WorldWideScience

Sample records for polarized phase fluorometry

  1. Determination of soy proteins in food samples by dispersive solid-phase immunoextraction and dynamic long-wavelength fluorometry

    International Nuclear Information System (INIS)

    Molina-Delgado, María Ángeles; Aguilar-Caballos, María Paz; Gomez-Hens, Agustina

    2013-01-01

    We report on a method for the determination of soy proteins in food samples via dispersive solid-phase immunoextraction using gold-coated magnetic nanoparticles (NPs) as a support. Soy proteins were first extracted using anti-soy protein antibodies immobilized on the NPs, and then quantified by measuring the increase in fluorescence of the long-wavelength fluorophore cresyl violet in the presence of the anionic surfactant sodium dodecyl sulfate at neutral pH in a flow system. The method involves the use of two standard or sample aliquots. The fluorescence intensity of one aliquot is directly measured whereas that of the other aliquot is measured after immunoextraction. The difference between the peak heights of both aliquots serves as the analytical information that is directly proportional to the protein concentration. The limit of detection is 0.35 mg L −1 , the linear range is from 1 to 15 mg L −1 , and the relative standard deviation is < 5 %. Proteins such as bovine serum albumin and globulins do not interfere at the same concentration level. The method was applied to the analysis of soy-based beverages and gave recoveries in the range between 80.0 and 107.3 %. (author)

  2. Polarized differential-phase laser scanning microscope

    International Nuclear Information System (INIS)

    Chou Chien; Lyu, C.-W.; Peng, L.-C.

    2001-01-01

    A polarized differential-phase laser scanning microscope, which combines a polarized optical heterodyne Mach-Zehnder interferometer and a differential amplifier to scan the topographic image of a surface, is proposed. In the experiment the differential amplifier, which acts as a PM-AM converter, in the experiment, converting phase modulation (PM) into amplitude modulation (AM). Then a novel, to our knowledge, phase demodulator was proposed and implemented for the differential-phase laser scanning microscope. An optical grating (1800 lp/mm) was imaged. The lateral and the depth resolutions of the imaging system were 0.5 μm and 1 nm, respectively. The detection accuracy, which was limited by the reflectivity variation of the test surface, is discussed

  3. Frequency dependence of polarization phase difference

    International Nuclear Information System (INIS)

    Rao, K.S.; Rao, Y.S.; Wang, J.R.

    1993-09-01

    Polarimetric AIRSAR data of July 13, 1990 acquired over Mahatango watershed area was processed for the identification of corn fields an forested areas. Polarization Phase Difference (PPD) values were computed for the corn fields at P-, L- and C- bands and studied as a function of frequency. The results compare well with the model calculations at 24 deg. incidence angle where as the locations of corn fields were computed to be at 35 deg. incidence angle. The discrepancy is attributed to lack of accurate ground truth and the undulating topography of the corn fields. Another study reported here deals with the usefulness of Polarization Index (PI) for the study of vegetation. PI was found to be dependent on frequency for corn fields where as for forest trees no such dependence was noticed. PI HH,HV is more useful parameter compared to PI HH,VV even for the study of corn fields. (author). 19 refs, 7 figs

  4. Digital polarization holography advancing geometrical phase optics.

    Science.gov (United States)

    De Sio, Luciano; Roberts, David E; Liao, Zhi; Nersisyan, Sarik; Uskova, Olena; Wickboldt, Lloyd; Tabiryan, Nelson; Steeves, Diane M; Kimball, Brian R

    2016-08-08

    Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.

  5. RETRIEVAL OF AEROSOL PHASE FUNCTION AND POLARIZED PHASE FUNCTION FROM POLARIZATION OF SKYLIGHT FOR DIFFERENT OBSERVATION GEOMETRIES

    Directory of Open Access Journals (Sweden)

    L. Li

    2018-04-01

    Full Text Available The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun’s positions (i.e. solar zenith angles are equal to 45° and 65°. Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm.

  6. Retrieval of Aerosol Phase Function and Polarized Phase Function from Polarization of Skylight for Different Observation Geometries

    Science.gov (United States)

    Li, L.; Qie, L. L.; Xu, H.; Li, Z. Q.

    2018-04-01

    The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar) are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun's positions (i.e. solar zenith angles are equal to 45° and 65°). Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm).

  7. Laboratory algal bioassays using PAM fluorometry: effects of test conditions on the determination of herbicide and field sample toxicity.

    Science.gov (United States)

    Sjollema, Sascha B; van Beusekom, Sebastiaan A M; van der Geest, Harm G; Booij, Petra; de Zwart, Dick; Vethaak, A Dick; Admiraal, Wim

    2014-05-01

    Pulse Amplitude Modulation (PAM) fluorometry, based on chlorophyll a fluorescence, is a frequently used technique in algal bioassays to assess toxicity of single compounds or complex field samples. Several test conditions can influence the test results, and because a standardized test protocol is currently lacking, linking the results of different studies is difficult. Therefore, the aim of the present study was to gain insight into the effects of test conditions of laboratory algal bioassays using PAM fluorometry on the outcome of toxicity tests. To this purpose, we described the results from several pilot studies on test development in which information is provided on the effects of the main test factors during the pretest phase, the test preparation, the exposure period, and the actual measurement. The experiments were focused on individual herbicides and complex field samples and included the effects of culturing conditions, cell density, solvent concentration, exposure time, and the presence of actinic light. Several of these test conditions were found to influence the outcome of the toxicity test, and the presented information provides important background information for the interpretation of toxicity results and describes which test conditions should be taken into account when using an algal bioassay with PAM fluorometry. Finally, the application of PAM fluorometry in algal toxicity testing is discussed. © 2014 SETAC.

  8. Optical properties of polarization-dependent geometrical phase elements with partially polarized light

    International Nuclear Information System (INIS)

    Gorodetski, Y.; Biener, G.; Niv, A.; Kleiner, V.; Hasman, E.

    2005-01-01

    Full Text:The behavior of geometrical phase elements illuminated with partially polarized monochromatic beams is being theoretically as well as experimentally investigated. The element discussed in this paper is composed of wave plates with retardation and space-variant orientation angle. We found that a beam emerging from such an element comprises two polarization orders of right and left-handed circularly polarized states with conjugate geometrical phase modification. This phase equals twice the orientation angle of the space-variant wave plate comprising the element. Apart from the two polarization orders, the emerging beam coherence polarization matrix comprises a matrix termed as the vectorial interference matrix. This matrix contains the information concerning the correlation between the two orthogonal circularly polarized portions of the incident beam. In this paper we measure this correlation by a simple interference experiment. Furthermore, we found that the equivalent mutual intensity of the emerging beam is being modulated according to the geometrical phase induced by the element. Other interesting phenomena along propagation will be discussed theoretically and experimentally demonstrated. We demonstrate experimentally our analysis by using a spherical geometrical phase element, which is realized by use of space-variant sub wavelength grating and illuminated with a CO 2 laser radiation of 10.6μm wavelength

  9. Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry

    International Nuclear Information System (INIS)

    Schmitt-Jansen, Mechthild; Altenburger, Rolf

    2008-01-01

    In ecotoxicological studies involving community-level investigations, rapid and multiparametric fluorescence-based methods may provide substantial advantages over traditional methods used for structural and functional community analysis. Therefore, multiwavelength-excitation pulse-amplitude modulated (PAM) fluorometry was applied in this study to assess long-term changes in periphyton community structure, short-term effects on periphyton functioning (photosynthesis) and pollution induced community tolerance (PICT). For inter-calibration, periphyton structure was evaluated by chemotaxonomic analysis of accessory pigments and a four-wavelength-excitation PAM fluorometer. Short-term effects of herbicides were evaluated by fluorescence quenching analysis and 14 C-incorporation as a proxy of primary production. Subsequently, the method was applied to assess structural and functional changes in periphyton communities after isoproturon exposure for 14 and 26 days, respectively. Results showed good correlation of the PAM fluorescence-based measurements with traditional methods for biofilms in the initial colonisation phase for structural and functional parameters. However, for biofilms older than 9 weeks PAM fluorescence may underestimate biomass. Multiwavelength-excitation PAM fluorometry showed good correlation with marker pigment concentrations indicating that this method provides a reliable estimate of the community structure. PAM fluorometry was able to quantify changes of biomass and follow relative shifts in class composition of biofilms under exposure of isoproturon. Short-term tests based on the quantification of the inhibition of the effective quantum yield revealed a concentration-dependent increase of PICT. The observation of two succession phases of the biofilms after 14 and 26 days of growth, respectively, revealed that sensitivity of biofilms decreased with increasing age and biomass, respectively, but PICT remained a characteristic parameter of exposed

  10. Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt-Jansen, Mechthild [UFZ-Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig (Germany)], E-mail: Mechthild.Schmitt@ufz.de; Altenburger, Rolf [UFZ-Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig (Germany)

    2008-01-20

    In ecotoxicological studies involving community-level investigations, rapid and multiparametric fluorescence-based methods may provide substantial advantages over traditional methods used for structural and functional community analysis. Therefore, multiwavelength-excitation pulse-amplitude modulated (PAM) fluorometry was applied in this study to assess long-term changes in periphyton community structure, short-term effects on periphyton functioning (photosynthesis) and pollution induced community tolerance (PICT). For inter-calibration, periphyton structure was evaluated by chemotaxonomic analysis of accessory pigments and a four-wavelength-excitation PAM fluorometer. Short-term effects of herbicides were evaluated by fluorescence quenching analysis and {sup 14}C-incorporation as a proxy of primary production. Subsequently, the method was applied to assess structural and functional changes in periphyton communities after isoproturon exposure for 14 and 26 days, respectively. Results showed good correlation of the PAM fluorescence-based measurements with traditional methods for biofilms in the initial colonisation phase for structural and functional parameters. However, for biofilms older than 9 weeks PAM fluorescence may underestimate biomass. Multiwavelength-excitation PAM fluorometry showed good correlation with marker pigment concentrations indicating that this method provides a reliable estimate of the community structure. PAM fluorometry was able to quantify changes of biomass and follow relative shifts in class composition of biofilms under exposure of isoproturon. Short-term tests based on the quantification of the inhibition of the effective quantum yield revealed a concentration-dependent increase of PICT. The observation of two succession phases of the biofilms after 14 and 26 days of growth, respectively, revealed that sensitivity of biofilms decreased with increasing age and biomass, respectively, but PICT remained a characteristic parameter of exposed

  11. Macroscopic polarization in crystalline dielectrics: the geometric phase approach

    International Nuclear Information System (INIS)

    Resta, R.

    1994-01-01

    The macroscopic electric polarization of a crystal is often defined as the dipole of a unit cell. In fact, such a dipole moment is ill defined, and the above definition is incorrect. Looking more closely, the quantity generally measured is differential polarization, defined with respect to a ''reference state'' of the same material. Such differential polarizations include either derivatives of the polarization (dielectric permittivity, Born effective charges, piezoelectricity, pyroelectricity) or finite differences (ferroelectricity). On the theoretical side, the differential concept is basic as well. Owing to continuity, a polarization difference is equivalent to a macroscopic current, which is directly accessible to the theory as a bulk property. Polarization is a quantum phenomenon and cannot be treated with a classical model, particularly whenever delocalized valence electrons are present in the dielectric. In a quantum picture, the current is basically a property of the phase of the wave functions, as opposed to the charge, which is a property of their modulus. An elegant and complete theory has recently been developed by King-Smith and Vanderbilt, in which the polarization difference between any two crystal states--in a null electric field--takes the form of a geometric quantum phase. This gives a comprehensive account of this theory, which is relevant for dealing with transverse-optic phonons, piezoelectricity, and ferroelectricity. Its relation to the established concepts of linear-response theory is also discussed. Within the geometric phase approach, the relevant polarization difference occurs as the circuit integral of a Berry connection (or ''vector potential''), while the corresponding curvature (or ''magnetic field'') provides the macroscopic linear response

  12. Polarization selective phase-change nanomodulator.

    Science.gov (United States)

    Appavoo, Kannatassen; Haglund, Richard F

    2014-10-27

    Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume of only 0.002 µm(3) by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. This architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements.

  13. Polarization states encoded by phase modulation for high bit rate quantum key distribution

    International Nuclear Information System (INIS)

    Liu Xiaobao; Tang Zhilie; Liao Changjun; Lu Yiqun; Zhao Feng; Liu Songhao

    2006-01-01

    We present implementation of quantum cryptography with polarization code by wave-guide type phase modulator. At four different low input voltages of the phase modulator, coder encodes pulses into four different polarization states, 45 o , 135 o linearly polarized or right, left circle polarized, while the decoder serves as the complementary polarizers

  14. An elliptically-polarizing undulator with phase adjustable energy and polarization

    International Nuclear Information System (INIS)

    Lidia, S.

    1993-08-01

    The authors present a planar helical undulator designed to produce elliptically polarized light. Helical magnetic fields may be produced by a variety of undulators with four parallel cassettes of magnets. In their design, all cassettes are mounted in two planes on slides so that they may be moved parallel to the electron beam. This allows the undulator to produce x-rays of left- or right-handed elliptical or circular polarization as well as horizontal or vertical linear polarization. In model calculations, they have found that by sliding the top pair of rows with respect to the bottom pair, or the left pair with respect to the right pair, they retain the polarization setting but change the magnetic field strength, and hence the x-ray energy. This allows them to select both energy and polarization by independent phase adjustments alone, without changing the gap between the rows. Such a design may be simpler to construct than an adjustable gap machine. The authors present calculations that model its operation and its effects on an electron beam

  15. Investigation of Polarization Phase Difference Related to Forest Fields Characterizations

    Science.gov (United States)

    Majidi, M.; Maghsoudi, Y.

    2013-09-01

    The information content of Synthetic Aperture Radar (SAR) data significantly included in the radiometric polarization channels, hence polarimetric SAR data should be analyzed in relation with target structure. The importance of the phase difference between two co-polarized scattered signals due to the possible association between the biophysical parameters and the measured Polarization Phase Difference (PPD) statistics of the backscattered signal recorded components has been recognized in geophysical remote sensing. This paper examines two Radarsat-2 images statistics of the phase difference to describe the feasibility of relationship with the physical properties of scattering targets and tries to understand relevance of PPD statistics with various types of forest fields. As well as variation of incidence angle due to affecting on PPD statistics is investigated. The experimental forest pieces that are used in this research are characterized white pine (Pinus strobus L.), red pine (Pinus resinosa Ait.), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench Voss), black spruce (Picea mariana (Mill) B.S.P.), poplar (Populus L.), red oak (Quercus rubra L.) , aspen and ground vegetation. The experimental results show that despite of biophysical parameters have a wide diversity, PPD statistics are almost the same. Forest fields distributions as distributed targets have close to zero means regardless of the incidence angle. Also, The PPD distribution are function of both target and sensor parameters, but for more appropriate examination related to PPD statistics the observations should made in the leaf-off season or in bands with lower frequencies.

  16. INVESTIGATION OF POLARIZATION PHASE DIFFERENCE RELATED TO FOREST FIELDS CHARACTERIZATIONS

    Directory of Open Access Journals (Sweden)

    M. Majidi

    2013-09-01

    Full Text Available The information content of Synthetic Aperture Radar (SAR data significantly included in the radiometric polarization channels, hence polarimetric SAR data should be analyzed in relation with target structure. The importance of the phase difference between two co-polarized scattered signals due to the possible association between the biophysical parameters and the measured Polarization Phase Difference (PPD statistics of the backscattered signal recorded components has been recognized in geophysical remote sensing. This paper examines two Radarsat-2 images statistics of the phase difference to describe the feasibility of relationship with the physical properties of scattering targets and tries to understand relevance of PPD statistics with various types of forest fields. As well as variation of incidence angle due to affecting on PPD statistics is investigated. The experimental forest pieces that are used in this research are characterized white pine (Pinus strobus L., red pine (Pinus resinosa Ait., jack pine (Pinus banksiana Lamb., white spruce (Picea glauca (Moench Voss, black spruce (Picea mariana (Mill B.S.P., poplar (Populus L., red oak (Quercus rubra L. , aspen and ground vegetation. The experimental results show that despite of biophysical parameters have a wide diversity, PPD statistics are almost the same. Forest fields distributions as distributed targets have close to zero means regardless of the incidence angle. Also, The PPD distribution are function of both target and sensor parameters, but for more appropriate examination related to PPD statistics the observations should made in the leaf-off season or in bands with lower frequencies.

  17. Uncertainty estimation of uranium determination in urine by fluorometry

    International Nuclear Information System (INIS)

    Shakhashiro, A.; Al-Khateeb, S.

    2003-11-01

    In this study an applicable mathematical model is proposed for the estimation of uncertainty in uranium determination by fluorometry in urine sample. The study based on EURACHEM guide for uncertainty estimation. This model was tested on a sample containing 0.02 μg/ml uranium, where calculated uncertainty was 0.007 μg/ml. The sources of uncertainty were shown on fish-bone plane as the following: In addition, the weight of each uncertainty parameter was shown in a histogram: Finally, it was found that the estimated uncertainty by the proposed model was 3 to 4 time more that the usually reported standard deviation. (author)

  18. Dual-Polarized Planar Phased Array Analysis for Meteorological Applications

    Directory of Open Access Journals (Sweden)

    Chen Pang

    2015-01-01

    Full Text Available This paper presents a theoretical analysis for the accuracy requirements of the planar polarimetric phased array radar (PPPAR in meteorological applications. Among many factors that contribute to the polarimetric biases, four factors are considered and analyzed in this study, namely, the polarization distortion due to the intrinsic limitation of a dual-polarized antenna element, the antenna pattern measurement error, the entire array patterns, and the imperfect horizontal and vertical channels. Two operation modes, the alternately transmitting and simultaneously receiving (ATSR mode and the simultaneously transmitting and simultaneously receiving (STSR mode, are discussed. For each mode, the polarimetric biases are formulated. As the STSR mode with orthogonal waveforms is similar to the ATSR mode, the analysis is mainly focused on the ATSR mode and the impacts of the bias sources on the measurement of polarimetric variables are investigated through Monte Carlo simulations. Some insights of the accuracy requirements are obtained and summarized.

  19. Edge states and phase diagram for graphene under polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Li, Fuxiang [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-07-01

    In this work, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, the number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.

  20. Phase equilibrium in a polarized saturated 3He-4He mixture

    International Nuclear Information System (INIS)

    Rodrigues, A.; Vermeulen, G.

    1997-01-01

    We present experimental results on the phase equilibrium of a saturated 3 He- 4 He mixture, which has been cooled to a temperature of 10-15 mK and polarized in a 4 He circulating dilution refrigerator to a stationary polarization of 15 %, 7 times higher than the equilibrium polarization in the external field of 7 T. The pressure dependence of the polarization enhancement in the refrigerator shows that the molar susceptibilities of the concentrated and dilute phase of a saturated 3 He- 4 He mixture are equal at p = 2.60 ± 0.04 bar. This result affects the Fermi liquid parameters of the dilute phase. The osmotic pressure in the dilute phase has been measured as a function of the polarization of the coexisting concentrated phase up to 15 %. We find that the osmotic pressure at low polarization ( < 7 % ) agrees well with thermodynamics using the new Fermi liquid parameters of the dilute phase

  1. Spatiotemporal polarization gradients in phase-bearing light

    International Nuclear Information System (INIS)

    Lembessis, V. E.; Babiker, M.

    2010-01-01

    It is shown how the interference of two circularly polarized laser beams endowed with orbital angular momentum can give rise to spatial and temporal polarization gradients, displaying axial as well as angular symmetry properties. Illustrations are given with reference to circularly polarized Laguerre-Gaussian beams as typical light beams carrying orbital angular momentum.

  2. Investigating ion channel conformational changes using voltage clamp fluorometry.

    Science.gov (United States)

    Talwar, Sahil; Lynch, Joseph W

    2015-11-01

    Ion channels are membrane proteins whose functions are governed by conformational changes. The widespread distribution of ion channels, coupled with their involvement in most physiological and pathological processes and their importance as therapeutic targets, renders the elucidation of these conformational mechanisms highly compelling from a drug discovery perspective. Thanks to recent advances in structural biology techniques, we now have high-resolution static molecular structures for members of the major ion channel families. However, major questions remain to be resolved about the conformational states that ion channels adopt during activation, drug modulation and desensitization. Patch-clamp electrophysiology has long been used to define ion channel conformational states based on functional criteria. It achieves this by monitoring conformational changes at the channel gate and cannot detect conformational changes occurring in regions distant from the gate. Voltage clamp fluorometry involves labelling cysteines introduced into domains of interest with environmentally sensitive fluorophores and inferring structural rearrangements from voltage or ligand-induced fluorescence changes. Ion channel currents are monitored simultaneously to verify the conformational status. By defining real time conformational changes in domains distant from the gate, this technique provides unexpected new insights into ion channel structure and function. This review aims to summarise the methodology and highlight recent innovative applications of this powerful technique. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Characterization of polarization-independent phase modulation method for practical plug and play quantum cryptography

    International Nuclear Information System (INIS)

    Kwon, Osung; Lee, Min-Soo; Woo, Min Ki; Park, Byung Kwon; Kim, Il Young; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2015-01-01

    We characterized a polarization-independent phase modulation method, called double phase modulation, for a practical plug and play quantum key distribution (QKD) system. Following investigation of theoretical backgrounds, we applied the method to the practical QKD system and characterized the performance through comparing single phase modulation (SPM) and double phase modulation. Consequently, we obtained repeatable and accurate phase modulation confirmed by high visibility single photon interference even for input signals with arbitrary polarization. Further, the results show that only 80% of the bias voltage required in the case of single phase modulation is needed to obtain the target amount of phase modulation. (paper)

  4. Synergistic promotion of polar phase crystallization of PVDF by ionic liquid with PEG segment

    Science.gov (United States)

    Xu, Pei; Fu, Weijia; Cui, Zhaopei; Ding, Yunsheng

    2018-06-01

    To investigate the effect of imidazolium ionic liquid with poly(ethylene glycol) segment (IL) on the polar phase crystallization behavior of poly(vinylidene fluoride) (PVDF), a series of PVDF/IL composites were prepared using solution-cast method. The crystallization peak temperature of PVDF composites and the growth speed of samples decrease with increasing of IL. The >CF2 groups in amorphous region are retained and >CF2 groups in crystalline region are liberated by the PEG long soft segments of IL. The intensity of peaks represented as α phase reduces, moreover polar phase content increases with increasing of IL. The interaction between the >CF2 and the imidazolium cation can induce the polar phase, and the interaction between the >CF2 and PEG soft segment can strengthen polar crystalline induction. PVDF/12IL composite can form big γ spherulite circled by β phase.

  5. Intrinsically stable phase-modulated polarization encoding system for quantum key distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaobao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Liao Changjun [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)], E-mail: chliao@scnu.edu.cn; Mi Jinglong; Wang Jindong; Liu Songhao [Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2008-12-22

    We demonstrate experimentally an intrinsically stable polarization coding and decoding system composed of optical-fiber Sagnac interferometers with integrated phase modulators for quantum key distribution. An interference visibility of 98.35% can be kept longtime during the experiment without any efforts of active compensation for coding all four desired polarization states.

  6. Concomitant use of polarization and positive phase contrast microscopy for the study of microbial cells

    Czech Academy of Sciences Publication Activity Database

    Žižka, Zdeněk; Gabriel, Jiří

    2015-01-01

    Roč. 60, č. 6 (2015), s. 545-550 ISSN 0015-5632 Institutional support: RVO:61388971 Keywords : polarization microscopy * microbial cells * positive phase contrast Subject RIV: EE - Microbiology, Virology Impact factor: 1.335, year: 2015

  7. Polarization Imaging Apparatus for Cell and Tissue Imaging and Diagnostics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in a novel visible-near infrared Stokes polarization imaging technology based on high performance fast...

  8. In-line phase retarder and polarimeter for conversion of linear to circular polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Smith, N.V.; Denlinger, J.D. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    An in-line polarimeter including phase retarder and linear polarizer was designed and commissioned on undulator beamline 7.0 for the purpose of converting linear to circular polarization for experiments downstream. In commissioning studies, Mo/Si multilayers at 95 eV were used both as the upstream, freestanding phase retarder and the downstream linear polarized. The polarization properties of the phase retarder were characterized by direct polarimetry and by collecting MCD spectra in photoemission from Gd and other magnetic surfaces. The resonant birefringence of transmission multilayers results from differing distributions of s- and p-component wave fields in the multilayer when operating near a structural (Bragg) interference condition. The resulting phase retardation is especially strong when the interference is at or near the Brewster angle, which is roughly 45{degrees} in the EUV and soft x-ray ranges.

  9. Dual-polarization interference microscopy for advanced quantification of phase associated with the image field.

    Science.gov (United States)

    Bouchal, Petr; Chmelík, Radim; Bouchal, Zdeněk

    2018-02-01

    A new concept of dual-polarization spatial light interference microscopy (DPSLIM) is proposed and demonstrated experimentally. The method works with two orthogonally polarized modes in which signal and reference waves are combined to realize the polarization-sensitive phase-shifting, thus allowing advanced reconstruction of the phase associated with the image field. The image phase is reconstructed directly from four polarization encoded interference records by a single step processing. This is a progress compared with common methods, in which the phase of the image field is reconstructed using the optical path difference and the amplitudes of interfering waves, which are calculated in multiple-step processing of the records. The DPSLIM is implemented in a common-path configuration using a spatial light modulator, which is connected to a commercial microscope Nikon E200. The optical performance of the method is demonstrated in experiments using both polystyrene microspheres and live LW13K2 cells.

  10. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.; Schwingenschlö gl, Udo

    2013-01-01

    encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address

  11. Enhancement of polar crystalline phase formation in transparent PVDF-CaF{sub 2} composite films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Goo; Ha, Jong-Wook, E-mail: jongwook@krict.re.kr; Sohn, Eun-Ho; Park, In Jun; Lee, Soo-Bok

    2016-12-30

    Highlights: • The crystalline phase in transparent PVDF-CaF{sub 2} composite films was investigated. • CaF{sub 2} promoted the formation of polar crystalline phases in PVDF matrix. • Ordered γ-phase was obtained by thermal treatment of as-cast films at the vicinity of its melting temperature. - Abstract: We consider the influence of calcium fluoride (CaF{sub 2}) nanoparticles on the crystalline phase formation of poly(vinylidene fluoride) (PVDF) for the first time. The transparent PVDF-CaF{sub 2} composite films were prepared by casting on PET substrates using N,N-dimethylacetamide (DMAc) as a solvent. It was found that CaF{sub 2} promoted the formation of polar crystalline phase of PVDF in composites, whereas nonpolar α-phase was dominant in the neat PVDF film prepared at the same condition. The portion of polar crystalline phase increased in proportional to the weight fraction of CaF{sub 2} in the composite films up to 10 wt%. Further addition of CaF{sub 2} suppressed completely the α-phase formation. Polar crystalline phase observed in as-cast composite films was a mixture of β- and γ-polymorph structures. It was also shown that much ordered γ-phase could be obtained through thermal treatment of as-cast PVDF-CaF{sub 2} composite film at the temperatures above the melting temperature of the composite films, but below that of γ-phase.

  12. Observation of nonadditive mixed-state phases with polarized neutrons.

    Science.gov (United States)

    Klepp, Jürgen; Sponar, Stephan; Filipp, Stefan; Lettner, Matthias; Badurek, Gerald; Hasegawa, Yuji

    2008-10-10

    In a neutron polarimetry experiment the mixed-state relative phases between spin eigenstates are determined from the maxima and minima of measured intensity oscillations. We consider evolutions leading to purely geometric, purely dynamical, and combined phases. It is experimentally demonstrated that the sum of the individually determined geometric and dynamical phases is not equal to the associated total phase which is obtained from a single measurement, unless the system is in a pure state.

  13. Development of a sensitive chemiluminometric assay for the detection of beta-galactosidase in permeabilized coliform bacteria and comparison with fluorometry and colorimetry.

    Science.gov (United States)

    Van Poucke, S O; Nelis, H J

    1995-01-01

    We developed a chemiluminometric assay of beta-galactosidase in coliform bacteria, using a phenylgalactose-substituted 1,2-dioxetane derivative as a substrate. Permeabilization of cells is required to ensure the efficient cellular uptake of this compound. By this method, one coliform seeded in 100 ml of sterile water can be detected after a 6- to 9-h propagation phase followed by a 45-min enzyme assay in the presence of polymyxin B. Compared with fluorometry and colorimetry, chemiluminometry afforded 4- and 1,000-fold increases in sensitivity and 1- and 6-h increases in the speed of detection, respectively. PMID:8534120

  14. Nonequilibrium phase transitions, fluctuations and correlations in an active contractile polar fluid.

    Science.gov (United States)

    Gowrishankar, Kripa; Rao, Madan

    2016-02-21

    We study the patterning, fluctuations and correlations of an active polar fluid consisting of contractile polar filaments on a two-dimensional substrate, using a hydrodynamic description. The steady states generically consist of arrays of inward pointing asters and show a continuous transition from a moving lamellar phase, a moving aster street, to a stationary aster lattice with no net polar order. We next study the effect of spatio-temporal athermal noise, parametrized by an active temperature TA, on the stability of the ordered phases. In contrast to its equilibrium counterpart, we find that the active crystal shows true long range order at low TA. On increasing TA, the asters dynamically remodel, concomitantly we find novel phase transitions characterized by bond-orientational and polar order upon "heating".

  15. Anisotropy of phase transformations in crystallization of polar compounds

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, A M; Belashchenko, D K; Derikova, S A [Krasnoyarskij Inst. Tsvetnykh Metallov (USSR)

    1977-03-01

    Migration of molten inclusions in polar compounds of the type of A/sup 3/B/sup 5/ in the range of 750-950 deg C is characterized by clearly defined anisotropy. The values of the melting-crystallization rate constant for n-type InAs and GaAs conductivity are estimated. The anisotropy of the properties leaves its imprint not only on the drift velocity, but also on the form of the displaced inclusions.

  16. TESTING MODELS FOR THE SHALLOW DECAY PHASE OF GAMMA-RAY BURST AFTERGLOWS WITH POLARIZATION OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Mi-Xiang; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, Xue-Feng, E-mail: dzg@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-08-01

    The X-ray afterglows of almost one-half of gamma-ray bursts have been discovered by the Swift satellite to have a shallow decay phase of which the origin remains mysterious. Two main models have been proposed to explain this phase: relativistic wind bubbles (RWBs) and structured ejecta, which could originate from millisecond magnetars and rapidly rotating black holes, respectively. Based on these models, we investigate polarization evolution in the shallow decay phase of X-ray and optical afterglows. We find that in the RWB model, a significant bump of the polarization degree evolution curve appears during the shallow decay phase of both optical and X-ray afterglows, while the polarization position angle abruptly changes its direction by 90°. In the structured ejecta model, however, the polarization degree does not evolve significantly during the shallow decay phase of afterglows whether the magnetic field configuration in the ejecta is random or globally large-scale. Therefore, we conclude that these two models for the shallow decay phase and relevant central engines would be testable with future polarization observations.

  17. Phases of a polar spin-1 Bose gas in a magnetic field

    International Nuclear Information System (INIS)

    Kis-Szabo, Krisztian; Szepfalusy, Peter; Szirmai, Gergely

    2007-01-01

    The two Bose-Einstein condensed phases of a polar spin-1 gas at nonzero magnetizations and temperatures are investigated. The Hugenholtz-Pines theorem is generalized to this system. Crossover to a quantum phase transition is also studied. Results are discussed in a mean field approximation

  18. Resonance Polarization and Phase-Mismatched CARS of Pheophytin b Excited in the Qy Band

    NARCIS (Netherlands)

    de Boeij, W.P.; Lucassen, G.W.; Lucassen, Gerald; Otto, Cornelis; Greve, Jan

    1993-01-01

    Resonance polarization and phase-mismatched coherent anti-Stokes Raman scattering (CARS) measurements were performed on pheophytin b dissolved in acetone excited in the Qy absorption band, where strong broad fluorescence makes spontaneous Raman spectroscopy impossible. The phase-mismatching

  19. Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light.

    Science.gov (United States)

    Ishida, Naoki; Nakamura, Takaaki; Tanaka, Touta; Mishima, Shota; Kano, Hiroki; Kuroiwa, Ryota; Sekiguchi, Yuhei; Kosaka, Hideo

    2018-05-15

    We demonstrate universal non-adiabatic non-abelian holonomic single quantum gates over a geometric electron spin with phase-modulated polarized light and 93% average fidelity. This allows purely geometric rotation around an arbitrary axis by any angle defined by light polarization and phase using a degenerate three-level Λ-type system in a negatively charged nitrogen-vacancy center in diamond. Since the control light is completely resonant to the ancillary excited state, the demonstrated holonomic gate not only is fast with low power, but also is precise without the dynamical phase being subject to control error and environmental noise. It thus allows pulse shaping for further fidelity.

  20. Fiber-based coherent polarization beam combining with cascaded phase-locking and polarization-transforming controls

    Science.gov (United States)

    Yang, Yan; Geng, Chao; Li, Feng; Huang, Guan; Li, Xinyang

    2018-05-01

    In this paper, the fiber-based coherent polarization beam combining (CPBC) with cascaded phase-locking (PL) and polarization-transforming (PT) controls was proposed to combine imbalanced input beams where the number of the input beams is not binary, in which the PL control was performed using the piezoelectric-ring fiber-optic phase compensator, and the PT control was realized by the dynamic polarization controller, simultaneously. The principle of the proposed CPBC was introduced. The performance of the proposed CPBC was analyzed in comparison with the CPBC based on PL control and the CPBC based on PT control. The basic experiment of CPBC of three laser beams was carried out to validate the feasibility of the proposed CPBC, where cascaded controls of PL and PT were implemented based on stochastic parallel gradient descent algorithm. Simulation and experimental results show that the proposed CPBC incorporates the advantages of the two previous CPBC schemes and performs well in the closed loop. Moreover, the expansibility and the application of the proposed CPBC were validated by scaling the CPBC to combine seven laser beams. We believe that the proposed fiber-based CPBC with cascaded PL and PT controls has great potential in free space optical communications employing the multi-aperture receiver with asymmetric structure.

  1. Topology optimization of piezo modal transducers with null-polarity phases

    DEFF Research Database (Denmark)

    Donoso, A.; Sigmund, O.

    2016-01-01

    Piezo modal transducers in 2d can be designed theoretically by tailoring polarity of the surface electrodes. However, it is also necessary to include null-polarity phases of known width separating areas of opposite polarity in the manufacturing process in order to avoid short-circuiting. Otherwise...... the performance of such devices could be spoiled. In this work, we propose an appropriate topology optimization interpolation function for the electrode profile such that the effect of this new phase (hereafter gap-phase) is included in the formulation of the design problem. The approach is density-based, where...... the interface is controlled by including the gradient norm in the electrode profile interpolation. Through a detailed case study in 1d, conclusions on how to control the width of this gap-phase are extracted, and subsequently extended to the 2d case....

  2. Bandwidth broadening of a graphene-based circular polarization converter by phase compensation.

    Science.gov (United States)

    Gao, Xi; Yang, Wanli; Cao, Weiping; Chen, Ming; Jiang, Yannan; Yu, Xinhua; Li, Haiou

    2017-10-02

    We present a broadband tunable circular polarization converter composed of a single graphene sheet patterned with butterfly-shaped holes, a dielectric spacer, and a 7-layer graphene ground plane. It can convert a linearly polarized wave into a circularly polarized wave in reflection mode. The polarization converter can be dynamically tuned by varying the Fermi energy of the single graphene sheet. Furthermore, the 7-layer graphene acting as a ground plane can modulate the phase of its reflected wave by controlling the Femi energy, which provides constructive interference condition at the surface of the single graphene sheet in a broad bandwidth and therefore significantly broadens the tunable bandwidth of the proposed polarization converter.

  3. Berry phase and shot noise for spin-polarized and entangled electrons

    International Nuclear Information System (INIS)

    Wang Pei; Tang Weihua; Lu Dinghui; Jiang Lixia; Zhao Xuean

    2007-01-01

    Shot noise for entangled and spin-polarized states in a four-probe geometric setup has been studied by adding two rotating magnetic fields in an incoming channel. Our results show that the noise power oscillates as the magnetic fields vary. The singlet, entangled triplet and polarized states can be distinguished by adjusting the magnetic fields. The Berry phase can be derived by measuring the shot noise power

  4. A Small Ku-Band Polarization Tracking Active Phased Array for Mobile Satellite Communications

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2013-01-01

    Full Text Available A compact polarization tracking active phased array for Ku-band mobile satellite signal reception is presented. In contrast with conventional mechanically tracking antennas, the approach presented here meets the requirements of beam tracking and polarization tracking simultaneously without any servo components. The two-layer stacked square patch fed by two probes is used as antenna element. The impedance bandwidth of 16% for the element covers the operating frequency range from 12.25 GHz to 12.75 GHz. In the presence of mutual coupling, the dimensional parameters for each element of the small 7 × 7 array are optimized during beam scanning and polarization tracking. The compact polarization tracking modules based on the low-temperature cofired ceramic (LTCC system-in-package (SiP technology are proposed. A small active phased array prototype with the size of 120 mm (length × 120 mm (width × 55 mm (height is developed. The measured polarization tracking patterns of the prototype are given. The polarization tracking beam can be steered in the elevation up to 50°. The gain of no less than 16.0 dBi and the aperture efficiency of more than 50% are obtained. The measured and simulated polarization tracking patterns agreed well.

  5. Bragg transmission phase plates for the production of circularly polarized x-rays

    International Nuclear Information System (INIS)

    Lang, J.C.; Srajer, G.

    1994-01-01

    A thin-crystal Si (400) Bragg transmission x-ray phase plate has been constructed for the production of 5 to 12 keV circularly polarized x-rays. Using multiple beam diffraction from a GaAs crystal, a direct measurement of the degree of circular polarization as a function of off-Bragg position was made. These measurements indicated nearly complete circular polarization (|P c | ≥ 0.95) and full helicity reversal on opposite sides of the rocking curve

  6. Experimental asymmetric phase-covariant quantum cloning of polarization qubits

    Czech Academy of Sciences Publication Activity Database

    Soubusta, Jan; Bartůšková, L.; Černoch, Antonín; Dušek, M.; Fiurášek, J.

    2008-01-01

    Roč. 78, č. 5 (2008), 052323/1-052323/7 ISSN 1050-2947 R&D Projects: GA MŠk(CZ) 1M06002 Grant - others:GAMŠk(CZ) LC06007 Program:LC Institutional research plan: CEZ:AV0Z10100522 Keywords : phase-covariant cloning * quantum information processing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.908, year: 2008

  7. Effect of a spiral phase on a vector optical field with hybrid polarization states

    International Nuclear Information System (INIS)

    Chen, Rui-Pin; Zhao, Tingyu; Zhong, Li-Xin; Chew, Khian-Hooi; Gu, Bing; Zhou, Guoquan

    2015-01-01

    The propagation dynamics of a vector field with inhomogeneous states of polarization (SoP) imposed a vortex is studied using the angular spectrum method. The evolution of SoP in the cross section of the field during propagation is analyzed numerically by the Stokes polarization parameters. The results indicate that SoP in the field cross section rotate along the propagation axis during propagation due to the existence of a vortex. In addition, the interaction between the phase singularity and the polarization singularity leads to the creation or annihilation of the optical field in the central region. In particular, the distributions of the transverse energy flow and both spin and orbital optical angular momentum fluxes in the cross section of the vortex vector optical field depend sensitively on both the vortex and polarization topology charges. (paper)

  8. Stability of superfluid phases in the 2D spin-polarized attractive Hubbard model

    Science.gov (United States)

    Kujawa-Cichy, A.; Micnas, R.

    2011-08-01

    We study the evolution from the weak coupling (BCS-like limit) to the strong coupling limit of tightly bound local pairs (LPs) with increasing attraction, in the presence of the Zeeman magnetic field (h) for d=2, within the spin-polarized attractive Hubbard model. The broken symmetry Hartree approximation as well as the strong coupling expansion are used. We also apply the Kosterlitz-Thouless (KT) scenario to determine the phase coherence temperatures. For spin-independent hopping integrals (t↑=t↓), we find no stable homogeneous polarized superfluid (SCM) state in the ground state for the strong attraction and obtain that for a two-component Fermi system on a 2D lattice with population imbalance, phase separation (PS) is favoured for a fixed particle concentration, even on the LP (BEC) side. We also examine the influence of spin-dependent hopping integrals (mass imbalance) on the stability of the SCM phase. We find a topological quantum phase transition (Lifshitz type) from the unpolarized superfluid phase (SC0) to SCM and tricritical points in the h-|U| and t↑/t↓-|U| ground-state phase diagrams. We also construct the finite temperature phase diagrams for both t↑=t↓ and t↑≠t↓ and analyze the possibility of occurrence of a spin-polarized KT superfluid.

  9. Spin polarized and density modulated phases in symmetric electron-electron and electron-hole bilayers.

    Science.gov (United States)

    Kumar, Krishan; Moudgil, R K

    2012-10-17

    We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.

  10. Assessment of variable fluorescence fluorometry as an approach for rapidly detecting living photoautotrophs in ballast water

    Science.gov (United States)

    First, Matthew R.; Robbins-Wamsley, Stephanie H.; Riley, Scott C.; Drake, Lisa A.

    2018-03-01

    Variable fluorescence fluorometry, an analytical approach that estimates the fluorescence yield of chlorophyll a (F0, a proximal measure of algal concentration) and photochemical yield (FV/FM, an indicator of the physiological status of algae) was evaluated as a means to rapidly assess photoautotrophs. Specifically, it was used to gauge the efficacy of ballast water treatment designed to reduce the transport and delivery of potentially invasive organisms. A phytoflagellate, Tetraselmis spp. (10-12 μm) and mixed communities of ambient protists were examined in both laboratory experiments and large-scale field trials simulating 5-d hold times in mock ballast tanks. In laboratory incubations, ambient organisms held in the dark exhibited declining F0 and FV/FM measurements relative to organisms held under lighted conditions. In field experiments, increases and decreases in F0 and FV/FM over the tank hold time corresponded to those of microscope counts of organisms in two of three trials. In the third trial, concentrations of organisms ≥ 10 and protists) increased while F0 and FV/FM decreased. Rapid and sensitive, variable fluorescence fluorometry is appropriate for detecting changes in organism concentrations and physiological status in samples dominated by microalgae. Changes in the heterotrophic community, which may become more prevalent in light-limited ballast tanks, would not be detected via variable fluorescence fluorometry, however.

  11. Photoluminescence Polarization Anisotropy in a Single Heterostructured III-V Nanowire with Mixed Crystal Phases

    International Nuclear Information System (INIS)

    Moses, A. F.; Hoang, T. B.; Ahtapodov, L.; Dheeraj, D. L.; Fimland, B. O.; Weman, H.; Helvoort, A. T. J. van

    2011-01-01

    Low temperature (10 K) micro-photoluminescence (μ-PL) of single GaAs/AlGaAs core-shell nanowires with single GaAsSb inserts were measured. The PL emission from the zinc blende GaAsSb insert is strongly polarized along the nanowire axis while the PL emission from the wurtzite GaAs nanowire is perpendiculary polarized to the nanowire axis. The result indicates that the crystal phase, through the optical selection rules, has significant effect on the polarization of the PL from NWs besides the dielectric mismatch. The analysis of the PL results based on the electronic structure of these nanowires supports the correlation between the crystal phase and the PL emission.

  12. Polarity-dependent reversible resistance switching in Ge-Sb-Te phase-change thin films

    NARCIS (Netherlands)

    Pandian, Ramanathaswamy; Kooi, Bart J.; Palasantzas, George; De Hosson, Jeff T. M.; Pauza, Andrew

    2007-01-01

    In this paper, we demonstrate reversible resistance switching in a capacitorlike cell using a Ge-Sb-Te film that does not rely on amorphous-crystalline phase change. The polarity of the applied electric field switches the cell resistance between lower- and higher-resistance states, as was observed

  13. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    International Nuclear Information System (INIS)

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-01-01

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F 0 /F v . Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F ′ q /F ′ m , EC 50 = 303 ± 64 μg U L −1 after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC 50 = 142 ± 98 μg U L −1 after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from

  14. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    Energy Technology Data Exchange (ETDEWEB)

    Herlory, Olivier, E-mail: olivier.herlory@gmail.com [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Bonzom, Jean-Marc, E-mail: jean-marc.bonzom@irsn.fr [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Gilbin, Rodolphe, E-mail: rodolphe.gilbin@irsn.fr [IRSN-Laboratoire de Biogéochimie, Biodisponibilité et Transferts des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France)

    2013-09-15

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F{sub 0}/F{sub v}. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F{sup ′}{sub q}/F{sup ′}{sub m}, EC{sub 50} = 303 ± 64 μg U L{sup −1} after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC{sub 50} = 142 ± 98 μg U L{sup −1} after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown

  15. IPRT polarized radiative transfer model intercomparison project - Three-dimensional test cases (phase B)

    Science.gov (United States)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2018-04-01

    Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http

  16. Transmission Magnitude and Phase Control for Polarization-Preserving Reflectionless Metasurfaces

    Science.gov (United States)

    Kwon, Do-Hoon; Ptitcyn, Grigorii; Díaz-Rubio, Ana; Tretyakov, Sergei A.

    2018-03-01

    For transmissive applications of electromagnetic metasurfaces, an array of subwavelength Huygens' meta-atoms are typically used to eliminate reflection and achieve a high-transmission power efficiency together with a wide transmission phase coverage. We show that the underlying principle of low reflection and full control over transmission is asymmetric scattering into the specular reflection and transmission directions that results from a superposition of symmetric and antisymmetric scattering components, with Huygens' meta-atoms being one example configuration. Available for oblique illumination in TM polarization, a meta-atom configuration comprising normal and tangential electric polarizations is presented, which is capable of reflectionless, full-power transmission and a 2 π transmission phase coverage as well as full absorption. For lossy metasurfaces, we show that a complete phase coverage is still available for reflectionless designs for any value of absorptance. Numerical examples in the microwave and optical regimes are provided.

  17. Circularly Polarized Planar Helix Phased Antenna Array for 5G Mobile Terminals

    DEFF Research Database (Denmark)

    Syrytsin, Igor A.; Zhang, Shuai; Pedersen, Gert F.

    2017-01-01

    In this paper, a planar helix mobile phased antenna array is proposed for 5th generation communication systems with operating frequency of 28GHz. The proposed array displays circular polarization in the endfire direction. Over 65 degrees of axial ratio beamwidth and 7GHz of axial ratio bandwidth...... has been achieved in the proposed design. The coverage performance of the proposed phased antenna array has also been studied by using the coverage efficiency metric. Coverage efficiency of 50 % at 5 dBi gain is achieved by the proposed phased mobile antenna array....

  18. Control of magnetic vortex polarity by the phase difference between voltage signals

    Science.gov (United States)

    Cui, Huanqing; Cai, Li; Yang, Xiaokuo; Wang, Sen; Zhang, Mingliang; Li, Cheng; Feng, Chaowen

    2018-02-01

    Using micromagnetic simulations, we investigate the voltage control of magnetic vortex polarity based on a designed multiferroic heterostructure that contains two separate piezoelectric films beneath a magnetostrictive nanodisk. The results show that controllable switching of vortex polarity can be achieved by proper modulation of the phase difference between two sinusoidal voltage pulses V1 and V2, which are applied to the two separate piezoelectric films, respectively. The frequencies of V1 and V2 are set at the gyrotropic eigenfrequency fG of the nanodisk, and the vortex polarity switching is completed via the nucleation-annihilation process of the vortex-antivortex pair. Our findings provide an additional effective means for ultralow power switching of the magnetic vortex, which lays the foundation for voltage-controlled vortex random access memory.

  19. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam.

    Science.gov (United States)

    Guo, Lina; Chen, Yahong; Liu, Xianlong; Liu, Lin; Cai, Yangjian

    2016-06-27

    Partially coherent radially polarized (PCRP) beam was introduced and generated in recent years. In this paper, we investigate the statistical properties of a PCRP beam embedded with a vortex phase (i.e., PCRP vortex beam). We derive the analytical formula for the cross-spectral density matrix of a PCRP vortex beam propagating through a paraxial ABCD optical system and analyze the statistical properties of a PCRP vortex beam focused by a thin lens. It is found that the statistical properties of a PCRP vortex beam on propagation are much different from those of a PCRP beam. The vortex phase induces not only the rotation of the beam spot, but also the changes of the beam shape, the degree of polarization and the state of polarization. We also find that the vortex phase plays a role of resisting the coherence-induced degradation of the intensity distribution and the coherence-induced depolarization. Furthermore, we report experimental generation of a PCRP vortex beam for the first time. Our results will be useful for trapping and rotating particles, free-space optical communications and detection of phase object.

  20. NMR study of hyper-polarized 129Xe and applications to liquid-phase NMR experiments

    International Nuclear Information System (INIS)

    Marion, D.

