WorldWideScience

Sample records for polarized nuclear targets

  1. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  2. Dynamic nuclear polarization of irradiated target materials

    International Nuclear Information System (INIS)

    Seely, M.L.

    1982-01-01

    Polarized nucleon targets used in high energy physics experiments usually employ the method of dynamic nuclear polarization (DNP) to polarize the protons or deuterons in an alcohol. DNP requires the presence of paramagnetic centers, which are customarily provided by a chemical dopant. These chemically doped targets have a relatively low polarizable nucleon content and suffer from loss of polarization when subjected to high doses of ionizing radiation. If the paramagnetic centers formed when the target is irradiated can be used in the DNP process, it becomes possible to produce targets using materials which have a relatively high polarizable nucleon content, but which are not easily doped by chemical means. Furthermore, the polarization of such targets may be much more radiation resistant. Dynamic nuclear polarization in ammonia, deuterated ammonia, ammonium hydroxide, methylamine, borane ammonia, butonal, ethane and lithium borohydride has been studied. These studies were conducted at the Stanford Linear Accelerator Center using the Yale-SLAC polarized target system. Results indicate that the use of ammonia and deuterated ammonia as polarized target materials would make significant increases in polarized target performance possible

  3. Laser-driven nuclear-polarized hydrogen internal gas target

    International Nuclear Information System (INIS)

    Seely, J.; Crawford, C.; Clasie, B.; Xu, W.; Dutta, D.; Gao, H.

    2006-01-01

    We report the performance of a laser-driven polarized internal hydrogen gas target (LDT) in a configuration similar to that used in scattering experiments. This target used the technique of spin-exchange optical pumping to produce nuclear spin polarized hydrogen gas that was fed into a cylindrical storage (target) cell. We present in this paper the performance of the target, methods that were tried to improve the figure-of-merit (FOM) of the target, and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation and the experimental results were in good agreement with the results from the simulation. The best experimental result achieved was at a hydrogen flow rate of 1.1x10 18 atoms/s, where the sample beam exiting the storage cell had 58.2% degree of dissociation and 50.5% polarization. Based on this measurement, the atomic fraction in the storage cell was 49.6% and the density averaged nuclear polarization was 25.0%. This represents the highest FOM for hydrogen from an LDT and is higher than the best FOM reported by atomic beam sources that used storage cells

  4. Simulation and Automation of Microwave Frequency Control in Dynamic Nuclear Polarization for Solid Polarized Targets

    Science.gov (United States)

    Perera, Gonaduwage; Johnson, Ian; Keller, Dustin

    2017-09-01

    Dynamic Nuclear Polarization (DNP) is used in most of the solid polarized target scattering experiments. Those target materials must be irradiated using microwaves at a frequency determined by the difference in the nuclear Larmor and electron paramagnetic resonance (EPR) frequencies. But the resonance frequency changes with time as a result of radiation damage. Hence the microwave frequency should be adjusted accordingly. Manually adjusting the frequency can be difficult, and improper adjustments negatively impact the polarization. In order to overcome these difficulties, two controllers were developed which automate the process of seeking and maintaining the optimal frequency: one being a standalone controller for a traditional DC motor and the other a LabVIEW VI for a stepper motor configuration. Further a Monte-Carlo simulation was developed which can accurately model the polarization over time as a function of microwave frequency. In this talk, analysis of the simulated data and recent improvements to the automated system will be presented. DOE.

  5. Polarized photoproduction from nuclear targets with arbitrary spin and relation to deep inelastic scattering

    International Nuclear Information System (INIS)

    Hoodbhoy, P.; Massachusetts Inst. of Tech., Cambridge; Quaid-i-Azam Univ., Islamabad

    1990-01-01

    Inclusive photo-production from polarized targets of arbitrary spin is analyzed by using multipoles. The Drell-Hearn-Gerasimov sum rule, which was originally fromulated for spin-1/2 targets, is generalized to all spins and multipoles, and shown to have some interesting consequences. Measurements to test the new rules, or to derive nuclear structure information from them, could be incorporated into existing plans at electron accelerator facilities. Finally, the possible relevance of these generalized sum rules to sum rules measurable in polarized lepton-polarized target deep inelastic inclusive scattering is discussed. (orig.)

  6. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  7. Physics of polarized targets

    CERN Document Server

    Niinikoski, Tapio

    2014-01-01

    For developing, building and operating solid polarized targets we need to understand several fields of physics that have seen sub stantial advances during the last 50 years. W e shall briefly review a selection of those that are important today. These are: 1) quantum statistical methods to describe saturation and relaxation in magnetic resonance; 2) equal spin temperature model for dy namic nuclear polarization; 3 ) weak saturation during NMR polarization measurement; 4 ) refrigeration using the quantum fluid properties of helium isotopes. These, combined with superconducting magnet technologies, permit today to reach nearly complete pola rization of almost any nuclear spins. Targets can be operated in frozen spin mode in rather low and inhomogeneous field of any orientation, and in DNP mode in beams of high intensity. Beyond such experiments of nuclear and particle physics, applications a re also emerging in macromolecular chemistry and in magnetic resonance imaging. This talk is a tribute to Michel Borghini...

  8. Corrections to nucleon spin structure asymmetries measured on nuclear polarized targets

    International Nuclear Information System (INIS)

    Rondon, O.A.

    1999-01-01

    The nucleon spin structure functions have been extracted from measurements of asymmetries in deep inelastic scattering of polarized leptons on polarized nuclei. The polarized nuclei present in practical targets: H, 2 H, 3 He, 14 N, 15 N, 6 Li, and 7 Li, are, with the exception of hydrogen, systems of bound nucleons, some of which can attain significant degrees of alignment. All the aligned nucleons contribute to the asymmetries. The contributions of each nuclear species to the asymmetry have to be carefully determined, before a reliable value for the net nucleon asymmetry is obtained. For this purpose, the spin component of the nuclear angular momentum for every nuclear state and the probability of each state have to be known with sufficient accuracy. In this paper I discuss the basic corrections used to estimate the contributions of the different nuclei, with emphasis on the A=6 and 7 Li isotopes present in the Li 2 H polarized target used during SLAC Experiment 155 to study the deuteron spin structure. copyright 1999 The American Physical Society

  9. Polarized scintillator targets

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.

    2000-05-01

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as "live" polarized targets in nuclear physics experiments.

  10. Polarized scintillator targets

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, B. van den E-mail: vandenbrandt@psi.ch; Bunyatova, E.I.; Hautle, P.; Konter, J.A.; Mango, S

    2000-05-21

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as 'live' polarized targets in nuclear physics experiments.

  11. The Bochum Polarized Target

    International Nuclear Information System (INIS)

    Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.

    2001-01-01

    The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function

  12. Polarized few-nucleon targets: new developments

    International Nuclear Information System (INIS)

    Haeusser, O.

    1992-09-01

    We discuss recent improvements in producing polarized few-nucleon targets for nuclear and particle physics experiments. The emphasis is on progress with polarized gas targets intended for experiments at electron and proton storage rings. (author) 54 refs., 1 tab

  13. Polarization measurement in the COMPASS polarized target

    CERN Document Server

    Kondo, K; Baum, G; Berglund, P; Doshita, N; Gautheron, F; Görtz, S; Hasegawa, T; Horikawa, N; Ishimoto, S; Iwata, T; Kisselev, Yu V; Koivuniemi, J H; Le Goff, J M; Magnon, A; Meyer, W; Reicherz, G; Matsuda, T

    2004-01-01

    Continuous wave nuclear magnetic resonance (NMR) is used to determine the target polarization in the COMPASS experiment. The system is made of the so-called Liverpool Q-meters, Yale-cards, and VME modules for data taking and system controlling. In 2001 the NMR coils were embedded in the target material, while in 2002 and 2003 the coils were mounted on the outer surface of the target cells to increase the packing factor of the material. Though the error of the measurement became larger with the outer coils than with the inner coils, we have performed stable measurements throughout the COMPASS run time for 3 years. The maximum polarization was +57% and -53% as the average in the target cells.

  14. On the large COMPASS polarized deuteron target

    CERN Document Server

    Finger, M; Baum, G; Doshita, N; Finger, M Jr; Gautheron, F; Goertz, St; Hasegawa, T; Heckmann, J; Hess, Ch; Horikawa, N; Ishimoto, S; Iwata, T; Kisselev, Y; Koivuniemi, J; Kondo, K; Le Goff, J-M; Magnon, A; Marchand, C; Matsuda, T; Meyer, W; Reicherz, G; Srnka, A

    2006-01-01

    The spin structure of the nucleons is investigated in deep inelastic scattering of a polarized muon beam and a polarized nucleon target in the COMPASS experiment at CERN since 2001. To achieve high luminosities a large solid polarized target is used. The COMPASS polarized target consists of a high cooling power $^{3}$He/$^{4}$He dilution refrigerator capable to maintain working temperature of the target material at about 50mK, a superconducting solenoid and dipole magnet system for longitudinal and transversal magnetic field on the target material, respectively, target cells containing polarizable material, microwave cavities and high power microwave radiation systems for dynamic nuclear polarization and the nuclear magnetic resonance system for nuclear spin polarization measurements. During 2001–2004 experiments superconducting magnet system with opening angle $\\pm$69 mrad, polarized target holder with two target cells and corresponding microwave and NMR systems have been used. For the data taking from 200...

  15. NMR dispersion measurement of dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Davies, K.; Cox, S.F.J.

    1978-01-01

    The feasibility of monitoring dynamic nuclear polarization from the NMR dispersive susceptibility is examined. Two prototype instruments are tested in a polarized proton target using organic target material. The more promising employs a tunnel diode oscillator, inside the target cavity, and should provide a precise polarization measurement working at a frequency far enough from the main resonance for the disturbance of the measured polarization to be negligible. Other existing methods for measuring target polarization are briefly reviewed. (author)

  16. Thin Scintillating Polarized Targets for Spin Physics

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.

    2003-07-01

    At PSI polarized scintillating targets are available since 1996. Proton polarizations of more than 80%, and deuteron polarizations of 25% in polystyrene-based scintillators can be reached under optimum conditions in a vertical dilution refrigerator with optical access, suited for nuclear and particle physics experiments. New preparation procedures allow to provide very thin polarizable scintillating targets and widen the spectrum of conceivable experiments.

  17. Internal polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, E.R.; Coulter, K.; Gilman, R.; Holt, R.J.; Kowalczyk, R.S.; Napolitano, J.; Potterveld, D.H.; Young, L. (Argonne National Lab., IL (USA)); Mishnev, S.I.; Nikolenko, D.M.; Popov, S.G.; Rachek, I.A.; Temnykh, A.B.; Toporkov, D.K.; Tsentalovich, E.P.; Wojtsekhowski, B.B. (AN SSSR, Novosibirsk (USSR). Inst. Yadernoj Fiziki)

    1989-01-01

    Internal polarized targets offer a number of advantages over external targets. After a brief review of the basic motivation and principles behind internal polarized targets, the technical aspects of the atomic storage cell will be discussed in particular. Sources of depolarization and the means by which their effects can be ameliorated will be described, especially depolarization by the intense magnetic fields arising from the circulating particle beam. The experience of the Argonne Novosibirsk collaboration with the use of a storage cell in a 2 GeV electron storage ring will be the focus of this technical discussion. 17 refs., 11 figs.

  18. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  19. System for measuring the proton polarization in a polarized target

    International Nuclear Information System (INIS)

    Karnaukhov, I.M.; Lukhanin, A.A.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1984-01-01

    The system for measuring the proton polarization in a polarized target representing the high-sensitivity nuclear magnetic resonance (NMR) is described Q-meter with series connection and a circuit for measuring system resonance characteristic is used for NMR-absorption signal recording. Measuring coil is produced of a strip conductor in order to obtain uniform system sensitivity to polarization state in all target volume and improve signal-to-noise ratio. Polarization measuring system operates ion-line with the M-6000 computer. The total measuring error for the value of free proton polarization in target taking into account the error caused by local depolarization of working substance under irradiation by high-intense photon beam is <= 6%. Long-term application of the described system for measuring the proton polarization in the LUEh-20000 accelerator target used in the pion photoproduction experiments has demonstrated its high reliability

  20. Polarized targets in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Cates, G.D. Jr. [Princeton Univ., NJ (United States)

    1994-12-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail.

