts that the photons emitted in flavor-changing neutral current b to s gamma transitions are predominantly left-handed. However, the photon polarization has never been observed in a direct measurement and remains largely unexplored. Several extensions of the Standard Model predicting a significantly different photon polarization have not been yet ruled out by other measurements, such as the inclusive B to Xs gamma decay rate. This talk will focus on the recent study of the radiative B to K pi pi gamma decays performed using data collected in pp collisions with the LHCb detector at 7 and 8 TeV center-of-mass energies. The distribution of the angle of the photon direction with respect to the plane defined by the final-state hadrons in their rest frame is studied in intervals of K pi pi mass and the asymmetry between the number of signal events found on each side of the plane is presented. This approach is conceptually very similar to the historic Wu measurement of parity violation from...

  19. Photonic Choke-Joints for Dual-Polarization Waveguides

    Science.gov (United States)

    Wollack, Edward J.; U-yen, Kongpop; Chuss, David T.

    2010-01-01

    Photonic choke joint (PCJ) structures for dual-polarization waveguides have been investigated for use in device and component packaging. This interface enables the realization of a high performance non-contacting waveguide joint without degrading the in-band signal propagation properties. The choke properties of two tiling approaches, symmetric square Cartesian and octagonal quasi-crystal lattices of metallic posts, are explored and optimal PCJ design parameters are presented. For each of these schemes, the experimental results for structures with finite tilings demonstrate near ideal transmission and reflection performance over a full waveguide band.

  20. First experimental study of photon polarization in radiative $B^{0}_{s}$ decays

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baszczyk, Mateusz; Batozskaya, Varvara; Batsukh, Baasansuren; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chobanova, Veronika; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Déléage, Nicolas; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Ferguson, Dianne; Fernandez Albor, Victor; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Furfaro, Emiliano; Färber, Christian; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, V.V.; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Griffith, Peter; Grillo, Lucia; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hatch, Mark; He, Jibo; Head, Timothy; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hombach, Christoph; Hopchev, P H; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Koliiev, Serhii; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kosmyntseva, Alena; Kozachuk, Anastasiia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Mussini, Manuel; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubert, Konstantin; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavorima; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Toriello, Francis; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Vernet, Maxime; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhang, Yu; Zhelezov, Alexey; Zheng, Yangheng; Zhokhov, Anatoly; Zhu, Xianglei; Zhukov, Valery; Zucchelli, Stefano

    2017-01-09

    The polarization of photons produced in radiative $B^{0}_{s}$ decays is studied for the first time. The data are recorded by the LHCb experiment in $pp$ collisions corresponding to an integrated luminosity of 3fb$^{-1}$ at center-of-mass energies of $7$ and $8$TeV. A time-dependent analysis of the $B^{0}_{s} \\to \\phi \\gamma$ decay rate is conducted to determine the parameter ${\\mathcal{A}}^\\Delta$, which is related to the ratio of right- over left-handed photon polarization amplitudes in $b \\to s \\gamma$ transitions. A value of ${\\mathcal{A}}^\\Delta=-0.98^{\\,+0.46\\,+0.23}_{\\,-0.52\\,-0.20}$ is measured. This result is consistent with the Standard Model prediction within two standard deviations.

  1. First Experimental Study of Photon Polarization in Radiative B_{s}^{0} Decays.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, I; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhu, X; Zhukov, V; Zucchelli, S

    2017-01-13

    The polarization of photons produced in radiative B_{s}^{0} decays is studied for the first time. The data are recorded by the LHCb experiment in pp collisions corresponding to an integrated luminosity of 3  fb^{-1} at center-of-mass energies of 7 and 8 TeV. A time-dependent analysis of the B_{s}^{0}→ϕγ decay rate is conducted to determine the parameter A^{Δ}, which is related to the ratio of right- over left-handed photon polarization amplitudes in b→sγ transitions. A value of A^{Δ}=-0.98_{-0.52}^{+0.46}_{-0.20}^{+0.23} is measured. This result is consistent with the standard model prediction within 2 standard deviations.

  2. Photon-ion spectrometer PIPE at the Variable Polarization XUV Beamline of PETRA III

    International Nuclear Information System (INIS)

    Schippers, S; Ricz, S; Buhr, T; Hellhund, J; Müller, A; Klumpp, S; Martins, M; Flesch, R; Rühl, E; Lower, J; Jahnke, T; Metz, D; Schmidt, L Ph H; Dörner, R; Ullrich, J; Wolf, A

    2012-01-01

    The photon-ion spectrometer PIPE is currently being installed as a permanent end station at beamline P04 of the PETRA III synchrotron radiation source. Various state-of-the-art experimental techniques will be available for studies of gaseous matter with circularly and linearly polarized synchrotron radiation with photon energies in range the 100–3000 eV.

  3. Path entanglement of photons by non-local bunching

    International Nuclear Information System (INIS)

    Eisenberg, H.; Hodelin, J.; Khoury, G.; Bouwmeester, D.

    2005-01-01

    Full Text:Path entangled photon states can be used to overcome classical limits on the accuracy of interferometric measurements such as the diffraction limit. These states are superpositions of finding n photons in one out of two (or more) paths. Using stimulated parametric down-conversion, we propose and demonstrate a method for generating heralded multiphoton path entanglement, without applying post-selection. parametric down-conversion is relatively easy to produce compared to pure Fock states as demanded by other proposals. By a special coincidence detection at one down converted arm, the photons of the second arm non-locally bunch into the desired state. Entanglement in photon number is created between two polarization modes rather than two paths. A polarization beam-splitter and a 2 wave plate can translate between the two representations. The experimental generation of a two-photon path entangled state was detected by observing interference at half the photon wavelength. The scheme is generally extendable to higher photon numbers

  4. A Next Generation BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Tauro, Sandeep

    2011-01-01

    We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials.......We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials....

  5. Broadband enhancement of single photon emission and polarization dependent coupling in silicon nitride waveguides.

    Science.gov (United States)

    Bisschop, Suzanne; Guille, Antoine; Van Thourhout, Dries; Hens, Zeger; Brainis, Edouard

    2015-06-01

    Single-photon (SP) sources are important for a number of optical quantum information processing applications. We study the possibility to integrate triggered solid-state SP emitters directly on a photonic chip. A major challenge consists in efficiently extracting their emission into a single guided mode. Using 3D finite-difference time-domain simulations, we investigate the SP emission from dipole-like nanometer-sized inclusions embedded into different silicon nitride (SiNx) photonic nanowire waveguide designs. We elucidate the effect of the geometry on the emission lifetime and the polarization of the emitted SP. The results show that highly efficient and polarized SP sources can be realized using suspended SiNx slot-waveguides. Combining this with the well-established CMOS-compatible processing technology, fully integrated and complex optical circuits for quantum optics experiments can be developed.

  6. Design of single-polarization wavelength splitter based on photonic crystal fiber.

    Science.gov (United States)

    Zhang, Shanshan; Zhang, Weigang; Geng, Pengcheng; Li, Xiaolan; Ruan, Juan

    2011-12-20

    A new single-polarization wavelength splitter based on the photonic crystal fiber (PCF) has been proposed. The full-vector finite-element method (FEM) is applied to analyze the single-polarization single-mode guiding properties. Splitting of two different wavelengths is realized by adjusting the structural parameters. The semi-vector three-dimensional beam propagation method is employed to confirm the wavelength splitting characteristics of the PCF. Numerical simulations show that the wavelengths of 1.3 μm and 1.55 μm are split for a fiber length of 10.7 mm with single-polarization guiding in each core. The crosstalk between the two cores is low over appreciable optical bandwidths.

  7. In-line production of a bi-circular field for generation of helically polarized high-order harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Kfir, Ofer, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il; Bordo, Eliyahu; Ilan Haham, Gil; Lahav, Oren; Cohen, Oren, E-mail: ofertx@technion.ac.il, E-mail: oren@si.technion.ac.il [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Fleischer, Avner [Solid State Institute and Physics Department, Technion, Haifa 32000 (Israel); Department of Physics and Optical Engineering, Ort Braude College, Karmiel 21982 (Israel)

    2016-05-23

    The recent demonstration of bright circularly polarized high-order harmonics of a bi-circular pump field gave rise to new opportunities in ultrafast chiral science. In previous works, the required nontrivial bi-circular pump field was produced using a relatively complicated and sensitive Mach-Zehnder-like interferometer. We propose a compact and stable in-line apparatus for converting a quasi-monochromatic linearly polarized ultrashort driving laser field into a bi-circular field and employ it for generation of helically polarized high-harmonics. Furthermore, utilizing the apparatus for a spectroscopic spin-mixing measurement, we identify the photon spins of the bi-circular weak component field that are annihilated during the high harmonics process.

  8. Spin polarization in top pair production in association with two photons at NLO+PS

    CERN Document Server

    Luisoni, Gionata

    2018-01-01

    This talk focuses on the impact of top-quark spin polarization effects in Higgs boson production in association with a top-quark pair, where the Higgs boson decays to two photons. Predictions for the signal are compared with direct top-quark pair production in association with two photons at NLO+PS.

  9. Spin polarization in top pair production in association with two photons at NLO+PS

    CERN Document Server

    Luisoni, Gionata

    2017-01-01

    This talk focuses on the impact of top-quark spin polarization effects in Higgs boson production in association with a top-quark pair, where the Higgs boson decays to two photons. Predictions for the signal are compared with direct top-quark pair production in association with two photons at NLO+PS.

  10. Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter.

    Science.gov (United States)

    Hameed, Mohamed Farhat O; Heikal, A M; Younis, B M; Abdelrazzak, Maher; Obayya, S S A

    2015-03-23

    A novel ultra-high tunable photonic crystal fiber (PCF) polarization filter is proposed and analyzed using finite element method. The suggested design has a central hole infiltrated with a nematic liquid crystal (NLC) that offers high tunability with temperature and external electric field. Moreover, the PCF is selectively filled with metal wires into cladding air holes. Results show that the resonance losses and wavelengths are different in x and y polarized directions depending on the rotation angle φ of the NLC. The reported filter of compact device length 0.5 mm can achieve 600 dB / cm resonance losses at φ = 90° for x-polarized mode at communication wavelength of 1300 mm with low losses of 0.00751 dB / cm for y-polarized mode. However, resonance losses of 157.71 dB / cm at φ = 0° can be achieved for y-polarized mode at the same wavelength with low losses of 0.092 dB / cm for x-polarized mode.

  11. Total number albedo and average cosine of the polar angle of low-energy photons reflected from water

    Directory of Open Access Journals (Sweden)

    Marković Srpko

    2007-01-01

    Full Text Available The total number albedo and average cosine of the polar angle for water and initial photon energy range from 20 keV to 100 keV are presented in this pa per. A water shield in the form of a thick, homogenous plate and per pendicular incidence of the monoenergetic photon beam are assumed. The results were obtained through Monte Carlo simulations of photon reflection by means of the MCNP computer code. Calculated values for the total number albedo were compared with data previously published and good agreement was confirmed. The dependence of the average cosine of the polar angle on energy is studied in detail. It has been found that the total average cosine of the polar angle has values in the narrow interval of 0.66-0.67, approximately corresponding to the reflection angle of 48°, and that it does not depend on the initial photon energy.

  12. On-chip synthesis of circularly polarized emission of light with integrated photonic circuits.

    Science.gov (United States)

    He, Li; Li, Mo

    2014-05-01

    The helicity of circularly polarized (CP) light plays an important role in the light-matter interaction in magnetic and quantum material systems. Exploiting CP light in integrated photonic circuits could lead to on-chip integration of novel optical helicity-dependent devices for applications ranging from spintronics to quantum optics. In this Letter, we demonstrate a silicon photonic circuit coupled with a 2D grating emitter operating at a telecom wavelength to synthesize vertically emitting, CP light from a quasi-TE waveguide mode. Handedness of the emitted circular polarized light can be thermally controlled with an integrated microheater. The compact device footprint enables a small beam diameter, which is desirable for large-scale integration.

  13. Design of a novel multi channel photonic crystal fiber polarization beam splitter

    Science.gov (United States)

    Zhao, Yunyan; Li, Shuguang; Wang, Xinyu; Wang, Guangyao; Shi, Min; Wu, Junjun

    2017-10-01

    A kind of multi channel dual-core photonic crystal fiber polarization beam splitter is designed. We analyze the effects of the lattice parameters and the thickness of gold layer on the beam splitting by the finite element method. Numerical results show that the thickness of metal layer and the size of the air holes near the fiber cores are closely linked with the nature of the polarization beam splitter. We also obtain that extinction ratio can reach -73.87 dB at 1 . 55 μm wavelength and at 1 . 41 μm, 1 . 65 μm extinction ratio can reach 30.8978 dB and 31.1741 dB, respectively. The comparison of the effect on the characteristic of the photonic crystal fiber with coating no gold is also taken into account.

  14. Spin- and valley-polarized one-way Klein tunneling in photonic topological insulators

    Science.gov (United States)

    Slobozhanyuk, Alexey

    2018-01-01

    Recent advances in condensed matter physics have shown that the spin degree of freedom of electrons can be efficiently exploited in the emergent field of spintronics, offering unique opportunities for efficient data transfer, computing, and storage (1–3). These concepts have been inspiring analogous approaches in photonics, where the manipulation of an artificially engineered pseudospin degree of freedom can be enabled by synthetic gauge fields acting on light (4–6). The ability to control these degrees of freedom significantly expands the landscape of available optical responses, which may revolutionize optical computing and the basic means of controlling light in photonic devices across the entire electromagnetic spectrum. We demonstrate a new class of photonic systems, described by effective Hamiltonians in which competing synthetic gauge fields, engineered in pseudospin, chirality/sublattice, and valley subspaces, result in bandgap opening at one of the valleys, whereas the other valley exhibits Dirac-like conical dispersion. We show that this effective response has marked implications on photon transport, among which are as follows: (i) a robust pseudospin- and valley-polarized one-way Klein tunneling and (ii) topological edge states that coexist within the Dirac continuum for opposite valley and pseudospin polarizations. These phenomena offer new ways to control light in photonics, in particular, for on-chip optical isolation, filtering, and wave-division multiplexing by selective action on their pseudospin and valley degrees of freedom. PMID:29756032

  15. Applications of a controlled phase gate for photons

    International Nuclear Information System (INIS)

    Schmid, C.; Kiesel, N.; Weber, U.; Weinfurter, H.; Toth, G; Ursin, R.; Guehne, O.

    2005-01-01

    Full text: We report on experimental applications of a probabilistic quantum controlled-phase gate for photons. The gate is operating on the polarization degree of freedom and applies a pi phase shift to a target photon, conditioned on the polarization of a control photon. This is experimentally realized by overlapping the input photons on a beam splitter with polarization dependent splitting ratio (TH=1, TV=1/3). The phase is thereby introduced by a second order interference in case two vertically polarized photons are passing the gate. In order to ensure polarization independent weighting coefficients for the output states of all possible input combinations, two beam splitters with reversed splitting ratio (TH=1/3, TV=1) are placed after each output of the overlap BS. The gate allows the implementation of a full Bell state analysis and by this the accomplishment of a complete teleportation experiment. As input we used horizontal, vertical, +45 o , and right circular polarized photon states from which we could deduce a teleportation process tomography for each of the four Bell states detected. Whereas in the Bell state analysis the gate maps an entangled state onto a product state, it can be used as well in the opposite way for an entangling operation. We exploit this fact to generate a certain four qubit entangled state, the so-called four-photon cluster state. In order to do so we apply the gate on two photons of two different EPR pairs originating from a spontaneous parametric down conversion process. The resulting experimental state shows a fidelity of 74.4 ± 1.2 % to the theoretically expected one. By the experimental violation of a specially tailored Bell inequality we are able to proof its non-locality and delimit it from a GHZ state. We demonstrate its genuine four-photon entanglement by a witness measurement. Furthermore we characterize the generated state by the study of its remarkable entanglement persistency properties with respect to the measurement

  16. Quasi-B-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangyu, E-mail: cqufangyuli@hotmail.com [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wen, Hao [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fang, Zhenyun [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wei, Lianfu; Wang, Yiwen; Zhang, Miao [Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-10-15

    Interaction of very low-frequency primordial (relic) gravitational waves (GWs) to cosmic microwave background (CMB) can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM) response to high-frequency GWs (HFGWs) would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.

  17. Associative birth of the J/PSI meson and photon in the polarizing ep and pp interactions

    International Nuclear Information System (INIS)

    Temiraliev, A.T.

    2001-01-01

    Appearance of so named 'spin crisis' acutely states the problem about role of gluons and sea quacks in nucleon spin structure function. For revealing of gluons contribution the joint birth of J/PSI meson and photon with opposite transverse impulse in polarizing electron-proton and proton-proton interactions have been studied. Calculation have been carried within the framework of the theory of quantum chromodynamics collisions. Charming meson decay into either electron-positron pair or meson pair gives experimental pure finite state. Measurement of the polarizing asymmetry of associative birth of J/PSI meson and photon in the result of both experiments (ep and pp) allow to determine gluons polarization unambiguously

  18. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    International Nuclear Information System (INIS)

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2015-01-01

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure

  19. Single-photon three-qubit quantum logic using spatial light modulators.

    Science.gov (United States)

    Kagalwala, Kumel H; Di Giuseppe, Giovanni; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-09-29

    The information-carrying capacity of a single photon can be vastly expanded by exploiting its multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can be encoded per photon, to date only two-qubit single-photon quantum operations have been realized. Here, we report an experimental demonstration of three-qubit single-photon, linear, deterministic quantum gates that exploit photon polarization and the two-dimensional spatial-parity-symmetry of the transverse single-photon field. These gates are implemented using a polarization-sensitive spatial light modulator that provides a robust, non-interferometric, versatile platform for implementing controlled unitary gates. Polarization here represents the control qubit for either separable or entangling unitary operations on the two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit Greenberger-Horne-Zeilinger and W states, which is confirmed by tomographical reconstruction of single-photon density matrices. This strategy provides access to a wide range of three-qubit states and operations for use in few-qubit quantum information processing protocols.Photons are essential for quantum information processing, but to date only two-qubit single-photon operations have been realized. Here the authors demonstrate experimentally a three-qubit single-photon linear deterministic quantum gate by exploiting polarization along with spatial-parity symmetry.

  20. Enhanced two-photon emission from a dressed biexciton

    International Nuclear Information System (INIS)

    Sánchez Muñoz, Carlos; Laussy, Fabrice P; Tejedor, Carlos; Valle, Elena del

    2015-01-01

    Radiative two-photon cascades from biexcitons in semiconductor quantum dots under resonant two-photon excitation are promising candidates for the generation of photon pairs. In this work, we propose a scheme to obtain two-photon emission that allows us to operate under very intense driving fields. This approach relies on the Purcell enhancement of two-photon virtual transitions between states of the biexciton dressed by the laser. The richness provided by the biexcitonic level structure allows to reach a variety of regimes, from antibunched and bunched photon pairs with polarization orthogonal to the driving field, to polarization entangled two-photon emission. This provides evidence that the general paradigm of two-photon emission from a ladder of dressed states can find interesting, particular implementations in a variety of systems. (paper)

  1. Model-independent analysis of polarization effects in elastic electron-deuteron scattering in presence of two-photon exchange

    International Nuclear Information System (INIS)

    Gakh, G.I.; Tomasi-Gustafsson, E.

    2006-01-01

    The general spin structure of the matrix element, taking into account the 2-photon exchange contribution, for the elastic electron (positron) - deuteron scattering has been derived using general symmetry properties of the hadron electromagnetic interaction, such as P-, C- and T-invariances as well as lepton helicity conservation in QED at high energy. Taking into account also crossing symmetry, the amplitudes of e ± d scattering can be parametrized in terms of fifteen real functions. The expressions for the differential cross section and for all polarization observables are given in terms of these functions. We consider the case of an arbitrary polarized deuteron target and polarized electron beam (both longitudinal and transverse). The transverse polarization of the electron beam induces a single-spin asymmetry which is non-zero in presence of 2-photon exchange. It is shown that elastic deuteron electromagnetic form factors can still be extracted in presence of 2 photon exchange, from the measurements of the differential cross sections and of one polarization observable (for example, the tensor asymmetry) for electron and positron deuteron elastic scattering, in the same kinematical conditions. (authors)

  2. Low crosstalk waveguide intersections in honeycomb lattice photonic crystals for TM-polarized light

    International Nuclear Information System (INIS)

    Ma, P; Jäckel, H

    2011-01-01

    We present the design of a low crosstalk, high throughput waveguide intersection for transverse-magnetic-polarized light. The design is based on two orthogonal photonic crystal waveguides and a resonant photonic crystal cavity in honeycomb lattice geometry. The results of our numerical simulation validate the concept of the design and demonstrate a crosstalk smaller than 0.1% and throughput transmission of more than 80% for both orthogonal waveguide branches

  3. Antiresonance induced spin-polarized current generation

    Science.gov (United States)

    Yin, Sun; Min, Wen-Jing; Gao, Kun; Xie, Shi-Jie; Liu, De-Sheng

    2011-12-01

    According to the one-dimensional antiresonance effect (Wang X R, Wang Y and Sun Z Z 2003 Phys. Rev. B 65 193402), we propose a possible spin-polarized current generation device. Our proposed model consists of one chain and an impurity coupling to the chain. The energy level of the impurity can be occupied by an electron with a specific spin, and the electron with such a spin is blocked because of the antiresonance effect. Based on this phenomenon our model can generate the spin-polarized current flowing through the chain due to different polarization rates. On the other hand, the device can also be used to measure the generated spin accumulation. Our model is feasible with today's technology.

  4. Polarized wiggler for NSLS x-ray ring design considerations

    International Nuclear Information System (INIS)

    Friedman, A.; Krinsky, S.; Blum, E.

    1992-03-01

    We examine the properties of an elliptically polarized wiggler that will generate circularly polarized photons with energy spectrum of 3--12 KeV. The vertical wiggler magnetic field is produced by permanent magnets while the horizontal wiggler field is generated by electric coils capable of AC excitation. The radiation parameters of the wiggler are presented, including photon flux, circular and linear polarization and spectrum. These parameters are compared to the synchrotron radiation from a bending magnet. Numerical values are calculated for radiation from the wiggler and bending magnet for the NSLS X-ray ring parameters. A conceptual design for such a wiggler is discussed and several different alternatives are analyzed. We consider AC excitation of the wiggler to produce the time modulation of the elliptic polarization, and also to produce time modulated linearly polarized radiation

  5. Polarization dependence of two-photon absorption coefficient and nonlinear susceptibility tensor in InP

    International Nuclear Information System (INIS)

    Matsusue, Toshio; Bando, Hiroyuki; Fujita, Shoichi; Takayama, Yusuke

    2011-01-01

    Two-photon absorption (TPA) effect in (001) InP is investigated using fs laser. Its dependences on wavelength and polarization are clarified by single and double beam methods with linearly polarized lights. Characteristic features are revealed and discussed with scaling law, crystal bonding and mutual relation of polarizations for double beams. The results are successfully analyzed on the basis of the third-order susceptibility tensor for comprehensive understanding of TPA effect at any polarization geometry. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Quasi-B-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes

    Directory of Open Access Journals (Sweden)

    F.Y. Fangyu Li

    2016-10-01

    Full Text Available Interaction of very low-frequency primordial (relic gravitational waves (GWs to cosmic microwave background (CMB can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM response to high-frequency GWs (HFGWs would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.

  7. Polarization splitter based on interference effects in all-solid photonic crystal fibers.

    Science.gov (United States)

    Mao, Dong; Guan, Chunying; Yuan, Libo

    2010-07-01

    We propose a novel kind of polarization splitter in all-solid photonic crystal fibers based on the mode interference effects. Both the full-vector finite-element method and the semi-vector three-dimensional beam propagation method are employed to design and analyze the characteristics of the splitter. Numerical simulations show that x-polarized and y-polarized modes are split entirely along with 6.8 mm long propagation. An extinction ratio of more than 20 dB and a crosstalk of less than -20 dB are obtained within the wavelength range of 1.541-1.556 microm. The extinction ratio and the crosstalk at 1.55 microm are 28.9 and -29.0 dB for x polarization, while the extinction ratio and the crosstalk at 1.55 microm are 29.9 and -29.8 dB for y polarization, respectively.

  8. Scheme for entanglement concentration of unknown atomic entangled states by interference of polarized photons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Yeon, Kyu-Hwang, E-mail: hfwang@ybu.edu.c, E-mail: szhang@ybu.edu.c [Department of Physics and BK21 Program for Device Physics, College of Natural Science, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of)

    2010-12-14

    Based on the interference effect of polarized photons, we propose a practical scheme for entanglement concentration of unknown atomic entangled states. In the scheme, two {lambda}{lambda}-type atoms belonging to different entangled pairs are individually trapped in two spatially separated cavities. By the subsequent detection of the polarized photons leaking out of the separate optical cavities, Alice and Bob as two distant parties can probabilistically extract one maximally entangled four-atom Greenberger-Horne-Zeilinger (GHZ) state from two identical partially entangled Einstein-Podolsky-Rosen (EPR) pairs. We also discuss the influence of cavity decay on the success probability of the scheme. The scheme is feasible and within the reach of current experimental technology.

  9. Measurement of the linear polarization of the photons in the elementary processes of bremsstrahlung production

    International Nuclear Information System (INIS)

    Bleier, W.

    1983-01-01

    The polarization of the photons in the elementary processes of the electron-nucleus and electron-electron bremsstrahlung was measured. Electrons with an energy of 300 keV were scattered by copper, gold and carbon target. The polarization in the different processes was measured by using different coincidence methods. (BEF)

  10. Plasmonic vortex generator without polarization dependence

    Science.gov (United States)

    Wang, Han; Liu, Lixia; Liu, Chunxiang; Li, Xing; Wang, Shuyun; Xu, Qing; Teng, Shuyun

    2018-03-01

    In view of the limitations of vortex generators with polarization dependence at present, we propose a plasmonic vortex generator composed of rectangular holes etched in silver film, in which the optical vortex can be generated under arbitrary linearly polarized light illumination. Two sets of rectangular holes are arranged equidistantly on a circle and rotate in postulate directions. Theoretical analysis provides the design principle for the vortex generator, and numerical simulations give guidance on designating the vortex generator parameters. Experimental measurements verify the performance of the proposed vortex generator. Moreover, two alternative structures for the generation of a plasmonic vortex are also provided in this paper. The resulting perfect vortex, compact structure and flexible illumination conditions will lead to wide applications of this plasmonic vortex generator.

  11. Measurement of the photon polarization in radiative $B^0_s$ decays at LHCb

    CERN Multimedia

    Sanchez Mayordomo, Carlos

    2017-01-01

    The photon polarization is studied for the first time in $B_s^0$ decays, using an integrated luminosity of 3 fb$^{-1}$ of proton-proton data recorded by the LHCb experiment. An untagged time-dependent analysis of $B_s^0 \\rightarrow \\phi\\gamma$ decays allows to measure the CPV parameter $\\mathcal{A}^{\\Delta}$, which is sensitive to the left- and right-handed helicity amplitudes. The measured value $\\mathcal{A}^{\\Delta} = -0.98 \\; ^{+0.46}_{-0.52}\\text{(stat.)} ^{+0.23}_{-0.20}\\text{(syst.)}$ is consistent with the Standard Model prediction within two standard deviations. This value can put constraints on the Wilson coefficients $\\mathcal{C}_7$ and $\\mathcal{C}_7^{'}$. With a tagged analysis of the same decay the parameter $S_{\\phi\\gamma}$, also sensitive to the photon polarization, could be measured.

  12. Observation of non-classical correlations in sequential measurements of photon polarization

    International Nuclear Information System (INIS)

    Suzuki, Yutaro; Iinuma, Masataka; Hofmann, Holger F

    2016-01-01

    A sequential measurement of two non-commuting quantum observables results in a joint probability distribution for all output combinations that can be explained in terms of an initial joint quasi-probability of the non-commuting observables, modified by the resolution errors and back-action of the initial measurement. Here, we show that the error statistics of a sequential measurement of photon polarization performed at different measurement strengths can be described consistently by an imaginary correlation between the statistics of resolution and back-action. The experimental setup was designed to realize variable strength measurements with well-controlled imaginary correlation between the statistical errors caused by the initial measurement of diagonal polarizations, followed by a precise measurement of the horizontal/vertical polarization. We perform the experimental characterization of an elliptically polarized input state and show that the same complex joint probability distribution is obtained at any measurement strength. (paper)

  13. On-chip generation of heralded photon-number states

    Science.gov (United States)

    Vergyris, Panagiotis; Meany, Thomas; Lunghi, Tommaso; Sauder, Gregory; Downes, James; Steel, M. J.; Withford, Michael J.; Alibart, Olivier; Tanzilli, Sébastien

    2016-10-01

    Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, i.e., non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5 ± 8% and 95.0 ± 8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits.

  14. Electrically Rotatable Polarizer Using One-Dimensional Photonic Crystal with a Nematic Liquid Crystal Defect Layer

    Directory of Open Access Journals (Sweden)

    Ryotaro Ozaki

    2015-09-01

    Full Text Available Polarization characteristics of defect mode peaks in a one-dimensional (1D photonic crystal (PC with a nematic liquid crystal (NLC defect layer have been investigated. Two different polarized defect modes are observed in a stop band. One group of defect modes is polarized along the long molecular axis of the NLC, whereas another group is polarized along its short axis. Polarizations of the defect modes can be tuned by field-induced in-plane reorientation of the NLC in the defect layer. The polarization properties of the 1D PC with the NLC defect layer is also investigated by the finite difference time domain (FDTD simulation.

  15. Monte Carlo generator ELRADGEN 2.0 for simulation of radiative events in elastic ep-scattering of polarized particles

    Science.gov (United States)

    Akushevich, I.; Filoti, O. F.; Ilyichev, A.; Shumeiko, N.

    2012-07-01

    The structure and algorithms of the Monte Carlo generator ELRADGEN 2.0 designed to simulate radiative events in polarized ep-scattering are presented. The full set of analytical expressions for the QED radiative corrections is presented and discussed in detail. Algorithmic improvements implemented to provide faster simulation of hard real photon events are described. Numerical tests show high quality of generation of photonic variables and radiatively corrected cross section. The comparison of the elastic radiative tail simulated within the kinematical conditions of the BLAST experiment at MIT BATES shows a good agreement with experimental data. Catalogue identifier: AELO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1299 No. of bytes in distributed program, including test data, etc.: 11 348 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: All Operating system: Any RAM: 1 MB Classification: 11.2, 11.4 Nature of problem: Simulation of radiative events in polarized ep-scattering. Solution method: Monte Carlo simulation according to the distributions of the real photon kinematic variables that are calculated by the covariant method of QED radiative correction estimation. The approach provides rather fast and accurate generation. Running time: The simulation of 108 radiative events for itest:=1 takes up to 52 seconds on Pentium(R) Dual-Core 2.00 GHz processor.

  16. SPIN-POLARIZED PHOTOCURRENT THROUGH QUANTUM DOT PHOTODETECTOR

    Directory of Open Access Journals (Sweden)

    Nguyen Van Hieu

    2017-11-01

    Full Text Available The theory of the photocurrent through the photodetector based on a two-level semiconductor quantum dot (QD is presented. The analytical expressions of the matrix elements of the electronic transitions generated by the absorption of the circularly polarized photons are derived in the lowest order of the perturbation theory with respect to the electron tunneling interaction as well as the electron-photon interaction. From these expressions the mechanism of the generation of the spin-polarized of electrons in the photocurrent is evident. It follows that the photodetector based on the two-level semiconductor QD can be used as the model of a source of highly spinpolarized electrons.

  17. Extracting and Using Photon Polarization Information in Radiative B Decays

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Yuval

    2000-05-09

    The authors discuss the uses of conversion electron pairs for extracting photon polarization information in weak radiative B decays. Both cases of leptons produced through a virtual and real photon are considered. Measurements of the angular correlation between the (K-pi) and (e{sup +}e{sup {minus}}) decay planes in B --> K*(--> K-pi)gamma (*)(--> e{sup +}e{sup {minus}}) decays can be used to determine the helicity amplitudes in the radiative B --> K*gamma decays. A large right-handed helicity amplitude in B-bar decays is a signal of new physics. The time-dependent CP asymmetry in the B{sup 0} decay angular correlation is shown to measure sin 2-beta and cos 2-beta with little hadronic uncertainty.

  18. Broadband photonic crystal fiber coupler with polarization selection of coupling ratio

    Science.gov (United States)

    Jaroszewicz, Leszek R.; Stasiewicz, Karol A.; Marć, Paweł; Szymański, Michał

    2010-09-01

    In the paper a new broadband photonic crystal fiber coupler is presented. The proper application of the biconical taper technology has been used for manufacturing the coupler without air holes collapse in LMA10 fiber (NKT Photonics Crystal). This coupler, operates in the weakly coupling condition, protects coupling operation in range from 900 nm to 1700 nm. The coupling ratio between output arms is depending on wavelength and can be tuning by selection the proper input state of polarization. It gives opportunity to use the broadband crystal fiber coupler in many applications in which it is necessary to tune a coupling between output arms during the measurement.

  19. Real-time photonic sampling with improved signal-to-noise and distortion ratio using polarization-dependent modulators

    Science.gov (United States)

    Liang, Dong; Zhang, Zhiyao; Liu, Yong; Li, Xiaojun; Jiang, Wei; Tan, Qinggui

    2018-04-01

    A real-time photonic sampling structure with effective nonlinearity suppression and excellent signal-to-noise ratio (SNR) performance is proposed. The key points of this scheme are the polarization-dependent modulators (P-DMZMs) and the sagnac loop structure. Thanks to the polarization sensitive characteristic of P-DMZMs, the differences between transfer functions of the fundamental signal and the distortion become visible. Meanwhile, the selection of specific biases in P-DMZMs is helpful to achieve a preferable linearized performance with a low noise level for real-time photonic sampling. Compared with the quadrature-biased scheme, the proposed scheme is capable of valid nonlinearity suppression and is able to provide a better SNR performance even in a large frequency range. The proposed scheme is proved to be effective and easily implemented for real time photonic applications.

  20. Metropolitan Quantum Key Distribution with Silicon Photonics

    Science.gov (United States)

    Bunandar, Darius; Lentine, Anthony; Lee, Catherine; Cai, Hong; Long, Christopher M.; Boynton, Nicholas; Martinez, Nicholas; DeRose, Christopher; Chen, Changchen; Grein, Matthew; Trotter, Douglas; Starbuck, Andrew; Pomerene, Andrew; Hamilton, Scott; Wong, Franco N. C.; Camacho, Ryan; Davids, Paul; Urayama, Junji; Englund, Dirk

    2018-04-01

    Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalable resource for future formation of metropolitan quantum-secure communications networks.

  1. Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Savanier, Marc, E-mail: msavanier@eng.ucsd.edu; Mookherjea, Shayan, E-mail: smookherjea@eng.ucsd.edu [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-06-20

    Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, we generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.