    2008-07-01

    In liquid samples where both nuclear polarization and spin density are strong, the magnetization dynamics, which can be analysed by NMR (nuclear magnetic resonance) methods, is deeply influenced by the internal couplings induced by local dipolar fields. The present thesis describes some of the many consequences associated to the presence in the sample of concentrated xenon hyper-polarized by an optical pumping process. First, we deal with the induced modifications in frequency and line width of the proton and xenon spectra, then we present the results of SPIDER, a coherent polarization transfer experiment designed to enhance the polarization of protons, in order to increase their NMR signal level. A third part is dedicated to the description of the apparition of repeated chaotic maser emissions by un unstable xenon magnetization coupled to the detection coil tuned at the xenon Larmor frequency (here 138 MHz). In the last part, we present a new method allowing a better tuning of any NMR detection probe and resulting in sensible gains in terms of sensitivity and signal shaping. Finally, we conclude with a partial questioning of the classical relaxation theory in the specific field of highly polarized and concentrated spin systems in a liquid phase. (author)

  1. LIMITS ON OPTICAL POLARIZATION DURING THE PROMPT PHASE OF GRB 140430A

    Energy Technology Data Exchange (ETDEWEB)

    Kopac, D.; Mundell, C. G.; Arnold, D. M.; Steele, I. A.; Kobayashi, S.; Lamb, G. P.; Smith, R. J.; Virgili, F. J. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); Japelj, J.; Gomboc, A. [Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Guidorzi, C.; Dichiara, S. [Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, I-44122, Ferrara (Italy); Harrison, R. M. [Department of Astrophysics, School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Melandri, A. [INAF—Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Castro-Tirado, A. J.; Gorosabel, J.; Sánchez-Ramírez, R.; Oates, S. R. [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Järvinen, A. [AIP—Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Jelínek, M., E-mail: drejc.kopac@fmf.uni-lj.si [ASU-CAS—Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov (Czech Republic)

    2015-11-01

    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt γ-ray emission was still ongoing. In this paper, we present densely sampled (10-s temporal resolution) early optical light curves (LCs) in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray, and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical LC cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1σ). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternatively, time averaging could mask the presence of otherwise polarized components of distinct origin at different polarization position angles.

  2. LIMITS ON OPTICAL POLARIZATION DURING THE PROMPT PHASE OF GRB 140430A

    International Nuclear Information System (INIS)

    Kopac, D.; Mundell, C. G.; Arnold, D. M.; Steele, I. A.; Kobayashi, S.; Lamb, G. P.; Smith, R. J.; Virgili, F. J.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Dichiara, S.; Harrison, R. M.; Melandri, A.; Castro-Tirado, A. J.; Gorosabel, J.; Sánchez-Ramírez, R.; Oates, S. R.; Järvinen, A.; Jelínek, M.

    2015-01-01

    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt γ-ray emission was still ongoing. In this paper, we present densely sampled (10-s temporal resolution) early optical light curves (LCs) in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray, and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical LC cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1σ). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternatively, time averaging could mask the presence of otherwise polarized components of distinct origin at different polarization position angles

  3. Polarized phase shift mask: concept, design, and potential advantages to photolithography process and physical design

    Science.gov (United States)

    Wang, Ruoping; Grobman, Warren D.; Reich, Alfred J.; Thompson, Matthew A.

    2002-03-01

    In this paper we introduce the concept and design of a novel phase shift mask technology, Polarized Phase Shift Mask (P:PSM). The P:PSM technology utilizes non-interference between orthogonally polarized light sources to avoid undesired destructive interference seen in conventional two-phase shift mask technology. Hence P:PSM solves the well-known 'phase edge' or 'phase conflict' problem. By obviating the 2nd exposure and 2nd mask in current Complementary Phase Shift Mask (C:PSM) technology, this single mask/single exposure technology offers significant advantages towards photolithography process as well as pattern design. We use examples of typical design and process difficulties associated with the C:PSM technology to illustrate the advantages of the P:PSM technology. We present preliminary aerial image simulation results that support the potential of this new reticle technology for enhanced design flexibility. We also propose possible mask structures and manufacturing methods for building a P:PSM.

  4. Reversible Decomposition of Secondary Phases in BaO Infiltrated LSM Electrodes-Polarization Effects

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; McIntyre, Melissa D.; Norrman, Kion

    2016-01-01

    and Raman spectroscopy reveal the formation of a secondary phase, Ba3Mn2O8, on the electrode. During the in operando Raman investigation of the BaO-infiltrated La0.85Sr0.15MnO3±δ electrodes, experiments are performed at 300 and 500 °C with oxygen partial pressure 0.1 atm and with −1 or +1 V Applied...... for the reduced polarization resistance observed at open Circuit voltage (OCV) in an oxygen containing atmosphere. Furthermore, the results illustrate the dramatic differences between the electrode surface composition at OCV and during cathodic polarization. Overall, the results highlight the dynamic interactions...... between minor secondary phases and applied potential, a general effect that may be important for the high-performance frequently observed with ceramic electrodes prepared by infiltration....

  5. Visualizing the phenomena of wave interference, phase-shifting and polarization by interactive computer simulations

    Science.gov (United States)

    Rivera-Ortega, Uriel; Dirckx, Joris

    2015-09-01

    In this manuscript a computer based simulation is proposed for teaching concepts of interference of light (under the scheme of a Michelson interferometer), phase-shifting and polarization states. The user can change some parameters of the interfering waves, such as their amplitude and phase difference in order to graphically represent the polarization state of a simulated travelling wave. Regarding to the interference simulation, the user is able to change the wavelength and type of the interfering waves by selecting combinations between planar and Gaussian profiles, as well as the optical path difference by translating or tilting one of the two mirrors in the interferometer setup, all of this via a graphical user interface (GUI) designed in MATLAB. A theoretical introduction and simulation results for each phenomenon will be shown. Due to the simulation characteristics, this GUI can be a very good non-formal learning resource.

  6. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry.

    Science.gov (United States)

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-09-15

    Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency ( [Formula: see text] , EC50=303 ± 64 μg UL(-1) after 5h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50=142 ± 98 μg UL(-1) after 5h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction kinetics are valuable indicators for evaluating the impact of uranium on PSII in green algae. PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response to uranium in microalgae. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Phase dispersion of Raman and Rayleigh-enhanced four-wave mixings in femtosecond polarization beats

    International Nuclear Information System (INIS)

    Yan, Zhao; Zhi-Qiang, Nie; Chang-Biao, Li; Yan-Peng, Zhang; Chen-Li, Gan; Huai-Bin, Zheng; Yuan-Yuan, Li; Ke-Qing, Lu

    2009-01-01

    Based on color-locking noisy field correlation in three Markovian stochastic models, phase dispersions of the Raman- and Rayleigh-enhanced four-wave mixing (FWM) have been investigated. The phase dispersions are modified by both linewidth and time delay for negative time delay, but only by linewidth for positive time delay. Moreover, the results under narrowband condition are close to the nonmodified nonlinear dispersion and absorption of the material. Homodyne and heterodyne detections of the Raman, the Rayleigh and the mixing femtosecond difference-frequency polarization beats have also been investigated, separately

  8. Solar Radiation Stress in Natural Acidophilic Biofilms of Euglena mutabilis Revealed by Metatranscriptomics and PAM Fluorometry.

    Science.gov (United States)

    Puente-Sánchez, Fernando; Olsson, Sanna; Gómez-Rodriguez, Manuel; Souza-Egipsy, Virginia; Altamirano-Jeschke, Maria; Amils, Ricardo; Parro, Victor; Aguilera, Angeles

    2016-02-01

    The daily photosynthetic performance of a natural biofilm of the extreme acidophilic Euglena mutabilis from Río Tinto (SW, Spain) under full solar radiation was analyzed by means of pulse amplitude-modulated (PAM) fluorescence measurements and metatrascriptomic analysis. Natural E. mutabilis biofilms undergo large-scale transcriptomic reprogramming during midday due to a dynamic photoinhibition and solar radiation stress. Photoinhibition is due to UV radiation and not to light intensity, as revealed by PAM fluorometry analysis. In order to minimize the negative effects of solar radiation, our data supports the presence of a circadian rhythm in this euglenophyte that increases their opportunity to survive. Differential gene expression throughout the day (at 12:00, 20:00 and night) was monitored by massive Illumina parallel sequencing of metatranscriptomic libraries. The transcription pattern was altered in genes involved in Photosystem II stability and repair, UV damaged DNA repair, non-photochemical quenching and oxidative stress, supporting the photoinhibition detected by PAM fluorometry at midday. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Polarity-based fractionation in proteomics: hydrophilic interaction vs reversed-phase liquid chromatography.

    Science.gov (United States)

    Jafari, M; Mirzaie, M; Khodabandeh, M; Rezadoost, H; Ghassempour, A; Aboul-Enein, H Y

    2016-07-01

    During recent decades, hydrophilic interaction liquid chromatography (HILIC) ahs been introduced to fractionate or purify especially polar solutes such as peptides and proteins while reversed-phase liquid chromatography (RPLC) is also a common strategy. RPLC is also a common dimension in multidimensional chromatography. In this study, the potential of HILIC vs RPLC chromatography was compared for proteome mapping of human peripheral blood mononuclear cell extract. In HILIC a silica-based stationary phase and for RPLC a C18 column were applied. Then separated proteins were eluted to an ion trap mass spectrometry system. Our results showed that the HILIC leads to more proteins being identified in comparison to RPLC. Among the total 181 identified proteins, 56 and 38 proteins were fractionated specifically by HILIC and RPLC, respectively. In order to demonstrate this, the physicochemical properties of identified proteins such as polarity and hydrophobicity were considered. This analysis indicated that polarity may play a major role in the HILIC separation of proteins vs RPLC. Using gene ontology enrichment analysis, it was also observed that differences in physicochemical properties conform to the cellular compartment and biological features. Finally, this study highlighted the potential of HILIC and the great orthogonality of RPLC in gel-free proteomic studies. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Dipole-Oriented Molecular Solids Can Undergo a Phase Change and Still Maintain Electrical Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Glavic, Artur G [ORNL; Cassidy, Andrew M [ORNL; Jorgensen, Mads Ry Ry [University of Aarhus, Denmark; Lauter, Valeria [ORNL; Rosu-Finsen, Alexander [Heriot-Watt University, Edinburgh, UK; Lasne, Jérôme [Heriot-Watt University, Edinburgh, UK; Jorgensen, Jakob [Aarhus University, Denmark; Iversen, Bo [ORNL; McCoustra, Martin [Heriot-Watt University, Edinburgh, UK; Field, David [University of Aarhus, Denmark

    2016-10-02

    It has recently been demonstrated that nanoscale molecular films can spontaneously assemble to self-generate intrinsic electric fields that can exceed 108 V/m. These electric fields originate from polarization charges in the material that arise because the films self-assemble to orient molecular dipole moments. This has been called the spontelectric effect. Such growth of spontaneously polarized layers of molecular solids has implications for our understanding of how intermolecular interactions dictate the structure of molecular materials used in a range of applications, for example, molecular semiconductors, sensors, and catalysts. In this paper, we present the first in situ structural characterization of a representative spontelectric solid, nitrous oxide. Infrared spectroscopy, temperature-programmed desorption, and neutron reflectivity measurements demonstrate that polarized films of nitrous oxide undergo a structural phase transformation upon heating above 48 K. A mean-field model can be used to describe quantitatively the magnitude of the spontaneously generated field as a function of film-growth temperature, and this model also recreates the phase change. Finally, this reinforces the spontelectric model as a means of describing long-range dipole–dipole interactions and points to a new type of ordering in molecular thin films.

  11. Strain-induced phase transition and electron spin-polarization in graphene spirals.

    Science.gov (United States)

    Zhang, Xiaoming; Zhao, Mingwen

    2014-07-16

    Spin-polarized triangular graphene nanoflakes (t-GNFs) serve as ideal building blocks for the long-desired ferromagnetic graphene superlattices, but they are always assembled to planar structures which reduce its mechanical properties. Here, by joining t-GNFs in a spiral way, we propose one-dimensional graphene spirals (GSs) with superior mechanical properties and tunable electronic structures. We demonstrate theoretically the unique features of electron motion in the spiral lattice by means of first-principles calculations combined with a simple Hubbard model. Within a linear elastic deformation range, the GSs are nonmagnetic metals. When the axial tensile strain exceeds an ultimate strain, however, they convert to magnetic semiconductors with stable ferromagnetic ordering along the edges. Such strain-induced phase transition and tunable electron spin-polarization revealed in the GSs open a new avenue for spintronics devices.

  12. Thermally tunable broadband omnidirectional and polarization-independent super absorber using phase change material VO2

    Directory of Open Access Journals (Sweden)

    Zhejun Liu

    Full Text Available In this letter, we numerically demonstrate a thermally tunable super absorber by using phase change material VO2 as absorbing layer in metal-insulator-metal structure. An omnidirectional super absorption at λ=2.56μm can be realized by heating the patterned grating VO2 film due to magnetic resonance mechanism. Furthermore, a broadband super absorption higher than 0.8 in the entire 1.6μm–4μm region is achieved when VO2 film is patterned chessboard structure and transformed to metal phase beyond transition temperature. This broadband super absorption can be fulfilled in a wide range of incident angle (0°–70° and under all polarization conditions. Keywords: Phase change material, Metal-insulator-metal, Super absorption, Magnetic resonance

  13. Amplitude and Phase Calibration of an Dual Polarized Active Phased Array Antenna

    NARCIS (Netherlands)

    Vermeulen, B.C.B.; Paquay, M.H.A.; Koomen, P.J.; Hoogeboom, P.; Snoeij, P.; Pouwels, H.

    1996-01-01

    In the Netherlands, a Polarimetrie C-band aircraft SAR (Synthetic Aperture Radar) has been developed. The project is called PHARUS, an acronym for Phased Array Universal SAR. This instrument serves remote sensing applications. The antenna system contains 48 modules (expandable to 96). A module is

  14. Joint compensation scheme of polarization crosstalk, intersymbol interference, frequency offset, and phase noise based on cascaded Kalman filter

    Science.gov (United States)

    Zhang, Qun; Yang, Yanfu; Xiang, Qian; Zhou, Zhongqing; Yao, Yong

    2018-02-01

    A joint compensation scheme based on cascaded Kalman filter is proposed, which can implement polarization tracking, channel equalization, frequency offset, and phase noise compensation simultaneously. The experimental results show that the proposed algorithm can not only compensate multiple channel impairments simultaneously but also improve the polarization tracking capacity and accelerate the convergence speed. The scheme has up to eight times faster convergence speed compared with radius-directed equalizer (RDE) + Max-FFT (maximum fast Fourier transform) + BPS (blind phase search) and can track up polarization rotation 60 times and 15 times faster than that of RDE + Max-FFT + BPS and CMMA (cascaded multimodulus algorithm) + Max-FFT + BPS, respectively.

  15. Study of polarization properties of fiber-optics probes with use of a binary phase plate.

    Science.gov (United States)

    Alferov, S V; Khonina, S N; Karpeev, S V

    2014-04-01

    We conduct a theoretical and experimental study of the distribution of the electric field components in the sharp focal domain when rotating a zone plate with a π-phase jump placed in the focused beam. Comparing the theoretical and experimental results for several kinds of near-field probes, an analysis of the polarization sensitivity of different types of metal-coated aperture probes is conducted. It is demonstrated that with increasing diameter of the non-metal-coated tip part there occurs an essential redistribution of sensitivity in favor of the transverse electric field components and an increase of the probe's energy throughput.

  16. Seasonal and diel changes in photosynthetic activity of the snow algae Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by PAM fluorometry

    Czech Academy of Sciences Publication Activity Database

    Stibal, Marek; Elster, Josef; Šabacká, Marie; Kaštovská, Klára

    2007-01-01

    Roč. 59, - (2007), s. 265-273 ISSN 0168-6496 R&D Projects: GA AV ČR KJB6005409 Institutional research plan: CEZ:AV0Z60050516 Keywords : Chlamydomonas nivalis * photosynthetic activity * PAM fluorometry Subject RIV: EF - Botanics Impact factor: 3.039, year: 2007

  17. Flow injection on-line oxidizing fluorometry coupled to dialysis sampling for the study of carbamazepine-protein binding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiqi [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)]. E-mail: zqzhang@snnu.edu.cn; Liang Guoxi [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2005-04-22

    The mechanism of binding of carbamazepine (CBZ) with bovine serum albumin (BSA) has been investigated in vitro based on a new flow injection fluorometry coupled to the technique of dialysis sampling. The CBZ and BSA were mixed in different molar ratios in 0.050 mol L{sup -1} phosphate buffer (containing 0.9% NaCl), pH 7.4, and incubated at 37 {+-} 0.5 deg. C in a water bath. The dialysis sampler was utilized to sample free CBZ from mixed solution with a relative dialytic efficiency of 7.6%. Then the CBZ in dialysis solution was injected into carrier and on-line oxidized by lead dioxide solid-phase reactor into fluorescent product with a maximum excitation wavelength of 355 nm and a maximum emission wavelength of 478 nm. The fluorescence intensity measured was linear proportional with the concentration of free CBZ in mixed solution over the range of 1 x 10{sup -5} to 2 x 10{sup -4} mol L{sup -1} with the detection limit of 6 x 10{sup -6} mol L{sup -1}. According to the fluorescence measurement results from mixed solution, the association constant (K) estimated for CBZ-BSA binding and the number of the binding site (n) with Scatchard analysis were 1.08 x 10{sup 4} L mol{sup -1} and 0.94, respectively. Stern-Volmer plots indicated the presence of dynamic component in the quenching mechanism. The acting force was suggested to be mainly hydrophobic and the distance between the acceptor and donor was 3.12 nm. The estimated binding parameters agreed well with literature values.

  18. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    Science.gov (United States)

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  19. Field-induced magnetic phases and electric polarization in LiNiPO4

    DEFF Research Database (Denmark)

    Jensen, Thomas Bagger Stibius; Christensen, Niels Bech; Kenzelmann, M.

    2009-01-01

    Neutron diffraction is used to probe the (H,T) phase diagram of magnetoelectric (ME) LiNiPO4 for magnetic fields along the c axis. At zero field the Ni spins order in two antiferromagnetic phases. One has commensurate (C) structures and general ordering vectors k(C)=(0,0,0); the other one...... is incommensurate (IC) with k(IC)=(0,q,0). At low temperatures the C order collapses above mu H-0=12 T and adopts an IC structure with modulation vector parallel to k(IC). We show that C order is required for the ME effect and establish how electric polarization results from a field-induced reduction in the total...

  20. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.

    2013-01-25

    The electronic properties of silicene are distinct from both the conventional two dimensional electron gas and the famous graphene due to strong spin orbit interaction and the buckled structure. Silicene has the potential to overcome limitations encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address the longitudinal conductivity for elastic impurity scattering in the first Born approximation. We show that the combination of an electric field with intrinsic spin orbit interaction leads to quantum phase transitions at the charge neutrality point, providing a tool to experimentally tune the topological state. Silicene constitutes a model system for exploring the spin and valley physics not accessible in graphene due to the small spin orbit interaction.

  1. Unravelling the effects of mobile phase additives in supercritical fluid chromatography. Part I: Polarity and acidity of the mobile phase.

    Science.gov (United States)

    West, Caroline; Melin, Jodie; Ansouri, Hassna; Mengue Metogo, Maïly

    2017-04-07

    The mobile phases employed in current supercritical fluid chromatography (SFC) are usually composed of a mixture of pressurized carbon dioxide and a co-solvent. The co-solvent is most often an alcohol and may contain a third component in small proportions, called an additive (acid, base or salt). The polarity of such mobile phase compositions is here re-evaluated with a solvatochromic dye (Nile Red), particularly to assess the contribution of additives. It appears that additives, when employed in usual concentration range (0.1% or 20mM) do not modify the polarity in the immediate environment of the probe. In addition, the combination of carbon dioxide and an alcohol is known to form alkoxylcarbonic acid, supposedly conferring some acidic character to SFC mobile phases. Direct measurements of the apparent pH are impossible, but colour indicators of pH can be used to define the range of apparent pH provided by carbon dioxide-alcohol mixtures, with or without additives. Five colour indicators (Thymol Blue, Bromocresol Green, Methyl Red, Bromocresol Purple, and Bromothymol Blue) were selected to provide a wide range of aqueous pK a values (from 1.7 to 8.9). UV-vis absorption spectra measured in liquid phases of controlled pH were compared to those measured with a diode-array detector employed in SFC, with the help of chemometric methods. Based on these observations, it is concluded that the apparent pH range in carbon dioxide-methanol mobile phases is close to 5. Increasing the proportion of methanol (in the course of a gradient elution for instance) causes decreasing apparent pH. Strong acids can further decrease the apparent pH below 1.7; strong bases have little influence on the apparent pH, probably because, in this range of concentrations, they are titrated by alkoxylcarbonic acid or form ion pairs with alkoxycarbonate. However, bases and salts could stabilize the acidity in the course of gradient runs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Quantum mechanical systems interacting with different polarizations of gravitational waves in noncommutative phase space

    Science.gov (United States)

    Saha, Anirban; Gangopadhyay, Sunandan; Saha, Swarup

    2018-02-01

    Owing to the extreme smallness of any noncommutative scale that may exist in nature, both in the spatial and momentum sector of the quantum phase space, a credible possibility of their detection lies in the gravitational wave (GW) detection scenario, where one effectively probes the relative length-scale variations ˜O [10-20-10-23] . With this motivation, we have theoretically constructed how a free particle and a harmonic oscillator will respond to linearly and circularly polarized gravitational waves if their quantum mechanical phase space has a noncommutative structure. We critically analyze the formal solutions which show resonance behavior in the responses of both free particle and HO systems to GW with both kind of polarizations. We discuss the possible implications of these solutions in detecting noncommutativity in a GW detection experiment. We use the currently available upper-bound estimates on various noncommutative parameters to anticipate the relative importance of various terms in the solutions. We also argue how the quantum harmonic oscillator system we considered here can be very relevant in the context of the resonant bar detectors of GW which are already operational.

  3. Effect of Beam Scanning on Target Polarization Scattering Matrix Observed by Fully Polarimetric Phased-array Radar

    Directory of Open Access Journals (Sweden)

    Li Mianquan

    2016-04-01

    Full Text Available The polarization feature of a fully Polarimetric Phased-Array Radar (PPAR antenna varies according to the beam-scanning angle, thereby introducing two problems on the target Polarization Scattering Matrix (PSM measurement. First, the antenna polarization basis is defined within the vertical cross-section of an electromagnetic wave propagation direction, and the polarization basis of each beam direction angle is not identical, resulting in the PSM of a fixed-posture target observed by PPAR being not identical for different beam-scanning angles. Second, the cross polarization of the PPAR antenna increases with increasing beamscanning angle, resulting in a crosstalk among the elements of PSM observed by PPAR. This study focuses on the analysis of the abovementioned two aspects of the effect of beam scanning on target PSM observed by PPAR. The results will establish a more accurate observation of the equation for the precision PSM measurement of PPAR.

  4. Polar phase transitions in heteroepitaxial stabilized La0.5Y0.5AlO3 thin films

    Science.gov (United States)

    Liu, Shenghua; Zhang, Chunfeng; Zhu, Mengya; He, Qian; Chakhalian, Jak; Liu, Xiaoran; Borisevich, Albina; Wang, Xiaoyong; Xiao, Min

    2017-10-01

    We report on the fabrication of epitaxial La0.5Y0.5AlO3 ultrathin films on (001) LaAlO3 substrates. Structural characterizations by scanning transmission electron microscopy and x-ray diffraction confirm the high quality of the film with a - b + c - AlO6 octahedral tilt pattern. Unlike either of the nonpolar parent compound, LaAlO3 and YAlO3, second harmonic generation measurements on the thin films suggest a nonpolar-polar phase transition at T c near 500 K, and a polar-polar phase transition at T a near 160 K. By fitting the angular dependence of the second harmonic intensities, we further propose that the two polar structures can be assigned to the Pmc2 1 and Pmn2 1 space group, while the high temperature nonpolar structure belongs to the Pbnm space group.

  5. Helicity-Selective Phase-Matching and Quasi-Phase matching of Circularly Polarized High-Order Harmonics: Towards Chiral Attosecond Pulses

    Science.gov (United States)

    2016-05-23

    2 Department of Physics and JILA, University of Colorado and NIST, Boulder, CO 80309, USA 3Department of Physics and Optical Engineering, Ort Braude...polarized high harmonic generation, phase matching, ultrafast chiral physics, attosecond pulses (Some figures may appear in colour only in the online...temporal resolution and in spectral regions unavailable to circular polarization thus far. Acknowledgments This work was supported by the USA –Israel

  6. Polarization effects on the electric properties of urea and thiourea molecules in solid phase

    International Nuclear Information System (INIS)

    Santos, O. L.; Fonseca, T. L.; Sabino, J. R.; Georg, H. C.; Castro, M. A.

    2015-01-01

    We present theoretical results for the dipole moment, linear polarizability, and first hyperpolarizability of the urea and thiourea molecules in solid phase. The in-crystal electric properties were determined by applying a supermolecule approach in combination with an iterative electrostatic scheme, in which the surrounding molecules are represented by point charges. It is found for both urea and thiourea molecules that the influence of the polarization effects is mild for the linear polarizability, but it is marked for the dipole moment and first hyperpolarizability. The replacement of oxygen atoms by sulfur atoms increases, in general, the electric responses. Our second-order Møller–Plesset perturbation theory based iterative scheme predicts for the in-crystal dipole moment of urea and thiourea the values of 7.54 and 9.19 D which are, respectively, increased by 61% and 58%, in comparison with the corresponding isolated values. The result for urea is in agreement with the available experimental result of 6.56 D. In addition, we present an estimate of macroscopic quantities considering explicit unit cells of urea and thiourea crystals including environment polarization effects. These supermolecule calculations take into account partially the exchange and dispersion effects. The results illustrate the role played by the electrostatic interactions on the static second-order nonlinear susceptibility of the urea crystal

  7. Optical-wireless-optical full link for polarization multiplexing quadrature amplitude/phase modulation signal transmission.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen

    2013-11-15

    We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.

  8. Comparison of Cole-Cole and Constant Phase Angle modeling in time-domain induced polarization

    DEFF Research Database (Denmark)

    Lajaunie, Myriam; Maurya, Pradip Kumar; Fiandaca, Gianluca

    The Cole-Cole model and the constant phase angle (CPA) model are two prevailing phenomenological descriptions of the induced polarization (IP), used for both frequency domain (FD) and time domain (TD) modeling. The former one is a 4-parameter description, while the latest one involves only two......, forward modeling of quadrupolar sequences on 1D and 2D heterogeneous CPA models shows that the CPA decays differ among each other only by a multiplication factor. Consequently, the inspection of field data in log-log plots gives insight on the modeling needed for fitting them: the CPA inversion cannot...... is reflected in TDIP data, and therefore, at identifying (1) if and when it is possible to distinguish, in time domain, between a Cole-Cole description and a CPA one, and (2) if features of time domain data exist in order to know, from a simple data inspection, which model will be the most adapted to the data...

  9. Measurement and Modelling of Phase Equilibrium of Oil - Water - Polar Chemicals

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup

    in the temperature range of 303-323 K at atmospheric pressure. In the second part of this work, the CPA EoS has been used for modeling hydrocarbon systemcontaining polar chemicals, such as water and gas hydrate inhibitor MEG or methanol. All the experimental data measured in this work have been investigated using...... with the measurement of newexperimental data, but through the development of new experimental equipment for the study ofmulti-phase equilibrium. In addition to measurement of well-defined systems, LLE have beenmeasured for North Sea oils with MEG and water. The work can be split up into two parts: Experimental: VLE...... systems presented, confirming the quality of theequipment. The equipment is used for measurement of VLE for several systems of interest; methane+ water, methane + methanol, methane + methanol + water and methane + MEG. Details dealing with the design, assembling and testing of new experimental equipment...

  10. Control phase shift of spin-wave by spin-polarized current and its application in logic gates

    International Nuclear Information System (INIS)

    Chen, Xiangxu; Wang, Qi; Liao, Yulong; Tang, Xiaoli; Zhang, Huaiwu; Zhong, Zhiyong

    2015-01-01

    We proposed a new ways to control the phase shift of propagating spin waves by applying a local spin-polarized current on ferromagnetic stripe. Micromagnetic simulation showed that a phase shift of about π can be obtained by designing appropriate width and number of pinned magnetic layers. The ways can be adopted in a Mach-Zehnder-type interferometer structure to fulfill logic NOT gates based on spin waves. - Highlights: • Spin-wave phase shift can be controlled by a local spin-polarized current. • Spin-wave phase shift increased with the increasing of current density. • Spin-wave phase shift can reach about 0.3π at a particular current density. • The ways can be used in a Mach-Zehnder-type interferometer to fulfill logic gates

  11. Optically stimulated slowing of polar heavy-atom molecules with a constant beat phase

    Science.gov (United States)

    Yin, Yanning; Xu, Supeng; Xia, Meng; Xia, Yong; Yin, Jianping

    2018-04-01

    Polar heavy-atom molecules have been well recognized as promising candidates for precision measurements and tests of fundamental physics. A much slower molecular beam to increase the interaction time should lead to a more sensitive measurement. Here we theoretically demonstrate the possibility of the stimulated longitudinal slowing of heavy-atom molecules by the coherent optical bichromatic force with a constant beat phase. Taking the YbF meolecule as an example, we show that a rapid and short-distance deceleration of heavy molecules by a phase-compensation method is feasible with moderate conditions. A molecular beam of YbF with a forward velocity of 120 m/s can be decelerated below 10 m/s within a distance of 3.5 cm and with a laser irradiance for each traveling wave of 107.2 W/cm 2 . Our proposed slowing method could be a promising approach to break through the space constraint or the limited capture efficiency of molecules loadable into a magneto-optical trap in traditional deceleration schemes, opening the possibility for a significant improvement of the precision measurement sensitivity.

  12. submitter Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

    CERN Document Server

    Nichman, Leonid; Järvinen, Emma; Ignatius, Karoliina; Höppel, Niko Florian; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Kristensen, Thomas Bjerring; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António

    2016-01-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary ...

  13. Generation of Bright Phase-matched Circularly-polarized Extreme Ultraviolet High Harmonics

    Science.gov (United States)

    2014-12-08

    1995). 42. Eichmann , H. et al. Polarization-dependent high-order two-color mixing. Phys. Rev. A 51, R3414–R3417 (1995). 43. Fleischer, A., Kfir, O...calculations of polarization-dependent two- color high-harmonic generation. Phys. Rev. A 52, 2262–2278 (1995). 10. Eichmann , H. et al. polarization

  14. Simulation of a circular phased array for a portable ultrasonic polar scan

    Science.gov (United States)

    Daemen, Jannes; Kersemans, Mathias; Martens, Arvid; Verboven, Erik; Delrue, Steven; Van Paepegem, Wim; Degrieck, Joris; Van Den Abeele, Koen

    2018-04-01

    The development of new composite materials, often anisotropic in nature, requires intricate approaches to characterize these materials and to detect internal defects. The Ultrasonic Polar Scan (UPS) is able to achieve both goals. During an UPS experiment, a material spot is insonified at several angles Ψ(θ,ϕ), after which the reflected or transmitted signal is recorded. While excellent results have been obtained using an in-house developed 5-axis scanner, UPS measurements with the current set-up are too lengthy and cumbersome for in-situ industrial application. Therefore, we propose to replace the complex mechanical steering of the transducers by a hemispherical phased array consisting of small PZT elements. This allows to create a compact and portable setup without compromising the current data quality. By successively activating a specific set of elements of the array and choosing appropriate inter-element time delays, the beam can be electronically steered from any angle to a fixed position on the targeted sample. Consequently, UPS reflection measurements can be performed at this position from a wide range of angles in a timeframe of seconds. Additionally, by using apodization windows, it is possible to efficiently reduce the intensity of unwanted side lobes and to create a phase profile which closely resembles that of a bounded plane wave, leading to an easier interpretation of the recorded data. The appropriate time delays and apodization parameters can be found though a multi-objective inverse problem in which both the phase profile and the side lobe reduction are optimized. This approach enables the creation of an effective beam profile to be used during UPS experiments for the characterization and inspection of composite materials. Our simulation approach is a crucial step towards a next-generation UPS device for industrial applications and in-field measurements.

  15. Determination of albumin in bronchoalveolar lavage fluid by flow-injection fluorometry using chromazurol S.

    Science.gov (United States)

    Sato, Takaji; Saito, Yoshihiro; Chikuma, Masahiko; Saito, Yutaka; Nagai, Sonoko

    2008-03-01

    A highly sensitive flow injection fluorometry for the determination of albumin was developed and applied to the determination of albumin in human bronchoalveolar lavage fluids (BALF). This method is based on binding of chromazurol S (CAS) to albumin. The calibration curve was linear in the range of 5-200 microg/ml of albumin. A highly linear correlation (r=0.986) was observed between the albumin level in BALF samples (n=25) determined by the proposed method and by a conventional fluorometric method using CAS (CAS manual method). The IgG interference was lower in the CAS flow injection method than in the CAS manual method. The albumin level in BALF collected from healthy volunteers (n=10) was 58.5+/-13.1 microg/ml. The albumin levels in BALF samples obtained from patients with sarcoidosis and idiopathic pulmonary fibrosis were increased. This finding shows that the determination of albumin levels in BALF samples is useful for investigating lung diseases and that CAS flow injection method is promising in the determination of trace albumin in BALF samples, because it is sensitive and precise.

  16. Molecular motions that shape the cardiac action potential: Insights from voltage clamp fluorometry.

    Science.gov (United States)

    Zhu, Wandi; Varga, Zoltan; Silva, Jonathan R

    2016-01-01

    Very recently, voltage-clamp fluorometry (VCF) protocols have been developed to observe the membrane proteins responsible for carrying the ventricular ionic currents that form the action potential (AP), including those carried by the cardiac Na(+) channel, NaV1.5, the L-type Ca(2+) channel, CaV1.2, the Na(+)/K(+) ATPase, and the rapid and slow components of the delayed rectifier, KV11.1 and KV7.1. This development is significant, because VCF enables simultaneous observation of ionic current kinetics with conformational changes occurring within specific channel domains. The ability gained from VCF, to connect nanoscale molecular movement to ion channel function has revealed how the voltage-sensing domains (VSDs) control ion flux through channel pores, mechanisms of post-translational regulation and the molecular pathology of inherited mutations. In the future, we expect that this data will be of great use for the creation of multi-scale computational AP models that explicitly represent ion channel conformations, connecting molecular, cell and tissue electrophysiology. Here, we review the VCF protocol, recent results, and discuss potential future developments, including potential use of these experimental findings to create novel computational models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Sorption behavior of charged and neutral polar organic compounds on solid phase extraction materials: which functional group governs sorption?

    NARCIS (Netherlands)

    Bäuerlein, P.S.; Mansell, J.E.; ter Laak, T.L.; de Voogt, P.

    2012-01-01

    Numerous polar anthropogenic organic chemicals have been found in the aqueous environment. Solid phase extraction (SPE) has been applied for the isolation of these from aqueous matrices, employing various materials. Nevertheless, little is known about the influence of functional groups on the

  18. A single step reversed-phase high performance liquid chromatography separation of polar and non-polar lipids.

    Science.gov (United States)

    Olsson, Petter; Holmbäck, Jan; Herslöf, Bengt

    2014-11-21

    This paper reports a simple chromatographic system to separate lipids classes as well as their molecular species. By the use of phenyl coated silica as stationary phase in combination with a simple mobile phase consisting of methanol and water, all tested lipid classes elute within 30 min. Furthermore, a method to accurately predict retention times of specific lipid components for this type of chromatography is presented. Common detection systems were used, namely evaporative light scattering detection (ELSD), charged aerosol detection (CAD), electrospray mass spectrometry (ESI-MS), and UV detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Suppression of metastable-phase inclusion in N-polar (0001¯) InGaN/GaN multiple quantum wells grown by metalorganic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Shojiki, Kanako; Iwabuchi, Takuya; Kuboya, Shigeyuki; Choi, Jung-Hun; Tanikawa, Tomoyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi; Usami, Noritaka

    2015-01-01

    The metastable zincblende (ZB) phase in N-polar (0001 ¯ ) (−c-plane) InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic vapor phase epitaxy is elucidated by the electron backscatter diffraction measurements. From the comparison between the −c-plane and Ga-polar (0001) (+c-plane), the −c-plane MQWs were found to be suffered from the severe ZB-phase inclusion, while ZB-inclusion is negligible in the +c-plane MQWs grown under the same growth conditions. The ZB-phase inclusion is a hurdle for fabricating the −c-plane light-emitting diodes because the islands with a triangular shape appeared on a surface in the ZB-phase domains. To improve the purity of stable wurtzite (WZ)-phase, the optimum conditions were investigated. The ZB-phase is dramatically eliminated with decreasing the V/III ratio and increasing the growth temperature. To obtain much-higher-quality MQWs, the thinner InGaN wells and the hydrogen introduction during GaN barriers growth were tried. Consequently, MQWs with almost pure WZ phase and with atomically smooth surface have been demonstrated

  20. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering

    International Nuclear Information System (INIS)

    Wang, Y.P.; Zhou, L.; Zhang, M.F.; Chen, X.Y.; Liu, J.-M.; Liu, Z.G.

    2004-01-01

    Single-phased ferroelectromagnet BiFeO 3 ceramics with high resistivity were synthesized by a rapid liquid phase sintering technique. Saturated ferroelectric hysteresis loops were observed at room temperature in the ceramics sintered at 880 deg. C for 450 s. The spontaneous polarization, remnant polarization, and the coercive field are 8.9 μC/cm 2 , 4.0 μC/cm 2 , and 39 kV/cm, respectively, under an applied field of 100 kV/cm. It is proposed that the formation of Fe 2+ and an oxygen deficiency leading to the higher leakage can be greatly suppressed by the very high heating rate, short sintering period, and liquid phase sintering technique. The latter was also found effective in increasing the density of the ceramics. The sintering technique developed in this work is expected to be useful in synthesizing other ceramics from multivalent or volatile starting materials

  1. [Corrected Title: Solid-Phase Extraction of Polar Compounds from Water] Automated Electrostatics Environmental Chamber

    Science.gov (United States)

    Sauer, Richard; Rutz, Jeffrey; Schultz, John

    2005-01-01

    A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.

  2. Polar-phase indices of perioral muscle reciprocity during syllable production in Parkinson's disease.

    Science.gov (United States)

    Chu, Shin Ying; Barlow, Steven M; Lee, Jaehoon; Wang, Jingyan

    2017-12-01

    This research characterised perioral muscle reciprocity and amplitude ratio in lower lip during bilabial syllable production [pa] at three rates to understand the neuromotor dynamics and scaling of motor speech patterns in individuals with Parkinson's disease (PD). Electromyographic (EMG) signals of the orbicularis oris superior [OOS], orbicularis oris inferior [OOI] and depressor labii inferioris [DLI] were recorded during syllable production and expressed as polar-phase notations. PD participants exhibited the general features of reciprocity between OOS, OOI and DLI muscles as reflected in the EMG during syllable production. The control group showed significantly higher integrated EMG amplitude ratio in the DLI:OOS muscle pairs than PD participants. No speech rate effects were found in EMG muscle reciprocity and amplitude magnitude across all muscle pairs. Similar patterns of muscle reciprocity in PD and controls suggest that corticomotoneuronal output to the facial nucleus and respective perioral muscles is relatively well-preserved in our cohort of mild idiopathic PD participants. Reduction of EMG amplitude ratio among PD participants is consistent with the putative reduction in the thalamocortical activation characteristic of this disease which limits motor cortex drive from generating appropriate commands which contributes to bradykinesia and hypokinesia of the orofacial mechanism.

  3. Multiferroicity in polar phase LiNbO{sub 3} at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, M. [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025 (India); Saravana Kumar, K. [Department of Physics, SRM University, Ramapuram Campus, Chennai 600 089 (India); Aparnadevi, N.; Praveen Shanker, N. [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025 (India); Venkateswaran, C., E-mail: cvunom@hotmail.com [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2015-10-01

    LiNbO{sub 3}, prepared by ball milling assisted ceramic method, exhibits weak ferromagnetism and ferroelectricity at room temperature. X-ray diffraction pattern reveals the rhombohedral phase of LiNbO{sub 3} with hexagonal unit cell symmetry. The weak ferromagnetic behavior, obtained using VSM, has been explained using Dzyaloshinskii–Moriya interaction caused by the ferroelectric distortion in its magnetic order. The P–E loop measurement shows lossy natured ferroelectric loop. Electrical and dielectric properties analyzed using impedance spectroscopy show two thermally activated conduction processes, derived from the Arrhenius plot. A gradual increase in the dielectric constant below 493 K and a rapid increase above 493 K reveals the contribution of polarization components and Lithium ion hopping. - Highlights: • LiNbO{sub 3} sample was prepared by ball milling assisted ceramic method. • Observed weak-ferromagnetism in ferroelectric LiNbO{sub 3} makes it suitable for spintronics applications. • The observed magnetism was explained using Dzyaloshinskii–Moriya interactions. • LiNbO{sub 3} sample exhibits lossy natured ferroelectric loop. • The dc conductivity study reveals two thermally activated conduction processes.

  4. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review.

    Science.gov (United States)

    Jandera, Pavel; Hájek, Tomáš

    2018-01-01

    Hydrophilic interaction liquid chromatography on polar columns in aqueous-organic mobile phases has become increasingly popular for the separation of many biologically important compounds in chemical, environmental, food, toxicological, and other samples. In spite of many new applications appearing in literature, the retention mechanism is still controversial. This review addresses recent progress in understanding of the retention models in hydrophilic interaction liquid chromatography. The main attention is focused on the role of water, both adsorbed by the column and contained in the bulk mobile phase. Further, the theoretical retention models in the isocratic and gradient elution modes are discussed. The dual hydrophilic interaction liquid chromatography reversed-phase retention mechanism on polar columns is treated in detail, especially with respect to the practical use in one- and two-dimensional liquid chromatography separations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Polarized-neutron-scattering study of the spin-wave excitations in the 3-k ordered phase of uranium antimonide.

    Science.gov (United States)

    Magnani, N; Caciuffo, R; Lander, G H; Hiess, A; Regnault, L-P

    2010-03-24

    The anisotropy of magnetic fluctuations propagating along the [1 1 0] direction in the ordered phase of uranium antimonide has been studied using polarized inelastic neutron scattering. The observed polarization behavior of the spin waves is a natural consequence of the longitudinal 3-k magnetic structure; together with recent results on the 3-k-transverse uranium dioxide, these findings establish this technique as an important tool to study complex magnetic arrangements. Selected details of the magnon excitation spectra of USb have also been reinvestigated, indicating the need to revise the currently accepted theoretical picture for this material.

  6. Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals.

    Science.gov (United States)

    Acuña, Alonso M; Snellenburg, Joris J; Gwizdala, Michal; Kirilovsky, Diana; van Grondelle, Rienk; van Stokkum, Ivo H M

    2016-01-01

    Pulse-amplitude modulated (PAM) fluorometry is extensively used to characterize photosynthetic organisms on the slow time-scale (1-1000 s). The saturation pulse method allows determination of the quantum yields of maximal (F(M)) and minimal fluorescence (F(0)), parameters related to the activity of the photosynthetic apparatus. Also, when the sample undergoes a certain light treatment during the measurement, the fluorescence quantum yields of the unquenched and the quenched states can be determined. In the case of cyanobacteria, however, the recorded fluorescence does not exclusively stem from the chlorophyll a in photosystem II (PSII). The phycobilins, the pigments of the cyanobacterial light-harvesting complexes, the phycobilisomes (PB), also contribute to the PAM signal, and therefore, F(0) and F(M) are no longer related to PSII only. We present a functional model that takes into account the presence of several fluorescent species whose concentrations can be resolved provided their fluorescence quantum yields are known. Data analysis of PAM measurements on in vivo cells of our model organism Synechocystis PCC6803 is discussed. Three different components are found necessary to fit the data: uncoupled PB (PB(free)), PB-PSII complexes, and free PSI. The free PSII contribution was negligible. The PB(free) contribution substantially increased in the mutants that lack the core terminal emitter subunits allophycocyanin D or allophycocyanin F. A positive correlation was found between the amount of PB(free) and the rate constants describing the binding of the activated orange carotenoid protein to PB, responsible for non-photochemical quenching.

  7. Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Rathnasekara, Renuka; El Rassi, Ziad

    2017-07-28

    Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with γ-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF 3 .ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dependence of Polarization of the near-Earth Asteroids (1036) Ganymed and (5143) Heracles on Wavelength and Phase Angle

    Science.gov (United States)

    Maleszewski, C.; McMillan, R.; Smith, P.

    2012-12-01

    We are measuring the polarization of asteroids with the SPOL polarimeter of Steward Observatory. With monthly access to the instrument, we can obtain many observations throughout phase angle. This is in contrast to other recent work that had to rely on aggregate properties of targets of similar taxonomic type. Comparing individual objects to these aggregate results may reveal differences of regolith properties from object to object. Both the phase angle and spectral dependence of polarization are being measured. SPOL provides simultaneous coverage from 0.40-0.75 microns, equivalent to BVR filters. Three phase curves thus reveal differences of phase angle dependences with respect to wavelength. The spectral dependence of the linear polarization is determined according to a linear trend previously used to describe the dependence for Main Belt Asteroids (MBAs) in various taxonomic classes (Belskaya et al. 2009). The slopes of these linear trends vs. phase angle are also investigated as was also done in the Belskaya analysis for MBAs in the C-, M-, and S-types. Two initial objects of interest are the NEAs (1036) Ganymed and (5143) Heracles. The taxonomic types of Ganymed and Heracles are S-type and Q-type respectively (DeMeo et al. 2009). For Ganymed, twelve observations were made between 2011 September and 2012 March. These include observations below ten degrees phase angle, which are currently lacking in the polarimetric databases. The positive branch of Ganymed's polarization phase curve behaved similarly across SPOL's wavelength range. But for wavelengths associated with a typical B-filter, the negative branch is more shallow and narrow. The negative phase branch of Ganymed is smaller compared to the aggregate phase curve of S-types determined by Gil-Hutton and Cañada-Assandri (2011). The linear polarization decreases with increasing wavelength at all observed phase angles. As the phase angle increases, the slope of the wavelength dependence of polarization

  9. Improving the On-Line Extraction of Polar Compounds by IT-SPME with Silica Nanoparticles Modified Phases

    Directory of Open Access Journals (Sweden)

    Pascual Serra-Mora

    2018-02-01

    Full Text Available In the present work the extraction efficiency of in-tube solid-phase microextraction (IT-SPME for polar herbicides has been evaluated using extractive capillaries coated with different polymeric sorbents. For this purpose, aqueous solutions of herbicides with a wide range of polarities, including some highly polar compounds (log Kow < 1, have been directly processed by IT-SPME coupled on-line to capillary liquid chromatography with UV-diode array detection. For extraction, commercially available capillary columns coated with polydimethylsiloxane (PDMS and polyetilenglicol (PEG-based phases have been used, and the results have been compared with those obtained with a synthesized tetraethyl orthosilicate (TEOS-trimethoxyethylsilane (MTEOS polymer, as well as the same polymer reinforced with silica nanoparticles (SiO2 NPs. The SiO2 NPs functionalized TEOS-MTEOS coating provided the best results for most herbicides, especially for the most polar compounds. On the basis of the results obtained, conditions for the quantification of the herbicides tested are described using a SiO2 NPs reinforced TEOS-MTEOS coated capillary. The proposed method provided satisfactory linearity up to concentrations of 200 μg/L. The precision was also suitable, with relative standard deviations (RSDs values ≤9% (n = 3, and the limits of detection (LODs were within the 0.5–7.5 µg/L range. The method has been applied to different water samples and the extract obtained from an agricultural soil.

  10. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  11. Rapid liquid phase sintered Mn doped BiFeO3 ceramics with enhanced polarization and weak magnetization

    Science.gov (United States)

    Kumar, Manoj; Yadav, K. L.

    2007-12-01

    Single-phase BiFe1-xMnxO3 multiferroic ceramics have been synthesized by rapid liquid phase sintering method to study the influence of Mn substitution on their crystal structure, dielectric, magnetic, and ferroelectric behaviors. From XRD analysis it is seen that Mn substitution does not affect the crystal structure of the BiFe1-xMnxO3 system. An enhancement in magnetization was observed for BiFe1-xMnxO3 ceramics. However, the ferooelectric hysteresis loops were not really saturated, we observed a spontaneous polarization of 10.23μC /cm2 under the applied field of 42kV/cm and remanent polarization of 3.99μC/cm2 for x =0.3 ceramic.

  12. Spectral induced polarization of the three-phase system CO2 - brine - sand under reservoir conditions

    Science.gov (United States)

    Börner, Jana H.; Herdegen, Volker; Repke, Jens-Uwe; Spitzer, Klaus

    2017-01-01

    The spectral complex conductivity of a water-bearing sand during interaction with carbon dioxide (CO2) is influenced by multiple, simultaneous processes. These processes include partial saturation due to the replacement of conductive pore water with CO2 and chemical interaction of the reactive CO2 with the bulk fluid and the grain-water interface. We present a laboratory study on the spectral induced polarization of water-bearing sands during exposure to and flow-through by CO2. Conductivity spectra were measured successfully at pressures up to 30 MPa and 80 °C during active flow and at steady-state conditions concentrating on the frequency range between 0.0014 and 100 Hz. The frequency range between 0.1 and 100 Hz turned out to be most indicative for potential monitoring applications. The presented data show that the impact of CO2 on the electrolytic conductivity may be covered by a model for pore-water conductivity, which depends on salinity, pressure and temperature and has been derived from earlier investigations of the pore-water phase. The new data covering the three-phase system CO2-brine-sand further show that chemical interaction causes a reduction of surface conductivity by almost 20 per cent, which could be related to the low pH-value in the acidic environment due to CO2 dissolution and the dissociation of carbonic acid. The quantification of the total CO2 effect may be used as a correction during monitoring of a sequestration in terms of saturation. We show that this leads to a correct reconstruction of fluid saturation from electrical measurements. In addition, an indicator for changes of the inner surface area, which is related to mineral dissolution or precipitation processes, can be computed from the imaginary part of conductivity. The low frequency range between 0.0014 and 0.1 Hz shows additional characteristics, which deviate from the behaviour at higher frequencies. A Debye decomposition approach is applied to isolate the feature dominating the

  13. Choosing the polarity of the phase-encoding direction in diffusion MRI: Does it matter for group analysis?

    OpenAIRE

    Kennis, M.; van Rooij, S.J.H.; Kahn, R.S.; Geuze, E.; Leemans, A.