  1. Spin-polarized 3He nuclear targets and metastable 4He atoms by optical pumping with a tunable, Nd:YAP laser

    International Nuclear Information System (INIS)

    Bohler, C.L.; Schearer, L.D.; Leduc, M.; Nacher, P.J.; Zachorowski, L.; Milner, R.G.; McKeown, R.D.; Woodward, C.E.

    1988-01-01

    Several Nd:YAP lasers were constructed which could be broadly tuned in the 1083-nm region which includes the helium 2 3 S-2 3 P transition, using a Lyot filter and thin, uncoated etalons within the laser cavity. 1 W of power could be extracted at 1083 nm through a 1% transmitting output coupler. This laser beam was used to optically pump metastable 4 He and 3 He 2 3 S helium atoms in a weak discharge cell, spin polarizing the metastable ensemble. In a 3 He cell the polarization is transferred to the nuclear spin system. A 3 He target cell at 0.3 Torr was polarized to 52% in a few minutes. We describe the application of this system to the design of polarized targets for experiments in nuclear physics

  2. Polarized gas targets for storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1990-01-01

    It is widely recognized that polarized gas targets in electron storage rings represent a new opportunity for precision nuclear physics studies. New developments in polarized target technology specific to internal applications will be discussed. In particular, polarized gas targets have been used in the VEPP-3 electron ring in Novosibirsk. A simple storage cell was used to increase the total target thickness by a factor of 15 over the simple gas jet target from an atomic beam source. Results from the initial phase of this project will be reported. In addition, the plans for increasing the luminosity by an additional order or magnitude will be presented. The application of this work to polarized hydrogen and deuterium targets for the HERA ring will be noted. The influence of beam-induced depolarization, a phenomena encountered in short-pulse electron storage rings, will be discussed. Finally, the performance tests of laser-driven sources will be presented. 8 refs., 12 figs., 1 tab

  3. Solid Polarized Targets and Applications

    International Nuclear Information System (INIS)

    Crabb, D. G.

    2008-01-01

    Examples are given of dynamically polarized targets in use today and how the subsystems have changed to meet the needs of todays experiments. Particular emphasis is placed on target materials such as ammonia and lithium deuteride. Recent polarization studies of irradiated materials such as butanol, deuterated butanol, polyethylene, and deuterated polyethylene are presented. The operation of two non-DNP target systems as well as applications of traditional DNP targets are briefly discussed

  4. Physics with polarized electrons and targets

    International Nuclear Information System (INIS)

    Donnelly, T.W.

    1984-01-01

    With the advent of electron stretcher or storage rings electron scattering from polarized targets becomes a general new tool for nuclear structure studies. Without such facilities it is necessary to have very dense polarized targets for use with the typical (less or approximately equal 50 μA) electron beams available and very few measurements of this type have been attempted. On the other hand, with electron rings the effective circulating current can be greatly increased. In this case much thinner internal targets may be used while still maintaining the same luminosity as in external beam experiments. In ancticipation of such new experimental capabilities we have re-developed the theoretical basis for discussions of electron scattering from polarized targets using either unpolarized or polarized electron beams. This work takes the formalism of unpolarized (e,e') and extends it in a straightforward way to include general polarizations of electrons, target nuclei, recoil nuclei or any combinations of these polarizations. In the present context it is only possible to provide a brief summary of the general form of the cross section and to present a few illustrative examples of the nuclear structure information that may be extracted from such polarization measurements

  5. System for measuring of proton polarization in polarized target

    International Nuclear Information System (INIS)

    Derkach, A.Ya.; Lukhanin, A.A.; Karnaukhov, I.M.; Kuz'menko, V.S.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1981-01-01

    Measurement system of proton polarization in the target, which uses the method of nuclear magnetic resonance is described. To record the signal of NMR-absorption a parallel Q-meter of voltage with analogous subtraction of resonance characteristics of measurement circuit is used. To obtain gradual sensitivity of the system to polarization state in the whole volume of the target the measurement coils is made of tape conductor. The analysis and mathematical modelling of Q-meter are carried out. Corrections for nonlinearity and dispersion are calculated. Key diagrams of the main electron blocks of Q-meter are presented. The system described operates on line with the M6000 computer. Total error of measurement of polarization value of free protons in the target does not exceed 6% [ru

  6. System of measurement of proton polarization in a polarized target

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukov, I.M.; Chechetenko, V.F.; Lukhanin, A.A.; Telegin, Y.N.; Trotsenko, V.I.

    1985-05-01

    This paper describes a nuclear magnetic resonance spectrometer with high sensitivity. The signal of NMR absorption is recorded by a Q-meter with a series circuit and a circuit for compensation of the resonance characteristic of the measuring circuit. In order to ensure uniform sensitivity of the system to the state of polarization throughout the volume of the target and to enhance the S/N ration the measuring coil is made of a flat conductor. The polarization-measuring system works on-line with an M-6000 computer. The total error of measurement of the polarization of free protons in a target with allowance for the error due to local depolarization of free protons in a target with allowance for the error due to local depolarization of the working substance under irradiation with an intense photon beam is less than or equal to 6%.

  7. Polarized Scintillating Targets at Psi

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.

    2001-02-01

    Scintillating polarized targets are now routinely available: blocks of 18×18×5 mm scintillating organic polymer, doped with TEMPO, polarized dynamically in a field of 2.5 T in a vertical 3He-4He dilution refrigerator. A 19 mm diameter plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat.

  8. Modeling alignment enhancement for solid polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Keller, D. [University of Virginia, Charlottesville, VA (United States)

    2017-07-15

    A model of dynamic orientation using optimized radiofrequency (RF) irradiation produced perpendicular to the holding field is developed for the spin-1 system required for tensor-polarized fixed-target experiments. The derivation applies to RF produced close to the Larmor frequency of the nucleus and requires the electron spin-resonance linewidth to be much smaller than the nuclear magnetic resonance frequency. The rate equations are solved numerically to study a semi-saturated steady-state resulting from the two sources of irradiation: microwave from the DNP process and the additional RF used to manipulate the tensor polarization. The steady-state condition and continuous-wave NMR lineshape are found that optimize the spin-1 alignment in the polycrystalline materials used as solid polarized targets in charged-beam nuclear and particle physics experiments. (orig.)

  9. Laser-driven polarized H/D sources and targets

    International Nuclear Information System (INIS)

    Clasie, B.; Crawford, C.; Dutta, D.; Gao, H.; Seely, J.; Xu, W.

    2005-01-01

    Traditionally, Atomic Beam Sources are used to produce targets of nuclear polarized hydrogen (H) or deuterium (D) for experiments using storage rings. Laser-Driven Sources (LDSs) offer a factor of 20-30 gain in the target thickness (however, with lower polarization) and may produce a higher overall figure of merit. The LDS is based on the technique of spin-exchange optical pumping where alkali vapor is polarized by absorbing circularly polarized laser photons. The H or D atoms are nuclear-polarized through spin-exchange collisions with the polarized alkali vapor and through subsequent hyperfine interactions during frequent H-H or D-D collisions

  10. Proceedings of the workshop on polarized targets in storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1984-08-01

    Polarization phenomena have played an increasingly important part in the study of nuclei and nucleons in recent years. Polarization studies have been hampered by the relatively few and rather fragile polarized targets which are presently available. The concept of polarized gas targets in storage rings opens a much wider range of possibilities than is available in the external target geometry. This novel method will represent a considerable advance in nuclear physics and will continue to receive much attention in plans for future facilities. An internal, polarized-target station is being planned for the cooler ring at the Indiana University Cyclotron Facility. Internal targets are compatible with recent designs of electron accelerators proposed by the Massachusetts Institute of Technology and the Southeastern Universities Research Association. The key to nuclear-science programs based on internal targets pivots on recent developments in polarized atomic beam methods, which include the more recent laser-driven polarized targets. The workshop drew together a unique group of physicists in the fields of high-energy, nuclear and atomic physics. The meeting was organized in a manner that stimulated discussion among the 58 participants and focused on developments in polarized target technology and the underlying atomic physics. An impressive array of future possibilities for polarized targets as well as current developments in polarized target technology were discussed at the workshop. Abstracts of individual items from the workshop were prepared separately for the data base

  11. Proceedings of the workshop on polarized targets in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Holt, R.J. (ed.)

    1984-08-01

    Polarization phenomena have played an increasingly important part in the study of nuclei and nucleons in recent years. Polarization studies have been hampered by the relatively few and rather fragile polarized targets which are presently available. The concept of polarized gas targets in storage rings opens a much wider range of possibilities than is available in the external target geometry. This novel method will represent a considerable advance in nuclear physics and will continue to receive much attention in plans for future facilities. An internal, polarized-target station is being planned for the cooler ring at the Indiana University Cyclotron Facility. Internal targets are compatible with recent designs of electron accelerators proposed by the Massachusetts Institute of Technology and the Southeastern Universities Research Association. The key to nuclear-science programs based on internal targets pivots on recent developments in polarized atomic beam methods, which include the more recent laser-driven polarized targets. The workshop drew together a unique group of physicists in the fields of high-energy, nuclear and atomic physics. The meeting was organized in a manner that stimulated discussion among the 58 participants and focused on developments in polarized target technology and the underlying atomic physics. An impressive array of future possibilities for polarized targets as well as current developments in polarized target technology were discussed at the workshop. Abstracts of individual items from the workshop were prepared separately for the data base.

  12. COMPASS polarized target for Drell-Yan

    CERN Document Server

    Pešek, M

    2014-01-01

    In the COMPASS Drell–Yan experiment the pion beam with momen tum of 190 GeV/ c and in- tensity up to 10 8 pions/s will interact with transversely polarized proton t arget producing muon pair via Drell–Yan process. The solid-state NH 3 will be polarized by dynamic nuclear polar- ization. Maximum polarization reached during data taking i s expected to be up to 90%. The non-interacting beam and other particles produced inside t he target will be stopped in the hadron absorber after the target. Two target cells, sepparated by a 20 cm gap in between, each 55 cm long and 4 cm in diameter give the target material volume about 691 cm 3 . The target platform needs to be moved by 2.3 m in upstream dire ction from the position used in previous experiments in order to accomodate the absorber. D uring the beam time higher radiation is expected in the area of the control room. Thus a new target r emote control system is needed. The target magnet is undergoing a substantial upgrade. Drell–Yan data taking is expected t...

  13. Nuclear physics with polarized particles

    CERN Document Server

    Paetz gen Schieck, Hans

    2012-01-01

    The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory-a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear rea...

  14. A dynamically polarized hydrogen and deuterium target at Jefferson Lab

    International Nuclear Information System (INIS)

    Polarized electron beams have been successfully used at Jefferson Lab for over a year. The authors now report the successful achievement of polarized targets for nuclear and particle physics experiments using the dynamic nuclear polarization (DNP)technique. The technique involves initial irradiation of frozen ammonia crystals (NH 3 and ND 3 ) using the electron beam from the new Free Electron Laser (FEL) facility at Jefferson Lab, and transferring the crystals to a special target holder for use in Experimental Halls. By subjecting the still ionized and frozen ammonia crystals to a strong magnetic field and suitably tuned RF, the high electron polarization is transmitted to the nucleus thus achieving target polarization. Details of the irradiation facility, the target holder, irradiation times, ionized crystal shelf life, and achieved polarization are discussed

  15. Limitations of optically pumped spin-exchange-polarized targets

    Science.gov (United States)

    Walker, T.; Anderson, L. W.

    1993-12-01

    The effects of spin-exchange collisions on the polarization of dense spin-polarized samples of hydrogen and deuterium are analyzed. It is shown that even in large magnetic fields spin-exchange collisions transfer angular momentum between the electrons and the nuclei. This effect has important implications for the operation of spin-polarized targets and sources of hydrogen and deuterium. For the specific case of sources that are spin-polarized by spin-exchange collisions with optically pumped alkali atoms, spin-exchange not only polarizes the hydrogen and deuterium electron spins, but polarizes the nuclear spins as well.