  2. Undulator-based production of polarized positrons

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G. [Tel-Aviv Univ. (Israel); Barley, J. [Cornell Univ., Ithaca, NY (United States); Batygin, Y. [SLAC, Menlo Park, CA (US)] (and others)

    2009-05-15

    Full exploitation of the physics potential of a future International Linear Collider will require the use of polarized electron and positron beams. Experiment E166 at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which an electron beam passes through a helical undulator to generate photons (whose first-harmonic spectrum extended to 7.9 MeV) with circular polarization, which are then converted in a thin target to generate longitudinally polarized positrons and electrons. The experiment was carried out with a one-meter-long, 400-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) operated at 46.6 GeV. Measurements of the positron polarization have been performed at five positron energies from 4.5 to 7.5 MeV. In addition, the electron polarization has been determined at 6.7MeV, and the effect of operating the undulator with a ferrofluid was also investigated. To compare the measurements with expectations, detailed simulations were made with an upgraded version of GEANT4 that includes the dominant polarization-dependent interactions of electrons, positrons, and photons with matter. The measurements agree with calculations, corresponding to 80% polarization for positrons near 6 MeV and 90% for electrons near 7 MeV. (orig.)

  3. Design of a compact polarizing beam splitter based on a photonic crystal ring resonator with a triangular lattice.

    Science.gov (United States)

    Yu, Tianbao; Huang, Jiehui; Liu, Nianhua; Yang, Jianyi; Liao, Qinghua; Jiang, Xiaoqing

    2010-04-10

    We propose and simulate a new kind of compact polarizing beam splitter (PBS) based on a photonic crystal ring resonator (PCRR) with complete photonic bandgaps. The two polarized states are separated far enough by resonant and nonresonant coupling between the waveguide modes and the microring modes. Some defect holes are utilized to control the beam propagation. The simulated results obtained by the finite-difference time-domain method show that high transmission (over 95%) is obtained and the polarization separation is realized with a length as short as 3.1 microm. The design of the proposed PBS can be flexible, thanks to the advantages of PCRRs.

  4. Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, 650011 Kunming, Yunnan Province (China)

    2017-04-01

    Linear and circular polarizations of gamma-ray bursts (GRBs) have been detected recently. We adopt a simplified model to investigate GRB polarization characteristics in this paper. A compressed two-dimensional turbulent slab containing stochastic magnetic fields is considered, and jitter radiation can produce the linear polarization under this special magnetic field topology. Turbulent Faraday rotation measure (RM) of this slab makes strong wavelength-dependent depolarization. The jitter photons can also scatter with those magnetic clumps inside the turbulent slab, and a nonzero variance of the Stokes parameter V can be generated. Furthermore, the linearly and circularly polarized photons in the optical and radio bands may suffer heavy absorptions from the slab. Thus we consider the polarized jitter radiation transfer processes. Finally, we compare our model results with the optical detections of GRB 091018, GRB 121024A, and GRB 131030A. We suggest simultaneous observations of GRB multi-wavelength polarization in the future.

  5. Efficient generation of photonic entanglement and multiparty quantum communication

    Energy Technology Data Exchange (ETDEWEB)

    Trojek, Pavel

    2007-09-15

    This thesis deals largely with the problem of efficient generation of photonic entanglement with the principal aim of developing a bright source of polarization-entangled photon pairs, which meets the requirements for reliable and economic operation of quantum communication prototypes and demonstrators. Our approach uses a cor-related photon-pair emission in nonlinear process of spontaneous parametric downconversion pumped by light coming from a compact and cheap blue laser diode. Two alternative source configurations are examined within the thesis. The first makes use of a well established concept of degenerate non-collinear emission from a single type-II nonlinear crystal and the second relies on a novel method where the emissions from two adjacent type-I phase-matched nonlinear crystals operated in collinear non-degenerate regime are coherently overlapped. The latter approach showed to be more effective, yielding a total detected rate of almost 10{sup 6} pairs/s at >98% quantum interference visibility of polarization correlations. The second issue addressed within the thesis is the simplification and practical implementation of quantum-assisted solutions to multiparty communication tasks. We show that entanglement is not the only non-classical resource endowing the quantum multiparty information processing its power. Instead, only the sequential communication and transformation of a single qubit can be sufficient to accomplish certain tasks. This we prove for two distinct communication tasks, secret sharing and communication complexity. Whereas the goal of the first is to split a cryptographic key among several parties in a way that its reconstruction requires their collaboration, the latter aims at reducing the amount of communication during distributed computational tasks. Importantly, our qubitassisted solutions to the problems are feasible with state-of-the-art technology. This we clearly demonstrate in the laboratory implementation for 6 and 5 parties

  6. Efficient generation of photonic entanglement and multiparty quantum communication

    International Nuclear Information System (INIS)

    Trojek, Pavel

    2007-09-01

    This thesis deals largely with the problem of efficient generation of photonic entanglement with the principal aim of developing a bright source of polarization-entangled photon pairs, which meets the requirements for reliable and economic operation of quantum communication prototypes and demonstrators. Our approach uses a cor-related photon-pair emission in nonlinear process of spontaneous parametric downconversion pumped by light coming from a compact and cheap blue laser diode. Two alternative source configurations are examined within the thesis. The first makes use of a well established concept of degenerate non-collinear emission from a single type-II nonlinear crystal and the second relies on a novel method where the emissions from two adjacent type-I phase-matched nonlinear crystals operated in collinear non-degenerate regime are coherently overlapped. The latter approach showed to be more effective, yielding a total detected rate of almost 10 6 pairs/s at >98% quantum interference visibility of polarization correlations. The second issue addressed within the thesis is the simplification and practical implementation of quantum-assisted solutions to multiparty communication tasks. We show that entanglement is not the only non-classical resource endowing the quantum multiparty information processing its power. Instead, only the sequential communication and transformation of a single qubit can be sufficient to accomplish certain tasks. This we prove for two distinct communication tasks, secret sharing and communication complexity. Whereas the goal of the first is to split a cryptographic key among several parties in a way that its reconstruction requires their collaboration, the latter aims at reducing the amount of communication during distributed computational tasks. Importantly, our qubitassisted solutions to the problems are feasible with state-of-the-art technology. This we clearly demonstrate in the laboratory implementation for 6 and 5 parties

  7. Proceedings of the Workshop on future of nuclear physics in Europe with polarized electrons and photons

    International Nuclear Information System (INIS)

    Didelez, J.P.; Tamas, G.

    1990-01-01

    In the proceedings of the workshop, held at the Institut de Physique Nucleaire in Orsay, France, full texts of 20 contributions are presented. The two main topics were polarized electrons and polarized photons. It has been reported that significant processes have been made recently in the science and technology of polarized electron sources, polarized targets and polarimeters. The relevant tools are therefore now available to complete extensive experimental programs. The 20 papers are indexed and abstracted separately for the INIS database. (R.P.)

  8. Generation of Fourier-transform-limited heralded single photons

    International Nuclear Information System (INIS)

    U'Ren, Alfred B.; Jeronimo-Moreno, Yasser; Garcia-Gracia, Hipolito

    2007-01-01

    In this paper we study the spectral (temporal) properties of heralded single photon wave packets, triggered by the detection of an idler photon in the process of parametric down conversion. The generated single photons are studied within the framework of the chronocyclic Wigner function, from which the single photon spectral width and temporal duration can be computed. We derive specific conditions on the two-photon joint spectral amplitude which result in both pure and Fourier-transform-limited heralded single photons. Likewise, we present specific source geometries which lead to the fulfillment of these conditions and show that one of these geometries leads, for a given pump bandwidth, to the temporally shortest possible heralded single photon wave packets

  9. MEASUREMENT OF POLARIZATION OBSERVABLES IN VECTOR MESON PHOTOPRODUCTION USING A TRANSVERSELY-POLARIZED FROZEN-SPIN TARGET AND POLARIZED PHOTONS AT CLAS, JEFFERSON LAB

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Priyashree [Florida State Univ., Tallahassee, FL (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-11-30

    The study of baryon resonances provides a deeper understanding of the strong interaction because the dynamics and relevant degrees of freedom hidden within them are re ected by the properties of the excited states of baryons. Higher-lying excited states at and above 1.7 GeV/c2 are generally predicted to have strong couplings to final states involving a heavier meson, e. g. one of the vector mesons, ρ, ω φ, as compared to a lighter pseudoscalar meson, e. g. π and η. Decays to the ππΝ final states via πΔ also become more important through the population of intermediate resonances. We observe that nature invests in mass rather than momentum. The excited states of the nucleon are usually found as broadly overlapping resonances which may decay into a multitude of final states involving mesons and baryons. Polarization observables make it possible to isolate single resonance contributions from other interference terms. The CLAS g9 (FROST) experiment, as part of the N* spectroscopy program at Je?erson Laboratory, accumulated photoproduction data using circularly- & linearly-polarized photons incident on a transversely-polarized butanol target (g9b experiment) in the photon energy range 0:3-2:4 GeV & 0:7-2:1 GeV, respectively. In this work, the analysis of reactions and polarization observables which involve two charged pions, either in the fully exclusive reaction γρ -> ρπ+π- or in the semi-exclusive reaction with a missing neutral pion, γρ -> ρπ+π-(π0) will be presented. For the reaction ρπ+π-, eight polarization observables (Is, Ic, Px, Py, Psx; y, Pcx; y) have been extracted. The high statistics data rendered it possible to extract these observables in three dimensions. All of them are first-time measurements. The fairly good agreement of Is, Ic obtained from this analysis with the experimental results from a previous CLAS experiment provides support for the first-time measurements. For the reaction γρ -> ρω -> ρπ+π(π0, five polarization

  10. Two-photon polarization data storage in bacteriorhodopsin films and its potential use in security applications

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, Martin; Hampp, Norbert, E-mail: hampp@staff.uni-marburg.de [Department of Chemistry, Material Sciences Center, University of Marburg, Hans-Meerwein-Str., D-35032 Marburg (Germany); Rhinow, Daniel [Max-Planck-Institute of Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt (Germany)

    2014-02-24

    Bacteriorhodopsin (BR) films allow write-once-read-many recording of polarization data by a two-photon-absorption (TPA) process. The optical changes in BR films induced by the TPA recording were measured and the Müller matrix of a BR film was determined. A potential application of BR films in security technology is shown. Polarization data can be angle-selective retrieved with high signal-to-noise ratio. The BR film does not only carry optical information but serves also as a linear polarizer. This enables that polarization features recorded in BR films may be retrieved by merely using polarized light from a mobile phone display.

  11. Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems.

    Science.gov (United States)

    Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In

    2014-01-13

    A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).

  12. Efficient Entanglement Concentration of Nonlocal Two-Photon Polarization-Time-Bin Hyperentangled States

    Science.gov (United States)

    Wang, Zi-Hang; Yu, Wen-Xuan; Wu, Xiao-Yuan; Gao, Cheng-Yan; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo

    2018-03-01

    We present two different hyperentanglement concentration protocols (hyper-ECPs) for two-photon systems in nonlocal polarization-time-bin hyperentangled states with known parameters, including Bell-like and cluster-like states, resorting to the parameter splitting method. They require only one of two parties in quantum communication to operate her photon in the process of entanglement concentration, not two, and they have the maximal success probability. They work with linear optical elements and have good feasibility in experiment, especially in the case that there are a big number of quantum data exchanged as the parties can obtain the information about the parameters of the nonlocal hyperentangled states by sampling a subset of nonlocal hyperentangled two-photon systems and measuring them. As the quantum state of photons in the time-bin degree of freedom suffers from less noise in an optical-fiber channel, these hyper-ECPs may have good applications in practical long-distance quantum communication in the future.

  13. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-30

    We propose theoretically and demonstrate experimentally an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. Since a large number of positive and negative coefficients can be easily implemented, UWB pulses fitted to the FCC mask requirements can be generated. As an example, a four tap pulse generator is experimentally demonstrated which complies with the FCC regulation. The proposed pulse generator allows different pulse modulation formats since the amplitude, polarity and time delay of generated pulse is controlled.

  14. Single-photon generator for optical telecommunication wavelength

    International Nuclear Information System (INIS)

    Usuki, T; Sakuma, Y; Hirose, S; Takemoto, K; Yokoyama, N; Miyazawa, T; Takatsu, M; Arakawa, Y

    2006-01-01

    We report on the generation of single-photon pulses from a single InAs/InP quantum dot in telecommunication bands (1.3-1.55 μm: higher transmittance through an optical fiber). First we prepared InAs quantum dots on InP (0 0 1) substrates in a low-pressure MOCVD by using a so-called InP 'double-cap' procedure. The quantum dots have well-controlled photo emission wavelength in the telecommunication bands. We also developed a single-photon emitter in which quantum dots were embedded. Numerical simulation designed the emitter to realize efficient injection of the emitted photons into a single-mode optical fiber. Using a Hanbury-Brown and Twiss technique has proved that the photons through the fiber were single photons

  15. Applications of circularly polarized photons at the ALS with a bend magnet source

    International Nuclear Information System (INIS)

    1992-02-01

    The purpose of this workshop is to focus attention on, and to stimulate the scientific exploitation of, the natural polarization properties of bend-magnet synchrotron radiation at the ALS -- for research in biology, materials science, physics, and chemistry. The topics include: The Advanced Light Source; Magnetic Circular Dichroism and Differential Scattering on Biomolecules; Tests of Fundamental Symmetries; High T c Superconductivity; Photoemission from Magnetic and Non-magnetic Solids; Studies of Highly Correlated Systems; and Instrumentation for Photon Transport and Polarization Measurements

  16. Polarized wiggler for NSLS X-ray ring

    International Nuclear Information System (INIS)

    Friedman, A.; Zhang, X.; Krinsky, S.; Blum, E.B.

    1993-01-01

    We examine the properties of an elliptically polarized wiggler that will generate circularly polarized photons with energy spectrum of 3--12 KeV. The vertical wiggler magnetic field is produced by permanent magnets while the horizontal wiggler field is generated by electric coils capable of AC excitation. The radiation parameters of the wiggler is discussed. We consider AC excitation of the wiggler to produce the time modulation of the elliptic polarization. The power is dissipated in the vacuum chamber due to the eddy current

  17. Metropolitan Quantum Key Distribution with Silicon Photonics

    Directory of Open Access Journals (Sweden)

    Darius Bunandar

    2018-04-01

    Full Text Available Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss. Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalable resource for future formation of metropolitan quantum-secure communications networks.

  18. Tuning the transmission lineshape of a photonic crystal slab guided-resonance mode by polarization control.

    Science.gov (United States)

    Huang, Ningfeng; Martínez, Luis Javier; Povinelli, Michelle L

    2013-09-09

    We demonstrate a system consisting of a two-dimensional photonic crystal slab and two polarizers which has a tunable transmission lineshape. The lineshape can be tuned from a symmetric Lorentzian to a highly asymmetric Fano lineshape by rotating the output polarizer. We use temporal coupled mode theory to explain the measurement results. The theory also predicts tunable phase shift and group delay.

  19. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    Science.gov (United States)

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  20. Polarization control of high order harmonics in the EUV photon energy range.

    Science.gov (United States)

    Vodungbo, Boris; Barszczak Sardinha, Anna; Gautier, Julien; Lambert, Guillaume; Valentin, Constance; Lozano, Magali; Iaquaniello, Grégory; Delmotte, Franck; Sebban, Stéphane; Lüning, Jan; Zeitoun, Philippe

    2011-02-28

    We report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploited.

  1. Inherent polarization entanglement generated from a monolithic semiconductor chip

    DEFF Research Database (Denmark)

    Horn, Rolf T.; Kolenderski, Piotr; Kang, Dongpeng

    2013-01-01

    Creating miniature chip scale implementations of optical quantum information protocols is a dream for many in the quantum optics community. This is largely because of the promise of stability and scalability. Here we present a monolithically integratable chip architecture upon which is built...... a photonic device primitive called a Bragg reflection waveguide (BRW). Implemented in gallium arsenide, we show that, via the process of spontaneous parametric down conversion, the BRW is capable of directly producing polarization entangled photons without additional path difference compensation, spectral...... as a serious contender on which to build large scale implementations of optical quantum processing devices....

  2. The influence of the polarization and power of a photon target on the near-threshold detachment of fast H- ions

    International Nuclear Information System (INIS)

    Artemov, A.S.; Avidzba, A.A.; Vartazaryan, A.S.

    1996-01-01

    The results of theoretical investigation of the single- and two-photon detachment of fast negative hydrogen ions obtained in the framework of the zero-range-potential approximation at a photon energy above the single-photon threshold, are presented. The corresponding cross sections and near-threshold partial distributions of photoelectrons in the space of transverse momenta and energy of the laboratory frame are investigated in detail for various light-field polarization and the cross angles of ion and photon fluxes. For purposes of beam diagnostics the possibility of effective control of the fast H - ion photodetachment in a probing laser target is shown. Taking into account single-photon and background two-photon detachment channels the expressions, that allow one to obtain the resulting distributions of photoelectrons for various light power and photon energy in the near-threshold area of interest, are presented. Choosing the target power, the space orientation of the momentum and polarization of photons, one can realize the conditions of transfer of needed information about the beam to fast electrons of hydrogen atoms with a maximum accuracy. (author). 44 refs., 19 figs

  3. Radiative corrections to the beam spin asymmetry in photon electroproduction e polarized p {yields} ep{gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Fonvieille, H.; Bensafa, I. [LPC-Clermont-Fd, Universite Blaise Pascal, F-63170 Aubiere Cedex (France)

    2006-11-15

    We have measured at MAMI the beam single spin asymmetry (SSA) in exclusive photon electroproduction (e polarized p {yields} ep{gamma}) with a longitudinally polarized beam, in the region of the {delta}(1232) resonance. In this document the value of the radiative correction to this asymmetry is obtained for our kinematics. Although the correction is expected to be very small and negligible, its value is needed as a confirmation and for the purpose of systematic error estimate. The parameter of kinematics are given as follows: four-momentum transfer of the virtual photon, Q{sup 2} = 0.35 GeV{sup 2}; total energy in the ({gamma}p) center of mass, W=1.190 GeV; polarization of the virtual photon, {epsilon}=0.48; azimuthal angle (lepton-hadron planes), {phi} = 220 angle; polar angle of Compton scattering in center of mass, {theta}{sub {gamma}}{sub {gamma}} in [0 angle, 40 angle]; incoming electron beam energy, E{sub e} = 0.88 GeV; scattered electron energy, E{sub 0}' = 0.40 GeV; polar angle of scattered electron {theta}{sub e} = 59.9 angle. The radiative correction is calculated by the radcorr code written by M. Vanderhaeghen, in a version adapted to beam spin asymmetries.In practice, the conclusions are twofold: - the asymmetry that was measured in the VCS channel does not need to be corrected for radiative effects, given the large statistical error bar attached to the experimental values (an asymmetry of 1-10 % with a statistical error bar of 3-4 %); - a systematic error {delta}SSA{sub syst} on the asymmetry will be considered, related to uncertainties in the calculation of the radiative correction (at least two of them have been mentioned here: the cross section model and the soft photon limit). To estimate this error a 100 % variation of the radiative correction was assumed. For the radiative correction itself the maximal value found was taken. Therefore one can take: {delta}SSA{sub syst} = {+-}2.7 x 10{sup -3}.

  4. Radiative corrections to the beam spin asymmetry in photon electroproduction e polarized p → epγ

    International Nuclear Information System (INIS)

    Fonvieille, H.; Bensafa, I.

    2006-11-01

    We have measured at MAMI the beam single spin asymmetry (SSA) in exclusive photon electroproduction (e polarized p → epγ) with a longitudinally polarized beam, in the region of the Δ(1232) resonance. In this document the value of the radiative correction to this asymmetry is obtained for our kinematics. Although the correction is expected to be very small and negligible, its value is needed as a confirmation and for the purpose of systematic error estimate. The parameter of kinematics are given as follows: four-momentum transfer of the virtual photon, Q 2 = 0.35 GeV 2 ; total energy in the (γp) center of mass, W=1.190 GeV; polarization of the virtual photon, ε=0.48; azimuthal angle (lepton-hadron planes), φ = 220 angle; polar angle of Compton scattering in center of mass, θ γγ in [0 angle, 40 angle]; incoming electron beam energy, E e = 0.88 GeV; scattered electron energy, E 0 ' = 0.40 GeV; polar angle of scattered electron θ e = 59.9 angle. The radiative correction is calculated by the radcorr code written by M. Vanderhaeghen, in a version adapted to beam spin asymmetries.In practice, the conclusions are twofold: - the asymmetry that was measured in the VCS channel does not need to be corrected for radiative effects, given the large statistical error bar attached to the experimental values (an asymmetry of 1-10 % with a statistical error bar of 3-4 %); - a systematic error ΔSSA syst on the asymmetry will be considered, related to uncertainties in the calculation of the radiative correction (at least two of them have been mentioned here: the cross section model and the soft photon limit). To estimate this error a 100 % variation of the radiative correction was assumed. For the radiative correction itself the maximal value found was taken. Therefore one can take: ΔSSA syst = ±2.7 x 10 -3

  5. First Experimental Study of Photon Polarization in Radiative B-s(0) Decays

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Romeu, J. Arnau; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baszczyk, M.; Batozskaya, V.; Batsukh, B.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M. -O.; van Beuzekom, M.; Bezshyiko, I.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Gomez, M. Calvo; Camboni, A.; Camboni, A.; Campana, P.; Perez, D. Campora; Perez, D. H. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Akiba, K. Carvalho; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Cheung, S. -F.; Chobanova, V.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Sobral, C. M. Costa; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. -T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dordei, F.; Dorigo, M.; Suarez, A. Dosil; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Deleage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Lima, V. Franco; Frei, C.; Furfaro, E.; Farber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Garcia Martin, L. M.; Garcia Pardinas, J.; Tico, J. Garra; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Giani, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gorelov, I. V.; Gotti, C.; Gandara, M. Grabalosa; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Cazon, B. R. Gruberg; Grunberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Gobel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, H.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koppenburg, P.; Kosmyntseva, A.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. -P.; Leflat, A.; Lefrancois, J.; Lefevre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; Meadows, B.; Meier, F.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M. -N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Mueller, J.; Mueller, K.; Mueller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Goicochea, J. M. Otalora; Otto, A.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palombo, F.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Olloqui, E. Picatoste; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Rodrigues, A. B.; Rodrigues, E.; Lopez, J. A. Rodriguez; Perez, P. Rodriguez; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M. -H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Coutinho, R. Silva; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, I. T.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevenson, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voss, C.; Vazquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhukov, V.; Zucchelli, S.

    2017-01-01

    The polarization of photons produced in radiative B-s(0) decays is studied for the first time. The data are recorded by the LHCb experiment in pp collisions corresponding to an integrated luminosity of 3 fb(-1) at center-of-mass energies of 7 and 8 TeV. A time-dependent analysis of the B-s(0) ->phi

  6. Generation of a multi-photon Greenberger-Horne-Zeilinger state with linear optical elements and photon detectors

    International Nuclear Information System (INIS)

    Zou, X B; Pahlke, K; Mathis, W

    2005-01-01

    We present a scheme to generate a multi-photon Greenberger-Horne-Zeilinger (GHZ) state by using single-photon sources, linear optical elements and photon detectors. Such a maximum entanglement has wide applications in the demonstration of quantum nonlocality and quantum information processing

  7. Coalescence of two polarized photons with antiparallel momenta into one on an electron

    International Nuclear Information System (INIS)

    Galynskii, M.V.

    1989-01-01

    The matrix elements have been calculated for the coalescence of two photons with antiparallel momenta and equal frequencies into one on an electron. An explicit expression for the differential probability for the process, with allowance for the polarization of all the particles, has been obtained in the nonrelativistic approximation

  8. Evidence for longitudinal photon polarization in muon-pair production by pions

    International Nuclear Information System (INIS)

    Anderson, K.J.; Coleman, R.N.; Karhi, K.P.; Newman, C.B.; Pilcher, J.E.; Rosenberg, E.I.; Thaler, J.J.; Hogan, G.E.; McDonald, K.T.; Sanders, G.H.; Smith, A.J.S.

    1979-01-01

    Data on μ-pair production by pions are examined as a function of x and P/sub T/ for longitudinal photon polarization. Evidence in the form of a sin 2 theta* term in the helicity angular distribution is observed for x near 1. This is conclusive evidence that production in this region is not predominantly through on-shell quark annihilation. The result is consistent with a calculation based on quantum chromodynamics

  9. Experimental noise-resistant Bell-inequality violations for polarization-entangled photons

    International Nuclear Information System (INIS)

    Bovino, Fabio A.; Castagnoli, Giuseppe; Cabello, Adan; Lamas-Linares, Antia

    2006-01-01

    We experimentally demonstrate that violations of Bell's inequalities for two-photon polarization-entangled states with colored noise are extremely robust, whereas this is not the case for states with white noise. Controlling the amount of noise by using the timing compensation scheme introduced by Kim et al. [Phys. Rev. A 67, 010301(R) (2003)], we have observed violations even for states with very high noise, in excellent agrement with the predictions of Cabello et al. [Phys. Rev. A 72, 052112 (2005)

  10. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  11. Spin-polarized current generated by magneto-electrical gating

    International Nuclear Information System (INIS)

    Ma Minjie; Jalil, Mansoor Bin Abdul; Tan, Seng Ghee

    2012-01-01

    We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The I–V characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa. - Highlights: ► The spin polarized transport through a single electron tunneling transistor is systematically studied. ► The study is based on Keldysh non-equilibrium Green's function and equation of motion method. ► A fully spin polarized current is observed. ► We propose to reverse current polarization by the means of gate voltage modulation. ► This device can be used as a bi-polarization current generator.

  12. Polarized targets and beams

    International Nuclear Information System (INIS)

    Meyer, W.

    1985-01-01

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  13. Compact Design of an Electrically Tunable and Rotatable Polarizer Based on a Liquid Crystal Photonic Bandgap Fiber

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    In this letter, a compact electrically controlled broadband liquid crystal (LC) photonic bandgap fiber polarizer is designed and fabricated. A good fiber coupling quality between two single-mode fibers and one 10-mm-long LC-filled photonic crystal fiber is obtained and protected by using SU-8 fiber...... fixing structures during the device assembly. The total insertion loss of this all-in-fiber device is 2.7 dB. An electrically tunable polarization extinction ratio of 21.3 dB is achieved with 45$^{circ}$ rotatable transmission axis as well as switched on and off in the wavelength range of 1300–1600 nm....

  14. One-way quantum computation via manipulation of polarization and momentum qubits in two-photon cluster states

    International Nuclear Information System (INIS)

    Vallone, G; Pomarico, E; De Martini, F; Mataloni, P

    2008-01-01

    Four-qubit cluster states of two photons entangled in polarization and linear momentum have been used to realize a complete set of single qubit rotations and the C-NOT gate for equatorial qubits with high values of fidelity. By the computational equivalence of the two degrees of freedom our result demonstrate the suitability of two photon cluster states for rapid and efficient one-way quantum computing

  15. Generating single-photon catalyzed coherent states with quantum-optical catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xue-xiang, E-mail: xuxuexiang@jxnu.edu.cn [Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022 (China); Yuan, Hong-chun [College of Electrical and Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213002 (China)

    2016-07-15

    We theoretically generate single-photon catalyzed coherent states (SPCCSs) by means of quantum-optical catalysis based on the beam splitter (BS) or the parametric amplifier (PA). These states are obtained in one of the BS (or PA) output channels if a coherent state and a single-photon Fock state are present in two input ports and a single photon is registered in the other output port. The success probabilities of the detection (also the normalization factors) are discussed, which is different for BS and PA catalysis. In addition, we prove that the generated states catalyzed by BS and PA devices are actually the same quantum states after analyzing photon number distribution of the SPCCSs. The quantum properties of the SPCCSs, such as sub-Poissonian distribution, anti-bunching effect, quadrature squeezing effect, and the negativity of the Wigner function are investigated in detail. The results show that the SPCCSs are non-Gaussian states with an abundance of nonclassicality. - Highlights: • We generate single-photon catalyzed coherent states with quantum-optical catalysis. • We prove the equivalent effects of the lossless beam splitter and the non-degenerate parametric amplifier. • Some nonclassical properties of the generated states are investigated in detail.

  16. Polarized target physics at the Bonn electron accelerators

    International Nuclear Information System (INIS)

    Meyer, W.

    1988-12-01

    At the BONN 2.5 GeV electron synchrotron experiments with polarized nucleon targets have a long tradition. Starting with measurements of the target asymmetry in single pion photoproduction off polarized protons, resp. neutrons, the experiments have been concentrated on photodisintegration measurements of polarized deuterons. Parallel to these activities a considerable progress in the field of the target technology, e.g. cryogenics and target materials, has been made, by which all the measurements have profitted enormously. Especially the development of the new target material ammonia has allowed the first use of a polarized deuteron (ND 3 ) target in an intense electron beam. The construction of a frozen spin target, which will be used in combination with a tagged polarized photon beam, makes a new generation of polarized target experiments in photon induced reactions possible. Together with electron scattering off polarized deuterons and neutrons they will be a main activity in the physics program at the new stretcher accelerator ELSA in BONN. (orig.)

  17. Quantum random-number generator based on a photon-number-resolving detector

    International Nuclear Information System (INIS)

    Ren Min; Wu, E; Liang Yan; Jian Yi; Wu Guang; Zeng Heping

    2011-01-01

    We demonstrated a high-efficiency quantum random number generator which takes inherent advantage of the photon number distribution randomness of a coherent light source. This scheme was realized by comparing the photon flux of consecutive pulses with a photon number resolving detector. The random bit generation rate could reach 2.4 MHz with a system clock of 6.0 MHz, corresponding to a random bit generation efficiency as high as 40%. The random number files passed all the stringent statistical tests.

  18. Mapping of the atomic hydrogen density in combustion processes at atmospheric pressure by two-photon polarization spectroscopy

    International Nuclear Information System (INIS)

    Steiger, A.; Gruetzmacher, K.; Steiger, M.; Gonzalo, A.B.; Rosa, M.I. de la

    2001-01-01

    With laser spectroscopic techniques used so far, quantitative measurements of atomic number densities in flames and other combustion processes at atmospheric pressure yield no satisfying results because high quenching rates remarkably reduce the signal size and the results suffer from large uncertainties. Whereas, two-photon polarization spectroscopy is not limited by quenching, as the polarization signal is a direct measure of the two-photon absorption. This sensitive laser technique with high spatial and temporal resolution has been applied to determine absolute number densities and the kinetic temperatures of atomic hydrogen in flames for the first time. The great potential of this method of measurement comes into its own only in conjunction with laser radiation of highest possible spectral quality, i.e. single-frequency ns-pulses with peak irradiance of up to 1 GW/cm 2 tunable around 243 nm for 1S-2S two-photon transition of atomic hydrogen

  19. Conversion of optical wave polarizations in 1D finite anisotropic photonic crystal

    International Nuclear Information System (INIS)

    Ouchani, N.; Nougaoui, N.; Daoudi, A.; Bria, D.

    2006-07-01

    We show that by using one dimensional anisotropic photonic structures, it is possible to realize optical wave polarization conversion by transmission or by reflection. Thus a single incident S(P) polarized plane wave can produce a single reflected P(S) polarized wave and a single transmitted P(S) polarized wave. This polarization conversion property can be fulfilled with a simple finite superlattice constituted by anisotropic dielectric materials. We discuss the appropriate choices of the material and geometrical properties to realize such structures. The transmission and reflection coefficients are discussed in relation with the dispersion curves of the finite structure embedded between two isotropic substrates. Both transmission and reflection coefficients are calculated in the framework of Green's function method. The amplitude and the polarization characteristics of reflected and transmitted waves are determined as function of frequency ω , and wave vector k parallel ( parallel to the interface) and the orientations of the principal axes of the layers constituting the SL. Moreover, this structure exhibits a coupling between S and P waves that does not exist in SL composed only of isotropic materials. Specific applications of these results are given for a superlattice consisting of alternating biaxial anisotropic layers NaNO 2 /SbSi sandwiched between two identical semi-infinite isotropic media. (author)

  20. Hyperentangled photon sources in semiconductor waveguides

    DEFF Research Database (Denmark)

    Kang, Dongpeng; Helt, L. G.; Zhukovsky, Sergei

    2014-01-01

    We propose and analyze the performance of a technique to generate mode and polarization hyperentangled photons in monolithic semiconductor waveguides using two concurrent type-II spontaneous parametric down-conversion (SPDC) processes. These two SPDC processes are achieved by waveguide engineering...

  1. Advanced optical components for next-generation photonic networks

    Science.gov (United States)

    Yoo, S. J. B.

    2003-08-01

    Future networks will require very high throughput, carrying dominantly data-centric traffic. The role of Photonic Networks employing all-optical systems will become increasingly important in providing scalable bandwidth, agile reconfigurability, and low-power consumptions in the future. In particular, the self-similar nature of data traffic indicates that packet switching and burst switching will be beneficial in the Next Generation Photonic Networks. While the natural conclusion is to pursue Photonic Packet Switching and Photonic Burst Switching systems, there are significant challenges in realizing such a system due to practical limitations in optical component technologies. Lack of a viable all-optical memory technology will continue to drive us towards exploring rapid reconfigurability in the wavelength domain. We will introduce and discuss the advanced optical component technologies behind the Photonic Packet Routing system designed and demonstrated at UC Davis. The system is capable of packet switching and burst switching, as well as circuit switching with 600 psec switching speed and scalability to 42 petabit/sec aggregated switching capacity. By utilizing a combination of rapidly tunable wavelength conversion and a uniform-loss cyclic frequency (ULCF) arrayed waveguide grating router (AWGR), the system is capable of rapidly switching the packets in wavelength, time, and space domains. The label swapping module inside the Photonic Packet Routing system containing a Mach-Zehnder wavelength converter and a narrow-band fiber Bragg-grating achieves all-optical label swapping with optical 2R (potentially 3R) regeneration while maintaining optical transparency for the data payload. By utilizing the advanced optical component technologies, the Photonic Packet Routing system successfully demonstrated error-free, cascaded, multi-hop photonic packet switching and routing with optical-label swapping. This paper will review the advanced optical component technologies

  2. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction

    Directory of Open Access Journals (Sweden)

    Daoxin Dai

    2012-03-01

    Full Text Available Silicon-based large-scale photonic integrated circuits are becoming important, due to the need for higher complexity and lower cost for optical transmitters, receivers and optical buffers. In this paper, passive technologies for large-scale photonic integrated circuits are described, including polarization handling, light non-reciprocity and loss reduction. The design rule for polarization beam splitters based on asymmetrical directional couplers is summarized and several novel designs for ultra-short polarization beam splitters are reviewed. A novel concept for realizing a polarization splitter–rotator is presented with a very simple fabrication process. Realization of silicon-based light non-reciprocity devices (e.g., optical isolator, which is very important for transmitters to avoid sensitivity to reflections, is also demonstrated with the help of magneto-optical material by the bonding technology. Low-loss waveguides are another important technology for large-scale photonic integrated circuits. Ultra-low loss optical waveguides are achieved by designing a Si3N4 core with a very high aspect ratio. The loss is reduced further to <0.1 dB m−1 with an improved fabrication process incorporating a high-quality thermal oxide upper cladding by means of wafer bonding. With the developed ultra-low loss Si3N4 optical waveguides, some devices are also demonstrated, including ultra-high-Q ring resonators, low-loss arrayed-waveguide grating (demultiplexers, and high-extinction-ratio polarizers.