    2016-01-01

    Notorious for degrading diffusion MRI data quality are so-called susceptibility-induced off-resonance fields, which cause non-linear geometric image deformations. While acquiring additional data to correct for these distortions alleviates the adverse effects of this artifact drastically – e.g., by reversing the polarity of the phase-encoding (PE) direction – this strategy is often not an option due to scan time constraints. Especially in a clinical context, where patient comfort and safety ar...

  14. Polarization Imaging Apparatus for Cell and Tissue Imaging and Diagnostics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In recent years there has been an increasing interest in the propagation of polarized light in randomly scattering media. The investigation of backscattered light is...

  15. A Wideband and Polarization-Independent Metasurface Based on Phase Optimization for Monostatic and Bistatic Radar Cross Section Reduction

    Directory of Open Access Journals (Sweden)

    Jianxun Su

    2016-01-01

    Full Text Available A broadband and polarization-independent metasurface is analyzed and designed for both monostatic and bistatic radar cross section (RCS reduction in this paper. Metasurfaces are composed of two types of electromagnetic band-gap (EBG lattice, which is a subarray with “0” or “π” phase responses, arranged in periodic and aperiodic fashions. A new mechanism is proposed for manipulating electromagnetic (EM scattering and realizing the best reduction of monostatic and bistatic RCS by redirecting EM energy to more directions through controlling the wavefront of EM wave reflected from the metasurface. Scattering characteristics of two kinds of metasurfaces, periodic arrangement and optimized phase layout, are studied in detail. Optimizing phase layout through particle swarm optimization (PSO together with far field pattern prediction can produce a lot of scattering lobes, leading to a great reduction of bistatic RCS. For the designed metasurface based on optimal phase layout, a bandwidth of more than 80% is achieved at the normal incidence for the −9.5 dB RCS reduction for both monostatic and bistatic. Bistatic RCS reduction at frequency points with exactly 180° phase difference reaches 17.6 dB. Both TE and TM polarizations for oblique incidence are considered. The measured results are in good agreement with the corresponding simulations.

  16. Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry.

    Science.gov (United States)

    Wang, Rui; Hua, Ming; Yu, Yang; Zhang, Min; Xian, Qi-Ming; Yin, Da-Qiang

    2016-03-01

    We investigated the effects of allelochemical ferulic acid (FA) on a series of physiological and biochemical processes of blue-green algae Microcystis aeruginosa, in order to find sensitive diagnostic variables for allelopathic effects. Algal cell density was significantly suppressed by FA (0.31-5.17 mM) only after 48 h exposure. Inhibitions of photosynthetic parameters (F(v)/F(m) and F(v)'/F(m)') occurred more rapidly than cell growth, and the stimulation of non-photochemical quenching was observed as a feed-back mechanisms induced by photosystem II blockage, determining by PAM fluorometry. Inhibitions on esterase activity, membrane potential and integrity, as well as disturbance on cell size, were all detected by flow cytometry with specific fluorescent markers, although exhibiting varied sensitivities. Membrane potential and esterase activity were identified as the most sensitive parameters (with relatively lower EC50 values), and responded more rapidly (significantly inhibited only after 8 h exposure) than photosynthetic parameters and cell growth, thus may be the primary responses of cyanobacteria to FA exposure. The use of PAM fluorometry and flow cytometry for rapid assessment of those sensitive variables may contribute to future mechanistic studies of allolepathic effects on phytoplankton. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Solid-phase extraction element based on epoxy polymer monolith for determination of polar organic compounds in aqueous media.

    Science.gov (United States)

    Takahashi, Tadashi; Odagiri, Kayo; Watanabe, Atsushi; Watanabe, Chuichi; Kubo, Takuya; Hosoya, Ken

    2011-10-01

    A solid-phase extraction element based on epoxy polymer monolith was fabricated for sorptive enrichment of polar compounds from liquid and gaseous samples. After ultrasonication of the element in an aqueous solution for a given period of time, the thermal desorption (TD) using a pyrolyzer with gas chromatography/mass spectrometry (GC/MS), in which TD temperature was programmed from 50 to 250 °C for the analytes absorbed in the element, was used to evaluate the element for basic extraction performance using the aqueous standard mixtures consisting of compounds having varied polarities such as hexanol, isoamyl acetate, linalool, furfural and decanoic acid, in concentrations ranging from 10 μg/L to 1 mg/L. Excellent linear relationships were observed for all compounds in the standard mixture, except decanoic acid. In the extraction of beverages such as red wine, the extraction element showed stronger adsorption characteristics for polar compounds such as alcohols and acids than a non-polar polydimethylsiloxane-based element. This feature is derived from the main polymer structure along with hydroxyl and amino groups present in the epoxy-based monolith polymer matrix. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Spontaneous spin-polarization and phase transition in the relativistic approach

    International Nuclear Information System (INIS)

    Maruyama, Tomoyuki; Tatsumi, Toshitaka

    2001-01-01

    We study the spin-polarization mechanism in the highly dense nuclear matter with the relativistic mean-field approach. In the relativistic Hartree-Fock framework we find that there are two kinds of spin-spin interaction channels, which are the axial-vector and tensor exchange ones. If each interaction is strong and different sign, the system loses the spherical symmetry and holds the spin-polarization in the high-density region. When the axial-vector interaction is negative enough, the system holds ferromagnetism. (author)

  19. Analysis of Circularly Polarized Hemispheroidal Dielectric Resonator Antenna Phased Arrays Using the Method of Auxiliary Sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    The method of auxiliary sources is employed to model and analyze probe-fed hemispheroidal dielectric resonator antennas and arrays. Circularly polarized antenna elements of different designs are analyzed, and impedance bandwidths of up to 14.7% are achieved. Selected element designs are subsequen......The method of auxiliary sources is employed to model and analyze probe-fed hemispheroidal dielectric resonator antennas and arrays. Circularly polarized antenna elements of different designs are analyzed, and impedance bandwidths of up to 14.7% are achieved. Selected element designs...

  20. Multi-layer solid-phase extraction and evaporation-enrichment methods for polar organic chemicals from aqueous matrices.

    Science.gov (United States)

    Köke, Niklas; Zahn, Daniel; Knepper, Thomas P; Frömel, Tobias

    2018-03-01

    Analysis of polar organic chemicals in the aquatic environment is exacerbated by the lack of suitable and widely applicable enrichment methods. In this work, we assessed the suitability of a novel combination of well-known solid-phase extraction (SPE) materials in one cartridge as well as an evaporation method and for the enrichment of 26 polar model substances (predominantly log D evaporation method were investigated for the recovery and matrix effects of the model substances and analyzed with hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). In total, 65% of the model substances were amenable (> 10% recovery) to the mlSPE method with a mean recovery of 76% while 73% of the model substances were enriched with the evaporation method achieving a mean recovery of 78%. Target and non-target screening comparison of both methods with a frequently used reversed-phase SPE method utilizing "hydrophilic and lipophilic balanced" (HLB) material was performed. Target analysis showed that the mlSPE and evaporation method have pronounced advantages over the HLB method since the HLB material retained only 30% of the model substances. Non-target screening of a ground water sample with the investigated enrichment methods showed that the median retention time of all detected features on a HILIC system decreased in the order mlSPE (3641 features, median t R 9.7 min), evaporation (1391, 9.3 min), HLB (4414, 7.2 min), indicating a higher potential of the described methods to enrich polar analytes from water compared with HLB-SPE. Graphical abstract Schematic of the method evaluation (recovery and matrix effects) and method comparison (target and non-target analysis) of the two investigated enrichment methods for very polar chemicals in aqueousmatrices.

  1. Phase Equilibrium Calculations for Multi-Component Polar Fluid Mixtures with tPC-PSAFT

    DEFF Research Database (Denmark)

    Karakatsani, Eirini; Economou, Ioannis

    2007-01-01

    The truncated Perturbed-Chain Polar Statistical Associating Fluid Theory (tPC-PSAFT) is applied to a number of different mixtures, including binary, ternary and quaternary mixtures of components that differ substantially in terms of intermolecular interactions and molecular size. In contrast to m...

  2. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy

    Science.gov (United States)

    Ginsberg, Naomi S.; Davis, Jeffrey A.; Ballottari, Matteo; Cheng, Yuan-Chung; Bassi, Roberto; Fleming, Graham R.

    2011-01-01

    The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X-ray crystal structure. To do so, we measure a basis set of polarized 2D electronic spectra and isolate their absorptive components on account of the tensor relation between the light polarization sequences used to obtain them. This broadly applicable advance further enhances the acuity of polarized 2D electronic spectroscopy and provides a general means to initiate or feed back on the structural modeling of electronically-coupled chromophores in condensed phase systems, tightening the inferred relations between the spatial and electronic landscapes of ultrafast energy flow. We also discuss the pigment composition of CP29 in the context of light harvesting, energy channeling, and photoprotection within photosystem II. PMID:21321222

  3. Phase diagram of a polarized Fermi gas across a Feshbach resonance in a potential trap

    International Nuclear Information System (INIS)

    Yi, W.; Duan, L.-M.

    2006-01-01

    We map out the detailed phase diagram of a trapped ultracold Fermi gas with population imbalance across a wide Feshbach resonance. We show that under the local density approximation, the properties of the atoms in any (anisotropic) harmonic traps are universally characterized by three dimensionless parameters: the normalized temperature, the dimensionless interaction strength, and the population imbalance. We then discuss the possible quantum phases in the trap, and quantitatively characterize their phase boundaries in various typical parameter regions

  4. Formation of tilted smectic-C liquid crystal phase in polar Gay-Berne molecules

    International Nuclear Information System (INIS)

    Saha, J.; Bose, T.R.; Ghosh, D.; Saha, M.

    2005-01-01

    We perform molecular dynamics simulation for a system of Gay-Berne molecules having two terminal dipole moments to generate tilted smectic-C liquid crystal phase. We investigate the effect of dipolar orientation with respect to the long molecular axis on phase behaviour. The study indicates that larger dipolar angle can give rise to greater tilt in molecular organization within a layer

  5. Investigation of the paramagnetic phase of bcc iron using polarized neutron scattering

    International Nuclear Information System (INIS)

    Wicksted, J.P.; Shirane, G.; Steinsvoll, O.

    1983-01-01

    Recent neutron scattering experiments on Ni and Fe (4%-Si) above T/sub c/ have demonstrated that a simple paramagnetic scattering function S(Qω) proportional to 1/(kappa 1 2 + q 2 ).GAMMA/(GAMMA 2 + ω 2 ) can explain the persistent spin wave ridges previously reported by Lynn and Mook. We present our new polarized beam results on pure Fe and describe in some detail the special problems associated with the unpolarized beam studies of magnetic cross sections at high temperatures

  6. Organic high ionic strength aqueous two-phase solvent system series for separation of ultra-polar compounds by spiral high-speed counter-current chromatography

    Science.gov (United States)

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2011-01-01

    Existing two-phase solvent systems for high-speed countercurrent chromatography cover the separation of hydrophobic to moderately polar compounds, but often fail to provide suitable partition coefficient values for highly polar compounds such as sulfonic acids, catecholamines and zwitter ions. The present paper introduces a new solvent series which can be applied for the separation of these polar compounds. It is composed of 1-butanol, ethanol, saturated ammonium sulfate and water at various volume ratios and consists of a series of 10 steps which are arranged according to the polarity of the solvent system so that the two-phase solvent system with suitable K values for the target compound(s) can be found in a few steps. Each solvent system gives proper volume ratio and high density difference between the two phases to provide a satisfactory level of retention of the stationary phase in the spiral column assembly. The method is validated by partition coefficient measurement of four typical polar compounds including methyl green (basic dye), tartrazine (sulfonic acid), tyrosine (zwitter ion) and epinephrine (a catecholamine), all of which show low partition coefficient values in the polar 1-butanol-water system. The capability of the method is demonstrated by separation of three catecholamines. PMID:22033108

  7. Optimized phases for the acquisition of J-spectra in coupled spin systems for thermally and PHIP polarized molecules.

    Science.gov (United States)

    Bussandri, S; Prina, I; Acosta, R H; Buljubasich, L

    2018-04-01

    We demonstrate that the relative phases in the refocusing pulses of multipulse sequences can compensate for pulse errors and off-resonant effects, which are commonly encountered in J-spectroscopy when CPMG is used for acquisition. The use of supercycles has been considered many times in the past, but always from the view point of time-domain NMR, that is, in an effort to lengthen the decay of the magnetization. Here we use simple spin-coupled systems, in which the quantum evolution of the system can be simulated and contrasted to experimental results. In order to explore fine details, we resort to partial J-spectroscopy, that is, to the acquisition of J-spectra of a defined multiplet, which is acquired with a suitable digital filter. We unambiguously show that when finite radiofrequency pulses are considered, the off-resonance effects on nearby multiplets affects the dynamics of the spins within the spectral window under acquisition. Moreover, the most robust phase cycling scheme for our setup consists of a 4-pulse cycle, with phases yyyy‾ or xxxx‾ for an excitation pulse with phase x. We show simulated and experimental results in both thermally polarized and PHIP hyperpolarized systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Stress-induced phase sensitivity of small diameter polarization maintaining solid-core photonic crystal fibre

    Science.gov (United States)

    Zhang, Zhihao; Zhang, Chunxi; Xu, Xiaobin

    2017-09-01

    Small diameter (cladding and coating diameter of 100 and 135 μm) polarization maintaining photonic crystal fibres (SDPM-PCFs) possess many unique properties and are extremely suitable for applications in fibre optic gyroscopes. In this study, we have investigated and measured the stress characteristics of an SDPM-PCF using the finite-element method and a Mach-Zehnder interferometer, respectively. Our results reveal a radial and axial sensitivity of 0.315 ppm/N/m and 25.2 ppm per 1 × 105 N/m2, respectively, for the SDPM-PCF. These values are 40% smaller than the corresponding parameters of conventional small diameter (cladding and coating diameter of 80 and 135 μm) panda fibres.

  9. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  10. On the polarization dynamics in the presence of flexoelectricity and morphotropic phase boundary in ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, S. A., E-mail: pikin@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    It is shown that anomalous piezoelectric properties of epitaxial nanostructures arise on the morphotropic phase boundary (MPB) due to the strong flexoelectric effect on dislocation walls. The MPB (typical of many materials) exhibits a coexistence of various phases and partition of these phases to minimum sizes. This minimum size l{sub c} (nanoscale) is found using the dislocation theory; it coincides with the distance between individual dislocations in dislocation walls, which is much larger than the Burgers vector b, regardless of the type of crystalline material. The flexoelectric coefficients f are estimated taking into account dimensional relations and experimental data on the rotations of ferroelectric nanodomains in multiferroics. These estimates coincide with classical values. The critical value l{sub c} ~ 10b specifies the measured dependence on the dielectric susceptibility χ{sub e}, f ~ χ{sub e}{sup 1/2}. The quantity χ{sub e} depends on the frequency of the ac electric field applied to a sample and on the dislocation density. The Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}/Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic composite shows typical frequency dispersion of χ{sub e} in a wide frequency range. The frequency dependence of flexoelecric coefficients is shown to reproduce the frequency dependence of permittivity at high frequencies.

  11. Retention prediction of highly polar ionizable solutes under gradient conditions on a mixed-mode reversed-phase and weak anion-exchange stationary phase.

    Science.gov (United States)

    Balkatzopoulou, P; Fasoula, S; Gika, H; Nikitas, P; Pappa-Louisi, A

    2015-05-29

    In the present work the retention of three highly polar and ionizable solutes - uric acid, nicotinic acid and ascorbic acid - was investigated on a mixed-mode reversed-phase and weak anion-exchange (RP/WAX) stationary phase in buffered aqueous acetonitrile (ACN) mobile phases. A U-shaped retention behavior was observed for all solutes with respect to the eluent organic modifier content studied in a range of 5-95% (v/v). This retention behavior clearly demonstrates the presence of a HILIC-type retention mechanism at ACN-rich hydro-organic eluents and an RP-like retention at aqueous-rich hydro-organic eluents. Hence, this column should be promising for application under both RP and HILIC gradient elution modes. For this reason, a series of programmed elution runs were carried out with increasing (RP) and decreasing (HILIC) organic solvent concentration in the mobile phase. This dual gradient process was successfully modeled by two retention models exhibiting a quadratic or a cubic dependence of the logarithm of the solute retention factor (lnk) upon the organic modifier volume fraction (φ). It was found that both models produced by gradient retention data allow the prediction of solute retention times for both types of programmed elution on the mixed-mode column. Four, in the case of the quadratic model, or five, in the case of the cubic model, initial HILIC- and RP-type gradient runs gave satisfactory retention predictions of any similar kind elution program, even with different flow rate, with an overall error of only 2.5 or 1.7%, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. INFLUENCE OF POLARIZATION MODE DISPERSION ON THE EFFECT OF CROSS-PHASE MODULATION IN INTENSITY MODULATION-DIRECT DETECTION WDM TRANSMISSION SYSTEM

    Directory of Open Access Journals (Sweden)

    M S Islam

    2010-03-01

    Full Text Available Cross-phase modulation (XPM changes the state-of-polarization (SOP of the channels through nonlinear polarization rotation and induces nonlinear time dependent phase shift for polarization components that leads to amplitude modulation of the propagating waves in a wavelength division multiplexing (WDM system. Due to the presence of birefringence, the angle between the SOP changes randomly and as a result polarization mode dispersion (PMD causes XPM modulation amplitude fluctuation random in the perturbed channel. In this paper we analytically determine the probability density function of the random angle between the SOP of pump and probe, and evaluate the impact of polarization mode dispersion on XPM in terms of bit error rate, channel spacing etc for a two channel intensity modulation-direct detection WDM system at 10 Gb/s. It is found that the XPM induced crosstalk is polarization independent for channel spacing greater than 3 nm or PMD coefficient larger than 2 ps/√km. We also investigate the dependence of SOP variance on PMD coefficient and channel spacing.

  13. An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection

    Directory of Open Access Journals (Sweden)

    L. Rosenqvist

    2007-03-01

    Full Text Available The shock arrival of an Interplanetary Coronal Mass Ejection (ICME at ~09:50 UT on 22 November 1997 resulted in the development of an intense (Dst<−100 nT geomagnetic storm at Earth. In the early, quiet phase of the storm, in the sheath region of the ICME, an unusual large spiral structure (diameter of ~1000 km was observed at very high latitudes by the Polar UVI instrument. The evolution of this structure started as a polewardly displaced auroral bulge which further developed into the spiral structure spreading across a large part of the polar cap. This study attempts to examine the cause of the chain of events that resulted in the giant auroral spiral. During this period the interplanetary magnetic field (IMF was dominantly northward (Bz>25 nT with a strong duskward component (By>15 nT resulting in a highly twisted tail plasma sheet. Geotail was located at the equatorial dawnside magnetotail flank and observed accelerated plasma flows exceeding the solar wind bulk velocity by almost 60%. These flows are observed on the magnetosheath side of the magnetopause and the acceleration mechanism is proposed to be typical for strongly northward IMF. Identified candidates to the cause of the spiral structure include a By induced twisted magnetotail configuration, the development of magnetopause surface waves due to the enhanced pressure related to the accelerated magnetosheath flows aswell as the formation of additional magnetopause deformations due to external solar wind pressure changes. The uniqeness of the event indicate that most probably a combination of the above effects resulted in a very extreme tail topology. However, the data coverage is insufficient to fully investigate the physical mechanism behind the observations.

  14. Features of the low-frequency polarization response in the region of the ferroelectric phase transition in multiferroic TbMnO.sub.3./sub.

    Czech Academy of Sciences Publication Activity Database

    Trepakov, Vladimír; Kvyatkovskii, O.E.; Savinov, Maxim; Dejneka, Alexandr; Wang, X.; Cheong, S.W.

    2016-01-01

    Roč. 58, č. 10 (2016), s. 2021-2026 ISSN 1063-7834 Institutional support: RVO:68378271 Keywords : low-frequency * polarization response * ferroelectric, phase * transition * multiferroic * TbMnO 3 Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.860, year: 2016

  15. Evaluation of chromatographic conditions in reversed phase liquid chromatography-mass spectrometry systems for fingerprinting of polar and amphiphilic plant metabolites

    DEFF Research Database (Denmark)

    Nielsen, Nikoline Juul; Tomasi, Giorgio; Christensen, Jan H.

    2016-01-01

    Metabolic fingerprinting is a relatively young scientific discipline requiring robust, yet flexible and fit-for-purpose analytical methods. Here, we introduce a simple approach to select reversed phase LC systems with electrospray MS detection for fingerprinting of polar and amphiphilic plant met...

  16. An on-line normal-phase high performance liquid chromatography method for the rapid detection of radical scavengers in non-polar food matrixes

    NARCIS (Netherlands)

    Zhang, Q.; Klift, van der E.J.C.; Janssen, H.G.; Beek, van T.A.

    2009-01-01

    An on-line method for the rapid pinpointing of radical scavengers in non-polar mixtures like vegetable oils was developed. To avoid problems with dissolving the sample, normal-phase chromatography on bare silica gel was used with mixtures of hexane and methyl tert-butyl ether as the eluent. The high

  17. Liquid crystalline phases in suspensions of pigments in non-polar solvents

    Science.gov (United States)

    Klein, Susanne; Richardson, Robert M.; Eremin, Alexey

    We will discuss colloid suspensions of pigments and compare their electro-optic properties with those of traditional dyed low molecular weight liquid crystal systems. There are several potential advantages of colloidal suspensions over low molecular weight liquid crystal systems: a very high contrast because of the high orientational order parameter of suspensions of rod shaped nano-particles, the excellent light fastness of pigments as compared to dyes and high colour saturations resulting from the high loading of the colour stuff. Although a weak `single-particle' electro-optic response can be observed in dilute suspensions, the response is very much enhanced when the concentration of the particles is sufficient to lead to a nematic phase. Excellent stability of suspensions is beneficial for experimental observation and reproducibility, but it is a fundamental necessity for display applications. We therefore discuss a method to achieve long term stability of dispersed pigments and the reasons for its success. Small angle X-ray scattering was used to determine the orientational order parameter of the suspensions as a function of concentration and the dynamic response to an applied electric field. Optical properties were investigated for a wide range of pigment concentrations. Electro-optical phenomena, such as field-induced birefringence and switching, were characterised. In addition, mixtures of pigment suspensions with small amounts of ferrofluids show promise as future magneto-optical materials.

  18. Scanning force microscopy study of phase segregation in fuel cell membrane materials as a function of solvent polarity and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, Marilyn Emily [Los Alamos National Laboratory; Kim, Yu S [Los Alamos National Laboratory; Hjelm, Rex P [Los Alamos National Laboratory

    2010-01-01

    Scanning force microscopy (SFM) phase imaging provides a powerful method for directly studying and comparing phase segregation in fuel cell membrane materials due to different preparation and under different temperature and hwnidity exposures. In this work, we explored two parameters that can influence phase segregation: the properties of the solvents used in casting membrane films and how these solvents alter phase segregation after exposure to boiling water as a function of time. SFM was used under ambient conditions to image phase segregation in Nafion samples prepared using five different solvents. Samples were then subjected to water vapor maintained at 100C for periods ranging from 30 minutes to three hours and re-imaged using the same phase imaging conditions. SFM shows what appears to be an increase in phase segregation as a function of solvent polarity that changes as a function of water exposure.

  19. Cross polarization with phase and amplitude modulation of radio frequency fields in NMR-experiments with sample rotation at magic angle

    International Nuclear Information System (INIS)

    Dvinskij, S.V.; Chizhik, V.I.

    2006-01-01

    One analyzes cross polarization of nuclei within a rotating system of coordinates as applied to the NMR-experiments with a specimen rotation under the magic angle. One worded a concept of simultaneous phase and amplitude modulation according to which the Hamiltonian form of the restored dipole interaction persisted if inversion of difference of radiofrequency field amplitudes occurred simultaneously with phase inversion. One presents a theoretical substantiation in terms of the average Hamiltonian theory. The concept is demonstrated both experimentally and by means of numerical analysis for a number of special cases. Phase periodic inversion in cross polarized experiments is shown to result into practically important advantage of suppression of interactions of chemical shift and influence of effects of coarse adjustment of radiofrequency field parameters [ru

  20. Reanalyses of the radiation belt electron phase space density using nearly equatorial CRRES and polar-orbiting Akebono satellite observations

    Science.gov (United States)

    Ni, Binbin; Shprits, Yuri; Nagai, Tsugunobu; Thorne, Richard; Chen, Yue; Kondrashov, Dmitri; Kim, Hee-jeong

    2009-05-01

    Data assimilation techniques provide algorithms that allow for blending of incomplete and inaccurate data with physics-based dynamic models to reconstruct the electron phase space density (PSD) in the radiation belts. In this study, we perform reanalyses of the radial PSD profile using two independent data sources from the nearly equatorial CRRES Medium Electron A (MEA) observations and the polar-orbiting Akebono Radiation Monitor (RDM) measurements for a 50-day period from 18 August to 6 October 1990. We utilize the University of California, Los Angeles, One-Dimensional Versatile Electron Radiation Belt (UCLA 1-D VERB) code and a Kalman filtering approach. Comparison of the reanalyses obtained independently using the CRRES MEA and Akebono RDM measurements shows that the dynamics of the PSD can be accurately reconstructed using Kalman filtering even when available data are sparse, inaccurate, and contaminated by random errors. The reanalyses exhibit similarities in the locations and magnitudes of peaks in radial profiles of PSD and the rate and radial extent of the dropouts during storms. This study shows that when unidirectional data are not available, pitch angle averaged flux measurements can be used to infer the long-term behavior (climatology) of the radiation belts. The methodology of obtaining PSD from pitch angle averaged and unidirectional fluxes using the Tsyganenko and Stern (1996) magnetic field model is described in detail.

  1. Evaluation of the truncated perturbed chain-polar statistical associating fluid theory for complex mixture fluid phase equilibria

    DEFF Research Database (Denmark)

    Karakatsani, Eirini; Kontogeorgis, Georgios; Economou, Ioannis

    2006-01-01

    Perturbed chain-statistical associating fluid theory (PC-SAFT) was extended rigorously to polar fluids based on the theory of Stell and co-workers [Mol. Phys. 1977, 33, 987]. The new PC-PSAFT was simplified to truncated PC-PSAFT (tPC-PSAFT) so that it can be practical for real polar fluid...

  2. Giant thermally-enhanced electrostriction and polar surface phase in L a2M o2O9 oxygen ion conductors

    Science.gov (United States)

    Li, Qian; Lu, Teng; Schiemer, Jason; Laanait, Nouamane; Balke, Nina; Zhang, Zhan; Ren, Yang; Carpenter, Michael A.; Wen, Haidan; Li, Jiangyu; Kalinin, Sergei V.; Liu, Yun

    2018-04-01

    Ferroelectrics possess spontaneous electric polarization at macroscopic scales which nonetheless imposes strict limitations on the material classes. Recent discoveries of untraditional symmetry-breaking phenomena in reduced material dimensions have indicated feasibilities to extend polar properties to broader types of materials, potentially opening up the freedom for designing materials with hybrid functionalities. Here, we report the unusual electromechanical properties of L a2M o2O9 (LAMOX) oxygen ion conductors, systematically investigated at both bulk and surface length levels. We first observed giant electrostriction effects in L a2M o2O9 bulk ceramics that are thermally enhanced in concert with their low-energy oxygen-vacancy hopping dynamics. Moreover, while no clear bulk polarization was detected, the surface phases of LAMOX were found to be manifestly polar, likely originating from the coupling between the intrinsic structural flexibilities with strain gradients (i.e., flexoelectricity) and/or chemical heterogeneities present in the materials. These findings identify L a2M o2O9 as a promising electromechanical material system and suggest that the flexible structural and chemical configurations in ionically active materials could enable fundamentally different venues to accommodate electric polarization.

  3. Marine target detection in quad-pol synthetic aperture radar imagery based on the relative phase of cross-polarized channels

    Science.gov (United States)

    Wang, Yunhua; Li, Huimin; Zhang, Yanmin; Guo, Lixin

    2015-01-01

    A focus on marine target detection in noise corrupted fully polarimetric synthetic aperture radar (SAR) is presented. The property of the relative phase between two cross-polarized channels reveals that the relative phases evaluated within sea surface area or noise corrupted area are widely spread phase angle region [-π,π] due to decorrelation effect; however, the relative phases are concentrated to zero and ±π for real target and its first-order azimuth ambiguities (FOAAs), respectively. Exploiting this physical behavior, the reciprocal of the mean square value of the relative phase (RMSRP) is defined as a new parameter for target detection, and the experiments based on fully polarimetric Radarsat-2 SAR images show that the strong noise and the FOAAs can be effectively suppressed in RMSRP image. Meanwhile, validity of the new parameter for target detection is also verified by two typical Radarsat-2 SAR images, in which targets' ambiguities and strong noise are present.

  4. Drug uptake (DAPI) of trypanosomes (T. brucei) and antitrypanosomal activity in vitro, in culture and in vivo studied by microscope fluorometry, chromatogram spectrophotometry and radiotracer techniques

    International Nuclear Information System (INIS)

    Kratzer, R.D.

    1982-01-01

    The present study had the following objectives: 1) Investigation of the specific binding and location of the diamidine DAPI within trypanosomes by fluorescence microscopy. 2) Development and standardization of a microscope fluorometry technique for measuring DAPI uptake of single trypanosomes. 3) Determination of the effect of incubation media, exposure time, and drug concentration on DAPI uptake of single trypanosomes. 4) Development of a technique applicable for quantitative fluorescence chemical analysis of DAPI uptake of trypanosomes. 5) Determination of drug uptake of trypanosomes using 14 C labelled DAPI. 6) Comparison of the values obtained by the three methods. (orig./MG)

  5. ELECTROMAGNETIC SCATTERING AND ANTENNA TECHNOLOGY (EMSAT) Task Order 0003: Design of a Circularly Polarized, 20 60 GHZ Active Phased Array for Wide Angle Scanning

    Science.gov (United States)

    2017-08-08

    previously published linear -to-circular polarizers. This is because the first sheet has a low inductance in the -direction, which acts as a wire-grid...GHZ Active Phased Array for Wide Angle Scanning Carl R. Pfeiffer Defense Engineering Corporation Boris Tomasic Multispectral Sensing and...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62204F/61102F 6. AUTHOR(S) Carl R. Pfeiffer (Defense Engineering Corporation) Boris Tomasic (AFRL

  6. Short- and long-range polar order contributions to the Ferroelectric phase of Ca.sup.2+./sup. doped SrTiO.sub.3./sub.

    Czech Academy of Sciences Publication Activity Database

    Markovin, P.A.; Trepakov, Vladimír; Guzhva, M.E.; Razdobarin, A.G.; Tagantsev, A. K.; Andreev, D. A.; Dejneka, Alexandr

    2016-01-01

    Roč. 3, č. 11 (2016), s. 1-12, č. článku 115705. ISSN 2053-1591 R&D Projects: GA ČR GA15-13778S Institutional support: RVO:68378271 Keywords : quantum paraelectrics * impurities and defects * low-temperature polar state * ferroelectric phase * long-range order * short-range Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.068, year: 2016

  7. Experimental Evidence on the Dependence of the Standard GPS Phase Scintillation Index on the Ionospheric Plasma Drift Around Noon Sector of the Polar Ionosphere

    Science.gov (United States)

    Wang, Y.; Zhang, Q.-H.; Jayachandran, P. T.; Moen, J.; Xing, Z.-Y.; Chadwick, R.; Ma, Y.-Z.; Ruohoniemi, J. M.; Lester, M.

    2018-03-01

    First experimental proof of a clear and strong dependence of the standard phase scintillation index (σφ) derived using Global Positioning System measurements on the ionospheric plasma flow around the noon sector of polar ionosphere is presented. σφ shows a strong linear dependence on the plasma drift speed measured by the Super Dual Auroral Radar Network radars, whereas the amplitude scintillation index (S4) does not. This observed dependence can be explained as a consequence of Fresnel frequency dependence of the relative drift and the used constant cutoff frequency (0.1 Hz) to detrend the data for obtaining standard σφ. The lack of dependence of S4 on the drift speed possibly eliminates the plasma instability mechanism(s) involved as a cause of the dependence. These observations further confirm that the standard phase scintillation index is much more sensitive to plasma flow; therefore, utmost care must be taken when identifying phase scintillation (diffractive phase variations) from refractive (deterministic) phase variations, especially in the polar region where the ionospheric plasma drift is much larger than in equatorial and midlatitude regions.

  8. Effect of the compressive stress on both polarization rotation and phase transitions in PMN-30%PT single crystal

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2014-05-01

    Full Text Available In this paper, we have investigated the dependence of both the electromechanical effect and the electrostriction on the compressive stress in PMN-30%PT single crystal on the basis of single domain polarization rotation model. In the model, the electroelastic energy induced by the compressive stress is taken into account. The results have demonstrated that the compressive stress can lead to a significant change in the initial polarization state in the crystal. The reason lies in the stress induced anisotropy which is the coupling between the compressive stress and the electrostrictive coefficients. Thus, the initial polarization state in single crystal is determined by the combination of both electrocrystalline anisotropy and the stress induced anisotropy. The compressive stress along the [100] axis can make the polarization in the crystal be perpendicular to the stress direction, and make it difficult to be polarized to the saturation. This model is useful for better understanding both the polarization rotation and electromechanical effect in ferroelectric crystals with the compressive stress present.

  9. High-performance liquid chromatographic separations of stereoisomers of chiral basic agrochemicals with polysaccharide-based chiral columns and polar organic mobile phases.

    Science.gov (United States)

    Matarashvili, Iza; Shvangiradze, Iamze; Chankvetadze, Lali; Sidamonidze, Shota; Takaishvili, Nino; Farkas, Tivadar; Chankvetadze, Bezhan

    2015-12-01

    The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide-based chiral columns in high-performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    Science.gov (United States)

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  11. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.

    2014-01-01

    We experimentally demonstrate the generation of 1.024-Tb/s Nyquist-WDM phase-conjugated vector twin waves (PCTWs), consisting of eight 128-Gb/s polarization-division-multiplexed QPSK signals and their idlers, by a broadband polarization-insensitive fiber optic parametric amplifier. This novel all...

  12. Switchable polarity solvent for liquid phase microextraction of Cd(II) as pyrrolidinedithiocarbamate chelates from environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Erkan, E-mail: kimyager_erkan@hotmail.com; Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr

    2015-07-30

    A switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO{sub 2} (Dry ice) via proton transfer reaction has been used for the microextraction of cadmium(II) as pyrrolidinedithiocarbamate (APDC) chelate. Cd(II)-APDC chelate was extracted into the switchable polarity solvent drops by adding 2 mL 10 M sodium hydroxide solution. Analytical parameters affecting the complex formation and microextraction efficiency such as pH, amount of ligand, volume of switchable polarity solvent and NaOH, sample volume were optimized. The effects of foreign ions were found tolerably. Under optimum conditions, the detection limit was 0.16 μg L{sup −1} (3Sb/m, n = 7) and the relative standard deviation was 5.4% (n = 7). The method was validated by the analysis of certified reference materials (TMDA-51.3 fortified water, TMDA-53.3 fortified water and SPS-WW2 waste water, 1573a Tomato Leaves and Oriental Basma Tobacco Leaves (INCT-OBTL-5)) and addition/recovery tests. The method was successfully applied to determination of cadmium contents of water, vegetable, fruit and cigarette samples. - Highlights: • Switchable polarity solvent was synthesized from triethylamine (TEA)/water/CO{sub 2}. • The switchable polarity solvent has been used for the microextraction of cadmium(II). • The important factors were optimized. • The method was applied to determination of cadmium in real samples.

  13. Third phase formation in organic solutions in the extraction of mono-acids by tertiary trialcoyl-amines diluted in very slightly polar organic solvents

    International Nuclear Information System (INIS)

    Robaglia, Michele

    1973-01-01

    The phenomena of third phase formation which can occur during the extraction of an acid with a tertiary amine diluted in a low polarity diluent are studied. In the first part a system including water (TnOA - C 6 H 12 - HCl - H 2 O) is compared with an anhydrous system (TnOA - C 6 H 12 - HCl - N 2 ). There are two kinds of gaps. One during amine salification, another one during the extraction of excess acid. The important part of the water content of the organic phase is demonstrated. The presence of water enhances the gaps. The polar water molecules are dissolved inside the tri-octylamine salt micelles. The heavy phase is formed by aggregates, the light phase represents the solubility of the non soluble species in the medium. In the second part are studied the influence of some parameters (like nature of diluent, acid, amine and temperature) on the gaps formation and on the extraction of excess acid and water. In every cases the part played by water remains the same. Finally some comparisons are made between tertiary systems and binary systems which formed them. The binary systems were studied by the mean of crystallization curves. (author) [fr

  14. Formation and stability of Pb-, Zn- and Cu-PO4 phases at low temperatures: Implications for heavy metal fixation in polar environments

    International Nuclear Information System (INIS)

    White, Duanne A.; Hafsteinsdóttir, Erla G.; Gore, Damian B.; Thorogood, Gordon; Stark, Scott C.

    2012-01-01

    Low temperatures and frequent soil freeze–thaw in polar environments present challenges for the immobilisation of metals. To address these challenges we investigated the chemical forms of Pb, Zn and Cu in an Antarctic landfill, examined in vitro reaction kinetics of these metals and orthophosphate at 2 and 22 °C for up to 185 days, and subjected the products to freeze–thaw. Reaction products at both temperatures were similar, but the rate of production varied, with Cu-PO 4 phases forming faster, and the Zn- and Pb-PO 4 phases slower at 2 °C. All metal-orthophosphate phases produced were stable during a 2.5 h freeze–thaw cycle to −30 °C. Metal immobilisation using orthophosphate can be successful in polar regions, but treatments will need to consider differing mineral stabilities and reaction rates at low temperatures. - Highlights: ► We identify Cu, Pb and Zn species in an Antarctic Landfill. ► We identify the products and rates of reactions between metals and PO 4 3− at 2 and 22 °C. ► We test the stability of metal-orthophosphate species during freeze–thaw. ► We conclude that orthophosphate may immobilize metals in freezing ground. - Pb, Cu and Zn react with PO 4 3− at low temperatures (2 °C) to form low solubility metal-PO 4 phases at rates that may enable the in-situ remediation of metal contaminated soils in polar areas.

  15. Solid-Phase Microextraction Coupled to Capillary Atmospheric Pressure Photoionization-Mass Spectrometry for Direct Analysis of Polar and Nonpolar Compounds.

    Science.gov (United States)

    Mirabelli, Mario F; Zenobi, Renato

    2018-04-17

    A novel capillary ionization source based on atmospheric pressure photoionization (cAPPI) was developed and used for the direct interfacing between solid-phase microextraction (SPME) and mass spectrometry (MS). The efficiency of the source was evaluated for direct and dopant-assisted photoionization, analyzing both polar (e.g., triazines and organophosphorus pesticides) and nonpolar (polycyclic aromatic hydrocarbons, PAHs) compounds. The results show that the range of compound polarity, which can be addressed by direct SPME-MS can be substantially extended by using cAPPI, compared to other sensitive techniques like direct analysis in real time (DART) and dielectric barrier discharge ionization (DBDI). The new source delivers a very high sensitivity, down to sub parts-per-trillion (ppt), making it a viable alternative when compared to previously reported and less comprehensive direct approaches.

  16. Quaternion Approach to Solve Coupled Nonlinear Schrödinger Equation and Crosstalk of Quarter-Phase-Shift-Key Signals in Polarization Multiplexing Systems

    International Nuclear Information System (INIS)

    Liu Lan-Lan; Wu Chong-Qing; Wang Jian; Gao Kai-Qiang; Shang Chao

    2015-01-01

    The quaternion approach to solve the coupled nonlinear Schrödinger equations (CNSEs) in fibers is proposed, converting the CNSEs to a single variable equation by using a conception of eigen-quaternion of coupled quaternion. The crosstalk of quarter-phase-shift-key signals caused by fiber nonlinearity in polarization multiplexing systems with 100 Gbps bit-rate is investigated and simulated. The results demonstrate that the crosstalk is like a rotated ghosting of input constellation. For the 50 km conventional fiber link, when the total power is less than 4 mW, the crosstalk effect can be neglected; when the power is larger than 20 mW, the crosstalk is very obvious. In addition, the crosstalk can not be detected according to the output eye diagram and state of polarization in Poincaré sphere in the trunk fiber, making it difficult for the monitoring of optical trunk link. (paper)

  17. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  18. In vitro biomonitoring in polar extracts of solid phase matrices reveals the presence of unknown compounds with estrogenic activity

    NARCIS (Netherlands)

    Legler, J.; Leonards, P.E.G.; Spenkelink, A.; Murk, A.J.

    2003-01-01

    Determination of estrogenic activity has so far mainly concentrated on the assessment of compounds in surface water and effluent. This study is one of the first to biomonitor (xeno-)estrogens in sediment, suspended particulate matter and aquatic organisms. The relatively polar acetone extracts from

  19. Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction

    Energy Technology Data Exchange (ETDEWEB)

    Fiscal-Ladino, Jhon A.; Obando-Ceballos, Mónica; Rosero-Moreano, Milton [Grupo de Investigación en Cromatografía y Técnicas Afines GICTA, Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales (Colombia); Montaño, Diego F.; Cardona, Wilson; Giraldo, Luis F. [Química de Plantas Colombianas, Instituto de Química, Escuela de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, A.A, 1226, Medellín (Colombia); Richter, Pablo, E-mail: prichter@ciq.uchile.cl [Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago (Chile)

    2017-02-08

    Montmorillonite (MMT) clays were modified by the intercalation into their galleries of ionic liquids (IL) based on imidazolium quaternary ammonium salts. This new eco-materials exhibited good features for use as a sorptive phase in the extraction of low-polarity analytes from aqueous samples. Spectroscopic analyses of the modified clays were conducted and revealed an increase in the basal spacing and a shifting of the reflection plane towards lower values as a consequence of the effective intercalation of organic cations into the MMT structure. The novel sorbent developed herein was assayed as the sorptive phase in rotating-disk sorptive extraction (RDSE), using polychlorinated biphenyls (PCBs), representative of low-polarity pollutants, as model analytes. The final determination was made by gas chromatography with electron capture detection. Among the synthetized sorptive phases, the selected system for analytical purposes consisted of MMT modified with the 1-hexadecyl-3-methylimidazolium bromide (HDMIM-Br) IL. Satisfactory analytical features were achieved using a sample volume of 5 mL: the relative recoveries from a wastewater sample were higher than 80%, the detection limits were between 3 ng L{sup −1} and 43 ng L{sup −1}, the precision (within-run precision) expressed as the relative standard deviation ranged from 2% to 24%, and the enrichment factors ranged between 18 and 28. Using RDSE, the extraction efficiency achieved for the selected MMT-HDMIM-Br phase was compared with other commercial solid phases/supports, such as polypropylene, polypropylene with 1-octanol (as a supported liquid membrane), octadecyl (C18) and octyl (C8), and showed the highest response for all the studied analytes. Under the optimized extraction conditions, this new device was applied in the analysis of the influent of a wastewater treatment plant in Santiago (Chile), demonstrating its applicability through the good recoveries and precision achieved with real samples

  20. Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface.

    Science.gov (United States)

    Joshua, Arjun; Ruhman, Jonathan; Pecker, Sharon; Altman, Ehud; Ilani, Shahal

    2013-06-11

    Controlling the coupling between localized spins and itinerant electrons can lead to exotic magnetic states. A novel system featuring local magnetic moments and extended 2D electrons is the interface between LaAlO3 and SrTiO3. The magnetism of the interface, however, was observed to be insensitive to the presence of these electrons and is believed to arise solely from extrinsic sources like oxygen vacancies and strain. Here we show the existence of unconventional electronic phases in the LaAlO3/SrTiO3 system pointing to an underlying tunable coupling between itinerant electrons and localized moments. Using anisotropic magnetoresistance and anomalous Hall effect measurements in a unique in-plane configuration, we identify two distinct phases in the space of carrier density and magnetic field. At high densities and fields, the electronic system is strongly polarized and shows a response, which is highly anisotropic along the crystalline directions. Surprisingly, below a density-dependent critical field, the polarization and anisotropy vanish whereas the resistivity sharply rises. The unprecedented vanishing of the easy axes below a critical field is in sharp contrast with other coupled magnetic systems and indicates strong coupling with the moments that depends on the symmetry of the itinerant electrons. The observed interplay between the two phases indicates the nature of magnetism at the LaAlO3/SrTiO3 interface as both having an intrinsic origin and being tunable.

  1. Modified hybrid subcarrier/amplitude/ phase/polarization LDPC-coded modulation for 400 Gb/s optical transmission and beyond.

    Science.gov (United States)

    Batshon, Hussam G; Djordjevic, Ivan; Xu, Lei; Wang, Ting

    2010-06-21

    In this paper, we present a modified coded hybrid subcarrier/ amplitude/phase/polarization (H-SAPP) modulation scheme as a technique capable of achieving beyond 400 Gb/s single-channel transmission over optical channels. The modified H-SAPP scheme profits from the available resources in addition to geometry to increase the bandwidth efficiency of the transmission system, and so increases the aggregate rate of the system. In this report we present the modified H-SAPP scheme and focus on an example that allows 11 bits/Symbol that can achieve 440 Gb/s transmission using components of 50 Giga Symbol/s (GS/s).

  2. Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling.

    Science.gov (United States)

    Li, Q; Nelson, C T; Hsu, S-L; Damodaran, A R; Li, L-L; Yadav, A K; McCarter, M; Martin, L W; Ramesh, R; Kalinin, S V

    2017-11-13

    Flexoelectricity refers to electric polarization generated by heterogeneous mechanical strains, namely strain gradients, in materials of arbitrary crystal symmetries. Despite more than 50 years of work on this effect, an accurate identification of its coupling strength remains an experimental challenge for most materials, which impedes its wide recognition. Here, we show the presence of flexoelectricity in the recently discovered polar vortices in PbTiO 3 /SrTiO 3 superlattices based on a combination of machine-learning analysis of the atomic-scale electron microscopy imaging data and phenomenological phase-field modeling. By scrutinizing the influence of flexocoupling on the global vortex structure, we match theory and experiment using computer vision methodologies to determine the flexoelectric coefficients for PbTiO 3 and SrTiO 3 . Our findings highlight the inherent, nontrivial role of flexoelectricity in the generation of emergent complex polarization morphologies and demonstrate a viable approach to delineating this effect, conducive to the deeper exploration of both topics.

  3. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence.

    Science.gov (United States)

    Kashani, Fatemeh Dabbagh; Yousefi, Masoud

    2016-08-10

    In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs.

  4. High-precision broad-band linear polarimetry of early-type binaries. II. Variable, phase-locked polarization in triple Algol-type system λ Tauri

    Science.gov (United States)

    Berdyugin, A.; Piirola, V.; Sakanoi, T.; Kagitani, M.; Yoneda, M.

    2018-03-01

    Aim. To study the binary geometry of the classic Algol-type triple system λ Tau, we have searched for polarization variations over the orbital cycle of the inner semi-detached binary, arising from light scattering in the circumstellar material formed from ongoing mass transfer. Phase-locked polarization curves provide an independent estimate for the inclination i, orientation Ω, and the direction of the rotation for the inner orbit. Methods: Linear polarization measurements of λ Tau in the B, V , and R passbands with the high-precision Dipol-2 polarimeter have been carried out. The data have been obtained on the 60 cm KVA (Observatory Roque de los Muchachos, La Palma, Spain) and Tohoku 60 cm (Haleakala, Hawaii, USA) remotely controlled telescopes over 69 observing nights. Analytic and numerical modelling codes are used to interpret the data. Results: Optical polarimetry revealed small intrinsic polarization in λ Tau with 0.05% peak-to-peak variation over the orbital period of 3.95 d. The variability pattern is typical for binary systems showing strong second harmonic of the orbital period. We apply a standard analytical method and our own light scattering models to derive parameters of the inner binary orbit from the fit to the observed variability of the normalized Stokes parameters. From the analytical method, the average for three passband values of orbit inclination i = 76° + 1°/-2° and orientation Ω = 15°(195°) ± 2° are obtained. Scattering models give similar inclination values i = 72-76° and orbit orientation ranging from Ω = 16°(196°) to Ω = 19°(199°), depending on the geometry of the scattering cloud. The rotation of the inner system, as seen on the plane of the sky, is clockwise. We have found that with the scattering model the best fit is obtained for the scattering cloud located between the primary and the secondary, near the inner Lagrangian point or along the Roche lobe surface of the secondary facing the primary. The inclination i

  5. Toxicity estimates for diuron and atrazine for the tropical marine cnidarian Exaiptasia pallida and in-hospite Symbiodinium spp. using PAM chlorophyll-a fluorometry.