  16. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-01-01

    A proposed design for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target

  17. Tensor Target Polarization at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G

    2014-10-27

    The first measurements of tensor observables in $\\pi \\vec{d}$ scattering experiments were performed in the mid-80's at TRIUMF, and later at SIN/PSI. The full suite of tensor observables accessible in $\\pi \\vec{d}$ elastic scattering were measured: $T_{20}$, $T_{21}$, and $T_{22}$. The vector analyzing power $iT_{11}$ was also measured. These results led to a better understanding of the three-body theory used to describe this reaction. %Some measurements were also made in the absorption and breakup channels. A direct measurement of the target tensor polarization was also made independent of the usual NMR techniques by exploiting the (nearly) model-independent result for the tensor analyzing power at 90$^\\circ _{cm}$ in the $\\pi \\vec{d} \\rightarrow 2p$ reaction. This method was also used to check efforts to enhance the tensor polarization by RF burning of the NMR spectrum. A brief description of the methods developed to measure and analyze these experiments is provided.

  18. A polarized sup 3 He internal target for storage rings

    CERN Document Server

    Poolman, H R; Bulten, H J; Doets, M; Ent, R; Ferro-Luzzi, M; Geurts, D G; Harvey, M; Mul, F A

    2000-01-01

    A polarized sup 3 He internal target was employed at the internal target facility of the Amsterdam electron Pulse Stretcher and Storage ring (AmPS) at the Dutch National Institute for Nuclear and High-Energy Physics (NIKHEF). The unique features of internal targets such as chemical and isotopic purity, high and rapidly reversible polarization, and the ability to manipulate the target spin orientation were successfully demonstrated. A nuclear polarization of 0.50 (0.42) at a sup 3 He gas flow of 1.0 (2.0)x10 sup 1 sup 7 at s sup - sup 1 could be obtained. Operation at a nominal flow of 1x10 sup 1 sup 7 at s sup - sup 1 resulted in a target thickness of 0.7x10 sup 1 sup 5 at cm sup - sup 2 at a target temperature of 17 K.

  19. Polarized nuclei in plastic scintillators: a new class of polarized targets

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.; Nemchonok, I. B.

    2001-06-01

    Polarized scintillating targets are now routinely available: protons, deuterons or other nuclei in blocks of scintillating organic polymer, doped with the free radical TEMPO, are polarized dynamically in a field of 2.5 T in a vertical 3He-4He dilution refrigerator. A 19 mm diameter plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable nuclear polarizations have been achieved newly in boron enriched polystyrene-based scintillating material. A scintillator target with high detection sensitivity for low energy neutrons has been so made available, in which both protons and boron nuclei are polarized. .

  20. The polarized double cell target of the SMC

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; Adeva, B.; Arik, E.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, G.; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjoerkholm, P.; Bonner, B.E.; Botton, N. de; Boutemeur, M.; Bradamante, F.; Bravar, A.; Bressan, A.; Bueltmann, S.; Burtin, E.; Cavata, C.; Crabb, D.; Cranshaw, J.; Cuhadar, T.; Torre, S. Dalla; Dantzig, R. van; Derro, B.; Deshpande, A.; Dhawan, S.; Dulya, C.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Forthmann, S.; Frois, B.; Gallas, A.; Garzon, J.A.; Gaussiran, T.; Gilly, H.; Giorgi, M.; Goeler, E. von; Goertz, S.; Gracia, G.; Groot, N. de; Perdekamp, M. Grosse; Guelmez, E.; Haft, K.; Harrach, D. von; Hasegawa, T.; Hautle, P.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Kabuss, E.M.; Kageya, T.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kiryluk, J.; Kishi, A.; Kisselev, Yu.; Klostermann, L.; Kraemer, D.; Krivokhijine, V.; Kroeger, W.; Kurek, K.; Kyynaeraeinen, J.; Lamanna, M.; Landgraf, U.; Layda, T.; Le Goff, J.M.; Lehar, F.; Lesquen, A. de; Lichtenstadt, J.; Lindqvist, T.; Litmaath, M.; Lowe, M.; Magnon, A.; Mallot, G.K.; Marie, F.; Martin, A.; Martino, J.; Matsuda, T.; Mayes, B.; McCarthy, J.S.; Medved, K.; Meyer, W.; Middelkoop, G. van; Miller, D.; Miyachi, Y.; Mori, K.; Moromisato, J.; Nassalski, J.; Naumann, L.; Neganov, B.; Niinikoski, T.O.; Oberski, J.E.J.; Ogawa, A.; Ozben, C.; Parks, D.P.; Pereira, H.; Penzo, A.; Perrot-Kunne, F.; Peshekhonov, D.; Piegaia, R.; Pinsky, L.; Platchkov, S.; Plo, M.; Pose, D.; Postma, H. E-mail: hpostma@dataweb.nl; Pretz, J.; Pussieux, T.; Pyrlik, J.; Raedel, G.; Reyhancan, I.; Reicherz, G.; Rieubland, J.M.; Rijllart, A.; Roberts, J.B.; Rock, S.; Rodriguez, M.; Rondio, E.; Rosado, A.; Roscherr, B.; Sabo, I.; Saborido, J.; Sandacz, A.; Savin, I.; Schiavon, P.; Schiller, A.; Schueler, K.P.; Segel, R.; Seitz, R.; Semertzidis, Y.; Sever, F.; Shanahan, P.; Sichtermann, E.P.; Simeoni, F. [and others

    1999-11-11

    The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993-1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials -- butanol, ammonia, and deuterated butanol -- with maximum degrees of polarization of 94%, 91% and 60%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses, the accuracies achieved were between 2.0% and 3.2%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, construction and performance of the target are reviewed.

  1. Microwave-gated dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Bornet, Aurélien; Pinon, Arthur; Jhajharia, Aditya

    2016-01-01

    Dissolution dynamic nuclear polarization (D-DNP) has become a method of choice to enhance signals in nuclear magnetic resonance (NMR). Recently, we have proposed to combine cross-polarization (CP) with D-DNP to provide high polarization P((13)C) in short build-up times. In this paper, we show...

  2. THz Dynamic Nuclear Polarization NMR.

    Science.gov (United States)

    Nanni, Emilio A; Barnes, Alexander B; Griffin, Robert G; Temkin, Richard J

    2011-08-29

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140-600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology.

  3. A polarized target for the CLAS detector

    CERN Document Server

    Keith, C D; Battaglieri, M; Bosted, P; Branford, D; Bültmann, S; Burkert, V D; Comer, S A; Crabb, D G; De Vita, R; Dodge, G; Fatemi, R; Kashy, D; Kuhn, S E; Prok, Y; Ripani, M; Seely, M L; Taiuti, M; Witherspoon, S

    2003-01-01

    We describe the design, construction, and performance of a polarized solid target for use in electron scattering experiments with the CEBAF Large Acceptance Spectrometer. Protons and deuterons are continuously polarized by microwave-induced spin-flip transitions at 1 K and 5 T. The target operated successfully during two cycles in 1998 and 2000, providing proton and deuteron polarizations as high as 96% and 46%, respectively. The unique features of the target which permit its use inside a 4 pi spectrometer are stressed. Comparison is made between the target polarization measured by the traditional method of NMR and by electron elastic scattering.

  4. The polarized double cell target of the SMC

    CERN Document Server

    Adams, D; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Layda, T; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Neganov, B S; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Pereira, H; Penzo, Aldo L; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Pussieux, T; Pyrlik, J; Rädel, G; Reyhancan, I; Reicherz, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Schüler, K P; Segel, R E; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Thers, D; Tlaczala, W; Trentalange, S; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Zanetti, A M; Zaremba, K; Zhao, J

    1999-01-01

    The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993 to 1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials $-$ butanol, ammonia, and deuterated butanol, with maximum degrees of polarization of 94, 91, and 60 \\%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses. The achieved accuracies were between 2.0 and 3.2 \\%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, the ...

  5. Prospect of polarized targets in electron rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1984-01-01

    The feasibility of performing electron scattering experiments with polarized targets in electron storage rings is discussed. Three examples of the physics which would be accessible with this novel method are given. It is noted that this new method is compatible with recent proposals for linac-stretcher-ring accelerator designs. A new method for producing a polarized hydrogen or deuterium target is proposed and some preliminary results are described. A brief summary of laser-driven polarized targets as well as conventionally-produced polarized atomic beams is included

  6. Polarized proton target-IV. Operations manual

    International Nuclear Information System (INIS)

    Hill, D.; Fletcher, O.; Moretti, A.; Onesto, F.

    1976-01-01

    Standard operating procedures are presented for the vacuum, cryogenic, and electronic systems of a polarized proton target. The systems are comprised of (1) a target cryostat; (2) a 4 He pumping system; (3) a 3 He pumping system; (4) a microwave system; (5) a magnet and power supply; (6) a computerized polarization monitor; and (7) miscellaneous auxiliary equipment

  7. Quasielastic nucleon scattering using polarized beams and targets

    International Nuclear Information System (INIS)

    Haeusser, O.

    1990-07-01

    Inelastic scattering of polarized intermediate energy nucleons to continuum nuclear states is discussed with emphasis on recent results. Spin momentum correlations of protons in polarized targets of 3 He were observed for the first time. Complete spin observables in (p,p') show effects of the nuclear spin-isospin response and of an NN interaction modified by the nuclear medium. A comparison of Gamow Teller and isovector M1 giant resonance strengths in the sd shell provides evidence for large meson exchange current effects in the M1. (Author) (37 refs., 2 tabs., 9 figs.)

  8. Nonlinear Magnetic Phenomena in Highly Polarized Target Materials

    CERN Document Server

    Kiselev, Yu F

    2007-01-01

    The report introduces and surveys nonlinear magnetic phenomena which have been observed at high nuclear polarizations in polarized targets of the SMC and of the COMPASS collaborations at CERN. Some of these phenomena, namely the frequency modulation eect and the distortion of the NMR line shape, promote the development of the polarized target technique. Others, as the spin-spin cross-relaxation between spin subsystems can be used for the development of quantum statistical physics. New findings bear on an electromagnetic noise and the spectrally resolved radiation from LiD with negatively polarized nuclei detected by low temperature bolometers. These nonlinear phenomena need to be taken into account for achieving the ultimate polarizations.

  9. Free radicals and polarized targets

    Science.gov (United States)

    Bunyatova, E. I.

    2004-06-01

    Many free radicals were added to organic compounds in search of high proton and deuteron polarizations. Few found practical application. A short review is presented, and special attention is given to some stable nitroxyl radicals which have lately been admixed to organic compounds solid at room temperature, in particular to scintillators.

  10. Free radicals and polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Bunyatova, E.I. E-mail: bunyatel@nusun.jinr.ru

    2004-06-21

    Many free radicals were added to organic compounds in search of high proton and deuteron polarizations. Few found practical application. A short review is presented, and special attention is given to some stable nitroxyl radicals which have lately been admixed to organic compounds solid at room temperature, in particular to scintillators.

  11. Polarized deuteron elastic scattering from a polarized proton target

    International Nuclear Information System (INIS)

    Schmelzer, R.; Kuiper, H.; Schoeberl, M.; Berber, S.; Hilmert, H.; Koeppel, R.; Pferdmenges, R.; Zankel, H.

    1983-01-01

    Measurements are reported of the spin correlation parameter Cy,y for the elastic scattering of 10.0 MeV vector polarized deuterons from a polarized proton target at five CM angles (76 0 ,85 0 ,98 0 ,115 0 ,132 0 ). The experimental results are compared with different predictions. A Faddeev type calculation on the basis of local potentials also including approximate Coulomb distortion is favoured by our experimental results. (orig.)