  3. Integrated polarization beam splitter with relaxed fabrication tolerances

    OpenAIRE

    Perez-Galacho, D.; Halir, R.; Ortega-Monux, A.; Alonso-Ramos, C.; Zhang, R.; Runge, P.; Janiak, K.; Bach, H-G; Steffan, A. G.; Molina-Fernandez, I.

    2013-01-01

    Polarization handling is a key requirement for the next generation of photonic integrated circuits (PICs). Integrated polarization beam splitters (PBS) are central elements for polarization management, but their use in PICs is hindered by poor fabrication tolerances. In this work we present a fully passive, highly fabrication tolerant polarization beam splitter, based on an asymmetrical Mach-Zehnder interferometer (MZI) with a Si/SiO2 Periodic Layer Structure (PLS) on top of one of its arms. ...

  4. Temporally uncorrelated photon-pair generation by dual-pump four-wave mixing

    DEFF Research Database (Denmark)

    Christensen, Jesper Bjerge; McKinstrie, C. J.; Rottwitt, Karsten

    2016-01-01

    We study the preparation of heralded single-photon states using dual-pump spontaneous four-wave mixing. The dual-pump configuration, which in our case employs cross-polarized pumps, allows for a gradual variation of the nonlinear interaction strength enabled by a birefringence-induced walk...

  5. Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption-based upconversion and circularly polarized luminescence.

    Science.gov (United States)

    Cruz, Carlos M; Márquez, Irene R; Mariz, Inês F A; Blanco, Victor; Sánchez-Sánchez, Carlos; Sobrado, Jesús M; Martín-Gago, José A; Cuerva, Juan M; Maçôas, Ermelinda; Campaña, Araceli G

    2018-04-28

    Herein we describe a distorted ribbon-shaped nanographene exhibiting unprecedented combination of optical properties in graphene-related materials, namely upconversion based on two-photon absorption (TPA-UC) together with circularly polarized luminescence (CPL). The compound is a graphene molecule of ca. 2 nm length and 1 nm width with edge defects that promote the distortion of the otherwise planar lattice. The edge defects are an aromatic saddle-shaped ketone unit and a [5]carbohelicene moiety. This system is shown to combine two-photon absorption and circularly polarized luminescence and a remarkably long emission lifetime of 21.5 ns. The [5]helicene is responsible for the chiroptical activity while the push-pull geometry and the extended network of sp 2 carbons are factors favoring the nonlinear absorption. Electronic structure theoretical calculations support the interpretation of the results.

  6. New Generation of Superconducting Nanowire Single-Photon Detectors

    Directory of Open Access Journals (Sweden)

    Goltsman G.N.

    2015-01-01

    Full Text Available We present an overview of recent results for new generation of infrared and optical superconducting nanowire single-photon detectors (SNSPDs that has already demonstrated a performance that makes them devices-of-choice for many applications. SNSPDs provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, SNSPDs are also compatible with an integrated optical platform as a crucial requirement for applications in emerging quantum photonic technologies. By embedding SNSPDs in nanophotonic circuits we realize waveguide integrated single photon detectors which unite all desirable detector properties in a single device.

  7. How random are random numbers generated using photons?

    International Nuclear Information System (INIS)

    Solis, Aldo; Angulo Martínez, Alí M; Ramírez Alarcón, Roberto; Cruz Ramírez, Hector; U’Ren, Alfred B; Hirsch, Jorge G

    2015-01-01

    Randomness is fundamental in quantum theory, with many philosophical and practical implications. In this paper we discuss the concept of algorithmic randomness, which provides a quantitative method to assess the Borel normality of a given sequence of numbers, a necessary condition for it to be considered random. We use Borel normality as a tool to investigate the randomness of ten sequences of bits generated from the differences between detection times of photon pairs generated by spontaneous parametric downconversion. These sequences are shown to fulfil the randomness criteria without difficulties. As deviations from Borel normality for photon-generated random number sequences have been reported in previous work, a strategy to understand these diverging findings is outlined. (paper)

  8. Information on a Photon: Free-Space Quantum Communication (InPho: FSQC)

    Science.gov (United States)

    2015-10-06

    generate multiple bits per click, e.g., 1 pair in 1024 bins (210)  ~10 bits Get extra 0.5 bpp from BB84 w. polarization. They can constantly check...they detect a photon in to generate multiple bits per click, e.g., 1 pair in 1024 bins (210)  ~10 bits Get extra 0.5 bpp from BB84 w. polarization

  9. Correlated Photon Pair Generation in Silicon Wire Waveguides at 1.5 μm

    International Nuclear Information System (INIS)

    Cheng Jie-Rong; Zhang Wei; Zhou Qiang; Feng Xue; Huang Yi-Dong; Peng Jiang-De

    2010-01-01

    Correlated photon pairs at 1.5μm are generated in a silicon wire waveguide (SWW) with a length of only 1.6mm. Experimental results show that the single-side count rates on both sides increase quadratically with pump light, indicating that photons are generated from the spontaneous four-wave mixing (SFWM) processes. The quantum correlation property of the generated photons is demonstrated by the ratio between coincident and accidental coincident count rates. The highest ratio measured at room temperature is to be about 19, showing that generated photon pairs have strong quantum correlation property and low noise. What is more, the wavelength correlation property of the coincident count is also measured to demonstrate the correlated photon pair generation. The experimental results demonstrate that SWWs have great potential in on-chip integrated low-noise correlated photon pair sources at 1.5 μm. (fundamental areas of phenomenology(including applications))

  10. Spatiotemporal correlations in entangled photons generated by spontaneous parametric down conversion

    International Nuclear Information System (INIS)

    Osorio, Clara I; Valencia, Alejandra; Torres, Juan P

    2008-01-01

    In most configurations aimed at generating entangled photons based on spontaneous parametric down conversion (SPDC), the generated pairs of photons are required to be entangled in only one degree of freedom. Any distinguishing information coming from the other degrees of freedom that characterize the photon should be suppressed to avoid correlations with the degree of freedom of interest. However, this suppression is not always possible. Here, we show how the frequency information available affects the purity of the two-photon state in space, revealing a correlation between the frequency and the space degrees of freedom. This correlation should be taken into account to calculate the total amount of entanglement between the photons.

  11. Design of the algorithm of photons migration in the multilayer skin structure

    Science.gov (United States)

    Bulykina, Anastasiia B.; Ryzhova, Victoria A.; Korotaev, Valery V.; Samokhin, Nikita Y.

    2017-06-01

    Design of approaches and methods of the oncological diseases diagnostics has special significance. It allows determining any kind of tumors at early stages. The development of optical and laser technologies provided increase of a number of methods allowing making diagnostic studies of oncological diseases. A promising area of biomedical diagnostics is the development of automated nondestructive testing systems for the study of the skin polarizing properties based on backscattered radiation detection. Specification of the examined tissue polarizing properties allows studying of structural properties change influenced by various pathologies. Consequently, measurement and analysis of the polarizing properties of the scattered optical radiation for the development of methods for diagnosis and imaging of skin in vivo appear relevant. The purpose of this research is to design the algorithm of photons migration in the multilayer skin structure. In this research, the algorithm of photons migration in the multilayer skin structure was designed. It is based on the use of the Monte Carlo method. Implemented Monte Carlo method appears as a tracking the paths of photons experiencing random discrete direction changes before they are released from the analyzed area or decrease their intensity to negligible levels. Modeling algorithm consists of the medium and the source characteristics generation, a photon generating considering spatial coordinates of the polar and azimuthal angles, the photon weight reduction calculating due to specular and diffuse reflection, the photon mean free path definition, the photon motion direction angle definition as a result of random scattering with a Henyey-Greenstein phase function, the medium's absorption calculation. Biological tissue is modeled as a homogeneous scattering sheet characterized by absorption, a scattering and anisotropy coefficients.

  12. Angular distribution coefficients for γ-ray polarization produced in polarized capture reactions

    International Nuclear Information System (INIS)

    Wulf, E.A.; Guillemette, J.; Weller, H.R.; Seyler, R.G.

    1999-01-01

    The previous publications have dealt with the angular momentum formalism of both linear and circularly polarized photons in (γ, x) reactions on both polarized and unpolarized targets, and the inverse (capture) reactions initiated by polarized beams. In the present work, utilizing the general formalism of Welton, the authors deal with the linear polarization of the γ-rays which are produced in capture reactions on unpolarized targets, including the possibility of having incident polarized spin 1/2 projectiles. These capture reactions are denoted by a(rvec x, rvec L)c, where rvec x is the incident polarized spin 1/2 projectile and rvec L represents the outgoing polarized γ-ray. They present here the formalism in a convenient form, display a sample table of coefficients, and illustrate its use by means of several examples. A FORTRAN code will be made available for generating similar coefficients for other reactions

  13. Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms

    International Nuclear Information System (INIS)

    Nakajima, Takashi; Yonekura, Nobuaki; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2003-01-01

    We demonstrate the simultaneous production of spin-polarized ions/electrons using two-color, two-photon ionization of laser-ablated metallic atoms. Specifically, we have applied the developed technique to laser-ablated Sr atoms, and found that the electron-spin polarization of Sr + ions, and accordingly, the spin polarization of photoelectrons is 64%±9%, which is in good agreement with the theoretical prediction we have recently reported [T. Nakajima and N. Yonekura, J. Chem. Phys. 117, 2112 (2002)]. Our experimental results open up a simple way toward the construction of a spin-polarized dual ion/electron source

  14. Measurement of the positron polarization at an helical undulator based positron source for the international linear collider ILC. The E-166 experiment at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Laihem

    2008-06-05

    A helical undulator based polarized positron source is forseen at a future International Linear Collider (ILC). The E-166 experiment has tested this scheme using a one meter long, short-period, pulsed helical undulator installed in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 46.6 GeV electron beam passing through this undulator generated circularly polarized photons with energies up to about 8 MeV. The generated photons of several MeV with circular polarization are then converted in a relatively thin target to generate longitudinally polarized positrons. Measurements of the positron polarization have been performed at 5 different energies of the positrons. In addition electron polarization has been determined for one energy point. For a comparison of the measured asymmetries with the expectations detailed simulations were necessary. This required upgrading GEANT4 to include the dominant polarization dependent interactions of electrons, positrons and photons in matter. The measured polarization of the positrons agrees with the expectations and is for the energy point with the highest polarization at 6MeV about 80%. (orig.)

  15. Latest Advances in the Generation of Single Photons in Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Albert Boretti

    2016-06-01

    Full Text Available The major barrier for optical quantum information technologies is the absence of reliable single photons sources providing non-classical light states on demand which can be easily and reliably integrated with standard processing protocols for quantum device fabrication. New methods of generation at room temperature of single photons are therefore needed. Heralded single photon sources are presently being sought based on different methods built on different materials. Silicon Carbide (SiC has the potentials to serve as the preferred material for quantum applications. Here, we review the latest advances in single photon generation at room temperatures based on SiC.

  16. Bulk electron spin polarization generated by the spin Hall current

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that the spin Hall current generates a non-equilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known equilibrium polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  17. Bulk electron spin polarization generated by the spin Hall current

    Science.gov (United States)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  18. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G

    2004-03-25

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  19. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  20. Single photon sources with single semiconductor quantum dots

    Science.gov (United States)

    Shan, Guang-Cun; Yin, Zhang-Qi; Shek, Chan Hung; Huang, Wei

    2014-04-01

    In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.

  1. Design of a Novel Polarized Beam Splitter Based on a Two-Dimensional Photonic Crystal Resonator Cavity

    International Nuclear Information System (INIS)

    Zhang Xuan; Chen Shu-Wen; Liao Qing-Hua; Yu Tian-Bao; Liu Nian-Hua; Huang Yong-Zhen

    2011-01-01

    We propose and analyze a novel ultra-compact polarization beam splitter based on a resonator cavity in a two-dimensional photonic crystal. The two polarizations can be separated efficiently by the strong coupling between the microcavities and the waveguides occurring around the resonant frequency of the cavities. The transmittance of two polarized light around 1.55 μm can be more than 98.6%, and the size of the device is less than 15 μm×13 μm, so these features will play an important role in future integrated optical circuits. (fundamental areas of phenomenology(including applications))

  2. Review of Microwave Photonics Technique to Generate the Microwave Signal by Using Photonics Technology

    Science.gov (United States)

    Raghuwanshi, Sanjeev Kumar; Srivastav, Akash

    2017-12-01

    Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.

  3. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    Science.gov (United States)

    Magsi, Komal

    Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed

  4. PEPSI - a Monte Carlo generator for polarized leptoproduction

    International Nuclear Information System (INIS)

    Mankiewicz, L.

    1992-01-01

    We describe PEPSI (Polarized Electron Proton Scattering Interactions) a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the Lepto 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S . PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons. (orig.)

  5. Generation of spirally polarized propagation-invariant beam using fiber microaxicon.

    Science.gov (United States)

    Philip, Geo M; Viswanathan, Nirmal K

    2011-10-01

    We present here a fiber microaxicon (MA)based method to generate spirally polarized propagation-invariant optical beam. MA chemically etched in the tip of a two-mode fiber efficiently converts the generic cylindrically polarized vortex fiber mode into a spirally polarized propagation-invariant (Bessel-type) beam via radial dependence of polarization rotation angle. The combined roles of helico-conical phase and nonparaxial propagation in the generation and characteristics of the output beam from the fiber MA are discussed. © 2011 Optical Society of America

  6. Measurement of polarization observables in the reaction γp→ pπ0π0 using linearly polarized photons with the CBELSA/TAPS experiment

    International Nuclear Information System (INIS)

    Sokhoyan, Vahe

    2012-01-01

    The spectrum and the properties of baryon resonances can be studied using photons with energies appropriate to excite baryonic states. Double meson photoproduction allows access to cascading resonance decays via other excited states. Also, at higher energies the importance of the double meson photoproduction increases due to higher cross-sections in comparison to single meson photoproduction. To study baryon resonances, the measurement of polarization observables as well as the measurement of differential cross-sections plays a very important role. In this work the three-body polarization observables I s , I c and the respective twobody asymmetry Σ were measured for the reaction γp → pπ 0 π 0 in an incoming photon energy range of E γ = 970 - 1650 MeV. The data were acquired with the CBELSA/TAPS experiment located at the ELSA accelerator in Bonn, using a linearly polarized photon beam impinging on a liquid hydrogen target. The observables I s and I c which occur in two-meson final states are measured for the first time in the reaction γp → pπ 0 π 0 . The corresponding two-body asymmetry Σ is measured in an extended energy range in comparison to already existing data. A comparison with theoretical models shows that the polarization observables provide valuable input to study resonance contributions and their decay modes. The D 33 (1700) → Δπ decay is studied based on the comparison of the Bonn-Gatchina Partial Wave Analysis (PWA) predictions with the data. Furthermore, a comparison of the data with the Bonn-Gatchina PWA and the Fix isobar model predictions allows to distinguish between these two models. Additionally, band-like structures and peaks are observed in the mass ranges of Δ(1232), D 13 (1520), F 15 (1680), f 0 (980) and f 2 (1270) in the according Dalitz plots and invariant mass distributions. The contributions of these states are confirmed by the Bonn-Gatchina PWA. An excellent compatibility with the existing data from the previous CBELSA

  7. Observation of photon polarization in the b→sγ transition.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Caponio, F; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dorosz, P; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Esen, S; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Hafkenscheid, T W; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Manzali, M; Maratas, J; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spinella, F; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'jampens, S; Teklishyn, M; Tellarini, G; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-04-25

    This Letter presents a study of the flavor-changing neutral current radiative B±→K±π∓π±γ decays performed using data collected in proton-proton collisions with the LHCb detector at 7 and 8 TeV center-of-mass energies. In this sample, corresponding to an integrated luminosity of 3  fb-1, nearly 14 000 signal events are reconstructed and selected, containing all possible intermediate resonances with a K±π∓π± final state in the [1.1,1.9]  GeV/c2 mass range. The distribution of the angle of the photon direction with respect to the plane defined by the final-state hadrons in their rest frame is studied in intervals of K±π∓π± mass and the asymmetry between the number of signal events found on each side of the plane is obtained. The first direct observation of the photon polarization in the b→sγ transition is reported with a significance of 5.2σ.

  8. Laser generation in opal-like single-crystal and heterostructure photonic crystals

    Science.gov (United States)

    Kuchyanov, A. S.; Plekhanov, A. I.

    2016-11-01

    This study describes the laser generation of a 6Zh rhodamine in artificial opals representing single-crystal and heterostructure films. The spectral and angular properties of emission and the threshold characteristics of generation are investigated. In the case where the 6Zh rhodamine was in a bulk opal, the so-called random laser generation was observed. In contrast to this, the laser generation caused by a distributed feedback inside the structure of the photonic bandgap was observed in photonic-crystal opal films.

  9. Parameterization and generation of photon-induced K cross-sections

    International Nuclear Information System (INIS)

    Bansal, Meenakshi; Mittal, Raj

    2010-01-01

    Theoretical K-shell photoionization and K X-ray fluorescence (K XRF) cross sections have been fitted empirically in polynomials of photon energy E and atomic number Z. This has been used to develop a computer code KCSPIF to generate K-shell photo-ionization and K XRF cross-sections for any element in the range 5≤Z≤95 and for photon energies, above K-edge-1500 keV, when only the atomic number and photon energy are supplied as the input.

  10. Coherence and Polarization of Polarization Speckle Generated by Depolarizers and Their Changes through Complex ABCD Matrix

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Lee, Tim K.

    2015-01-01

    Recent research work on speckle patterns indicates a variation of the polarization state during propagation and its nonuniformly spatial distribution. The preliminary step for the investigation of this polarization speckle is the generation of the corresponding field. In this paper, a kind...... of special depolarizer: the random roughness birefringent screen (RRBS) is introduced to meet this requirement. The statistical properties of the field generated by the depolarizer is investigated and illustrated in terms of the 2x2 beam coherence and polarization matrix (BCPM) with the corresponding degree...... of coherence (DoC). and degree of polarization (DoP) P. The changes of the coherence and polarization when the speckle field propagates through any optical system are analysed within the framework of the complex ABCD-matrix theory....

  11. Polarized γ source based on Compton backscattering in a laser cavity

    Directory of Open Access Journals (Sweden)

    V. Yakimenko

    2006-09-01

    Full Text Available We propose a novel gamma source suitable for generating a polarized positron beam for the next generation of electron-positron colliders, such as the International Linear Collider (ILC, and the Compact Linear Collider (CLIC. This 30-MeV polarized gamma source is based on Compton scattering inside a picosecond CO_{2} laser cavity generated from electron bunches produced by a 4-GeV linac. We identified and experimentally verified the optimum conditions for obtaining at least one gamma photon per electron. After multiplication at several consecutive interaction points, the circularly polarized gamma rays are stopped on a target, thereby creating copious numbers of polarized positrons. We address the practicality of having an intracavity Compton-polarized positron source as the injector for these new colliders.

  12. Second harmonic generation from photonic structured GaN nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Soya, Takahiro; Inose, Yuta; Kunugita, Hideyuki; Ema, Kazuhiro; Yamano, Kouji; Kikuchi, Akihiko; Kishino, Katsumi, E-mail: t-soya@sophia.ac.j [Department of Engineering and Applied Sciences, Sophia University 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan)

    2009-11-15

    We observed large enhancement of reflected second harmonic generation (SHG) using the one-dimensional photonic effect in regularly arranged InGaN/GaN single-quantum-well nanowalls. Using the effect when both fundamental and SH resonate with the photonic mode, we obtained enhancement of about 40 times compared with conditions far from resonance.

  13. Ultrabright Linearly Polarized Photon Generation from a Nitrogen Vacancy Center in a Nanocube Dimer Antenna

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    2017-01-01

    We demonstrate an exceptionally bright photon source based on a single nitrogen-vacancy center (NV center) in a nanodiamond (ND) placed in the nanoscale gap between two monocrystalline silver cubes in a dimer configuration. The system is operated near saturation at a stable photon rate of 850 kcps...

  14. Photon polarization in $B_s^0 \\to \\phi \\gamma$ decays at the LHCb experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00392538; Martínez Vidal, Fernando

    The Standard Model predicts a predominance of left handed photons emitted in the $b \\to s\\gamma$ interaction, due to the coupling of the $W$ boson to only left handed quarks. Moreso, several Beyond Standard Model theories predict an enhancement of right handed photon emission. A measurement of the photon polairization is therefore a direct probe of New Physics. The photon polarization sensible parameter $\\mathcal{A}^\\Delta$ is measured through a fit to the ratio of untagged time dependent decay rates of $B_s^0 \\to \\phi \\gamma$ over that of $B^0 \\to K^\\ast \\gamma$, the former being sensitive to the parameter because of its non-negligible decay width difference (Phys.Lett.B664:174-179,2008) and the latter being the control channel due to its kinematical similarities and sixfold larger yield. Using 3 fb$^{-1}$ of data collected at LHCb during 2011 and 2012 at centre of mass energies of 7 and 8 TeV, respectively, 4200 $B_s^0 \\to \\phi \\gamma$ and 25700 $B^0 \\to K^\\ast \\gamma$ events are reconstructed. The selecti...

  15. The polarization modulation and fabrication method of two dimensional silica photonic crystals based on UV nanoimprint lithography and hot imprint.

    Science.gov (United States)

    Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin

    2016-10-04

    Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way.

  16. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.

    Science.gov (United States)

    Yu, Leo; Natarajan, Chandra M; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S; Tanner, Michael G; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H; Fejer, Martin M; Yamamoto, Yoshihisa

    2015-11-24

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  17. Simulation of multi-photon emission isotopes using time-resolved SimSET multiple photon history generator

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chih-Chieh; Lin, Hsin-Hon; Lin, Chang-Shiun; Chuang, Keh-Shih [Department of Biomedical Engineering and Environmental Sciences, National Tsing-HuaUniversity, Hsinchu, Taiwan (China); Jan, Meei-Ling [Health Physics Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (China)

    2015-07-01

    Abstract-Multiple-photon emitters, such as In-111 or Se-75, have enormous potential in the field of nuclear medicine imaging. For example, Se-75 can be used to investigate the bile acid malabsorption and measure the bile acid pool loss. The simulation system for emission tomography (SimSET) is a well-known Monte Carlo simulation (MCS) code in nuclear medicine for its high computational efficiency. However, current SimSET cannot simulate these isotopes due to the lack of modeling of complex decay scheme and the time-dependent decay process. To extend the versatility of SimSET for simulation of those multi-photon emission isotopes, a time-resolved multiple photon history generator based on SimSET codes is developed in present study. For developing the time-resolved SimSET (trSimSET) with radionuclide decay process, the new MCS model introduce new features, including decay time information and photon time-of-flight information, into this new code. The half-life of energy states were tabulated from the Evaluated Nuclear Structure Data File (ENSDF) database. The MCS results indicate that the overall percent difference is less than 8.5% for all simulation trials as compared to GATE. To sum up, we demonstrated that time-resolved SimSET multiple photon history generator can have comparable accuracy with GATE and keeping better computational efficiency. The new MCS code is very useful to study the multi-photon imaging of novel isotopes that needs the simulation of lifetime and the time-of-fight measurements. (authors)

  18. Feasibility studies of a polarized positron source based on the Bremsstrahlung of polarized electrons

    International Nuclear Information System (INIS)

    Dumas, J.

    2011-09-01

    The nuclear and high-energy physics communities have shown a growing interest in the availability of high current, highly-polarized positron beams. A sufficiently energetic polarized photon or lepton incident on a target may generate, via Bremsstrahlung and pair creation within a solid target foil, electron-positron pairs that should carry some fraction of the initial polarization. Recent advances in high current (> 1 mA) spin polarized electron sources at Jefferson Lab offer the perspective of creating polarized positrons from a low energy electron beam. This thesis discusses polarization transfer from electrons to positrons in the perspective of the design optimization of a polarized positron source. The PEPPo experiment, aiming at a measurement of the positron polarization from a low energy (< 10 MeV) highly spin polarized electron beam is discussed. A successful demonstration of this technique would provide an alternative scheme for the production of low energy polarized positrons and useful information for the optimization of the design of polarized positron sources in the sub-GeV energy range. (author)

  19. Unconditionally secure key distillation from multi-photons in a single-photon polarization based quantum key distribution

    CERN Document Server

    Tamaki, K

    2005-01-01

    In this presentation, we show some counter-examples to a naive belief that the security of QKD is based on no-cloning theorem. One example is shown by explicitly proving that one can indeed generate an unconditionally secure key from Alice's two-photon emission part in "SARG04 protocol" proposed by V. Scarani et al, in Phys. Rev. Lett. 92, 057901 (2004). This protocol differs from BB84 only in the classical communication. It is, thus, interesting to see how only the classical communication of QKD protocol might qualitatively change its security. We also show that one can generate an unconditionally secure key from the single to the four-photon part in a generalized SARG04 that uses six states. Finally, we also compare the bit error rate threshold of these protocols with the one in BB84 and the original six-state protocol assuming a depolarizing channel.

  20. PHOTON09. Proceedings of the international conference on the structure and interactions of the photon including the 18th international workshop on photon-photon collisions and the international workshop on high energy photon linear colliders

    International Nuclear Information System (INIS)

    Behnke, Olaf; Diehl, Markus; Schoerner-Sadenius, Thomas; Steinbrueck, Georg

    2010-01-01

    The following topics were dealt with: Electroweak and new physics, photon-collider technology, low-energy photon experiments, prompt photons, photon structure, jets and heavy flavours, vacuum polarization and light-by-light scattering, small-x processes, diffraction, total cross sections, exclusive channels and resonances, photons in astroparticle physics. (HSI)

  1. PHOTON09. Proceedings of the international conference on the structure and interactions of the photon including the 18th international workshop on photon-photon collisions and the international workshop on high energy photon linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Olaf; Diehl, Markus; Schoerner-Sadenius, Thomas; Steinbrueck, Georg [eds.

    2010-01-15

    The following topics were dealt with: Electroweak and new physics, photon-collider technology, low-energy photon experiments, prompt photons, photon structure, jets and heavy flavours, vacuum polarization and light-by-light scattering, small-x processes, diffraction, total cross sections, exclusive channels and resonances, photons in astroparticle physics. (HSI)

  2. Pseudoscalar perturbations and polarization of the cosmic microwave background.

    Science.gov (United States)

    Pospelov, Maxim; Ritz, Adam; Skordis, Constantinos

    2009-07-31

    We show that models of new particle physics containing massless pseudoscalar fields superweakly coupled to photons can be very efficiently probed with CMB polarization anisotropies. The stochastic pseudoscalar fluctuations generated during inflation provide a mechanism for converting E-mode polarization to B-mode during photon propagation from the surface of last scattering. The efficiency of this conversion process is controlled by the dimensionless ratio H/(2pif(a)), where H is the Hubble scale during inflation, and f(a)-1 is the strength of the pseudoscalar coupling to photons. The current observational limits on the B mode constrain this ratio to be less than 0.07, which in many models of inflation translates to a sensitivity to f(a) exceeding 10(14) GeV, which surpasses other tests.

  3. Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy.

    Science.gov (United States)

    Xu, Zhongxiao; Wu, Yuelong; Tian, Long; Chen, Lirong; Zhang, Zhiying; Yan, Zhihui; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi

    2013-12-13

    Long-lived and high-fidelity memory for a photonic polarization qubit (PPQ) is crucial for constructing quantum networks. We present a millisecond storage system based on electromagnetically induced transparency, in which a moderate magnetic field is applied on a cold-atom cloud to lift Zeeman degeneracy and, thus, the PPQ states are stored as two magnetic-field-insensitive spin waves. Especially, the influence of magnetic-field-sensitive spin waves on the storage performances is almost totally avoided. The measured average fidelities of the polarization states are 98.6% at 200  μs and 78.4% at 4.5 ms, respectively.

  4. Single-temporal-mode photon generation beyond the low-power regime

    DEFF Research Database (Denmark)

    McKinstrie, C. J.; Christensen, Jesper Bjerge; Rottwitt, Karsten

    2017-01-01

    Nondegenerate four-wave mixing in a strongly-birefringent fiber generates signal and idler photons that are associated with only one pair of temporal modes, for a wide range of pump powers. Nonlinear phase modulation degrades the heralded-signal purity only slightly.......Nondegenerate four-wave mixing in a strongly-birefringent fiber generates signal and idler photons that are associated with only one pair of temporal modes, for a wide range of pump powers. Nonlinear phase modulation degrades the heralded-signal purity only slightly....

  5. A Polarized High-Energy Photon Beam for Production of Exotic Mesons

    Energy Technology Data Exchange (ETDEWEB)

    Senderovich, Igor [Univ. of Connecticut, Storrs, CT (United States)

    2012-01-01

    This work describes design, prototyping and testing of various components of the Jefferson Lab Hall D photon beamline. These include coherent bremsstrahlung radiators to be used in this facility for generating the photon beam, a fine resolution hodoscope for the facility's tagging spectrometer, and a photon beam position sensor for stabilizing the beam on a collimator. The principal instrumentation project was the hodoscope: its design, implementation and beam testing will be thoroughly described. Studies of the coherent bremsstrahlung radiators involved X-ray characterization of diamond crystals to identify the appropriate line of manufactured radiators and the proper techniques for thinning them to the desired specification of the beamline. The photon beam position sensor project involved completion of a designed detector and its beam test. The results of these shorter studies will also be presented. The second part of this work discusses a Monte Carlo study of a possible photo-production and decay channel in the GlueX experiment that will be housed in the Hall D facility. Specifically, the γ p → Xp → b1 π → ω π+1 π-1 channel was studied including its Amplitude Analysis. This exercise attempted to generate a possible physics signal, complete with internal angular momentum states, and be able to reconstruct the signal in the detector and find the proper set of JPC quantum numbers through an amplitude fit. Derivation of the proper set of amplitudes in the helicity basis is described, followed by a discussion of the implementation, generation of the data sets, reconstruction techniques, the amplitude fit and results of this study.

  6. Second-harmonic generation in shear wave beams with different polarizations

    Science.gov (United States)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  7. Second-harmonic generation in shear wave beams with different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  8. Second-harmonic generation in shear wave beams with different polarizations

    International Nuclear Information System (INIS)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-01-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic

  9. Real photon spectral weight functions, imaginary part of vacuum polarization and electromagnetic vertices

    International Nuclear Information System (INIS)

    Chahine, C.; College de France, 75 - Paris. Lab. de Physique Corpusculaire)

    1978-02-01

    The concept of a real photon spectral weight function for any cross-section involving charged particles is introduced as a simple approximation taking into account the soft part of photon emission to all orders in perturbation theory. The spectral weight function replaces the energy-momentum conservation delta function in the elastic cross-section. The spectral weight function is computed in closed form in space-time and in the peaking approximation in momentum space. The spectral weight function description is applied to the imaginary part of vacuum polarization ImPI and to electron-proton scattering. A spectral representation for ImPI is derived and its content compared with the known fourth order result, showing in particular the identity of the soft and peaking approximations in lowest order. The virtual photon radiative corrections are discussed in part, with emphasis on the threshold behavior of the vertex functions. A relativistic generalization of the electric non-relativistic vertex function is given, whose asymptotic behavior is approppriate to use in conjuction with the spectral weight function

  10. Two-color ghost interference with photon pairs generated in hot atoms

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Ding

    2012-09-01

    Full Text Available We report on an experimental observation of a two-photon ghost interference experiment. A distinguishing feature of our experiment is that the photons are generated via a non-degenerated spontaneous four-wave mixing process in a hot atomic ensemble; therefore the photon has narrow bandwidth. Besides, there is a large difference in frequency between two photons in a pair. Our works may be important to achieve more secure, large transmission capacity long-distance quantum communication.

  11. Photofission of NAT Pt by monochromatic and polarized photons in the quasi-deuteron region

    International Nuclear Information System (INIS)

    Paiva, Eduardo de.

    1992-01-01

    The measurement of the Nat Pt photofission yield at 69 MeV of effective average energy of the incident photon is made using a polarized and monochromatic photon beam from the LADON system of the National Laboratory of Frascati, Italy, produced by inverse Compton scattering of laser light by high energy electrons of the ADONE Accelerator and using as fission track solid detector the Makrofol, being the developing made by usual procedure. The experimental value of the nuclear fissionability is compared to a theoretical value obtained following a model at two stages: in the first, the photon energy is absorbed by a neutron-proton pair inducing to the nucleus excitation, and in the second the nucleus de-excites due to the competition between nucleon evaporation and fission. The effect of fast nucleon emission during the first stage and the successive evaporation of neutrons in the second stage are considered. 40 refs, 12 figs, 9 tabs

  12. Construction and performance of BL28 of the Photon Factory for circularly polarized synchrotron radiation

    International Nuclear Information System (INIS)

    Kagoshima, Y.; Muto, S.; Miyahara, T.; Koide, T.; Yamamoto, S.; Kitamura, H.

    1992-01-01

    A branch beamline, BL28A, has been constructed for the application of circularly polarized vacuum ultraviolet radiation. The radiation can be obtained in the helical undulator operation mode of an insertion device, EMPW number-sign 28, which is also cut for elliptically polarized hard x-ray radiation. T first harmonic of the helical undulator radiation can be tuned from 40 to 350 eV with its corresponding K value from 3 to 0.2. A monochromator working basically with constant deviation optics was installed, and has started its operation. A circularly polarized flux of ∼10 10 photons/s has been achieved with energy resolution of around 500--1000 at the first harmonic peak. The circular polarization after the monochromator was estimated to be higher than 70% by comparing theory and experiment on the magnetic circular dichroism of nickel films in the 3p-3d excitation region. The design philosophy of the beamline and recent results on the performance tests are presented

  13. Construction and performance of BL28 of the Photon Factory for circularly polarized synchrotron radiation

    Science.gov (United States)

    Kagoshima, Yasushi; Muto, Sadatsugu; Miyahara, Tsuneaki; Koide, Tsuneharu; Yamamoto, Shigeru; Kitamura, Hideo

    1992-01-01

    A branch beamline, BL28A, has been constructed for the application of circularly polarized vacuum ultraviolet radiation. The radiation can be obtained in the helical undulator operation mode of an insertion device, EMPW♯28, which is also cut for elliptically polarized hard x-ray radiation. T first harmonic of the helical undulator radiation can be tuned from 40 to 350 eV with its corresponding K value from 3 to 0.2. A monochromator working basically with constant deviation optics was installed, and has started its operation. A circularly polarized flux of ˜1010 photons/s has been achieved with energy resolution of around 500-1000 at the first harmonic peak. The circular polarization after the monochromator was estimated to be higher than 70% by comparing theory and experiment on the magnetic circular dichroism of nickel films in the 3p-3d excitation region. The design philosophy of the beamline and recent results on the performance tests are presented.