    Science.gov (United States)

    Howe, Pelli Louise; Reichelt-Brushett, Amanda Jean; Clark, Malcolm William; Seery, Cliff Ross

    2017-06-01

    Effective ecotoxicological risk assessments for herbicides in tropical marine environments are restricted by a lack of toxicity data, sensitive test methods and endpoints for relevant species, and this requires rectification. The symbiotic sea anemone Exaiptasia pallida is a suitable test species, representing the phylum Cnidaria and allowing for assessments of toxicological responses of both the animal host and in-hospite Symbiodinium spp. Pulse amplitude modulated (PAM) chlorophyll-a fluorometry is recognised as a valuable ecotoxicological tool, and here newly-developed test methods are presented using PAM fluorometry to measure herbicide effects on photosynthetic efficiency of in-hospite Symbiodinium spp. Additionally, measurements on healthy laboratory-reared E. pallida provide baseline data demonstrating the normal effective quantum yield (EQY) and the maximum electron transport rate (ETR m ) for Symbiodinium spp. in the absence of herbicide stress. Concentration-dependant reductions in the EQY and ETR m occurred during diuron and atrazine exposures; a mean 48-h EC50 (effective concentration; 50%) of 8μg/L of diuron was estimated, however atrazine elicited a much lower toxicity. Twelve-day exposures to 10-200μg/L diuron showed that the greatest EQY effect occurred during the first 48h, with little subsequent change. However, longer exposures to the lowest diuron treatment (1μg/L) showed the lowest EQYs after 96h followed by recovery to control levels within 12d. Furthermore, asexual reproduction was inhibited during 12-d exposures to diuron, and 12-d EC50 values of 100 and 132μg/L were estimated to inhibit successful reproduction of pedal lacerates and juveniles by 50% respectively. This study provides much needed data contributions to species sensitivity curves for development of diuron and atrazine water quality guidelines in tropical marine environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Novel amide polar-embedded reversed-phase column for the fast liquid chromatography-tandem mass spectrometry method to determine polyether ionophores in environmental waters.

    Science.gov (United States)

    Herrero, P; Borrull, F; Pocurull, E; Marcé, R M

    2012-11-09

    A fast chromatographic method has been developed that takes less than 5 min per run to determine five polyether ionophores with a novel amide polar-embedded reversed-phase column coupled to a triple quadrupole mass spectrometer. A comparison between Oasis HLB and Oasis MAX sorbents for the solid-phase extraction was done. Oasis HLB sorbent gave recoveries close to 90% and the repeatability (%RSD, 25-100 ng/L, n=3) of the method was less than 7% for all compounds in all matrices. The presence of polyether ionophores in environmental waters such as river water and sewage was investigated. Monensin and narasin were frequently determined in influent and effluent sewage at concentrations from 10 ng/L to 47 ng/L in influents and from 6 ng/L to 34 ng/L in effluents. In river waters, polyether ionophores were not detected in any sample. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Novel Microstrip Patch Antennas with Frequency Agility, Polarization Reconfigurability, Dual Null Steering Capability and Phased Array Antenna with Beam Steering Performance

    Science.gov (United States)

    Babakhani, Behrouz

    Nowadays the wireless communication technology is playing an important role in our daily life. People use wireless devices not only as a conventional communication device but also as tracking and navigation tool, web browsing tool, data storage and transfer tool and so for many other reasons. Based on the user demand, wireless communication engineers try to accommodate as many as possible wireless systems and applications in a single device and therefore, creates a multifunctional device. Antenna, as an integral part of any wireless communication systems, should also be evolved and adjusted with development of wireless transceiver systems. Therefore multifunctional antennas have been introduced to support and enhance the functionality on modern wireless systems. The main focus and contribution of this thesis is design of novel multifunctional microstrip antennas with frequency agility, polarization reconfigurablity, dual null steering capability and phased array antenna with beam steering performance. In this thesis, first, a wide bandwidth(1.10 GHz to 1.60 GHz) right-handed circularly polarized (RHCP) directional antenna for global positioning system (GPS) satellite receive application has been introduced which covers all the GPS bands starting from L1 to L5. This design consists of two crossed bow-tie dipole antennas fed with sequentially phase rotated feed network backed with an artificial high impedance surface (HIS) structure to generate high gain directional radiation patterns. This design shows good CP gain and axial ratio (AR) and wide beamwidth performance. Although this design has good radiation quality, the size and the weight can be reduced as future study. In the second design, a frequency agile antenna was developed which also covers the L-band (L1 to L5) satellite communication frequencies. This frequency agile antenna was designed and realized by new implementation of varactor diodes in the geometry of a circular patch antenna. Beside wide frequency

  8. Trace-level determination of polar flavour compounds in butter by solid-phase extraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Adahchour, M; Vreuls, R J; van der Heijden, A; Brinkman, U A

    1999-06-04

    Volatile compounds are responsible for the aromas of butter. A simple technique for the determination of these components is described which is based on solid-phase extraction (SPE) after melting of the butter and separation of the aqueous phase from the fat. Volatile flavours present in the water fraction are collected by off-line SPE on cartidges packed with a copolymer sorbent. After desorption with 500 microliters of methyl acetate, 1-microliter aliquots are quantified and/or identified by gas chromatography-mass spectrometry. The procedure was tested with respect to recovery, linearity and limit of detection in real-life samples using five polar model analytes. It allows the characterisation of polar flavour compounds in butter prior to and after heat treatment at 170 degrees C. From the five model compounds, vanillin, traces of diacetyl and maltol were found to be present in the butter samples. After heat treatment 500-1000-fold increased concentration of maltol, and substantial amounts of furaneol were detected.

  9. Polymeric Sorbent with Controlled Surface Polarity: An Alternate for Solid-Phase Extraction of Nerve Agents and Their Markers from Organic Matrix.

    Science.gov (United States)

    Roy, Kanchan Sinha; Purohit, Ajay Kumar; Chandra, Buddhadeb; Goud, D Raghavender; Pardasani, Deepak; Dubey, Devendra Kumar

    2018-06-05

    Extraction and identification of lethal nerve agents and their markers in complex organic background have a prime importance from the forensic and verification viewpoint of the Chemical Weapons Convention (CWC). Liquid-liquid extraction with acetonitrile and commercially available solid phase silica cartridges are extensively used for this purpose. Silica cartridges exhibit limited applicability for relatively polar analytes, and acetonitrile extraction shows limited efficacy toward relatively nonpolar analytes. The present study describes the synthesis of polymeric sorbents with tunable surface polarity, their application as a solid-phase extraction (SPE) material against nerve agents and their polar as well as nonpolar markers from nonpolar organic matrices. In comparison with the acetonitrile extraction and commercial silica cartridges, the new sorbent showed better extraction efficiency toward analytes of varying polarity. The extraction parameters were optimized for the proposed method, which included ethyl acetate as an extraction solvent and n-hexane as a washing solvent. Under optimized conditions, method linearity ranged from 0.10 to 10 μg mL -1 ( r 2 = 0.9327-0.9988) for organophosphorus esters and 0.05-20 μg mL -1 ( r 2 = 0.9976-0.9991) for nerve agents. Limits of detection (S:N = 3:1) in the SIM mode were found in the range of 0.03-0.075 μg mL -1 for organophosphorus esters and 0.015-0.025 μg mL -1 for nerve agents. Limits of quantification (S:N = 10:1) were found in the range of 0.100-0.25 μg mL -1 for organophosphorus esters and 0.05-0.100 μg mL -1 for nerve agents in the SIM mode. The recoveries of the nerve agents and their markers ranged from 90.0 to 98.0% and 75.0 to 95.0% respectively. The repeatability and reproducibility (with relative standard deviations (RSDs) %) for organophosphorus esters were found in the range of 1.35-8.61% and 2.30-9.25% respectively. For nerve agents, the repeatability range from 1.00 to 7.75% and reproducibility

  10. Instrumentation with polarized neutrons

    International Nuclear Information System (INIS)

    Boeni, P.; Muenzer, W.; Ostermann, A.

    2009-01-01

    Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.

  11. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    International Nuclear Information System (INIS)

    Wang Ziming; Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi; Ma Qiang; Lu Chunmei; Dong Deming

    2013-01-01

    Highlights: ► An absorbing microwave μ-SPE device packed with activated carbon was used. ► Absorbing microwave μ-SPE device was made and used to enrich the analytes. ► Absorbing microwave μ-SPE device was made and used to heat samples directly. ► MAE-μ-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 °C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC–MS without any clean-up process. The recoveries were in the range of 93.5–104.6%, and the relative standard deviations were lower than 8.7%.

  12. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ziming, E-mail: wangziming@jlu.edu.cn [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ma Qiang [Chinese Academy of Inspection and Quarantine, Beijing 100123 (China); Lu Chunmei [College of Technology Center, Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Dong Deming [College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer An absorbing microwave {mu}-SPE device packed with activated carbon was used. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to enrich the analytes. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to heat samples directly. Black-Right-Pointing-Pointer MAE-{mu}-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction ({mu}-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave {mu}-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in {mu}-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave {mu}-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 Degree-Sign C for 10 min. The extracts obtained by MAE-{mu}-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%.

  13. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides.

    Science.gov (United States)

    Wang, Ziming; Zhao, Xin; Xu, Xu; Wu, Lijie; Su, Rui; Zhao, Yajing; Jiang, Chengfei; Zhang, Hanqi; Ma, Qiang; Lu, Chunmei; Dong, Deming

    2013-01-14

    A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60°C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Anomalous tunneling of collective excitations and effects of superflow in the polar phase of a spin-1 spinor Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Watabe, Shohei; Ohashi, Yoji; Kato, Yusuke

    2011-01-01

    We investigate tunneling properties of collective modes in the polar phase of a spin-1 spinor Bose-Einstein condensate (BEC). This spinor BEC state has two kinds of gapless modes (i.e., Bogoliubov and spin-wave). Within the framework of mean-field theory at T=0, we show that these Goldstone modes exhibit perfect transmission in the low-energy limit. Their anomalous tunneling behavior still holds in the presence of superflow, except in the critical current state. In the critical current state, while the tunneling of Bogoliubov mode is accompanied by finite reflection, the spin wave still exhibits perfect transmission, unless the strengths of spin-dependent and spin-independent interactions take the same value. We discuss the relation between perfect transmission of a spin wave and underlying superfluidity through a comparison of wave functions of the spin wave and the condensate.

  15. Simultaneous Measurements of Chlorophyll Concentration by Lidar, Fluorometry, above-Water Radiometry, and Ocean Color MODIS Images in the Southwestern Atlantic.

    Science.gov (United States)

    Kampel, Milton; Lorenzzetti, João A; Bentz, Cristina M; Nunes, Raul A; Paranhos, Rodolfo; Rudorff, Frederico M; Politano, Alexandre T

    2009-01-01

    Comparisons between in situ measurements of surface chlorophyll-a concentration (CHL) and ocean color remote sensing estimates were conducted during an oceanographic cruise on the Brazilian Southeastern continental shelf and slope, Southwestern South Atlantic. In situ values were based on fluorometry, above-water radiometry and lidar fluorosensor. Three empirical algorithms were used to estimate CHL from radiometric measurements: Ocean Chlorophyll 3 bands (OC3M(RAD)), Ocean Chlorophyll 4 bands (OC4v4(RAD)), and Ocean Chlorophyll 2 bands (OC2v4(RAD)). The satellite estimates of CHL were derived from data collected by the MODerate-resolution Imaging Spectroradiometer (MODIS) with a nominal 1.1 km resolution at nadir. Three algorithms were used to estimate chlorophyll concentrations from MODIS data: one empirical - OC3M(SAT), and two semi-analytical - Garver, Siegel, Maritorena version 01 (GSM01(SAT)), and Carder(SAT). In the present work, MODIS, lidar and in situ above-water radiometry and fluorometry are briefly described and the estimated values of chlorophyll retrieved by these techniques are compared. The chlorophyll concentration in the study area was in the range 0.01 to 0.2 mg/m(3). In general, the empirical algorithms applied to the in situ radiometric and satellite data showed a tendency to overestimate CHL with a mean difference between estimated and measured values of as much as 0.17 mg/m(3) (OC2v4(RAD)). The semi-analytical GSM01 algorithm applied to MODIS data performed better (rmse 0.28, rmse-L 0.08, mean diff. -0.01 mg/m(3)) than the Carder and the empirical OC3M algorithms (rmse 1.14 and 0.36, rmse-L 0.34 and 0.11, mean diff. 0.17 and 0.02 mg/m(3), respectively). We find that rmsd values between MODIS relative to the in situ radiometric measurements are MODIS for the stations considered in this work. Other authors have already reported over and under estimation of MODIS remotely sensed reflectance due to several errors in the bio-optical algorithm

  16. Simultaneous Measurements of Chlorophyll Concentration by Lidar, Fluorometry, above-Water Radiometry, and Ocean Color MODIS Images in the Southwestern Atlantic

    Directory of Open Access Journals (Sweden)

    Cristina M. Bentz

    2009-01-01

    Full Text Available Comparisons between in situ measurements of surface chlorophyll-a concentration (CHL and ocean color remote sensing estimates were conducted during an oceanographic cruise on the Brazilian Southeastern continental shelf and slope, Southwestern South Atlantic. In situ values were based on fluorometry, above-water radiometry and lidar fluorosensor. Three empirical algorithms were used to estimate CHL from radiometric measurements: Ocean Chlorophyll 3 bands (OC3MRAD, Ocean Chlorophyll 4 bands (OC4v4RAD, and Ocean Chlorophyll 2 bands (OC2v4RAD. The satellite estimates of CHL were derived from data collected by the MODerate-resolution Imaging Spectroradiometer (MODIS with a nominal 1.1 km resolution at nadir. Three algorithms were used to estimate chlorophyll concentrations from MODIS data: one empirical - OC3MSAT, and two semi-analytical - Garver, Siegel, Maritorena version 01 (GSM01SAT, and CarderSAT. In the present work, MODIS, lidar and in situ above-water radiometry and fluorometry are briefly described and the estimated values of chlorophyll retrieved by these techniques are compared. The chlorophyll concentration in the study area was in the range 0.01 to 0.2 mg·m-3. In general, the empirical algorithms applied to the in situ radiometric and satellite data showed a tendency to overestimate CHL with a mean difference between estimated and measured values of as much as 0.17 mg/m3 (OC2v4RAD. The semi-analytical GSM01 algorithm applied to MODIS data performed better (rmse 0.28, rmse-L 0.08, mean diff. -0.01 mg/m3 than the Carder and the empirical OC3M algorithms (rmse 1.14 and 0.36, rmse-L 0.34 and 0.11, mean diff. 0.17 and 0.02 mg/m3, respectively. We find that rmsd values between MODIS relative to the in situ radiometric measurements are < 26%, i.e., there is a trend towards overestimation of RRS by MODIS for the stations considered in this work. Other authors have already reported over and under estimation of MODIS remotely sensed

  17. On-line solid-phase extraction coupled to hydrophilic interaction chromatography-mass spectrometry for the determination of polar drugs.

    Science.gov (United States)

    Fontanals, Núria; Marcé, Rosa M; Borrull, Francesc

    2011-09-02

    The present study describes the first fully automated method based on on-line solid-phase extraction (SPE) coupled to hydrophilic interaction chromatography-electrospray-mass spectrometry (HILIC-(ESI)MS) to determine a group of polar drugs that includes illicit drugs (such as cocaine, morphine, codeine and metabolites) and pharmaceuticals in environmental water samples. The SPE was performed using a highly retentive polymeric sorbent. The HILIC separation was optimised and the initial high organic content of the chromatographic mobile phase, was also suitable for the proper on-line elution of the analytes retained in the SPE column and for enhancing the ESI ionisation efficiency. This method allows the loading of samples of up to 250ml of ultrapure water or 10ml of environmental water samples spiked at low ngl(-1) levels of the analytes. The method yields near 100% recoveries for all the analytes. The method was also validated with environmental water samples with linear ranges from 5 to 1000ngl(-1) and limits of detection ≤2ngl(-1) for most of the compounds. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex

    Science.gov (United States)

    Kawa, S. R.; Bevilacqua, R.; Margitan, J. J.; Douglass, A. R.; Schoeberl, M. R.; Hoppel, K.; Sen, B.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The morphology and evolution of the stratospheric ozone (O3) distribution at high latitudes in the Northern Hemisphere (NH) are examined for the late summer and fall seasons of 1999. This time period sets the O3 initial condition for the SOLVE/THESEO field mission performed during winter 1999-2000. In situ and satellite data are used along with a three-dimensional model of chemistry and transport (CTM) to determine the key processes that control the distribution of O3 in the lower-to-middle stratosphere. O3 in the vortex at the beginning of the winter season is found to be nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx. 10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of data from POAM shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer before the vortex circulation sets up. Analysis of the CTM output shows that the minimum O3 and increase in variance in late summer are the result of: 1) stirring of polar concentric O3 gradients by nascent wave-driven transport, and 2) an acceleration of net photochemical loss with decreasing solar illumination. The segregation of low O3 mixing ratios into the vortex as the circulation strengthens through the fall suggests a possible feedback role between O3 chemistry and the vortex formation dynamics. Trajectory calculations from O3 sample points early in the fall, however, show only a weak correlation between initial O3 mixing ratio and potential vorticity later in the season consistent with order-of-magnitude calculations for the relative importance of O3 in the fall radiative balance at high latitudes. The possible connection between O3 chemistry and the dynamics of vortex formation does suggest that these feedbacks and sensitivities need to be better understood in order to make confident predictions of the recovery

  19. In tube-solid phase microextraction-nano liquid chromatography: Application to the determination of intact and degraded polar triazines in waters and recovered struvite.

    Science.gov (United States)

    Serra-Mora, P; Jornet-Martinez, N; Moliner-Martinez, Y; Campíns-Falcó, P

    2017-09-01

    In-tube solid-phase microextraction (IT-SPME) coupled to miniaturized liquid chromatography (LC) techniques are attractive mainly due to the column efficiency improvement, sensitivity enhancement and reduction of solvent consumption. In addition, the nanomaterials based sorbents can play a key role in the improvement of the extraction efficiency taking into account their interesting physical and chemical properties. Thus, in this work the performance of IT-SPME coupled to nano LC (NanoLC) has been compared with the performance of IT-SPME coupled to capillary LC (CapLC) with similar configurations for the determination of polar triazines including their degradation products. In both cases, a DAD detector was used. Different extractive phases such as TRB-5, TRB-5/c-SWNTs, TRB-5/c-MWNTs capillary columns have been tested. The dimensions of the capillary columns were 0.32mm id×40cm length and 0.1 or 0.075mm i.d.×15cm length for the couplings with CapLC and NanoLC, respectively. The processed volume was 4mL for CapLC and 0.5mL for NanoLC. The elution was carried out with ACN:H 2 O (30:70, v/v). IT-SPME-NanoLC has shown a higher performance than IT-SPME-CapLC for the target analytes demonstrating the enhancement of the extraction efficiency with the former configuration. A new phase TEOS-MTEOS-SiO 2 NPs has been also proposed for IT-SPME-NanoLC, which improves the retention of polar compounds. Compared with previously published works, improved LODs were achieved (0.025-0.5μgL -1 ). The practical application of the proposed procedure has been demonstrated for the analysis of water samples and recovered struvite samples from wastewater treatment plants. Therefore, the proposed procedure can be an alternative method for regulatory purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Comparative studies of HPLC-fluorometry and LC/MS method for the determination of N-acetylneuraminic acid as a marker of deteriorated ophthalmic solutions.

    Science.gov (United States)

    Iwatsuka, Kinya; Yasueda, Shin-ichi; Bando, Eiji; Fujii, Hiroyuki; Terada, Takashi; Okubo, Hiroya; Iwamoto, Hiroki; Kinoshita, Mitsuhiro; Kakehi, Kazuaki

    2011-10-01

    Methods for determining the deterioration of ophthalmic solutions using both high-performance liquid chromatography (HPLC) with fluorescence detection and liquid chromatography coupled with selected ion monitoring mass spectrometry (LC/MS) are described. The methods are based on the determination of N-acetylneuraminic acid (NeuAc) released by the hydrolysis of foreign bodies that contaminate eye drops during use. The released NeuAc was either labeled with 1,2-diamino-4,5-methylenedioxybenzene (DMB) for fluorometric detection or detected without derivatization by mass spectrometry. The calibration curves for NeuAc showed good linearity between 1.2 ng/mL and 39 ng/mL for fluorometric HPLC and 5.0 ng/mL and 100 ng/mL for LC/MS, respectively. Detection limits for fluorometric HPLC and LC/MS were 0.20 ng/mL and 0.88 ng/mL, respectively. The NeuAc content of some model glycoproteins determined by LC/MS method were 62-78% of those determined by fluorometry. The differences are attributed to matrix effects but the LC/MS method afforded sufficiently high sensitivity that NeuAc in the foreign bodies could be determined in eight of nine test samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Absence of a polar phase in perovskite chromite RCrO{sub 3} (R=La and Pr)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Kenji, E-mail: yoshiike@spring8.or.jp [Japan Atomic Energy Agency (JAEA), Sayo, Hyogo 679-5148 (Japan); Ikeda, Naoshi [Okayama University, Okayama 700-8530 (Japan); Shimojo, Yutaka; Ishii, Yoshinobu [Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan)

    2017-04-01

    Magnetic and dielectric properties have been studied for LaCrO{sub 3}, PrCrO{sub 3}, and their solid solution La{sub 0.5}Pr{sub 0.5}CrO{sub 3}, which belong to a family of the ferroelectric orthochromite series RCrO{sub 3} (R: rare earths). The magnetic measurements confirm that the materials show canted antiferromagnetic ordering at 240–288 K. Neutron diffraction patterns could be fitted with the centrosymmetric Pnma, which is different from the non-centrosymmetric structure proposed for the ferroelectric phase of NdCrO{sub 3}. The large dielectric constants are likely due to the hopping of charge carriers as proposed previously for other chromites. - Highlights: • Magnetic and dielectric properties of the three perovskite chromites. • Neutron diffraction patterns fitted with centrosymmetric Pnma. • Large dielectric constants likely due to the hopping of charge carriers.

  2. Solvation molar enthalpies and heat capacities of n-alkanes and n-alkylbenzenes on stationary phases of wide-ranging polarity.

    Science.gov (United States)

    Lebrón-Aguilar, Rosa; Quintanilla-López, Jesús Eduardo; Santiuste, José María

    2010-12-03

    A comparison of the most usual gas chromatographic methods for the calculation of partial molar enthalpies of solvation (Δ(sol)H(o)) has been carried out. Those methods based on the fitting of lnV(g) or ln(k/T) vs. 1/T and ln(k/T) vs. (1/T and the temperature arrangement, T(a)) are the most adequate ones for obtaining Δ(sol)H(o) values. However, the latter is the only reliable option for Δ(sol)H(o) estimation when commercial WCOT capillary columns are used, since in this case the estimation of some variables involved in the V(g) determination is less accurate or even impossible. Consequently, in this paper, Δ(sol)H(o) obtained from ln(k/T) vs. (1/T+T(a)) fitting at 373.15 and 298.15K for n-alkanes and n-alkylbenzenes on 12 commercial capillary columns coated with stationary phases covering the 203-3608 McReynolds polarity range are reported. Moreover, molar heat capacities of solvation at constant pressure (Δ(sol)C(p)(o)) have also been calculated using this method. A clear influence on Δ(sol)H(o) of the type and content of the substitution group in the stationary phase was observed. In addition, a linear relationship of Δ(sol)C(p)(o) with the van der Waals volume of the n-alkanes and the temperature gradient of density of the stationary phase was found. The effect of the size of the hydrocarbon on both thermodynamic variables was also investigated. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves through polarization-insensitive optical parametric amplification enabling transmission over 4000-km dispersion-managed TWRS fiber

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.

    2013-01-01

    We experimentally demonstrate the first Tb/s Nyquist-WDM phase-conjugated twin waves, consisting of eight 128-Gb/s PDM-QPSK signals and their idlers, by a broadband polarization-insensitive fiber optical parametric amplifier, enabling more than doubled reach in dispersion-managed transmission. © ...

  4. Solid-phase extraction of polar pesticides from environmental water samples on graphitized carbon and Empore-activated carbon disks and on-line coupling to octadecyl-bonded silica analytical columns.

    NARCIS (Netherlands)

    Slobodník, J.; Oztekizan, O.; Lingeman, H.; Brinkman, U.A.T.

    1996-01-01

    The suitability of Empore-activated carbon disks (EACD), Envi-Carb graphitized carbon black (GCB) and CPP-50 graphitized carbon for the trace enrichment of polar pesticides from water samples was studied by means of off-line and on-line solid-phase extraction (SPE). In the off-line procedure, 0.5-2

  5. Comparative study of polar and semipolar (112¯2) InGaN layers grown by metalorganic vapour phase epitaxy

    International Nuclear Information System (INIS)

    Dinh, Duc V.; Zubialevich, V. Z.; Oehler, F.; Kappers, M. J.; Humphreys, C. J.; Alam, S. N.; Parbrook, P. J.; Caliebe, M.; Scholtz, F.

    2014-01-01

    InGaN layers were grown simultaneously on (112 ¯ 2) GaN and (0001) GaN templates by metalorganic vapour phase epitaxy. At higher growth temperature (≥750 °C), the indium content ( ¯ 2) and (0001) InGaN layers was similar. However, for temperatures less than 750 °C, the indium content of the (112 ¯ 2) InGaN layers (15%–26%) were generally lower than those with (0001) orientation (15%–32%). The compositional deviation was attributed to the different strain relaxations between the (112 ¯ 2) and (0001) InGaN layers. Room temperature photoluminescence measurements of the (112 ¯ 2) InGaN layers showed an emission wavelength that shifts gradually from 380 nm to 580 nm with decreasing growth temperature (or increasing indium composition). The peak emission wavelength of the (112 ¯ 2) InGaN layers with an indium content of more than 10% blue-shifted a constant value of ≈(50–60) nm when using higher excitation power densities. This blue-shift was attributed to band filling effects in the layers.

  6. Equilibrium of particle nitrite with gas phase HONO: Tropospheric measurements in the high Arctic during polar sunrise

    Science.gov (United States)

    Li, Shao-Meng

    1994-12-01

    Gas phase HONO(g) and nitrite in particles of formation rate from HONO(g) photolysis was greater than from the photolysis of both O3 and CH2O by more than one order of magnitude during the sunlit period and led to moderately high levels of OH, e.g., 3×105 molecules cm-3 OH at noontime on April 5. Particle nitrite measurements showed a gradual increase in concentrations with increasing solar insolation, but the concentrations were generally less than 10 ppt. The pH and the sulfate molar concentrations of the particles and the water vapor mixing ratio indicate that the particles were highly acidic being approximately 70% (W/W) H2SO4 solution. In such highly concentrated H2SO4 solution, most particle nitrite should exist as hydrated nitrosonium ion H2ONO+. Taking this into consideration, the particle nitrite was in an approximate equilibrium with the measured HONO(g). This equilibrium, with HONO(g) rapidly photolyzed, was a good indication that the particles were effective sources of HONO(g) and implied rapid production of particle N(+III) during this period. Two possible pathways leading to the formation of particle N(+III) species are suggested, i.e., reduction of HNO3(aq) by SO2(g) and reduction of NO3-; (aq) by Br- (aq). However, N2O5 reaction with NaBr cannot be ruled out as the alternative HONO(g) formation mechanism which bypasses the equilibrium.

  7. Spin-polarized investigation of ferromagnetism on magnetic semiconductors MnxCa1−xS in the rock-salt phase

    International Nuclear Information System (INIS)

    Choutri, H.; Ghebouli, M.A.; Ghebouli, B.; Bouarissa, N.; Uçgun, E.; Ocak, H.Y.

    2014-01-01

    The structural, elastic, electronic and magnetic properties of the diluted magnetic semiconductors Mn x Ca 1−x S in the rock-salt phase have been investigated using first-principles calculations with both LDA and LDA + U functional. Features such as lattice constant, bulk modulus, elastic constants, spin-polarized band structure, total and local densities of states have been computed. We predict the values of the exchange constants and the band edge spin splitting of the valence and conduction bands. The hybridization between S-3p and Mn-3d produces small local magnetic moment on the nonmagnetic Ca and S sites. The ferromagnetism is induced due to the exchange splitting of S-3p and Mn-3d hybridized bands. The total magnetic moment per Mn of Mn x Ca 1−x S is 4.4μ B and 4.5μ B for LDA and LDA + U functional and is independent of the Mn concentration. The unfilled Mn-3d levels reduce the local magnetic moment of Mn from its free space charge value of 5μ B –4.4μ B and4.5μ B for LDA and LDA + U functional due to 3p–3d hybridization. - Highlights: • Fundamental properties of magnetic semiconductors Mn x Ca 1−x S. • Rock-salt phase of Mn x Ca 1−x S. • Magnetic properties of the diluted magnetic semiconductors Mn x Ca 1−x S. • The use of LDA + U functionals

  8. Spin-polarized investigation of ferromagnetism on magnetic semiconductors Mn{sub x}Ca{sub 1−x}S in the rock-salt phase

    Energy Technology Data Exchange (ETDEWEB)

    Choutri, H.; Ghebouli, M.A. [LMSE Laboratory, University of Bachir Ibrahimi, 34265 Bordj-Bou-Arréridj (Algeria); Ghebouli, B. [Laboratory of Surface and Interface Studies of Solid Materials, Department of Physics, Faculty of Science, Setif University 1, Setif 19000 (Algeria); Bouarissa, N., E-mail: n_bouarissa@yahoo.fr [Department of Physics, Faculty of Science, University of M' sila, 28000 M' sila (Algeria); Uçgun, E.; Ocak, H.Y. [Department of Physics, Faculty of Arts and Sciences, Dumlupinar University, Kutahya (Turkey)

    2014-12-15

    The structural, elastic, electronic and magnetic properties of the diluted magnetic semiconductors Mn{sub x}Ca{sub 1−x}S in the rock-salt phase have been investigated using first-principles calculations with both LDA and LDA + U functional. Features such as lattice constant, bulk modulus, elastic constants, spin-polarized band structure, total and local densities of states have been computed. We predict the values of the exchange constants and the band edge spin splitting of the valence and conduction bands. The hybridization between S-3p and Mn-3d produces small local magnetic moment on the nonmagnetic Ca and S sites. The ferromagnetism is induced due to the exchange splitting of S-3p and Mn-3d hybridized bands. The total magnetic moment per Mn of Mn{sub x}Ca{sub 1−x}S is 4.4μ{sub B} and 4.5μ{sub B} for LDA and LDA + U functional and is independent of the Mn concentration. The unfilled Mn-3d levels reduce the local magnetic moment of Mn from its free space charge value of 5μ{sub B}–4.4μ{sub B} and4.5μ{sub B} for LDA and LDA + U functional due to 3p–3d hybridization. - Highlights: • Fundamental properties of magnetic semiconductors Mn{sub x}Ca{sub 1−x}S. • Rock-salt phase of Mn{sub x}Ca{sub 1−x}S. • Magnetic properties of the diluted magnetic semiconductors Mn{sub x}Ca{sub 1−x}S. • The use of LDA + U functionals.

  9. Development of an enantioseparation method for novel psychoactive drugs by HPLC using a Lux® Cellulose-2 column in polar organic phase mode.

    Science.gov (United States)

    Taschwer, Magdalena; Grascher, Jörg; Schmid, Martin G

    2017-01-01

    Since the last decade, the hype of the recreational use of novel psychoactive drugs is still on its top in entire Europe. Every year, new derivatives enter the drug market and enlarge the broad spectrum of misused drugs. Many of these compounds contain a stereogenic centre and therefore two enantiomers exist. It is obvious that the pharmacological potency of the isomers differ as it is already known from various pharmaceutical ingredients. Therefore, the development of analytical methods for the chiral separation of new psychoactive substances is of great medical and forensic interest. The aim of this study was to establish an enantioseparation method, which is applicable at equal conditions for different drug compound classes including cathinones, amphetamines, benzofurans, thiophenes, phenidine and phenidate derivatives. A commercially available Lux ® Cellulose-2 column consisting of cellulose tris(3-chloro-4-methylphenylcarbamate) coated on silica gel was found to be appropriate for the chiral separation of the mentioned drug classes. Experiments were performed under isocratic conditions in polar organic phase mode using UV-detection. With a mobile phase consisting of acetonitrile:isopropanol:diethylamine:formic acid (100%) (95:5:0.1:0.1) 40 out of 43 psychoactive compounds were successfully baseline or partially separated. 3-Fluoroamphetamine, 4-fluoroamphetamine and 1-(benzofuran-6-yl)-N-ethylpropan-2-amine were not chirally separated. The established method enabled enantioseparation of a broad spectrum of different psychoactive compounds under equal conditions. Forty of forty-three compounds were separated in their enantiomers, thus this method has a wide applicability for the enantioseparation of novel psychoactive drugs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Performance of a Highly Sensitive, 19-element, Dual-polarization, Cryogenic L-band Phased-array Feed on the Green Bank Telescope

    Science.gov (United States)

    Roshi, D. Anish; Shillue, W.; Simon, B.; Warnick, K. F.; Jeffs, B.; Pisano, D. J.; Prestage, R.; White, S.; Fisher, J. R.; Morgan, M.; Black, R.; Burnett, M.; Diao, J.; Ruzindana, M.; van Tonder, V.; Hawkins, L.; Marganian, P.; Chamberlin, T.; Ray, J.; Pingel, N. M.; Rajwade, K.; Lorimer, D. R.; Rane, A.; Castro, J.; Groves, W.; Jensen, L.; Nelson, J. D.; Boyd, T.; Beasley, A. J.

    2018-05-01

    A new 1.4 GHz, 19-element, dual-polarization, cryogenic phased-array feed (PAF) radio astronomy receiver has been developed for the Robert C. Byrd Green Bank Telescope (GBT) as part of the Focal L-band Array for the GBT (FLAG) project. Commissioning observations of calibrator radio sources show that this receiver has the lowest reported beam-formed system temperature (T sys) normalized by aperture efficiency (η) of any phased-array receiver to date. The measured T sys/η is 25.4 ± 2.5 K near 1350 MHz for the boresight beam, which is comparable to the performance of the current 1.4 GHz cryogenic single-feed receiver on the GBT. The degradation in T sys/η at ∼4‧ (required for Nyquist sampling) and ∼8‧ offsets from the boresight is, respectively, ∼1% and ∼20% of the boresight value. The survey speed of the PAF with seven formed beams is larger by a factor between 2.1 and 7 compared to a single-beam system, depending on the observing application. The measured performance, both in frequency and offset from the boresight, qualitatively agrees with predictions from a rigorous electromagnetic model of the PAF. The astronomical utility of the receiver is demonstrated by observations of the pulsar B0329+54 and an extended H II region, the Rosette Nebula. The enhanced survey speed with the new PAF receiver will enable the GBT to carry out exciting new science, such as more efficient observations of diffuse, extended neutral hydrogen emission from galactic inflows and searches for fast radio bursts.

  11. Determination of eight pesticides of varying polarity in surface waters using solid phase extraction with multiwalled carbon nanotubes and liquid chromatography-linear ion trap mass spectrometry

    International Nuclear Information System (INIS)

    Dahane, Soraya; Derdour, Aicha; García, María Dolores Gil; Moreno, Ana Uclés; Galera, María Martínez; Viciana, María del Mar Socías

    2015-01-01

    We describe a MWCNT-based method for the solid-phase extraction of eight pesticides from environmental water samples. The analytes are extracted from 100 mL samples at pH 5.0 (containing 5 mmol L −1 of KCl) by passing the solution through a column filled with 20 mg of multiwalled carbon nanotubes. Following elution, the pesticides were determined by LC and electrospray ionization hybrid quadrupole linear ion trap MS. Two selected reaction monitoring transitions were monitored per compound, the most intense one being used for quantification and the second one for confirmation. In addition, an information-dependent acquisition experiment was performed for unequivocal confirmation of positive findings. Matrix effect was not found in real waters and therefore the quantitation was carried out with calibration graphs built with solvent based standards. Except for cymoxanil, the detection and quantitation limits in surface waters are in the range from 0.3 to 9.5 ng L −1 and 1.6 to 45.2 ng L −1 , respectively. Recoveries from spiked ultrapure water are ∼100 %, except for the most polar pesticides methomyl and cymoxanil. The same behavior is found for real water samples (except for phosalone). The relative standard deviation is <10 % in all cases. (author)

  12. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral.

    Science.gov (United States)

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming.

  13. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral

    Directory of Open Access Journals (Sweden)

    Erik eCaroselli

    2015-11-01

    Full Text Available Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13°C, 18°C, and 28°C, and two extreme temperatures expected for 2100 as a consequence of global warming (29°C and 32°C. The indicators of photosynthetic performance analyzed (maximum and effective quantum yield showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C. Photosynthetic efficiency decreased from 20.0°C to 13°C and even more strongly from 21.6°C to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18°C to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18°C to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming.

  14. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  15. Interferometric polarization control

    International Nuclear Information System (INIS)

    Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey; Novak, Giles

    2006-01-01

    We develop the Jones and Mueller matrices for structures that allow control of the path length difference between two linear orthogonal polarizations and consider the effect of placing multiple devices in series. Specifically, we find that full polarization modulation (measurement of Stokes Q, U, and V) can be achieved by placing two such modulators in series if the relative angles of the beam-splitting grids with respect to the analyzer orientation are appropriately chosen. Such a device has several potential advantages over a spinning wave plate modulator for measuring astronomical polarization in the far infrared through millimeter: (i) The use of small, linear motions eliminates the need for cryogenic rotational bearings; (ii) the phase flexibility allows measurement of circular as well as linear polarization; and (iii) this architecture allows for both multiwavelength and broadband modulation. We also present initial laboratory results

  16. Polarization-insensitive all-optical dual pump-phase transmultiplexing from 2 x 10-GBd OOKs to 10-GBd RZ-QPSK using cross-phase modulation in a passive nonlinear birefringent photonic crystal fiber

    Science.gov (United States)

    Mahmood, Tanvir

    Considering the network size, bit rate, spectral and channel capacity limitations, different modulation formats may be selectively used in future optical networks. Although the traditional metropolitan area networks (MANs) still uses the non-return-to-zero on-off keying (NRZ-OOK) modulation format due to its technical simplicity and therefore low cost, QPSK format is more advantageous in spectrally efficient long-haul fiber optic transmission systems because of its constant power envelope, and robustness to various transmission impairments. Consequently, an important problem may arise, in particular how to route the OOK-data streams from MANs to long-haul backbone networks when the state of polarization (SOP) of the remotely generated OOK is unpredictable. Hence, the focus of this dissertation was to investigate a polarization insensitive (PI) all-optical nonlinear optical signal processing (NOSP) method that can be implemented at the network cross-connect (X-connect) to transfer data from a remotely and a locally generated OOK data simultaneously to more effectual QPSK format for long-haul transmission. By utilizing cross-phase modulation (XPM) and inherent birefringence of the device, the work demonstrated, for the first time, PI all-optical data transfer utilizing dual pump-phase transmultiplexing (DPTM) from 2 x 10-GBd OOKs to 10-GBd RZ-QPSK in a passive nonlinear birefringent photonic crystal fiber (PCF). Polarization insensitivity was achieved by scrambling the SOP of the remotely generated OOK pump and launching the locally generated OOK pump and the probe off-axis. To mitigate polarization induced power fluctuations and detrimental effects due to nearby partially degenerate and non-degenerate four wave mixings, an optimum pump-probe detuning was also utilized. The PI DPTM RZ-QPSK demonstrated a pre-amplified receiver sensitivity penalty < 5.5 dB at 10--9 bit-error-rate (BER), relative to relative to the FPGA-precoded RZ-DQPSK baseline in ASE

  17. Linear polarization of BY Draconis

    International Nuclear Information System (INIS)

    Koch, R.H.; Pfeiffer, R.J.

    1976-01-01

    Linear polarization measurements are reported in four bandpasses for the flare star BY Dra. The red polarization is intrinsically variable at a confidence level greater than 99 percent. On a time scale of many months, the variability is not phase-locked to either a rotational or a Keplerian ephemeris. The observations of the three other bandpasses are useful principally to indicate a polarization spectrum rising toward shorter wavelengths

  18. Coincidence: Fortran code for calculation of (e, e'x) differential cross-sections, nuclear structure functions and polarization asymmetry in self-consistent random phase approximation with Skyrme interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cavinato, M.; Marangoni, M.; Saruis, A.M.

    1990-10-01

    This report describes the COINCIDENCE code written for the IBM 3090/300E computer in Fortran 77 language. The output data of this code are the (e, e'x) threefold differential cross-sections, the nuclear structure functions, the polarization asymmetry and the angular correlation coefficients. In the real photon limit, the output data are the angular distributions for plane polarized incident photons. The code reads from tape the transition matrix elements previously calculated, by in continuum self-consistent RPA (random phase approximation) theory with Skyrme interactions. This code has been used to perform a numerical analysis of coincidence (e, e'x) reactions with polarized electrons on the /sup 16/O nucleous.

  19. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  20. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  1. NMR study of hyper-polarized {sup 129}Xe and applications to liquid-phase NMR experiments; Etude de la resonance magnetique nucleaire du Xenon{sup 129} hyperpolarise et applications en RMN des liquides

    Energy Technology Data Exchange (ETDEWEB)

    Marion, D

    2008-07-15

    In liquid samples where both nuclear polarization and spin density are strong, the magnetization dynamics, which can be analysed by NMR (nuclear magnetic resonance) methods, is deeply influenced by the internal couplings induced by local dipolar fields. The present thesis describes some of the many consequences associated to the presence in the sample of concentrated xenon hyper-polarized by an optical pumping process. First, we deal with the induced modifications in frequency and line width of the proton and xenon spectra, then we present the results of SPIDER, a coherent polarization transfer experiment designed to enhance the polarization of protons, in order to increase their NMR signal level. A third part is dedicated to the description of the apparition of repeated chaotic maser emissions by un unstable xenon magnetization coupled to the detection coil tuned at the xenon Larmor frequency (here 138 MHz). In the last part, we present a new method allowing a better tuning of any NMR detection probe and resulting in sensible gains in terms of sensitivity and signal shaping. Finally, we conclude with a partial questioning of the classical relaxation theory in the specific field of highly polarized and concentrated spin systems in a liquid phase. (author)

  2. Spectral dependence of backscattering coefficient of mixed phase clouds over West Africa measured with two-wavelength Raman polarization lidar: Features attributed to ice-crystals corner reflection

    Science.gov (United States)

    Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.

    2017-11-01

    The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.

  3. The Polarization of Achernar

    Science.gov (United States)

    McDavid, D.

    2005-11-01

    Recent near-infrared measurements of the angular diameter of Achernar (the bright Be star alpha Eridani) with the ESO VLT interferometer have been interpreted as the detection of an extremely oblate photosphere, with a ratio of equatorial to polar radius of at least 1.56 ± 0.05 and a minor axis orientation of 39° ± 1° (from North to East). The optical linear polarization of this star during an emission phase in 1995 September was 0.12 ± 0.02% at position angle 37° ± 8° (in equatorial coordinates), which is the direction of the projection of the rotation axis on the plane of the sky according to the theory of polarization by electron scattering in an equatorially flattened circumstellar disk. These two independent determinations of the orientation of the rotation axis are therefore in agreement. The observational history of correlations between Hα emission and polarization as found in the literature is that of a typical Be star, with the exception of an interesting question raised by the contrast between Schröder's measurement of a small polarization perpendicular to the projected rotation axis in 1969--70 and Tinbergen's measurement of zero polarization in 1974.5, both at times when emission was reportedly absent.

  4. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  5. Polarization experiments

    International Nuclear Information System (INIS)

    Halzen, F.

    1977-02-01

    In a theoretical review of polarization experiments two important points are emphasized: (a) their versatility and their relevance to a large variety of aspects of hadron physics (tests of basic symmetries; a probe of strong interaction dynamics; a tool for hadron spectroscopy); (b) the wealth of experimental data on polarization parameters in pp and np scattering in the Regge language and in the diffraction language. (author)

  6. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  7. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  8. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  9. Design and simulation of a novel circularly polarized antenna with polarization reconfigurable characteristics

    Directory of Open Access Journals (Sweden)

    Zhang Hai

    2016-01-01

    Full Text Available A novel circularly polarized antenna with polarization reconfigurable characteristics was designed using co-simulation of Ansoft HFSS and Designer software. It consists of a dual-polarized antenna and phase switching network which act as the feed network for the dual-polarized antenna. The phase switching network was designed based on a Wilkinson power divider, where the output port was connected with SPDT to form a switching network. By controlling the SPDT state-off / on, the phase difference of the two ports could be alternated, which generated the orthogonal modes between the two ports of dual-polarized antenna. So that Left-hand circular polarization (LHCP and Right-hand circular polarization (RHCP could be achieved. The simulation shown that reflection coefficient was less than -12 dB and the axial ratio was below 3 dB between 1.8 GHz and 2.4 GHz with polarization reconfigurable characteristics.

  10. Polarity-dependent resistance switching in GeSbTe phase-change thin films : The importance of excess Sb in filament formation

    NARCIS (Netherlands)

    Pandian, Ramanathaswamy; Kooi, Bart J.; Oosthoek, Jasper L. M.; van den Dool, Pim; Palasantzas, George; Pauza, Andrew

    2009-01-01

    We show that polarity-dependent resistance switching in GeSbTe thin films depends strongly on Sb composition by comparing current-voltage characteristics in Sb-excess Ge(2)Sb(2+x)Te(5) and stoichiometric Ge(2)Sb(2)Te(5) samples. This type of switching in Ge(2)Sb(2+x)Te(5) films is reversible with

  11. Polarization study

    International Nuclear Information System (INIS)

    Nurushev, S.B.

    1989-01-01

    Brief review is presented of the high energy polarization study including experimental data and the theoretical descriptions. The mostimportant proposals at the biggest accelerators and the crucial technical developments are also listed which may become a main-line of spin physics. 35 refs.; 10 figs.; 4 tabs

  12. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  13. Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic solid-phase extraction adsorbent for the determination of polar acidic herbicides in rice

    International Nuclear Information System (INIS)

    Li, Na; Chen, Juan; Shi, Yan-Ping

    2017-01-01

    A novel magnetic polyethyleneimine modified reduced graphene oxide (Fe 3 O 4 @PEI-RGO) had been fabricated based on a self-assemble approach between positive charged magnetic polyethyleneimine (Fe 3 O 4 @PEI) and negative charged GO sheets via electrostatic interaction followed by chemical reduction of GO to RGO. The as-prepared Fe 3 O 4 @PEI-RGO was characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), thermal gravimetric analyzer (TGA), vibrating sample magnetometer (VSM) and zeta potential analysis, and then was successfully applied to determine four phenoxy acid herbicides and dicamba in rice coupled with high performance liquid chromatography (HPLC). As a surface modifier of RGO, PEI not only effectually affected the surface property of RGO (e.g. zeta potential), but also changed the polarity of RGO and offered anion exchange groups to polar acidic herbicides, which would directly influence the type of adsorbed analytes. Compared with Fe 3 O 4 @PEI, Fe 3 O 4 /RGO and Fe 3 O 4 @PEI-GO, the as-prepared Fe 3 O 4 @PEI-RGO, integrating the superiority of PEI and RGO, showed higher extraction efficiency for polar acidic herbicides. Besides, the adsorption mechanism was investigated as well. It turned out that electrostatic interaction and π-π interaction were considered to be two major driving force for the adsorption process. Response surface methodology (RSM), a multivariate experimental design technique, was used to optimize experimental parameters affecting the extraction efficiency in detail. Under the optimal conditions, a satisfactory performance was obtained. The calibration curves were linear over the concentration ranging from 2 to 300 ng g −1 with correlation coefficients (r) between 0.9985 and 0.9994. The limits of detection (LODs) were in the range of 0.67–2 ng g −1 . The recoveries ranged from 87.41% to 102.52% with relative standard deviations (RSDs) less than 8

  14. Generalized Expression for Polarization Density

    International Nuclear Information System (INIS)

    Wang, Lu; Hahm, T.S.

    2009-01-01

    A general polarization density which consists of classical and neoclassical parts is systematically derived via modern gyrokinetics and bounce-kinetics by employing a phase-space Lagrangian Lie-transform perturbation method. The origins of polarization density are further elucidated. Extending the work on neoclassical polarization for long wavelength compared to ion banana width [M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998)], an analytical formula for the generalized neoclassical polarization including both finite-banana-width (FBW) and finite-Larmor-radius (FLR) effects for arbitrary radial wavelength in comparison to banana width and gyroradius is derived. In additional to the contribution from trapped particles, the contribution of passing particles to the neoclassical polarization is also explicitly calculated. Our analytic expression agrees very well with the previous numerical results for a wide range of radial wavelength.

  15. Investigation of. epsilon. sub 1 and the sup 3 P sub J phase shifts in the n-p system by the measurement of polarization transfer coefficients in p-d elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Clajus, M.; Egun, P.M.; Grueebler, W.; Hautle, P. (Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Mittelenergiephysik); Kretschmer, W.; Rauscher, A.; Schuster, W.; Weidmann, R.; Haller, M. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Physikalisches Inst.); Bruno, M.; Cannata, F.; D' Agostino, M. (Istituto Nazionale di Fisica Nucleare, Bologna (Italy) Bologna Univ. (Italy). Dipt. di Fisica); Slaus, I. (Institut Rudjer Boskovic, Zagreb (Yugoslavia)); Schmelzbach, P.A. (Paul Scherrer Inst., Villigen (Switzerland)); Vuaridel, B. (Michigan Univ., Ann Arbor (USA)); Sperisen, F. (Indiana Univ., Bloomington (USA). Cyclotron Facility); Witala, H.; Cornelius, T.; Gloeckle, W. (Bochum Univ. (Germany, F.R.))