  12. Measurement of spin observables using a storage ring with polarized beam and polarized internal gas target

    International Nuclear Information System (INIS)

    Lee, K.; Miller, M.A.; Smith, A.; Hansen, J.; Bloch, C.; van den Brand, J.F.J.; Bulten, H.J.; Ent, R.; Goodman, C.D.; Jacobs, W.W.; Jones, C.E.; Korsch, W.; Leuschner, M.; Lorenzon, W.; Marchlenski, D.; Meyer, H.O.; Milner, R.G.; Neal, J.S.; Pancella, P.V.; Pate, S.F.; Pitts, W.K.; von Przewoski, B.; Rinckel, T.; Sowinski, J.; Sperisen, F.; Sugarbaker, E.; Tschalaer, C.; Unal, O.; Zhou, Z.

    1993-01-01

    We report the first measurement of analyzing powers and spin correlation parameters using a storage ring with both beam and internal target polarized. Spin observables were measured for elastic scattering of 45 and 198 MeV protons from polarized 3 He nuclei in a new laser-pumped internal gas target at the Indiana University Cyclotron Facility Cooler Ring. Scattered protons and recoil 3 He nuclei were detected in coincidence with large acceptance plastic scintillators and silicon detectors. The internal-target technique demonstrated in this experiment has broad applicability to the measurement of spin-dependent scattering in nuclear and particle physics

  13. Polarized proton target with horizontal spin orientation

    International Nuclear Information System (INIS)

    Bunyatova, Eh.I.; Kiselev, Yu.F.; Kozlenko, N.G.

    1988-01-01

    Proton target, the polarization vector of which may be arbitrary oriented in horizontal plane relatively to the beam, is developed and tested. 70% value of polarization is obtained. 0.6 K temperature is acquired through 3 He pumping out continuous cycle. 1.2-propylene glycol - Cr(V) was used as working medium. Magnetic system is made in the form of Helmholtz sperconducting coils with working curren close to critical one. Target polarization is measured by NMR technique using original system of proton signal processing

  14. A technique for measurement of vector and tensor polarization in solid spin one polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Kielhorn, W.F.

    1991-06-01

    Vector and tensor polarizations are explicitly defined and used to characterize the polarization states of spin one polarized targets, and a technique for extracting these polarizations from nuclear magnetic resonance (NMR) data is developed. This technique is independent of assumptions about spin temperature, but assumes the target's crystal structure induces a quadrupole interaction with the spin one particles. Analysis of the NMR signals involves a computer curve fitting algorithm implemented with a fast Fourier transform method which speeds and simplifies curve fitting algorithms used previously. For accurate curve fitting, the NMR electronic circuit must be modeled by the fitting algorithm. Details of a circuit, its model, and data collected from this circuit are given for a solid deuterated ammonia target. 37 refs., 19 figs., 3 tabs.

  15. A technique for measurement of vector and tensor polarization in solid spin one polarized targets

    International Nuclear Information System (INIS)

    Kielhorn, W.F.

    1991-06-01

    Vector and tensor polarizations are explicitly defined and used to characterize the polarization states of spin one polarized targets, and a technique for extracting these polarizations from nuclear magnetic resonance (NMR) data is developed. This technique is independent of assumptions about spin temperature, but assumes the target's crystal structure induces a quadrupole interaction with the spin one particles. Analysis of the NMR signals involves a computer curve fitting algorithm implemented with a fast Fourier transform method which speeds and simplifies curve fitting algorithms used previously. For accurate curve fitting, the NMR electronic circuit must be modeled by the fitting algorithm. Details of a circuit, its model, and data collected from this circuit are given for a solid deuterated ammonia target. 37 refs., 19 figs., 3 tabs

  16. Superconducting polarizing magnet for a movable polarized target

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Bartenev, V.D.; Blinov, N.A.

    1998-01-01

    The superconducting polarizing magnet was constructed for the JINR (Dubna) movable polarized target (MPT) with working volume 200 mm long and 30 mm in diameter. The magnet provides a polarizing magnetic field up to 6 T in the centre with the uniformity of 4.5 x 10 -4 in the working volume of the target. The magnet contains a main solenoidal winding 558 mm long and 206/144 mm in diameters, and compensating and correcting winding placed at its ends. The windings are made of a NbTi wire, impregnated with the epoxy resin and placed in the horizontal cryostat. The diameter of the 'warm' aperture of the magnet cryostat is 96 mm. The design and technology of the magnet winding are described. Results of the magnetic field map measurements, using a NMR-magnetometer are given. A similar magnet constructed at DAPNIA, CEA/Saclay (France), represented a model for the present development. The MPT array is installed in the beam line of polarized neutrons produced by break-up of polarized deuterons extracted from the synchrophasotron of the Laboratory of High Energies (LHE), JINR (Dubna)

  17. On the large COMPASS polarized deuteron target

    Czech Academy of Sciences Publication Activity Database

    Ball, J.; Baum, G.; Doshita, N.; Finger Jr., M.; Finger, M.; Gautheron, F.; Goertz, S.; Hasegawa, T.; Heckmann, J.; Hess, C.; Horikawa, N.; Ishimoto, S.; Iwata, T.; Kisselev, Y.; Koivuniemi, J.H.; Kondo, K.; Le Goff, J.M.; Magnon, A.; Marchand, C.; Matsuda, T.; Meyer, W.; Reicherz, G.; Srnka, Aleš

    2006-01-01

    Roč. 56, Suppl. F (2006), F295-F305 ISSN 0011-4626 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : COMPASS * polarized target * Dilution refrigerator Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.568, year: 2006

  18. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  19. Polarization transfer from polarized nuclear spin to μ- spin in muonic atom

    International Nuclear Information System (INIS)

    Kuno, Yoshitaka; Nagamine, Kanetada; Yamazaki, Toshimitsu.

    1987-02-01

    A theoretical study of polarization transfer from an initially-polarized nuclear spin to a μ - spin in a muonic atom is given. The switching of the hyperfine interaction at excited muonic states as well as at the ground 1s state is taken into account. The upper state of hyperfine doublet at the muonic 1s state is considered to proceed down to the lower state. It is found that as the hyperfine interaction becomes effective at higher excited muonic orbitals, a less extent of polarization is transferred from the nuclear spin to the μ - spin. The theoretical values obtained are compared with the recent experiment of μ - repolarization in a polarized 209 Bi target. (author)

  20. H- ion current from a polarized vapor target

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1984-01-01

    A method of determining the polarization transferred to hydrogen atoms in charge-exchange reactions is outlined. The method also provides a means of determining target polarizations once the polarization transfer function is known

  1. Characteristics of target polarization by laser ablation

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Delle Side, D.; Giuffreda, E.; Nassisi, V.

    2015-01-01

    Roč. 33, č. 4 (2015), 601-605 ISSN 0263-0346 R&D Projects: GA ČR GAP205/12/0454; GA MŠk EE2.3.20.0279 Grant - others: Laser Zdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : Target current in laser -produced plasmas * positive and negative target polarization * space structure of ion front Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.649, year: 2015

  2. The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring

    Science.gov (United States)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Amarian, M.; Andrus, A.; Aschenauer, E. C.; Augustyniak, W.; Avakian, R.; Avetissian, A.; Avetissian, E.; Bailey, P.; Balin, D.; Baumgarten, C.; Beckmann, M.; Belostotski, S.; Bianchi, N.; Blok, H. P.; Böttcher, H.; Borissov, A.; Borysenko, A.; Bouwhuis, M.; Braun, B.; Brüll, A.; Bryzgalov, V.; Capitani, G. P.; Capiluppi, M.; Chen, T.; Ciullo, G.; Contalbrigo, M.; Court, G.; Dalpiaz, P. F.; De Leo, R.; Demey, M.; De Nardo, L.; De Sanctis, E.; Devitsin, E.; Di Nezza, P.; Düren, M.; Ehrenfried, M.; Elalaoui-Moulay, A.; Elbakian, G.; Ellinghaus, F.; Elschenbroich, U.; Fabbri, R.; Fantoni, A.; Fechtchenko, A.; Felawka, L.; Frullani, S.; Gapienko, G.; Gapienko, V.; Garibaldi, F.; Garrow, K.; Gavrilov, G.; Gharibyan, V.; Graw, G.; Grebeniouk, O.; Gregor, I. M.; Hadjidakis, C.; Haeberli, W.; Hafidi, K.; Hartig, M.; Hasch, D.; Heesbeen, D.; Henoch, M.; Hertenberger, R.; Hesselink, W. H. A.; Hillenbrand, A.; Hoek, M.; Holler, Y.; Hommez, B.; Hristova, I.; Iarygin, G.; Ivanilov, A.; Izotov, A.; Jackson, H. E.; Jgoun, A.; Kaiser, R.; Kinney, E.; Kisselev, A.; Kobayashi, T.; Koch, N.; Kolster, H.; Kopytin, M.; Korotkov, V.; Kozlov, V.; Krauss, B.; Krivokhijine, V. G.; Lagamba, L.; Lapikás, L.; Laziev, A.; Lenisa, P.; Liebing, P.; Linden-Levy, L. A.; Lorenzon, W.; Lu, H.; Lu, J.; Lu, S.; Ma, B.-Q.; Maiheu, B.; Makins, N. C. R.; Mao, Y.; Marianski, B.; Marukyan, H.; Mexner, V.; Meyners, N.; Mussa, R.; Mikloukho, O.; Miller, C. A.; Miyachi, Y.; Muccifora, V.; Nagaitsev, A.; Nappi, E.; Naryshkin, Y.; Nass, A.; Negodaev, M.; Nowak, W.-D.; Oganessyan, K.; Ohsuga, H.; Osborne, A.; Pickert, N.; Potterveld, D. H.; Raithel, M.; Reggiani, D.; Reimer, P. E.; Reischl, A.; Reolon, A. R.; Riedl, C.; Rith, K.; Rosner, G.; Rostomyan, A.; Rubacek, L.; Rubin, J.; Ryckbosch, D.; Salomatin, Y.; Sanjiev, I.; Savin, I.; Schill, C.; Schnell, G.; Schüler, K. P.; Seele, J.; Seidl, R.; Seitz, B.; Shanidze, R.; Shearer, C.; Shibata, T.-A.; Shutov, V.; Sinram, K.; Sommer, W.; Stancari, M.; Statera, M.; Steffens, E.; Steijger, J. J. M.; Stenzel, H.; Stewart, J.; Stinzing, F.; Tait, P.; Tanaka, H.; Taroian, S.; Tchuiko, B.; Terkulov, A.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; van der Nat, P.; van der Steenhoven, G.; van Haarlem, Y.; Vetterli, M. C.; Vikhrov, V.; Vincter, M. G.; Vogel, C.; Volmer, J.; Wang, S.; Wendland, J.; Wilbert, J.; Wise, T.; Ybeles Smit, G.; Ye, Y.; Ye, Z.; Yen, S.; Zihlmann, B.; Zupranski, P.

    2005-03-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented.

  3. Local field in LiD polarized target material

    CERN Document Server

    Kisselev, Yu V; Baum, G; Berglund, P; Doshita, N; Gautheron, F; Görtz, S; Horikawa, N; Koivuniemi, J H; Kondo, K; Magnon, A; Meyer, Werner T; Reicherz, G

    2004-01-01

    We have experimentally studied the first and the second moments of D, **6Li and **7Li (I greater than 1/2) NMR lines in a granulated LiD- target material as a function of nuclear polarizations and the data has been compared with a theory elaborated by Abragam, Roinel and Bouffard for monocrystalline samples. The experiments were carried out in the large COMPASS twin-target at CERN. The static local magnetic field of the polarized nuclei was measured by frequency shift between the NMR-signals in the two oppositely polarized cells and lead to the first moment, whereas the investigation of the second moment was done through Gaussian approximation. The average field magnitude in granulated material was estimated 20% larger than the value given by the calculations for monocrystalline samples of cylindrical shape. The second moment shows a qualitative agreement with the theory but it is slightly larger at the negative than at the positive polarization. In a polarized mode, the moments depend on the saturated microw...

  4. The prospects for polarized target materials with pure carbon background

    International Nuclear Information System (INIS)

    Hill, D.A.