  14. Light propagation in two-dimensional photonic crystals based on uniaxial polar materials: results on polaritonic spectrum

    Science.gov (United States)

    Gómez-Urrea, H. A.; Duque, C. A.; Pérez-Quintana, I. V.; Mora-Ramos, M. E.

    2017-03-01

    The dispersion relations of two-dimensional photonic crystals made of uniaxial polaritonic cylinders arranged in triangular lattice are calculated. The particular case of the transverse magnetic polarization is taken into account. Three different uniaxial materials showing transverse phonon-polariton excitations are considered: aluminum nitride, gallium nitride, and indium nitride. The study is carried out by means of the finite-difference time-domain technique for the solution of Maxwell equations, together with the method of the auxiliary differential equation. It is shown that changing the filling fraction can result in the modification of both the photonic and polaritonic bandgaps in the optical dispersion relations. Wider gaps appear for smaller filling fraction values, whereas a larger number of photonic bandgaps will occur within the frequency range considered when a larger filling fraction is used. The effect of including the distinct wurtzite III-V nitride semiconductors as core materials in the cylinders embedded in the air on the photonic properties is discussed as well, highlighting the effect of the dielectric anisotropy on the properties of the polaritonic part of the photonic spectrum.

  15. Chargino production and decay in photon-photon collisions

    International Nuclear Information System (INIS)

    Mayer, T.; Bloechinger, C.; Franke, F.; Fraas, H.

    2003-01-01

    We discuss the pair production of charginos in collisions of polarized photons, γγ→χ i + χ i - (i=1,2), and the subsequent leptonic decay of the lighter chargino χ 1 + →χ 1 0 e + ν e including the complete spin correlations. Analytical formulae are given for the polarization and the spin-spin correlations of the charginos. Since the production is a pure QED process the decay dynamics can be studied separately. For high energy photons from Compton backscattering of polarized laser pulses off polarized electron beams numerical results are presented for the cross section, the angular distribution and the forward-backward asymmetry of the decay positron. Finally we study the dependence on the gaugino mass parameter M 1 and on the sneutrino mass for a gaugino-like MSSM scenario. (orig.)

  16. PEPSI — a Monte Carlo generator for polarized leptoproduction

    Science.gov (United States)

    Mankiewicz, L.; Schäfer, A.; Veltri, M.

    1992-09-01

    We describe PEPSI (Polarized Electron Proton Scattering Interactions), a Monte Carlo program for polarized deep inelastic leptoproduction mediated by electromagnetic interaction, and explain how to use it. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering. The hard virtual gamma-parton scattering is generated according to the polarization-dependent QCD cross-section of the first order in α S. PEPSI requires the standard polarization-independent JETSET routines to simulate the fragmentation into final hadrons.

  17. Thermally Optimized Polarization-Maintaining Photonic Crystal Fiber and Its FOG Application.

    Science.gov (United States)

    Zhang, Chunxi; Zhang, Zhihao; Xu, Xiaobin; Cai, Wei

    2018-02-13

    In this paper, we propose a small-diameter polarization-maintaining solid-core photonic crystal fiber. The coating diameter, cladding diameter and other key parameters relating to the thermal properties were studied. Based on the optimized parameters, a fiber with a Shupe constant 15% lower than commercial photonic crystal fibers (PCFs) was fabricated, and the transmission loss was lower than 2 dB/km. The superior thermal stability of our fiber design was proven through both simulation and measurement. Using the small-diameter fiber, a split high precision fiber optic gyro (FOG) prototype was fabricated. The bias stability of the FOG was 0.0023 °/h, the random walk was 0.0003 °/ h , and the scale factor error was less than 1 ppm. Throughout a temperature variation ranging from -40 to 60 °C, the bias stability was less than 0.02 °/h without temperature compensation which is notably better than FOG with panda fiber. As a result, the PCF FOG is a promising choice for high precision FOG applications.

  18. Observation of photon polarization in the $b \\to s\\gamma$ transition

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Bauer, Thomas; Bay, Aurelio; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Callot, Olivier; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Caponio, Francesco; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coca, Cornelia; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bonis, Isabelle; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dorosz, Piotr; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Esen, Sevda; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Fitzpatrick, Conor; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Hafkenscheid, Tom; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Wallaa; Karacson, Matthias; Karbach, Moritz; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Kochebina, Olga; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Ian; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Manzali, Matteo; Maratas, Jan; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Muryn, Bogdan; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pavel-Nicorescu, Carmen; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Roberts, Douglas; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Oksana; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spinella, Franco; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teodorescu, Eliza; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Webber, Adam Dane; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiechczynski, Jaroslaw; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-01-01

    This Letter presents a study of the flavor-changing neutral current radiative $B^{\\pm} \\to K^{\\pm}\\pi^{\\mp}\\pi^{\\pm}\\gamma$ decays performed using data collected in proton-proton collisions with the LHCb detector at $7$ and $8\\,$TeV center-of-mass energies. In this sample, corresponding to an integrated luminosity of $3\\,\\text{fb}^{-1}$, nearly $14\\,000$ signal events are reconstructed and selected, containing all possible intermediate resonances with a $K^{\\pm}\\pi^{\\mp}\\pi^{\\pm}$ final state in the $[1.1, 1.9]\\,$GeV/$c^{2}$ mass range. The distribution of the angle of the photon direction with respect to the plane defined by the final-state hadrons in their rest frame is studied in intervals of $K^{\\pm}\\pi^{\\mp}\\pi^{\\pm}$ mass and the asymmetry between the number of signal events found on each side of the plane is obtained. The first direct observation of the photon polarization in the $b \\to s\\gamma$ transition is reported with a significance of $5.2\\,\\sigma$.

  19. Essentials of photonics

    CERN Document Server

    Rogers, Alan; Baets, Roel

    2008-01-01

    Photons and ElectronsHistorical SketchThe Wave Nature of LightPolarizationThe Electromagnetic SpectrumEmission and Absorption ProcessesPhoton Statistics The Behaviour of Electrons LasersSummaryWave Properties of LightThe Electromagnetic SpectrumWave RepresentationElectromagnetic WavesReflection and RefractionTotal Internal ReflectionInterference of LightLight WaveguidingInterferometersDiffractionGaussian Beams and Stable Optical ResonatorsPolarization OpticsThe Polarization EllipseCrystal OpticsRetarding WaveplatesA Variable Waveplate: The Soleil-Babinet Compensator Polarizing PrismsLinear BirefringenceCircular BirefringenceElliptical BirefringencePractical Polarization EffectsPolarization AnalysisThe Form of the Jones MatricesLight and Matter Emission, Propagation, and Absorption ProcessesClassical Theory of Light Propagation in Uniform Dielectric Media Optical Dispersion Emission and Absorption of LightOptical Coherence and CorrelationIntroductionMeasure of Coherence Wiener-Khinchin TheoremDual-Beam Interfe...

  20. An electromagnetic helical undulator for polarized X-rays

    International Nuclear Information System (INIS)

    Gluskin, E.; Vinokurov, N.; Tcheskidov, V.; Medvedko, A.; Evtushenko, Y.; Kolomogorov, V.; Vobly, P.; Antokhin, E.; Ivanov, P.; Vasserman, I. B.; Trakhtenberg, E. M.; Den Hartog, P. K.; Deriy, B.; Erdmann, M.; Makarov, O.; Moog, E. R.

    1999-01-01

    Linearly and circularly polarized x-rays have been very successfully applied to the study of the properties of materials. Many applications can benefit from the availability of energy-turnable, high-brilliance x-ray beams with adjustable polarization properties. A helical undulator that can generate beams of variable (linear to circular) polarization has been designed and built by the Budker Institute of Nuclear Physics and the Advanced Photon Source. The first harmonic of this 12.8-cm-period device will cover the energy range from 0.4 keV to 3.5 keV. An important feature of this fully electromagnetic device is that it will allow one to generate 100% horizontally (K x =O)or vertically (K y =O) plane-polarized radiation, which will enable many experiments otherwise not technically feasible. With symmetric deflection parameters (K x =K y ), the on-axis radiation will be circularly polarized, with a user-selectable handedness. The polarization can be changed at rates up to 10 Hz

  1. Tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated photonic crystal fiber

    Science.gov (United States)

    Liu, Yingchao; Chen, Hailiang; Ma, Mingjian; Zhang, Wenxun; Wang, Yujun; Li, Shuguang

    2018-03-01

    We propose a tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated high birefringent photonic crystal fiber (HB-PCF). Gold film was applied to the inner walls of two cladding air holes and surface plasmon polaritons were generated on its surface. The two gold-coated cladding air holes acted as two defective cores. As the phase matching condition was satisfied, light transmitted in the fiber core and coupled to the two defective cores. The three-core PCF supported three super modes in two orthogonal polarization directions. The coupling characteristics among these modes were investigated using the finite-element method. We found that the coupling wavelengths and strength between these guided modes can be tuned by altering the structural parameters of the designed HB-PCF, such as the size of the voids, thickness of the gold-films and liquid infilling pattern. Under the optimized structural parameters, a tunable broadband polarization filter was realized. For one liquid infilling pattern, we obtained a broadband polarization filter which filtered out the light in y-polarization direction at the wavelength of 1550 nm. For another liquid infilling pattern, we filtered out light in the x-polarization direction at the wavelength of 1310 nm. Our studies on the designed HB-PCF made contributions to the further devising of tunable broadband polarization filters, which are extensively used in telecommunication and sensor systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505175 and 61475134) and the Natural Science Foundation of Hebei Province (Grant Nos. F2017203110 and F2017203193).

  2. Nonlinear Dynamics of Photonics for Optical Signal Processing - Optical Frequency Conversion and Optical DSB-to-SSB Conversion

    Science.gov (United States)

    2015-09-17

    photonic system. ML: master laser; SL: slave laser; L; lens; PBS: polarizing beam splitter ; M: mirror; HW: half-wave plate; FR: Faraday rotator; V...microwave generation and stabilization, and photonic microwave amplification. 15. SUBJECT TERMS Non -linear Dynamics, Add-drop

  3. Supercontinuum Generation in a Photonic Crystal Fibre

    Institute of Scientific and Technical Information of China (English)

    YAN Pei-Guang; RUAN Shuang-Chen; LIN Hao-Jia; DU Chen-Lin; YU Yong-Qin; LU Ke-Cheng; YAO Jian-Quan

    2004-01-01

    @@ Nearly 1000-nm broad continuum from 390nm to 1370nm is generated in a 2-m long photonic crystal fibre. The maximum total power of supercontinuum is measured to be 60mW with the pumping power of 800mW output from a 200-fs Ti:sapphire laser. The evolution of the pumping light into supercontinuum is experimentally studied in detail. It is found that the mechanism for supercontinuum generation has direct relations with Raman effect and soliton effect, and the four-wave mixing plays an important role in the last phase of the supercontinuum generation.

  4. Photon-photon colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R ampersand D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy

  5. Optical Third-Harmonic Generation in Graphene

    Directory of Open Access Journals (Sweden)

    Sung-Young Hong

    2013-06-01

    Full Text Available We report strong third-harmonic generation in monolayer graphene grown by chemical vapor deposition and transferred to an amorphous silica (glass substrate; the photon energy is in three-photon resonance with the exciton-shifted van Hove singularity at the M point of graphene. The polarization selection rules are derived and experimentally verified. In addition, our polarization- and azimuthal-rotation-dependent third-harmonic-generation measurements reveal in-plane isotropy as well as anisotropy between the in-plane and out-of-plane nonlinear optical responses of graphene. Since the third-harmonic signal exceeds that from bulk glass by more than 2 orders of magnitude, the signal contrast permits background-free scanning of graphene and provides insight into the structural properties of graphene.

  6. Generation of two-temporal-mode photon states by vector four-wave mixing

    DEFF Research Database (Denmark)

    Mckinstrie, C. J.; Christensen, J. B.; Rottwitt, Karsten

    2017-01-01

    Photon pair states and multiple-photon squeezed states have many applications in quantum information science. In this paper, Green functions are derived for spontaneous four-wave mixing in the low-and high-gain regimes. Nondegenerate four-wave mixing in a strongly-birefringent medium generates...... signal and idler photons that are associated with only one pair of temporal (Schmidt) modes, for a wide range of pump powers and arbitrary pump shapes. The Schmidt coefficients (expected photon numbers) depend sensitively on the pump powers, and the Schmidt functions (shapes of the photon wavepackets...

  7. Do centrioles generate a polar ejection force?

    Science.gov (United States)

    Wells, Jonathan

    2005-01-01

    A microtubule-dependent polar ejection force that pushes chromosomes away from spindle poles during prometaphase is observed in animal cells but not in the cells of higher plants. Elongating microtubules and kinesin-like motor molecules have been proposed as possible causes, but neither accounts for all the data. In the hypothesis proposed here a polar ejection force is generated by centrioles, which are found in animals but not in higher plants. Centrioles consist of nine microtubule triplets arranged like the blades of a tiny turbine. Instead of viewing centrioles through the spectacles of molecular reductionism and neo-Darwinism, this hypothesis assumes that they are holistically designed to be turbines. Orthogonally oriented centriolar turbines could generate oscillations in spindle microtubules that resemble the motion produced by a laboratory vortexer. The result would be a microtubule-mediated ejection force tending to move chromosomes away from the spindle axis and the poles. A rise in intracellular calcium at the onset of anaphase could regulate the polar ejection force by shutting down the centriolar turbines, but defective regulation could result in an excessive force that contributes to the chromosomal instability characteristic of most cancer cells.

  8. Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics

    Science.gov (United States)

    Wang, Hong; Ren, Bao-Cang; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo

    2017-10-01

    Hyperentanglement has significant applications in quantum information processing. Here we present an efficient hyperentanglement concentration protocol (hyper-ECP) for partially hyperentangled Bell states simultaneously entangled in polarization, spatial-mode and time-bin degrees of freedom (DOFs) with the parameter-splitting method, where the parameters of the partially hyperentangled Bell states are known to the remote parties. In this hyper-ECP, only one remote party is required to perform some local operations on the three DOFs of a photon, only the linear optical elements are considered, and the success probability can achieve the maximal value. Our hyper-ECP can be easily generalized to concentrate the N-photon partially hyperentangled Greenberger-Horne-Zeilinger states with known parameters, where the multiple DOFs have largely improved the channel capacity of long-distance quantum communication. All of these make our hyper-ECP more practical and useful in high-capacity long-distance quantum communication.

  9. Polarization entangled photon pair source for space-based quantum communication, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this NASA effort is to develop and deliver efficient, single-pass quantum optical waveguide sources generating high purity hyper-entangled photon...

  10. Design of a compact polarization beam splitter based on a deformed photonic crystal directional coupler

    International Nuclear Information System (INIS)

    Ren Gang; Zheng Wanhua; Wang Ke; Du Xiaoyu; Xing Mingxin; Chen Lianghui

    2008-01-01

    In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided mode are split due to different guiding mechanisms. The effect of the shape deformation of the air holes on the coupler is studied. It discovered that the coupling strength of the coupled waveguides is strongly enhanced by introducing elliptical airholes, which reduce the device length to less than 18.5μm. A finite-difference time-domain simulation is performed to evaluate the performance of the device, and the extinction ratios for both TE and TM polarized light are higher than 20 dB. (classical areas of phenomenology)

  11. Strongly correlated photons generated by coupling a three- or four-level system to a waveguide

    Science.gov (United States)

    Zheng, Huaixiu; Gauthier, Daniel J.; Baranger, Harold U.

    2012-04-01

    We study the generation of strongly correlated photons by coupling an atom to photonic quantum fields in a one-dimensional waveguide. Specifically, we consider a three-level or four-level system for the atom. Photon-photon bound states emerge as a manifestation of the strong photon-photon correlation mediated by the atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed multiphoton transmission (photon blockade) or enhanced multiphoton transmission (photon-induced tunneling). As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed system. We calculate the second-order correlation function of the transmitted field and observe bunching and antibunching caused by the bound states. Furthermore, we demonstrate that the proposed system can produce photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information and are important for large-alphabet quantum communication.

  12. Photon-Photon Collisions -- Past and Future

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2005-01-01

    I give a brief review of the history of photon-photon physics and a survey of its potential at future electron-positron colliders. Exclusive hadron production processes in photon-photon and electron-photon collisions provide important tests of QCD at the amplitude level, particularly as measures of hadron distribution amplitudes. There are also important high energy γγ and eγ tests of quantum chromodynamics, including the production of jets in photon-photon collisions, deeply virtual Compton scattering on a photon target, and leading-twist single-spin asymmetries for a photon polarized normal to a production plane. Since photons couple directly to all fundamental fields carrying the electromagnetic current including leptons, quarks, W's and supersymmetric particles, high energy γγ collisions will provide a comprehensive laboratory for Higgs production and exploring virtually every aspect of the Standard Model and its extensions. High energy back-scattered laser beams will thus greatly extend the range of physics of the International Linear Collider

  13. Triple photonic band-gap structure dynamically induced in the presence of spontaneously generated coherence

    International Nuclear Information System (INIS)

    Gao Jinwei; Bao Qianqian; Wan Rengang; Cui Cuili; Wu Jinhui

    2011-01-01

    We study a cold atomic sample coherently driven into the five-level triple-Λ configuration for attaining a dynamically controlled triple photonic band-gap structure. Our numerical calculations show that three photonic band gaps with homogeneous reflectivities up to 92% can be induced on demand around the probe resonance by a standing-wave driving field in the presence of spontaneously generated coherence. All these photonic band gaps are severely malformed with probe reflectivities declining rapidly to very low values when spontaneously generated coherence is gradually weakened. The triple photonic band-gap structure can also be attained in a five-level chain-Λ system of cold atoms in the absence of spontaneously generated coherence, which however requires two additional traveling-wave fields to couple relevant levels.

  14. An enhancement of spin polarization by multiphoton pumping in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-08-15

    Highlights: {yields} Multiphoton pumping and spin generation in semiconductors. {yields} Optical selection rules for inter-band transitions. {yields} Calculations of spin polarization using band-energy model and the second order perturbation theory. {yields} Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  15. An enhancement of spin polarization by multiphoton pumping in semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    Highlights: → Multiphoton pumping and spin generation in semiconductors. → Optical selection rules for inter-band transitions. → Calculations of spin polarization using band-energy model and the second order perturbation theory. → Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  16. Adler-Bardeen Theorem for the Axial Anomaly and the First Moment of the Polarized Virtual Photon Structure Function

    International Nuclear Information System (INIS)

    Ueda, Takahiro; Sasaki, Ken; Uematsu, Tsuneo

    2007-01-01

    The Adler-Bardeen theorem for the axial anomaly is extensively used to calculate the next-to-next-to-leading order (αα s 2 ) corrections to the first moment of the polarized virtual photon structure function g 1 γ (x,P 2 ,Q 2 )

  17. Theoretical Analysis of Spectral Correlations Between Photon Pairs Generated in Nanoscale Silicon Waveguides

    International Nuclear Information System (INIS)

    Lu Liang-Liang; Xu Ping; Xu Jian-Ning; Zhu Shi-Ning; He Guang-Qiang

    2015-01-01

    Spontaneous four wave mixing in nonlinear waveguide is one of the excellent technique for generating photon pairs in well-defined guided modes. Here we present a comprehensive study of the frequency characteristic of correlated photon pairs generated in telecom C-band from a dispersion-engineered silicon wire waveguide. We have demonstrated that the waveguide configuration, shape of pump pulse, two-photon absorption as well as linear losses have significant influences on the biphoton spectral characteristics and the amount of frequency entanglement generated. The superior performance as well as the structural compactness and CMOS compatibility makes the silicon wire waveguide an ideal integrated platform for the implementation of on-chip quantum technologies. (paper)

  18. Effects of multi-photon interferences from internally generated fields in strongly resonant systems

    International Nuclear Information System (INIS)

    Deng, Lu; Payne, Marvin G.; Garrett, William R.

    2006-01-01

    In studies of various nonlinear optical phenomena, strong resonant features in the atomic or molecular response to multi-photon driven processes have been used to greatly enhance the visibility of otherwise weak higher-order processes. However, there are well defined circumstances where a multi-photon-resonant response of a target system leads to the generation of one or more new electromagnetic fields that can drastically change the overall system response from what would be expected from the imposed laser fields alone. New effects can occur and dominate some aspects of the nonlinear optical response because of the constructive or destructive interference between transition amplitudes along multiple excitation pathways between a given set of optically coupled states, where one of the pathways involve internally generated field(s). Under destructive interference some resonant enhancements can become completely canceled (suppressed). This review focuses on the class of optical interference effects associated with internally generated fields, that have been found to be capable of influencing a very significant number of basic physical phenomena in gas or vapor phase systems. It provides a historical overview of experimental and theoretical developments and a modern understanding of the underlying physics and its various manifestations that include: suppression of multi-photon excitation processes, suppression of stimulated emissions (Raman, hyper-Raman, and optically pumped stimulated emissions), saturation of parametric wave-mixing, pressure and beam-geometry dependent shifting of multi-photon-resonant absorption lines, and the suppression of Autler-Townes splitting and ac-stark shifts. Additionally, optical interference effects in some modern contexts, such as achieving multi-photon induced transparency, establishing single-photon self-interference based induced transparency, and generating entangled single photon states, are reviewed

  19. On mixed electron-photon radiation therapy optimization using the column generation approach.

    Science.gov (United States)

    Renaud, Marc-André; Serban, Monica; Seuntjens, Jan

    2017-08-01

    Despite considerable increase in the number of degrees of freedom handled by recent radiotherapy optimisation algorithms, treatments are still typically delivered using a single modality. Column generation is an iterative method for solving large optimisation problems. It is well suited for mixed-modality (e.g., photon-electron) optimisation as the aperture shaping and modality selection problem can be solved rapidly, and the performance of the algorithm scales favourably with increasing degrees of freedom. We demonstrate that the column generation method applied to mixed photon-electron planning can efficiently generate treatment plans and investigate its behaviour under different aperture addition schemes. Column generation was applied to the problem of mixed-modality treatment planning for a chest wall case and a leg sarcoma case. 6 MV beamlets (100 cm SAD) were generated for the photon components along with 5 energies for electron beamlets (6, 9, 12, 16 and 20 MeV), simulated as shortened-SAD (80 cm) beams collimated with a photon MLC. For the chest wall case, IMRT-only, modulated electron radiation therapy (MERT)-only, and mixed electron-photon (MBRT) treatment plans were created using the same planning criteria. For the sarcoma case, MBRT and MERT plans were created to study the behaviour of the algorithm under two different sets of planning criteria designed to favour specific modalities. Finally, the efficiency and plan quality of four different aperture addition schemes was analysed by creating chest wall MBRT treatment plans which incorporate more than a single aperture per iteration of the column generation loop based on a heuristic aperture ranking scheme. MBRT plans produced superior target coverage and homogeneity relative to IMRT and MERT plans created using the same optimisation criteria, all the while preserving the normal tissue-sparing advantages of electron therapy. Adjusting the planning criteria to favour a specific modality in the sarcoma

  20. Soliton fission and supercontinuum generation in photonic crystal

    Indian Academy of Sciences (India)

    2015-10-17

    Oct 17, 2015 ... We present a practical design of novel photonic crystal fibre (PCF) to investigate the nonlinear propagation of femtosecond pulses for the application of optical coherence tomography (OCT) based on supercontinuum generation (SCG) process. In addition, this paper contains a brief introduction of the ...

  1. Rapid creation of distant entanglement by multi-photon resonant fluorescence

    Science.gov (United States)

    Cohen, Guy Z.; Sham, L. J.

    2014-03-01

    We study a simple, effective and robust method for entangling two separate stationary quantum dot spin qubits with high fidelity using multi-photon Gaussian state. The fluorescence signals from the two dots interfere at a beam splitter. The bosonic nature of photons leads, in analogy with the Hong-Ou-Mandel (HOM) effect, to selective pairing of photon holes (photon absences in the fluorescent signals). By the HOM effect, two photon holes with the same polarization end up at the same beam splitter output. As a result, two odd photon number detections at the outgoing beams, which must correspond to two photon holes with different polarizations, herald entanglement creation. The robustness of the Gaussian states is evidenced by the ability to compensate for photon absorption and noise by a moderate increase in the number of photons at the input. We calculate the entanglement generation rate in the ideal, non-ideal and near-ideal detector regimes and find substantial improvement over single-photon schemes in all three regimes. Fast and efficient spin-spin entanglement creation can form the basis for a scalable quantum dot quantum computing network. Our predictions can be tested using current experimental capabilities. This research was supported by the U.S. Army Research Office MURI award W911NF0910406, by NSF grant PHY-1104446 and by ARO (IARPA, W911NF-08-1-0487). The authors thank D. G. Steel for useful discussions.

  2. Polarization holograms allow highly efficient generation of complex light beams.

    Science.gov (United States)

    Ruiz, U; Pagliusi, P; Provenzano, C; Volke-Sepúlveda, K; Cipparrone, Gabriella

    2013-03-25

    We report a viable method to generate complex beams, such as the non-diffracting Bessel and Weber beams, which relies on the encoding of amplitude information, in addition to phase and polarization, using polarization holography. The holograms are recorded in polarization sensitive films by the interference of a reference plane wave with a tailored complex beam, having orthogonal circular polarizations. The high efficiency, the intrinsic achromaticity and the simplicity of use of the polarization holograms make them competitive with respect to existing methods and attractive for several applications. Theoretical analysis, based on the Jones formalism, and experimental results are shown.

  3. Polarization Observables T and F in single π0- and η-Photoproduction off quasi-free Nucleons

    Directory of Open Access Journals (Sweden)

    Strub Thomas

    2014-01-01

    Single π0- and η-photoproduction off a transversally polarized d-butanol target has been measured with circularly polarized bremsstrahlung photons generated by the MAMI-C electron microtron. With the nearly 4π acceptance of the combined Crystal Ball/TAPS setup the double polarization observable F and the target asymmetry T can be extracted for the first time for polarized, quasi-free neutrons over a wide energy and angular range.

  4. Molecular Memory of Morphologies by Septins during Neuron Generation Allows Early Polarity Inheritance.

    Science.gov (United States)

    Boubakar, Leila; Falk, Julien; Ducuing, Hugo; Thoinet, Karine; Reynaud, Florie; Derrington, Edmund; Castellani, Valérie

    2017-08-16

    Transmission of polarity established early during cell lineage history is emerging as a key process guiding cell differentiation. Highly polarized neurons provide a fascinating model to study inheritance of polarity over cell generations and across morphological transitions. Neural crest cells (NCCs) migrate to the dorsal root ganglia to generate neurons directly or after cell divisions in situ. Using live imaging of vertebrate embryo slices, we found that bipolar NCC progenitors lose their polarity, retracting their processes to round for division, but generate neurons with bipolar morphology by emitting processes from the same locations as the progenitor. Monitoring the dynamics of Septins, which play key roles in yeast polarity, indicates that Septin 7 tags process sites for re-initiation of process growth following mitosis. Interfering with Septins blocks this mechanism. Thus, Septins store polarity features during mitotic rounding so that daughters can reconstitute the initial progenitor polarity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Polarization of photons in matter–antimatter annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Moskaliuk, S.S. [Bogolyubov Institute for Theoretical Physics, Metrolohichna Street, 14-b, Kyiv-143, Ukraine, UA-03143 e-mail: mss@bitp.kiev.ua (Ukraine)

    2015-03-10

    In this work we demonstrate the possibility of generation of linear polarization of the electromagnetic field (EMF) due to the quantum effects in matter-antimatter annihilation process for anisotropic space of the I type according to Bianchi. We study the dynamics of this process to estimate the degree of polarisation of the EMF in the external gravitational field of the anisotropic Bianchi I model. It has been established that the quantum effects in matter-antimatter annihilation process in the external gravitational field of the anisotropic Bianchi I model provide contribution to the degree of polarisation of the EMF in quadrupole harmonics.

  6. Effect of the coherent cancellation of the two-photon resonance on the generation of vacuum ultraviolet light by two-photon reasonantly enhanced four-wave mixing

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.; Judish, J.P.; Wunderlich, R.

    1988-11-01

    Many of the most impressive demonstrations of the efficient generation of vacuum ultraviolet (VUV) light have made use of two- photon resonantly enhanced four-wave mixing to generate light at ω/sub VUV/ = 2ω/sub L1/ +- ω/sub L2/. The two-photon resonance state is coupled to the ground state both by two photons from the first laser, or by a photon from the second laser and one from the generated VUV beam. We show here that these two coherent pathways destructively interfere once the second laser is made sufficiently intense, thereby leading to an important limiting effect on the achievable conversion efficiency. 4 refs

  7. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Centini, M.; Sciscione, L.; Sibilia, C.; Bertolotti, M.; Perina, J. Jr.; Scalora, M.; Bloemer, M.J.

    2005-01-01

    A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process

  8. Generation of Bright Phase-matched Circularly-polarized Extreme Ultraviolet High Harmonics

    Science.gov (United States)

    2014-12-08

    1995). 42. Eichmann , H. et al. Polarization-dependent high-order two-color mixing. Phys. Rev. A 51, R3414–R3417 (1995). 43. Fleischer, A., Kfir, O...calculations of polarization-dependent two- color high-harmonic generation. Phys. Rev. A 52, 2262–2278 (1995). 10. Eichmann , H. et al. polarization

  9. Method for universal detection of two-photon polarization entanglement

    Science.gov (United States)

    Bartkiewicz, Karol; Horodecki, Paweł; Lemr, Karel; Miranowicz, Adam; Życzkowski, Karol

    2015-03-01

    Detecting and quantifying quantum entanglement of a given unknown state poses problems that are fundamentally important for quantum information processing. Surprisingly, no direct (i.e., without quantum tomography) universal experimental implementation of a necessary and sufficient test of entanglement has been designed even for a general two-qubit state. Here we propose an experimental method for detecting a collective universal witness, which is a necessary and sufficient test of two-photon polarization entanglement. It allows us to detect entanglement for any two-qubit mixed state and to establish tight upper and lower bounds on its amount. A different element of this method is the sequential character of its main components, which allows us to obtain relatively complicated information about quantum correlations with the help of simple linear-optical elements. As such, this proposal realizes a universal two-qubit entanglement test within the present state of the art of quantum optics. We show the optimality of our setup with respect to the minimal number of measured quantities.

  10. Split-step scheme for photon-pair generation through spontaneous four-wave mixing

    DEFF Research Database (Denmark)

    Koefoed, Jacob Gade; Christensen, Jesper Bjerge; Rottwitt, Karsten

    2017-01-01

    The rapid development of quantum information technology requires the ability to reliably create and distribute single photons [1]. Photon-pair production through spontaneous four-wave mixing (SpFWM) allows heralded single photons to be generated at communication wavelengths and in fiber, compatible...... with conventional communication systems, with small losses. Creating single photons in desired quantum states require careful design of waveguide structures. This is greatly facilitated by a general numerical approach as presented here. Additionally, such a numerical approach allows detailed analysis of real...... systems where all relevent effects are included....

  11. Generation of valley-polarized electron beam in bilayer graphene

    International Nuclear Information System (INIS)

    Park, Changsoo

    2015-01-01

    We propose a method to produce valley-polarized electron beams using a bilayer graphene npn junction. By analyzing the transmission properties of electrons through the junction with zigzag interface in the presence of trigonal warping, we observe that there exist a range of incident energies and barrier heights in which transmitted electrons are well polarized and collimated. From this observation and by performing numerical simulations, it is demonstrated that valley-dependent electronic currents with nearly perfect polarization can be generated. We also show that the peak-to-peak separation angle between the polarized currents is tunable either by incident energy or by barrier height each of which is controlled by using top and back gate voltages. The results can be used for constructing an electron beam splitter to produce valley-polarized currents

  12. Generation of valley-polarized electron beam in bilayer graphene

    Science.gov (United States)

    Park, Changsoo

    2015-12-01

    We propose a method to produce valley-polarized electron beams using a bilayer graphene npn junction. By analyzing the transmission properties of electrons through the junction with zigzag interface in the presence of trigonal warping, we observe that there exist a range of incident energies and barrier heights in which transmitted electrons are well polarized and collimated. From this observation and by performing numerical simulations, it is demonstrated that valley-dependent electronic currents with nearly perfect polarization can be generated. We also show that the peak-to-peak separation angle between the polarized currents is tunable either by incident energy or by barrier height each of which is controlled by using top and back gate voltages. The results can be used for constructing an electron beam splitter to produce valley-polarized currents.

  13. Advances in polarization sensitive multiphoton nano-bio-imaging

    Directory of Open Access Journals (Sweden)

    Zyss J.

    2010-06-01

    Full Text Available In this talk, we shall shortly review four main directions of ongoing research in our laboratories, directed at the conception and demonstration of a variety of innovative configurations in nanoscale multiphoton imaging. A common feature to all of these directions appears to be the central role played by the involvement of polarization features, both in- and outgoing, moreover so in view of the tensorial aspects inherent to nonlinear schemes such second-harmonic generation, electro-optic modulation or two-photon fluorescence which will ne emphasized. These advances relate to the new domain of nonlinear ellipsometry in multiphoton imaging [1], of high relevance to fundamental aspects of nanophotonics and nanomaterial engineering as well as towards basic life science issues. The four domains to be shortly reported are: a polarization resolved second-harmonic generation in semiconductor QD’s with record small sizes in the 10-12 nm range [2] b original use of two-photon confocal polarization resolved microscopy in DNA stained by two photon fluorescent dyes in different LC phases arrangements so as to characterize these as well as ascertain the respective DNA-dye orientation (intercalant or groves [3] c elaboration and demonstration of an electrooptic confocal microscope in a highly sensitive interferometric and homodyne detection configuration allowing to map weak electric potentials such as in artificial functionalized membranes, the dynamical investigation of firing and propagation aspects of action potentials in neurones being currently the next step [4] d original plasmon based enhanced nanoscale confocal imaging involving a dual detection scheme (fluorescence imaging and ATR plasmon coupling in reflection whereby adequate preparation and switching of the incoming polarization state between radial, linear and azimuthal configurations, entail different images and plasmon enhancement levels [5].

  14. Silicon Photonics Integrated Circuits for 5th Generation mm-Wave Wireless Communications

    DEFF Research Database (Denmark)

    Rommel, Simon; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Photonic integration may pave the way to practical applicability...