    1990-02-01

    The {sup 3}S{sub 1}-{sup 3}D{sub 1} mixing parameter {epsilon}{sub 1} and the {sup 3}P{sub J} phase shifts in the N-N system at low energy are investigated in the three nucleon system. The sensitivity of polarization transfer coefficients in p-d elastic scattering is determined by rigorous Faddeev calculations using Paris and Bonn potentials. The experimental results of K{sub y}sup(y') favours the tensor force component of the Bonn A potential. (orig.).

  16. Spin-polarized photoemission

    International Nuclear Information System (INIS)

    Johnson, Peter D.

    1997-01-01

    Spin-polarized photoemission has developed into a versatile tool for the study of surface and thin film magnetism. In this review, we examine the methodology of the technique and its application to a number of different problems, including both valence band and core level studies. After a detailed review of spin-polarization measurement techniques and the related experimental requirements we consider in detail studies of the bulk properties both above and below the Curie temperature. This section also includes a discussion of observations relating to unique metastable phases obtained via epitaxial growth. The application of the technique to the study of surfaces, both clean and adsorbate covered, is reviewed. The report then examines, in detail, studies of the spin-polarized electronic structure of thin films and the related interfacial magnetism. Finally, observations of spin-polarized quantum well states in non-magnetic thin films are discussed with particular reference to their mediation of the oscillatory exchange coupling in related magnetic multilayers. (author)

  17. Study of Jupiter polarization properties

    International Nuclear Information System (INIS)

    Bolkvadze, O.R.

    1980-01-01

    Investigations into polarization properties of the Jupiter reflected light were carried on at the Abastumani astrophysical observatory in 1967, 1968 and 1969 in the four spectral ranges: 4000, 4800, 5400 and 6600 A deg. Data on light polarization in different parts of the Jupiter visible disk are given. Curves of dependence of the planet light polarization degree on a phase angle are plotted. It is shown that in the central part of the visible planet disk the polarization degree is low. Atmosphere is in a stable state in this part of Jupiter. Mean radius of particles of a cloud layer is equal to 0.26μ, and optical thickness of overcloud atmosphere tau=0.05. Height of transition boundary of the cloud layer into overcloud gas atmosphere changes from year to year at the edges of the equatorial zone. Optical thickness of overcloud atmosphere changes also with changing height of a transient layer. The polar Jupiter regions possess a high degree of polarization which depends on a latitude. Polarization increases monotonously with the latitude and over polar regions accepts a maximum value [ru

  18. Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic solid-phase extraction adsorbent for the determination of polar acidic herbicides in rice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Na [Key Laboratory of Chemistry of Northwestern Plant Resources of the CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); University of Chinese Academy of Sciences, Beijing, 100039 (China); Chen, Juan, E-mail: chenjuan@licp.cas.cn [Key Laboratory of Chemistry of Northwestern Plant Resources of the CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Shi, Yan-Ping, E-mail: shiyp@licp.cas.cn [Key Laboratory of Chemistry of Northwestern Plant Resources of the CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)

    2017-01-01

    A novel magnetic polyethyleneimine modified reduced graphene oxide (Fe{sub 3}O{sub 4}@PEI-RGO) had been fabricated based on a self-assemble approach between positive charged magnetic polyethyleneimine (Fe{sub 3}O{sub 4}@PEI) and negative charged GO sheets via electrostatic interaction followed by chemical reduction of GO to RGO. The as-prepared Fe{sub 3}O{sub 4}@PEI-RGO was characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), thermal gravimetric analyzer (TGA), vibrating sample magnetometer (VSM) and zeta potential analysis, and then was successfully applied to determine four phenoxy acid herbicides and dicamba in rice coupled with high performance liquid chromatography (HPLC). As a surface modifier of RGO, PEI not only effectually affected the surface property of RGO (e.g. zeta potential), but also changed the polarity of RGO and offered anion exchange groups to polar acidic herbicides, which would directly influence the type of adsorbed analytes. Compared with Fe{sub 3}O{sub 4}@PEI, Fe{sub 3}O{sub 4}/RGO and Fe{sub 3}O{sub 4}@PEI-GO, the as-prepared Fe{sub 3}O{sub 4}@PEI-RGO, integrating the superiority of PEI and RGO, showed higher extraction efficiency for polar acidic herbicides. Besides, the adsorption mechanism was investigated as well. It turned out that electrostatic interaction and π-π interaction were considered to be two major driving force for the adsorption process. Response surface methodology (RSM), a multivariate experimental design technique, was used to optimize experimental parameters affecting the extraction efficiency in detail. Under the optimal conditions, a satisfactory performance was obtained. The calibration curves were linear over the concentration ranging from 2 to 300 ng g{sup −1} with correlation coefficients (r) between 0.9985 and 0.9994. The limits of detection (LODs) were in the range of 0.67–2 ng g{sup −1}. The recoveries ranged from 87

  19. Nonlinear Gyrokinetic Theory With Polarization Drift

    International Nuclear Information System (INIS)

    Wang, L.; Hahm, T.S.

    2010-01-01

    A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)].

  20. Trace-level determination of polar flavour compounds in butter by solid-phase extraction and gas chromatography-mass spectrometry.

    NARCIS (Netherlands)

    Adahchour, M.; Vreuls, J.J.; van der Heijden, A.; Brinkman, U.A.T.

    1999-01-01

    Volatile compounds are responsible for the aromas of butter. A simple technique for the determination of these components is described which is based on solid-phase extraction (SPE) after melting of the butter and separation of the aqueous phase from the fat. Volatile flavours present in the water

  1. Perspectives for polarized antiprotons

    International Nuclear Information System (INIS)

    Lenisa, Paolo

    2012-01-01

    Polarized antiprotons would open a new window in hadron physics providing access to a wealth of single and double spin observables in proton-antiproton interactions. The PAX Collaboration aims to perform the first ever measurement of the spin-dependence of the proton-antiproton cross section at the AD ring at CERN. The spin-dependence of the cross section could in principle be exploited by the spin-filtering technique for the production of a polarized antiproton beam. As a preparatory phase to the experimentation at AD, the PAX Collaboration has initiated a series of dedicated studies with protons at the COSY-ring in Juelich (Germany), aimed at the commissioning of the experimental apparatus and confirmation of the predictions for spin-filtering with protons.

  2. Polar Polygons

    Science.gov (United States)

    2005-01-01

    18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  3. Twist phase-induced characteristics changes of a radially polarized Gaussian Schell-Model beam in a uniaxial crystal orthogonal to the optical axis

    Science.gov (United States)

    Cao, Pengfei; Fu, Wenyu

    2017-10-01

    Based on the extended Huygens-Fresnel integral formula and unified theory of coherence and polarization, we obtained the cross-spectral density matrix elements for a radially polarized partially coherent twist (RPPCT) beam in a uniaxial crystal. Moreover, compared with free space, we explore numerically the evolution properties of a RPPCT beam in a uniaxial crystal. The calculation results show that the evolution properties of a RPPCT beam in crystals are substantially different from its properties in free space. These properties in crystals are mainly determined by the twist factor and the ratio of extraordinary index to ordinary refractive index. In a uniaxial crystal, the distribution of the intensity of a RPPCT beam all exhibits non-circular symmetry, and these distributions change with twist factor and the ratio of extraordinary index to ordinary refractive index. The twist factor affects their rotation orientation angles, and the ratio of extraordinary index to ordinary refractive index impacts their twisted levels. This novel characteristics can be used for free-space optical communications, particle manipulation and nonlinear optics, where partially coherent beam with controlled profile and twist factor are required.

  4. Radiochromic film and polarization effects

    International Nuclear Information System (INIS)

    Yu, P.K.N.; Cheung, T.; Butson, M.J.; Cancer Services, Wollongong, NSW; Inwood, D.

    2004-01-01

    Full text: A new high sensitivity radiochromic film has been tested for its polarization properties. Gafchromic HS film has been shown to produce a relatively small (less than 3%) variation in measured optical density measured at 660nm wavelength when the light source is fully linear polarized and the film is rotated through 360 deg angle. Similar variations are seen when the detector is linearly polarized. If both light source and detector is linearly polarised variations in measured optical density can reach 15% when the film is rotated through 360 deg angle. This seems to be due to a phase shift in polarised light caused by the radiochromic film resulting in the polarised light source becoming out of phase with the polarised detector. Gafchromic HS radiochromic film produces a minimal polarization response with varying angle of rotation however we recommend that a polarization test be performed on a densitometry system to establish the extent of its polarization properties before accuracy dosimetry is performed with radiochromic HS film. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  5. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  6. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  7. Terahertz broadband polarization converter based on metamaterials

    Science.gov (United States)

    Li, Yonghua; Zhao, Guozhong

    2018-01-01

    Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.

  8. Polar crane

    International Nuclear Information System (INIS)

    Makosinski, S.

    1981-01-01

    In many applications polar cranes have to be repeatedly positioned with high accuracy. A guidance system is disclosed which has two pairs of guides. Each guide consists of two rollers carried by a sheave rotatable mounted on the crane bridge, the rollers being locatable one on each side of a guideway, e.g. the circular track on which the bridge runs. The pairs of guides are interconnected by respective rope loops which pass around and are locked to the respective pairs of sheaves in such a manner that movement of one guide results in equal movement of the other guide in a sense to maintain the repeatability of positioning of the centre of the bridge. A hydraulically-linked guide system is also described. (author)

  9. Linear polarizers based on oriented polymer blends

    NARCIS (Netherlands)

    Jagt, H.J.B.; Dirix, Y.J.L.; Hikmet, R.A.M.; Bastiaansen, C.W.M.

    1998-01-01

    Linear sheet polarizers based on the anisotropic scattering of light by drawn polymer blends are introduced here. The proper selection of materials and processing conditions for the production of large-area, flexible films of phase-segregated polymer blends suitable for polarization applications are

  10. Effects of Mg/Ga and V/III source ratios on hole concentration of N-polar (000\\bar{1}) p-type GaN grown by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Nonoda, Ryohei; Shojiki, Kanako; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Matsuoka, Takashi

    2016-05-01

    The effects of growth conditions such as Mg/Ga and V/III ratios on the properties of N-polar (000\\bar{1}) p-type GaN grown by metalorganic vapor phase epitaxy were studied. Photoluminescence spectra from Mg-doped GaN depended on Mg/Ga and V/III ratios. For the lightly doped samples, the band-to-acceptor emission was observed at 3.3 eV and its relative intensity decreased with increasing V/III ratio. For the heavily doped samples, the donor-acceptor pair emission was observed at 2.8 eV and its peak intensity monotonically decreased with V/III ratio. The hole concentration was maximum for the Mg/Ga ratio. This is the same tendency as in group-III polar (0001) growth. The V/III ratio also reduced the hole concentration. The higher V/III ratio reduced the concentration of residual donors such as oxygen by substituting nitrogen atoms. The surface became rougher with increasing V/III ratio and the hillock density increased.

  11. Study on condensed media with polarized neutrons

    International Nuclear Information System (INIS)

    Drabkin, G.M.

    1974-01-01

    In this paper are considered the results of a study of the secondary magnetic superstructure of ferromagnets in the phase transition region by means of polarized neutrons. The results obtained are compared with experimental data

  12. Nuclear polarization and neutrons

    International Nuclear Information System (INIS)

    Glaettli, H.

    1985-01-01

    Different possibilities for the use of polarized nuclei in thermal neutron scattering on condensed matter are reviewed. Highly polarized nuclei are the starting point for studying dipolar magnetic order. Systematic measurement of spin-dependent scattering lengths is possible on samples with polarized nuclei. Highly polarized hydrogen should help to unravel complicated structures in chemistry and biology. The use of polarized proton targets as an energy-independent neutron polarizer in the thermal and epithermal region should be considered afresh. (author)

  13. Polarization-sensitive color in butterfly scales: polarization conversion from ridges with reflecting elements.

    Science.gov (United States)

    Zhang, Ke; Tang, Yiwen; Meng, Jinsong; Wang, Ge; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2014-11-03

    Polarization-sensitive color originates from polarization-dependent reflection or transmission, exhibiting abundant light information, including intensity, spectral distribution, and polarization. A wide range of butterflies are physiologically sensitive to polarized light, but the origins of polarized signal have not been fully understood. Here we systematically investigate the colorful scales of six species of butterfly to reveal the physical origins of polarization-sensitive color. Microscopic optical images under crossed polarizers exhibit their polarization-sensitive characteristic, and micro-structural characterizations clarify their structural commonality. In the case of the structural scales that have deep ridges, the polarization-sensitive color related with scale azimuth is remarkable. Periodic ridges lead to the anisotropic effective refractive indices in the parallel and perpendicular grating orientations, which achieves form-birefringence, resulting in the phase difference of two different component polarized lights. Simulated results show that ridge structures with reflecting elements reflect and rotate the incident p-polarized light into s-polarized light. The dimensional parameters and shapes of grating greatly affect the polarization conversion process, and the triangular deep grating extends the outstanding polarization conversion effect from the sub-wavelength period to the period comparable to visible light wavelength. The parameters of ridge structures in butterfly scales have been optimized to fulfill the polarization-dependent reflection for secret communication. The structural and physical origin of polarization conversion provides a more comprehensive perspective on the creation of polarization-sensitive color in butterfly wing scales. These findings show great potential in anti-counterfeiting technology and advanced optical material design.

  14. Study of mixed phase clouds over west Africa: Ice-crystal corner reflection effects observed with a two-wavelength polarization lidar

    Directory of Open Access Journals (Sweden)

    Veselovskii Igor

    2018-01-01

    Full Text Available Lidar sounding is used for the analysis of possible contribution of the corner reflection (CR effect to the total backscattering in case of ice crystals. Our study is based on observations of mixed phase clouds performed during the SHADOW campaign in Senegal. Mie-Raman lidar allows measurements at 355 nm and 532 nm at 43 dg. off-zenith angle, so the extinction and backscattering Ångström exponents can be evaluated. In some measurements we observed the positive values of backscattering Ångström exponent, which can be attributed to the corner reflection by horizontally oriented ice plates.

  15. Spontaneous spin polarization in quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Vasilchenko, A.A., E-mail: a_vas2002@mail.ru

    2015-12-04

    The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.

  16. Spontaneous spin polarization in quantum wires

    International Nuclear Information System (INIS)

    Vasilchenko, A.A.

    2015-01-01

    The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.

  17. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  18. A beginner's guide to the modern theory of polarization

    International Nuclear Information System (INIS)

    Spaldin, Nicola A.

    2012-01-01

    The so-called Modern Theory of Polarization, which rigorously defines the spontaneous polarization of a periodic solid and provides a route for its computation in electronic structure codes through the Berry phase, is introduced in a simple qualitative discussion. - Graphical abstract: Cartoon of Wannier functions in a covalent solid shifting to contribute to the ferroelectric polarization.

  19. Ultra-thin, single-layer polarization rotator

    Directory of Open Access Journals (Sweden)

    T. V. Son

    2016-08-01

    Full Text Available We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 103 when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  20. Polarized electron sources

    International Nuclear Information System (INIS)

    Prepost, R.

    1994-01-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented

  1. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  2. Polarization digital holographic microscopy using low-cost liquid crystal polarization rotators

    Science.gov (United States)

    Dovhaliuk, Rostyslav Yu

    2018-02-01

    Polarization imaging methods are actively used to study anisotropic objects. A number of methods and systems, such as imaging polarimeters, were proposed to measure the state of polarization of light that passed through the object. Digital holographic and interferometric approaches can be used to quantitatively measure both amplitude and phase of a wavefront. Using polarization modulation optics, the measurement capabilities of such interference-based systems can be extended to measure polarization-dependent parameters, such as phase retardation. Different kinds of polarization rotators can be used to alternate the polarization of a reference beam. Liquid crystals are used in a rapidly increasing number of different optoelectronic devices. Twisted nematic liquid crystals are widely used as amplitude modulators in electronic displays and light valves or shutter glass. Such devices are of particular interest for polarization imaging, as they can be used as polarization rotators, and due to large-scale manufacturing have relatively low cost. A simple Mach-Zehnder polarized holographic setup that uses modified shutter glass as a polarization rotator is demonstrated. The suggested approach is experimentally validated by measuring retardation of quarter-wave film.

  3. Polarized neutron spectrometer

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.

    2000-01-01

    The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru

  4. Evaluation of graphene-based sorbent in the determination of polar environmental contaminants in water by micro-solid phase extraction-high performance liquid chromatography.

    Science.gov (United States)

    Naing, Nyi Nyi; Li, Sam Fong Yau; Lee, Hian Kee

    2016-01-04

    A facile method of extraction using porous membrane protected micro-solid phase extraction (μ-SPE) with a graphene-based sorbent followed by high performance liquid chromatography-ultraviolet detector was developed. The reduced graphene oxide (r-GO) (1mg), synthesized from graphite oxide, was enclosed in a polypropylene bag representing the μ-SPE device, which was used for the extraction of estrogens such as estrone, 17β-estradiol, 17α-ethynylestradiol and diethylstilbestrol in water. The r-GO obtained was identified and characterized by Fourier transform infrared, transmission electron microscopy, scanning electron microscopy and thermogravimetric analysis. The sorbent was loaded with sodium dodecyl sulfate by sonication to prevent agglomeration in aqueous solution. With this method, low limits of detection of between 0.24 and 0.52 ng L(-1) were achieved. For estrogen analysis a linear calibration range of 0.01-100 μg L(-1) was obtained, with the coefficients of determination (r(2)) higher than 0.992. This proposed method was successfully applied to determine estrogens in water. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Thermoelectric properties of TbFe{sub 2} and TbCo{sub 2} in C15- laves phase: Spin-polarized DFT+U approach

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H., E-mail: maalidph@yahoo.co.uk [New Technologies - Research Centre, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic); School of Material Engineering, University Malaysia Perlis, Kangar, Perlis 01007 (Malaysia)

    2017-01-15

    Thermoelectric properties of materials are intimately related to their electronic band structure. Combining first- and second-principles calculations, we have obtained the transport properties for the spin-up and spin-down electrons of the laves phase TbFe{sub 2} and TbCo{sub 2} compounds. The unique band structure feature and the density of states at Fermi level (E{sub F}) promote the E{sub F} to a point where carriers are in energetic proximity to these features. The non-zero density of states at E{sub F} for the spin-up (↑) and spin-down (↓) electrons leads to unusual transport properties because both the (↑) and (↓) densities contributes to the states at E{sub F}. The parabolic bands in the vicinity of E{sub F} enhance the carriers mobility and hence the transport properties of TbFe{sub 2} and TbCo{sub 2}. Calculations show that the spin-up/down transport coefficients are temperature-dependent. It has been found that TbCo{sub 2} possess larger Seebeck coefficient than that of TbFe{sub 2} and hence the power factor. The calculated Seebeck coefficient of TbCo{sub 2} agree well with the available experimental data. - Highlights: • The transport properties of TbFe{sub 2} and TbCo{sub 2} are obtained. • The non-zero density of states at E{sub F} leads to unusual transport properties. • Spin-up/down transport coefficients are temperature-dependent. • The calculated Seebeck coefficient of TbCo{sub 2} agree with the experimental data. • TbCo{sub 2} possesses larger Seebeck coefficient than that of TbFe{sub 2}.

  6. Multiwavelength Polarization of Rotation-powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Alice K.; Kalapotharakos, Constantinos [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-05-10

    Polarization measurements provide strong constraints on models for emission from rotation-powered pulsars. We present multiwavelength polarization predictions showing that measurements over a range of frequencies can be particularly important for constraining the emission location, radiation mechanisms, and system geometry. The results assume a generic model for emission from the outer magnetosphere and current sheet in which optical to hard X-ray emission is produced by synchrotron radiation (SR) from electron–positron pairs and γ -ray emission is produced by curvature radiation (CR) or SR from accelerating primary electrons. The magnetic field structure of a force-free magnetosphere is assumed and the phase-resolved and phase-averaged polarization is calculated in the frame of an inertial observer. We find that large position angle (PA) swings and deep depolarization dips occur during the light-curve peaks in all energy bands. For synchrotron emission, the polarization characteristics are strongly dependent on photon emission radius with larger, nearly 180°, PA swings for emission outside the light cylinder (LC) as the line of sight crosses the current sheet. The phase-averaged polarization degree for SR is less that 10% and around 20% for emission starting inside and outside the LC, respectively, while the polarization degree for CR is much larger, up to 40%–60%. Observing a sharp increase in polarization degree and a change in PA at the transition between X-ray and γ -ray spectral components would indicate that CR is the γ -ray emission mechanism.

  7. Atmospheric Modeling of the Martian Polar Regions: CRISM EPF Coverage During the South Polar Spring Recession

    Science.gov (United States)

    Brown, A. J.; McGuire, P.; Wolff, M. J.

    2008-03-01

    We describe efforts to model dust and ice aerosols content and soils and icy surface reflectance in the Martian southern polar region during spring recession (Ls = 152-320) using CRISM emission phase function (EPF) observations.

  8. Polarized targets and beams

    International Nuclear Information System (INIS)

    Meyer, W.

    1985-01-01

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  9. Polarization controlled UV writing of bragg gratings

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Plougmann, Nikolai; Deyerl, Hans-Jürgen

    2002-01-01

    In conclusion the polarization control method is superior to any double scan method since it allows much more flexible apodization and inclusion of phase shifts, and since only one exposure is required. In many cases the method performs just as well as the most sophisticated phase mask jitter met...

  10. Polarization phenomena in few-body systems

    International Nuclear Information System (INIS)

    Conzett, H.E.

    1975-12-01

    Recent polarization studies in N--N scattering at and below 50 MeV have provided specific and significant improvements in the phase-shift parameters. High energy investigations with both polarized proton beams and targets have shown unexpectedly large spin effects, and this provides a challenge for theoretical effort to explain these results. Experimental and theoretical work on the three-nucleon problem continues to yield new and interesting results, with the emphasis now shifting to polarization studies in the breakup reaction. On-going work on several-nucleon systems continues to provide polarization data for general analyses, nuclear structure information, or specific resonance effects. Finally, the basic interaction symmetries continue to have unique and important consequences for polarization observables. 17 figures

  11. POLARIZATION REMOTE SENSING PHYSICAL MECHANISM, KEY METHODS AND APPLICATION

    Directory of Open Access Journals (Sweden)

    B. Yang

    2017-09-01

    Full Text Available China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains,it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1 Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2 Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3 Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.

  12. Scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Schweizer, J.

    2007-01-01

    In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)

  13. Polarized Light Corridor Demonstrations.

    Science.gov (United States)

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  14. Polarization versus Temperature in Pyridinium Ionic Liquids

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural, and transport properties of room-temperature ionic liquids (RTILs). These nonadditive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge...... interactions changes negligibly between 300 and 900 K, while the average dipole moment increases due to thermal fluctuations of geometries. Our results contribute to the fundamental understanding of electronic effects in the condensed phase of ionic systems and foster progress in physical chemistry...

  15. Natural lipid extracts and biomembrane-mimicking lipid compositions are disposed to form nonlamellar phases, and they release DNA from lipoplexes most efficiently

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana; MacDonald, Robert C. (NWU)

    2010-01-18

    A viewpoint now emerging is that a critical factor in lipid-mediated transfection (lipofection) is the structural evolution of lipoplexes upon interacting and mixing with cellular lipids. Here we report our finding that lipid mixtures mimicking biomembrane lipid compositions are superior to pure anionic liposomes in their ability to release DNA from lipoplexes (cationic lipid/DNA complexes), even though they have a much lower negative charge density (and thus lower capacity to neutralize the positive charge of the lipoplex lipids). Flow fluorometry revealed that the portion of DNA released after a 30-min incubation of the cationic O-ethylphosphatidylcholine lipoplexes with the anionic phosphatidylserine or phosphatidylglycerol was 19% and 37%, respectively, whereas a mixture mimicking biomembranes (MM: phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine /cholesterol 45:20:20:15 w/w) and polar lipid extract from bovine liver released 62% and 74%, respectively, of the DNA content. A possible reason for this superior power in releasing DNA by the natural lipid mixtures was suggested by structural experiments: while pure anionic lipids typically form lamellae, the natural lipid mixtures exhibited a surprising predilection to form nonlamellar phases. Thus, the MM mixture arranged into lamellar arrays at physiological temperature, but began to convert to the hexagonal phase at a slightly higher temperature, {approx} 40-45 C. A propensity to form nonlamellar phases (hexagonal, cubic, micellar) at close to physiological temperatures was also found with the lipid extracts from natural tissues (from bovine liver, brain, and heart). This result reveals that electrostatic interactions are only one of the factors involved in lipid-mediated DNA delivery. The tendency of lipid bilayers to form nonlamellar phases has been described in terms of bilayer 'frustration' which imposes a nonzero intrinsic curvature of the two opposing monolayers. Because the stored

  16. Analysis of polar organic contaminants in surface water of the northern Adriatic Sea by solid-phase extraction followed by ultrahigh-pressure liquid chromatography-QTRAP® MS using a hybrid triple-quadrupole linear ion trap instrument.

    Science.gov (United States)

    Loos, Robert; Tavazzi, Simona; Paracchini, Bruno; Canuti, Elisabetta; Weissteiner, Christof

    2013-07-01

    Water-soluble polar organic contaminants are discharged by rivers, cities, and ships into the oceans. Little is known on the fate, pollution effects, and thresholds of toxic chemical mixtures in the marine environment. A new trace analytical method was developed for the multi-compound analysis of polar organic chemical contaminants in marine waters. The method is based on automated solid-phase extraction (SPE) of one-liter water samples followed by ultrahigh-pressure liquid chromatography triple-quadrupole linear ion-trap mass spectrometry (UHPLC-QTRAP(®) MS). Marine water samples from the open Adriatic Sea taken 16 km offshore from Venice (Italy) were analyzed. Method limits of quantification (LOQs) in the low picogram per liter (pg/l) concentration range were achieved. Among the 67 target chemicals analyzed, 45 substances could be detected above the LOQ. The chemicals detected at the highest concentrations were caffeine (up to 367 ng/l), nitrophenol (36 ng/l), 2,4-dinitrophenol (34 ng/l), 5-methyl-1H-benzotriazole (18.5 ng/l), sucralose (11 ng/l), 1H-benzotriazole (9.2 ng/l), terbuthylazine (9 ng/l), alachlor (7.7 ng/l), atrazine-desisopropyl (6.6 ng/l), diethyltoluamide (DEET) (5.0 ng/l), terbuthylazine-desethyl (4.3 ng/l), metolachlor (2.8 ng/l), perfluorooctanoic acid (PFOA) (2.5 ng/l), perfluoropentanoic acid (PFPeA) (2.3 ng/l), linuron (2.3 ng/l), perfluorohexanoic acid (PFHxA) (2.2 ng/l), diuron (2.0 ng/l), perfluorohexane sulfonate (PFHxS) (1.6 ng/l), simazine (1.6 ng/l), atrazine (1.5 ng/l), and perfluorooctane sulfonate (PFOS) (1.3 ng/l). Higher concentrations were detected during summer due to increased levels of tourist activity during this period.

  17. Solid-phase extraction of polar pesticides from environmental water samples on graphitized carbon and Empore-activated carbon disks and on-line coupling to octadecyl-bonded silica analytical columns.

    Science.gov (United States)

    Slobodník, J; Oztezkizan, O; Lingeman, H; Brinkman, U A

    1996-10-25

    The suitability of Empore-activated carbon disks (EACD), Envi-Carb graphitized carbon black (GCB) and CPP-50 graphitized carbon for the trace enrichment of polar pesticides from water samples was studied by means of off-line and on-line solid-phase extraction (SPE). In the off-line procedure, 0.5-2 l samples spiked with a test mixture of oxamyl, methomyl and aldicarb sulfoxide were enriched on EnviCarb SPE cartridges or 47 mm diameter EACD and eluted with dichloromethane-methanol. After evaporation, a sample was injected onto a C18-bonded silica column and analysed by liquid chromatography with ultraviolet (LC-UV) detection. EACD performed better than EnviCarb cartridges in terms of breakthrough volumes (> 2 l for all test analytes), reproducibility (R.S.D. of recoveries, 4-8%, n = 3) and sampling speed (100 ml/min); detection limits in drinking water were 0.05-0.16 microgram/l. In the on-line experiments, 4.6 mm diameter pieces cut from original EACD and stacked onto each other in a 9 mm long precolumn, and EnviCarb and CPP-50 packed in 10 x 2.0 mm I.D. precolumn, were tested, and 50-200 ml spiked water samples were preconcentrated. Because of the peak broadening caused by the strong sorption of the analytes on carbon, the carbon-packed precolumns were eluted by a separate stream of 0.1 ml/min acetonitrile which was mixed with the gradient LC eluent in front of the C18 analytical column. The final on-line procedure was also applied for the less polar propoxur, carbaryl and methiocarb. EnviCarb could not be used due to its poor pressure resistance. CPP-50 provided less peak broadening than EACD: peak widths were 0.1-0.3 min and R.S.D. of peak heights 4-14% (n = 3). In terms of analyte trapping efficiency on-line SPE-LC-UV with a CPP-50 precolumn also showed better performance than when Bondesil C18/OH or polymeric PLRP-S was used, but chromatographic resolution was similar. With the CPP-50-based system, detection limits of the test compounds were 0.05-1 microgram

  18. Techniques in polarization physics

    International Nuclear Information System (INIS)

    Clausnitzer, G.

    1974-01-01

    A review of the current status of the technical tools necessary to perform different kinds of polarization experiments is presented, and the absolute and relative accuracy with which data can be obtained is discussed. A description of polarized targets and sources of polarized fast neutrons is included. Applications of polarization techniques to other fields is mentioned briefly. (14 figures, 3 tables, 110 references) (U.S.)

  19. Performance study of the gamma-ray bursts polarimeter POLAR

    Science.gov (United States)

    Sun, J. C.; Wu, B. B.; Bao, T. W.; Batsch, T.; Bernasconi, T.; Britvitch, I.; Cadoux, F.; Cernuda, I.; Chai, J. Y.; Dong, Y. W.; Gauvin, N.; Hajdas, W.; He, J. J.; Kole, M.; Kong, M. N.; Kong, S. W.; Lechanoine-Leluc, C.; Li, Lu; Liu, J. T.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Produit, N.; Rapin, D.; Rutczynska, A.; Rybka, D.; Shi, H. L.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wen, X.; Xiao, H. L.; Xiong, S. L.; Xu, H. H.; Xu, M.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zwolinska, A.

    2016-07-01

    The Gamma-ray Burst Polarimeter-POLAR is a highly sensitive detector which is dedicated to the measurement of GRB's polarization with a large effective detection area and a large field of view (FOV). The optimized performance of POLAR will contribute to the capture and measurement of the transient sources like GRBs and Solar Flares. The detection energy range of POLAR is 50 keV 500 keV, and mainly dominated by the Compton scattering effect. POLAR consists of 25 detector modular units (DMUs), and each DMU is composed of low Z material Plastic Scintillators (PS), multi-anode photomultipliers (MAPMT) and multi-channel ASIC Front-end Electronics (FEE). POLAR experiment is an international collaboration project involving China, Switzerland and Poland, and is expected to be launched in September in 2016 onboard the Chinese space laboratory "Tiangong-2 (TG-2)". With the efforts from the collaborations, POLAR has experienced the Demonstration Model (DM) phase, Engineering and Qualification Model (EQM) phase, Qualification Model (QM) phase, and now a full Flight Model (FM) of POLAR has been constructed. The FM of POLAR has passed the environmental acceptance tests (thermal cycling, vibration, shock and thermal vacuum tests) and experienced the calibration tests with both radioactive sources and 100% polarized Gamma-Ray beam at ESRF after its construction. The design of POLAR, Monte-Carlo simulation analysis, as well as the performance test results will all be introduced in this paper.

  20. Spin-polarized fuel in ICF pellets

    International Nuclear Information System (INIS)

    Wakuta, Yoshihisa; Emoto, Nobuya; Nakao, Yasuyuki; Honda, Takuro; Honda, Yoshinori; Nakashima, Hideki.

    1990-01-01

    The use of parallel spin-polarized DT or D 3 He fuel increases the fusion cross-section by 50%. By implosion-burn simulation for inertially confined fusion (ICF) pellets of the spin-polarized fuels, we found that the input energy requirement could be reduced by nearly a fact of two. These pellets taken up here include large-high-aspect-ratio DT target proposed in ILE Osaka University and DT ignitor/D 3 He fuel pellet proposed by our group. We also found that the polarized state could survive during the implosion-burn phase. (author)

  1. Projective geometry for polarization in geometric quantization

    International Nuclear Information System (INIS)

    Campbell, P.; Dodson, C.T.J.

    1976-12-01

    It is important to know the extent to which the procedure of geometric quantization depends on a choice of polarization of the symplectic manifold that is the classical phase space. Published results have so far been restricted to real and transversal polarizations. Here we also consider these cases by presenting a formulation in terms of projective geometry. It turns out that there is a natural characterization of real transversal polarizations and maps among them using projective concepts. We give explicit constructions for Rsup(2n)

  2. Polarized Moessbauer transitions

    International Nuclear Information System (INIS)

    Barb, D.

    1975-01-01

    Theoretical aspects of the emission, absorption and scattering of polarized gamma rays are reviewed for a general case of combined magnetic and electric hyperfine interactions; various possibilities of obtaining polarized gamma sources are described and examples are given of the applications of Moessbauer spectroscopy with polarized gamma rays in solving problems of solid state physics. (A.K.)

  3. Geographical Income Polarization

    DEFF Research Database (Denmark)

    Azhar, Hussain; Jonassen, Anders Bruun

    inter municipal income inequality. Counter factual simulations show that rising property prices to a large part explain the rise in polarization. One side-effect of polarization is tendencies towards a parallel polarization of residence location patterns, where low skilled individuals tend to live...

  4. Calculation of polarization effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1983-09-01

    Basically there are two areas of accelerator applications that involve beam polarization. One is the acceleration of a polarized beam (most likely a proton beam) in a synchrotron. Another concerns polarized beams in an electron storage ring. In both areas, numerical techniques have been very useful

  5. Phase equilibria of carbohydrates in polar solvents

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Rasmussen, Peter

    1999-01-01

    A method for calculating interaction energies and interaction parameters with molecular mechanics methods is extended to predict solid-liquid equilibria (SLE) for saccharides in aqueous solution, giving results in excellent agreement with experimental values. Previously, the method has been shown...

  6. Acceleration of polarized particles

    International Nuclear Information System (INIS)

    Buon, J.

    1992-05-01

    The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab

  7. Polarization holograms allow highly efficient generation of complex light beams.

    Science.gov (United States)

    Ruiz, U; Pagliusi, P; Provenzano, C; Volke-Sepúlveda, K; Cipparrone, Gabriella

    2013-03-25

    We report a viable method to generate complex beams, such as the non-diffracting Bessel and Weber beams, which relies on the encoding of amplitude information, in addition to phase and polarization, using polarization holography. The holograms are recorded in polarization sensitive films by the interference of a reference plane wave with a tailored complex beam, having orthogonal circular polarizations. The high efficiency, the intrinsic achromaticity and the simplicity of use of the polarization holograms make them competitive with respect to existing methods and attractive for several applications. Theoretical analysis, based on the Jones formalism, and experimental results are shown.

  8. Performance of wireless optical communication systems under polarization effects over atmospheric turbulence

    Science.gov (United States)

    Zhang, Jiankun; Li, Ziyang; Dang, Anhong

    2018-06-01

    It has been recntly shown that polarization state of propagation beam would suffer from polarization fluctuations due to the detrimental effects of atmospheric turbulence. This paper studies the performance of wireless optical communication (WOC) systems in the presence of polarization effect of atmosphere. We categorize the atmospheric polarization effect into polarization rotation, polarization-dependent power loss, and phase shift effect, with each effect described and modeled with the help of polarization-coherence theory and the extended Huygens-Fresnelprinciple. The channel matrices are derived to measure the cross-polarization interference of the system. Signal-to-noise ratio and bit error rate for polarization multiplexing system and polarization modulation system are obtained to assess the viability using the approach of M turbulence model. Monte Carlo simulation results show the performance of polarization based WOC systems to be degraded by atmospheric polarization effect, which could be evaluated precisely using the proposed model with given turbulent strengths.

  9. Polarization effects. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.

    1981-01-01

    The use of polarized proton beams in ISABELLE is important for several general reasons: (1) With a single longitudinally polarized proton beam, effects involving parity violation can be identified and hence processes involving weak interactions can be separated from those involving strong and electromagnetic interactions. (2) Spin effects are important in the strong interactions and can be useful for testing QCD. The technique for obtaining polarized proton beams in ISABELLE appears promising, particularly in view of the present development of a polarized proton beam for the AGS. Projections for the luminosity in ISABELLE for collisions of polarized protons - one or both beams polarized with longitudinal or transverse polarization - range from 1/100 to 1 times the luminosity for unpolarized protons.

  10. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  11. Numerical simulation of flow and melting characteristics of seawater-ice crystals two-phase flow in inlet straight pipe of shell and tube heat exchanger of polar ship

    Science.gov (United States)

    Xu, Li; Huang, Chang-Xu; Huang, Zhen-Fei; Sun, Qiang; Li, Jie

    2018-05-01

    The ice crystal particles are easy to enter into the seawater cooling system of polar ship together with seawater when it sails in the Arctic. They are easy to accumulate in the pipeline, causing serious blockage of the cooling pipe. In this study, the flow and melting characteristics of ice particles-seawater two-phase flow in inlet straight pipe of shell-and-tube heat exchanger were numerically simulated by using Eulerian-Eulerian two-fluid model coupled with the interphase heat and mass transfer model. The influences of inlet ice packing factor, ice crystal particle diameter, and inlet velocity on the distribution and melting characteristics of ice crystals were investigated. The degree of asymmetry of the distribution of ice crystals in the cross section decreases gradually when the IPF changes from 5 to 15%. The volume fractions of ice crystals near the top of the outlet cross section are 19.59, 19.51, and 22.24% respectively for ice packing factor of 5, 10 and 15%. When the particle diameter is 0.5 mm, the ice crystals are gradually stratified during the flow process. With particle diameters of 1.0 and 2.0 mm, the region with the highest volume fraction of ice crystals is a small circle and the contours in the cloud map are compact. The greater the inlet flow velocity, the less stratified the ice crystals and the more obvious the turbulence on the outlet cross section. The average volume fraction of ice crystals along the flow direction is firstly rapidly reduced and then stabilized after 300 mm.

  12. Growth and coalescence control of inclined c-axis polar and semipolar GaN multilayer structures grown on Si(111), Si(112), and Si(115) by metalorganic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Szymański, Tomasz, E-mail: tomasz.szymanski@pwr.edu.pl; Wośko, Mateusz; Paszkiewicz, Bartłomiej; Paszkiewicz, Bogdan; Paszkiewicz, Regina [The Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Sankowska, Iwona [The Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warszawa (Poland)

    2016-09-15

    Herein, silicon substrates in alternative orientations from the commonly used Si(111) were used to enable the growth of polar and semipolar GaN-based structures by the metalorganic vapor phase epitaxy method. Specifically, Si(112) and Si(115) substrates were used for the epitaxial growth of nitride multilayer structures, while the same layer schemes were also deposited on Si(111) for comparison purposes. Multiple approaches were studied to examine the influence of the seed layers and the growth process conditions upon the final properties of the GaN/Si(11x) templates. Scanning electron microscope images were acquired to examine the topography of the deposited samples. It was observed that the substrate orientation and the process conditions allow control to produce an isolated GaN block growth or a coalesced layer growth, resulting in inclined c-axis GaN structures under various forms. The angles of the GaN c-axis inclination were determined by x-ray diffraction measurements and compared with the results obtained from the analysis of the atomic force microscope (AFM) images. The AFM image analysis method to determine the structure tilt was found to be a viable method to estimate the c-axis inclination angles of the isolated blocks and the not-fully coalesced layers. The quality of the grown samples was characterized by the photoluminescence method conducted at a wide range of temperatures from 77 to 297 K, and was correlated with the sample degree of coalescence. Using the free-excitation peak positions plotted as a function of temperature, analytical Bose-Einstein model parameters were fitted to obtain further information about the grown structures.

  13. Three-dimensional polarization algebra.

    Science.gov (United States)

    R Sheppard, Colin J; Castello, Marco; Diaspro, Alberto

    2016-10-01

    If light is focused or collected with a high numerical aperture lens, as may occur in imaging and optical encryption applications, polarization should be considered in three dimensions (3D). The matrix algebra of polarization behavior in 3D is discussed. It is useful to convert between the Mueller matrix and two different Hermitian matrices, representing an optical material or system, which are in the literature. Explicit transformation matrices for converting the column vector form of these different matrices are extended to the 3D case, where they are large (81×81) but can be generated using simple rules. It is found that there is some advantage in using a generalization of the Chandrasekhar phase matrix treatment, rather than that based on Gell-Mann matrices, as the resultant matrices are of simpler form and reduce to the two-dimensional case more easily. Explicit expressions are given for 3D complex field components in terms of Chandrasekhar-Stokes parameters.

  14. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  15. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Polarization Sensitivity Analysis

    Science.gov (United States)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.

  16. Observing the Cosmic Microwave Background Polarization with Variable-delay Polarization Modulators for the Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Harrington, Kathleen; CLASS Collaboration

    2018-01-01

    The search for inflationary primordial gravitational waves and the optical depth to reionization, both through their imprint on the large angular scale correlations in the polarization of the cosmic microwave background (CMB), has created the need for high sensitivity measurements of polarization across large fractions of the sky at millimeter wavelengths. These measurements are subjected to instrumental and atmospheric 1/f noise, which has motivated the development of polarization modulators to facilitate the rejection of these large systematic effects.Variable-delay polarization modulators (VPMs) are used in the Cosmology Large Angular Scale Surveyor (CLASS) telescopes as the first element in the optical chain to rapidly modulate the incoming polarization. VPMs consist of a linearly polarizing wire grid in front of a moveable flat mirror; varying the distance between the grid and the mirror produces a changing phase shift between polarization states parallel and perpendicular to the grid which modulates Stokes U (linear polarization at 45°) and Stokes V (circular polarization). The reflective and scalable nature of the VPM enables its placement as the first optical element in a reflecting telescope. This simultaneously allows a lock-in style polarization measurement and the separation of sky polarization from any instrumental polarization farther along in the optical chain.The Q-Band CLASS VPM was the first VPM to begin observing the CMB full time in 2016. I will be presenting its design and characterization as well as demonstrating how modulating polarization significantly rejects atmospheric and instrumental long time scale noise.

  17. Workshop on polarized neutron filters and polarized pulsed neutron experiments

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2004-07-01

    The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)

  18. Determination of the polarization states of an arbitrary polarized terahertz beam: vectorial vortex analysis.

    Science.gov (United States)

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Oikawa, Hiroki; Sakaue, Kazuyuki; Washio, Masakazu; Yonemura, Motoki; Yoshizawa, Toru; Tyo, J Scott; Otani, Yukitoshi

    2015-03-24

    Vectorial vortex analysis is used to determine the polarization states of an arbitrarily polarized terahertz (0.1-1.6 THz) beam using THz achromatic axially symmetric wave (TAS) plates, which have a phase retardance of Δ = 163° and are made of polytetrafluorethylene. Polarized THz beams are converted into THz vectorial vortex beams with no spatial or wavelength dispersion, and the unknown polarization states of the incident THz beams are reconstructed. The polarization determination is also demonstrated at frequencies of 0.16 and 0.36 THz. The results obtained by solving the inverse source problem agree with the values used in the experiments. This vectorial vortex analysis enables a determination of the polarization states of the incident THz beam from the THz image. The polarization states of the beams are estimated after they pass through the TAS plates. The results validate this new approach to polarization detection for intense THz sources. It could find application in such cutting edge areas of physics as nonlinear THz photonics and plasmon excitation, because TAS plates not only instantaneously elucidate the polarization of an enclosed THz beam but can also passively control THz vectorial vortex beams.

  19. Photonic crystal based polarization insensitive flat lens

    International Nuclear Information System (INIS)

    Turduev, M; Bor, E; Kurt, H

    2017-01-01

    The paper proposes a new design of an inhomogeneous artificially created photonic crystal lens structure consisting of annular dielectric rods to efficiently focus both transverse electric and transverse magnetic polarizations of light into the same focal point. The locations of each individual cell that contains the annular dielectric rods are determined according to a nonlinear distribution function. The inner and outer radii of the annular photonic dielectric rods are optimized with respect to the polarization insensitive frequency response of the transmission spectrum of the lens structure. The physical background of the polarization insensitive focusing mechanism is investigated in both spatial and frequency domains. Moreover, polarization independent wavefront transformation/focusing has been explored in detail by investigating the dispersion relation of the structure. Corresponding phase index distribution of the lens is attained for polarization insensitive normalized frequency range of a / λ   =  0.280 and a / λ   =  0.300, where a denotes the lattice constant of the designed structure and λ denotes the wavelength of the incident light. We show the wave transformation performance and focal point movement dynamics for both polarizations of the lens structure by specially adjusting the length of the structure. The 3D finite-difference time domain numerical analysis is also performed to verifiy that the proposed design is able to focus the wave regardless of polarization into approximately the same focal point (difference between focal distances of both polarizations stays below 0.25 λ ) with an operating bandwidth of 4.30% between 1476 nm and 1541 nm at telecom wavelengths. The main superiorities of the proposed lens structure are being all dielectric and compact, and having flat front and back surfaces, rendering the proposed lens design more practical in the photonic integration process in various applications such as optical switch

  20. Multiphoton polarization Bremsstrahlung effect

    International Nuclear Information System (INIS)

    Golovinskij, P.A.

    2001-01-01

    A general approach to induced polarization effects was formulated on the basis of theory of many particles in a strong periodic field. Correlation with the perturbation theory is shown and the types of effective polarization potentials both for isolated atoms and ions, and for ions in plasma, are provided. State of art in the theory of forced polarization Bremsstrahlung effect is analyzed and some outlooks for further experimental and theoretical studies are outlined [ru

  1. Polarized gas targets for storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1990-01-01

    It is widely recognized that polarized gas targets in electron storage rings represent a new opportunity for precision nuclear physics studies. New developments in polarized target technology specific to internal applications will be discussed. In particular, polarized gas targets have been used in the VEPP-3 electron ring in Novosibirsk. A simple storage cell was used to increase the total target thickness by a factor of 15 over the simple gas jet target from an atomic beam source. Results from the initial phase of this project will be reported. In addition, the plans for increasing the luminosity by an additional order or magnitude will be presented. The application of this work to polarized hydrogen and deuterium targets for the HERA ring will be noted. The influence of beam-induced depolarization, a phenomena encountered in short-pulse electron storage rings, will be discussed. Finally, the performance tests of laser-driven sources will be presented. 8 refs., 12 figs., 1 tab

  2. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  3. Polarization of Be stars

    International Nuclear Information System (INIS)

    Johns, M.W.

    1975-01-01

    Linear polarization of starlight may be produced by electron scattering in the extended atmospheres of early type stars. Techniques are investigated for the measurement and interpretation of this polarization. Polarimetric observations were made of twelve visual double star systems in which at least one member was a B type star as a means of separating the intrinsic stellar polarization from the polarization produced in the interstellar medium. Four of the double stars contained a Be star. Evidence for intrinsic polarization was found in five systems including two of the Be systems, one double star with a short period eclipsing binary, and two systems containing only normal early type stars for which emission lines have not been previously reported. The interpretation of these observations in terms of individual stellar polarizations and their wavelength dependence is discussed. The theoretical basis for the intrinsic polarization of early type stars is explored with a model for the disk-like extended atmospheres of Be stars. Details of a polarimeter for the measurement of the linear polarization of astronomical point sources are also presented with narrow band (Δ lambda = 100A) measurements of the polarization of γ Cas from lambda 4000 to lambda 5800

  4. Polarization at SLC

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs

  5. Determination of uranium in urine by fluorometry

    International Nuclear Information System (INIS)

    Afsar, M.; Aziz, A.; Mubarak, M.A.

    1978-01-01

    The report describes fluorometric determination of traces of uranium in the urine of mine workers and persons handling uranium. After preliminary treatment uranium is extracted by solvent extraction with TBP:MIBK mixtures. An aliquot of the extracted solution is fused with high carbonate flux at 650 0 C in platinum dishes. The fluorescence of fused sample is measured using a fluorometer. Various fusion parameters are discussed. The procedure for the operation and calibration of fluorometer is also described

  6. Transparent thin film polarizing and optical control systems

    Directory of Open Access Journals (Sweden)

    Nelson V. Tabiryan

    2011-06-01

    Full Text Available We show that a diffractive waveplate can be combined with a phase retardation film for fully converting light of arbitrary polarization state into a polarized light. Incorporating a photonic bandgap layer into a system of such polarizers that unify different polarization states in the input light into a single polarization state at its output, rather than absorbing or reflecting half of it, we developed and demonstrated a polarization-independent optical controller capable of switching between transmittive and reflective states. The transition between those states is smoothly controlled with low-voltage and low-power sources. Using versatile fabrication methods, this “universally polarizing optical controller” can be integrated into a thin package compatible with a variety of display, spatial light modulation, optical communication, imaging and other photonics systems.

  7. Terahertz radiation by subpicosecond spin-polarized photocurrent originating from Dirac electrons in a Rashba-type polar semiconductor

    Science.gov (United States)

    Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi

    2018-04-01

    The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.

  8. Polar cap deflation during magnetospheric substorms

    Science.gov (United States)

    Moses, J. J.; Siscoe, G. L.; Heelis, R. A.; Winningham, J. D.