    1992-01-01

    None of the materials presently in common use for polarized proton targets has a pure carbon nuclear background. The alcohols and diols contain some oxygen, and the ammonia and amine-based materials contain nitrogen and/or other noncarbon species. In the latter cases the noncarbon nuclei are measurably polarized as a concomitant of the process used to polarize the hydrogen nuclei. The relative simplicity of a pure carbon background would be advantageous for most types of scattering experiments and perhaps crucial for some. In addition to simplifying the kinematics of background events, pure carbon is relatively easy to prepare as a ''dummy'' target for background subtraction. Also, in such a target material, 13 C-enrichment would yield a clean polarized 13 C material. In this note I explore the possibilities for such materials, touching upon only what I consider to be the ''high'' points. The subject matter is capable of nearly endless ramification and speculation. In fact, owing to a general lack of relevant experimental data, even this relatively brief note contains much that is speculative to some degree

  5. The Spin Structure of the Neutron Determined Using a Polarized He-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, H

    2004-01-06

    Described is a study of the internal spin structure of the neutron performed by measuring the asymmetry in spin-dependent deep inelastic scattering of polarized electrons from nuclear polarized {sup 3}He. Stanford Linear Accelerator experiment E142's sample of 400 million scattering events collected at beam energies between 19 and 26 GeV led to the most precise measurement of a nucleon spin structure function to date. The {sup 3}He target represents a major advance in polarized target technology, using the technique of spin exchange with optically pumped rubidium vapor to produce a typical {sup 3}He nuclear polarization of 34% in a 30cm long target cell with a gas density of 2.3 x 10{sup 20} cm{sup -3}. The target polarization was measured to {+-}7% using an Adiabatic Fast Passage NMR system calibrated with the thermal equilibrium polarization of the protons in a sample of water. The relatively high polarization and target thickness were the result of the development of large volume glass target cells which had inherent nuclear spin relaxation times for the {sup 3}He gas of as long as 70 hours. A target cell production procedure is presented which focuses on special glass blowing techniques to minimize surface interactions with the {sup 3}He nuclei and careful gas purification and vacuum system procedures to reduce relaxation inducing impurities.

  6. Measurement of pzz of the laser-driven polarized deuterium target

    International Nuclear Information System (INIS)

    Jones, C.E.; Coulter, K.P.; Holt, R.J.; Poelker, M.; Potterveld, D.P.; Kowalczyk, R.S.; Buchholz, M.; Neal, J.; van den Brand, J.F.J.

    1993-01-01

    The question of whether nuclei are polarized as a result of H-H (D-D) spin-exchange collisions within the relatively dense gas of a laser-driven source of polarized hydrogen (deuterium) can be addressed directly by measuring the nuclear polarization of atoms from the source. The feasibility of using a polarimeter based on the D + T → n + 4 He reaction to measure the tensor polarization of deuterium in an internal target fed by the laser-driven source has been tested. The device and the measurements necessary to test the spin-exchange polarization theory are described

  7. Measurement of p{sub zz} of the laser-driven polarized deuterium target

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.E.; Coulter, K.P.; Holt, R.J.; Poelker, M.; Potterveld, D.P.; Kowalczyk, R.S. [Argonne National Lab., IL (United States); Buchholz, M.; Neal, J.; van den Brand, J.F.J. [Wisconsin Univ., Madison, WI (United States)

    1993-08-01

    The question of whether nuclei are polarized as a result of H-H (D-D) spin-exchange collisions within the relatively dense gas of a laser-driven source of polarized hydrogen (deuterium) can be addressed directly by measuring the nuclear polarization of atoms from the source. The feasibility of using a polarimeter based on the D + T {yields} n + {sup 4}He reaction to measure the tensor polarization of deuterium in an internal target fed by the laser-driven source has been tested. The device and the measurements necessary to test the spin-exchange polarization theory are described.

  8. Preparation of thin nuclear targets

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1979-03-01

    Thin film backings, sources and targets are needed for many applications in low energy nuclear physics and nuclear chemistry experiments. A survey of techniques used in the preparation of nuclear targets is first briefly discussed. These are classified as chemical, mechanical and physical preparations. Vacuum evaporation, being the most generally used technique, is discussed in detail. It is highly desirable to monitor the film thickness and control the deposition rate during evaporation and to measure the final target thickness after deposition has concluded. The relative merits of various thickness measuring techniques are described. Stages in the fabrication and mounting of self-supporting foils are described in detail, with emphasis given to the preparation of thin self-supporting carbon foils used as target backings and stripper foils. Various target backings, and the merits of the more generally used release agents are described in detail. The preparations of more difficult elemental targets are discussed, and a comprehensive list of the common targets is presented

  9. Computer control of the SMC polarized target

    Energy Technology Data Exchange (ETDEWEB)

    Le Goff, J.M. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de Physique des Particules, de Physique Nucleaire et de l`Instrumentation Associee]|[CERN, CH-1211 Geneve 23 (Switzerland); Azoulay, R. [CEA, DAPNIA/SIG, CE Saclay, 91191 Gif-sur-Yvette (France); Berglund, P. [Low Temperature Laboratory, Helsinki University of Technology, SF-02150 Espoo (Finland); Dulya, C. [University of California, Department of Physics, Los Angeles, 90024 CA (United States); Gournay, J.F. [CEA, DAPNIA/SIG, CE Saclay, 91191 Gif-sur-Yvette (France); Hayashi, N. [Nagoya University, Department of Physics, Furo-Cho, Chikusa-Ku, 464 Nagoya (Japan); Kyynaeraeinen, J. [CERN, CH-1211 Geneve 23 (Switzerland); Magnon, A. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de Physique des Particules, de Physique Nucleaire et de l`Instrumentation Associee; Matichard, G. [CEA, DAPNIA/SIG, CE Saclay, 91191 Gif-sur-Yvette (France); Niinikoski, T.O. [CERN, CH-1211 Geneve 23 (Switzerland); Trentalange, S. [University of California, Department of Physics, Los Angeles, 90024 CA (United States)

    1995-03-01

    The SMC polarized target is controlled through VME crates driven by CPUs working under the VxWorks operating system. The CPUs are connected to a SUN workstation which provides the user interface due to a graphical package named SL-GMS. This results in user friendliness, high modularity and flexibility. The system allows the control of: (1) the superconductive solenoid and the transverse dipole: control of the power supplies; automatic reversal of the spin direction by field rotation; acquisition, display and storage of the electric and cryogenic parameters; generation of alarms; and (2) the dilution refrigerator: evaporator level control; acquisition, display and storage of {approx}100 cryogenic parameters; and generation of alarms. ((orig.))

  10. Rapid-melt Dynamic Nuclear Polarization

    Science.gov (United States)

    Sharma, M.; Janssen, G.; Leggett, J.; Kentgens, A. P. M.; van Bentum, P. J. M.

    2015-09-01

    In recent years, Dynamic Nuclear Polarization (DNP) has re-emerged as a means to ameliorate the inherent problem of low sensitivity in nuclear magnetic resonance (NMR). Here, we present a novel approach to DNP enhanced liquid-state NMR based on rapid melting of a solid hyperpolarized sample followed by 'in situ' NMR detection. This method is applicable to small (10 nl to 1 μl) sized samples in a microfluidic setup. The method combines generic DNP enhancement in the solid state with the high sensitivity of stripline 1 H NMR detection in the liquid state. Fast cycling facilitates options for signal averaging or 2D structural analysis. Preliminary tests show solid-state 1 H enhancement factors of up to 500 for H2O/D2O/d6-glycerol samples doped with TEMPOL radicals. Fast paramagnetic relaxation with nitroxide radicals, In nonpolar solvents such as toluene, we find proton enhancement factors up to 400 with negligible relaxation losses in the liquid state, using commercially available BDPA radicals. A total recycling delay (including sample freezing, DNP polarization and melting) of about 5 s can be used. The present setup allows for a fast determination of the hyper-polarization as function of the microwave frequency and power. Even at the relatively low field of 3.4 T, the method of rapid melting DNP can facilitate the detection of small quantities of molecules in the picomole regime.

  11. Particle physics using nuclear targets

    International Nuclear Information System (INIS)

    Ferbel, T.

    1978-01-01

    The use of nuclear targets in particle physics is discussed and some recent results obtained in studies of hadronic interactions on nuclei summarized. In particular experimental findings on inclusive production and on coherent dissociation of mesons and baryons at high energies are presented. 41 references

  12. First use of a laser-driven polarized H/D target at the IUCF cooler

    International Nuclear Information System (INIS)

    Bailey, K.; Brack, J.; Cadman, R. V.; Cummings, W. J.; Fedchak, J.; Fox, B.; Gao, H.; Grosshauser, C.; Holt, R. J.; Jones, C.; Kinney, E.; Kowalczyk, R.; Lu, Z.-T.; Miller, M. A.; Nagengast, W.; Owen, B.; Rith, K.; Schmidt, F.; Schulte, E.; Sowinski, J.; Sperisen, F.; Stenger, J.; Thorsland, E.; Williamson, S.

    1997-01-01

    The HERMES Laser-Driven Target Task Force (Argonne, Erlangen and Illinois) is charged with developing a polarized H/D target for use in the HERA ring at DESY. Rapid progress was made in the beginning of 1996, leading us to the decision to test the target in a realistic experimental environment. In particular, polarizations of 0.6 and flows above 10 18 atoms·s -1 have been achieved on the bench. The laser-driven target and a simple detector system are currently installed in Cooler storage ring at the Indiana University Cyclotron Facility in order to test its applicability to nuclear physics experiments. Target polarizations are being measured using the rvec H(p, p) and rvec D(p, p) reactions. Initial tests were reasonably successful and the target is well along toward becoming viable for nuclear physics

  13. Few-body experiments with polarized beams and polarized targets

    International Nuclear Information System (INIS)

    Simmons, J.E.

    1983-01-01

    A survey is presented concerning recent polarization experiments in the elastic p-d, p- 3 He, and p- 4 He systems. Mention is made of selected neutron experiments. The nominal energy range is 10 to 1000 MeV. Recent results and interpretations of the p-d system near 10 MeV are discussed. New experiments on the energy dependence of back angle p-d tensor polarization are discussed with respect to resolution of discrepancies and difficulty of theoretical interpretation. Progress is noted concerning multiple scattering interpretation of forward p-d deuteron polarization. Some new results are presented concerning the p- 3 He system and higher energy p- 4 He polarization experiments. 52 references

  14. Prospects for a deuterium internal target, tensor polarized by optical pumping: spin exchange

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-01-01

    The prospects for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) appropriate for nuclear physics studies in medium and high energy particle storage rings are discussed. Using the technique of electron spin exchange with an optically pumped sodium (or potassium) vapor, we hope to polarize deuterium at a rate approx. 10 17 atoms/sec. Predictions for the deuterium polarization for a particular target cell design will be presented leading to the identification of the required optical pumping power and cell wall depolarization probability to attain optimum performance. The technical obstacles to be surmounted in such a target design will also be discussed

  15. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  16. Nuclear target making and development

    International Nuclear Information System (INIS)

    Klimczak, G.W.; Thomas, G.E.

    1985-01-01

    The Physics Division operates a facility which produces and coordinates production of thin targets for charged-particle induced experiments, primarily at the Tandem-Linac and Dynamitron accelerators. In addition, these thin films are occasionally prepared for other scientific purposes. The services of the nuclear target-making facility are available to the Physics Division, other divisions of the Laboratory, and other scientific institutions. In addition to the typical production requirements, research work is performed in this facility to develop new techniques, as well as to implement and advance new state-of-the-art techniques developed at other institutions. Several new facilities and items of equipment are described

  17. Progress in Scintillating Polarized Targets for Spin Physics

    Science.gov (United States)

    van den Brandt, B.; Hautle, P.; Konter, J. A.; Bunyatova, E. I.

    2003-06-01

    At PSI polarized scintillating targets have been operated in several particle physics experiments over extended periods of time. They proved to be very robust and reliable. Proton polarizations of more than 80%, and deuteron polarizations of 25% in fully deuterated polystyrene based scintillator have been reached in a vertical dilution refrigerator with optical access. New choices of materials and preparation procedures show potential for an improvement of the scintillation and polarization properties.