  15. Polarization Measurements in Neutral Pion Photoproduction

    International Nuclear Information System (INIS)

    C. Jones; Krishni Wijesooriya; B. Fox; Andrei Afanasev; Moscov Amaryan; Konrad Aniol; Stephen Becher; Kamal Benslama; Louis Bimbot; Peter Bosted; Edward Brash; John Calarco; Zhengwei Chai; C. Chang; Ting Chang; Jian-Ping Chen; Seonho Choi; Eugene Chudakov; Steve Churchwell; Domenick Crovelli; Sonja Dieterich; Scott Dumalski; Dipangkar Dutta; Martin Epstein; Kevin Fissum; Salvatore Frullani; Haiyan Gao; Juncai Gao; Franco Garibaldi; Olivier Gayou; Ronald Gilman; Oleksandr Glamazdin; Charles Glashausser; Javier Gomez; Viktor Gorbenko; Ole Hansen; Roy Holt; Jordan Hovdebo; Garth Huber; Kees de Jager; Xiaodong Jiang; Mark Jones; Jim Kelly; Edward Kinney; Edgar Kooijman; Gerfried Kumbartzki; Michael Kuss; John LeRose; Meme Liang; Richard Lindgren; Nilanga Liyanage; Sergey Malov; Demetrius Margaziotis; Pete Markowitz; Kathy McCormick; Dave Meekins; Zein-Eddine Meziani; Robert Michaels; Joe Mitchell; Ludyvine Morand; Charles Perdrisat

    2002-01-01

    We present measurements of the recoil proton polarization for the 1 H(gamma-vector,p-vector)pi 0 reaction for theta c.m. pi = 60 o -135 o and for photon energies up to 4.1 GeV. These are the first data in this reaction for polarization transfer with circularly polarized photons. Various theoretical models are compared with the results. No evidence for hadron helicity conservation is observed. Models that employ factorization are not favored. It appears from the strong angular dependence of the induced polarization at photon energies of 2.5 and 3.1 GeV that a relatively high spin resonance or background amplitude might exist in this energy region

  16. Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface

    Science.gov (United States)

    Yang, Jin; Zhang, Cheng; Ma, Hui Feng; Zhao, Jie; Dai, Jun Yan; Yuan, Wei; Yang, Liu Xi; Cheng, Qiang; Cui, Tie Jun

    2018-05-01

    We propose a strategy to convert a linearly polarized wave from a single point source to an orbital angular momentum (OAM) wave by arbitrary polarization via an anisotropic frequency selective surface (FSS) in the microwave frequency. By tailoring the geometries of FSS elements, reflection-phases in x and y polarizations are engineered and encoded independently, which allows us to design the eventual polarization state of the generated OAM vortex beam by elaborately selecting individual coding sequences for each polarization. Two types of FSSs are designed and experimentally characterized to demonstrate the capability of OAM generation with circular and linear polarizations, respectively, showing excellent performance in a wide bandwidth from 14 to 16 GHz. This method provides opportunities for polarization multiplexing in microwave OAM communication systems.

  17. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber

    Science.gov (United States)

    Yan, Bei; Wang, Anran; Liu, Exian; Tan, Wei; Xie, Jianlan; Ge, Rui; Liu, Jianjun

    2018-04-01

    A novel polarization filter based on a sunflower-type photonic quasi-crystal fiber (PQF) is proposed in this paper. We also discuss different methods to tune the filter wavelength. The proposed filter can efficiently produce polarized light with visible wavelengths by using the resonance between the second-order surface plasmon polariton mode and the core mode of the PQF. The filtered wavelength can be tuned between 0.55 µm and 0.68 µm by adjusting the thickness of the gold film. When the thickness of the gold film is 25.3 nm, the resonance loss in the y-polarized direction reaches 11707 dB m‑1 for a wavelength of 0.6326 µm, and the full width at half maximum is only 5 nm. Due to the flexible design and absence of both polarization coupling and polarization dispersion, this polarization filter can be used in devices that require narrow-band filtering.

  18. Ultracompact photonic crystal polarization beam splitter based on multimode interference.

    Science.gov (United States)

    Lu, Ming-Feng; Liao, Shan-Mei; Huang, Yang-Tung

    2010-02-01

    We propose a theoretical design for a compact photonic crystal (PC) polarization beam splitter (PBS) based on the multimode interference (MMI) effect. The size of a conventional MMI device designed by the self-imaging principle is not compact enough; therefore, we design a compact PC PBS based on the difference of the interference effect between TE and TM modes. Within the MMI coupler, the dependence of interference of modes on propagation distance is weak for a TE wave and strong for a TM wave; as a result, the length of the MMI section can be only seven lattice constants. Simulation results show that the insertion losses are 0.32 and 0.89 dB, and the extinction ratios are 14.4 and 17.5 dB for Port 1 (TE mode) and Port 2 (TM mode), respectively.

  19. Generation of Elliptically Polarized Terahertz Waves from Antiferromagnetic Sandwiched Structure.

    Science.gov (United States)

    Zhou, Sheng; Zhang, Qiang; Fu, Shu-Fang; Wang, Xuan-Zhang; Song, Yu-Ling; Wang, Xiang-Guang; Qu, Xiu-Rong

    2018-04-01

    The generation of elliptically polarized electromagnetic wave of an antiferromagnetic (AF)/dielectric sandwiched structure in the terahertz range is studied. The frequency and external magnetic field can change the AF optical response, resulting in the generation of elliptical polarization. An especially useful geometry with high levels of the generation of elliptical polarization is found in the case where an incident electromagnetic wave perpendicularly illuminates the sandwiched structure, the AF anisotropy axis is vertical to the wave-vector and the external magnetic field is pointed along the wave-vector. In numerical calculations, the AF layer is FeF2 and the dielectric layers are ZnF2. Although the effect originates from the AF layer, it can be also influenced by the sandwiched structure. We found that the ZnF2/FeF2/ZnF2 structure possesses optimal rotation of the principal axis and ellipticity, which can reach up to about thrice that of a single FeF2 layer.

  20. Measurement of polarization observables in the reaction {gamma}p{yields} p{pi}{sup 0}{pi}{sup 0} using linearly polarized photons with the CBELSA/TAPS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sokhoyan, Vahe

    2012-07-27

    The spectrum and the properties of baryon resonances can be studied using photons with energies appropriate to excite baryonic states. Double meson photoproduction allows access to cascading resonance decays via other excited states. Also, at higher energies the importance of the double meson photoproduction increases due to higher cross-sections in comparison to single meson photoproduction. To study baryon resonances, the measurement of polarization observables as well as the measurement of differential cross-sections plays a very important role. In this work the three-body polarization observables I{sup s}, I{sup c} and the respective twobody asymmetry {Sigma} were measured for the reaction {gamma}p {yields} p{pi}{sup 0}{pi}{sup 0} in an incoming photon energy range of E{sub {gamma}} = 970 - 1650 MeV. The data were acquired with the CBELSA/TAPS experiment located at the ELSA accelerator in Bonn, using a linearly polarized photon beam impinging on a liquid hydrogen target. The observables I{sup s} and I{sup c} which occur in two-meson final states are measured for the first time in the reaction {gamma}p {yields} p{pi}{sup 0}{pi}{sup 0}. The corresponding two-body asymmetry {Sigma} is measured in an extended energy range in comparison to already existing data. A comparison with theoretical models shows that the polarization observables provide valuable input to study resonance contributions and their decay modes. The D{sub 33}(1700) {yields} {Delta}{pi} decay is studied based on the comparison of the Bonn-Gatchina Partial Wave Analysis (PWA) predictions with the data. Furthermore, a comparison of the data with the Bonn-Gatchina PWA and the Fix isobar model predictions allows to distinguish between these two models. Additionally, band-like structures and peaks are observed in the mass ranges of {Delta}(1232), D{sub 13}(1520), F{sub 15}(1680), f{sub 0}(980) and f{sub 2}(1270) in the according Dalitz plots and invariant mass distributions. The contributions of these

  1. Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer.

    Science.gov (United States)

    Li, Chenlei; Dai, Daoxin

    2017-11-01

    A polarization beam splitter (PBS) is proposed and realized for silicon photonic integrated circuits with a 340-nm-thick silicon core layer by introducing an asymmetric directional coupler (ADC), which consists of a silicon-on-insulator (SOI) nanowire and a subwavelength grating (SWG) waveguide. The SWG is introduced to provide an optical waveguide which has much higher birefringence than a regular 340-nm-thick SOI nanowire, so that it is possible to make the phase-matching condition satisfied for TE polarization only in the present design when the waveguide dimensions are optimized. Meanwhile, there is a significant phase mismatching for TM polarization automatically. In this way, the present ADC enables strong polarization selectivity to realize a PBS that separates TE and TM polarizations to the cross and through ports, respectively. The realized PBS has a length of ∼2  μm for the coupling region. For the fabricated PBS, the extinction ratio (ER) is 15-30 dB and the excess loss is 0.2-2.6 dB for TE polarization while the ER is 20-27 dB and the excess loss is 0.3-2.8 dB for TM polarization when operating in the wavelength range of 1520-1580 nm.

  2. Integrated polarization beam splitter with relaxed fabrication tolerances.

    Science.gov (United States)

    Pérez-Galacho, D; Halir, R; Ortega-Moñux, A; Alonso-Ramos, C; Zhang, R; Runge, P; Janiak, K; Bach, H-G; Steffan, A G; Molina-Fernández, Í

    2013-06-17

    Polarization handling is a key requirement for the next generation of photonic integrated circuits (PICs). Integrated polarization beam splitters (PBS) are central elements for polarization management, but their use in PICs is hindered by poor fabrication tolerances. In this work we present a fully passive, highly fabrication tolerant polarization beam splitter, based on an asymmetrical Mach-Zehnder interferometer (MZI) with a Si/SiO(2) Periodic Layer Structure (PLS) on top of one of its arms. By engineering the birefringence of the PLS we are able to design the MZI arms so that sensitivities to the most critical fabrication errors are greatly reduced. Our PBS design tolerates waveguide width variations of 400nm maintaining a polarization extinction ratio better than 13dB in the complete C-Band.

  3. Twin photonic nanojets generated from coherent illumination of microscale sphere and cylinder

    Science.gov (United States)

    Poteet, Austen; Zhang, Xu A.; Nagai, Hironori; Chang, Chih-Hao

    2018-02-01

    Photonic nanojets, highly focused beams of light created by planar illumination of a microsphere, have been shown to produce narrow subwavelength beams over distances of several wavelengths in the near field. In this work, we investigate the generation of twin photonic nanojets through the illumination of a microsphere or cylinder from two coherent sources with relative phase shift. Under these conditions, symmetric twin nanojets separated by an intensity null can be generated. Compared to a photonic nanojet, the twin nanojets can achieve an even smaller subwavelength beam, and have the added advantage of having more complex intensity profiles that can be controlled by multiple parameters. Using both finite-difference time-domain and Mie theory models, the width, length, and intensity enhancement factor of the nanojet geometry are found to be functions of the phase, angle offsets, and particle geometry. Such twin photonic nanojets can find applications in optical trapping, manipulation, nanolithography, and enhancement of nonlinear optical properties.

  4. Simulation of generation and dynamics of polarization singularities with circular Airy beams.

    Science.gov (United States)

    Ye, Dong; Peng, Xinyu; Zhou, Muchun; Xin, Yu; Song, Minmin

    2017-11-01

    The generation and dynamics of polarization singularities have been underresearched for years, while the focusing property of the topological configuration has not been explored much. In this paper, we simulated the generation of low-order polarization singularities with a circular Airy beam and explored the focusing property of the synthetic light field during propagation due to the autofocusing of the component. Our work researched the focusing properties of the polarization singularity configuration, which may help to develop its application prospect.

  5. Novel ultra-wideband photonic signal generation and transmission featuring digital signal processing bit error rate measurements

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal.......We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal....

  6. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion

    Science.gov (United States)

    Cho, Minhaeng

    2018-05-01

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  7. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion.

    Science.gov (United States)

    Cho, Minhaeng

    2018-05-14

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  8. Experimental method for investigating γd→pn photodisintegration reaction on the linearly polarized photon beam of the Erevan synchrotron

    International Nuclear Information System (INIS)

    Agababyan, K.Sh.; Adamyan, F.V.; Ajrapetyan, A.V.

    1985-01-01

    The experimental method for measuring the asymmetry of the γd → pn photodisintegration reaction on the linearly polarized photon beam of the Erevan synchrotron is described. The results of Monte Carlo calculations, the calibration of apparatus, the procedure of measurements and experimental data processing are repored

  9. System Wide Implementation of Photonically Generated Impulse Radio Ultra-Wideband for Gigabit Fiber-Wireless Access

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Rodes Lopez, Roberto

    2013-01-01

    In this paper, we comprehensively review our research work on system wide implementation of photonically generated IR-UWB signals based on relaxation oscillations of a semiconductor laser. Firstly, we present our novel approach as a flexible method for photonic generation of high speed impulse ra...

  10. Experimental investigation of the generation of harmonic photons from the interaction of free electrons with intense laser radiation

    International Nuclear Information System (INIS)

    Englert, T.J.

    1983-01-01

    An experimental investigation of the generation of second harmonic photons through the interaction of free electrons with an intense laser beam has been performed. Second harmonic photons with a wavelength of 530nm generated from the interaction of free electrons with 1060nm photons from a neodymium-glass laser are implied by observing Doppler shifted photons with wavelengths of 490nm and 507nm. The observed photon wavelengths results from a Doppler shift of the laser photon wavelengths as viewed in the rest frame of the electrons combined with a Doppler shift of the second harmonic photons emitted from 1600eV and 500eV electrons. Comparison of experimental results with those predicted by cross sections, derived using classical and quantum electrodynamics, shows reasonable agreement with both theories. Although second harmonic photons are created, the dynamics of second harmonic photon generation (accelerated electron motion due to the electromagnetic field or actual two-photon interaction with the electron) cannot be resolved without further experiment

  11. A Quantum Network with Atoms and Photons

    Science.gov (United States)

    2016-09-30

    Section 5. The experimental design used a 1324-nm laser with beam splitters and wave-plates to measure the polarization drift as shown in Fig. 58. A...pump pulse on the beam splitter . ......................................................... 42 Fig. 32 Initial quantum density matrix tomography...photon pairs. BS is a 50-50 beam splitter and DM is a dichroic mirror that transmits idler photons and reflects signal photons. PM is polarization

  12. of the photon within QEDL and QEDM

    Directory of Open Access Journals (Sweden)

    Bussone Andrea

    2018-01-01

    Full Text Available We compute the leading QED corrections to the hadronic vacuum polarization (HVP of the photon, relevant for the determination of leptonic anomalous magnetic moments, al. We work in the electroquenched approximation and use dynamical QCD configurations generated by the CLS initiative with two degenerate flavors of nonperturbatively O(a-improved Wilson fermions. We consider QEDL and QEDM to deal with the finite-volume zero modes. We compare results for the Wilson loops with exact analytical determinations. In addition we make sure that the volumes and photon masses used in QEDM are such that the correct dispersion relation is reproduced by the energy levels extracted from the charged pions two-point functions. Finally we compare results for pion masses and the HVP between QEDL and QEDM. For the vacuum polarization, corrections with respect to the pure QCD case, at fixed pion masses, turn out to be at the percent level.

  13. New developments on the generation of arbitrary polarized radiation from insertion devices

    International Nuclear Information System (INIS)

    Elleaume, P.

    1991-01-01

    The complete description of the polarization of a beam of radiation is described in terms of the total energy and three polarization rates. The polarization characteristics from conventional undulators and wigglers is recalled. A presentation is made of some new insertion devices that were proposed and/or built to generate circular polarization and more generally to improve the control of polarization. They are the asymmetric and elliptical wigglers and the helical and crossed undulators

  14. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang Leman; Zhou Lan

    2003-01-01

    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level Λ-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states

  15. Photon Entanglement Through Brain Tissue.

    Science.gov (United States)

    Shi, Lingyan; Galvez, Enrique J; Alfano, Robert R

    2016-12-20

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  16. Towards the coupling of single photons from dye molecules to a photonic waveguide

    Science.gov (United States)

    Polisseni, Claudio; Kho, Kiang Wei; Major, Kyle; Grandi, Samuele; Boisser, Sebastien; Hwang, Jaesuk; Clark, Alex; Hinds, Edward

    Single photons are very attractive for quantum information processing given their long coherence time and their ability to carry information in many degrees of freedom. A current challenge is the efficient generation of single photons in a photonic chip in order to scale up the complexity of quantum operations. We have proposed that a dibenzoterrylene (DBT) molecule inside an anthracene (AC) crystal could couple lifetime-limited indistinguishable single photons into a photonic waveguide if deposited in its vicinity. In this talk I describe the recent progress towards the realization of this proposal. A new method has been developed for evaporating AC and DBT to produce crystals that are wide and thin. The crystals are typically several microns across and have remarkably uniform thickness, which we control between 20 and 150 nm. The crystal growth is carried out in a glove bag in order to exclude oxygen, which improves the photostability of the DBT molecules by orders of magnitude. We image the fluorescence of single DBT molecules using confocal microscopy and analyse the polarization of this light to determine the alignment of the molecules. I will report on our efforts to control the alignement of the molecules by aligning the host matrix with the substrate.

  17. Supercontinuum Generation in Uniform and Tapered Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Møller, Uffe Visbech; Larsen, Casper

    Supercontinuum generation (SCG) is a striking phenomenon of extreme spectral broadening involving a wealth of beautiful nonlinear physics. The study of SCG and development of today’s commercial sources really took off with the invention of the photonic crystal fiber (PCF), in which light can be m...

  18. Initial steps of supercontinuum generation in photonic crystal fibers

    DEFF Research Database (Denmark)

    Hilligsøe, Karen Marie; Paulsen, H.N.; Thøgersen, J.

    2003-01-01

    The onset of supercontinuum generation in a photonic crystal fiber is investigated experimentally and numerically as a function of pump wavelength and intensity with 100-fs pulses. Soliton formation is found to be the determining factor in the initial step. The formation and behavior of a blueshi...

  19. Photonic spin Hall effect at metasurfaces.

    Science.gov (United States)

    Yin, Xiaobo; Ye, Ziliang; Rho, Junsuk; Wang, Yuan; Zhang, Xiang

    2013-03-22

    The spin Hall effect (SHE) of light is very weak because of the extremely small photon momentum and spin-orbit interaction. Here, we report a strong photonic SHE resulting in a measured large splitting of polarized light at metasurfaces. The rapidly varying phase discontinuities along a metasurface, breaking the axial symmetry of the system, enable the direct observation of large transverse motion of circularly polarized light, even at normal incidence. The strong spin-orbit interaction deviates the polarized light from the trajectory prescribed by the ordinary Fermat principle. Such a strong and broadband photonic SHE may provide a route for exploiting the spin and orbit angular momentum of light for information processing and communication.

  20. Nonlinear electrodynamics and CMB polarization

    Energy Technology Data Exchange (ETDEWEB)

    Cuesta, Herman J. Mosquera [Departmento de Física Universidade Estadual Vale do Acaraú, Avenida da Universidade 850, Campus da Betânia, CEP 62.040-370, Sobral, Ceará (Brazil); Lambiase, G., E-mail: herman@icra.it, E-mail: lambiase@sa.infn.it [Dipartimento di Fisica ' ' E.R. Caianiello' ' , Università di Salerno, 84081 Baronissi (Italy)

    2011-03-01

    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.

  1. Generating, Separating and Polarizing Terahertz Vortex Beams via Liquid Crystals with Gradient-Rotation Directors

    Directory of Open Access Journals (Sweden)

    Shi-Jun Ge

    2017-10-01

    Full Text Available Liquid crystal (LC is a promising candidate for terahertz (THz devices. Recently, LC has been introduced to generate THz vortex beams. However, the efficiency is intensely dependent on the incident wavelength, and the transformed THz vortex beam is usually mixed with the residual component. Thus, a separating process is indispensable. Here, we introduce a gradient blazed phase, and propose a THz LC forked polarization grating that can simultaneously generate and separate pure THz vortices with opposite circular polarization. The specific LC gradient-rotation directors are implemented by a photoalignment technique. The generated THz vortex beams are characterized with a THz imaging system, verifying features of polarization controllability. This work may pave a practical road towards generating, separating and polarizing THz vortex beams, and may prompt applications in THz communications, sensing and imaging.

  2. Polarization-dependent optics using gauge-field metamaterials

    International Nuclear Information System (INIS)

    Liu, Fu; Xiao, Shiyi; Li, Jensen; Wang, Saisai; Hang, Zhi Hong

    2015-01-01

    We show that effective gauge field for photons with polarization-split dispersion surfaces, being realized using uniaxial metamaterials, can be used for polarization control with unique opportunities. The metamaterials with the proposed gauge field correspond to a special choice of eigenpolarizations on the Poincaré sphere as pseudo-spins, in contrary to those from either conventional birefringent crystals or optical active media. It gives rise to all-angle polarization control and a generic route to manipulate photon trajectories or polarizations in the pseudo-spin domain. As demonstrations, we show beam splitting (birefringent polarizer), all-angle polarization control, unidirectional polarization filter, and interferometer as various polarization control devices in the pseudo-spin domain. We expect that more polarization-dependent devices can be designed under the same framework

  3. The effects of electron spiraling on the anisotropy and polarization of photon emission from an electron beam ion trap

    International Nuclear Information System (INIS)

    Savin, D.W.; Gu, M.F.; Beiersdorfer, P.

    1998-01-01

    We present a theoretical formalism for calculating the anisotropy and polarization of photon emission due to a spiraling beam of electrons in an electron beam ion trap (EBIT). We present measurements of the polarization for the Fe XXIV 4p 2 P 3/2 → 2s 2 S 1/2 X-ray transition due to electron impact excitation. We discuss these results, together with previously reported EBIT polarization measurements, in the light of electron spiraling. We find that spiraling effects cannot yet be discerned in these measurements. This is important for many EBIT measurements concerned with X-ray line intensity measurements. While the amount of spiraling is not accurately known, neglecting its effects introduces an error typically no larger than that given by counting statistics. (author)

  4. Imaging of Polarization-dependent Photocurrent in Graphene Photodevices

    Science.gov (United States)

    Kim, Minjung; Yoon, Duhee; Ang Yoon, Ho; Lee, Sang Wook; Cheong, Hyeonsik

    2012-02-01

    Recently, a metal-graphene-metal photodetector for high-speed optical communications was reported. In addition, a graphene-based photodetector was reported to be able to absorb broadband light owing to the unique band structure of graphene [Mueller et al., Nature Photonics 4, 297 (2010)]. We investigated the polarization dependence of the photocurrent generated in metal-graphene-metal junctions. The graphene photodevice was fabricated by depositing Pd/Au and Ti/Au electrodes on single-layer graphene samples. When the polarization of incident laser beam is rotated with respect to the metal-graphene-metal junction, the photocurrent is significantly modulated. In addition, we measured the exact positions where the photocurrent is generated by measuring the photocurrent and Raman images of the graphene photodevices simultaneously.

  5. Ultracompact 1×4 TM-polarized beam splitter based on photonic crystal surface mode.

    Science.gov (United States)

    Jiang, Bin; Zhang, Yejin; Wang, Yufei; Liu, Anjin; Zheng, Wanhua

    2012-05-01

    We provide an improved surface-mode photonic crystal (PhC) T-junction waveguide, combine it with an improved PhC bandgap T-junction waveguide, and then provide an ultracompact 1×4 TM-polarized beam splitter. The energy is split equally into the four output waveguides. The maximal transmission ratio of each output waveguide branch equals 24.7%, and the corresponding total transmission ratio of the ultracompact 1×4 beam splitter equals 98.8%. The normalized frequency of maximal transmission ratio is 0.397(2πc/a), and the bandwidth of the ultracompact 1×4 TM-polarized beam splitter is 0.0106(2πc/a). To the best of our knowledge, this is the first time such a high-efficiency 1×4 beam splitter exploiting the nonradiative surface mode as a guided mode has been proposed. Although we only employed a 1×4 beam splitter, our design can easily be extended to other 1×n beam splitters.

  6. Training the New Generation of Polar Researchers

    Science.gov (United States)

    Drobot, S.; Weiler, C. S.

    2008-12-01

    The polar regions are changing rapidly, and many of the pressing problems faced in the future will require a new generation of polar researchers to be disciplinary experts and work across traditional disciplinary boundaries to conduct socially relevant, transformative research, and translate it to more effective action. To learn about the past and better address these new challenges, a select international group of 35 students and early career researchers who are conducting research during the 2007-2009 International Polar Year were brought together May 4-11, 2008, at the La Foret Conference Center for the New Generation Polar Research (NGPR) Symposium. The participants were drawn from professional backgrounds spanning the spectrum of social, natural, and physical sciences and represented the research programs of 7 countries. In addition to the participants, 12 mentors, some of whom participated in the IGY, shared insights, stories, and expertise. This diverse and ambitious group spent an intensive week learning about many important aspects of IPY history and research, along with communication, outreach, interdisciplinary research and career development. Each of the participants presented a 7-minute overview of his or her IPY research and provided details and discussion in evening poster sessions. Polar history provided an informative and unifying context for discussions of the past, present, and future that lasted throughout the week. Mentors and guest speakers shared insights and advice on media interactions, and many participants were subsequently interviewed for an upcoming radio story to be aired on National Public Radio. Several presentations on outreach were followed by a hands-on session for a group 1st grade students who were visiting the La Foret Conference Center. The Symposium also featured several break-out sessions, where small groups of participants and mentors discussed challenges related to interdisciplinary research, science advocacy, and

  7. Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands

    Science.gov (United States)

    Nawrot, M.; Haberko, J.; Zinkiewicz, Ł.; Wasylczyk, P.

    2017-12-01

    With constant progress of nano- and microfabrication technologies, photolithography in particular, a number of sub-wavelength metallic structures have been demonstrated that can be used to manipulate light polarization. Numerical simulations of light propagation hint that helical twisted bands can have interesting polarization properties. We use three-dimensional two-photon photolithography (direct laser writing) to fabricate a few-micrometer-thick arrays of twisted bands and coat them uniformly with metal. We demonstrate that circular polarization can be generated from linear polarization upon reflection from such structures over a broad range of frequencies in the mid infrared.

  8. Quantification of the Impact of Photon Distinguishability on Measurement-Device- Independent Quantum Key Distribution

    Directory of Open Access Journals (Sweden)

    Garrett K. Simon

    2018-04-01

    Full Text Available Measurement-Device-Independent Quantum Key Distribution (MDI-QKD is a two-photon protocol devised to eliminate eavesdropping attacks that interrogate or control the detector in realized quantum key distribution systems. In MDI-QKD, the measurements are carried out by an untrusted third party, and the measurement results are announced openly. Knowledge or control of the measurement results gives the third party no information about the secret key. Error-free implementation of the MDI-QKD protocol requires the crypto-communicating parties, Alice and Bob, to independently prepare and transmit single photons that are physically indistinguishable, with the possible exception of their polarization states. In this paper, we apply the formalism of quantum optics and Monte Carlo simulations to quantify the impact of small errors in wavelength, bandwidth, polarization and timing between Alice’s photons and Bob’s photons on the MDI-QKD quantum bit error rate (QBER. Using published single-photon source characteristics from two-photon interference experiments as a test case, our simulations predict that the finite tolerances of these sources contribute ( 4.04 ± 20 / N sifted % to the QBER in an MDI-QKD implementation generating an N sifted -bit sifted key.

  9. Numerical modeling of polar mesocyclones generation mechanisms

    Science.gov (United States)

    Sergeev, Dennis; Stepanenko, Victor

    2013-04-01

    Polar mesocyclones, commonly referred to as polar lows, remain of great interest due to their complicated dynamics. These mesoscale vortices are small short-living objects that are formed over the observation-sparse high-latitude oceans, and therefore, their evolution can hardly be observed and predicted numerically. The origin of polar mesoscale cyclones is still a matter of uncertainty, though the recent numerical investigations [3] have exposed a strong dependence of the polar mesocyclone development upon the magnitude of baroclinicity. Nevertheless, most of the previous studies focused on the individual polar low (the so-called case studies), with too many factors affecting it simultaneously. None of the earlier studies suggested a clear picture of polar mesocyclone generation within an idealized experiment, where it is possible to look deeper into each single physical process. The present paper concentrates on the initial triggering mechanism of the polar mesocyclone. As it is reported by many researchers, some mesocyclones are formed by the surface forcing, namely the uneven distribution of heat fluxes. That feature is common on the ice boundaries [2], where intense air stream flows from the cold ice surface to the warm sea surface. Hence, the resulting conditions are shallow baroclinicity and strong surface heat fluxes, which provide an arising polar mesocyclone with potential energy source converting it to the kinetic energy of the vortex. It is shown in this paper that different surface characteristics, including thermal parameters and, for example, the shape of an ice edge, determine an initial phase of a polar low life cycle. Moreover, it is shown what initial atmospheric state is most preferable for the formation of a new polar mesocyclone or in maintaining and reinforcing the existing one. The study is based on idealized high-resolution (~2 km) numerical experiment in which baroclinicity, stratification, initial wind profile and disturbance, surface

  10. Observation of Polarization Vortices in Momentum Space

    Science.gov (United States)

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-01

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  11. Broad bandwidth and 600 μm length photonic crystal fiber polarization filter at the communication window of 1.55 μm

    Science.gov (United States)

    Zhang, Zhen; Li, Shuguang; Liu, Qiang; Zhang, Shuhuan; Wang, Yujun; Wu, Junjun

    2018-02-01

    A broad bandwidth and 600-μm length photonic crystal fiber polarization filter at the communication window of 1.55 μm is proposed. The physical parameters are analyzed by the finite element method. In the structure, the loss is 705.81 dB/cm for y-polarized mode and 24.06 dB/cm for x-polarized mode at the wavelength of 1.55 μm; the y-polarized mode will be filtered out because of this property. The bandwidth of an extinction ratio (ER) better than -20 dB is 65 nm when the filter length is 600 μm, and the ER is -41 dB at the communication wavelength of 1.55 μm. The filter structure is simple and easy to produce, and it can be used to produce a single-polarization filter.

  12. Polarization Measurements in High-Energy Deuteron Photodisintegration

    International Nuclear Information System (INIS)

    Adam Sarty; Andrei Afanasev; Arunava Saha; Bogdan Wojtsekhowski; Brendan Fox; Chang, C.; Cathleen Jones; Charles Glashausser; Charles Perdrisat; Cornelis De Jager; Cornelis De Jager; Cornelis de Jager; Crovelli, D.; Daniel Simon; David Meekins; Demetrius Margaziotis; Dipangkar Dutta; Edgar Kooijman; Edward Brash; Edward Kinney; Elaine Schulte; Eugene Chudakov; Feng Xiong; Franco Garibaldi; Garth Huber; Gerfried Kumbartzki; Guido Urciuoli; Haiyan Gao; James Kelly; Javier Gomez; Jens-Ole Hansen; Jian-Ping Chen; John Calarco; John LeRose; Jordan Hovdebo; Joseph Mitchell; Juncai Gao; Kamal Benslama; Kathy McCormick; Kevin Fissum; Konrad Aniol; Krishni Wijesooriya; Louis Bimbot; Ludyvine Morand; Luminita Todor; Marat Rvachev; Mark Jones; Martin Epstein; Meihua Liang; Michael Kuss; Moskov Amarian; Nilanga Liyanage; Oleksandr Glamazdin; Olivier Gayou; Paul Ulmer; Pete Markowitz; Peter Bosted; Holt, R.; Riad Suleiman; Richard Lindgren; Rikki Roche; Robert Michaels; Roman Pomatsalyuk; Ronald Gilman; Ronald Ransome; Salvatore Frullani; Scott Dumalski; Seonho Choi; Sergey Malov; Sonja Dieterich; Steffen Strauch; Stephen Becher; Steve Churchwell; Ting Chang; Viktor Gorbenko; Vina Punjabi; Xiaodong Jiang; Zein-Eddine Meziani; Zhengwei Chai; Wang Xu

    2001-01-01

    We present measurements of the recoil proton polarization for the d(polarized y, polarized p)n reaction at thetac.m. = 90 degrees for photon energies up to 2.4 GeV. These are the first data in this reaction for polarization transfer with circularly polarized photons. The induced polarization py vanishes above 1 GeV, contrary to meson-baryon model expectations, in which resonances lead to large polarizations. However, the polarization transfer Cx does not vanish above 1 GeV, inconsistent with hadron helicity conservation. Thus, we show that the scaling behavior observed in the d(y,p)n cross sections is not a result of perturbative QCD. These data should provide important tests of new nonperturbative calculations in the intermediate energy regime

  13. Chiral current generation in QED by longitudinal photons

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Avalo, J.L., E-mail: jlacosta@instec.cu [Instituto Superior de Tecnologías y Ciencias Aplicadas (INSTEC), Ave Salvador Allende, No. 1110, Vedado, La Habana 10400 (Cuba); Pérez Rojas, H., E-mail: hugo@icimaf.cu [Instituto de Cibernética, Matemática y Física (ICIMAF), Calle E esq 15, No. 309, Vedado, La Habana 10400 (Cuba)

    2016-08-15

    We report the generation of a pseudovector electric current having imbalanced chirality in an electron–positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler–Bell–Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone). In the static limit, an electric pseudovector current is obtained in the lowest Landau level.

  14. Chiral current generation in QED by longitudinal photons

    Directory of Open Access Journals (Sweden)

    J.L. Acosta Avalo

    2016-08-01

    Full Text Available We report the generation of a pseudovector electric current having imbalanced chirality in an electron–positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler–Bell–Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone. In the static limit, an electric pseudovector current is obtained in the lowest Landau level.

  15. Light Higgs production at a photon collider

    CERN Document Server

    Söldner-Rembold, S

    2001-01-01

    We present a preliminary study of the production of a light Higgs boson with a mass between 120 and 160 GeV in photon-photon collisions at a Compton collider. The event generator for the backgrounds to a Higgs signal due to b-barb and c-barc heavy quark pair production in polarized gamma gamma collisions is based on a complete next-to-leading order (NLO) perturbative QCD calculation. For J sub z =0 the large double-logarithmic corrections up to four loops are also included. It is shown that the two-photon width of the Higgs boson can be measured with high statistical accuracy of about 2-10% for integrated gamma gamma luminosity in the hard part of the spectrum of 43 fb sup - sup 1. From this result the total Higgs boson width can be derived in a model independent way.

  16. Measurement problem and local hidden variables with entangled photons

    Directory of Open Access Journals (Sweden)

    Muchowski Eugen

    2017-12-01

    Full Text Available It is shown that there is no remote action with polarization measurements of photons in singlet state. A model is presented introducing a hidden parameter which determines the polarizer output. This model is able to explain the polarization measurement results with entangled photons. It is not ruled out by Bell’s Theorem.

  17. Analysis of elliptically polarized maximally entangled states for bell inequality tests

    Science.gov (United States)

    Martin, A.; Smirr, J.-L.; Kaiser, F.; Diamanti, E.; Issautier, A.; Alibart, O.; Frey, R.; Zaquine, I.; Tanzilli, S.

    2012-06-01

    When elliptically polarized maximally entangled states are considered, i.e., states having a non random phase factor between the two bipartite polarization components, the standard settings used for optimal violation of Bell inequalities are no longer adapted. One way to retrieve the maximal amount of violation is to compensate for this phase while keeping the standard Bell inequality analysis settings. We propose in this paper a general theoretical approach that allows determining and adjusting the phase of elliptically polarized maximally entangled states in order to optimize the violation of Bell inequalities. The formalism is also applied to several suggested experimental phase compensation schemes. In order to emphasize the simplicity and relevance of our approach, we also describe an experimental implementation using a standard Soleil-Babinet phase compensator. This device is employed to correct the phase that appears in the maximally entangled state generated from a type-II nonlinear photon-pair source after the photons are created and distributed over fiber channels.