    1989-01-01

    The expanding/contracting polar cap model has been used to simulate DE-2 ion drift data during substorms as determined using the AL index. Of the 39 cases modeled, 57 percent required the opening of a nightside gap which maps to where reconnection occurs in the tail; 75 percent of the 16 recovery phase cases required a nightside gap, while only 29 percent of the 17 expansion phase cases required a nightside gap. On the basis of this result, it is concluded that if a nightside gap implies tail reconnection, then reconnection probably occurs after expansion phase onset and continues throughout most of the recovery phase of a substorm.

  9. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes.

    Science.gov (United States)

    Zhang, Xiaohu; Li, Xiong; Jin, Jinjin; Pu, Mingbo; Ma, Xiaoliang; Luo, Jun; Guo, Yinghui; Wang, Changtao; Luo, Xiangang

    2018-05-17

    Composed of ultrathin metal or dielectric nanostructures, metasurfaces can manipulate the phase, amplitude and polarization of electromagnetic waves at a subwavelength scale, which is promising for flat optical devices. In general, metasurfaces composed of space-variant anisotropic units are sensitive to the incident polarization due to the inherent polarization dependent geometric phase. Here, we implement polarization-independent broadband metasurface holograms constructed by polarization-dependent anisotropic elliptical nanoholes by elaborate design of complex amplitude holograms. The fabricated meta-hologram exhibits a polarization insensitive feature with an acceptable image quality. We verify the feasibility of the design algorithm for three-dimensional (3D) meta-holograms with simulation and the feasibility for two-dimensional (2D) meta-holograms is experimentally demonstrated at a broadband wavelength range from 405 nm to 632.8 nm. The effective polarization-independent broadband complex wavefront control with anisotropic elliptical nanoholes proposed in this paper greatly promotes the practical applications of the metasurface in technologies associated with wavefront manipulation, such as flat lens, colorful holographic displays and optical storage.

  10. Geometric phase from dielectric matrix

    International Nuclear Information System (INIS)

    Banerjee, D.

    2005-10-01

    The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)

  11. Utilization of highly robust and selective crosslinked polymeric ionic liquid-based sorbent coatings in direct-immersion solid-phase microextraction and high-performance liquid chromatography for determining polar organic pollutants in waters.

    Science.gov (United States)

    Pacheco-Fernández, Idaira; Najafi, Ali; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M

    2016-09-01

    Several crosslinked polymeric ionic liquid (PIL)-based sorbent coatings of different nature were prepared by UV polymerization onto nitinol wires. They were evaluated in a direct-immersion solid-phase microextraction (DI-SPME) method in combination with high-performance liquid chromatography (HPLC) and diode array detection (DAD). The studied PIL coatings contained either vinyl alkyl or vinylbenzyl imidazolium-based (ViCnIm- or ViBCnIm-) IL monomers with different anions, as well as different dicationic IL crosslinkers. The analytical performance of these PIL-based SPME coatings was firstly evaluated for the extraction of a group of 10 different model analytes, including hydrocarbons and phenols, while exhaustively comparing the performance with commercial SPME fibers such as polydimethylsyloxane (PDMS), polyacrylate (PA) and polydimethylsiloxane/divinylbenzene (PDMS/DVB), and using all fibers under optimized conditions. Those fibers exhibiting a high selectivity for polar compounds were selected to carry out an analytical method for a group of 5 alkylphenols, including bisphenol-A (BPA) and nonylphenol (n-NP). Under optimum conditions, average relative recoveries of 108% and inter-day precision values (3 non-consecutive days) lower than 19% were obtained for a spiked level of 10µgL(-1). Correlations coefficients for the overall method ranged between 0.990 and 0.999, and limits of detection were down to 1µgL(-1). Tap water, river water, and bottled water were analyzed to evaluate matrix effects. Comparison with the PA fiber was also performed in terms of analytical performance. Partition coefficients (logKfs) of the alkylphenols to the SPME coating varied from 1.69 to 2.45 for the most efficient PIL-based fiber, and from 1.58 to 2.30 for the PA fiber. These results agree with those obtained by the normalized calibration slopes, pointing out the affinity of these PILs-based coatings. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effect of asymmetrical transfer coefficients of a non-polarizing beam splitter on the nonlinear error of the polarization interferometer

    Science.gov (United States)

    Zhao, Chen-Guang; Tan, Jiu-Bin; Liu, Tao

    2010-09-01

    The mechanism of a non-polarizing beam splitter (NPBS) with asymmetrical transfer coefficients causing the rotation of polarization direction is explained in principle, and the measurement nonlinear error caused by NPBS is analyzed based on Jones matrix theory. Theoretical calculations show that the nonlinear error changes periodically, and the error period and peak values increase with the deviation between transmissivities of p-polarization and s-polarization states. When the transmissivity of p-polarization is 53% and that of s-polarization is 48%, the maximum error reaches 2.7 nm. The imperfection of NPBS is one of the main error sources in simultaneous phase-shifting polarization interferometer, and its influence can not be neglected in the nanoscale ultra-precision measurement.

  13. Polarization modulation in Young's interference experiment

    International Nuclear Information System (INIS)

    Tervo, Jani

    2008-01-01

    Polarization properties at the observation screen in Young's interference experiment are examined. Several recent results on the modulation of Stokes parameters, including the minimum number of modulated parameters, are reviewed. The theory is then applied to find out the relation between the Stokes parameters at the pinholes and the Pancharatnam-Berry phase at the screen.

  14. TRANSVERSELY POLARIZED Λ PRODUCTION

    International Nuclear Information System (INIS)

    BORER, D.

    2000-01-01

    Transversely polarized Λ production in hard scattering processes is discussed in terms of a leading twist T-odd fragmentation function which describes the fragmentation of an unpolarized quark into a transversely polarized Λ. We focus on the properties of this function and its relevance for the RHIC and HERMES experiments

  15. Our Polar Past

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2009-01-01

    The study of polar exploration is fascinating and offers students insights into the history, culture, and politics that affect the developing sciences at the farthest ends of Earth. Therefore, the authors think there is value in incorporating polar exploration accounts within modern science classrooms, and so they conducted research to test their…

  16. Marine polar steroids

    International Nuclear Information System (INIS)

    Stonik, Valentin A

    2001-01-01

    Structures, taxonomic distribution and biological activities of polar steroids isolated from various marine organisms over the last 8-10 years are considered. The peculiarities of steroid biogenesis in the marine biota and their possible biological functions are discussed. Syntheses of some highly active marine polar steroids are described. The bibliography includes 254 references.

  17. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  18. PALOMA: A Magnetic CV between Polars and Intermediate Polars

    Science.gov (United States)

    Joshi, Arti; Pandey, J. C.; Singh, K. P.; Agrawal, P. C.

    2016-10-01

    We present analyses of archival X-ray data obtained from the XMM-Newton satellite and optical photometric data obtained from 1 m class telescopes of ARIES, Nainital of a magnetic cataclysmic variable (MCV) Paloma. Two persistent periods at 156 ± 1 minutes and 130 ± 1 minutes are present in the X-ray data, which we interpret as the orbital and spin periods, respectively. These periods are similar to those obtained from the previous as well as new optical photometric observations. The soft-X-ray excess seen in the X-ray spectrum of Paloma and the averaged X-ray spectra are well fitted by two-temperature plasma models with temperatures of {0.10}-0.01+0.02 and {13.0}-0.5+0.5 keV with an Fe Kα line and an absorbing column density of 4.6 × 1022 cm-2. This material partially covers 60 ± 2% of the X-ray source. We also present the orbital and spin-phase-resolved spectroscopy of Paloma in the 0.3{--}10.0 {keV} energy band and find that the X-ray spectral parameters show orbital and spin-phase dependencies. New results obtained from optical and X-ray studies of Paloma indicate that it belongs to a class of a few magnetic CVs that seem to have the characteristics of both the polars and the intermediate polars.

  19. Vector wave diffraction pattern of slits masked by polarizing devices

    Indian Academy of Sciences (India)

    This calls for a systematic study of diffraction properties of different apertures using polarization-sensitive devices. In the present paper, we have studied the Fraunhofer diffraction pattern of slits masked by different kinds of polarizing devices which introduce a phase difference between the two orthogonal components of the ...

  20. Polarization Imaging Apparatus with Auto-Calibration

    Science.gov (United States)

    Zou, Yingyin Kevin (Inventor); Zhao, Hongzhi (Inventor); Chen, Qiushui (Inventor)

    2013-01-01

    A polarization imaging apparatus measures the Stokes image of a sample. The apparatus consists of an optical lens set, a first variable phase retarder (VPR) with its optical axis aligned 22.5 deg, a second variable phase retarder with its optical axis aligned 45 deg, a linear polarizer, a imaging sensor for sensing the intensity images of the sample, a controller and a computer. Two variable phase retarders were controlled independently by a computer through a controller unit which generates a sequential of voltages to control the phase retardations of the first and second variable phase retarders. A auto-calibration procedure was incorporated into the polarization imaging apparatus to correct the misalignment of first and second VPRs, as well as the half-wave voltage of the VPRs. A set of four intensity images, I(sub 0), I(sub 1), I(sub 2) and I(sub 3) of the sample were captured by imaging sensor when the phase retardations of VPRs were set at (0,0), (pi,0), (pi,pi) and (pi/2,pi), respectively. Then four Stokes components of a Stokes image, S(sub 0), S(sub 1), S(sub 2) and S(sub 3) were calculated using the four intensity images.

  1. Polarization Optics in Telecommunications

    CERN Document Server

    Damask, Jay N

    2005-01-01

    The strong investments into optical telecommunications in the late 1990s resulted in a wealth of new research, techniques, component designs, and understanding of polarization effects in fiber. Polarization Optics in Telecommunications brings together recent advances in the field to create a standard, practical reference for component designers and optical fiber communication engineers. Beginning with a sound foundation in electromagnetism, the author offers a dissertation of the spin-vector formalism of polarization and the interaction of light with media. Applications discussed include optical isolators, optical circulators, fiber collimators, and a variety of applied waveplate and prism combinations. Also included in an extended discussion of polarization-mode dispersion (PMD) and polarization-dependent loss (PDL), their representation, behavior, statistical properties, and measurement. This book draws extensively from the technical and patent literature and is an up-to-date reference for researchers and c...

  2. Parallel Polarization State Generation.

    Science.gov (United States)

    She, Alan; Capasso, Federico

    2016-05-17

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  3. Study on polarities of methylphenylpolysiloxanes in gas chromatography

    International Nuclear Information System (INIS)

    Pias Barbeira, J. B.; Gasco Sanchez, L.

    1975-01-01

    When studying the correlations between molecular structure and retention parameters in alcohols, alcohol benzoyl derivatives and carbonyl 2,4-dinitrophe nyl hydrazones some anomalies probably due to polarities of methylphenylpolysiloxane stationary phases have been observed. (Author) 31 refs

  4. Polar bears at risk

    Energy Technology Data Exchange (ETDEWEB)

    Norris, S.; Rosentrater, L.; Eid, P.M. [WWF International Arctic Programme, Oslo (Norway)

    2002-05-01

    Polar bears, the world's largest terrestrial carnivore, spend much of their lives on the arctic sea ice. This is where they hunt and move between feeding, denning, and resting areas. The world population, estimated at 22,000 bears, is made up of 20 relatively distinct populations varying in size from a few hundred to a few thousand animals. About 60 per cent of all polar bears are found in Canada. In general, the status of this species is stable, although there are pronounced differences between populations. Reductions in the extent and thickness of sea ice has lead the IUCN Polar Bear Specialist Group to describe climate change as one of the major threats facing polar bears today. Though the long-term effects of climate change will vary in different areas of the Arctic, impacts on the condition and reproductive success of polar bears and their prey are likely to be negative. Longer ice-free periods resulting from earlier break-up of sea ice in the spring and later formation in the fall is already impacting polar bears in the southern portions of their range. In Canada's Hudson Bay, for example, bears hunt on the ice through the winter and into early summer, after which the ice melts completely, forcing bears ashore to fast on stored fat until freeze-up in the fall. The time bears have on the ice to hunt and build up their body condition is cut short when the ice melts early. Studies from Hudson Bay show that for every week earlier that ice break-up occurs, bears will come ashore 10 kg lighter and in poorer condition. It is likely that populations of polar bears dividing their time between land and sea will be severely reduced and local extinctions may occur as greenhouse gas emissions continue to rise and sea ice melts. Expected changes in regional weather patterns will also impact polar bears. Rain in the late winter can cause maternity dens to collapse before females and cubs have departed, thus exposing occupants to the elements and to predators. Such

  5. Three-dimensional polarization marked multiple-QR code encryption by optimizing a single vectorial beam

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Hua, Binbin; Wang, Zhisong

    2015-10-01

    We demonstrate the feasibility of three dimensional (3D) polarization multiplexing by optimizing a single vectorial beam using a multiple-signal window multiple-plane (MSW-MP) phase retrieval algorithm. Original messages represented with multiple quick response (QR) codes are first partitioned into a series of subblocks. Then, each subblock is marked with a specific polarization state and randomly distributed in 3D space with both longitudinal and transversal adjustable freedoms. A generalized 3D polarization mapping protocol is established to generate a 3D polarization key. Finally, multiple-QR code is encrypted into one phase only mask and one polarization only mask based on the modified Gerchberg-Saxton (GS) algorithm. We take the polarization mask as the cyphertext and the phase only mask as additional dimension of key. Only when both the phase key and 3D polarization key are correct, original messages can be recovered. We verify our proposal with both simulation and experiment evidences.

  6. Wien filter for a polarized ions source

    International Nuclear Information System (INIS)

    Perez A, P.I.

    1977-01-01

    In order to carry out investigation works about nuclear structure, the Nuclear Center of Mexico has an accelerator Tandem Van de Graff of 12 Mv. Now in this center there is a polarized ions source, in a setting phase, totally constructed in the workshop of the accelerator. This source, supplies an ion beam with a polarization whose propagation direction is not the adequate one for the dispersion and reaction processes wanted to be realized. A filter Wien was used to obtain the correct direction of the polarization vector. The purpose of this work is the study of the filter necessary conditions in order to reach the desirable objective. In the first part some generalities are given about: polarization phenomena, polarized ions source and description of the performance of the Wien filter. In the second part, the problem of the passage of a polarized beam through the filter is tried and solved. Finally, the design and construction of the filter is presented together with the results of the experimentation with the object to justify the suppositions which were taken into consideration in the solution of the filter problem. (author)

  7. The BNL polarized H- ion source development program

    International Nuclear Information System (INIS)

    Kponou, A.; Alessi, J.; Hershcovitch, A.; DeVito, B.

    1992-01-01

    Polarized protons have been available for acceleration in the AGS for the high energy physics program since 1984. The polarized H - source, PONI-1, has routinely supplied a 0.4 Hz, 400 μsec pulse having a nominal intensity of 40 μA. Polarization is ∼80% out of the ion source. After PONI- 1 became operational, a program was initiated to develop a more intense source based on a cold ground state atomic beam source, followed by ionization of the polarized H degrees beam by D - charge exchange. Various phases of this work have been fully reported elsewhere, and only a summary is given here

  8. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  9. GUIDE FOR POLARIZED NEUTRONS

    Science.gov (United States)

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  10. Heidelberg polarized alkali source

    International Nuclear Information System (INIS)

    Kraemer, D.; Steffens, E.; Jaensch, H.; Philipps Universitaet, Marburg, Germany)

    1984-01-01

    A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li + and Na + , respectively

  11. The representation of neutron polarization

    International Nuclear Information System (INIS)

    Byrne, J.

    1979-01-01

    Neutron beam polarization representation is discussed under the headings; transfer matrices, coherent parity violation for neutrons, neutron spin rotation in helical magnetic fields, polarization and interference. (UK)

  12. Determination of polar pesticides with atmospheric pressure chemical ionisation mass spectrometry-mass spectrometry using methanol and/or acetonitrile for solid-phase desorption and gradient liquid chromatography.

    NARCIS (Netherlands)

    Geerdink, R.B.; Kooistra-Slijpersma, A.; Tiesnitsch, J.; Kienhuis, P.G.M.; Brinkman, U.A.T.

    1999-01-01

    Thirty-seven polar pesticides, mainly triazines, phenylurea herbicides and phenoxy acids, were determined by LC-atmospheric pressure chemical ionisation MS-MS with methanol and acetonitrile as the organic modifiers. For most pesticides, detection limits were the same irrespective of the modifier.

  13. Advancing Environmental Prediction Capabilities for the Polar Regions and Beyond during The Year of Polar Prediction

    Science.gov (United States)

    Werner, Kirstin; Goessling, Helge; Hoke, Winfried; Kirchhoff, Katharina; Jung, Thomas

    2017-04-01

    Environmental changes in polar regions open up new opportunities for economic and societal operations such as vessel traffic related to scientific, fishery and tourism activities, and in the case of the Arctic also enhanced resource development. The availability of current and accurate weather and environmental information and forecasts will therefore play an increasingly important role in aiding risk reduction and safety management around the poles. The Year of Polar Prediction (YOPP) has been established by the World Meteorological Organization's World Weather Research Programme as the key activity of the ten-year Polar Prediction Project (PPP; see more on www.polarprediction.net). YOPP is an internationally coordinated initiative to significantly advance our environmental prediction capabilities for the polar regions and beyond, supporting improved weather and climate services. Scheduled to take place from mid-2017 to mid-2019, the YOPP core phase covers an extended period of intensive observing, modelling, prediction, verification, user-engagement and education activities in the Arctic and Antarctic, on a wide range of time scales from hours to seasons. The Year of Polar Prediction will entail periods of enhanced observational and modelling campaigns in both polar regions. With the purpose to close the gaps in the conventional polar observing systems in regions where the observation network is sparse, routine observations will be enhanced during Special Observing Periods for an extended period of time (several weeks) during YOPP. This will allow carrying out subsequent forecasting system experiments aimed at optimizing observing systems in the polar regions and providing insight into the impact of better polar observations on forecast skills in lower latitudes. With various activities and the involvement of a wide range of stakeholders, YOPP will contribute to the knowledge base needed to managing the opportunities and risks that come with polar climate change.

  14. Design and construction of the POLAR detector

    Science.gov (United States)

    Produit, N.; Bao, T. W.; Batsch, T.; Bernasconi, T.; Britvich, I.; Cadoux, F.; Cernuda, I.; Chai, J. Y.; Dong, Y. W.; Gauvin, N.; Hajdas, W.; Kole, M.; Kong, M. N.; Kramert, R.; Li, L.; Liu, J. T.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Rapin, D.; Rybka, D.; Rutczynska, A.; Shi, H. L.; Socha, P.; Sun, J. C.; Song, L. M.; Szabelski, J.; Traseira, I.; Xiao, H. L.; Wang, R. J.; Wen, X.; Wu, B. B.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, Y. J.; Zwolinska, A.

    2018-01-01

    The POLAR detector is a space based Gamma Ray Burst (GRB) polarimeter with a wide field of view, which covers almost half the sky. The instrument uses Compton scattering of gamma rays on a plastic scintillator hodoscope to measure the polarization of the incoming photons. The instrument has been successfully launched on board of the Chinese space laboratory Tiangong 2 on September 15, 2016. The construction of the instrument components is described in this article. Details are provided on problems encountered during the construction phase and their solutions. Initial performance of the instrument in orbit is as expected from ground tests and Monte Carlo simulation.

  15. Vertically Polarized Omnidirectional Printed Slot Loop Antenna

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper

    2015-01-01

    A novel vertically polarized omnidirectional printed slot loop antenna has been designed, simulated, fabricated and measured. The slot loop works as a magnetic loop. The loop is loaded with inductors to insure uniform and in-phase fields in the slot in order to obtain an omnidirectional radiation...... pattern. The antenna is designed for the 2.45 GHz Industrial, Scientific and Medical band. Applications of the antenna are many. One is for on-body applications since it is ideal for launching a creeping waves due to the polarization....

  16. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  17. Polarized proton colliders

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. This will allow the study of the spin structure of the proton and also the verification of the many well documented expectations of spin effects in perturbative QCD and parity violation in W and Z production. Proposals for polarized proton acceleration for several high energy colliders have been developed. A partial Siberian Snake in the AGS has recently been successfully tested and full Siberian Snakes, spin rotators, and polarimeters for RHIC are being developed to make the acceleration of polarized beams to 250 GeV possible. This allows for the unique possibility of colliding two 250 GeV polarized proton beams at luminosities of up to 2 x 10 32 cm -2 s -1

  18. Anomalous Surface Wave Launching by Handedness Phase Control

    KAUST Repository

    Zhang, Xueqian; Xu, Yuehong; Yue, Weisheng; Tian, Zhen; Gu, Jianqiang; Li, Yanfeng; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2015-01-01

    Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Anomalous Surface Wave Launching by Handedness Phase Control

    KAUST Repository

    Zhang, Xueqian

    2015-10-09

    Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Plasma polarization spectroscopy

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Horimoto, Yasuhiro; Fujimoto, Takashi; Hasegawa, Noboru; Sukegawa, Kouta; Kawachi, Tetsuya

    2005-01-01

    The electron velocity distribution function (EVDF) in plasma can be anisotropic in laser-produced plasmas. We have developed a new technique to evaluate the polarization degree of the emission lines in the extreme vacuum ultra violet wavelength region. The polarization of the emission lines and the continuums from the lithium-like nitrogen and from helium- and hydrogen-like carbon in recombining plasma is evaluated. Particle simulation in the velocity space gives the time scale for relaxation of anisotropic EVDFs. (author)

  1. No More Polarization, Please!

    OpenAIRE

    Reinholt, Mia

    2006-01-01

    The organizational science literature on motivation has for long been polarized into two main positions; the organizational economic position focusing on extrinsic motivation and the organizational behavior position emphasizing intrinsic motivation. With the rise of the knowledge economy and the increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on mot...

  2. Inertial polarization of dielectrics

    OpenAIRE

    Zavodovsky, A. G.

    2011-01-01

    It was proved that accelerated motion of a linear dielectric causes its polarization. Accelerated translational motion of a dielectric's plate leads to the positive charge of the surface facing the direction of motion. Metal plates of a capacitor were used to register polarized charges on a dielectric's surface. Potential difference between the capacitor plates is proportional to acceleration, when acceleration is constant potential difference grows with the increase of a dielectric's area, o...

  3. Polarimetry and photometry of the AM Her polar

    Energy Technology Data Exchange (ETDEWEB)

    Efimov, Yu S; Shakhovskoj, N M

    1982-01-01

    The results of the polarization observations and photometry of AM Her obtained during 11 nights from April to September 1978 are presented. The observations were carried out in V spectral region with time resolution of about four minutes. The results of measurements are in agreement with previous observations. The polarization maximum, being mostly on the 1.3 % level, was rising up to 2 % only at an active state of the star. No correlation was found between rapid variations of light and linear polarization at an inactive state of the star. The phase dependence of mean polarization parameters is revealed. The displaced dipole magnetic field with different strength on the poles is assumed for the polar model to interpret the vector diagram of polarization.

  4. Fusion of a polarized projectile with a polarized target

    International Nuclear Information System (INIS)

    Christley, J.A.; Johnson, R.C.; Thompson, I.J.

    1995-01-01

    The fusion cross sections for a polarized target with both unpolarized and polarized projectiles are studied. Expressions for the observables are given for the case when both nuclei are polarized. Calculations for fusion of an aligned 165 Ho target with 16 O and polarized 7 Li beams are presented

  5. Revealing the dark side of Portlandite Clusters in cement paste by circular polarization microscopy

    NARCIS (Netherlands)

    Copuroglu, O.

    2016-01-01

    Plane and crossed polarization are the two standard light modes in polarized light microscopy that are widely used to characterize crystalline and amorphous phases in cement-based materials. However, the use of the crossed polarized light mode has been found to be restrictive for studying

  6. When measured spin polarization is not spin polarization

    International Nuclear Information System (INIS)

    Dowben, P A; Wu Ning; Binek, Christian

    2011-01-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)

  7. Defect-Induced Hedgehog Polarization States in Multiferroics

    Science.gov (United States)

    Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R.; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing

    2018-03-01

    Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO3 . An array of charged NSNRs are produced in BiFeO3 thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.

  8. The evolution of tensor polarization

    International Nuclear Information System (INIS)

    Huang, H.; Lee, S.Y.; Ratner, L.

    1993-01-01

    By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake

  9. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2000-01-01

    The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li(p,n) 7 Be, and T(p,n) 3 He reactions. (authors)

  10. Investigation of the polarization state of dual APPLE-II undulators.

    Science.gov (United States)

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S; Sawhney, Kawal

    2016-01-01

    The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  11. Polarized particles in storage rings

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Kondratenko, A.M.; Serednyakov, S.I.; Skrinskij, A.N.; Tumajkin, G.M.; Shatunov, Yu.M.

    1977-01-01

    Experiments with polarized beams on the VEPP-2M and SPEAK storage rings are described. Possible methods of producing polarized particle beams in storage rings as well as method of polarization monitoring are counted. Considered are the processes of radiation polarization of electrons and positrons. It is shown, that to preserve radiation polarization the introduction of regions with a strong sign-variable magnetic field is recommended. Methods of polarization measurement are counted. It is suggested for high energies to use dependence of synchrotron radiation power on transverse polarization of electrons and positrons. Examples of using polarizability of colliding beams in storage rings are presented

  12. Towards Polarization Diversity on the SOI Platform With Simple Fabrication Process

    DEFF Research Database (Denmark)

    Ding, Yunhong; Liu, Liu; Peucheret, Christophe

    2011-01-01

    We present a polarization diversity circuit built on the silicon-on-insulator (SOI) platform, which can be fabricated by a simple process. The polarization diversity is based on two identical air-clad asymmetrical directional couplers, which simultaneously play the roles of polarization splitter...... and rotator. A silicon polarization diversity circuit with a single microring resonator is fabricated on the SOI platform. Only ${1-dB polarization-dependent loss is demonstrated. A significant improvement of the polarization dependence is obtained for 20-Gb/s nonreturn-to-zero differential phase-shift keying...

  13. Multiband Circular Polarizer Based on Fission Transmission of Linearly Polarized Wave for X-Band Applications

    Directory of Open Access Journals (Sweden)

    Farman Ali Mangi

    2016-01-01

    Full Text Available A multiband circular polarizer based on fission transmission of linearly polarized wave for x-band application is proposed, which is constructed of 2 × 2 metallic strips array. The linear-to-circular polarization conversion is obtained by decomposing the linearly incident x-polarized wave into two orthogonal vector components of equal amplitude and 90° phase difference between them. The innovative approach of “fission transmission of linear-to-circular polarized wave” is firstly introduced to obtain giant circular dichroism based on decomposition of orthogonal vector components through the structure. It means that the incident linearly polarized wave is converted into two orthogonal components through lower printed metallic strips layer and two transmitted waves impinge on the upper printed strips layer to convert into four orthogonal vector components at the end of structure. This projection and transmission sequence of orthogonal components sustain the chain transmission of electromagnetic wave and can achieve giant circular dichroism. Theoretical analysis and microwave experiments are presented to validate the performance of the structure. The measured results are in good agreement with simulation results. In addition, the proposed circular polarizer exhibits the optimal performance with respect to the normal incidence. The right handed circularly polarized wave is emitted ranging from 10.08 GHz to 10.53 GHz and 10.78 GHz to 11.12 GHz, while the left handed circular polarized wave is excited at 10.54 GHz–10.70 GHz and 11.13 GHz–11.14 GHz, respectively.

  14. Polarized electrons at Jefferson laboratory

    International Nuclear Information System (INIS)

    Sinclair, C.K.

    1998-01-01

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously. Initial operational experience with the polarized source will be presented. copyright 1998 American Institute of Physics

  15. Polarized Electrons at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, C.K.

    1997-12-31

    The CEBAF accelerator at Jefferson laboratory can deliver CW electron beams to three experimental halls simultaneously. A large fraction of the approved scientific program at the lab requires polarized electron beams. Many of these experiments, both polarized and unpolarized, require high average beam current as well. Since all electrons delivered to the experimental halls originate from the same cathode, delivery of polarized beam to a single hall requires using the polarized source to deliver beam to all experiments in simultaneous operation. The polarized source effort at Jefferson Lab is directed at obtaining very long polarized source operational lifetimes at high average current and beam polarization; at developing the capability to deliver all electrons leaving the polarized source to the experimental halls; and at delivering polarized beam to multiple experimental halls simultaneously.initial operational experience with the polarized source will be presented.

  16. Polarization: A Must for Fusion

    Directory of Open Access Journals (Sweden)

    Guidal M.

    2012-10-01

    Full Text Available Recent realistic simulations confirm that the polarization of the fuel would improve significantly the DT fusion efficiency. We have proposed an experiment to test the persistence of the polarization in a fusion process, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the neutrons and the change in the corresponding total cross section are related to the polarization persistence. The experimental polarization of DT fuel is a technological challenge. Possible paths for Magnetic Confinement Fusion (MCF and for Inertial Confinement Fusion (ICF are reviewed. For MCF, polarized gas can be used. For ICF, cryogenic targets are required. We consider both, the polarization of gas and the polarization of solid DT, emphasizing the Dynamic Nuclear polarization (DNP of HD and DT molecules.

  17. Study by polarized muon

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu

    1977-01-01

    Experiments by using polarized muon beam are reported. The experiments were performed at Berkeley, U.S.A., and at Vancouver, Canada. The muon spin rotation is a useful method for the study of the spin polarization of conductive electrons in paramagnetic Pd metal. The muon Larmor frequency and the relaxation time can be obtained by measuring the time distribution of decay electrons of muon-electron process. The anomalous depolarization of negative muon spin rotation in the transitional metal was seen. The circular polarization of the negative muon X-ray was measured to make clear this phenomena. The experimental results show that the anomalous depolarization is caused at the 1-S-1/2 state. For the purpose to obtain the strong polarization of negative muon, a method of artificial polarization is proposed, and the test experiments are in progress. The study of the hyperfine structure of mu-mesic atoms is proposed. The muon capture rate was studied systematically. (Kato, T.)

  18. Polarized protons at RHIC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1990-12-01

    The Physics case is presented for the use of polarized protons at RHIC for one or two months each year. This would provide a facility with polarizations of approx-gt 50% high luminosity ∼2.0 x 10 32 cm -2 s -1 , the possibility of both longitudinal and transverse polarization at the interaction regions, and frequent polarization reversal for control of systematic errors. The annual integrated luminosity for such running (∼10 6 sec per year) would be ∫ Ldt = 2 x 10 38 cm -2 -- roughly 20 times the total luminosity integrated in ∼ 10 years of operation of the CERN Collider (∼10 inverse picobarns, 10 37 cm -2 ). This facility would be unique in the ability to perform parity-violating measurements and polarization test of QCD. Also, the existence of p-p collisions in a new energy range would permit the study of ''classical'' reactions like the total cross section and elastic scattering, etc., and serve as a complement to measurements from p-bar p colliders. 11 refs

  19. The Bochum Polarized Target

    International Nuclear Information System (INIS)

    Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.

    2001-01-01

    The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function

  20. Polarized curvature radiation in pulsar magnetosphere

    Science.gov (United States)

    Wang, P. F.; Wang, C.; Han, J. L.

    2014-07-01

    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and corotating with the pulsar magnetosphere. Within the 1/γ emission cone, the waves can be divided into two natural wave-mode components, the ordinary (O) mode and the extraordinary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the corotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the corotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of outcoming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.

  1. A bistable model of cell polarity.

    Directory of Open Access Journals (Sweden)

    Matteo Semplice

    Full Text Available Ultrasensitivity, as described by Goldbeter and Koshland, has been considered for a long time as a way to realize bistable switches in biological systems. It is not as well recognized that when ultrasensitivity and reinforcing feedback loops are present in a spatially distributed system such as the cell plasmamembrane, they may induce bistability and spatial separation of the system into distinct signaling phases. Here we suggest that bistability of ultrasensitive signaling pathways in a diffusive environment provides a basic mechanism to realize cell membrane polarity. Cell membrane polarization is a fundamental process implicated in several basic biological phenomena, such as differentiation, proliferation, migration and morphogenesis of unicellular and multicellular organisms. We describe a simple, solvable model of cell membrane polarization based on the coupling of membrane diffusion with bistable enzymatic dynamics. The model can reproduce a broad range of symmetry-breaking events, such as those observed in eukaryotic directional sensing, the apico-basal polarization of epithelium cells, the polarization of budding and mating yeast, and the formation of Ras nanoclusters in several cell types.

  2. On the theory of polar ozone holes

    International Nuclear Information System (INIS)

    Njau, E.C.

    1990-12-01

    The viable theories already proposed to explain polar ozone holes generally fall into two main categories, namely, chemical theories and dynamical theories. In both of these categories, polar stratospheric clouds (PSCs) are taken as part of the essential basis. Besides, all the dynamical theories are based upon temperature changes. Since formation of the PSCs is highly temperature-dependent, it has been concluded from recent research (e.g. see Kawahira and Hirooka) that temperature changes are a cause, not a result of ozone depletion in polar regions. On this basis, formulations are developed that represent short-term and long-term temperature variations in the polar regions due to natural processes. These variations, which are confined to a limited area around each pole, include specific oscillations with periods ranging from ∼ 2 years up to ∼ 218,597 years. Polar ozone variations are normally expected to be influenced by these temperature oscillations. It is, therefore, apparent that the generally decreasing trend observed in mean October ozone column at Halley Bay (76 deg. S, 27 deg. W) from 1956 up to 1987 is mostly caused by the decreasing phase of a combination of two natural temperature oscillations, one with a period of ∼ 70-80 years and the other with a period of ∼ 160-180 years. Contributions of other natural temperature oscillations are also mentioned and briefly discussed. (author). 35 refs, 4 figs

  3. Order and chaos in polarized nonlinear optics

    International Nuclear Information System (INIS)

    Holm, D.D.

    1990-01-01

    Methods for investigating temporal complexity in Hamiltonian systems are applied to the dynamics of a polarized optical laser beam propagating as a travelling wave in a medium with cubically nonlinear polarizability (i.e., a Kerr medium). The theory of Hamiltonian systems with symmetry is used to study the geometry of phase space for the optical problem, transforming from C 2 to S 2 x (J,θ), where (J,θ) is a symplectic action-angle pair. The bifurcations of the phase portraits of the Hamiltonian motion on S 2 are classified and shown graphically. These bifurcations create various saddle connections on S 2 as either J (the beam intensity), or the optical parameters of the medium are varied. After this bifurcation analysis, the Melnikov method is used to demonstrate analytically that the saddle connections break and intersect transversely in a Poincare map under spatially periodic perturbations of the optical parameters of the medium. These transverse intersections in the Poincare map imply intermittent polarization switching with extreme sensitivity to initial conditions characterized by a Smale horseshoe construction for the travelling waves of a polarized optical laser pulse. The resulting chaotic behavior in the form of sensitive dependence on initial conditions may have implications for the control and predictability of nonlinear optical polarization switching in birefringent media. 19 refs., 2 figs., 1 tab

  4. Polarized source upgrading

    International Nuclear Information System (INIS)

    Clegg, T.B.; Rummel, R.L.; Carter, E.P.; Westerfeldt, C.R.; Lovette, A.W.; Edwards, S.E.

    1985-01-01

    The decision was made this past year to move the Lamb-shift polarized ion source which was first installed in the laboratory in 1970. The motivation was the need to improve the flexibility of spin-axis orientation by installing the ion source with a new Wien-filter spin precessor which is capable of rotating physically about the beam axis. The move of the polarized source was accomplished in approximately two months, with the accelerator being turned off for experiments during approximately four weeks of this time. The occasion of the move provided the opportunity to rewire completely the entire polarized ion source frame and to rebuild approximately half of the electronic chassis on the source. The result is an ion source which is now logically wired and carefully documented. Beams obtained from the source are much more stable than those previously available

  5. Spin polarized deuterium

    International Nuclear Information System (INIS)

    Glyde, H.R.; Hernadi, S.I.

    1986-01-01

    Several ground state properties of (electron) spin-polarized deuterium (D) such as the energy, single quasiparticle energies and lifetimes, Landau parameters and sound velocities are evaluated. The calculations begin with the Kolos-Wolneiwicz potential and use the Galitskii-FeynmanHartree-Fock (GFHF) approximation. The deuteron nucleas has spin I = 1, and spin states I/sub z/ = 1,0,-1. We explore D 1 , D 2 and D 3 in which, respectively, one spin state only is populated, two states are equally populated, and three states are equally populated. We find the GFHF describes D 1 well, but D 2 and D 3 less well. The Landau parameters, F/sub L/, are small compared to liquid 3 He and very small for doubly polarized D 1 (i.e. the F/sub L/ decrease with nuclear polarization)

  6. Polarized electron sources

    International Nuclear Information System (INIS)

    Clendenin, J.E.

    1995-05-01

    Polarized electron sources for high energy accelerators took a significant step forward with the introduction of a new laser-driven photocathode source for the SLC in 1992. With an electron beam polarization of >80% and with ∼99% uptime during continuous operation, this source is a key factor in the success of the current SLC high-energy physics program. The SLC source performance is used to illustrate both the capabilities and the limitations of solid-state sources. The beam requirements for future colliders are similar to that of the SLC with the addition in most cases of multiple-bunch operation. A design for the next generation accelerator source that can improve the operational characteristics and at least minimize some of the inherent limitations of present sources is presented. Finally, the possibilities for producing highly polarized electron beams for high-duty-factor accelerators are discussed

  7. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......, to reconstruct the distribution of the Cole-Cole parameters of the earth. The accurate modeling of the transmitter waveform had a strong influence on the forward response, and we showed that the difference between a solution using a step response and a solution using the accurate modeling often is above 100...

  8. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  9. Polarized 3He Gas Circulating Technologies for Neutron Analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Watt, David [Xemed LLC, Durham, NH (United States); Hersman, Bill [Xemed LLC, Durham, NH (United States)

    2014-12-10

    We describe the development of an integrated system for quasi-continuous operation of a large volume neutron analyzer. The system consists of a non-magnetic diaphragm compressor, a prototype large volume helium polarizer, a surrogate neutron analyzer, a non-depolarizing gas storage reservoir, a non-ferrous valve manifold for handling gas distribution, a custom rubidium-vapor gas return purifier, and wire-wound transfer lines, all of which are immersed in a two-meter external magnetic field. Over the Phase II period we focused on three major tasks required for the successful deployment of these types of systems: 1) design and implementation of gas handling hardware, 2) automation for long-term operation, and 3) improvements in polarizer performance, specifically fabrication of aluminosilicate optical pumping cells. In this report we describe the design, implementation, and testing of the gas handling hardware. We describe improved polarizer performance resulting from improved cell materials and fabrication methods. These improvements yielded valved 8.5 liter cells with relaxation times greater than 12 hours. Pumping this cell with 1500W laser power with 1.25nm linewidth yielded peak polarizations of 60%, measured both inside and outside the polarizer. Fully narrowing this laser to 0.25nm, demonstrated separately on one stack of the four, would have allowed 70% polarization with this cell. We demonstrated the removal of 5 liters of polarized helium from the polarizer with no measured loss of polarization. We circulated the gas through a titanium-clad compressor with polarization loss below 3% per pass. We also prepared for the next phase of development by refining the design of the polarizer so that it can be engineer-certified for pressurized operation. The performance of our system far exceeds comparable efforts elsewhere.

  10. Modelling Polar Self Assembly

    Science.gov (United States)

    Olvera de La Cruz, Monica; Sayar, Mehmet; Solis, Francisco J.; Stupp, Samuel I.

    2001-03-01

    Recent experimental studies in our group have shown that self assembled thin films of noncentrosymmetric supramolecular objects composed of triblock rodcoil molecules exhibit finite polar order. These aggregates have both long range dipolar and short range Ising-like interactions. We study the ground state of a simple model with these competing interactions. We find that the competition between Ising-like and dipolar forces yield a periodic domain structure, which can be controlled by adjusting the force constants and film thickness. When the surface forces are included in the potential, the system exhibits a finite macroscopic polar order.

  11. AGS polarized H- source

    International Nuclear Information System (INIS)

    Kponou, A.; Alessi, J.G.; Sluyters, T.

    1985-01-01

    The AGS polarized H - source is now operational. During a month-long experimental physics run in July 1984, pulses equivalent to 15 μA x 300 μs (approx. 3 x 10 10 protons) were injected into the RFQ preaccelerator. Beam polarization, measured at 200 MeV, was approx. 75%. After the run, a program to increase the H - yield of the source was begun and significant progress has been made. The H - current is now frequently 20 to 30 μA. A description of the source and some details of our operating experience are given. We also briefly describe the improvement program

  12. The polar mesosphere

    International Nuclear Information System (INIS)

    Morris, Ray; Murphy, Damian

    2008-01-01

    The mesosphere region, which lies at the edge of space, contains the coldest layer of the Earth's atmosphere, with summer temperatures as low as minus 130 °C. In this extreme environment ice aerosol layers have appeared since the dawn of industrialization—whose existence may arguably be linked to human influence—on yet another layer of the Earth's fragile atmosphere. Ground-based and space-based experiments conducted in the Arctic and Antarctic during the International Polar Year (IPY) aim to address limitations in our knowledge and to advance our understanding of thermal and dynamical processes at play in the polar mesosphere

  13. Imaging with Polarized Neutrons

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2018-01-01

    Full Text Available Owing to their zero charge, neutrons are able to pass through thick layers of matter (typically several centimeters while being sensitive to magnetic fields due to their intrinsic magnetic moment. Therefore, in addition to the conventional attenuation contrast image, the magnetic field inside and around a sample can be visualized by detecting changes of polarization in a transmitted beam. The method is based on the spatially resolved measurement of the cumulative precession angles of a collimated, polarized, monochromatic neutron beam that traverses a magnetic field or sample.

  14. Polarization splitter and polarization rotator designs based on transformation optics.

    Science.gov (United States)

    Kwon, Do-Hoon; Werner, Douglas H

    2008-11-10

    The transformation optics technique is employed in this paper to design two optical devices - a two-dimensional polarization splitter and a three-dimensional polarization rotator for propagating beams. The polarization splitter translates the TM- and the TE-polarized components of an incident beam in opposite directions (i.e., shifted up or shifted down). The polarization rotator rotates the polarization state of an incoming beam by an arbitrary angle. Both optical devices are reflectionless at the entry and exit interfaces. Design details and full-wave simulation results are provided.

  15. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  16. Interplay between spin polarization and color superconductivity in high density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança

    2013-01-01

    Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical pot...

  17. Capillary Structured Suspensions from in Situ Hydrophobized Calcium Carbonate Particles Suspended in a Polar Liquid Media

    NARCIS (Netherlands)

    Dunstan, Timothy S.; Das, Anupam A.K.; Starck, Pierre; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2018-01-01

    We demonstrate that capillary suspensions can be formed from hydrophilic calcium carbonate particles suspended in a polar continuous media and connected by capillary bridges formed of minute amounts of an immiscible secondary liquid phase. This was achieved in two different polar continuous phases,

  18. Polarized coincidence electroproduction

    International Nuclear Information System (INIS)

    Heimann, R.L.

    1975-03-01

    A study is made of the inclusive electroproduction of single hadrons off a polarized target. Bjorken scaling laws and the hadron azimuthal distribution are derived from the quark parton model. The polarization asymmetries scale when the target spin is along the direction of the virtual photon, and (apart from significant exception) vanish for transverse spin. These results have a simple explanation; emphasis is given both to the general mathematical formalism and to intuitive physical reasoning. Through this framework other cases are considered: quarks with anomalous magnetic moment; renormalization group effects and asymptotic freedom; production of vector mesons (whose spin state is analysed by their decay); relation to large transverse momentum hadron production; and a covariant parton model calculation. Spin 0 partons and Regge singularities are also considered. All of these cases (apart from the last two) modify the pattern of conclusions. Vector meson production shows polarization enhancements in the density matrix element rhosub(0+); the renormalization group approach does not lead to any significant suppressions. They are also less severe in parton models for large Psub(T) hadrons, and are not supported by the covariantly formulated calculation. The origins of these differences are isolated and used to exemplify the sensitivity polarized hadron electroproduction has to delicate detail that is otherwise concealed. (author)

  19. Fluorescence confocal polarizing microscopy

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  20. Optical neutron polarizers

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1990-01-01

    A neutron wave will be refracted by an appropriately varying potential. Optical neutron polarizers use spatially varying, spin- dependent potentials to refract neutrons of opposite spin states into different directions, so that an unpolarized beam will be split into two beams of complementary polarization by such a device. This paper will concentrate on two methods of producing spin-dependent potentials which are particularly well-suited to polarizing cold neutron beams, namely thin-film structures and field-gradient techniques. Thin-film optical devices, such as supermirror multilayer structures, are usually designed to deviate only one spin-state, so that they offer the possibility of making insertion (transmission) polarizers. Very good supermirrors may now be designed and fabricated, but it is not always straightforward to design mirror-based devices which are useful in real (divergent beam) applications, and some practical configurations will be discussed. Field-gradient devices, which are usually based on multipolar magnets, have tended to be too expensive for general use, but this may change with new developments in superconductivity. Dipolar and hexapolar configurations will be considered, with emphasis on the focusing characteristics of the latter. 21 refs., 7 figs

  1. Titan Polar Landscape Evolution

    Science.gov (United States)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  2. The polarized EMC effect

    Energy Technology Data Exchange (ETDEWEB)

    W. Bentz; I. C. Cloet; A. W. Thomas

    2007-02-01

    We calculate both the spin independent and spin dependent nuclear structure functions in an effective quark theory. The nucleon is described as a composite quark-diquark state, and the nucleus is treated in the mean field approximation. We predict a sizable polarized EMC effect, which could be confirmed in future experiments.

  3. Polarizer reflectivity variations

    International Nuclear Information System (INIS)

    Ozarski, R.G.; Prior, J.

    1980-01-01

    On Shiva the beam energy along the chain is monitored using available reflections and/or transmission through beam steering, splitting, and polarizing optics without the intrusion of any additional glass for diagnostics. On the preamp table the diagnostic signal is obtained from the signal transmitted through turning mirrors. At the input of each chain the signal is obtained from the transmission through one of the mirrors used for the chain input alignment sensor (CHIP). At the chain output the transmission through the final turning mirror is used. These diagnostics have proved stable and reliable. However, one of the prime diagnostic locations is at the output of the beta rod. The energy at this location is measured by collecting small reflections from the last polarizer surface of the beta Pockels cell polarizer package. Unfortunately, calibration of this diagnostic has varied randomly, seldom remaining stable for a week or more. The cause of this fluctuation has been investigated for the past year and'it has been discovered that polarizer reflectivity varies with humidity. This report will deal with the possible causes that were investigated, the evidence that humidity is causing the variation, and the associated mechanism

  4. Polarization of Bremsstrahlung

    International Nuclear Information System (INIS)

    Miller, J.

    1957-01-01

    The numerical results for the polarization of Bremsstrahlung are presented. The multiple scattering of electrons in the target is taken into account. The angular-and photon energy dependences are seen on the curves for an incident 25 MeV electron energy. (Author) [fr

  5. No More Polarization, Please!

    DEFF Research Database (Denmark)

    Hansen, Mia Reinholt

    and the increasing levels of complexities it entails, such polarization is not fruitful in the attempt to explain motivation of organizational members. This paper claims that a more nuanced perspective on motivation, acknowledging the co-existence of intrinsic and extrinsic motivation, the possible interaction...

  6. DESY: HERA polarization

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The new HERA electron-proton collider at DESY in Hamburg achieved the first luminosity for electron-proton collisions on 19 October last year. Only one month later, on 20 November, HERA passed another important milestone with the observation of transverse electron polarization

  7. Polarized Neutron Scattering

    OpenAIRE

    Roessli, B.; Böni, P.

    2000-01-01

    The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.

  8. DESY: HERA polarization

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-03-15

    The new HERA electron-proton collider at DESY in Hamburg achieved the first luminosity for electron-proton collisions on 19 October last year. Only one month later, on 20 November, HERA passed another important milestone with the observation of transverse electron polarization.

  9. Graphics of polar figure

    International Nuclear Information System (INIS)

    Macias B, L.R.

    1991-11-01

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  10. Polarized light and optical measurement

    CERN Document Server

    Clarke, D N; Ter Haar, D

    2013-01-01

    Polarized Light and Optical Measurement is a five-chapter book that begins with a self-consistent conceptual picture of the phenomenon of polarization. Chapter 2 describes a number of interactions of light and matter used in devising optical elements in polarization studies. Specific optical elements are given in Chapter 3. The last two chapters explore the measurement of the state of polarization and the various roles played in optical instrumentation by polarization and polarization-sensitive elements. This book will provide useful information in this field of interest for research workers,

  11. Polarized nuclear target based on parahydrogen induced polarization

    OpenAIRE

    Budker, D.; Ledbetter, M. P.; Appelt, S.; Bouchard, L. S.; Wojtsekhowski, B.

    2012-01-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ($\\sim$100 Hz) polarization reversal, and operation with large intensity of an electron beam.

  12. From red giant to planetary nebula - Dust, asymmetry, and polarization

    International Nuclear Information System (INIS)

    Johnson, J.J.; Jones, T.J.