  18. An internal polarized 3He target for electron storage rings

    International Nuclear Information System (INIS)

    Kramer, L.H.; Massachusetts Inst. of Tech., Cambridge, MA; DeSchepper, D.; Massachusetts Inst. of Tech., Cambridge, MA; Milner, R.G.; Massachusetts Inst. of Tech., Cambridge, MA; Pate, S.F.; Massachusetts Inst. of Tech., Cambridge, MA; Shin, T.; Massachusetts Inst. of Tech., Cambridge, MA

    1995-01-01

    We describe an internal polarized 3 He target currently under construction which will be used in several electron storage ring experiments. The target is based on the technique of metastability exchange laser optical pumping, where the polarized atoms flow into a cryogenically-cooled storage cell. This novel technique allows for high precision measurements where the beam interacts with the pure atomic species. Both the HERMES experiment at DESY and the BLAST detector at the MIT Bates Laboratory will use the polarized 3 He target in their measurements. Details of the target system, including the provisions needed to incorporate the target into the electron storage ring, are presented. (orig.)

  19. Physics in the GeV region with polarized targets in electron storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1988-01-01

    There is evidence from the D(γ,p)n reaction that the meson-exchange model is failing in the GeV region. Surprisingly, it appears that the new (Dγ,p)n data favor the energy dependence of the nuclear chromodynamics model rather that of the meson-exchange model. Application of the polarization method to electron scattering studies is in its infancy, and it is potentially a very powerful technique. The internal target method coupled with laser-driven polarized targets should represent an important tool for nuclear physics

  20. Robust techniques for polarization and detection of nuclear spin ensembles

    Science.gov (United States)

    Scheuer, Jochen; Schwartz, Ilai; Müller, Samuel; Chen, Qiong; Dhand, Ish; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2017-11-01

    Highly sensitive nuclear spin detection is crucial in many scientific areas including nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), and quantum computing. The tiny thermal nuclear spin polarization represents a major obstacle towards this goal which may be overcome by dynamic nuclear spin polarization (DNP) methods. The latter often rely on the transfer of the thermally polarized electron spins to nearby nuclear spins, which is limited by the Boltzmann distribution of the former. Here we utilize microwave dressed states to transfer the high (>92 % ) nonequilibrium electron spin polarization of a single nitrogen-vacancy center (NV) induced by short laser pulses to the surrounding 13C carbon nuclear spins. The NV is repeatedly repolarized optically, thus providing an effectively infinite polarization reservoir. A saturation of the polarization of the nearby nuclear spins is achieved, which is confirmed by the decay of the polarization transfer signal and shows an excellent agreement with theoretical simulations. Hereby we introduce the polarization readout by polarization inversion method as a quantitative magnetization measure of the nuclear spin bath, which allows us to observe by ensemble averaging macroscopically hidden polarization dynamics like Landau-Zener-Stückelberg oscillations. Moreover, we show that using the integrated solid effect both for single- and double-quantum transitions nuclear spin polarization can be achieved even when the static magnetic field is not aligned along the NV's crystal axis. This opens a path for the application of our DNP technique to spins in and outside of nanodiamonds, enabling their application as MRI tracers. Furthermore, the methods reported here can be applied to other solid state systems where a central electron spin is coupled to a nuclear spin bath, e.g., phosphor donors in silicon and color centers in silicon carbide.

  1. On the thermal properties of polarized nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Montasser, S.S.; Ramadan, S.

    1979-08-01

    The thermal properties of polarized nuclear matter are calculated using Skyrme III interaction modified by Dabrowski for polarized nuclear matter. The temperature dependence of the volume, isospin, spin and spin isospin pressure and energies are determined. The temperature, isospin, spin and spin isospin dependence of the equilibrium Fermi momentum is also discussed. (author)

  2. Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Vivien E. [Blaise Pascal Univ., Aubiere (France)

    2013-10-01

    The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, having both a polarized beam and a highly efficient polarized target is essential. For the target, this means high polarization and high relative density of polarized material. A Hydrogen Deuteride (HD) target that presents both such characteristics has been developed first at Brookhaven National Lab (BNL) and brought to the Hall B of Jefferson Lab in 2008. The HD target has been shown to work successfully under a high intensity photon beam (BNL and Jefferson Lab). However, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the target was tested for the first time in its frozen spin mode under an electron beam at Jefferson Lab in 2012 during the g14 experiment. This dissertation presents the principles and usage procedures of this HD target. The polarimetry of this target with Nuclear Magnetic Resonance (NMR) during the electron beam tests is also discussed. In addition, this dissertation also describes another way to perform target polarimetry with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.

  3. Spin Interactions and Cross-checks of Polarization in NH$_{3}$ Target

    CERN Document Server

    Kiselev, Yu; Doshita, N; Gautheron, F; Hess, Ch; Iwata, T; Koivuniemi, J; Kondo, K; Magnon, A; Mallot, G; Michigami, T; Meyer, W; Reicherz, G

    2008-01-01

    We study the magnetic structure of irradiated ammonia (NH$_{3}$) polarized by Dynamic Nuclear Polarization method at 0.2 K and at 2.5 T field. In this material, the electron spins, induced by ionizing radiation, couple $^{14}$N and $^{1}$H spins by the indirect spin-spin interaction. As a result, the local frequencies of $^{1}$H-spins are varied depending on $^{14}$N spin polarizations and lead to an asymmetry in the proton signal. This asymmetry allowes a good detection of $^{14}$N spins directly on the proton Larmor frequency. In the long COMPASS target at CERN, we use the cross-checks between spectral asymmetries and integral polarizations to decrease the relative error for longitudinal target polarizations up to $\\pm$2.0%.

  4. Development of optical-pumping polarized deuteron target

    International Nuclear Information System (INIS)

    Tamae, Tadaaki; Yokokawa, Tamio; Nishikawa, Itaru; Abe, Kazuhiro; Konno, Osamu; Nakagawa, Itaru; Sugawara, Masumi; Tanaka, Eiji; Yamaguchi, Nobuo; Yamazaki, Hirohito; Miyase, Haruhisa; Tsubota, Hiroaki

    1998-01-01

    An optical-pumping system of rubidium atoms for a laser-driven polarized deuteron target was constructed. The density and polarization of the rubidium atoms were measured using Faraday rotation. The rotation angle was determined within an error of 0.01 deg. Our preliminary result showed a polarization of 0.4 at a gas thickness of 4x10 13 atoms/cm 2

  5. Report of the workshop on nuclear polarization phenomena

    International Nuclear Information System (INIS)

    1985-01-01

    The third work shop on the study of the nuclear polarization was held in December 1984 at RCNP (Research Center for Nuclear Physics). Osaka University, in advance of the comming international conference. About 80 researchers gathered and discussed both theoretical and experimental aspects of nuclear polarization phenomena. Forty eight papers were presented at the work shop and they are collected in this report. Although almost all of them are written in Japanese, the abstracts are prepared in English. (Aoki, K.)

  6. Self-Sustaining Dynamical Nuclear Polarization Oscillations in Quantum Dots

    DEFF Research Database (Denmark)

    Rudner, Mark Spencer; Levitov, Leonid

    2013-01-01

    Early experiments on spin-blockaded double quantum dots revealed robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias. Despite experimental evidence implicating dynamical nuclear polarization, the mechanism has remained a mystery. Here we introduce......) and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The proposed framework naturally explains the differences in phenomenology between vertical and lateral quantum dot structures as well as the extremely long oscillation periods....

  7. Tilted Foils Nuclear Spin Polarization at REX-ISOLDE

    CERN Document Server

    Törnqvist, Hans Toshihide

    2013-08-08

    This thesis will explain and summarize my work and involvement in experiments aimed at producing nuclear spin polarization of post-accelerated beams of ions with the tilted-foils technique at the REX-ISOLDE linear accelerator at CERN. Polarizing the nuclear spin of radioactive beams in particular may provide access to observables which may be difficult to obtain otherwise. Currently, the techniques commonly employed for nuclear spin polarization are restricted to specific nuclides and experimental measurement techniques. Tilted foils polarization may provide a new tool to extend the range of nuclides that can be polarized and the types of experiments that can be performed. The experiments rely not only on the production but also on the method to measure the degree of attained polarization. Two methods will be treated, based on particle scattering in Coulomb excitation that may be utilized for stable beams, and the $\\beta$-NMR that requires $\\beta$-decaying nuclei. The experimental setups and measurements will...

  8. Spin polarized solid target as a prospective tool for radioactive ion beam physics

    Science.gov (United States)

    Urrego-Blanco, J. P.; van den Brandt, B.; Bunyatova, E. I.; Galindo-Uribarri, A.; Hautle, P.; Konter, J. A.

    2005-12-01

    Spin polarized probes are used in a wide range of experiments in nuclear physics including the determination of spin structure functions and tests of fundamental symmetries. At low energies, light stable polarized beams have been used for spectroscopic purposes. We propose to extend these types of experiments to nuclei far from stability by using radioactive ion beams (RIBs) and polarized targets. Towards this goal we intend to develop a solid polarized proton and/or deuterium target in the thickness range between 20 μm and 100 μm based on a scintillating (active) polymeric foil. Such a target would be a useful tool in the determination of excitation functions in resonant reactions, in studies of one-nucleon transfer reactions using RIBs as well as in probing the matter density of atomic nuclei. If scintillating, it could also help remove the background associated with the scattering of the radioactive beam.

  9. Spin polarized solid target as a prospective tool for radioactive ion beam physics

    Energy Technology Data Exchange (ETDEWEB)

    Urrego-Blanco, J.P. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6371 (United States); Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Brandt, B. van den [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Bunyatova, E.I. [Joint Institute for Nuclear Research, Dubna, Head P.O. Box 79, 101000 Moscow (Russian Federation); Galindo-Uribarri, A. [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6371 (United States)]. E-mail: uribarri@mail.phy.ornl.gov; Hautle, P. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Konter, J.A. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2005-12-15

    Spin polarized probes are used in a wide range of experiments in nuclear physics including the determination of spin structure functions and tests of fundamental symmetries. At low energies, light stable polarized beams have been used for spectroscopic purposes. We propose to extend these types of experiments to nuclei far from stability by using radioactive ion beams (RIBs) and polarized targets. Towards this goal we intend to develop a solid polarized proton and/or deuterium target in the thickness range between 20 {mu}m and 100 {mu}m based on a scintillating (active) polymeric foil. Such a target would be a useful tool in the determination of excitation functions in resonant reactions, in studies of one-nucleon transfer reactions using RIBs as well as in probing the matter density of atomic nuclei. If scintillating, it could also help remove the background associated with the scattering of the radioactive beam.

  10. High energy physics with polarized beams and targets. [65 papers

    Energy Technology Data Exchange (ETDEWEB)

    Marshak, M L [ed.

    1976-01-01

    Sixty-six papers are presented as a report on conference sessions held from August 23-27, 1976, at Argonne National Laboratory. Topics covered include: (1) strong interactions; (2) weak and electromagnetic interactions; (3) polarized beams; and (4) polarized targets. A separate abstract was prepared for each paper for ERDA Energy Research Abstracts (ERA) and for the INIS Atomindex. (PMA)

  11. Polarized Electron Beams for Nuclear Physics at the MIT Bates Accelerator Center

    CERN Document Server

    Farkhondeh, Manouchehr; Franklin, Wilbur; Ihloff, Ernie; McAllister, Brian; Milner, Richard; North, William; Tschalär, C; Tsentalovich, Evgeni; Wang, Defa; Wang, Dong; Wang, Fuhua; Zolfaghari, Abbasali; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    The MIT Bates Accelerator Center is delivering highly polarized electron beams to its South Hall Ring for use in Nuclear Physics Experiments. Circulating electron currents in excess of 200 mA with polarization of 70% are scattered from a highly polarized, but very thin atomic beam source deuterium target. At the electron source a compact diode laser creates photoemission of quasi-CW mA pulses of polarized electrons at low duty factors from a strained GaAs photocathode. Refurbished RF transmitters provide power to the 2856 MHz linac, accelerating the beam to 850 MeV in two passes before injection into the South Hall Ring. In the ring a Siberian snake serves to maintain a high degree of longitudinal polarization at the BLAST scattering target. A Compton laser back-scattering polarimeter measures the electron beam polarization with a statistical acuracy of 6% every 15 minutes.