  18. High-birefringent photonic crystal fiber

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou; Broeng, Jes; Knudsen, Erik

    2001-01-01

    A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber.......A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber....

  19. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    Energy Technology Data Exchange (ETDEWEB)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-08-15

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system.

  20. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    International Nuclear Information System (INIS)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-01-01

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system

  1. Polarization bremsstrahlung in α decay

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Zon, B. A.; Kretinin, I. Yu.

    2007-01-01

    A mechanism of formation of electromagnetic radiation that accompanies α decay and is associated with the emission of photons by electrons of atomic shells due to the scattering of α particles by these atoms (polarization bremsstrahlung) is proposed. It is shown that, when the photon energy is no higher than the energy of K electrons of an atom, polarization bremsstrahlung makes a significant contribution to the bremsstrahlung in α decay

  2. Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.

    Science.gov (United States)

    Akosman, Ahmet E; Sander, Michelle Y

    2017-08-07

    Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

  3. Numerical method to optimize the polar-azimuthal orientation of infrared superconducting-nanowire single-photon detectors.

    Science.gov (United States)

    Csete, Mária; Sipos, Áron; Najafi, Faraz; Hu, Xiaolong; Berggren, Karl K

    2011-11-01

    A finite-element method for calculating the illumination-dependence of absorption in three-dimensional nanostructures is presented based on the radio frequency module of the Comsol Multiphysics software package (Comsol AB). This method is capable of numerically determining the optical response and near-field distribution of subwavelength periodic structures as a function of illumination orientations specified by polar angle, φ, and azimuthal angle, γ. The method was applied to determine the illumination-angle-dependent absorptance in cavity-based superconducting-nanowire single-photon detector (SNSPD) designs. Niobium-nitride stripes based on dimensions of conventional SNSPDs and integrated with ~ quarter-wavelength hydrogen-silsesquioxane-filled nano-optical cavity and covered by a thin gold film acting as a reflector were illuminated from below by p-polarized light in this study. The numerical results were compared to results from complementary transfer-matrix-method calculations on composite layers made of analogous film-stacks. This comparison helped to uncover the optical phenomena contributing to the appearance of extrema in the optical response. This paper presents an approach to optimizing the absorptance of different sensing and detecting devices via simultaneous numerical optimization of the polar and azimuthal illumination angles. © 2011 Optical Society of America

  4. Deuteron photodisintegration by linear polarized photons

    International Nuclear Information System (INIS)

    Ganenko, V.B.; Zhebrovskij, Yu.V.; Kolesnikov, L.Ya.; Kostromin, A.S.; Rubashkin, A.L.; Sorokin, P.V.

    1993-01-01

    The of the experiment on measuring the cross section asymmetry of the γd → p n reaction have been carried out in the photon energy range 0.6-2.4 GeV for new superconducting electron accelerator CEBAF (Newport News, Virginia, USA). It have been shown the principle possibility of the carrying out such experiment. Two variants of the experiments have been examine: with using mixed e - and γ beam, and with using clean γ-beam. It was suggested the simple magnetic system for divide e - and γ beams after photon target. 26 refs., 9 tab., 12 figs

  5. Enhanced linear photonic nanojet generated by core-shell optical microfibers

    Science.gov (United States)

    Liu, Cheng-Yang; Yen, Tzu-Ping; Chen, Chien-Wen

    2017-05-01

    The generation of linear photonic nanojet using core-shell optical microfiber is demonstrated numerically and experimentally in the visible light region. The power flow patterns for the core-shell optical microfiber are calculated by using the finite-difference time-domain method. The focusing properties of linear photonic nanojet are evaluated in terms of length and width along propagation and transversal directions. In experiment, the silica optical fiber is etched chemically down to 6 μm diameter and coated with metallic thin film by using glancing angle deposition. We show that the linear photonic nanojet is enhanced clearly by metallic shell due to surface plasmon polaritons. The large-area superresolution imaging can be performed by using a core-shell optical microfiber in the far-field system. The potential applications of this core-shell optical microfiber include micro-fluidics and nano-structure measurements.

  6. A study on photonic crystal slab waveguide with absolute photonic band gap

    Directory of Open Access Journals (Sweden)

    Katsumasa Satoh

    2018-02-01

    Full Text Available Most of the conventional photonic crystal (PhC slab waveguides have a photonic bandgap (PBG only for one polarization state of two orthogonal polarization states. In this paper, westudy on an absolute PBG that can realize PBG for both polarizations in the same frequency range anddemonstrate that an absolute PBG can be realized in PhC structures proposed here. In the numericalanalysis and design of PhC structures, we employ the two-dimensional finite element method (FEMbased on the effective index method (EIM. First, we propose two-types of PhC structures with anabsolute PBG and show that a steering type PhC is superior to an air-ring type PhC to obtain a widebandabsolute PBG. It is also shown that the optimized steering type PhC has the absolute PBG whosebandwidth of 164 nm at the center wavelength of 1.55 μm. Furthermore, we design PhC waveguidesbased on the obtained PhC structure having an absolute PBG in order to obtain guided modes for bothpolarization states within the same wavelength range. The transmission properties of the designed PhCwaveguides are also investigated and 60 degree bends which are required in compact photonic circuitsare designed. From these results, the possibility to realize compact polarization multiplexing photonicdevices is shown.

  7. PPLN-waveguide-based polarization entangled QKD simulator

    Science.gov (United States)

    Gariano, John; Djordjevic, Ivan B.

    2017-08-01

    We have developed a comprehensive simulator to study the polarization entangled quantum key distribution (QKD) system, which takes various imperfections into account. We assume that a type-II SPDC source using a PPLN-based nonlinear optical waveguide is used to generate entangled photon pairs and implements the BB84 protocol, using two mutually unbiased basis with two orthogonal polarizations in each basis. The entangled photon pairs are then simulated to be transmitted to both parties; Alice and Bob, through the optical channel, imperfect optical elements and onto the imperfect detector. It is assumed that Eve has no control over the detectors, and can only gain information from the public channel and the intercept resend attack. The secure key rate (SKR) is calculated using an upper bound and by using actual code rates of LDPC codes implementable in FPGA hardware. After the verification of the simulation results, such as the pair generation rate and the number of error due to multiple pairs, for the ideal scenario, available in the literature, we then introduce various imperfections. Then, the results are compared to previously reported experimental results where a BBO nonlinear crystal is used, and the improvements in SKRs are determined for when a PPLN-waveguide is used instead.

  8. Photon-induced tunability of the thermospin current in a Rashba ring

    Science.gov (United States)

    Abdullah, Nzar Rauf; Arnold, Thorsten; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2018-04-01

    The goal of this work is to show how the thermospin polarization current in a quantum ring changes in the presence of Rashba spin-orbit coupling and a quantized single photon mode of a cavity the ring is placed in. Employing the reduced density operator and a general master equation formalism, we find that both the Rashba interaction and the photon field can significantly modulate the spin polarization and the thermospin polarization current. Tuning the Rashba coupling constant, degenerate energy levels are formed corresponding to the Aharonov-Casher destructive phase interference in the quantum ring system. Our analysis indicates that the maximum spin polarization can be observed at the points of degenerate energy levels due to spin accumulation in the system without the photon field. The thermospin current is thus suppressed. In the presence of the cavity, the photon field leads to an additional kinetic momentum of the electron. As a result the spin polarization can be enhanced by the photon field.

  9. Generation of Path-Encoded Greenberger-Horne-Zeilinger States

    Science.gov (United States)

    Bergamasco, N.; Menotti, M.; Sipe, J. E.; Liscidini, M.

    2017-11-01

    We study the generation of Greenberger-Horne-Zeilinger (GHZ) states of three path-encoded photons. Inspired by the seminal work of Bouwmeester et al. [Phys. Rev. Lett. 82, 1345 (1999), 10.1103/PhysRevLett.82.1345] on polarization-entangled GHZ states, we find a corresponding path representation for the photon states of an optical circuit, identify the elements required for the state generation, and propose a possible implementation of our strategy. Besides the practical advantage of employing an integrated system that can be fabricated with proven lithographic techniques, our example suggests that it is possible to enhance the generation efficiency by using microring resonators.

  10. Photonic arbitrary waveform generation applicable to multiband UWB communications.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2010-12-06

    A novel photonic structure for arbitrary waveform generation (AWG) is proposed based on the electrooptical intensity modulation of a broadband optical signal which is transmitted by a dispersive element and the optoelectrical processing is realized by combining an interferometric structure with balanced photodetection. The generated waveform can be fully reconfigured through the control of the optical source power spectrum and the interferometric structure. The use of balanced photodetection permits to remove the baseband component of the generated signal which is relevant in certain applications. We have theoretically described and experimentally demonstrated the feasibility of the system by means of the generation of different pulse shapes. Specifically, the proposed structure has been applicable to generate Multiband UWB signaling formats regarding to the FCC requirements in order to show the flexibility of the system.

  11. Distribution of quantum information between an atom and two photons

    International Nuclear Information System (INIS)

    Weber, Bernhard

    2008-01-01

    The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)

  12. Distribution of quantum information between an atom and two photons

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Bernhard

    2008-11-03

    The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)

  13. A new method for generating axially-symmetric and radially-polarized beams

    International Nuclear Information System (INIS)

    Niu Chunhui; Gu Benyuan; Dong Bizhen; Zhang Yan

    2005-01-01

    A scheme for generating axially-symmetric and radially-polarized beams is proposed by using two diffractive phase elements (DPEs) made of birefringent materials. The design of these two DPEs is based on the general theory of phase-retrieval of optical system in combination with an iterative algorithm. The first DPE is used for demultiplexing two orthogonally linearly-polarized light beams to produce diffractive patterns, and the second DPE is used for compensating the phase difference to obtain the desired radially-polarized beam

  14. Resonance generation of photons from vacuum in cavities due to strong periodical changes of conductivity in a thin semiconductor boundary layer

    International Nuclear Information System (INIS)

    Dodonov, A V; Dodonov, V V

    2005-01-01

    We study a possibility of photon generation from vacuum in a cavity with an artificial effective time-dependent plasma mirror, which could be created by means of periodical short laser pulses, illuminating a thin semiconductor slab. We take into account two important circumstances: a big imaginary part of the complex time-dependent dielectric permeability inside the slab and a strong dependence of this imaginary part on the distance from the surface of the slab. We find the conditions under which the usual unitary quantization schemes in time-dependent media with real dielectric permeability can be applied to the problem concerned with relatively small (a few per cent) error. We show that, by using a slab with thickness of the order of 1 mm, it is possible to generate a large number of microwave (GHz) photons (up to 10 8 or more) after several thousand picosecond pulses with repetition frequency of the order of 1 GHz, provided that semiconductor materials with high mobility of carriers, high photoabsorption efficiency and small recombination time (less than 1 ns) can be found. We discuss the possible advantages of modes with TM polarization over TE ones, as well as some other important problems to be solved

  15. On the Partial-Wave Analysis of Mesonic Resonances Decaying to Multiparticle Final States Produced by Polarized Photons

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Carlos W. [Norfolk State University, Norfolk, VA (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Weygand, Dennis P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-04-01

    Meson spectroscopy is going through a revival with the advent of high statistics experiments and new advances in the theoretical predictions. The Constituent Quark Model (CQM) is finally being expanded considering more basic principles of field theory and using discrete calculations of Quantum Chromodynamics (lattice QCD). These new calculations are approaching predictive power for the spectrum of hadronic resonances and decay modes. It will be the task of the new experiments to extract the meson spectrum from the data and compare with those predictions. The goal of this report is to describe one particular technique for extracting resonance information from multiparticle final states. The technique described here, partial wave analysis based on the helicity formalism, has been used at Brookhaven National Laboratory (BNL) using pion beams, and Jefferson Laboratory (Jlab) using photon beams. In particular this report broaden this technique to include production experiments using linearly polarized real photons or quasi-real photons. This article is of a didactical nature. We describe the process of analysis, detailing assumptions and formalisms, and is directed towards people interested in starting partial wave analysis.

  16. Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy

    DEFF Research Database (Denmark)

    Keiding, Søren Rud

    2006-01-01

    We generate tunable picosecond anti-Stokes pulses by four-wave mixing of two picosecond pump and Stokes pulse trains in a photonic-crystal fiber. The visible, spectrally narrow anti-Stokes pulses with shifts over 150 nm are generated without generating other spectral features. As a demonstration,...

  17. Polarization effects of supersymmetric QCD in large-Psub(T) direct photon production

    International Nuclear Information System (INIS)

    Antoniadis, I.; Contogouris, A.P.

    1983-05-01

    The linear polarization P (approximately perpendicular minus parallel to the scattering plane) of large-Psub(T) direct photons from unpolarized hadrons is considered. Contrary to standard QCD, where to 0(1) P vanishes, and to 0(αsub(s)) P is very small and changes sign at angle thetasub(cm)=90 0 , it is shown that supersymmetric theories (involving s quarks and light gluinos), already to 0(1), imply a substantial and positive P through a wide range of angles including thetasub(cm)=90 0 . For antipp→γ+X at collider energy and Psub(T)> or approximately 30 GeV, with s quark mass 20 GeV we find P approximately 10% - 5% decreasing with Psub(T). We offer a qualitative understanding and discuss the significance of our results

  18. Optimization of Tapered Photonic Crystal Fibers for Blue-Enhanced Supercontinuum Generation

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    Tapering of photonic crystal fibers is an effective way of shifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for blue-enhanced supercontinuum generation....

  19. Characterization of a remote optical element with bi-photons

    Science.gov (United States)

    Puhlmann, D.; Henkel, C.; Heuer, A.; Pieplow, G.; Menzel, R.

    2016-02-01

    We present a simple setup that exploits the interference of entangled photon pairs. ‘Signal’ photons are sent through a Mach-Zehnder-like interferometer, while ‘idlers’ are detected in a variable polarization state. Two-photon interference (in coincidence detection) is observed with very high contrast and for significant time delays between signal and idler detection events. This is explained by quantum erasure of the polarization tag and a delayed choice protocol involving a non-local virtual polarizer. The phase of the two-photon fringes is scanned by varying the path length in the signal beam or by rotating a birefringent crystal in the idler beam. We exploit this to characterize one beam splitter of the signal photon interferometer (reflection and transmission amplitudes including losses), using only information about coincidences and control parameters in the idler path. This is possible because our bi-photon state saturates the Greenberger-Yelin-Englert inequality between contrast and predictability.

  20. Characterization of a remote optical element with bi-photons

    International Nuclear Information System (INIS)

    Puhlmann, D; Henkel, C; Heuer, A; Pieplow, G; Menzel, R

    2016-01-01

    We present a simple setup that exploits the interference of entangled photon pairs. ‘Signal’ photons are sent through a Mach–Zehnder-like interferometer, while ‘idlers’ are detected in a variable polarization state. Two-photon interference (in coincidence detection) is observed with very high contrast and for significant time delays between signal and idler detection events. This is explained by quantum erasure of the polarization tag and a delayed choice protocol involving a non-local virtual polarizer. The phase of the two-photon fringes is scanned by varying the path length in the signal beam or by rotating a birefringent crystal in the idler beam. We exploit this to characterize one beam splitter of the signal photon interferometer (reflection and transmission amplitudes including losses), using only information about coincidences and control parameters in the idler path. This is possible because our bi-photon state saturates the Greenberger–Yelin–Englert inequality between contrast and predictability. (invited comment)

  1. Quantum information processing with mesoscopic photonic states

    DEFF Research Database (Denmark)

    Madsen, Lars Skovgaard

    2012-01-01

    photon numbers and the states where one of Stokes parameters is highly excited. To describe the polarization of these state we introduce several new polarization measures which take into account the covariance of the polarization and resolve the polarization manifolds. We experimentally demonstrate...

  2. Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes

    DEFF Research Database (Denmark)

    Gabriel, C.; Aiello, A.; Zhong, W.

    2011-01-01

    Quantum systems such as, for example, photons, atoms, or Bose-Einstein condensates, prepared in complex states where entanglement between distinct degrees of freedom is present, may display several intriguing features. In this Letter we introduce the concept of such complex quantum states...... generates entanglement between these two different degrees of freedom. Experimentally we demonstrate amplitude squeezing of an azimuthally polarized mode by exploiting the nonlinear Kerr effect in a specially tailored photonic crystal fiber. These results display that such novel continuous......-variable entangled systems can, in principle, be realized.© 2011 American Physical Society....

  3. Polarized photons from a silicon crystal in a 31 GeV electron beam at the Serpukhov proton accelerator

    International Nuclear Information System (INIS)

    Frolov, A.M.; Maisheev, V.A.; Arakelyan, E.A.; Armaganyan, A.A.; Avakyan, R.O.; Bayatyan, G.L.; Grigoryan, N.K.; Kechechyan, A.O.; Knyazyan, S.G.; Margaryan, A.T.

    1980-01-01

    Tagged photons coherently emitted in a silicon crystal by the 31 GeV electron beam of intensity 4 x 10 4 ppp and beam pulse duration of up to 1.7 s have been obtained at the Serpukhov proton accelerator. The photon intensities were I approx. 10 -1 - 10 -2 γ/e - in five almost equal energy bins within the total range k = (8.2-24.2) GeV. The calculated linear polarizations were P approx. 50-20%, respectively. Narrow peaks in the radiation intensity were observed when varying the orientation of a silicon crystal which could not be explained. The method for the experimental alignment of a crystal in electron beams at the proton accelerator has been described. (orig.)

  4. Strong WW scattering at photon linear colliders

    International Nuclear Information System (INIS)

    Berger, M.S.

    1994-06-01

    We investigate the possibility of observing strong interactions of longitudinally polarized weak vector bosons in the process γγ → ZZ at a photon linear collider. We make use of polarization of the photon beams and cuts on the decay products of the Z bosons to enhance the signal relative to the background of transversely polarized ZZ pairs. We find that the background overwhelms the signal unless there are strong resonant effects, as for instance from a technicolor analogue of the hadronic f 2 (1270) meson

  5. Ge-Based Spin-Photodiodes for Room-Temperature Integrated Detection of Photon Helicity

    KAUST Repository

    Rinaldi, Christian

    2012-05-02

    Spin-photodiodes based on Fe/MgO/Ge(001) heterostructures are reported. These devices perform the room-temperature integrated electrical detection of the spin polarization of a photocurrent generated by circularly polarized photons with a wavelength of 1300 nm, for light pulses with intensity I 0 down to 200 μW. A forward and reverse-biased average photocurrent variation of 5.9% is measured for the complete reversal of the incident light helicity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Design and construction of a high-energy photon polarimeter

    Science.gov (United States)

    Dugger, M.; Ritchie, B. G.; Sparks, N.; Moriya, K.; Tucker, R. J.; Lee, R. J.; Thorpe, B. N.; Hodges, T.; Barbosa, F. J.; Sandoval, N.; Jones, R. T.

    2017-09-01

    We report on the design and construction of a high-energy photon polarimeter for measuring the degree of polarization of a linearly-polarized photon beam. The photon polarimeter uses the process of pair production on an atomic electron (triplet production). The azimuthal distribution of scattered atomic electrons following triplet production yields information regarding the degree of linear polarization of the incident photon beam. The polarimeter, operated in conjunction with a pair spectrometer, uses a silicon strip detector to measure the recoil electron distribution resulting from triplet photoproduction in a beryllium target foil. The analyzing power ΣA for the device using a 75 μm beryllium converter foil is about 0.2, with a relative systematic uncertainty in ΣA of 1.5%.

  7. Possibility of determining gluon polarization via polarized top pairs in gamma-proton scattering

    International Nuclear Information System (INIS)

    Atag, S.; Billur, A.A.

    2009-01-01

    We study the possibility for directly measuring the polarized gluon distribution in the process γp→t-bar t. It is shown that polarization asymmetry of the final top quarks is proportional to the gluon polarization. With available energy and luminosity, the collision of a polarized proton beam and a Compton backscattered photon beam can create polarized top quarks which carry the spin information of the process. Energy dependence and angular distributions of the polarization asymmetry of the top pairs has been discussed including statistical uncertainty.

  8. Polarization-induced interference within electromagnetically induced transparency for atoms of double-V linkage

    Science.gov (United States)

    Sun, Yuan; Liu, Chang; Chen, Ping-Xing; Liu, Liang

    2018-02-01

    People have been paying attention to the role of atoms' complex internal level structures in the research of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic states and the atomic transitions' linkage structure, clear signatures of quantum interference induced by the probe and coupling light's polarizations can emerge from a typical EIT phenomena. We propose to study a four-state system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the polarization-induced interference enables polarization-dependent cross modulation between incident weak lights that can be effective even at the few-photon level. The theme is to gain more insight into the essential question: how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear optical interactions, valid for a wide range of incidence intensities down to the few-photon level?

  9. Free-Space Quantum Key Distribution with a High Generation Rate Potassium Titanyl Phosphate Waveguide Photon-Pair Source

    Science.gov (United States)

    Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip; Floyd, Bertram M.; Lind, Alexander J.; hide

    2016-01-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nanometer pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nanometer photons are up-converted to a single 532-nanometer photon in the first stage. In the second stage, the 532-nanometer photon is down-converted to an entangled photon-pair at 800 nanometer and 1600 nanometer which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.

  10. Control the polarization state of light with symmetry-broken metallic metastructures

    International Nuclear Information System (INIS)

    Xiong, Xiang; Jiang, Shang-Chi; Hu, Yuan-Sheng; Hu, Yu-Hui; Wang, Zheng-Han; Peng, Ru-Wen; Wang, Mu

    2015-01-01

    Controlling the polarization state, the transmission direction, the amplitude and the phase of light in a very limited space is essential for the development of on-chip photonics. Over the past decades, numerous sub-wavelength metallic microstructures have been proposed and fabricated to fulfill these demands. In this article, we review our efforts in achieving negative refractive index, controlling the polarization state, and tuning the amplitude of light with two-dimensional (2D) and three-dimensional (3D) microstructures. We designed an assembly of stacked metallic U-shaped resonators that allow achieving negative refraction for pure magnetic and electric responses respectively at the same frequency by selecting the polarization of incident light. Based on this, we tune the permittivity and permeability of the structure, and achieve negative refractive index. Further, by control the excitation and radiation of surface electric current on a number of 2D and 3D asymmetric metallic metastructures, we are able to control the polarization state of light. It is also demonstrated that with a stereostructured metal film, the whole metal surfaces can be used to construct either polarization-sensitive or polarization-insensitive prefect absorbers, with the advantage of efficient heat dissipation and electric conductivity. Our practice shows that metamaterials, including metasurface, indeed help to master light in nanoscale, and are promising in the development of new generation of photonics

  11. The phonon-polariton spectrum of one-dimensional Rudin-Shapiro photonic superlattices with uniaxial polar materials

    Science.gov (United States)

    Gómez-Urrea, H. A.; Duque, C. A.; Mora-Ramos, M. E.

    2015-11-01

    The properties of the optical-phonon-associated polaritonic modes that appear under oblique light incidence in 1D superlattices made of photonic materials are studied. The investigated systems result from the periodic repetition of quasiregular Rudin-Shapiro (RS) multilayer units. It is assume that the structure consists of both passive non-dispersive layers of constant refraction index and active layers of uniaxial polar materials. In particular, we consider III-V wurtzite nitrides. The optical axis of these polaritonic materials is taken along the growth direction. Maxwell equations are solved using the transfer matrix technique for all admissible values of the incidence angle.

  12. Quantum communications system with integrated photonic devices

    Science.gov (United States)

    Nordholt, Jane E.; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John

    2017-11-14

    Security is increased in quantum communication (QC) systems lacking a true single-photon laser source by encoding a transmitted optical signal with two or more decoy-states. A variable attenuator or amplitude modulator randomly imposes average photon values onto the optical signal based on data input and the predetermined decoy-states. By measuring and comparing photon distributions for a received QC signal, a single-photon transmittance is estimated. Fiber birefringence is compensated by applying polarization modulation. A transmitter can be configured to transmit in conjugate polarization bases whose states of polarization (SOPs) can be represented as equidistant points on a great circle on the Poincare sphere so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors. Transmitters are implemented in quantum communication cards and can be assembled from micro-optical components, or transmitter components can be fabricated as part of a monolithic or hybrid chip-scale circuit.

  13. Generation of coordinates in PC for graphics of polar figure

    International Nuclear Information System (INIS)

    Macias B, L.R.

    1991-10-01

    The preferential orientation, not alone it exists in metals, but also in minerals or in general in crystalline materials, notwithstanding in the metals it can be transformed by means of those processes of having mechanical worked such as laminate, wrapping, etc. To the preferable orientation of the crystals is also known as texture and since the properties of the crystalline materials lens depend on the orientation that present its glasses, it is important to know its texture. The difficulty for to represent and to describe the grade of preferential orientation in textured materials take to F. Weber to adapt the stereo graphic projection of a monocrystal to a poles figure. Later on, its appeared but methods to obtain the polar figure, among them, that of reflection of L. G. Schultz, but again a technique appears it specifies for its obtaining. In all the cases, the methodology is the following one: a) It is obtained by means of the diffraction process, the correspondent spectra in digitized form. b) it is applied process of having softened mathematician of the spectrum. c) there are determined the fi coordinates, beta and intensity for graph nts of the polar figure. d) Its are graph the points generated in c obtaining the polar figures. The objective of this work, is leaving of a softened spectra, to generate the coordinated fi, beta and corresponding intensity to proceed to their graph and generation of the polar figure. In this specific work, the methodology of Philips is used that consists in making a sweeping in hairspring form with the radiation to detect in these points the execution of the Bragg law. (Author)

  14. Vector model for polarized second-harmonic generation microscopy under high numerical aperture

    International Nuclear Information System (INIS)

    Wang, Xiang-Hui; Chang, Sheng-Jiang; Lin, Lie; Wang, Lin-Rui; Huo, Bing-Zhong; Hao, Shu-Jian

    2010-01-01

    Based on the vector diffraction theory and the generalized Jones matrix formalism, a vector model for polarized second-harmonic generation (SHG) microscopy is developed, which includes the roles of the axial component P z , the weight factor and the cross-effect between the lateral components. The numerical results show that as the relative magnitude of P z increases, the polarization response of the second-harmonic signal will vary from linear polarization to elliptical polarization and the polarization orientation of the second-harmonic signal is different from that under the paraxial approximation. In addition, it is interesting that the polarization response of the detected second-harmonic signal can change with the value of the collimator lens NA. Therefore, it is more advantageous to adopt the vector model to investigate the property of polarized SHG microscopy for a variety of cases

  15. Isolated elliptically polarized attosecond soft X-ray with high-brilliance using polarization gating of harmonics from relativistic plasmas at oblique incidence.

    Science.gov (United States)

    Chen, Zi-Yu; Li, Xiao-Ya; Li, Bo-Yuan; Chen, Min; Liu, Feng

    2018-02-19

    The production of intense isolated attosecond pulse is a major goal in ultrafast research. Recent advances in high harmonic generation from relativistic plasma mirrors under oblique incidence interactions gave rise to photon-rich attosecond pulses with circular or elliptical polarization. However, to achieve an isolated elliptical attosecond pulse via polarization gating using currently available long driving pulses remains a challenge, because polarization gating of high harmonics from relativistic plasmas is assumed only possible at normal or near-normal incidence. Here we numerically demonstrate a scheme around this problem. We show that via control of plasma dynamics by managing laser polarization, it is possible to gate an intense single attosecond pulse with high ellipticity extending to the soft X-ray regime at oblique incidence. This approach thus paves the way towards a powerful tool enabling high-time-resolution probe of dynamics of chiral systems and magnetic materials with current laser technology.

  16. h-BN/graphene van der Waals vertical heterostructure: a fully spin-polarized photocurrent generator.

    Science.gov (United States)

    Tao, Xixi; Zhang, Lei; Zheng, Xiaohong; Hao, Hua; Wang, Xianlong; Song, Lingling; Zeng, Zhi; Guo, Hong

    2017-12-21

    By constructing transport junctions using graphene-based van der Waals (vdW) heterostructures in which a zigzag-edged graphene nanoribbon (ZGNR) is sandwiched between two hexagonal boron-nitride sheets, we computationally demonstrate a new scheme for generating perfect spin-polarized quantum transport in ZGNRs by light irradiation. The mechanism lies in the lift of spin degeneracy of ZGNR induced by the stagger potential it receives from the BN sheets and the subsequent possibility of single spin excitation of electrons from the valence band to the conduction band by properly tuning the photon energy. This scheme is rather robust in that we always achieve desirable results irrespective of whether we decrease or increase the interlayer distance by applying compressive or tensile strain vertically to the sheets or shift the BN sheets in-plane relative to the graphene nanoribbons. More importantly, this scheme overcomes the long-standing difficulties in traditional ways of using solely electrical field or chemical modification for obtaining half-metallic transport in ZGNRs and thus paves a more feasible way for their application in spintronics.

  17. Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity

    Science.gov (United States)

    Heo, Jino; Hong, Chang-Ho; Lim, Jong-In; Yang, Hyung-Jin

    2015-05-01

    We propose an arbitrary controlled-unitary (CU) gate and a bidirectional quantum teleportation (BQTP) scheme. The proposed CU gate utilizes photonic qubits (photons) with cross-Kerr nonlinearities (XKNLs), X-homodyne detectors, and linear optical elements, and consists of the consecutive operation of a controlled-path (C-path) gate and a gathering-path (G-path) gate. It is almost deterministic and feasible with current technology when a strong coherent state and weak XKNLs are employed. Based on the CU gate, we present a BQTP scheme that simultaneously teleports two unknown photons between distant users by transmitting only one photon in a path-polarization intra-particle hybrid entangled state. Consequently, it is possible to experimentally implement BQTP with a certain success probability using the proposed CU gate. Project supported by the Ministry of Science, ICT&Future Planning, Korea, under the C-ITRC (Convergence Information Technology Research Center) Support program (NIPA-2013-H0301-13-3007) supervised by the National IT Industry Promotion Agency.

  18. On the validity of the equivalent-photon approximation for virtual photon-photon collisions

    International Nuclear Information System (INIS)

    Carimalo, C.; Kessler, P.; Parisi, J.

    1979-05-01

    For virtual photon-photon collisions in electron storage rings, one derive the equivalent-photon approximation from a helicity treatment, and present it in two forms, involving respectively (i) polarized transverse photons ('transverse-photon approximation') and (ii) unpolarized ones ('Williams-Weizsaecker approximation'). One first postulates the conditions of validity of the approximation on the basis of analytic considerations, and then check them numerically in the case of the process e e → e e μ + μ - . For this check, we consider the completely differentiated cross section as far as approximation (i) is concerned; and in the case of approximation (ii), the cross section differentiated with respect to all variables except the azimuthal angles. The results are given in the form of Tables showing the lower and higher limit of the error involved in the approximation for a large variety of kinematic configurations (i. e., energy losses and scattering angles of both electrons). Those Tables are discussed in detail, and conclusions are drawn as to the applicability of the equivalent-photon approximation to future experiments to be performed with high-energy electron storage rings

  19. Study of Raman-free photon pair generation using inter-modal four-wave mixing in a few-mode silica fiber

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Christensen, Jesper Bjerge; Koefoed, Jacob Gade

    2017-01-01

    Single-photon sources are key components in applications of photonic quantum technologies such as quantum key distribution (QKD) [1]. One way of realizing single-photon sources is generation of photon pairs (PP) using spontaneous four-wave mixing (FWM): two photons from a pump p annihilate...... and create two side-band photons at frequencies determined partly by the energy conservation 2ωρ = ω1 + ω2, where ωp,ω1,ω2 are the frequencies of the pump and the two side-bands, respectively, and partly by the phase-matching condition. PP generated spontaneously arrive at indeterministic times but even so......, they are useful for QKD because one of the photons can be heralded by detecting the other. The heralded photons are then used for transmitting the quantum key....

  20. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  1. Valley-polarized quantum transport generated by gauge fields in graphene

    Science.gov (United States)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  2. Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity

    International Nuclear Information System (INIS)

    Ren, Bao-Cang; Wei, Hai-Rui; Deng, Fu-Guo

    2013-01-01

    To date, all work concerning the construction of quantum logic gates, an essential part of quantum computing, has focused on operating in one degree of freedom (DOF) for quantum systems. Here, we investigate the possibility of achieving scalable photonic quantum computing based on two DOFs for quantum systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating in both the spatial mode and polarization DOFs for a photon pair simultaneously, using the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a one-side optical microcavity as a result of cavity quantum electrodynamics. With this hyper-CNOT gate and linear optical elements, two-photon four-qubit cluster entangled states can be prepared and analyzed, which give an application to manipulate more information with less resources. We analyze the experimental feasibility of this hyper-CNOT gate and show that it can be implemented with current technology. (letter)

  3. Quantum secret sharing protocol using modulated doubly entangled photons

    International Nuclear Information System (INIS)

    Chuan, Wang; Yong, Zhang

    2009-01-01

    In this paper, we propose a quantum secret sharing protocol utilizing polarization modulated doubly entangled photon pairs. The measurement devices are constructed. By modulating the polarizations of entangled photons, the boss could encode secret information on the initial state and share the photons with different members to realize the secret sharing process. This protocol shows the security against intercept-resend attack and dishonest member cheating. The generalized quantum secret sharing protocol is also discussed. (general)

  4. Generation of an arbitrary concatenated Greenberger-Horne-Zeilinger state with single photons

    Science.gov (United States)

    Chen, Shan-Shan; Zhou, Lan; Sheng, Yu-Bo

    2017-02-01

    The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new kind of logic-qubit entangled state, which may have extensive applications in future quantum communication. In this letter, we propose a protocol for constructing an arbitrary C-GHZ state with single photons. We exploit the cross-Kerr nonlinearity for this purpose. This protocol has some advantages over previous protocols. First, it only requires two kinds of cross-Kerr nonlinearities to generate single phase shifts  ±θ. Second, it is not necessary to use sophisticated m-photon Toffoli gates. Third, this protocol is deterministic and can be used to generate an arbitrary C-GHZ state. This protocol may be useful in future quantum information processing based on the C-GHZ state.

  5. Generation and detection of spin polarization in parallel coupled double quantum dots connected to four terminals

    International Nuclear Information System (INIS)

    An, Xing-Tao; Mu, Hui-Ying; Li, Yu-Xian; Liu, Jian-Jun

    2011-01-01

    A four-terminal parallel double quantum dots (QDs) device is proposed to generate and detect the spin polarization in QDs. It is found that the spin accumulation in QDs and the spin-polarized currents in the upper and down leads can be generated when a bias voltage is applied between the left and right leads. It is more interesting that the spin polarization in the QDs can be detected using the upper and down leads. Moreover, the direction and magnitude of the spin polarization in the QDs, and in the upper and down leads can be tuned by the energy levels of QDs and the bias. -- Highlights: → The spin polarization in the quantum dots can be generated and controlled. → The spin polarization in quantum dots can be detected by the nonferromagnetic leads. → The system our studied is a discrete level spin Hall system.