    1991-01-01

    The polarization characteristics of stars in the stages of evolution from red giant to planetary nebula are investigated. Polarization is found to be a characteristic of the majority of these stars. The maximum observed polarization increases with age as the star evolves up the asymptotic giant branch (AGB) to the protoplanetary nebula phase, where the polarization reaches a maximum. The polarization then decreases as the star further evolves into a planetary nebula. These results indicate that aspherical mass loss is likely to be a continual feature of the late stages of stellar evolution, maintaining a clear continuity throughout the life of a star from the moment it first develops a measurable dust shell. The aspherical morphology seen in planetary nebulae has its origin in an intrinsic property of the star that is present at least as early as its arrival at the base of the AGB. 77 refs

  13. Experiments with Fermilab polarized proton and polarized antiproton beams

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π degree production at high p perpendicular and in the Λ (Σ degree), π ± , π degree production at large x F , and Δσ L (pp, bar pp) measurements. 18 refs

  14. NUCLEON POLARIZATION IN 3-BODY MODELS OF POLARIZED LI-6

    NARCIS (Netherlands)

    SCHELLINGERHOUT, NW; KOK, LP; COON, SA; ADAM, RM

    1993-01-01

    Just as He-3 --> can be approximately characterized as a polarized neutron target, polarized Li-6D has been advocated as a good isoscalar nuclear target for the extraction of the polarized gluon content of the nucleon. The original argument rests upon a presumed ''alpha + deuteron'' picture of Li-6,

  15. Polar cap contraction and expansion during a period of substorms

    Science.gov (United States)

    Aikio, Anita; Pitkänen, Timo; Honkonen, Ilja; Palmroth, Minna; Amm, Olaf

    We have studied the variations in the polar cap area and related parameters during a period of four substorms on February 18, 2004, following an extended quiet period. The measurements were obtained by the EISCAT incoherent scatter radars, MIRACLE magnetometers, Geotail and solar wind satellites. In addition, the event is modeled by the GUMICS-4 MHD simulation. By using the measured and modeled data, the dayside and nightside reconnection voltages are calculated. The results show a good general agreement in the polar cap boundary (PCB) location as estimated by the EISCAT radars and the GUMICS simulation. Deviations are found, too, like shorter durations of expansion phases in the simulation. Geotail measurements of the inclination angle of the magnetic field in the tail (Xgsm= -22 Re) agree with the PCB latitude variations measured by EISCAT at a different MLT. We conclude that a large polar cap corresponds to a stretched tail configuration in the near-Earth tail and a small polar cap to a more dipolar configuration. The substorm onsets took place during southward IMF. A specific feature is that the substorm expansion phases were not associated with significant contractions of the polar cap. Even though nightside reconnection voltages started to increase during expansion phases, maximum closure of open flux took place in the recovery phases. We shortly discuss implications of the observation to the definition of the recovery phase.

  16. Study of the Polarization Strategy for Electron Cyclotron Heating Systems on HL-2M

    Science.gov (United States)

    Zhang, F.; Huang, M.; Xia, D. H.; Song, S. D.; Wang, J. Q.; Huang, B.; Wang, H.

    2016-06-01

    As important components integrated in transmission lines of electron cyclotron heating systems, polarizers are mainly used to obtain the desired polarization for highly efficient coupling between electron cyclotron waves and plasma. The polarization strategy for 105-GHz electron cyclotron heating systems of HL-2M tokamak is studied in this paper. Considering the polarizers need high efficiency, stability, and low loss to realize any polarization states, two sinusoidal-grooved polarizers, which include a linear polarizer and an elliptical polarizer, are designed with the coordinate transformation method. The parameters, the period p and the depth d, of two sinusoidal-grooved polarizers are optimized by a phase difference analysis method to achieve an almost arbitrary polarization. Finally, the optimized polarizers are manufactured and their polarization characteristics are tested with a low-power test platform. The experimental results agree well with the numerical calculations, indicating that the designed polarizers can meet the polarization requirements of the electron cyclotron heating systems of HL-2M tokamak.

  17. Source of spin polarized electrons

    International Nuclear Information System (INIS)

    Pierce, D.T.; Meier, F.A.; Siegmann, H.C.

    1976-01-01

    A method is described of producing intense beams of polarized free electrons in which a semiconductor with a spin orbit split valence band and negative electron affinity is used as a photocathode and irradiated with circularly polarized light

  18. Linearly polarized photons at ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, Holger [Physikalisches Institut, Universitaet Bonn (Germany)

    2009-07-01

    To investigate the nucleon resonance regime in meson photoproduction, double polarization experiments are currently performed at the electron accelerator ELSA in Bonn. The experiments make use of a polarized target and circularly or linearly polarized photon beams. Linearly polarized photons are produced by coherent bremsstrahlung from an accurately aligned diamond crystal. The orientation of the crystal with respect to the electron beam is measured using the Stonehenge-Technique. Both, the energy of maximum polarization and the plane of polarization, can be deliberately chosen for the experiment. The linearly polarized beam provides the basis for the measurement of azimuthal beam asymmetries, such as {sigma} (unpolarized target) and G (polarized target). These observables are extracted in various single and multiple meson photoproduction channels.

  19. North Polar Cap

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] This week we will be looking at five examples of laminar wind flow on the north polar cap. On Earth, gravity-driven south polar cap winds are termed 'catabatic' winds. Catabatic winds begin over the smooth expanse of the cap interior due to temperature differences between the atmosphere and the surface. Once begun, the winds sweep outward along the surface of the polar cap toward the sea. As the polar surface slopes down toward sealevel, the wind speeds increase. Catabatic wind speeds in the Antartic can reach several hundreds of miles per hour. In the images of the Martian north polar cap we can see these same type of winds. Notice the streamers of dust moving downslope over the darker trough sides, these streamers show the laminar flow regime coming off the cap. Within the trough we see turbulent clouds of dust, kicked up at the trough base as the winds slow down and enter a chaotic flow regime. The horizontal lines in these images are due to framelet overlap and lighting conditions over the bright polar cap. Image information: VIS instrument. Latitude 86.5, Longitude 64.5 East (295.5 West). 40 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  20. Numerical modeling of polar mesocyclones generation mechanisms

    Science.gov (United States)

    Sergeev, Dennis; Stepanenko, Victor

    2013-04-01

    Polar mesocyclones, commonly referred to as polar lows, remain of great interest due to their complicated dynamics. These mesoscale vortices are small short-living objects that are formed over the observation-sparse high-latitude oceans, and therefore, their evolution can hardly be observed and predicted numerically. The origin of polar mesoscale cyclones is still a matter of uncertainty, though the recent numerical investigations [3] have exposed a strong dependence of the polar mesocyclone development upon the magnitude of baroclinicity. Nevertheless, most of the previous studies focused on the individual polar low (the so-called case studies), with too many factors affecting it simultaneously. None of the earlier studies suggested a clear picture of polar mesocyclone generation within an idealized experiment, where it is possible to look deeper into each single physical process. The present paper concentrates on the initial triggering mechanism of the polar mesocyclone. As it is reported by many researchers, some mesocyclones are formed by the surface forcing, namely the uneven distribution of heat fluxes. That feature is common on the ice boundaries [2], where intense air stream flows from the cold ice surface to the warm sea surface. Hence, the resulting conditions are shallow baroclinicity and strong surface heat fluxes, which provide an arising polar mesocyclone with potential energy source converting it to the kinetic energy of the vortex. It is shown in this paper that different surface characteristics, including thermal parameters and, for example, the shape of an ice edge, determine an initial phase of a polar low life cycle. Moreover, it is shown what initial atmospheric state is most preferable for the formation of a new polar mesocyclone or in maintaining and reinforcing the existing one. The study is based on idealized high-resolution (~2 km) numerical experiment in which baroclinicity, stratification, initial wind profile and disturbance, surface

  1. The role of fullerene shell upon stuffed atom polarization potential

    OpenAIRE

    Amusia, M. Ya.; Chernysheva, L. V.

    2015-01-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scattering by endohedrals of Neon and Argon. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes pol...

  2. Stanford polarized atomic beam target

    International Nuclear Information System (INIS)

    Mavis, D.G.; Dunham, J.S.; Hugg, J.W.; Glavish, H.F.

    1976-01-01

    A polarized atomic beam source was used to produce an atomic hydrogen beam which was in turn used as a polarized proton target. A target density of 2 x 10'' atoms/cm 3 and a target polarization of 0.37 without the use of rf transitions were measured. These measurements indicate that a number of experiments are currently feasible with a variety of polarized target beams

  3. One directional polarized neutron reflectometry with optimized reference layer method

    International Nuclear Information System (INIS)

    Masoudi, S. Farhad; Jahromi, Saeed S.

    2012-01-01

    In the past decade, several neutron reflectometry methods for determining the modulus and phase of the complex reflection coefficient of an unknown multilayer thin film have been worked out among which the method of variation of surroundings and reference layers are of highest interest. These methods were later modified for measurement of the polarization of the reflected beam instead of the measurement of the intensities. In their new architecture, these methods not only suffered from the necessity of change of experimental setup but also another difficulty was added to their experimental implementations. This deficiency was related to the limitations of the technology of the neutron reflectometers that could only measure the polarization of the reflected neutrons in the same direction as the polarization of the incident beam. As the instruments are limited, the theory has to be optimized so that the experiment could be performed. In a recent work, we developed the method of variation of surroundings for one directional polarization analysis. In this new work, the method of reference layer with polarization analysis has been optimized to determine the phase and modulus of the unknown film with measurement of the polarization of the reflected neutrons in the same direction as the polarization of the incident beam.

  4. Characterization of a microfocused circularly polarized x-ray probe

    International Nuclear Information System (INIS)

    Pollmann, J.; Srajer, G.; Maser, J.; Lang, J. C.; Nelson, C. S.; Venkataraman, C. T.; Isaacs, E. D.

    2000-01-01

    We report on the development of a circularly polarized x-ray microprobe in the intermediate energy range from 5 to 10 keV. In this experiment linearly polarized synchrotron radiation was circularly polarized by means of a Bragg-diffracting diamond phase retarder and subsequently focused down to a spot size of about 4x2 μm 2 by a Fresnel zone plate. The properties of the microprobe were characterized, and the technique was applied to the two-dimensional mapping of magnetic domains in HoFe 2 . (c) 2000 American Institute of Physics

  5. Polarized neutron spectrometer for inelastic experiments at J-PARC

    Directory of Open Access Journals (Sweden)

    Yokoo Tetsuya

    2015-01-01

    Full Text Available Construction of the newly developed polarization analysis neutron chopper spectrometer (POLANO commenced in the Japan Proton Accelerator Research Complex (J-PARC, Materials and Life Science Experimental Facility (MLF. The POLANO is a direct geometry chopper spectrometer with neutron polarization analysis capability. In the suite of inelastic spectrometers, six instruments are now in operation. POLANO will be the only spectrometer dedicated to polarization analysis experiments. The primary phase of the construction will be completed by 2014 with beam commissioning scheduled for 2015.

  6. Diffraction limited focusing with controllable arbitrary three-dimensional polarization

    International Nuclear Information System (INIS)

    Chen, Weibin; Zhan, Qiwen

    2010-01-01

    We propose a new approach that enables full control over the three-dimensional state of polarization and the field distribution near the focus of a high numerical aperture objective lens. By combining the electric dipole radiation and a vectorial diffraction method, the input field at the pupil plane for generating arbitrary three-dimensionally oriented linear polarization at the focal point with a diffraction limited spot size is found analytically by solving the inverse problem. Arbitrary three-dimensional elliptical polarization can be obtained by introducing a second electric dipole oriented in the orthogonal plane with appropriate amplitude and phase differences

  7. Three-photon polarization ququarts: polarization, entanglement and Schmidt decompositions

    International Nuclear Information System (INIS)

    Fedorov, M V; Miklin, N I

    2015-01-01

    We consider polarization states of three photons, propagating collinearly and having equal given frequencies but with arbitrary distributed horizontal or vertical polarizations of photons. A general form of such states is a superposition of four basic three-photon polarization modes, to be referred to as the three-photon polarization ququarts (TPPQ). All such states can be considered as consisting of one- and two-photon parts, which can be entangled with each other. The degrees of entanglement and polarization, as well as the Schmidt decomposition and Stokes vectors of TPPQ are found and discussed. (paper)

  8. Polarization effects in hadron fragmentation

    International Nuclear Information System (INIS)

    Lednicky, R.

    1984-01-01

    Hadron polarization (spin alignment) and polarization asymmetry are discussed in terms of the quark recombination model with the spin-orbit interaction taken into account. It is shown that predictions of this model are at least in qualitative agreement with experimental data. Various polarization mechanisms in terms of this model and the possibility of their checking are also discussed

  9. Geometric algebra description of polarization mode dispersion, polarization-dependent loss, and Stokes tensor transformations.

    Science.gov (United States)

    Soliman, George; Yevick, David; Jessop, Paul

    2014-09-01

    This paper demonstrates that numerous calculations involving polarization transformations can be condensed by employing suitable geometric algebra formalism. For example, to describe polarization mode dispersion and polarization-dependent loss, both the material birefringence and differential loss enter as bivectors and can be combined into a single symmetric quantity. Their frequency and distance evolution, as well as that of the Stokes vector through an optical system, can then each be expressed as a single compact expression, in contrast to the corresponding Mueller matrix formulations. The intrinsic advantage of the geometric algebra framework is further demonstrated by presenting a simplified derivation of generalized Stokes parameters that include the electric field phase. This procedure simultaneously establishes the tensor transformation properties of these parameters.

  10. Regional polarization sensitivity of articular cartilage by using polarization sensitive optical coherence tomography

    Science.gov (United States)

    Xie, Tuqiang; Guo, Shuguang; Chen, Zhongping; Peavy, George M.

    2007-02-01

    In this study, PS-OCT is used to image fresh bovine joints to investigate the orientation of collagen fibrils in relation to optical phase retardation to better understand the distribution of normal matrix orientation and articular cartilage birefringence in different regions of a whole joint. Understanding and mapping variations in matrix organization and orientation within the normal joint is an important issue in potential applications of PS-OCT for evaluation and diagnosis of degenerative joint disease (DJD). The experimental results demonstrate that articular cartilage is not polarization sensitive on the edge of the medial, but polarization sensitive on the lateral edge of the tibial plateau. The collagen orientation on the edge of the joint is different from the central areas of the joint. Normal articular cartilage demonstrates regional polarization sensitivity within joints that is important to understand in order to accurately assess cartilage health by PS-OCT.

  11. Detection of polar vapours

    International Nuclear Information System (INIS)

    Blyth, D.A.

    1980-01-01

    Apparatus for monitoring for polar vapours in a gas consists of (i) a body member defining a passage through which a continuous stream of the gas passes; (ii) an ionising source associated with a region of the passage such that ionization of the gas stream takes place substantially only within the region and also any polar vapour molecules present therein will react with the gas formed to generate ion clusters; and (iii) an electrode for collecting ions carried by the gas stream, the electrode being positioned in the passage downstream of the region and separated from the region by a sufficient distance to ensure that no substantial number of the gas ions formed in said region remains in the gas stream at the collector electrode whilst ensuring that a substantial proportion of the ion clusters formed in the region does remain in the gas stream at the collector electrode. (author)

  12. The Polar Cusp

    International Nuclear Information System (INIS)

    Holtet, J.A.; Egeland, A.

    1985-01-01

    The upper atmosphere at high latitudes is often called the ''earth's window to outer space.'' Through various electrodynamic coupling processes, as well as direct transfer of particles, many of the geophysical effects displayed are direct manifestations of phenomena occurring in deep space. The high latitude ionosphere also exerts a feedback on the regions of the magnetosphere and atmosphere to which it is coupled. Of particular interest are the sections of the near space known as the Polar Cusp. A vast portion of the Earth's magnetic field envelope is electrically connected to these regions. This geometry results in a spatial mapping of the magnetospheric processes and a focusing on the ionosphere. In the Polar Cusps, the solar wind plasma also has direct access to the upper atmosphere

  13. Polarized electrogowdy spacetimes censored

    International Nuclear Information System (INIS)

    Nungesser, Ernesto

    2010-01-01

    A sketch of the proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this it is seen that the results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  14. Polarized electrogowdy spacetimes censored

    Energy Technology Data Exchange (ETDEWEB)

    Nungesser, Ernesto, E-mail: ernesto.nungesser@aei.mpg.d [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)

    2010-05-01

    A sketch of the proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this it is seen that the results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  15. Polarization of lanthanum nucleus by dynamic polarization method

    International Nuclear Information System (INIS)

    Adachi, Toshikazu; Ishimoto, Shigeru; Masuda, Yasuhiro; Morimoto, Kimio

    1989-01-01

    Preliminary studies have been carried out concerning the application of a dynamic polarization method to polarizing lanthanum fluoride single crystal to be employed as target in experiments with time reversal invariance. The present report briefly outlines the dynamic polarization method and describes some preliminary studies carried out so far. Dynamic polarization is of particular importance because no techniques are currently available that can produce highly polarized static nucleus. Spin interaction between electrons and protons (nuclei) plays a major role in the dynamic polarization method. In a thermal equilibrium state, electrons are polarized almost completely while most protons are not polarized. Positively polarized proton spin is produced by applying microwave to this system. The most hopeful candidate target material is single crystal of LaF 3 containing neodymium because the crystal is chemically stable and easy to handle. The spin direction is of great importance in experiments with time reversal invariance. The spin of neutrons in the target can be cancelled by adjusting the external magnetic field applied to a frozen polarized target. In a frozen spin state, the polarity decreases slowly with a relaxation time that depends on the external magnetic field and temperature. (N.K.)

  16. Polar bears, Ursus maritimus

    Science.gov (United States)

    Rode, Karyn D.; Stirling, Ian

    2017-01-01

    Polar bears are the largest of the eight species of bears found worldwide and are covered in a pigment-free fur giving them the appearance of being white. They are the most carnivorous of bear species consuming a high-fat diet, primarily of ice-associated seals and other marine mammals. They range throughout the circumpolar Arctic to the southernmost extent of seasonal pack ice.

  17. Polarized advanced fuel reactors

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1987-07-01

    The d- 3 He reaction has the same spin dependence as the d-t reaction. It produces no neutrons, so that if the d-d reactivity could be reduced, it would lead to a neutron-lean reactor. The current understanding of the possible suppression of the d-d reactivity by spin polarization is discussed. The question as to whether a suppression is possible is still unresolved. Other advanced fuel reactions are briefly discussed. 11 refs

  18. Polish polar research (outline

    Directory of Open Access Journals (Sweden)

    Krzysztof Ludwik Birkenmajer

    2017-12-01

    Full Text Available The article describes Polish research and discoveries in the Arctic and the Antarctic since the 19th century. The author is a geologist and since 1956 has been engaged in scientific field research on Spitsbergen, Greenland and Antarctica (23 expeditions. For many years chairman of the Committee on Polar Research of the Polish Academy of Sciences, he is now its Honorary Chairman.

  19. South Polar Polygons

    Science.gov (United States)

    2005-01-01

    4 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a polgyon-cracked surface, into which deep, somewhat kidney-bean-shaped pits have formed. These are landscapes of the martian south polar residual cap. This view was captured during May 2005. Location near: 86.9oS, 5.1oW Image width: 1.5 km (0.9 mi) Illumination from: upper left Season Southern Spring

  20. Novel polar sedimentary porphyrins

    Science.gov (United States)

    Prowse, W. G.; Maxwell, J. R.

    1989-11-01

    Two polar nickel porphyrins in Messel oil shale are shown to be the C 32 and C 30 components IIIa,b. In the sample examined, component IIIa is by far the major porphyrin alcohol and is present in an abundance similar to that of the major nickel alkyl porphyrin. These primary alcohols, which do not appear to be artifacts, are structurally related to alkyl porphyrins reported previously in Serpiano oil shale.

  1. Polarization properties of linearly polarized parabolic scaling Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Mengwen; Zhao, Daomu, E-mail: zhaodaomu@yahoo.com

    2016-10-07

    The intensity profiles for the dominant polarization, cross polarization, and longitudinal components of modified parabolic scaling Bessel beams with linear polarization are investigated theoretically. The transverse intensity distributions of the three electric components are intimately connected to the topological charge. In particular, the intensity patterns of the cross polarization and longitudinal components near the apodization plane reflect the sign of the topological charge. - Highlights: • We investigated the polarization properties of modified parabolic scaling Bessel beams with linear polarization. • We studied the evolution of transverse intensity profiles for the three components of these beams. • The intensity patterns of the cross polarization and longitudinal components can reflect the sign of the topological charge.

  2. The color of polarization in cuprate superconductors

    International Nuclear Information System (INIS)

    Hoff, H.A.; Osofsky, M.S.; Lechter, W.L.; Pande, C.S.

    1991-01-01

    A technique for the identification of individual anisotropic grains in a heterogeneous and opaque material involves the observation of grain color in reflected light through crossed polarizers (color of polarization). Such colors are generally characteristic of particular phases. When grains of many members of the class of hole carrier cuprate superconductors are so viewed at room temperature with a 'daylight' source, a characteristic color of polarization is observed. This color was studied in many of these cuprate superconductors and a strong correlation was found between color and the existence of superconductivity. Two members were also examined of the electron cuprate superconductors and it was found that they possess the same color of polarization as the hole carrier cuprate superconductors so far examined. The commonality of the characteristic color regardless of charge carrier indicates that the presence of this color is independent of carrier type. The correlation of this color with the existence of superconductivity in the cuprate superconductors suggests that the origin of the color relates to the origin of superconductivity. Photometric techniques are also discussed

  3. Nuclear polarization in hydrogenlike 82208Pb81+

    International Nuclear Information System (INIS)

    Haga, Akihiro; Tanaka, Yasutoshi; Horikawa, Yataro

    2002-01-01

    We calculate nuclear-polarization energy shifts for the hydrogenlike 82 208 Pb 81+ . The retarded transverse part as well as the longitudinal part is taken into account as the electromagnetic interaction between an electron and the nucleus. With a finite charge distribution for the nuclear ground state and the random-phase approximation to describe the nuclear excitations, we obtain nuclear-polarization energy of the 1s 1/2 state as -38.2 (-37.0) meV in the Feynman (Coulomb) gauge. For the 2s 1/2 , 2p 1/2 , and 2p 3/2 states, they are -6.7 (-6.4), -0.2 (-0.2), and +0.0 (+0.0) meV, respectively. The transverse contribution is small in comparison with the longitudinal nuclear-polarization correction. It is about 12% both for the 1s 1/2 and 2s 1/2 states. The seagull term in the two-photon exchange diagrams is also shown to be quite important to obtain the gauge-invariant nuclear-polarization energies

  4. Capsize of polarization in dilute photonic crystals.

    Science.gov (United States)

    Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio

    2017-11-29

    We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.

  5. Applications of polarized neutrons

    International Nuclear Information System (INIS)

    Mezei, F.

    1993-01-01

    The additional spin degree of freedom of the neutron can be made use of in neutron scattering work in two fundamental ways: (a) directly for the identification of magnetic scattering effects and (b) indirectly as a spectroscopic tool for modulating and analysing beams. Although strong magnetic scattering contributions can often be studied by unpolarized neutrons, a fully unambiguous separation of nuclear and magnetic phenomena can only be achieved by the additional information provided by polarized neutrons, especially if one of the two kinds of contributions is weak compared to the other. In the most general case a sample with both magnetic and nuclear features can be characterized by as many as 16 independent dynamic correlation functions instead of the single well known S(q, ω) for non-magnetic nuclear scattering only. Polarization analysis in principle allows one to determine all these 16 functions. The indirect applications of polarized neutrons are also steadily gaining importance. The most widely used method of this kind, the application of Larmor precessions for high resolution energy analysis in Neutron Spin Echo spectroscopy opened up a whole new domain in inelastic neutron scattering which was not accessible to any other spectroscopic method with or without neutrons before. (author)

  6. Pliocene geomagnetic polarity epochs

    Science.gov (United States)

    Dalrymple, G.B.; Cox, A.; Doell, Richard R.; Gromme, C.S.

    1967-01-01

    A paleomagnetic and K-Ar dating study of 44 upper Miocene and Pliocene volcanic units from the western United States suggests that the frequency of reversals of the earth's magnetic field during Pliocene time may have been comparable with that of the last 3.6 m.y. Although the data are too limited to permit the formal naming of any new polarity epochs or events, four polarity transitions have been identified: the W10 R/N boundary at 3.7 ?? 0.1 m.y., the A12 N/R boundary at 4.9 ?? 0.1 m.y., the W32 N/R boundary at 9.0 ?? 0.2m.y., and the W36 R/N boundary at 10.8 ?? 0.3 - 1.0 m.y. The loss of absolute resolution of K-Ar dating in older rocks indicates that the use of well defined stratigraphic successions to identify and date polarity transitions will be important in the study of Pliocene and older reversals. ?? 1967.

  7. Doubling transmission capacity in optical wireless system by antenna horizontal- and vertical-polarization multiplexing.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Dong, Ze; Chi, Nan

    2013-06-15

    We experimentally demonstrate 2×56 Gb/s two-channel polarization-division-multiplexing quadrature-phase-shift-keying signal delivery over 80 km single-mode fiber-28 and 2 m Q-band (33-50 GHz) wireless link, adopting antenna horizontal- (H-) and vertical-polarization (V-polarization) multiplexing. At the wireless receiver, classic constant-modulus-algorithm equalization based on digital signal processing can realize polarization demultiplexing and remove the crosstalk at the same antenna polarization. By adopting antenna polarization multiplexing, the signal baud rate and performance requirements for optical and wireless devices can be reduced but at the cost of double antennas and devices, while wireless transmission capacity can also be increased but at the cost of stricter requirements for V-polarization. The isolation is only about 19 dB when V-polarization deviation approaches 10°, which will affect high-speed (>50 Gb/s) wireless delivery.

  8. Design of a coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with polar organic-aqueous two-phase solvent systems.

    Science.gov (United States)

    Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-05-01

    A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1=ω2+ω3. This relation enabled to lay out the flow tube without twisting by the simultaneous rotation of three axes. The flow tube was introduced from the bottom side of the apparatus into the sun axis of the first rotary frame reaching the upper side of the planet axis and connected to the column in the satellite axis. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3:2:5, v/v) for lower phase mobile and (1:4:5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) - CCW (ω2) - CCW (ω3) by the flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) - CW (ω2) - CW (ω3) by the flow tube distribution. A series of experiments on peak resolution and stationary phase retention revealed that better partition efficiencies were obtained at the flow rate of 0.5 mL/min (column 1) and 0.8 mL/min (column 2) for lower phase mobile and 0.2 mL/min (column 1) and 0.4 mL/min (column 2) for upper phase

  9. Towards helium-3 neutron polarizers

    International Nuclear Information System (INIS)

    Tasset, F.

    1995-01-01

    With a large absorption cross-section entirely due to antiparallel spin capture, polarized helium-3 is presently the most promising broad-band polarizer for thermal and epithermal neutrons. Immediate interest was raised amongst the neutron community when a dense gaseous 3 He polarizer was used for the first time in 1988, on a pulsed neutron beam at Los Alamos. With 20 W of laser power on a 30 cm long, 8.6 atm target, 40% 3 He polarization was achieved in a recent polarized electron scattering experiment at SLAC. In this technique the 3 He nuclei are polarized directly at an appropriate high pressure through spin-exchange collisions with a thick, optically pumped rubidium vapor. A different and competitive approach is being presently developed at Mainz University in collaboration with ENS Paris and now the ILL. A discharge is established in pure 3 He at low pressure producing excited metastable atoms which can be optically pumped with infra-red light. Highly effective exchange collision with the atoms remaining in the ground state quickly produces 75% polarization at 1.5 mbar. A truly non-magnetic system then compresses the polarized gas up to several bars as required. The most recent machine comprises a two-stage glass-titanium compressor. In less than 1 h it can inflate a 100 cm 3 target cell with three bars of polarized gas. The very long relaxation times (several days) now being obtained at high pressure with a special metallic coating on the glass walls, the polarized cell can be detached and inserted in the neutron beam as polarizer. We expect 50% 3 He-polarization to be reached soon, allowing such filters to compete favorably with existing Heusler-crystal polarizers at thermal and short neutron wavelengths. It must be stressed that such a system based on a 3 He polarization factory able to feed several passive, transportable, polarizers is well matched to neutron scattering needs. (orig.)

  10. Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3.

    Science.gov (United States)

    Shao, Guang-hao; Song, Xiao-shi; Xu, Fei; Lu, Yan-qing

    2012-08-13

    Optical parametric amplification (OPA) of arbitrarily polarized light is proposed in a multi-section periodically poled Lithium Niobate (PPLN). External electric field is applied on selected sections to induce the polarization rotation of involved lights, thus the quasi-phase matched optical parametric processes exhibit polarization insensitivity under suitable voltage. In addition to the amplified signal wave, an idler wave with the same polarization is generated simultaneously. As an example, a ~10 times OPA showing polarization independency is simulated. Applications of this technology are also discussed.

  11. Review of polarized ammonium target

    International Nuclear Information System (INIS)

    Matsuda, Tatsuo

    1987-01-01

    Recently, ammonia (NH 3 ) and deutron ammonia (ND 3 ), instead of conventional alcohol substances, have been used more frequently as a polarized target substance for experiments of polarization at high energy regions. This article reviews major features of the polarized (deutron) ammonia targets. The dynamic nuclear polarization (DNT) method is widely used in high energy polarization experiments. While only a low polarization degree of hydrogen nucleus of 1.7 percent can be obtained by the Brute force method, DNP can produce polarization as high as ∼ 90 percent (2.5 T, ∼ 200 mK). In 1979, ammonia was irradiated with radiations to form NH 2 free radicals, resulting in the achievement of a high polarization degree of greater than 90 percent (hydrogen). Since then, ammonia and deutron ammonia have increasingly been replacing alcohols including butanol. Irradiation of a target substance with radiations destroys the structure of the substance, leading to a decrease in polarization degree. However, ammonia produces unpaired electrons as a result of irradiation, allowing it to be highly resistant to radiation. This report also present some study results, including observations on effects of radiation on the polarization degree of a target, effects of annealing, and polarization of 14 N. A process for producing an ammonia target is also described. (Nogami, K.)

  12. A Si nanocube array polarizer

    Science.gov (United States)

    Chen, Linghua; Jiang, Yingjie; Xing, Li; Yao, Jun

    2017-10-01

    We have proposed a full dielectric (silicon) nanocube array polarizer based on a silicon dioxide substrate. Each polarization unit column includes a plurality of equal spaced polarization units. By optimizing the length, the width, the height of the polarization units and the center distance of adjacent polarization unit (x direction and y direction), an extinction ratio (ER) of higher than 25dB was obtained theoretically when the incident light wavelength is 1550nm. while for applications of most polarization optical elements, ER above 10dB is enough. With this condition, the polarizer we designed can work in a wide wavelength range from 1509.31nm to 1611.51nm. Compared with the previous polarizer, we have introduced a polarizer which is a full dielectric device, which solves the problems of low efficiency caused by Ohmic loss and weak coupling. Furthermore, compared with the existing optical polarizers, our polarizer has the advantages of thin thickness, small size, light weight, and low processing difficulty, which is in line with the future development trend of optical elements.

  13. Polarization: A must for fusion

    Directory of Open Access Journals (Sweden)

    Didelez J.-P.

    2013-11-01

    Full Text Available The complete polarization of DT fuel would increase the fusion reactivity by 50% in magnetic as well as in inertial confinements. The persistence of polarization in a fusion process could be tested, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the emitted neutrons and the change in the corresponding total Cross Section (CS can sign the polarization persistence. The polarization of solid H2, D2 or T2 Hydrogen isotopes is very difficult. However, it has been possible to polarize HD, a hetero-molecular form of Hydrogen, by static polarization, at very low temperature and very high field. The radioactivity of DT molecules forbids there high polarization by the static method, therefore one has to develop the Dynamic Nuclear Polarization (DNP by RF transitions. The DNP of HD has been investigated in the past. The magnetic properties of HD and DT molecules are very similar, it is therefore expected that any polarization result obtained with HD could be extrapolated to DT.

  14. Elite Polarization and Public Opinion

    DEFF Research Database (Denmark)

    Robison, Joshua; Mullinix, Kevin

    2016-01-01

    Elite polarization has reshaped American politics and is an increasingly salient aspect of news coverage within the United States. As a consequence, a burgeoning body of research attempts to unravel the effects of elite polarization on the mass public. However, we know very little about how...... polarization is communicated to the public by news media. We report the results of one of the first content analyses to delve into the nature of news coverage of elite polarization. We show that such coverage is predominantly critical of polarization. Moreover, we show that unlike coverage of politics focused...... on individual politicians, coverage of elite polarization principally frames partisan divisions as rooted in the values of the parties rather than strategic concerns. We build on these novel findings with two survey experiments exploring the influence of these features of polarization news coverage on public...

  15. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2001-01-01

    It is insufficient to know coordinates and momentum to describe a state of a neutron. It is necessary to define a spin orientation. As far as it is known from quantum mechanics, a half spin has a projection in the positive direction or in the negative direction. The probability of both projections in an unpolarized beam is equal. If a direction exists, in which the projection is more probably then beam is called polarized in this direction. It is essential to know polarization of neutrons for characteristics of a neutron source, which is emitting it. The question of polarization of fast neutrons came up in 50's. The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li (p,n) 7 Be, T(p,n) 3 He reactions. (authors)

  16. Itinerant Ferromagnetism in a Polarized Two-Component Fermi Gas

    DEFF Research Database (Denmark)

    Massignan, Pietro; Yu, Zhenhua; Bruun, Georg

    2013-01-01

    We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles, the repul......We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles...

  17. Electrically tunable spin polarization in silicene: A multi-terminal spin density matrix approach

    International Nuclear Information System (INIS)

    Chen, Son-Hsien

    2016-01-01

    Recent realized silicene field-effect transistor yields promising electronic applications. Using a multi-terminal spin density matrix approach, this paper presents an analysis of the spin polarizations in a silicene structure of the spin field-effect transistor by considering the intertwined intrinsic and Rashba spin–orbit couplings, gate voltage, Zeeman splitting, as well as disorder. Coexistence of the stagger potential and intrinsic spin–orbit coupling results in spin precession, making any in-plane polarization directions reachable by the gate voltage; specifically, the intrinsic coupling allows one to electrically adjust the in-plane components of the polarizations, while the Rashba coupling to adjust the out-of-plan polarizations. Larger electrically tunable ranges of in-plan polarizations are found in oppositely gated silicene than in the uniformly gated silicene. Polarizations in different phases behave distinguishably in weak disorder regime, while independent of the phases, stronger disorder leads to a saturation value. - Highlights: • Density matrix with spin rotations enables multi-terminal arbitrary spin injections. • Gate-voltage tunable in-plane polarizations require intrinsic SO coupling. • Gate-voltage tunable out-of-plane polarizations require Rashba SO coupling. • Oppositely gated silicene yields a large tunable range of in-plan polarizations. • Polarizations in different phases behave distinguishably only in weak disorder.

  18. Coronal Polarization of Pseudostreamers and the Solar Polar Field Reversal

    Science.gov (United States)

    Rachmeler, L. A.; Guennou, C.; Seaton, D. B.; Gibson, S. E.; Auchere, F.

    2016-01-01

    The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP polarization data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere, the last vestiges of the previous polar field polarity remained until March 2015. We present here the evolution of the structure and describe its identification in the Fe XII 1074nm coronal emission line, sensitive to the Hanle effect in the corona.

  19. System for measuring the proton polarization in a polarized target

    International Nuclear Information System (INIS)

    Karnaukhov, I.M.; Lukhanin, A.A.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1984-01-01

    The system for measuring the proton polarization in a polarized target representing the high-sensitivity nuclear magnetic resonance (NMR) is described Q-meter with series connection and a circuit for measuring system resonance characteristic is used for NMR-absorption signal recording. Measuring coil is produced of a strip conductor in order to obtain uniform system sensitivity to polarization state in all target volume and improve signal-to-noise ratio. Polarization measuring system operates ion-line with the M-6000 computer. The total measuring error for the value of free proton polarization in target taking into account the error caused by local depolarization of working substance under irradiation by high-intense photon beam is <= 6%. Long-term application of the described system for measuring the proton polarization in the LUEh-20000 accelerator target used in the pion photoproduction experiments has demonstrated its high reliability

  20. Circularly polarized antennas

    CERN Document Server

    Gao, Steven; Zhu, Fuguo

    2013-01-01

    This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva

  1. Spin-polarized SEM

    International Nuclear Information System (INIS)

    Konoto, Makoto

    2007-01-01

    Development of highly effective evaluation technology of magnetic structures on a nanometric scale is a key to understanding spintronics and related phenomena. A high-resolution spin-polarized scanning electron microscope (spin SEM) developed recently is quite suitable for probing such nanostructures because of the capability of analyzing local magnetization vectors in three dimensions. Utilizing the spin SEM, a layered antiferromagnetic structure with the 1nm-alternation of bilayer-sheet magnetization has been successfully resolved. The real-space imaging with full analysis of the temperature-dependent magnetization vectors will be demonstrated. (author)

  2. Polarization recovery through scattering media.

    Science.gov (United States)

    de Aguiar, Hilton B; Gigan, Sylvain; Brasselet, Sophie

    2017-09-01

    The control and use of light polarization in optical sciences and engineering are widespread. Despite remarkable developments in polarization-resolved imaging for life sciences, their transposition to strongly scattering media is currently not possible, because of the inherent depolarization effects arising from multiple scattering. We show an unprecedented phenomenon that opens new possibilities for polarization-resolved microscopy in strongly scattering media: polarization recovery via broadband wavefront shaping. We demonstrate focusing and recovery of the original injected polarization state without using any polarizing optics at the detection. To enable molecular-level structural imaging, an arbitrary rotation of the input polarization does not degrade the quality of the focus. We further exploit the robustness of polarization recovery for structural imaging of biological tissues through scattering media. We retrieve molecular-level organization information of collagen fibers by polarization-resolved second harmonic generation, a topic of wide interest for diagnosis in biomedical optics. Ultimately, the observation of this new phenomenon paves the way for extending current polarization-based methods to strongly scattering environments.

  3. Peculiarities of annihilation of polarized positronium in polarized media

    International Nuclear Information System (INIS)

    Silenko, A.Ya.

    2005-01-01

    Features of positronium annihilation (PA) in polarized media are investigated. Strong exchange interaction with nonpaired electrons of paramagnetic atoms essentially accelerates the PA in comparison with annihilation of free positrons. The value of the spin projection on the direction of polarized nonpaired electrons has essential effect on the orthopositronium lifetime and on the width of the gamma spectrum annihilation line. It is shown that these features of PA permit to use it for studying the paramagnetic polarization [ru

  4. Fast, high-fidelity, all-optical and dynamically-controlled polarization gate using room-temperature atomic vapor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Runbing [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071 (China); Zhu, Chengjie [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Deng, L.; Hagley, E. W. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-10-20

    We demonstrate a fast, all-optical polarization gate in a room-temperature atomic medium. Using a Polarization-Selective-Kerr-Phase-Shift (PSKPS) technique, we selectively write a π phase shift to one circularly-polarized component of a linearly-polarized input signal field. The output signal field maintains its original strength but acquires a 90° linear polarization rotation, demonstrating fast, high-fidelity, dynamically-controlled polarization gate operation. The intensity of the polarization-switching field used in this PKSPK-based polarization gate operation is only 2 mW/cm{sup 2}, which would be equivalent to 0.5 nW of light power (λ = 800 nm) confined in a typical commercial photonic hollow-core fiber. This development opens a realm of possibilities for potential future extremely low light level telecommunication and information processing systems.

  5. Polarized tagged photons

    International Nuclear Information System (INIS)

    Maximon, L.C.; Ganz, Eric; Aniel, Thierry; Miniac, Arlette de.

    1982-03-01

    We consider in detail the differential cross section for polarized bremsstrahlung for angles and energies in the range of interest for a tagging system and derive a high energy, small angle approximation for this cross section. We use these approximations to determine the maxima and minima of the cross sections for these two polarization states, dσperpendicular and dσparallel, and to evaluate these cross sections at the extrema. It is shown that both dσperpendicular and dσparallel have a very sharp dip in the region of small momentum transfers. However, their behavior in the region of the dip, as a function of the azimuthal angle phi, is quite different over most of the photon spectrum. The cross section dσperpendicular behaves similarly to the cross section for unpolarized photons in that as phi increases, the sharp dip vanishes, the minimum fuses with the second maximum, and the cross section then has only a single maximum. In contrast, the sharp dip in the cross section dσparallel remains as phi increases. Coulomb corrections to the Born approximation are considered, and do not fill in these dips

  6. Simultaneous liquid chromatography/mass spectrometry determination of both polar and "multiresidue" pesticides in food using parallel hydrophilic interaction/reversed-phase liquid chromatography and a hybrid sample preparation approach.

    Science.gov (United States)

    Robles-Molina, José; Gilbert-López, Bienvenida; García-Reyes, Juan F; Molina-Díaz, Antonio

    2017-09-29

    Pesticide testing of foodstuffs is usually accomplished with generic wide-scope multi-residue methods based on liquid chromatography tandem mass spectrometry (LC-MS/MS). However, this approach does not cover some special pesticides, the so called "single-residue method" compounds, that are hardly compatible with standard reversed-phase (RP) separations due to their specific properties. In this article, we propose a comprehensive strategy for the integration of single residue method compounds and standard multiresidue pesticides within a single run. It is based on the use of a parallel LC column assembly with two different LC gradients performing orthogonal hydrophilic interaction chromatography (HILIC) and reversed-phase (RPLC) chromatography within one analytical run. Two sample aliquots were simultaneously injected on each column, using different gradients, being the eluents merged post-column prior to mass spectrometry detection. The approach was tested with 41 multiclass pesticides covering a wide range of physicochemical properties across several orders of log K ow (from -4 to +5.5). With this assembly, distinct separation from the void was attained for all the pesticides studied, keeping similar performance in terms of sensitivity, peak area reproducibility (pesticides) method was evaluated based on solvent extraction with MeOH and acetonitrile followed by dispersive solid-phase extraction, delivering appropriate recoveries for most of the pesticides included in the study within the log K ow in the range from -4 to +5.5. The proposed strategy may be extended to other fields such as sport drug testing or environmental analysis, where the same type of variety of analytes featuring poor retention within a single chromatographic separation occurs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Spin exchange in polarized deuterium

    International Nuclear Information System (INIS)

    Przewoski, B. von; Meyer, H.O.; Balewski, J.; Doskow, J.; Ibald, R.; Pollock, R.E.; Rinckel, T.; Wellinghausen, A.; Whitaker, T.J.; Daehnick, W.W.; Haeberli, W.; Schwartz, B.; Wise, T.; Lorentz, B.; Rathmann, F.; Pancella, P.V.; Saha, Swapan K.; Thoerngren-Engblom, P.

    2003-01-01

    We have measured the vector and tensor polarization of an atomic deuterium target as a function of the target density. The polarized deuterium was produced in an atomic beam source and injected into a storage cell. For this experiment, the atomic beam source was operated without rf transitions, in order to avoid complications from the unknown efficiency of these transitions. In this mode, the atomic beam is vector and tensor polarized and both polarizations can be measured simultaneously. We used a 1.2-cm-diam and 27-cm-long storage cell, which yielded an average target density between 3 and 9x10 11 at/cm 3 . We find that the tensor polarization decreases with increasing target density while the vector polarization remains constant. The data are in quantitative agreement with the calculated effect of spin exchange between deuterium atoms at low field

  8. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  9. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  10. High Performance Circularly Polarized Microstrip Antenna

    Science.gov (United States)

    Bondyopadhyay, Probir K. (Inventor)

    1997-01-01

    A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.

  11. Polarity in Mammalian Epithelial Morphogenesis

    OpenAIRE

    Roignot, Julie; Peng, Xiao; Mostov, Keith

    2013-01-01

    Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture model...

  12. The sensitivity of income polarization

    DEFF Research Database (Denmark)

    Hussain, Azhar

    2009-01-01

    This study looks at polarization and its components' sensitivity to assumptions about equivalence scales, income definition, ethical income distribution parameters, and the income accounting period. A representative sample of Danish individual incomes from 1984 to 2002 is utilised. Results show....... Increasing the accounting period confirms the reduction in inequality found for shorter periods, but polarization is virtually unchanged, because income group identification increases. Applying different equivalence scales does not change polarization ranking for different years, but identification ranks...

  13. Polarized Electrons for Linear Colliders

    International Nuclear Information System (INIS)

    Clendenin, J.

    2004-01-01

    Future electron-positron linear colliders require a highly polarized electron beam with a pulse structure that depends primarily on whether the acceleration utilizes warm or superconducting rf structures. The International Linear Collider (ILC) will use cold structures for the main linac. It is shown that a dc-biased polarized photoelectron source such as successfully used for the SLC can meet the charge requirements for the ILC micropulse with a polarization approaching 90%

  14. Measurement of the polarization correlation coefficient in elastic pp scattering at 610 MeV

    International Nuclear Information System (INIS)

    Borisov, N.S.; Glonti, L.N.; Kazarinov, M.Yu.

    1977-01-01

    The polarization correlation coefficient Csub(nn) for elastic pp scattering at 610+-10 MeV was measured for four scattering angles: 40, 67, 78 and 90 deg (c.m.s.). A polarized proton beam with a maximum polarization of 0.39+-0.02 and a polarized proton target of the frozen type were used. The maximum polarization of the target was 0.97+-0.04. The experimental procedure is described in detail. The Csub(nn) measured are compared with the results of a phase analysis and the findings at 575 MeV obtained elsewhere. The Csub(nn) coefficients are shown to be valuable to discriminate alternative solutions of the phase analysis. The polarized proton targets of the frozen type, no accounting the complexity of their design, are emphasized to be rather reliable and convenient devices for conducting experiments at accelerators

  15. Polarization Characteristics Inferred From the Radio Receiver Instrument on the Enhanced Polar Outflow Probe

    Science.gov (United States)

    Danskin, Donald W.; Hussey, Glenn C.; Gillies, Robert G.; James, H. Gordon; Fairbairn, David T.; Yau, Andrew W.

    2018-02-01

    The Radio Receiver Instrument (RRI) on the CAScade, Smallsat, and Ionospheric Polar Explorer/enhanced Polar Outflow Probe (CASSIOPE/e-POP) satellite was used to receive continuous wave and binary phase shift keyed transmissions from a high-frequency transmitter located in Ottawa, ON, Canada during April 2016 to investigate how the ionosphere affects the polarization characteristics of transionospheric high-frequency radio waves. The spacecraft orientation was continuously slewed to maintain the dipole orientation in a plane perpendicular to the direction toward the transmitter, enabling the first in situ planar polarization determination for continuous wave and binary phase shift keyed modulated radio waves from space at times when the wave frequency is at least 1.58 times the plasma frequency. The Stokes parameters and polarization characteristics were derived from the measured data and interpreted using an existing ray tracing model. For the southern part of the passes, the power was observed to oscillate between the two dipoles of RRI, which was attributed to Faraday rotation of the radio waves. For the first time, a reversal in the rate of change of orientation angle was observed where the minimum in modeled Faraday rotation occurred. The reversal point was poleward of the point of closest approach between the satellite and transmitter; this was explained by the variations of total electron content and component of magnetic field along the direction of propagation. The received signals show both quasi-longitudinal (QL) and quasi-transverse characteristics. South of the transmitter the QL regime is dominant. Around the reversal point, a combination of QL and quasi-transverse nature was observed.

  16. Highly stable polarization independent Mach-Zehnder interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Mičuda, Michal, E-mail: micuda@optics.upol.cz; Doláková, Ester; Straka, Ivo; Miková, Martina; Dušek, Miloslav; Fiurášek, Jaromír; Ježek, Miroslav, E-mail: jezek@optics.upol.cz [Department of Optics, Faculty of Science, Palacký University, 17. listopadu 1192/12, 77146 Olomouc (Czech Republic)

    2014-08-15

    We experimentally demonstrate optical Mach-Zehnder interferometer utilizing displaced Sagnac configuration to enhance its phase stability. The interferometer with footprint of 27×40 cm offers individually accessible paths and shows phase deviation less than 0.4° during a 250 s long measurement. The phase drift, evaluated by means of Allan deviation, stays below 3° or 7 nm for 1.5 h without any active stabilization. The polarization insensitive design is verified by measuring interference visibility as a function of input polarization. For both interferometer's output ports and all tested polarization states the visibility stays above 93%. The discrepancy in visibility for horizontal and vertical polarization about 3.5% is caused mainly by undesired polarization dependence of splitting ratio of the beam splitter used. The presented interferometer device is suitable for quantum-information and other sensitive applications where active stabilization is complicated and common-mode interferometer is not an option as both the interferometer arms have to be accessible individually.

  17. An interpretation of the polarization of microwave bursts. [solar emission

    Science.gov (United States)

    Kundu, M. R.; Vlahos, L.

    1979-01-01

    High-spatial-resolution (a few seconds of arc) observations of microwave bursts have demonstrated that only the impulsive phase of the burst is polarized; one observes only one polarity in the burst source if it is weak (Alissandrakis and Kundu) and both polarities if it is intense (Enome et al.). These results are interpreted in terms of an asymmetrical bipolar field structure of the loop in which the energetic electrons responsible for the radiation are contained. The role of unequal field strengths at the feet of the loop on the number of electrons trapped and their pitch angle distribution are discussed in a specific model. Computations of the polarized intensity originating from each foot of the loop seem to be consistent with the observations at present available.

  18. Interpretation of the polarization structure of microwave bursts

    International Nuclear Information System (INIS)

    Kundu, M.R.; Vlahos, L.