  12. A frozen spin polarized target for S134

    CERN Multimedia

    1974-01-01

    The CERN-ETH, Zurich-Helsinki-Imperial College-Southampton Collaboration used a frozen spin polarized target together with the ETH spectrometer magnet to study spin effects (S134). Beam was d31 in South Hall

  13. Polarized proton Target-III operators manual, revision A

    International Nuclear Information System (INIS)

    Hill, D.; Moretti, A.; Onesto, F.; Rynes, P.

    1976-04-01

    A revision is given of a manual containing standard operating procedures for the vacuum, cryogenic, and electronic systems of a polarized proton target. The discussion includes the target cryostat, the 3 He and 4 He pumping systems, remote monitors and controls, the microwave system, the magnet and power supply, the computerized polarization monitor, the 4 He liquifier and gas recovery system, and miscellaneous auxiliary equipment

  14. Low energy s-channel processes with polarized targets

    International Nuclear Information System (INIS)

    Sakitt, M.

    1975-01-01

    The experimental situation in low energy s-channel processes is reviewed with a view toward applications of polarized targets. The situation is mainly described in which highlights are shown of what has been happening in the field rather than a detailed review. It is shown what typical results now seem to be coming from current experiments and phase shift analyses and then it is shown what improvement could result from some polarized target experiments

  15. Optically pumped polarized 23Na vapor target for use in polarized ion source. Technical progress report

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1984-01-01

    We are currently measuring relaxation times in an optically pumped 23 Na vapor target. Our research is directed toward improvements in the optically pumped Na vapor targets used for the production of polarized H - ions. In this progress report we review the properties of the optically pumped polarized H - ion source and especially the optically pumped Na vapor target employed in this source as well as discussing the progress of our research on relaxation times in an optically pumped Na vapor target. 30 references, 6 figures, 3 tables

  16. Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Hurd, Ralph E.; Yen, Yi‐Fen; Chen, Albert

    2012-01-01

    This article describes the basic physics of dissolution dynamic nuclear polarization (dissolution‐DNP), and the impact of the resulting highly nonequilibrium spin states, on the physics of magnetic resonance imaging (MRI) detection. The hardware requirements for clinical translation of this techn......This article describes the basic physics of dissolution dynamic nuclear polarization (dissolution‐DNP), and the impact of the resulting highly nonequilibrium spin states, on the physics of magnetic resonance imaging (MRI) detection. The hardware requirements for clinical translation...

  17. Broad-aperture polarized proton target with arbitrary orientation of polarization vector

    International Nuclear Information System (INIS)

    Belyaev, A.A.; Get'man, V.A.; Derkach, A.Ya.; Karnaukhov, I.M.; Lukhanin, A.A.; Razumnyj, A.A.; Sorokin, P.V.; Sporov, E.A.; Telegin, Yu.N.; Trotsenko, V.I.

    1985-01-01

    Polarized proton target with the Helmholtz broad-aperture superconducting magnetic system is described. Axial aperture α=95 deg, inter-coil access angle β=23 deg. The structure of the target allows various versions of the installation what make sure an arbitrary orientation of polarization vector. The 0.1 W cold output 3 He evaporation cryostat was used to obtain the work temperature 0.5 K allowing quick transformation to a 3 He- 4 He dilution refrigerator. Results of the study are given on the dynamical proton polarization in 1,2-propylenglycol with various stable Cr 5 complexes

  18. Nuclear reactivity control using laser induced polarization

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1990-01-01

    This patent describes a control element for reactivity control of a fission source provides an atomic density of 3 He in a control volume which is effective to control criticality as the 3 He is spin-polarized. Spin-polarization of the 3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the 3 He for spin-polarizing the 3 He. An alkali-metal vapor may be included with the 3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with 3 He to spin-polarize the 3 He atoms

  19. The tagged photon beam polarization of the jet target experiment

    International Nuclear Information System (INIS)

    Bianchi, N.; Muccifora, V.

    1989-01-01

    The applicability of the residual electron selection method to the tagging method of the jet target laboratory has been studied. With this end in view the behaviour of the polarized bremsstrahlung cross section in the range considered has been analysed, while the polarization increase by means of the RES has been evaluated. The vertical conditions of the focusing of the tagging spectrometer as a function of energy have been determined. Finally the gamma beam density and the tagging efficiency have been calculated

  20. Theory of coherent dynamic nuclear polarization in quantum dots

    DEFF Research Database (Denmark)

    Neder, Izhar; Rudner, Mark Spencer; Halperin, Bertrand

    2014-01-01

    We consider the production of dynamic nuclear spin polarization (DNP) in a two-electron double quantum dot, in which the electronic levels are repeatedly swept through a singlet-triplet avoided crossing. Our analysis helps to elucidate the intriguing interplay between electron-nuclear hyperfine...

  1. Irradiation cryostat for LiH and LiD polarized solid targets

    International Nuclear Information System (INIS)

    Goertz, S.

    1991-01-01

    Scattering experiments with polarized nucleon targets are an important tool to understand the nuclear spin structure. Pion photoproduction experiments on polarized protrons and neutrons as well as measurements of the neutron and deuteron formfactors will be performed at ELSA. 7 LiH and 6 LiD seem to be attractive target materials for these experiments, because they offer high proton and deuteron polarisation, respectively. Expecially 6 LiD has further very important advantages compared to the common deuteron target materials as d-Butanol and ND 3 . This work describes the mechanism of DNP (Dynamic Nuclear Polarization) in LiH and LiD and gives a view on the nature of the so-called paramagnetic impurities in these materials. In order to maximize the nuclear polarization, the production of these radicals have to take place under well defined temperature conditions. Therefore the first version of an irradiation cryostat was built and tested in regard to its cooling power and temperature adjustment. (orig.)

  2. Optically enhanced nuclear cross polarization in acridine-doped fluorene

    Energy Technology Data Exchange (ETDEWEB)

    Oshiro, C.M.

    1982-06-01

    The objective of this work has been to create large polarizations of the dilute /sup 13/C nuclei in the solid state. The idea was to create /sup 1/H polarizations larger than Boltzmann and to use the proton enhanced nuclear induction spectroscopy cross polarization technique to then transfer this large polarization to the /sup 13/C spin system. Optical Nuclear Polarization (ONP) of acridine-doped fluorene single crystals was studied. In addition, ONP of powdered samples of the acridine-doped fluorene was studied. In general, many compounds do not crystallize easily or do not form large crystals suitable for NMR experiments. Powdered, amorphous and randomly dispersed samples are generally far more readily available than single crystals. One objective of this work has been to (first) create large /sup 1/H polarizations. Although large optical proton polarizations in single crystals have been reported previously, optically generated polarizations in powdered samples have not been reported. For these reasons, ONP studies of powdered samples of the acridine-doped fluorene were also undertaken. Using ONP in combination with the proton enhanced nuclear induction spectroscopy experiment, large /sup 13/C polarizations have been created in fluorene single crystals. These large /sup 13/C polarizations have permitted the determination of the seven incongruent chemical shielding tensors of the fluorene molecule. Part 2 of this thesis describes the proton enhanced nuclear induction spectroscopy experiment. Part 3 describes the ONP experiment. Part 4 is a description of the experimental set-up. Part 5 describes the data analysis for the determination of the chemical shielding tensors. Part 6 presents the results of the ONP experiments performed in this work and the chemical shielding tensors determined.

  3. Safety targets for nuclear power plants

    International Nuclear Information System (INIS)

    Herttrich, P.M.

    1985-01-01

    By taking as an example the safety targets of the American nuclear energy authority US-NRC, this paper explains what is meant by global, quantitative safety targets for nuclear power plants and what expectations are associated with the selecton of such safety targets. It is shown how probabilistic methods can be an appropriate completion of proven deterministic methods and what are the sectors where their application may become important in future. (orig./HP) [de

  4. Calibration of the Fermilab E-704 polarized target

    International Nuclear Information System (INIS)

    Hill, D.A.

    1992-01-01

    This report lists the final, best estimate of the target polarization P T as a function of time for all of the periods during which scattering data were (or may have been) collected. The information under ''RUN'' refers to Δσ L -runs. The notation ''sfs'' stands for ''start of frozen spin,'' ''efs'' for ''end of frozen spin,'' ''→ la'' for ''go to large-aperture'' target magnet position, and ''nla'' for ''not large-aperture'' position, i.e., the target magnet is in ''polarizing'' position. Where the ''NOTE'' column is blank it means that all standard frozen-spin conditions were in effect: the target temperature was reduced and the magnet was in large-aperture position. The timing marks were developed on the basis of three criteria: (1) the availability of direct NMR data, (2) the inclusion of major Target and Run boundaries, and (3) the arbitrary inclusion of enough ''minor'' Run boundaries to shorten large timing gaps. The sign of the P T -values is given in the NMR convention: (+) corresponds to predominant occupation of the Zeeman ground state (the ''thermal'' NMR-signals are considered positive). Since the target magnet field pointed upstream, (+) corresponds to target spin antiparallel to the beam momentum. The estimated uncertainty on P T is ±6.5% (2σ), and the estimated uncertainty on the ratio of values for the two signs of polarization, P T (+)/PT(-), is ±4.3% (2σ)

  5. Toward precision polarimetry of dense polarized {sup 3}He targets

    Energy Technology Data Exchange (ETDEWEB)

    Romalis, M.V.; Bogorad, P.L.; Cates, G.D.; Kumar, K.S. [Princeton Univ., NJ (United States); Chupp, T.E.; Coulter, K.P.; Smith, T.B.; Welsh, R. [University of Michigan, Ann Arbor, MI 48109 (United States); Hughes, E.W. [California Inst. of Technol., Pasadena, CA (United States); Johnson, J.R. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States); Thompson, A.K. [National Institute of Standards and Technology, Gainesville, MD 20899 (United States)

    1998-01-11

    We describe several new measurement and analysis techniques used to determine the polarization of the {sup 3}He target in a recently completed measurement of the neutron spin structure function g{sup n}{sub 1} at SLAC (E-154). The polarization was determined using two independent methods. The first method used a standard technique of adiabatic fast passage, calibrated by a measurement of Boltzmann polarization in a sample of water. We describe several systematic effects affecting this calibration procedure. The second method used a shift of the Rb Zeeman resonance frequency due to the polarization of {sup 3}He. Implementation and calibration of this technique are discussed in detail. Finally, the density of {sup 3}He in the cell was measured using two independent methods, one of them based on the pressure broadening of Rb D{sub 1} and D{sub 2} lines due to {sup 3}He. (orig.). 21 refs.

  6. Cryogenic control system of the large COMPASS polarized target

    CERN Document Server

    Gautheron, F; Baum, G; Berglund, P; Doshita, N; Görtz, S; Gustafsson, K K; Horikawa, N; Kisselev, Yu V; Koivuniemi, J H; Kondo, K; Meyer, Werner T; Reicherz, G

    2004-01-01

    The dilution refrigerator used to cool the large COMPASS polarized target is monitored through a PC running LabVIEW trademark 6.1 under Windows 2000 trademark . About 60 parameters of the target (temperatures, pressures, flow rates) are continuously plotted and checked. They are periodically recorded in an Oracle trademark database and in a data file. An alarm for every parameter can be individually activated and optionally connected to a GSM (Global System for Mobile Communication) delivery message system. A web server receives and publishes the online status of the target with online tables and graphics on a dedicated COMPASS polarized target information web site. A Siemens programmable logic controller (PLC) powered by an uninterruptable source keeps the cryogenic system safe and stable during the long beam periods by controlling valves and interlocks. This safety feature protects the dilution refrigerator against potential damages in case of power failure.

  7. Cryogenic control system of the large COMPASS polarized target

    Science.gov (United States)

    Gautheron, F.; Ball, J.; Baum, G.; Berglund, P.; Doshita, N.; Goertz, St.; Gustafsson, K.; Horikawa, N.; Kisselev, Y.; Koivuniemi, J.; Kondo, K.; Meyer, W.; Reicherz, G.