  6. High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments.

    Science.gov (United States)

    Babazadeh, Amin; Erhard, Manuel; Wang, Feiran; Malik, Mehul; Nouroozi, Rahman; Krenn, Mario; Zeilinger, Anton

    2017-11-03

    Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.

  7. Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters

    Science.gov (United States)

    Saulnier, Nicole A.

    Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab

  8. Investigation of the polarization state of dual APPLE-II undulators

    International Nuclear Information System (INIS)

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S.; Sawhney, Kawal

    2016-01-01

    Complete polarization analysis of the photon beam produced by a dual APPLE-II undulator configuration using a multilayer-based soft X-ray polarimeter is given. The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used

  9. Investigation of the polarization state of dual APPLE-II undulators

    Energy Technology Data Exchange (ETDEWEB)

    Hand, Matthew; Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Dhesi, Sarnjeet S.; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom)

    2016-01-01

    Complete polarization analysis of the photon beam produced by a dual APPLE-II undulator configuration using a multilayer-based soft X-ray polarimeter is given. The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  10. Stress-induced phase sensitivity of small diameter polarization maintaining solid-core photonic crystal fibre

    Science.gov (United States)

    Zhang, Zhihao; Zhang, Chunxi; Xu, Xiaobin

    2017-09-01

    Small diameter (cladding and coating diameter of 100 and 135 μm) polarization maintaining photonic crystal fibres (SDPM-PCFs) possess many unique properties and are extremely suitable for applications in fibre optic gyroscopes. In this study, we have investigated and measured the stress characteristics of an SDPM-PCF using the finite-element method and a Mach-Zehnder interferometer, respectively. Our results reveal a radial and axial sensitivity of 0.315 ppm/N/m and 25.2 ppm per 1 × 105 N/m2, respectively, for the SDPM-PCF. These values are 40% smaller than the corresponding parameters of conventional small diameter (cladding and coating diameter of 80 and 135 μm) panda fibres.

  11. Challenges and opportunities for the next generation of photon regeneration experiments

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2010-03-01

    Photon regeneration experiments searching for signatures of oscillations of photons into hypothetical very weakly interacting ultra-light particles, such as axions, axion-like and hiddensector particles, have improved their sensitivity considerably in recent years. Important progress in laser and detector technology as well as recycling of available magnets from accelerators may allow a big further step in sensitivity such that, for the first time, laser light shining through a wall experiments will explore territory in parameter space that has not been excluded yet by astrophysics and cosmology.We review these challenges and opportunities for the next generation experiments. (orig.)

  12. Transparent thin film polarizing and optical control systems

    Directory of Open Access Journals (Sweden)

    Nelson V. Tabiryan

    2011-06-01

    Full Text Available We show that a diffractive waveplate can be combined with a phase retardation film for fully converting light of arbitrary polarization state into a polarized light. Incorporating a photonic bandgap layer into a system of such polarizers that unify different polarization states in the input light into a single polarization state at its output, rather than absorbing or reflecting half of it, we developed and demonstrated a polarization-independent optical controller capable of switching between transmittive and reflective states. The transition between those states is smoothly controlled with low-voltage and low-power sources. Using versatile fabrication methods, this “universally polarizing optical controller” can be integrated into a thin package compatible with a variety of display, spatial light modulation, optical communication, imaging and other photonics systems.

  13. Holographic fabrication of 3D photonic crystals through interference of multi-beams with 4 + 1, 5 + 1 and 6 + 1 configurations.

    Science.gov (United States)

    George, D; Lutkenhaus, J; Lowell, D; Moazzezi, M; Adewole, M; Philipose, U; Zhang, H; Poole, Z L; Chen, K P; Lin, Y

    2014-09-22

    In this paper, we are able to fabricate 3D photonic crystals or quasi-crystals through single beam and single optical element based holographic lithography. The reflective optical elements are used to generate multiple side beams with s-polarization and one central beam with circular polarization which in turn are used for interference based holographic lithography without the need of any other bulk optics. These optical elements have been used to fabricate 3D photonic crystals with 4, 5 or 6-fold symmetry. A good agreement has been observed between fabricated holographic structures and simulated interference patterns.

  14. Generation of a strong attosecond pulse train with an orthogonally polarized two-color laser field

    International Nuclear Information System (INIS)

    Kim, Chul Min; Kim, I Jong; Nam, Chang Hee

    2005-01-01

    We theoretically investigate the high-order harmonic generation from a neon atom irradiated by an intense two-color femtosecond laser pulse, in which the fundamental field and its second harmonic are linearly polarized and orthogonal to each other. In contrast to usual high-harmonic generation with linearly polarized fundamental field alone, a very strong and clean high-harmonic spectrum, consisting of both odd and even orders of harmonics, can be generated in the orthogonally polarized two-color laser field with proper selection of the relative phase between the fundamental and second-harmonic fields. In time domain, this results in a strong and regular attosecond pulse train. The origin of these behaviors is elucidated by analyzing semiclassical electron paths and by simulating high-harmonic generation quantum mechanically

  15. High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Erik Nicolai; Christensen, Jesper Bjerge

    2017-01-01

    We demonstrate a very high coincidence-to-accidental ratio of 673 using continuous-wave photon-pair generation in a silicon strip waveguide through spontaneous four-wave mixing. This result is obtained by employing on-chip photonic-crystal-based grating couplers for both low-loss fiber......-to-chip coupling and on-chip suppression of generated spontaneous Raman scattering noise. We measure a minimum heralded second-order correlation of g(H)((2)) (0) = 0.12, demonstrating that our source operates in the single- photon regime with low noise. (C) 2017 The Japan Society of Applied Physics...

  16. Two-photon exchange in elastic electron-nucleon scattering

    International Nuclear Information System (INIS)

    Blunden, P.G.; Melnitchouk, W.; Tjon, J.A.

    2005-01-01

    A detailed study of two-photon exchange in unpolarized and polarized elastic electron-nucleon scattering is presented, taking particular account of nucleon finite size effects. Contributions from nucleon elastic intermediate states are found to have a strong angular dependence, which leads to a partial resolution of the discrepancy between the Rosenbluth and polarization transfer measurements of the proton electric to magnetic form factor ratio, G E /G M . The two-photon exchange contribution to the longitudinal polarization transfer P L is small, whereas the contribution to the transverse polarization transfer P T is enhanced at backward angles by several percent, increasing with Q 2 . This gives rise to a small, E /G M obtained from the polarization transfer ratio P T /P L at large Q 2 . We also compare the two-photon exchange effects with data on the ratio of e + p to e - p cross sections, which is predicted to be enhanced at backward angles. Finally, we evaluate the corrections to the form factors of the neutron and estimate the elastic intermediate state contribution to the 3 He form factors

  17. Study of a positron source generated by photons from ultrarelativistic channeled particles

    International Nuclear Information System (INIS)

    Chehab, R.; Couchot, F.; Nyaiesh, A.R.; Richard, F.; Artru, X.

    1989-03-01

    Radiation by channeled electrons in Germanium and Silicon crystals along the axis is studied as a very promising photon source of small angular divergence for positron generation in amorphous targets. Radiation rates for different crystal lengths - from some tenths of mm to 10 mm - and two electron incident energies, 5 and 20 GeV, are considered and a comparison between the two crystals is presented. Thermic behaviour of the crystal under incidence of bunches of 10 10 electrons is also examined. The corresponding positron yields for tungsten amorphous converters - of 0.5 and 1 X o thickness - are calculated considering the case of a Germanium photon generator. Assuming a large acceptance optical matching system as the adiabatic device of the SLC, accepted positrons are evaluated and positron yields larger than 1 e + /e - are obtained

  18. Multiphoton electronic-spin generation and transmission spectroscopy in n-type GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-01-17

    Multiphoton electronic-spin generation in semiconductors was investigated using differential transmission spectroscopy. The generation of the electronic spins in the semiconductor samples were achieved by multiphoton pumping with circularly polarized light beam and was probed by the spin-resolved transmission of the samples. The electronic spin-polarization of conduction band was estimated and was found to depend on the delay of the probe beam, temperature as well as on the multiphoton pumping energy. The temperature dependence showed a decrease of the spin-polarization with increasing temperature. The electronic spin-polarization was found to depolarize rapidly for multiphoton pumping energy larger than the energy gap of the split-off band to the conduction band. The results were compared with those obtained in one-photon pumping, which shows that an enhancement of the electronic spin-polarization was achieved in multiphoton pumping. The findings resulting from this investigation might have potential applications in opto-spintronics, where the generation of highly polarized electronic spins is required.

  19. Multiphoton electronic-spin generation and transmission spectroscopy in n-type GaAs

    International Nuclear Information System (INIS)

    Idrish Miah, M.

    2011-01-01

    Multiphoton electronic-spin generation in semiconductors was investigated using differential transmission spectroscopy. The generation of the electronic spins in the semiconductor samples were achieved by multiphoton pumping with circularly polarized light beam and was probed by the spin-resolved transmission of the samples. The electronic spin-polarization of conduction band was estimated and was found to depend on the delay of the probe beam, temperature as well as on the multiphoton pumping energy. The temperature dependence showed a decrease of the spin-polarization with increasing temperature. The electronic spin-polarization was found to depolarize rapidly for multiphoton pumping energy larger than the energy gap of the split-off band to the conduction band. The results were compared with those obtained in one-photon pumping, which shows that an enhancement of the electronic spin-polarization was achieved in multiphoton pumping. The findings resulting from this investigation might have potential applications in opto-spintronics, where the generation of highly polarized electronic spins is required.

  20. Photon beam polarization and non-dipolar angular distributions

    International Nuclear Information System (INIS)

    Peshkin, M.

    1996-01-01

    Angular distributions of ejecta from unoriented atoms and molecules depend upon the polarization state of the incident x-rays as well as upon the dynamics of the physical systems being studied. I recommend a simple geometrical way of looking at the polarization and its effects upon angular distributions. The polarization is represented as a vector in a parameter space that faithfully represents the polarization of the beam. The simple dependence of the angular dependence of the angular distributions on the polarization vector enables easy extraction of the dynamical information contained in those angular distributions. No new physical results emerge from this geometrical approach, but known consequences of the symmetries appear in an easily visualized form that I find pleasing and that has proved to be useful for planning experiments and for analyzing data

  1. A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications

    Science.gov (United States)

    Islam, Md. Saiful; Sultana, Jakeya; Dinovitser, Alex; Ng, Brian W.-H.; Abbott, Derek

    2018-04-01

    A novel waveguide consisting of oligo-porous core photonic crystal fiber (PCF) with a kagome lattice cladding has been designed for highly birefringent and near zero dispersion flattened applications of terahertz waves. The wave guiding properties of the designed PCF including birefringence, dispersion, effective material loss (EML), core power fraction, confinement loss, and modal effective area are investigated using a full vector Finite Element Method (FEM) with Perfectly Matched Layer (PML) absorbing boundary condition. Simulation results demonstrate that an ultra-high birefringence of 0.079, low EML of 0.05 cm-1, higher core power fraction of 44% and negligible confinement loss of 7 . 24 × 10-7 cm-1 can be achieved at 1 THz. Furthermore, for the y-polarization mode a near zero flattened dispersion of 0 . 49 ± 0 . 05 ps/THz/cm is achieved within a broad frequency range of 0.8-1.7 THz. The fabrication of the proposed fiber is feasible using the existing fabrication technology. Due to favorable wave-guiding properties, the proposed fiber has potential for terahertz imaging, sensing and polarization maintaining applications in the terahertz frequency range.

  2. Photon wave function formalism for analysis of Mach–Zehnder interferometer and sum-frequency generation

    Energy Technology Data Exchange (ETDEWEB)

    Ritboon, Atirach, E-mail: atirach.3.14@gmail.com [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Pengpan, Teparksorn, E-mail: teparksorn.p@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand)

    2016-08-15

    Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.

  3. Photon wave function formalism for analysis of Mach–Zehnder interferometer and sum-frequency generation

    International Nuclear Information System (INIS)

    Ritboon, Atirach; Daengngam, Chalongrat; Pengpan, Teparksorn

    2016-01-01

    Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.

  4. Double-polarization observable G in neutral-pion photoproduction off the proton

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, A.; Lang, M.; Afzal, F.; Beck, R.; Boese, S.; Funke, C.; Gottschall, M.; Gruener, M.; Hammann, C.; Hannappel, J.; Hartmann, J.; Hoffmeister, P.; Honisch, C.; Kaiser, D.; Kalinowsky, H.; Kalischewski, F.; Klassen, P.; Klempt, E.; Koop, K.; Kube, M.; Mahlberg, P.; Mueller, J.; Muellers, J.; Piontek, D.; Schmidt, C.; Seifen, T.; Sokhoyan, V.; Spieker, K.; Thoma, U.; Urban, M.; Pee, H. van; Walther, D.; Wendel, C.; Winnebeck, A. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Eberhardt, H.; Bantes, B.; Dutz, H.; Elsner, D.; Ewald, R.; Fornet-Ponse, K.; Frommberger, F.; Goertz, S.; Hammann, D.; Hillert, W.; Jude, T.; Kammer, S.; Kleber, V.; Klein, F.; Reeve, S.; Runkel, S.; Schmieden, H. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Anisovich, A.V.; Bayadilov, D.; Nikonov, V.; Sarantsev, A. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Bichow, M.; Meyer, W.; Reicherz, G. [Ruhr-Universitaet Bochum, Institut fuer Experimentalphysik I, Bochum (Germany); Brinkmann, K.T.; Gutz, E. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen und Kernphysik, Bonn (Germany); Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Crede, V. [Florida State University, Department of Physics, Tallahassee, FL (United States); Dieterle, M.; Keshelashvili, I.; Krusche, B.; Witthauer, L. [Universitaet Basel, Institut fuer Physik, Basel (Switzerland); Friedrich, S.; Makonyi, K.; Metag, V.; Nanova, M. [Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Gridnev, A.; Lopatin, I. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Wilson, A. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Florida State University, Department of Physics, Tallahassee, FL (United States); Collaboration: The CBELSA/TAPS Collaboration

    2017-01-15

    This paper reports on a measurement of the double-polarization observable G in π{sup 0} photoproduction off the proton using the CBELSA/TAPS experiment at the ELSA accelerator in Bonn. The observable G is determined from reactions of linearly polarized photons with longitudinally polarized protons. The polarized photons are produced by bremsstrahlung off a diamond radiator of well-defined orientation. A frozen spin butanol target provides the polarized protons. The data cover the photon energy range from 617 to 1325 MeV and a wide angular range. The experimental results for G are compared to predictions by the Bonn-Gatchina (BnGa), Juelich-Bonn (JueBo), MAID and SAID partial wave analyses. Implications of the new data for the pion photoproduction multipoles are discussed. (orig.)

  5. Doppler-free two-photon spectroscopy of Yb atoms and efficient generation of a cascade of two photons at 611.3 nm and 555.8 nm

    International Nuclear Information System (INIS)

    Song, Minsoo; Yoon, Duseong; Yoon, Taihyun

    2011-01-01

    We performed high-resolution Doppler-free two-photon spectroscopy of Yb atoms in an effusive atomic beam and generated a cascade of two photons at 611.3 nm (idler) and 555.8 nm (signal) with a narrow bandwidth of 37 MHz. Efficient population transfer from the ground state (6s 2 1 S 0 ) to the upper state (6s7s 1 S 0 ), where direct transition at 291.1 nm is dipole forbidden, was achieved through a resonant two-photon excitation enhanced by the electromagnetically-induced transparency mediated by the intermediate state (6s6p 1 P 1 ). From the upper state, a cascade of two photons in sequence was emitted via the spin triplet state (6s 2 3 P 1 ). Numerical calculations of the density matrix equations taking into account the residual Doppler effect and strong driving fields explain quantitatively the experimental results for the dependences of the idler and the signal beam intensities on the various parameters of the driving fields. We report on the generation of a cascade of two photons with fluxes at the level of a few times 10 6 photons/s detected at a solid angle of 0.01 sr.

  6. Doppler-free two-photon spectroscopy of Yb atoms and efficient generation of a cascade of two photons at 611.3 nm and 555.8 nm

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Yoon, Duseong; Yoon, Taihyun [Korea University, Seoul (Korea, Republic of)

    2011-10-15

    We performed high-resolution Doppler-free two-photon spectroscopy of Yb atoms in an effusive atomic beam and generated a cascade of two photons at 611.3 nm (idler) and 555.8 nm (signal) with a narrow bandwidth of 37 MHz. Efficient population transfer from the ground state (6s{sup 2} {sup 1}S{sub 0}) to the upper state (6s7s {sup 1}S{sub 0}), where direct transition at 291.1 nm is dipole forbidden, was achieved through a resonant two-photon excitation enhanced by the electromagnetically-induced transparency mediated by the intermediate state (6s6p {sup 1}P{sub 1}). From the upper state, a cascade of two photons in sequence was emitted via the spin triplet state (6s{sup 2} {sup 3}P{sub 1}). Numerical calculations of the density matrix equations taking into account the residual Doppler effect and strong driving fields explain quantitatively the experimental results for the dependences of the idler and the signal beam intensities on the various parameters of the driving fields. We report on the generation of a cascade of two photons with fluxes at the level of a few times 10{sup 6} photons/s detected at a solid angle of 0.01 sr.

  7. Experiments on quantum frequency conversion of photons

    International Nuclear Information System (INIS)

    Ramelow, S.

    2011-01-01

    Coherently converting photons between different states offers intriguing new possibilities and applications in quantum optical experiments. In this thesis three experiments on this theme are presented. The first experiment demonstrates the quantum frequency conversion of polarization entangled photons. Coherent frequency conversion of single photons offers an elegant solution for the often difficult trade-off of choosing the optimal photon wavelength, e.g. regarding optimal transmission and storage of photons in quantum memory based quantum networks. In our experiments, we verify the successful entanglement conversion by violating a Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and fully characterised our close to unity fidelity entanglement transfer using quantum state- and process tomography. Our implementation is robust and flexible, making it a practical building block for future quantum technologies.The second part of the thesis introduces a deterministic scheme for photonic quantum information processing. While single photons offer many advantages for quantum information technologies, key unresolved challenges are scalable on-demand single photon sources; deterministic two-photon interactions; and near 100%-efficient detection. All these can be solved with a single versatile process - a novel four-wave mixing process that we introduce here as a special case of the more general scheme of coherent photon conversion (CPC). It can provide valuable photonic quantum processing tools, from scalably creating single- and multi-photon states to implementing deterministic entangling gates and high-efficiency detection. Notably, this would enable scalable photonic quantum computing. Using photonic crystal fibres, we experimentally demonstrate a nonlinear process suited for coherent photon conversion. We observe correlated photon-pair production at the predicted wavelengths and experimentally characterise the enhancement of the interaction strength by varying the pump

  8. The DHG sum rule measured with medium energy photons

    International Nuclear Information System (INIS)

    Hicks, K.; Ardashev, K.; Babusci, D.

    1997-01-01

    The structure of the nucleon has many important features that are yet to be uncovered. Of current interest is the nucleon spin-structure which can be measured by doing double-polarization experiments with photon beams of medium energies (0.1 to 2 GeV). One such experiment uses dispersion relations, applied to the Compton scattering amplitude, to relate measurement of the total reaction cross section integrated over the incident photon energy to the nucleon anomalous magnetic moment. At present, no single facility spans the entire range of photon energies necessary to test this sum rule. The Laser-Electron Gamma Source (LEGS) facility will measure the double-polarization observables at photon energies between 0.15--0.47 MeV. Either the SPring8 facility, the GRAAL facility (France), or Jefferson Laboratory could make similar measurements at higher photon energies. A high-precision measurement of the spin-polarizability and the Drell-Hearn-Gerasimov sum rule is now possible with the advent of high-polarization solid HD targets at medium energy polarized photon facilities such as LEGS, GRAAL and SPring8. Other facilities with lower polarization in either the photon beam or target (or both) are also pursuing these measurements because of the high priority associated with this physics. The Spin-asymmetry (SASY) detector that will be used at LEGS has been briefly outlined in this paper. The detector efficiencies have been explored with simulations studies using the GEANT software, with the result that both charged and uncharged pions can be detected with a reasonable efficiency (> 30%) over a large solid angle. Tracking with a TPC, which will be built at LEGS over the next few years, will improve the capabilities of these measurements

  9. Thrust distribution of two-jet like events at a photon-photon collider

    International Nuclear Information System (INIS)

    Kanakubo, Fumiko

    1995-01-01

    One of the advantages of using a photon-photon collision with the same helicity is that the continuum qq-bar production is suppressed at the lowest order (α s 0 ). However, the helicity suppression does not take place for the gluon radiation process, and qq-barg can be two-jet like. We evaluate the cross sections of the two-jet like events in a photon-photon collision, and present the thrust distributions. We take into account the QCD effect to all orders in α s in the leading-double-log approximation, and show the suppression due to this effect. The evaluation with the energy and the polarization distributions of the photon suggests that the contaminating photons with the opposite helicity contribute dominantly to the two-jet like process. (author)

  10. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Xiaohui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421002 (China); Yi, Xunong [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zhou, Xinxing; Liu, Yachao; Shu, Weixing; Wen, Shuangchun [Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Luo, Hailu, E-mail: hailuluo@hnu.edu.cn [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China)

    2014-10-13

    We report the realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. By breaking the rotational symmetry of a cylindrical vector beam, the intrinsic vortex phases that the two spin components of the vector beam carries, which is similar to the geometric Pancharatnam-Berry phase, are no longer continuous in the azimuthal direction, and leads to observation of spin accumulation at the opposite edge of the beam. Due to the inherent nature of the phase and independency of light-matter interaction, the observed photonic spin Hall effect is intrinsic. Modulating the topological charge of the vector beam, the spin-dependent splitting can be enhanced and the direction of spin accumulation is switchable. Our findings may provide a possible route for generation and manipulation of spin-polarized photons, and enables spin-based photonics applications.

  11. Influence of pump-field scattering on nonclassical-light generation in a photonic-band-gap nonlinear planar waveguide

    International Nuclear Information System (INIS)

    Perina, Jan Jr.; Sibilia, Concita; Tricca, Daniela; Bertolotti, Mario

    2005-01-01

    Optical parametric process occurring in a nonlinear planar waveguide can serve as a source of light with nonclassical properties. The properties of the generated fields are substantially modified by scattering of the nonlinearly interacting fields in a photonic-band-gap structure inside the waveguide. A general quantum model of linear operator amplitude corrections to the amplitude mean values and its numerical analysis provide conditions for efficient squeezed-light generation as well as generation of light with sub-Poissonian photon-number statistics. The destructive influence of phase mismatch of the nonlinear interaction can fully be compensated using a suitable photonic-band-gap structure inside the waveguide. Also an increase of the signal-to-noise ratio of the incident optical field can be reached in the waveguide

  12. Two-photon Microscopy and Polarimetry for Assessment of Myocardial Tissue Organization

    Science.gov (United States)

    Archambault-Wallenburg, Marika

    Optical methods can provide useful tissue characterization tools. For this project, two-photon microscopy and polarized light examinations (polarimetry) were used to assess the organizational state of myocardium in healthy, infarcted, and stem-cell regenerated states. Two-photon microscopy visualizes collagen through second-harmonic generation and myocytes through two-photon excitation autofluorescence, providing information on the composition and structure/organization of the tissue. Polarimetry measurements yield a value of linear retardance that can serve as an indicator of tissue anisotropy, and with a dual-projection method, information about the anisotropy axis orientation can also be extracted. Two-photon microscopy results reveal that stem-cell treated tissue retains more myocytes and structure than infarcted myocardium, while polarimetry findings suggest that the injury caused by temporary ligation of a coronary artery is less severe and more diffuse that than caused by a permanent ligation. Both these methods show potential for tissue characterization.

  13. Vibrational excitation of hydrogen molecules by two-photon absorption and third-harmonic generation

    Science.gov (United States)

    Miyamoto, Yuki; Hara, Hideaki; Hiraki, Takahiro; Masuda, Takahiko; Sasao, Noboru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2018-01-01

    We report the coherent excitation of the vibrational state of hydrogen molecules by two-photon absorption and the resultant third-harmonic generation (THG). Parahydrogen molecules cooled by liquid nitrogen are irradiated by mid-infrared nanosecond pulses at 4.8 μm with a nearly Fourier-transform-limited linewidth. The first excited vibrational state of parahydrogen is populated by two-photon absorption of the mid-infrared photons. Because of the narrow linewidth of the mid-infrared pulses, coherence between the ground and excited states is sufficient to induce higher-order processes. Near-infrared photons from the THG are observed at 1.6 μm. The dependence of the intensity of the near-infrared radiation on mid-infrared pulse energy, target pressure, and cell length is determined. We used a simple formula for THG with consideration of realistic experimental conditions to explain the observed results.

  14. Deuterated silicon nitride photonic devices for broadband optical frequency comb generation

    Science.gov (United States)

    Chiles, Jeff; Nader, Nima; Hickstein, Daniel D.; Yu, Su Peng; Briles, Travis Crain; Carlson, David; Jung, Hojoong; Shainline, Jeffrey M.; Diddams, Scott; Papp, Scott B.; Nam, Sae Woo; Mirin, Richard P.

    2018-04-01

    We report and characterize low-temperature, plasma-deposited deuterated silicon nitride thin films for nonlinear integrated photonics. With a peak processing temperature less than 300$^\\circ$C, it is back-end compatible with pre-processed CMOS substrates. We achieve microresonators with a quality factor of up to $1.6\\times 10^6 $ at 1552 nm, and $>1.2\\times 10^6$ throughout $\\lambda$ = 1510 -- 1600 nm, without annealing or stress management. We then demonstrate the immediate utility of this platform in nonlinear photonics by generating a 1 THz free spectral range, 900-nm-bandwidth modulation-instability microresonator Kerr comb and octave-spanning, supercontinuum-broadened spectra.

  15. Generation and propagation of radially polarized beams in optical fibers

    DEFF Research Database (Denmark)

    Ramachandran, Siddharth; Kristensen, P; Yan, M F

    2009-01-01

    Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even...

  16. Tomography of photon-added and photon-subtracted states

    NARCIS (Netherlands)

    Bazrafkan, MR; Man'ko, [No Value

    The purpose of this paper is to introduce symplectic and optical tomograms of photon-added and photon-subtracted quantum states. Explicit relations for the tomograms of photon-added and photon-subtracted squeezed coherent states and squeezed number states are obtained. Generating functions for the

  17. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage.

    Science.gov (United States)

    Wei, Yu-Jia; He, Yu-Ming; Chen, Ming-Cheng; Hu, Yi-Nan; He, Yu; Wu, Dian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei

    2014-11-12

    Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.

  18. Optimization of a polarized source for in vivo x-ray fluorescence analysis of platinum and other heavy metals

    International Nuclear Information System (INIS)

    Lewis, D.G.

    1994-01-01

    The Monte Carlo method was used to optimize a polarized photon source for the x-ray fluorescence analysis of platinum and other heavy metals in vivo. The source consisted of a 140 kVp, 25 mA x-ray tube with the photons plane-polarized by 90 o scattering. The use of plane-polarized photons results in a significant reduction in background when the fluorescent radiation is measured along the direction of polarization. A Monte Carlo computer programme was written to simulate the production and interaction of polarized photons in order to determine the optimal polarizing material and dimensions, together with beam width and geometrical arrangement of source, polarizer and beam collimators. Calculated photon energy distributions are compared with experimental data to test the validity of the model. (author)

  19. Broadband IR polarizing beam splitter using a subwavelength-structured one-dimensional photonic-crystal layer embedded in a high-index prism.

    Science.gov (United States)

    Khanfar, H K; Azzam, R M A

    2009-09-20

    An iterative procedure for the design of a polarizing beam splitter (PBS) that uses a form-birefringent, subwavelength-structured, one-dimensional photonic-crystal layer (SWS 1-D PCL) embedded in a high-index cubical prism is presented. The PBS is based on index matching and total transmission for the p polarization and total internal reflection for the s polarization at the prism-PCL interface at 45 degrees angle of incidence. A high extinction ratio in reflection (>50 dB) over the 4-12 microm IR spectral range is achieved using a SWS 1-D PCL of ZnTe embedded in a ZnS cube within an external field of view of +/-6.6 degrees and in the presence of grating filling factor errors of up to +/-10%. Comparable results, but with wider field of view, are also obtained with a Ge PCL embedded in a Si prism.

  20. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul

    OpenAIRE

    Alavi, S. E.; Soltanian, M. R. K.; Amiri, I. S.; Khalily, M.; Supa?at, A. S. M.; Ahmad, H.

    2016-01-01

    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides gene...

  1. Spin-Orbit Coupling for Photons and Polaritons in Microstructures

    Directory of Open Access Journals (Sweden)

    V. G. Sala

    2015-03-01

    Full Text Available We use coupled micropillars etched out of a semiconductor microcavity to engineer a spin-orbit Hamiltonian for photons and polaritons in a microstructure. The coupling between the spin and orbital momentum arises from the polarization-dependent confinement and tunneling of photons between adjacent micropillars arranged in the form of a hexagonal photonic molecule. It results in polariton eigenstates with distinct polarization patterns, which are revealed in photoluminescence experiments in the regime of polariton condensation. Thanks to the strong polariton nonlinearities, our system provides a photonic workbench for the quantum simulation of the interplay between interactions and spin-orbit effects, particularly when extended to two-dimensional lattices.

  2. Experimental determination of the degree of polarization of quantum states

    DEFF Research Database (Denmark)

    Kothe-Termén, Christian; Madsen, Lars Skovgaard; Andersen, Ulrik Lund

    2013-01-01

    We demonstrate experimental excitation-manifold-resolved polarization characterization of quantum states of light ranging from the few-photon to the many-photon level. In contrast to the traditional characterization of polarization that is based on the Stokes parameters, we experimentally determine...... the Stokes vector of each excitation manifold separately. Only for states with a given photon number do the methods coincide. For states with an indeterminate photon number, for example Gaussian states, the employed method gives a richer and more accurate description. We apply the method both in theory...

  3. Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing

    Science.gov (United States)

    Shi, Siyuan; Thomas, Abu; Corzo, Neil V.; Kumar, Prem; Huang, Yuping; Lee, Kim Fook

    2016-01-01

    Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors. PMID:27076032

  4. Advances in photonic bandgap fiber functionality

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian

    In order to take advantage of the many intriguing optical properties of photonic bandgap fibers, there are some technological challenges that have to be addressed. Among other things this includes transmission loss and the fibers ability to maintain field polarization. The work presented in this ......In order to take advantage of the many intriguing optical properties of photonic bandgap fibers, there are some technological challenges that have to be addressed. Among other things this includes transmission loss and the fibers ability to maintain field polarization. The work presented...

  5. Accidental cloning of a single-photon qubit in two-channel continuous-variable quantum teleportation

    International Nuclear Information System (INIS)

    Ide, Toshiki; Hofmann, Holger F.

    2007-01-01

    The information encoded in the polarization of a single photon can be transferred to a remote location by two-channel continuous-variable quantum teleportation. However, the finite entanglement used in the teleportation causes random changes in photon number. If more than one photon appears in the output, the continuous-variable teleportation accidentally produces clones of the original input photon. In this paper, we derive the polarization statistics of the N-photon output components and show that they can be decomposed into an optimal cloning term and completely unpolarized noise. We find that the accidental cloning of the input photon is nearly optimal at experimentally feasible squeezing levels, indicating that the loss of polarization information is partially compensated by the availability of clones

  6. Greenberger-Horne-Zeilinger-type and W-type entangled coherent states: Generation and Bell-type inequality tests without photon counting

    International Nuclear Information System (INIS)

    Jeong, Hyunseok; Nguyen Ba An

    2006-01-01

    We study Greenberger-Horne-Zeilinger-type (GHZ-type) and W-type three-mode entangled coherent states. Both types of entangled coherent states violate Mermin's version of the Bell inequality with threshold photon detection (i.e., without photon counting). Such an experiment can be performed using linear optics elements and threshold detectors with significant Bell violations for GHZ-type entangled coherent states. However, to demonstrate Bell-type inequality violations for W-type entangled coherent states, additional nonlinear interactions are needed. We also propose an optical scheme to generate W-type entangled coherent states in free-traveling optical fields. The required resources for the generation are a single-photon source, a coherent state source, beam splitters, phase shifters, photodetectors, and Kerr nonlinearities. Our scheme does not necessarily require strong Kerr nonlinear interactions; i.e., weak nonlinearities can be used for the generation of the W-type entangled coherent states. Furthermore, it is also robust against inefficiencies of the single-photon source and the photon detectors

  7. Tri Band Dual Polarized Patch Antenna System For Next Generation Cellular Networks

    Directory of Open Access Journals (Sweden)

    Syed Daniyal Ali Shah

    2017-12-01

    Full Text Available In fifth generation networks much emphasis is given to reduce the handset and base station sizes while incorporating even more features for ubiquitous connectivity. Polarization diversity is one of the methods in which a single multi-polarized antenna brings the advantages of antenna diversity. The multiband handset antennas can be made dual-polarized for improved compensation of fading effects of propagation environment especially in terrestrial bands. This paper focuses on the outcomes of the development of a horizontal and vertical polarized patch antenna scheme that operates on 3 bands 900 MHz 1.8 GHz and 2.4 GHz. The antenna system is tested for gain directivity reflection loss polarization radiation pattern and other parameters. The results are published and found are found to satisfy the requirements of cellular and data communication networks in the specified bands.

  8. Observation of photon polarization in $B^\\pm \\to K^\\pm\\pi^\\mp\\pi^\\pm\\gamma$ decays

    CERN Multimedia

    Veneziano, G

    2014-01-01

    A study of the flavor-changing neutral current radiative $B^{\\pm} \\to K^{\\pm}\\pi^{\\mp}\\pi^{\\pm}\\gamma$ decays performed using data collected in proton-proton collisions with the LHCb detector at $7$ and $8\\,$TeV center-of-mass energies is presented. In this sample, corresponding to an integrated luminosity of $3\\,\\text{fb}^{-1}$, nearly $14\\,000$ signal events are reconstructed and selected, containing all possible intermediate resonances with a $K^{\\pm}\\pi^{\\mp}\\pi^{\\pm}$ final state in the $[1.1, 1.9]$\\,GeV/$c^{2}$ mass range. The distribution of the angle of the photon direction with respect to the plane defined by the final-state hadrons in their rest frame is studied in intervals of $K^{\\pm}\\pi^{\\mp}\\pi^{\\pm}$ mass and the asymmetry between the number of signal events found on each side of the plane is obtained. The first direct observation of the photon polarization in the $b \\to s\\gamma$ transition is reported with a significance of $5.2\\,\\sigma$.