    1979-01-01

    High-spatial-resolution (a few seconds of arc) observations of microwave bursts have demonstrated that only the impulsive phase of the burst is polarized; one observes only one polarity in the burst source if it is weak (Alissandrakis and Kundu) and both polarities if it is intense (Enome et al.). These results are interpreted in terms of an asymmetrical bipolar field structure of the loop in which the energetic electrons responsible for the radiation are contained. The role of unequal field strengths at the feet of the loop on the number of electrons trapped and their pitch angle distribution are discussed in a specific model. Computations of the polarized intensity originating from each foot of the loop seem to be consistent with the observations at present available

  19. Polarization in heavy-ion collisions: magnetic field and vorticity

    Science.gov (United States)

    Baznat, M.; Gudima, K.; Prokhorov, G.; Sorin, A.; Teryaev, O.; Zakharov, V.

    2017-12-01

    The polarization of hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies, contrary to that of magnetic field. The polarization of antihyperons has the same sign and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  20. Vorticity and Λ polarization in baryon rich matter

    Science.gov (United States)

    Baznat, Mircea; Gudima, Konstantin; Prokhorov, George; Sorin, Alexander; Teryaev, Oleg; Zakharov, Valentin

    2018-02-01

    The polarization of Λ hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies in baryon-rich matter. The polarization of ¯ has the same sihn and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.

  1. Spin polarized states in strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2004-01-01

    The possibility of appearance of spin polarized states in strongly asymmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the Skyrme effective interaction. The zero temperature dependence of the neutron and proton spin polarization parameters as functions of density is found for SLy4 and SLy5 effective forces. It is shown that at some critical density strongly asymmetric nuclear matter undergoes a phase transition to the state with the oppositely directed spins of neutrons and protons while the state with the same direction of spins does not appear. In comparison with neutron matter, even small admixture of protons strongly decreases the threshold density of spin instability. It is clarified that protons become totally polarized within a very narrow density domain while the density profile of the neutron spin polarization parameter is characterized by the appearance of long tails near the transition density

  2. Active polarization imaging system based on optical heterodyne balanced receiver

    Science.gov (United States)

    Xu, Qian; Sun, Jianfeng; Lu, Zhiyong; Zhou, Yu; Luan, Zhu; Hou, Peipei; Liu, liren

    2017-08-01

    Active polarization imaging technology has recently become the hot research field all over the world, which has great potential application value in the military and civil area. By introducing active light source, the Mueller matrix of the target can be calculated according to the incident light and the emitted or reflected light. Compared with conventional direct detection technology, optical heterodyne detection technology have higher receiving sensitivities, which can obtain the whole amplitude, frequency and phase information of the signal light. In this paper, an active polarization imaging system will be designed. Based on optical heterodyne balanced receiver, the system can acquire the horizontal and vertical polarization of reflected optical field simultaneously, which contain the polarization characteristic of the target. Besides, signal to noise ratio and imaging distance can be greatly improved.

  3. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Science.gov (United States)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3 NH3 PbBr3 ) and all-inorganic (CsPbBr3 ) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3 .

  4. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3NH3PbBr3) and all-inorganic (CsPbBr3) leadhalide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-tohead Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3.

  5. A new method for generating axially-symmetric and radially-polarized beams

    International Nuclear Information System (INIS)

    Niu Chunhui; Gu Benyuan; Dong Bizhen; Zhang Yan

    2005-01-01

    A scheme for generating axially-symmetric and radially-polarized beams is proposed by using two diffractive phase elements (DPEs) made of birefringent materials. The design of these two DPEs is based on the general theory of phase-retrieval of optical system in combination with an iterative algorithm. The first DPE is used for demultiplexing two orthogonally linearly-polarized light beams to produce diffractive patterns, and the second DPE is used for compensating the phase difference to obtain the desired radially-polarized beam

  6. A polarized alkali ion source

    International Nuclear Information System (INIS)

    Boettger, R.; Tungate, G.; Bauer, B.; Egelhof, P.; Moebius, K.H.; Steffens, E.

    1978-01-01

    The beam foil technique has been applied to detect nuclear vector polarization of a 10 keV 23 Na + beam. The result was about 70% of the atomic beam polarization thus limiting the depolarization by the surface ionizer to at most 30%. In a Coulomb excitation experiment with a tensor polarized 42 MeV 23 Na 7+ beam an effect of 0.011 +- 0.003 was measured yielding a value of t 20 approx. 0.04 for the beam polarization. The depolarization during the acceleration process can be estimated to be about 0.8. (orig.) [de

  7. Polarization preservation in the AGS

    International Nuclear Information System (INIS)

    Ratner, L.G.

    1983-01-01

    The successful operation of a high energy polarized beam at the Argonne Zero Gradient Synchrotron (ZGS) with the concommitant development of depolarizing resonance correction techniques has led to the present project of commissioning such a beam at the Brookhaven Alternating Gradient Synchrotron (AGS). A description of the project was presented at the 1981 National Accelerator Conference. I would like to now present a more detailed description of how we plan to preserve the polarization during acceleration, and to present our game plan for tuning through some 50 resonances and reaching our goal of a 26 GeV polarized proton beam with greater than 60% polarization

  8. Polarization-preserving holey fibers

    DEFF Research Database (Denmark)

    Broeng, Jes; Mogilevtsev, Dmitri; Libori, Stig E. Barkou

    2001-01-01

    In this work we suggest and discuss a microstructure of air capillaries with elliptical cross-section in a tread of glass that gives opportunity for Creation of polarization-preserving fiber with very small beat length between the fundamental modes of different polarization......In this work we suggest and discuss a microstructure of air capillaries with elliptical cross-section in a tread of glass that gives opportunity for Creation of polarization-preserving fiber with very small beat length between the fundamental modes of different polarization...

  9. The SLAC polarized electron source

    International Nuclear Information System (INIS)

    Tang, H.; Alley, R.; Frisch, J.

    1995-06-01

    The SLAC polarized electron source employs a photocathode DC high voltage gun with a loadlock and a YAG pumped Ti:sapphire laser system for colliding beam experiments or a flash lamp pumped Ti:sapphire laser for fixed target experiments. It uses a thin, strained GaAs(100) photocathode, and is capable of producing a pulsed beam with a polarization of ≥80% and a peak current exceeding 10 A. Its operating efficiency has reached 99%. The physics and technology of producing high polarization electron beams from a GaAs photocathode will be reviewed. The prospects of realizing a polarized electron source for future linear colliders will also be discussed

  10. Substitution-induced near phase transition with Maxwell-Wagner polarization in SrBi{sub 2}(Nb{sub 1-x}A{sub x}){sub 2}O{sub 9} ceramics [A = W, Mo and x = 0, 0.025

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Prasun; Franco, Adolfo Jr. [Instituto de Fisica, Universidade Federal de Goias, Goiania (Brazil)

    2017-10-15

    The synthesis, micro-structure, spectroscopic, and dielectric properties of SrBi{sub 2}(Nb{sub 1-x}A{sub x}){sub 2}O{sub 9} [with A=W, Mo and x = 0, 0.025] ceramics were systematically studied. A relative density of ≥98% was obtained for all the samples using a two-step solid state sintering process. XRD images showed that a single phase layered perovskite structure of SrBi{sub 2}Nb{sub 2}O{sub 9} (SBN) was formed. The orthorhombic structure with A2{sub 1}am phase group was found up to ∝2.5 at.% substitution of W and Mo into the SBN matrix. SEM revealed the rod-like grain structure similar to the Maxwell-Wagner (MW) parallel plate capacitor model in SBN ceramic, whereas smaller heterogeneous grain structure was observed in W and Mo donor doped ceramics. The initial high value of real and imaginary part of relative permittivity also indicated the presence of interfacial MW relaxation in the SBN ceramics. The experimental data fit well to the theoretical data obtained from MW polarization model in SBN ceramics. The possible origin of the difference of the properties present in the doped sample has been explained based on grain size, orientation, and modification done in the ceramic matrices. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface

    Science.gov (United States)

    Yang, Jin; Zhang, Cheng; Ma, Hui Feng; Zhao, Jie; Dai, Jun Yan; Yuan, Wei; Yang, Liu Xi; Cheng, Qiang; Cui, Tie Jun

    2018-05-01

    We propose a strategy to convert a linearly polarized wave from a single point source to an orbital angular momentum (OAM) wave by arbitrary polarization via an anisotropic frequency selective surface (FSS) in the microwave frequency. By tailoring the geometries of FSS elements, reflection-phases in x and y polarizations are engineered and encoded independently, which allows us to design the eventual polarization state of the generated OAM vortex beam by elaborately selecting individual coding sequences for each polarization. Two types of FSSs are designed and experimentally characterized to demonstrate the capability of OAM generation with circular and linear polarizations, respectively, showing excellent performance in a wide bandwidth from 14 to 16 GHz. This method provides opportunities for polarization multiplexing in microwave OAM communication systems.

  12. POLARIZATION OBSERVATIONS OF 100 PULSARS AT 774 MHz BY THE GREEN BANK TELESCOPE

    International Nuclear Information System (INIS)

    Han, J. L.; Demorest, P. B.; Van Straten, W.; Lyne, A. G.

    2009-01-01

    We report on polarimetric observations of 100 pulsars centered on 774 MHz, made using the Green Bank Telescope, presenting their polarization profiles and polarized flux densities and comparing them with previous observations when possible. For 67 pulsars, these are the first such measurements made. Polarization profiles of 8 millisecond-pulsars in our sample show wide profiles and flat position-angle curves. Strong linear polarization, sometimes approaching 100% of the total intensity, has been detected in all or a part of the average pulse profiles of some pulsars. In general, circular polarization is very weak, although it is observed to be extremely strong in the leading component of PSR J1920+2650. Sense reversal of circular polarization as a function of pulse phase has been detected from both core and other components of more than 20 pulsars. Any relationship between the spin-down luminosity and the percentage of linear polarization is not evident in our data at this frequency.

  13. Dynamic nuclear polarization tests in some polymers for polarized targets

    International Nuclear Information System (INIS)

    Brandt, B. van den; Hautle, P.; Konter, J.A.; Mango, S.; Bunyatova, E.I.

    1998-01-01

    The results of dynamic polarization tests in polyethylene (PE) and ethylene propylene copolymer (EPC), doped with the stable free radical 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), are presented. Sizable proton polarizations have been achieved in a magnetic field of 2.5 T at a temperature below 0.3 K and 5T at 1 K

  14. Polar measurements on profiles

    Energy Technology Data Exchange (ETDEWEB)

    Althaus, D.

    1985-03-01

    Wind tunnel models with a profile depth of t=0.5 m were measured in a laminar wind tunnel by the usual measuring processes. The profile resistance was determined by integration along the width of span. The smooth profiles were examined at Re=0.7/1.0 and 1.5 million. At Re=1.0 million, the position of the changeover points were determined with a stethoscope. Also at this Reynolds number measurements were taken with a trip wire of d=2 mm diameter, directly on the profile nose. The tables contain the co-ordinates of the profiles, the contours, the theoretical speed distributions for 4 different angles of attack, the csub(a)-csub(w) polar measurements and changeover points, and the torque coefficients around the t/4 point. (BR).

  15. Structural and physicochemical properties of polar lipids from thermophilic archaea.

    Science.gov (United States)

    Ulrih, Natasa Poklar; Gmajner, Dejan; Raspor, Peter

    2009-08-01

    The essential general features required for lipid membranes of extremophilic archaea to fulfill biological functions are that they are in the liquid crystalline phase and have extremely low permeability of solutes that is much less temperature sensitive due to a lack of lipid-phase transition and highly branched isoprenoid chains. Many accumulated data indicate that the organism's response to extremely low pH is the opposite of that to high temperature. The high temperature adaptation does not require the tetraether lipids, while the adaptation of thermophiles to acidic environment requires the tetraether polar lipids. The presence of cyclopentane rings and the role of polar heads are not so straightforward regarding the correlations between fluidity and permeability of the lipid membrane. Due to the unique lipid structures and properties of archaeal lipids, they are a valuable resource in the development of novel biotechnological processes. This microreview focuses primarily on structural and physicochemical properties of polar lipids of (hyper)thermophilic archaea.

  16. X-Parameter Based Modelling of Polar Modulated Power Amplifiers

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel

    2013-01-01

    X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....

  17. Dual polarized receiving steering antenna array for measurement of ultrawideband pulse polarization structure

    Energy Technology Data Exchange (ETDEWEB)

    Balzovsky, E. V.; Buyanov, Yu. I.; Koshelev, V. I., E-mail: koshelev@lhfe.hcei.tsc.ru; Nekrasov, E. S. [Institute of High Current Electronics SB RAS, IHCE SB RAS, Tomsk 634055 (Russian Federation)

    2016-03-15

    To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximum position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from −40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well.

  18. Ultracompact and broadband polarization beam splitter based on polarization-dependent critical guiding condition.

    Science.gov (United States)

    Ying, Zhoufeng; Wang, Guanghui; Zhang, Xuping; Ho, Ho-pui; Huang, Ying

    2015-05-01

    An ultracompact and broadband polarization beam splitter (PBS) based on the polarization-dependent critical guiding condition of an asymmetrical directional coupler is proposed. The device consists of a pair of silicon waveguides with different height and width. Due to the different cutoff conditions for the TE and TM polarization modes, it is possible to have the TM mode guided in one waveguide while the TE mode is supported in both. Therefore, only the phase-matching condition for the cross-coupling of the TE mode needs to be considered. This approach not only simplifies the design procedures but also significantly improves device performance with smaller total length and larger bandwidth. Finally, regardless of the contribution of S-bend waveguides, our proposed PBS has a coupling region as short as 0.2 μm, which is the shortest reported until now. The simulation result shows that the extinction ratios for the TE and TM polarization are 13.5 and 16.6 dB at their respective output ports, and their insertion losses are 0.29 and 0.13 dB, respectively. Numerical simulations also show that the device offers a very large bandwidth (∼140  nm) with large extinction ratio (>10  dB) and low insertion loss (<1  dB).

  19. Polarization diversity scheme on spectral polarization coding optical code-division multiple-access network

    Science.gov (United States)

    Yen, Chih-Ta; Huang, Jen-Fa; Chang, Yao-Tang; Chen, Bo-Hau

    2010-12-01

    We present an experiment demonstrating the spectral-polarization coding optical code-division multiple-access system introduced with a nonideal state of polarization (SOP) matching conditions. In the proposed system, the encoding and double balanced-detection processes are implemented using a polarization-diversity scheme. Because of the quasiorthogonality of Hadamard codes combining with array waveguide grating routers and a polarization beam splitter, the proposed codec pair can encode-decode multiple code words of Hadamard code while retaining the ability for multiple-access interference cancellation. The experimental results demonstrate that when the system is maintained with an orthogonal SOP for each user, an effective reduction in the phase-induced intensity noise is obtained. The analytical SNR values are found to overstate the experimental results by around 2 dB when the received effective power is large. This is mainly limited by insertion losses of components and a nonflattened optical light source. Furthermore, the matching conditions can be improved by decreasing nonideal influences.

  20. Dispersions of Goethite Nanorods in Aprotic Polar Solvents

    Directory of Open Access Journals (Sweden)

    Delphine Coursault

    2017-10-01

    Full Text Available Colloidal suspensions of anisotropic nanoparticles can spontaneously self-organize in liquid-crystalline phases beyond some concentration threshold. These phases often respond to electric and magnetic fields. At lower concentrations, usual isotropic liquids are observed but they can display very strong Kerr and Cotton-Mouton effects (i.e., field-induced particle orientation. For many examples of these colloidal suspensions, the solvent is water, which hinders most electro-optic applications. Here, for goethite (α-FeOOH nanorod dispersions, we show that water can be replaced by polar aprotic solvents, such as N-methyl-2-pyrrolidone (NMP and dimethylsulfoxide (DMSO, without loss of colloidal stability. By polarized-light microscopy, small-angle X-ray scattering and electro-optic measurements, we found that the nematic phase, with its field-response properties, is retained. Moreover, a strong Kerr effect was also observed with isotropic goethite suspensions in these polar aprotic solvents. Furthermore, we found no significant difference in the behavior of both the nematic and isotropic phases between the aqueous and non-aqueous dispersions. Our work shows that goethite nanorod suspensions in polar aprotic solvents, suitable for electro-optic applications, can easily be produced and that they keep all their outstanding properties. It also suggests that this solvent replacement method could be extended to the aqueous colloidal suspensions of other kinds of charged anisotropic nanoparticles.

  1. Time Skew Estimator for Dual-Polarization QAM Transmitters

    DEFF Research Database (Denmark)

    Medeiros Diniz, Júlio César; Da Ros, Francesco; Jones, Rasmus Thomas

    2017-01-01

    A simple method for joint estimation of transmitter’s in-phase/quadrature and inter-polarization time skew is proposed and experimentally demonstrated. The method is based on clock tone extraction of a photodetected signal and genetic algorithm. The maximum estimation error was 0.5 ps....

  2. Climate Drives Polar Bear Origins

    Science.gov (United States)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  3. ARGONNE/ NOVOSIBIRSK: Storing polarized deuterons

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Promising new results come from a collaboration between the Institute of Physics, Novosibirsk, and the US Argonne Laboratory, initiated in 1988 to look at the possibilities for using polarized (spin oriented) gas targets in high current electron storage rings, the object being to maximize target polarization levels

  4. The SLAC polarized electron source

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Alley, R.; Frisch, J.; Kotseroglou, T.; Mulhollan, G.; Schultz, D.; Tang, H.; Turner, J.; Yeremian, A.D.

    1997-08-01

    Since 1992, the SLAC 3-km linac has operated exclusively with polarized electrons. The polarized electron source is highly reliable, remotely operated and monitored, and able to produce a variety of electron bunch profiles for high-energy physics experiments. The source and its operating characteristics are described. Some implications drawn from the operating experience are discussed

  5. UV Coatings, Polarization, and Coronagraphy

    Science.gov (United States)

    Bolcar, Matthew R.; Quijada, Manuel; West, Garrett; Balasubramanian, Bala; Krist, John; Martin, Stefan; Sabatke, Derek

    2016-01-01

    Presenation for the Large UltraViolet Optical Infrared (LUVOIR) and Habitable Exoplanet Imager (HabEx) Science and Technology Definition Teams (STDT) on technical considerations regarding ultraviolet coatings, polarization, and coronagraphy. The presentations review the state-of-the-art in ultraviolet coatings, how those coatings generate polarization aberrations, and recent study results from both the LUVOIR and HabEx teams.

  6. Carbon nanotube fiber terahertz polarizer

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, Ahmed [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Tsentalovich, Dmitri E.; Young, Colin C. [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Heimbeck, Martin S. [Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Everitt, Henry O. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Charles M. Bowden Laboratory, Aviation & Missile Research, Development, and Engineering Center (AMRDEC), Redstone Arsenal, Alabama 35898 (United States); Pasquali, Matteo [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Kono, Junichiro, E-mail: kono@rice.edu [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005 (United States)

    2016-04-04

    Conventional, commercially available terahertz (THz) polarizers are made of uniformly and precisely spaced metallic wires. They are fragile and expensive, with performance characteristics highly reliant on wire diameters and spacings. Here, we report a simple and highly error-tolerant method for fabricating a freestanding THz polarizer with nearly ideal performance, reliant on the intrinsically one-dimensional character of conduction electrons in well-aligned carbon nanotubes (CNTs). The polarizer was constructed on a mechanical frame over which we manually wound acid-doped CNT fibers with ultrahigh electrical conductivity. We demonstrated that the polarizer has an extinction ratio of ∼−30 dB with a low insertion loss (<0.5 dB) throughout a frequency range of 0.2–1.1 THz. In addition, we used a THz ellipsometer to measure the Müller matrix of the CNT-fiber polarizer and found comparable attenuation to a commercial metallic wire-grid polarizer. Furthermore, based on the classical theory of light transmission through an array of metallic wires, we demonstrated the most striking difference between the CNT-fiber and metallic wire-grid polarizers: the latter fails to work in the zero-spacing limit, where it acts as a simple mirror, while the former continues to work as an excellent polarizer even in that limit due to the one-dimensional conductivity of individual CNTs.

  7. Geomorphology of Triton's polar materials

    Science.gov (United States)

    Croft, Steven K.

    1993-01-01

    One of Triton's most debated puzzles is the nature, distribution, and transport of its atmospheric volatiles. The full potential of constraints provided by detailed observations of the morphology and distribution of the polar deposits has not been realized. The objective of this study is characterization of the morphology, distribution, stratigraphy, and geologic setting of Triton's polar materials.

  8. The efficacy of compounds with different polarities as antioxidant in emulsions with omega-3 lipids

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Nielsen, Nina Skall; Decker, Eric A.

    2011-01-01

    According to the so-called polar paradox hypothesis, the efficacy of an antioxidant in emulsions is highly affected by its polarity and thereby location in the different phases. However, other factors also affect the efficacy of antioxidants in multiphase systems. The aim of this study was to eva...

  9. Tuning the transmission lineshape of a photonic crystal slab guided-resonance mode by polarization control.

    Science.gov (United States)

    Huang, Ningfeng; Martínez, Luis Javier; Povinelli, Michelle L

    2013-09-09

    We demonstrate a system consisting of a two-dimensional photonic crystal slab and two polarizers which has a tunable transmission lineshape. The lineshape can be tuned from a symmetric Lorentzian to a highly asymmetric Fano lineshape by rotating the output polarizer. We use temporal coupled mode theory to explain the measurement results. The theory also predicts tunable phase shift and group delay.

  10. Dynamic polarization of radioactive nuclei

    International Nuclear Information System (INIS)

    Kiselev, Yu.F.; Lyuboshits, V.L.; )

    2001-01-01

    Radioactive nuclei, embedded into a frozen polarized proton target, atr proposed to polarize by means of some dynamic polarization methods. Angular distributions of γ-quanta emitted ny 22 Na(3 + ) in the cascade β-γ-radiation are calculated. It is shown that this distribution does not depend on the spin temperature sing at the Boltzmann distribution of populations among the Zeeman magnetic substates, whereas the tensor polarization of quadrupole nuclei, placed in the electric field of the crystal, causes the considerable sing dependence. The new method promises wide opportunities for the magnetic structure investigations as well as for the study of spin-spin interaction dynamics of rare nuclei in dielectrics. Physical-technical advantages and disadvantages of the given method are discussed for the polarization of heavy nuclei in the on-line implantation mode [ru

  11. Measuring the sea quark polarization

    International Nuclear Information System (INIS)

    Makdisi, Y.

    1993-01-01

    Spin is a fundamental degree of freedom and measuring the spin structure functions of the nucleon should be a basic endeavor for hadron physics. Polarization experiments have been the domain of fixed target experiments. Over the years large transverse asymmetries have been observed where the prevailing QCD theories predicted little or no asymmetries, and conversely the latest deep inelastic scattering experiments of polarized leptons from polarized targets point to the possibility that little of the nucleon spin is carried by the valence quarks. The possibility of colliding high luminosity polarized proton beams in the Brookhaven Relativistic Heavy Ion Collider (RHIC) provides a great opportunity to extend these studies and systematically probe the spin dependent parton distributions specially to those reactions that are inaccessible to current experiments. This presentation focuses on the measurement of sea quark and possibly the strange quark polarization utilizing the approved RHIC detectors

  12. A review of polarized ion sources

    International Nuclear Information System (INIS)

    Schmor, P.W.

    1995-06-01

    The two main types of polarized ion sources in use on accelerators today are the Atomic Beam Polarized Ion Source (ABIS) source and the Optically Pumped Polarized Ion Source (OPPIS). Both types can provide beams of nuclearly polarized light ions which are either positively or negatively charged. Heavy ion polarized ion sources for accelerators are being developed. (author). 35 refs., 1 tab

  13. Polarization phenomena in heavy-ion reactions

    International Nuclear Information System (INIS)

    Sugimoto, K.; Ishihara, M.; Takahashi, N.

    1984-01-01

    This chapter presents a few key experiments which provide direct evidence of the polarization phenomena in heavy-ion reactions. The theory of polarization observables and measurements is given with the necessary formulae. The polarization phenomena is described and studies of product nuclear polarization in heavy-ion reactions are discussed. Studies of heavy-ion reactions induced by polarized beams are examined

  14. Non-ionic detergent Triton X-114 Based vortex- synchronized matrix solid-phase dispersion method for the simultaneous determination of six compounds with various polarities from Forsythiae Fructus by ultra high-performance liquid chromatography.

    Science.gov (United States)

    Du, Kunze; Li, Jin; Tian, Fei; Chang, Yan-Xu

    2018-02-20

    A simple nonionic detergent - based vortex- synchronized matrix solid-phase dispersion (ND-VSMSPD) method was developed to extract bioactive compounds in Forsythiae Fructus coupled with ultra high-performance liquid chromatography (UHPLC). Nonionic detergent Triton 114 was firstly used as a green elution reagent in vortex- synchronized MSPD procedure. The optimum parameters were investigated to attain the best results, including Florisil as sorbent, 2mL 10% (v/v) nonionic detergent Triton X-114 as the elution reagent, 1:1 of sample/sorbent ratio, grinding for 3min, and whirling for 2min. The recoveries of the six compounds in Forsythiae Fructus were in the range of 95-104% (RSD arctigenin (r≥0.999). It was proved that the extraction yields of almost all compounds attained by the established vortex- synchronized MSPD, which required lower sample, reagent and time, were higher than the normal MSPD and the traditional ultrasonic-assisted extraction. Consequently, this developed vortex- synchronized MSPD coupled with simple UHPLC method could be efficiently applies to extract and analyze the target compounds in real Forsythiae Fructus samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Physics with polarized electron beams

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-01-01

    As a distinct field, elementary particle physics is now approximately forty years old. In all that time, only a few of the thousands of experiments that have been performed have made use of spin polarized particle beams (with apologies to those who have studied neutrino interactions, polarized beam are defined to refer to the case in which the experimenter has control over the polarization direction). If the discussion is restricted to spin polarized electron beams, the number of experiments becomes countable with the fingers of one hand (with several to spare). There are two reasons for this lack of interest. The first is that spin polarized beams are difficult to produce, accelerate, and transport. The second reason is that any physical process that can occur during the collision of a polarized particle with another (polarized or not) can also occur during the collision of unpolarized particles. One might ask then, why has any effort been expended on the subject. The answer, at least in the case of polarized electron beams, is that electron accelerators and storage rings have in recent years achieved sufficient energy to begin to probe the weak interaction directly. The weak interaction distinguishes between left- and right-handed fermionic currents. Left-handed particles interact in a fundamentally different way than their right-handed counterparts. If the experimenter wishes to explore or exploit this difference, he (or she) must either prepare the spin state of the incident particles or analyze the spin state of outgoing particles. For reasons of genearlity and improved statistical precision, the former is usually preferable to the latter. The first of these lectures will review some of the techniques necessary for the production, transport, and monitoring of polarized electron (or positron) beams. The second lecture will survey some of the physics possibilities of polarized electron-positron collisions

  16. Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem

    Directory of Open Access Journals (Sweden)

    Kevin M. Geyer

    2017-07-01

    Full Text Available Primary production is the fundamental source of energy to foodwebs and ecosystems, and is thus an important constraint on soil communities. This coupling is particularly evident in polar terrestrial ecosystems where biological diversity and activity is tightly constrained by edaphic gradients of productivity (e.g., soil moisture, organic carbon availability and geochemical severity (e.g., pH, electrical conductivity. In the McMurdo Dry Valleys of Antarctica, environmental gradients determine numerous properties of soil communities and yet relatively few estimates of gross or net primary productivity (GPP, NPP exist for this region. Here we describe a survey utilizing pulse amplitude modulation (PAM fluorometry to estimate rates of GPP across a broad environmental gradient along with belowground microbial diversity and decomposition. PAM estimates of GPP ranged from an average of 0.27 μmol O2/m2/s in the most arid soils to an average of 6.97 μmol O2/m2/s in the most productive soils, the latter equivalent to 217 g C/m2/y in annual NPP assuming a 60 day growing season. A diversity index of four carbon-acquiring enzyme activities also increased with soil productivity, suggesting that the diversity of organic substrates in mesic environments may be an additional driver of microbial diversity. Overall, soil productivity was a stronger predictor of microbial diversity and enzymatic activity than any estimate of geochemical severity. These results highlight the fundamental role of environmental gradients to control community diversity and the dynamics of ecosystem-scale carbon pools in arid systems.

  17. Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)

    Science.gov (United States)

    McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.

    2017-12-01

    Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.

  18. Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics.

    Science.gov (United States)

    Acosta, Matias; Schmitt, Ljubomira A; Cazorla, Claudio; Studer, Andrew; Zintler, Alexander; Glaum, Julia; Kleebe, Hans-Joachim; Donner, Wolfgang; Hoffman, Mark; Rödel, Jürgen; Hinterstein, Manuel

    2016-07-01

    Coupling of order parameters provides a means to tune functionality in advanced materials including multiferroics, superconductors, and ionic conductors. We demonstrate that the response of a frustrated ferroelectric state leads to coupling between order parameters under electric field depending on grain orientation. The strain of grains oriented along a specific crystallographic direction, 〈h00〉, is caused by converse piezoelectricity originating from a ferrodistortive tetragonal phase. For 〈hhh〉 oriented grains, the strain results from converse piezoelectricity and rotostriction, as indicated by an antiferrodistortive instability that promotes octahedral tilting in a rhombohedral phase. Both strain mechanisms combined lead to a colossal local strain of (2.4 ± 0.1) % and indicate coupling between oxygen octahedral tilting and polarization, here termed "rotopolarization". These findings were confirmed with electromechanical experiments, in situ neutron diffraction, and in situ transmission electron microscopy in 0.75Bi1/2Na1/2TiO3-0.25SrTiO3. This work demonstrates that polar and non-polar instabilities can cooperate to provide colossal functional responses.

  19. Lunar true polar wander inferred from polar hydrogen.

    Science.gov (United States)

    Siegler, M A; Miller, R S; Keane, J T; Laneuville, M; Paige, D A; Matsuyama, I; Lawrence, D J; Crotts, A; Poston, M J

    2016-03-24

    The earliest dynamic and thermal history of the Moon is not well understood. The hydrogen content of deposits near the lunar poles may yield insight into this history, because these deposits (which are probably composed of water ice) survive only if they remain in permanent shadow. If the orientation of the Moon has changed, then the locations of the shadowed regions will also have changed. The polar hydrogen deposits have been mapped by orbiting neutron spectrometers, and their observed spatial distribution does not match the expected distribution of water ice inferred from present-day lunar temperatures. This finding is in contrast to the distribution of volatiles observed in similar thermal environments at Mercury's poles. Here we show that polar hydrogen preserves evidence that the spin axis of the Moon has shifted: the hydrogen deposits are antipodal and displaced equally from each pole along opposite longitudes. From the direction and magnitude of the inferred reorientation, and from analysis of the moments of inertia of the Moon, we hypothesize that this change in the spin axis, known as true polar wander, was caused by a low-density thermal anomaly beneath the Procellarum region. Radiogenic heating within this region resulted in the bulk of lunar mare volcanism and altered the density structure of the Moon, changing its moments of inertia. This resulted in true polar wander consistent with the observed remnant polar hydrogen. This thermal anomaly still exists and, in part, controls the current orientation of the Moon. The Procellarum region was most geologically active early in lunar history, which implies that polar wander initiated billions of years ago and that a large portion of the measured polar hydrogen is ancient, recording early delivery of water to the inner Solar System. Our hypothesis provides an explanation for the antipodal distribution of lunar polar hydrogen, and connects polar volatiles to the geologic and geophysical evolution of the Moon

  20. Spin Filtering in Epitaxial Spinel Films with Nanoscale Phase Separation

    KAUST Repository

    Li, Peng; Xia, Chuan; Li, Jun; Zhu, Zhiyong; Wen, Yan; Zhang, Qiang; Zhang, Junwei; Peng, Yong; Alshareef, Husam N.; Zhang, Xixiang

    2017-01-01

    The coexistence of ferromagnetic metallic phase and antiferromagnetic insulating phase in nanoscaled inhomogeneous perovskite oxides accounts for the colossal magnetoresistance. Although the model of spin-polarized electron transport across

  1. POLARIZED BEAMS: 1 - Longitudinal electron spin polarization at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1994-09-15

    Wednesday 4 May marked a turning point in the art of the manipulation of spins in electron storage rings: longitudinal electron spin polarization (with the spins oriented along the electrons' direction of motion) was established in the electron ring of HERA, the electronproton collider at DESY in Hamburg. A polarization level of about 55% was obtained and polarizations of over 60% were reproducibly obtained in the following days. The beam energy was 27.52 GeV, corresponding to half integer spin tune of 62.5.

  2. Do polar faculae terminate or commence an extended cycle of solar activity?

    International Nuclear Information System (INIS)

    Bumba, V.

    1990-01-01

    From the local as well as from the global points of view, polar magnetic fields are formed from successively developed trailing polarity fields expelled from the main activity zone. Polar faculae observed during the 20th and the 21st cycles of activity fill in the areas covered by the most intense unipolar fields distributed in the convection network. These polar regions formed from magnetic fields of an old activity cycle are sharply separated from low-latitude magnetic fields and from fields developed by a new cycle of activity. The polarity distribution in polar faculae seems to follow from unipolarity of their magnetic fields - the prevailing polarity becomes the main leading polarity. The greatest part of the main activity zone, the most intense faculae shifting equatorwards are connected with the zone of the prevailing leading polarity magnetic fields. Some of these faculae - the weak and inhomogeneously distributed ones, bordering the main faculae butterflies polewards - are related again to the trailing polarity fields shifting polewards. The main characteristic of the latitudinal distribution of solar faculae is the existence of their two latitudinal types: the polar faculae shifting polewards are related to the trailing polarity fields of the old cycle, the faculae of the main activity zone shifting equatorwards are related mainly (from the global point of view) to the leading polarity fields, and their activity ends several years earlier than that of the polar ones. The polar faculae with their magnetic fields represent the last phase of the magnetic activity cycle lasting 15-17 years. (author). 6 figs., 21 refs

  3. Dual-band high-efficiency polarization converter using an anisotropic metasurface

    Science.gov (United States)

    Lin, Baoqin; Wang, Buhong; Meng, Wen; Da, Xinyu; Li, Wei; Fang, Yingwu; Zhu, Zihang

    2016-05-01

    In this work, a dual-band and high-efficiency reflective cross-polarization converter based on an anisotropic metasurface for linearly polarized electromagnetic waves is proposed. Its unit cell is composed of an elliptical disk-ring mounted on grounded dielectric substrate, which is an anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along ± 45 ° directions with respect to y-axis direction. Both the simulation and measured results show that the polarization converter can convert x- or y-polarized incident wave to its cross polarized wave in the two frequency bands (6.99-9.18 GHz, 11.66-20.40 GHz) with the conversion efficiency higher than 90%; moreover, the higher frequency band is an ultra-wide one with a relative bandwidth of 54.5% for multiple plasmon resonances. In addition, we present a detailed analysis for the polarization conversion of the polarization converter, and derive a formula to calculate the cross- and co-polarization reflections at y-polarized incidence according to the phase differences between the two reflected coefficients at u-polarized and v-polarized incidences. The simulated, calculated, and measured results are all in agreement with the entire frequency regions.

  4. Realizing Broadband and Invertible Linear-to-circular Polarization Converter with Ultrathin Single-layer Metasurface

    Science.gov (United States)

    Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Chen, Shuqi; Tian, Jianguo

    2015-01-01

    The arbitrary control of the polarization states of light has attracted the interest of the scientific community because of the wide range of modern optical applications that such control can afford. However, conventional polarization control setups are bulky and very often operate only within a narrow wavelength range, thereby resisting optical system miniaturization and integration. Here, we present the basic theory, simulated demonstration, and in-depth analysis of a high-performance broadband and invertible linear-to-circular (LTC) polarization converter composed of a single-layer gold nanorod array with a total thickness of ~λ/70 for the near-infrared regime. This setup can transform a circularly polarized wave into a linearly polarized one or a linearly polarized wave with a wavelength-dependent electric field polarization angle into a circularly polarized one in the transmission mode. The broadband and invertible LTC polarization conversion can be attributed to the tailoring of the light interference at the subwavelength scale via the induction of the anisotropic optical resonance mode. This ultrathin single-layer metasurface relaxes the high-precision requirements of the structure parameters in general metasurfaces while retaining the polarization conversion performance. Our findings open up intriguing possibilities towards the realization of novel integrated metasurface-based photonics devices for polarization manipulation, modulation, and phase retardation. PMID:26667360

  5. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  6. SUSANS With Polarized Neutrons.

    Science.gov (United States)

    Wagh, Apoorva G; Rakhecha, Veer Chand; Strobl, Makus; Treimer, Wolfgang

    2005-01-01

    Super Ultra-Small Angle Neutron Scattering (SUSANS) studies over wave vector transfers of 10(-4) nm(-1) to 10(-3) nm(-1) afford information on micrometer-size agglomerates in samples. Using a right-angled magnetic air prism, we have achieved a separation of ≈10 arcsec between ≈2 arcsec wide up- and down-spin peaks of 0.54 nm neutrons. The SUSANS instrument has thus been equipped with the polarized neutron option. The samples are placed in a uniform vertical field of 8.8 × 10(4) A/m (1.1 kOe). Several magnetic alloy ribbon samples broaden the up-spin neutron peak significantly over the ±1.3 × 10(-3) nm(-1) range, while leaving the down-spin peak essentially unaltered. Fourier transforms of these SUSANS spectra corrected for the instrument resolution, yield micrometer-range pair distribution functions for up- and down-spin neutrons as well as the nuclear and magnetic scattering length density distributions in the samples.

  7. Long-Lifetime Low-Scatter Neutron Polarization Target

    International Nuclear Information System (INIS)

    Richardson, Jonathan M.

    2004-01-01

    Polarized neutrons scattering is an important technology for characterizing magnetic and other materials. Polarized helium three (P-3He) is a novel technology for creating polarized beams and, perhaps more importantly, for the analysis of polarization in highly divergent scattered beams. Analysis of scattered beams requires specialized targets with complex geometries to ensure accurate results. Special materials and handling procedures are required to give the targets a long useful lifetime. In most cases, the targets must be shielded from stray magnetic fields from nearby equipment. SRL has developed and demonstrated hybrid targets made from glass and aluminum. We have also developed and calibrated a low-field NMR system for measuring polarization lifetimes. We have demonstrated that our low-field system is able to measure NMR signals in the presence of conducting (metallic) cell elements. We have also demonstrated a non-magnetic valve that can be used to seal the cells. We feel that these accomplishments in Phase I are sufficient to ensure a successful Phase II program. The commercial market for this technology is solid. There are over nine neutron scattering centers in the US and Canada and over 22 abroad. Currently, the US plans to build a new $1.4B scattering facility called the Spallation Neutron Source (SNS). The technology developed in this project will allow SRL to supply targets to both existing and future facilities. SRL is also involved with the application of P-3He to medical imaging

  8. Nuclear physics with polarized particles

    CERN Document Server

    Paetz gen Schieck, Hans

    2012-01-01

    The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory-a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear rea...

  9. Studies on optical pumping cells (OPC) to polarize 3He

    International Nuclear Information System (INIS)

    Hutanu, V.; Rupp, A.

    2004-01-01

    The technique applied at HMI to obtain nuclear-spin-polarized 3 He, used in neutron spin filters (NSFs), is metastability-exchange optical pumping. To prepare efficient NSF, one must highly polarize 3 He nuclei in the optical pumping volume (OPV) and reduce the polarization losses during the compression phase. Great progress has been achieved in reducing of depolarization due to the recent development of both, large polarization preserving piston compressors and long relaxation time filter cells. It is even more important to significantly enhance the 3 He polarization rate during optical pumping in order to increase NSF efficiency. Different cells materials were tested, such as Duran and quartz glass. In order to use the laser light more efficiently and to decrease the risk of 3 He depolarization due to unfavorable reflections, antireflection (AR) coatings were used on cell windows made of quartz glass. They were compared with the ones without coating, made of quartz, Duran and BK7 glass. The comparison of various techniques to mount the windows such as blowing, gluing or molecular diffusion was also conducted. It indicated that the molecular diffusion is the most suitable technique because of a better purity of the gas in the cell and the preservation of the optical flatness of the windows. Cells, for practical reasons each entirely made from the same material (Duran, Quartz glass) with windows mounted using this method, showed the best polarization performance

  10. Applications of polarization speckle in skin cancer detection and monitoring

    Science.gov (United States)

    Lee, Tim K.; Tchvialeva, Lioudmila; Phillips, Jamie; Louie, Daniel C.; Zhao, Jianhua; Wang, Wei; Lui, Harvey; Kalia, Sunil

    2018-01-01

    Polarization speckle is a rapidly developed field. Unlike laser speckle, polarization speckle consists of stochastic interference patterns with spatially random polarizations, amplitudes and phases. We have been working in this exciting research field, developing techniques to generate polarization patterns from skin. We hypothesize that polarization speckle patterns could be used in biomedical applications, especially, for detecting and monitoring skin cancers, the most common neoplasmas for white populations around the world. This paper describes our effort in developing two polarization speckle devices. One of them captures the Stokes parameters So and S1 simultaneously, and another one captures all four Stokes parameters So, S1, S2, and S3 in one-shot, within milliseconds. Hence these two devices could be used in medical clinics and assessed skin conditions in-vivo. In order to validate our hypothesis, we conducted a series of three clinical studies. These are early pilot studies, and the results suggest that the devices have potential to detect and monitor skin cancers.

  11. Polarity Control in Group-III Nitrides beyond Pragmatism

    Science.gov (United States)

    Mohn, Stefan; Stolyarchuk, Natalia; Markurt, Toni; Kirste, Ronny; Hoffmann, Marc P.; Collazo, Ramón; Courville, Aimeric; Di Felice, Rosa; Sitar, Zlatko; Vennéguès, Philippe; Albrecht, Martin

    2016-05-01

    Controlling the polarity of polar semiconductors on nonpolar substrates offers a wealth of device concepts in the form of heteropolar junctions. A key to realize such structures is an appropriate buffer-layer design that, in the past, has been developed by empiricism. GaN or ZnO on sapphire are prominent examples for that. Understanding the basic processes that mediate polarity, however, is still an unsolved problem. In this work, we study the structure of buffer layers for group-III nitrides on sapphire by transmission electron microscopy as an example. We show that it is the conversion of the sapphire surface into a rhombohedral aluminum-oxynitride layer that converts the initial N-polar surface to Al polarity. With the various AlxOyNz phases of the pseudobinary Al2O3 -AlN system and their tolerance against intrinsic defects, typical for oxides, a smooth transition between the octahedrally coordinated Al in the sapphire and the tetrahedrally coordinated Al in AlN becomes feasible. Based on these results, we discuss the consequences for achieving either polarity and shed light on widely applied concepts in the field of group-III nitrides like nitridation and low-temperature buffer layers.

  12. Phase sensitive multichannel OCT

    International Nuclear Information System (INIS)

    Trasischker, W.

    2015-01-01

    The main aim of this thesis was to develop and improve phase sensitive, multichannel methods for optical coherence tomography (OCT) using light in the 840 nm and 1040 nm regime. Conventional OCT provides purely structural information by illuminating the sample by one beam and recording the backscattered signal with one detection channel. Combination of this approach with a raster scan enables the acquisition of 2D and 3D structural information with a resolution in the micrometer regime. However, sometimes additional image contrast or information is desired. Amongst other approaches, this can be provided by a phase sensitive analysis of the interference pattern. Combining phase sensitivity with the illumination of the sample by more than one beam and/or by recording the data using more than one data acquisition channel allows for even more enhanced imaging. While phase sensitive OCT gives access to additional contrast and information, multichannel OCT can provide higher imaging speed, scan eld size and exible dierential measurements. Amongst the dierential, phase sensitive approaches, Doppler OCT (DOCT) and polarization sensitive OCT (PS-OCT) are two of the most promising OCT modalities. While the former targets information on the movement of backscattering particles, the latter measures alterations of the polarization state of the light induced by the sample. Both techniques provide additional image contrast and are, due to the non-invasive and fast character of OCT, well suited for in vivo imaging of the human eye. In the course of this thesis, two dierent multichannel, phase sensitive OCT systems will be presented. First, a D-OCT system with three dierent sampling beams is described. With a central wavelength of 840 nm these three beams are emitted by three individual laser sources. This eectively eliminates any cross talk and provides the full depth range for each channel. Furthermore, by illuminating the sample from three dierent directions, the absolute

  13. A study of auroral activity in the nightside polar cap

    International Nuclear Information System (INIS)

    Wu, Q.

    1989-01-01

    Using various ground observations at South Pole, Antarctica (invariant magnetic latitude -74 degree) and its conjugate point, Frobisher Bay, Canada, the author has studied the following aspects of nightside polar cap auroral activity: the appearance and disappearance of polar cap auroras (diffuse and discrete) associated with substorms and interplanetary magnetic field (IMF) variations; auroral optical emission line intensities; and the seasonal variation of auroral conjugacy. The observations show that the polar cap auroras usually fade away before the expansive phase of a substorm and bright auroral arcs reach high latitude (-74 degree) near the recovery phase. Just before the auroras fade away the discrete polar cap auroral arcs, which are usually on the poleward boundary of the diffuse aurora, intensify for 1 to 2 minutes. The observations also indicate the IMF may have stronger control over polar cap auroral activity than do substorms. A search for energy spectral variation of precipitating electrons using the intensities of 630.0 nm (0) and 427 nm (N 2 + ) auroral emission lines reveals no dramatic changes in the energy spectrum; instead, the data show possible atmospheric scattering and geometric effects on the photometric measurements while the bright auroral arc is moving into the polar cap. The conjugate observations show that the stormtime auroral electrojet current, which is associated with the bright auroral arc, in most cases reaches higher (lower) latitudes in the winter (summer) hemisphere. An asymmetric plasma sheet (with respect to the neutral sheet) is proposed, which expands deeper into the winter lobe, under a tilted geomagnetic dipole. Accordingly, the winter polar cap would have smaller area and the auroral electrojet would be at higher latitude

  14. Few-body experiments with polarized beams and polarized targets

    International Nuclear Information System (INIS)

    Simmons, J.E.

    1983-01-01

    A survey is presented concerning recent polarization experiments in the elastic p-d, p- 3 He, and p- 4 He systems. Mention is made of selected neutron experiments. The nominal energy range is 10 to 1000 MeV. Recent results and interpretations of the p-d system near 10 MeV are discussed. New experiments on the energy dependence of back angle p-d tensor polarization are discussed with respect to resolution of discrepancies and difficulty of theoretical interpretation. Progress is noted concerning multiple scattering interpretation of forward p-d deuteron polarization. Some new results are presented concerning the p- 3 He system and higher energy p- 4 He polarization experiments. 52 references

  15. Heliographic latitude dependence of the IMF dominant polarity in 1972--1973 using Pioneer 10 data

    International Nuclear Information System (INIS)

    Rosenberg, R.L.

    1975-01-01

    The heliographic latitude dependence of the interplanetary magnetic field (IMF) was studied by using Pioneer 10 data taken from March 1972 through June 1973 over Bartels solar rotation (SR) periods 1896--1913. The daily IMF sector polarities were plotted for each of these SR periods. Then the number of days of positive polarity (''away'' directed fields) per SR was plotted versus the average heliographic latitude. The dominant polarity behaved in accordance with the latitude effects found by Rosenberg and Coleman in 1969. The phase of the cycle has reversed from what it was prior to the sunspot maximum in 1968. The polarity is now predominantly positive at northern heliographic latitudes. (auth)

  16. Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.

    Science.gov (United States)

    Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-10-26

    We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.

  17. SDP_mharwit_1: Demonstration of HIFI Linear Polarization Analysis of Spectral Features

    Science.gov (United States)

    Harwit, M.

    2010-03-01

    We propose to observe the polarization of the 621 GHz water vapor maser in VY Canis Majoris to demonstrate the capability of HIFI to make polarization observations of Far-Infrared/Submillimeter spectral lines. The proposed Demonstration Phase would: - Show that HIFI is capable of interesting linear polarization measurements of spectral lines; - Test out the highest spectral resolving power to sort out closely spaced Doppler components; - Determine whether the relative intensities predicted by Neufeld and Melnick are correct; - Record the degree and direction of linear polarization for the closely-Doppler shifted peaks.

  18. Generation of spirally polarized propagation-invariant beam using fiber microaxicon.

    Science.gov (United States)

    Philip, Geo M; Viswanathan, Nirmal K

    2011-10-01

    We present here a fiber microaxicon (MA)based method to generate spirally polarized propagation-invariant optical beam. MA chemically etched in the tip of a two-mode fiber efficiently converts the generic cylindrically polarized vortex fiber mode into a spirally polarized propagation-invariant (Bessel-type) beam via radial dependence of polarization rotation angle. The combined roles of helico-conical phase and nonparaxial propagation in the generation and characteristics of the output beam from the fiber MA are discussed. © 2011 Optical Society of America

  19. Thermodynamics of polarized relativistic matter

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,PO Box 1700 STN CSC, Victoria BC, V8W 2Y2 (Canada)

    2016-07-05

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  20. Ejectile polarization and nuclear orbitals

    International Nuclear Information System (INIS)

    Ohnishi, A.; Maruyama, T.; Horiuchi, H.

    1992-01-01

    Ejectile polarization phenomena are studied by the use of 'Quantum Molecular Dynamics plus external mean field' model. It is shown that the far-side contribution increases as the incident energy increases or the target charge decreases. The incident energy and the target dependence of ejectile polarization data is reproduced qualitatively. The near- and far-side contributions themselves are calculated to be almost monotone functions of ejectile momentum as is predicted in a simple projectile fragmentation scheme without the assumption that the linear and angular momentum transfers are negligible, and their statistical average results in various shapes in ejectile polarization