  9. Supercontinuum generation in silicon nanowire embedded photonic crystal fibers with different core geometries

    Science.gov (United States)

    Abdosllam, M. Abobaker; Gunasundari, E.; Senthilnathan, K.; Sivabalan, S.; Nakkeeran, K.; Ramesh Babu, P.

    2014-07-01

    We design various silicon nanowire embedded photonic crystal fibers (SN-PCFs) with different core geometries, namely, circular, rectangular and elliptical using finite element method. Further, we study the optical properties such as group velocity dispersion (GVD), third order dispersion (TOD) of x and y-polarized modes and effective nonlinearity for a wavelength range from 0.8 to 1.6 μm. The proposed structure exhibits almost flat GVD (0.8 to 1.2 μm wavelength), zero GVD (≍ 1.31 μm) and small TOD (0.00069 ps3/m) at 1.1 μm wavelength and high nonlinearity (2916 W-1m-1) at 0.8 μm wavelength for a 300 nm core diameter of circular core SN-PCF. Besides, we have been able to demonstrate the supercontinuum for the different core geometries at 1.3 μm wavelength with a less input power of 25 W for the input pulse of 20 fs. The numerical simulation results reveal that the proposed circular core SN-PCF could generate the supercontinuum of wider bandwidth (900 nm) compared to that from rest of the geometries. This enhanced bandwidth turns out to be a boon for optical coherence tomography (OCT) system.

  10. One-dimensional photonic crystals with highly Bi-substituted iron garnet defect in reflection polar geometry

    International Nuclear Information System (INIS)

    Mikhailova, T V; Berzhansky, V N; Karavainikov, A V; Shaposhnikov, A N; Prokopov, A R; Lyashko, S D

    2016-01-01

    It is represented the results of modelling of magnetooptical properties in reflection polar geometry of one-dimensional photonic crystal, in which highly Bi-substituted iron garnet defect of composition Bi 1.0 Y 0.5 Gd 1.5 Fe 4.2 A l0.8 O 12 / Bi 2.8 Y 0.2 Fe 5 Oi 2 is located between the dielectric Bragg mirrors (SiO 2 / TiO 2 ) m (were m is number of layer pairs) and buffer SiO 2 and gold top layers of different thicknesses is placed on structure. The modification of spectral line- shapes of microcavity and Tamm plasmon-polariton modes depending on m is found. (paper)

  11. Direct Generation and Detection of Quantum Correlated Photons with 3.2 um Wavelength Spacing.

    Science.gov (United States)

    Sua, Yong Meng; Fan, Heng; Shahverdi, Amin; Chen, Jia-Yang; Huang, Yu-Ping

    2017-12-13

    Quantum correlated, highly non-degenerate photons can be used to synthesize disparate quantum nodes and link quantum processing over incompatible wavelengths, thereby constructing heterogeneous quantum systems for otherwise unattainable superior performance. Existing techniques for correlated photons have been concentrated in the visible and near-IR domains, with the photon pairs residing within one micron. Here, we demonstrate direct generation and detection of high-purity photon pairs at room temperature with 3.2 um wavelength spacing, one at 780 nm to match the rubidium D2 line, and the other at 3950 nm that falls in a transparent, low-scattering optical window for free space applications. The pairs are created via spontaneous parametric downconversion in a lithium niobate waveguide with specially designed geometry and periodic poling. The 780 nm photons are measured with a silicon avalanche photodiode, and the 3950 nm photons are measured with an upconversion photon detector using a similar waveguide, which attains 34% internal conversion efficiency. Quantum correlation measurement yields a high coincidence-to-accidental ratio of 54, which indicates the strong correlation with the extremely non-degenerate photon pairs. Our system bridges existing quantum technology to the challenging mid-IR regime, where unprecedented applications are expected in quantum metrology and sensing, quantum communications, medical diagnostics, and so on.

  12. Single-photon interference experiment for high schools

    Science.gov (United States)

    Bondani, Maria

    2014-07-01

    We follow the reductio ad absurdum reasoning described in the book "Sneaking a Look at God's Cards" by Giancarlo Ghirardi to demonstrate the wave-particle duality of light in a Mach-Zehnder interferometric setup analog to the conventional Young double-slit experiment. We aim at showing the double nature of light by measuring the existence of interference fringes down to the single-photon level. The setup includes a strongly attenuated laser, polarizing beam splitters, half-waveplates, polarizers and single-photon detectors.

  13. Nonlocal hyperconcentration on entangled photons using photonic module system

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhang, Ru [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Ethnic Minority Education, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wang, Chuan, E-mail: wangchuan@bupt.edu.cn [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2016-06-15

    Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.

  14. Nonlocal hyperconcentration on entangled photons using photonic module system

    International Nuclear Information System (INIS)

    Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen; Zhang, Ru; Wang, Chuan

    2016-01-01

    Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.

  15. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr. C.R.; Schmid, A.W.; Marshall, K.L.

    2006-01-01

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time

  16. Photonic Ultra-Wideband 781.25-Mb/s Signal Generation and Transmission Incorporating Digital Signal Processing Detection

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    The generation of photonic ultra-wideband (UWB) impulse signals using an uncooled distributed-feedback laser is proposed. For the first time, we experimentally demonstrate bit-for-bit digital signal processing (DSP) bit-error-rate measurements for transmission of a 781.25-Mb/s photonic UWB signal...

  17. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  18. Nanodiamond Emitters of Single Photons

    Directory of Open Access Journals (Sweden)

    Vlasov I.I.

    2015-01-01

    Full Text Available Luminescence properties of single color centers were studied in nanodiamonds of different origin. It was found that single photon emitters could be realized even in molecularsized diamond (less than 2 nm capable of housing stable luminescent center “silicon-vacancy.” First results on incorporation of single-photon emitters based on luminescent nanodiamonds in plasmonic nanoantennas to enhance the photon count rate and directionality, diminish the fluorescence decay time, and provide polarization selectivity are presented.

  19. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics

    DEFF Research Database (Denmark)

    D’Angelo, Francesco; Mics, Zoltán; Bonn, Mischa

    2014-01-01

    -domain spectrometer employing air-photonics for the generation and detection of single-cycle sub-50 fs THz transients. The time domain measurements provide direct access to both the absorption and refractive index spectra. The polymers LDPE and TOPAS® demonstrate negligible absorption and spectrally-flat refractive...... index across the entire spectroscopy window, revealing the high potential of these polymers for applications in THz photonics such as ultra-broadband polymer-based dielectric mirrors, waveguides, and fibers. Resonant high-frequency polar vibrational modes are observed and assigned in polymers PA6...... and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultrabroadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science....

  20. System for measuring the proton polarization in a polarized target

    International Nuclear Information System (INIS)

    Karnaukhov, I.M.; Lukhanin, A.A.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1984-01-01

    The system for measuring the proton polarization in a polarized target representing the high-sensitivity nuclear magnetic resonance (NMR) is described Q-meter with series connection and a circuit for measuring system resonance characteristic is used for NMR-absorption signal recording. Measuring coil is produced of a strip conductor in order to obtain uniform system sensitivity to polarization state in all target volume and improve signal-to-noise ratio. Polarization measuring system operates ion-line with the M-6000 computer. The total measuring error for the value of free proton polarization in target taking into account the error caused by local depolarization of working substance under irradiation by high-intense photon beam is <= 6%. Long-term application of the described system for measuring the proton polarization in the LUEh-20000 accelerator target used in the pion photoproduction experiments has demonstrated its high reliability

  1. Optical polarization modulation by competing atomic coherence effects in a degenerate four-level Yb atomic system

    International Nuclear Information System (INIS)

    Park, Sung Jong; Park, Chang Yong; Yoon, Tai Hyun

    2005-01-01

    A scheme of optical polarization modulation of a linearly polarized infrared probe field is studied in a degenerate four-level Yb atomic system. We have observed an anomalous transmission spectra of two circular polarization components of the probe field exhibiting an enhanced two-photon absorption and a three-photon gain with comparable magnitude, leading to the lossless transmission and enhanced circular dichroism. We carried out a proof-of-principle experiment of fast optical polarization modulation in such a system by modulating the polarization state of the coupling field. The observed enhanced two-photon absorption and three-photon gain of the probe field are due to the result of competing atomic coherence effects

  2. Photon-pair generation in nonlinear metal-dielectric one-dimensional photonic structures

    Czech Academy of Sciences Publication Activity Database

    Javůrek, D.; Svozilík, J.; Peřina ml., Jan

    2014-01-01

    Roč. 90, č. 5 (2014), "053813-1"-"053813-14" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon pairs * nonlinear metal-dielectric * one-dimensional photonic structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.808, year: 2014

  3. Spectral Properties, Generation Order Parameters, and Luminosities for Spin-powered X-Ray Pulsars

    Science.gov (United States)

    Wang, Wei; Zhao, Yongheng

    2004-02-01

    We show the spectral properties of 15 spin-powered X-ray pulsars, and the correlation between the average power-law photon index and spin-down rate. Generation order parameters (GOPs) based on polar cap models are introduced to characterize the X-ray pulsars. We calculate three definitions of generation order parameters arising from the different effects of magnetic and electric fields on photon absorption during cascade processes, and study the relations between the GOPs and spectral properties of X-ray pulsars. There exists a possible correlation between the photon index and GOP in our pulsar sample. Furthermore, we present a method stemming from the concept of GOPs to estimate the nonthermal X-ray luminosity for spin-powered pulsars. Then X-ray luminosity is calculated in the context of our polar cap accelerator model, which is consistent with most observed X-ray pulsar data. The ratio between the X-ray luminosity estimated by our method and the pulsar's spin-down power is consistent with the LX~10-3Lsd feature.

  4. Photon polarization tensor in the light front field theory at zero and finite temperatures

    International Nuclear Information System (INIS)

    Silva, Charles da Rocha; Perez, Silvana; Strauss, Stefan

    2012-01-01

    Full text: In recent years, light front quantized field theories have been successfully generalized to finite temperature. The light front frame was introduced by Dirac , and the quantization of field theories on the null-plane has found applications in many branches of physics. In order to obtain the thermal contribution, we consider the hard thermal loop approximation. This technique was developed by Braaten and Pisarski for the thermal quantum field theory at equal times and is particularly useful to extract the leading thermal contributions to the amplitudes in perturbative quantum field theories. In this work, we consider the light front quantum electrodynamics in (3+1) dimensions and evaluate the photon polarization tensor at one loop for both zero and finite temperatures. In the first case, we apply the dimensional regularization method to extract the finite contribution and find the transverse structure for the amplitude in terms of the light front coordinates. The result agrees with one-loop covariant calculation. For the thermal corrections, we generalize the hard thermal loop approximation to the light front and calculate the dominant temperature contribution to the polarization tensor, consistent with the Ward identity. In both zero as well as finite temperature calculations, we use the oblique light front coordinates. (author)

  5. Generation efficiency of single-photon current pulses in the Geiger mode of silicon avalanche photodiodes

    International Nuclear Information System (INIS)

    Verkhovtseva, A. V.; Gergel, V. A.

    2009-01-01

    Statistical fluctuations of the avalanche's multiplication efficiency were studied as applied to the single-photon (Geiger) mode of avalanche photodiodes. The distribution function of partial multiplication factors with an anomalously wide (of the order of the average) dispersion was obtained. Expressions for partial feedback factors were derived in terms of the average gain and the corresponding dependences on the diode's overvoltage were calculated. Final expressions for the photon-electric pulse's conversion were derived by averaging corresponding formulas over the coordinate of initiating photoelectron generation using the functions of optical photon absorption in silicon.

  6. Precision Controlled Carbon Materials for Next-Generation Optoelectronic and Photonic Devices

    Science.gov (United States)

    2018-01-08

    engineer next-generation carbon-based optoelectronic and photonic devices with superior performance and capabilities. These devices include carbon...electronics; (4) nanostructured graphene plasmonics; and (5) polymer-nanotube conjugate chemistry . (1) Semiconducting carbon nanotube-based...applications (In Preparation, 2018). (5) Polymer-nanotube conjugate chemistry Conjugated polymers can be exploited as agents for selectively wrapping and

  7. Complete Bell-state analysis for a single-photon hybrid entangled state

    International Nuclear Information System (INIS)

    Sheng Yu-Bo; Zhou Lan; Cheng Wei-Wen; Gong Long-Yan; Wang Lei; Zhao Sheng-Mei

    2013-01-01

    We propose a scheme capable of performing complete Bell-state analysis for a single-photon hybrid entangled state. Our single-photon state is encoded in both polarization and frequency degrees of freedom. The setup of the scheme is composed of polarizing beam splitters, half wave plates, frequency shifters, and independent wavelength division multiplexers, which are feasible using current technology. We also show that with this setup we can perform complete two-photon Bell-state analysis schemes for polarization degrees of freedom. Moreover, it can also be used to perform the teleportation scheme between different degrees of freedom. This setup may allow extensive applications in current quantum communications

  8. Electric-field effects in optically generated spin transport

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  9. Electric-field effects in optically generated spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2009-05-25

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  10. Next-Generation Photon Sources for Grand Challenges in Science and Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    The next generation of sustainable energy technologies will revolve around transformational new materials and chemical processes that convert energy efficiently among photons, electrons, and chemical bonds. New materials that tap sunlight, store electricity, or make fuel from splitting water or recycling carbon dioxide will need to be much smarter and more functional than today's commodity-based energy materials. To control and catalyze chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials and interfaces with designed nanoscale structures. Such advanced materials are not found in nature the way we find fossil fuels; they must be designed and fabricated to exacting standards, using principles revealed by basic science. Success in this endeavor requires probing, and ultimately controlling, the interactions among photons, electrons, and chemical bonds on their natural length and time scales. Control science - the application of knowledge at the frontier of science to control phenomena and create new functionality - realized through the next generation of ultraviolet and X-ray photon sources, has the potential to be transformational for the life sciences and information technology, as well as for sustainable energy. Current synchrotron-based light sources have revolutionized macromolecular crystallography. The insights thus obtained are largely in the domain of static structure. The opportunity is for next generation light sources to extend these insights to the control of dynamic phenomena through ultrafast pump-probe experiments, time-resolved coherent imaging, and high-resolution spectroscopic imaging. Similarly, control of spin and charge degrees of freedom in complex functional materials has the potential not only to reveal the fundamental mechanisms of high-temperature superconductivity, but also to lay the foundation for future generations of information science. This

  11. Polarized Moessbauer transitions in mixed hyperfine interactions

    International Nuclear Information System (INIS)

    Barb, D.; Tarina, D.

    1975-01-01

    A contribution to the theory of elliptical polarization in the Moessbauer effect for transitions between mixed nuclear states is reported. A relation between the two-dimensional complex vector parameterization and the photon polarization density matrix was used in describing changes in the polarization of the gamma-ray involved. (A.K.)

  12. Preparation and purification of four-photon Greenberger–Horne–Zeilinger state

    International Nuclear Information System (INIS)

    He, Ying-Qiu; Ding, Dong; Yan, Feng-Li; Gao, Ting

    2015-01-01

    We present an efficient scheme for the preparing and purifying of the four-photon Greenberger–Horne–Zeilinger (GHZ) state based on linear optics and postselection. First, we describe how to create a four-photon GHZ state in both polarization and spatial degrees of freedom from two pairs. Moreover, in the presence of depolarization noise our scheme is capable of purifying the desired state. In the regime of weak nonlinearity we design an indirect photon number-resolving detection to distinguish two states of the two pairs. At last, a fourfold coincidence detector click indicates the creation of a polarization-entangled four-photon GHZ state. (paper)

  13. A two-channel, spectrally degenerate polarization entangled source on chip

    Science.gov (United States)

    Sansoni, Linda; Luo, Kai Hong; Eigner, Christof; Ricken, Raimund; Quiring, Viktor; Herrmann, Harald; Silberhorn, Christine

    2017-12-01

    Integrated optics provides the platform for the experimental implementation of highly complex and compact circuits for quantum information applications. In this context integrated waveguide sources represent a powerful resource for the generation of quantum states of light due to their high brightness and stability. However, the confinement of the light in a single spatial mode limits the realization of multi-channel sources. Due to this challenge one of the most adopted sources in quantum information processes, i.e. a source which generates spectrally indistinguishable polarization entangled photons in two different spatial modes, has not yet been realized in a fully integrated platform. Here we overcome this limitation by suitably engineering two periodically poled waveguides and an integrated polarization splitter in lithium niobate. This source produces polarization entangled states with fidelity of F = 0.973 ±0.003 and a test of Bell's inequality results in a violation larger than 14 standard deviations. It can work both in pulsed and continuous wave regime. This device represents a new step toward the implementation of fully integrated circuits for quantum information applications.

  14. Schemes for fibre-based entanglement generation in the telecom band

    International Nuclear Information System (INIS)

    Chen, Jun; Lee, Kim Fook; Li Xiaoying; Voss, Paul L; Kumar, Prem

    2007-01-01

    We investigate schemes for generating polarization-entangled photon pairs in standard optical fibres. The advantages of a double-loop scheme are explored through comparison with two other schemes, namely, the Sagnac-loop scheme and the counter-propagating scheme. Experimental measurements with the double-loop scheme verify the predicted advantages

  15. Polarization-selective three-photon absorption and subsequent photoluminescence in CsPbBr3 single crystal at room temperature

    Science.gov (United States)

    Clark, D. J.; Stoumpos, C. C.; Saouma, F. O.; Kanatzidis, M. G.; Jang, J. I.

    2016-05-01

    We report on highly polarization-selective three-photon absorption (3PA) in a Bridgman-grown single crystal of CsPbBr3 oriented along the (112) direction, which is an inorganic counterpart to emerging organic-inorganic hybrid halide perovskites for solar-cell and optoelectronic applications. The crystal exhibits strong photoluminescence (PL) at room temperature as a direct consequence of 3PA of fundamental radiation. Interestingly, 3PA disappears when the input polarization is parallel to the (-110 ) direction. This 3PA effect is strongest when orthogonal to (-110 ) and the corresponding 3PA coefficient was measured to be γ =0.14 ±0.03 cm3/GW2 under picosecond-pulse excitation at the fundamental wavelength of λ =1200 nm. The laser-induced damage threshold was also determined to be about 20 GW/cm2 at the same wavelength. Based on relative PL intensities upon λ tuning over the entire 3PA range (1100 -1700 nm), we determined the nonlinear optical dispersion of the 3PA coefficient for CsPbBr3, which is consistent with a theoretical prediction. Experimentally observed significant polarization dependence of γ was explained by relevant selection rules. The perovskite is potentially important for nonlinear optical applications owing to its highly efficient 3PA-induced PL response with a sharp on/off ratio by active polarization control.

  16. Photon structure function

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1980-11-01

    Theoretical understanding of the photon structure function is reviewed. As an illustration of the pointlike component, the parton model is briefly discussed. However, the systematic study of the photon structure function is presented through the framework of the operator product expansion. Perturbative QCD is used as the theoretical basis for the calculation of leading contributions to the operator product expansion. The influence of higher order QCD effects on these results is discussed. Recent results for the polarized structure functions are discussed

  17. Application of photonics in next generation telecommunication satellites payloads

    Science.gov (United States)

    Anzalchi, J.; Inigo, P.; Roy, B.

    2017-11-01

    Next generation broadband telecommunication satellites are required to provide very high data throughput using complex multibeam architectures. These high throughput `Terabit/s' Satellites will incorporate payloads with very large quantity of conventional RF equipment, co-axial cables, waveguides, harnesses and ancillary equipment, making the Assembly, Integration and Test (AIT) very complex. Use of `RF over Fiber' and associated photonics equipment can make the process of AIT much simpler with the added benefit of significant reduction in number of payload equipment and inherent payload mass.

  18. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  19. On-demand single-photon state generation via nonlinear absorption

    International Nuclear Information System (INIS)

    Hong Tao; Jack, Michael W.; Yamashita, Makoto

    2004-01-01

    We propose a method for producing on-demand single-photon states based on collision-induced exchanges of photons and unbalanced linear absorption between two single-mode light fields. These two effects result in an effective nonlinear absorption of photons in one of the modes, which can lead to single-photon states. A quantum nonlinear attenuator based on such a mechanism can absorb photons in a normal input light pulse and terminate the absorption at a single-photon state. Because the output light pulses containing single photons preserve the properties of the input pulses, we expect this method to be a means for building a highly controllable single-photon source

  20. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    CERN Document Server

    Shvets, G

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation.

  1. Magnetic Field Generation through Angular Momentum Exchange between Circularly Polarized Radiation and Charged Particles

    International Nuclear Information System (INIS)

    G. Shvets; N.J. Fisch; J.-M. Rax

    2002-01-01

    The interaction between circularly polarized (CP) radiation and charged particles can lead to generation of magnetic field through an inverse Faraday effect. The spin of the circularly polarized electromagnetic wave can be converted into the angular momentum of the charged particles so long as there is dissipation. We demonstrate this by considering two mechanisms of angular momentum absorption relevant for laser-plasma interactions: electron-ion collisions and ionization. The precise dissipative mechanism, however, plays a role in determining the efficiency of the magnetic field generation

  2. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells

    NARCIS (Netherlands)

    Mays, R.W.; Siemers, K.A.; Fritz, B.A.; Lowe, A.W.; van Meer, G.; Nelson, W.J.

    1995-01-01

    We have studied mechanisms involved in generating a polarized distribution of Na/K-ATPase in the basal-lateral membrane of two clones of MDCK II cells. Both clones exhibit polarized distributions of marker proteins of the apical and basal-lateral membranes, including Na/K-ATPase, at steady state.

  3. High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states

    Science.gov (United States)

    Wu, FangZhou; Yang, GuoJian; Wang, HaiBo; Xiong, Jun; Alzahrani, Faris; Hobiny, Aatef; Deng, FuGuo

    2017-12-01

    This study proposes the first high-capacity quantum secure direct communication (QSDC) with two-photon six-qubit hyper-entangled Bell states in two longitudinal momentum and polarization degrees of freedom (DOFs) of photon pairs, which can be generated using two 0.5 mm-thick type-I β barium borate crystal slabs aligned one behind the other and an eight-hole screen. The secret message can be independently encoded on the photon pairs with 64 unitary operations in all three DOFs. This protocol has a higher capacity than previous QSDC protocols because each photon pair can carry 6 bits of information, not just 2 or 4 bits. Our QSDC protocol decreases the influence of decoherence from environment noise by exploiting the decoy photons to check the security of the transmission of the first photon sequence. Compared with two-way QSDC protocols, our QSDC protocol is immune to an attack by an eavesdropper using Trojan horse attack strategies because it is a one-way quantum communication. The QSDC protocol has good applications in the future quantum communication because of all these features.

  4. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    Science.gov (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  5. Polarization effects in radiative recombination of an electron with a highly charged ion

    International Nuclear Information System (INIS)

    Klasnikov, A.E.; Shabaev, V.M.; Artemyev, A.N.; Kovtun, A.V.; Stoehlker, T.

    2005-01-01

    The radiative recombination of an unpolarized electron with a polarized highly charged H-like ion in its ground state is studied. The absolute and relative values of the electron spin-flip contribution to the cross section of the process for various scattering angles and photon polarizations are calculated. It is shown that, in addition to the forward and backward directions, there are some other scattering angles of the emitted photon, where, at a fixed linear photon polarization, the spin-flip transition gives a dominant contribution to the differential cross section

  6. Leptoquark production with polarized γe beams

    International Nuclear Information System (INIS)

    Aliev, T.M.; Mustafaev, Kh.A.

    1991-01-01

    Possibilities of single production of the scalar leptoquark and also of its supersymmetric partner in polarized γe beams are studied in E 6 superstring theories. Expressions for the differential and total cross sections are obtained and analyzed. It is shown that the scalar leptoquark of mass 300 GeV can be detected even for a very small interaction constant γ 2 /4π∼10 -2 a and its supersymmetric partner can be detected for γ 2 /4π∼10 -2 a. The spin asymmetry due to the photon-beam polarization and the effect of this polarization on both the differential and the total cross sections are studied in detail. It is shown that study of the spin asymmetry and the effect of the photon-beam polarization can be used to extract information about the leptoquark masses

  7. Simple and robust generation of ultrafast laser pulse trains using polarization-independent parallel-aligned thin films

    Science.gov (United States)

    Wang, Andong; Jiang, Lan; Li, Xiaowei; Wang, Zhi; Du, Kun; Lu, Yongfeng

    2018-05-01

    Ultrafast laser pulse temporal shaping has been widely applied in various important applications such as laser materials processing, coherent control of chemical reactions, and ultrafast imaging. However, temporal pulse shaping has been limited to only-in-lab technique due to the high cost, low damage threshold, and polarization dependence. Herein we propose a novel design of ultrafast laser pulse train generation device, which consists of multiple polarization-independent parallel-aligned thin films. Various pulse trains with controllable temporal profile can be generated flexibly by multi-reflections within the splitting films. Compared with other pulse train generation techniques, this method has advantages of compact structure, low cost, high damage threshold and polarization independence. These advantages endow it with high potential for broad utilization in ultrafast applications.

  8. Two-photon processes in highly charged ions

    International Nuclear Information System (INIS)

    Jahrsetz, Thorsten

    2015-01-01

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  9. Two-photon processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Jahrsetz, Thorsten

    2015-03-05

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  10. Semiconductor devices for entangled photon pair generation: a review

    Science.gov (United States)

    Orieux, Adeline; Versteegh, Marijn A. M.; Jöns, Klaus D.; Ducci, Sara

    2017-07-01

    Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows the properties of the other to be instantaneously known, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today with bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing the generation of entanglement and the tools to characterize it; we will give an overview of major recent results of the last few years and highlight perspectives for future developments.

  11. Azimuthal and polar angle dependence of L X-ray differential cross-sections of Yb at 59.54 keV photon energy

    Energy Technology Data Exchange (ETDEWEB)

    Akkuş, T.; Şahin, Y.; Yılmaz, D., E-mail: ddemir@atauni.edu.tr

    2016-01-01

    Highlights: • The azimuthal and polar angle dependence of L X-ray for Yb is investigated. • The azimuthal angle dependence of Ll and Lα X-rays are observed. • The azimuthal anisotropy of Lβ and Lγ X-rays are not observed. • The polar anisotropy of Ll and Lα X-rays are observed. • The polar anisotropy of Lβ and Lγ X-rays are not observed. - Abstract: The azimuthal and polar angle dependence of L X-ray was investigated in the same experimental setup to remove the existing ambiguity about alignments measurements. We measured Ll, Lα, Lβ and Lγ X-ray differential cross sections of Yb for several different azimuthal angles (30°, 20°, 10°, 0°, −10° and −20°) and polar angles (90°, 100°, 110°, 120°, 130° and 140°) at 59.54 keV photon energy by using a Si(Li) detector. The azimuthal angle dependence of Ll and Lα X-rays were observed. The azimuthal anisotropy of Lβ and Lγ X-rays were not observed. On the other hand, differential cross-sections for Lβ and Lγ X-rays were found independent on the polar angle within experimental error, those for Ll and Lα X-rays depended on the polar angles. Azimuthal and polar angles dependence of L X-ray differential cross-sections contrast with the other experimental and theoretical results, which report evidence of the isotropic emission of Ll and Lα X-rays following photoionization.

  12. Vector Monte Carlo simulations on atmospheric scattering of polarization qubits.

    Science.gov (United States)

    Li, Ming; Lu, Pengfei; Yu, Zhongyuan; Yan, Lei; Chen, Zhihui; Yang, Chuanghua; Luo, Xiao

    2013-03-01

    In this paper, a vector Monte Carlo (MC) method is proposed to study the influence of atmospheric scattering on polarization qubits for satellite-based quantum communication. The vector MC method utilizes a transmittance method to solve the photon free path for an inhomogeneous atmosphere and random number sampling to determine whether the type of scattering is aerosol scattering or molecule scattering. Simulations are performed for downlink and uplink. The degrees and the rotations of polarization are qualitatively and quantitatively obtained, which agree well with the measured results in the previous experiments. The results show that polarization qubits are well preserved in the downlink and uplink, while the number of received single photons is less than half of the total transmitted single photons for both links. Moreover, our vector MC method can be applied for the scattering of polarized light in other inhomogeneous random media.

  13. Generation of Symmetric Dicke States of Remote Qubits with Linear Optics

    International Nuclear Information System (INIS)

    Thiel, C.; Zanthier, J. von; Bastin, T.; Solano, E.; Agarwal, G. S.

    2007-01-01

    We propose a method for generating all symmetric Dicke states, either in the long-lived internal levels of N massive particles or in the polarization degrees of freedom of photonic qubits, using linear optical tools only. By means of a suitable multiphoton detection technique, erasing Welcher-Weg information, our proposed scheme allows the generation and measurement of an important class of entangled multiqubit states

  14. Investigation of the polarization state of dual APPLE-II undulators.

    Science.gov (United States)

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S; Sawhney, Kawal

    2016-01-01

    The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  15. Background Noise Analysis in a Few-Photon-Level Qubit Memory

    Science.gov (United States)

    Mittiga, Thomas; Kupchak, Connor; Jordaan, Bertus; Namazi, Mehdi; Nolleke, Christian; Figeroa, Eden

    2014-05-01

    We have developed an Electromagnetically Induced Transparency based polarization qubit memory. The device is composed of a dual-rail probe field polarization setup colinear with an intense control field to store and retrieve any arbitrary polarization state by addressing a Λ-type energy level scheme in a 87Rb vapor cell. To achieve a signal-to-background ratio at the few photon level sufficient for polarization tomography of the retrieved state, the intense control field is filtered out through an etalon filtrating system. We have developed an analytical model predicting the influence of the signal-to-background ratio on the fidelities and compared it to experimental data. Experimentally measured global fidelities have been found to follow closely the theoretical prediction as signal-to-background decreases. These results suggest the plausibility of employing room temperature memories to store photonic qubits at the single photon level and for future applications in long distance quantum communication schemes.

  16. Ultrabroadband polarization splitter based on three-core photonic crystal fiber with a modulation core.

    Science.gov (United States)

    Zhao, Tongtong; Lou, Shuqin; Wang, Xin; Zhou, Min; Lian, Zhenggang

    2016-08-10

    We design an ultrabroadband polarization splitter based on three-core photonic crystal fiber (PCF). A modulation core and two fluorine-doped cores are introduced to achieve an ultrawide bandwidth. The properties of three-core PCF are modeled by using the full-vector finite element method along with the full-vector beam propagation method. Numerical results demonstrate that an ultrabroadband splitter with 320 nm bandwidth with an extinction ratio as low as -20  dB can be achieved by using 52.8 mm long three-core PCF. This splitter also has high compatibility with standard single-mode fibers as the input and output ports due to low splicing loss of 0.02 dB. All the air holes in the proposed structure are circular holes and arranged in a triangular lattice that makes it easy to fabricate.

  17. Semi-analytical approach for guided mode resonance in high-index-contrast photonic crystal slab: TE polarization.

    Science.gov (United States)

    Yang, Yi; Peng, Chao; Li, Zhengbin

    2013-09-09

    In high-contrast (HC) photonic crystals (PC) slabs, the high-order coupling is so intense that it is indispensable for analyzing the guided mode resonance (GMR) effect. In this paper, a semi-analytical approach is proposed for analyzing GMR in HC PC slabs with TE-like polarization. The intense high-order coupling is included by using a convergent recursive procedure. The reflection of radiative waves at high-index-contrast interfaces is also considered by adopting a strict Green's function for multi-layer structures. Modal properties of interest like band structure, radiation constant, field profile are calculated, agreeing well with numerical finite-difference time-domain simulations. This analysis is promising for the design and optimization of various HC PC devices.

  18. Polarized photon scattering of 52Cr: Determining the parity of dipole states

    Science.gov (United States)

    Krishichayan, Fnu; Bhike, M.; Tornow, W.

    2014-03-01

    Observation of dipole states in nuclei are important because they provide information on various collective and single-particle nuclear excitation modes, e.g., pygmy dipole resonance (PDR) and spin-flip M1 resonance. The PDR has been extensively studied in the higher and medium mass region, whereas not much information is available around the low mass (A ~ 50) region where, apparently,the PDR starts to form. The present photoresponse of 52Cr has been investigated to test the evolution of the PDR in a nucleus with a small number of excess neutrons as well as to look for spin-flip M1 resonance excitation mode. Spin-1 states in 52Cr between 5.0 to 9.5 MeV excitation energy were excited by exploiting fully polarized photons using the (γ ,γ') nuclear resonance fluorescence technique, a completely model-independent electromagnetic method. The de-excitation γ-rays were detected using a HPGe array. The experiment was carried out using the HIGS facility at TUNL. Results of unambiguous parity determinations of dipole states in 52Cr will be presented.

  19. Generation of coordinates in PC for graphics of polar figure; Generacion de coordenadas en microcomputadora para graficado de figura polar

    Energy Technology Data Exchange (ETDEWEB)

    Macias B, L.R

    1991-10-15

    The preferential orientation, not alone it exists in metals, but also in minerals or in general in crystalline materials, notwithstanding in the metals it can be transformed by means of those processes of having mechanical worked such as laminate, wrapping, etc. To the preferable orientation of the crystals is also known as texture and since the properties of the crystalline materials lens depend on the orientation that present its glasses, it is important to know its texture. The difficulty for to represent and to describe the grade of preferential orientation in textured materials take to F. Weber to adapt the stereo graphic projection of a monocrystal to a poles figure. Later on, its appeared but methods to obtain the polar figure, among them, that of reflection of L. G. Schultz, but again a technique appears it specifies for its obtaining. In all the cases, the methodology is the following one: a) It is obtained by means of the diffraction process, the correspondent spectra in digitized form. b) it is applied process of having softened mathematician of the spectrum. c) there are determined the fi coordinates, beta and intensity for graph nts of the polar figure. d) Its are graph the points generated in c obtaining the polar figures. The objective of this work, is leaving of a softened spectra, to generate the coordinated fi, beta and corresponding intensity to proceed to their graph and generation of the polar figure. In this specific work, the methodology of Philips is used that consists in making a sweeping in hairspring form with the radiation to detect in these points the execution of the Bragg law. (Author)

  20. Generation and manipulation of entangled photons on silicon chips

    Directory of Open Access Journals (Sweden)

    Matsuda Nobuyuki

    2016-08-01

    Full Text Available Integrated quantum photonics is now seen as one of the promising approaches to realize scalable quantum information systems. With optical waveguides based on silicon photonics technologies, we can realize quantum optical circuits with a higher degree of integration than with silica waveguides. In addition, thanks to the large nonlinearity observed in silicon nanophotonic waveguides, we can implement active components such as entangled photon sources on a chip. In this paper, we report recent progress in integrated quantum photonic circuits based on silicon photonics. We review our work on correlated and entangled photon-pair sources on silicon chips, using nanoscale silicon waveguides and silicon photonic crystal waveguides. We also describe an on-chip quantum buffer realized using the slow-light effect in a silicon photonic crystal waveguide. As an approach to combine the merits of different waveguide platforms, a hybrid quantum circuit that integrates a silicon-based photon-pair source and a silica-based arrayed waveguide grating is also presented.