    2004-06-01

    The dilution refrigerator used to cool the large COMPASS polarized target is monitored through a PC running LabVIEW TM 6.1 under Windows 2000 TM. About 60 parameters of the target (temperatures, pressures, flow rates) are continuously plotted and checked. They are periodically recorded in an Oracle TM database and in a data file. An alarm for every parameter can be individually activated and optionally connected to a GSM (Global System for Mobile Communication) delivery message system. A web server receives and publishes the online status of the target with online tables and graphics on a dedicated COMPASS polarized target information web site. A Siemens programmable logic controller (PLC) powered by an uninterruptable source keeps the cryogenic system safe and stable during the long beam periods by controlling valves and interlocks. This safety feature protects the dilution refrigerator against potential damages in case of power failure.

  8. Initial investigations of (np)-scattering with a polarized deuterium target at ANKE-COSY

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Boxing

    2015-07-01

    The understanding of the forces among nucleons is fundamental to the whole of nuclear and hadronic physics. The nucleon-nucleon (NN) scattering is the ideal probe to study the nuclear forces. The scattering amplitudes for the complete description of the NN interactions can be reconstructed from phase-shift analyses (PSA), which requires measurements with polarized experiments. The existing data allow to extract unambiguous proton-proton (pp) amplitudes below 2 GeV. However, there is very little known about the neutron-proton (np) system above 800 MeV nucleon energy. THE ANKE-COSY collaboration has embarked on a systematic program which aims to extract the np scattering amplitudes through the deuteron-proton charge-exchange process dp→{pp}{sub s}n. First part of the program via polarized deuteron beam and hydrogen target allowed successful measurement of np amplitudes up to 1.135 GeV nucleon energy, which is the maximum nucleon energy that can be accessed with deuteron beam at COSY. Via inverse kinematics, i.e. using a proton beam incident on a polarized deuterium target will allow to enhance the np study up to 2.8 GeV, the highest energy available at COSY. The method of inverse kinematics has to be validated prior to the production experiment. As the proof-of-principle (POP) experiment, the initial research has been conducted at proton energy T{sub p}=600 MeV using a polarized deuterium target. The projectiles were measured by two silicon tracking telescopes (STT) placed closed to the target and by the ANKE sub-detection systems. Four polarization modes of the deuterium target were employed. In order to increase the effective target thickness, polarized deuterium atoms produced by the atomic beam source (ABS) was filled into a storage cell, where the circulating COSY beam collides with the target. The target polarizations were measured using the proton-deuteron elastic reaction. The vector and tensor analyzing powers A{sub y} and A{sub yy} of pvector d

  9. NMR parallel Q-meter with double-balanced-mixer detection for polarized target experiments

    International Nuclear Information System (INIS)

    Boissevain, J.; Tippens, W.B.

    1983-01-01

    A constant-voltage, parallel-tuned nuclear magnetic resonance (NMR) circuit, patterned after a Liverpool design, has been developed for polarized target experiments. Measuring the admittance of the resonance circuit allows advantageous use of double-balanced mixer detection. The resonant circuit is tolerant of stray capacitance between the NMR coil and the target cavity, thus easing target-cell-design constraints. The reference leg of the circuit includes a voltage-controlled attenuator and phase shifter for ease of tuning. The NMR output features a flat background and has good linearity and stability

  10. Global Lambda hyperon polarization in nuclear collisions

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Federičová, P.; Harlenderová, A.; Kocmánek, Martin; Kvapil, J.; Lidrych, J.; Rusňák, Jan; Rusňáková, O.; Šaur, Miroslav; Šimko, Miroslav; Šumbera, Michal; Trzeciak, B. A.

    2017-01-01

    Roč. 548, č. 7665 (2017), č. článku 23004. ISSN 0028-0836 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * heavy ion collisions * vorticity Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 40.137, year: 2016

  11. Dissolution Dynamic Nuclear Polarization capability study with fluid path

    DEFF Research Database (Denmark)

    Malinowski, Ronja Maja; Lipsø, Hans Kasper Wigh; Lerche, Mathilde Hauge

    2016-01-01

    Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperp......Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden...

  12. Feasibility study of a transversely polarized target in PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Heybat; Deiseroth, Malte; Khaneft, Dmitry; Noll, Oliver; Valente, Roserio; Zambrana, Manuel [Helmholtz-Institut Mainz (Germany); Johannes Gutenberg-Universitaet Mainz (Germany); Ahmed, Samer [Helmholtz-Institut Mainz (Germany); Capozza, Luigi; Dbeyssi, Alaa; Froehlich, Bertold; Lin, Dexu; Maas, Frank; Mora Espi, Maria Carmen; Morales Morales, Cristina; Rodriguez Pineiro, David; Zimmermann, Iris [Helmholtz-Institut Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2015-07-01

    The PANDA (Antiproton Annihilation at Darmstadt) spectrometer, located at the Facility for Antiproton and Ion Research (FAIR), is an excellent tool for exploring the nucleon structure. An unpolarized target allows the determination of the electromagnetic time-like form factor of the proton. An additional experiment in which the target is transversely polarized is necessary for the first-time extraction of their imaginary part. A transverse polarization requires the shielding of the 2 T longitudinal field from the PANDA-Solenoid at the target volume and an additional transverse holding field. We present results from our first experiment at the Institut fuer Kernphysik in Mainz on intense magnetic flux shielding using a BSCCO (bismuth strontium calcium copper oxide) thin-wall hollow cylinder at 4.2 K and a 1.4 T external magnetic field and compare this to numerical calculations.

  13. Pentanol-based target material with polarized protons

    International Nuclear Information System (INIS)

    Bunyatova, E.I.

    1992-01-01

    1-pentanol is a promising material for a target with polarized protons owing to its high resistance to radiation damage. To develop the target, the solutions of 1-pentanol or 2-pentanol with complexes of pentavalent chromium ware investigated. The material based EHBA-Cr(V) solution in a glass-like matrix, consisting of 1-pentanol, 3-pentanol and 1,2-propanediol, was proposed as a target material. It was investigated by the electron paramagnetic resonance and differential scanning calorimetry methods. 24 refs.; 3 figs.; 1 tab

  14. Development of a hydrogen and deuterium polarized gas target for application in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Haeberli, W.

    1992-02-01

    Polarized gas targets of atomic hydrogen and deuterium have significant advantages over conventional polarized targets, e.g. chemical and isotopic purity, large polarization including deuteron tensor polarization, absence of strong magnetic fields, rapid polarization reversal. While in principle the beam of polarized atoms from an atomic beam source (Stern-Gerlach spin separation) can be used as a polarized target, the target thickness achieved is too small for most applications. We propose to increase the target thickness by injecting the polarized atoms into a storage cell. Provided the atoms survive several hundred wall collisions without losing their polarization, it will be possible to achieve a target thickness of 10{sup 13} to 10{sup 14} atoms/cm{sup 2} by injection of polarized atoms from an atomic-beam source into suitable cells. Such targets are very attractive as internal targets in storage rings.

  15. Development of a hydrogen and deuterium polarized gas target for application in storage rings. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Haeberli, W.

    1992-02-01

    Polarized gas targets of atomic hydrogen and deuterium have significant advantages over conventional polarized targets, e.g. chemical and isotopic purity, large polarization including deuteron tensor polarization, absence of strong magnetic fields, rapid polarization reversal. While in principle the beam of polarized atoms from an atomic beam source (Stern-Gerlach spin separation) can be used as a polarized target, the target thickness achieved is too small for most applications. We propose to increase the target thickness by injecting the polarized atoms into a storage cell. Provided the atoms survive several hundred wall collisions without losing their polarization, it will be possible to achieve a target thickness of 10{sup 13} to 10{sup 14} atoms/cm{sup 2} by injection of polarized atoms from an atomic-beam source into suitable cells. Such targets are very attractive as internal targets in storage rings.

  16. Nuclear spin polarized alkali beams (Li and Na): Production and acceleration

    International Nuclear Information System (INIS)

    Jaensch, H.; Becker, K.; Blatt, K.; Leucker, H.; Fick, D.

    1987-01-01

    Recent improvements of the Heidelberg source for polarized heavy ions (PSI) are described. By means of optical pumping in combination with the existing multipole separation magnet the beam figure of merit (polarization 2 x intensity) was doubled. 7 Li and 23 Na atomic beams can now be produced in pure hyperfine magnetic substates. Fast switching of the polarization is achieved by an adiabatic medium field transition. The hyperfine magnetic substate population is determined by laser-induced fluorescence spectroscopy. In routine operation atomic beams with nuclear polarization p α ≥0.85 (α=z, zz) are obtained. The acceleration of polarized 23 Na - ions by a 12 MV tandem accelerator introduces a new problem: the energy at the terminal stripper foil is not sufficient to produce a usable yield of naked ions. For partially stripped ions hyperfine interaction of the remaining electrons with the nuclear spin reduces the nuclear polarization. Using in addition the Heidelberg postaccelerator 23 Na 9+ beams of energies between 49 and 184 MeV were obtained with an alignment on target of P zz ≅0.45. 7 Li beams have also been accelerated up to 45 MeV with an alignment of P zz =0.69. (orig.)

  17. Increasing Spin Coherence in Nanodiamond via Dynamic Nuclear Polarization

    Science.gov (United States)

    Gaebel, Torsten; Rej, Ewa; Boele, Thomas; Waddington, David; Reilly, David

    Nanodiamonds are of interest for quantum information technology, as metrological sensors, and more recently as a probe of biological environments. Here we present results examining how intrinsic defects can be used for dynamic nuclear polarization that leads to a dramatic increase in both T1 and T2 for 13C spins in nanodiamond. Mechanisms to explain this enhancement are discussed.

  18. Nuclear Fusion with Polarized Nucleons & PolFusion

    CERN Document Server

    Engels, Ralf; Büscher, Markus; Vasilyev, Alexander

    2016-01-01

    This book offers a detailed examination of the latest work on the potential of polarized fuel to realize the vision of energy production by nuclear fusion. It brings together contributions from nuclear physicists and fusion physicists with the aims of fostering exchange of information between the two communities, describing the current status in the field, and examining new ideas and projects under development. It is evident that polarized fuel can offer huge improvements for the first generation of fusion reactors and open new technological possibilities for future generations, including neutron lean reactors, which could be the most popular and sustainable energy production option to avoid environmental problems. Nevertheless, many questions must be resolved before polarized fuel can be used for energy production in the different reactor types. Readers will find this book to be a stimulating source of information on the key issues. It is based on contributions from leading scientists delivered at the meetin...

  19. Global Λ hyperon polarization in nuclear collisions

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; de La Barca Sánchez, M. Calderón; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.

    2017-08-01

    The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have yet been found. Since vorticity represents a local rotational structure of the fluid, spin-orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark-gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. These data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that

  20. Nuclear Targeting Terms for Engineers and Scientists

    Energy Technology Data Exchange (ETDEWEB)

    St Ledger, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-01

    The Department of Defense has a methodology for targeting nuclear weapons, and a jargon that is used to communicate between the analysts, planners, aircrews, and missile crews. The typical engineer or scientist in the Department of Energy may not have been exposed to the nuclear weapons targeting terms and methods. This report provides an introduction to the terms and methodologies used for nuclear targeting. Its purpose is to prepare engineers and scientists to participate in wargames, exercises, and discussions with the Department of Defense. Terms such as Circular Error Probable, probability of hit and damage, damage expectancy, and the physical vulnerability system are discussed. Methods for compounding damage from multiple weapons applied to one target are presented.

  1. Polarized proton target-III. Operations manual, revision B

    International Nuclear Information System (INIS)

    Hill, D.; Moretti, A.; Onesto, F.; Rynes, P.

    1978-01-01

    The manual presented contains certain standard operating procedures for the vacuum, cryogenic, and electronic systems of PPT-III. In total, these systems comprise the following major divisions: (1) the target cryostat; (2) the 4 He pumping system; (3) the 3 He pumping system; (4) the remote monitors and controls; (5) the microwave system; (6) the magnet and power supply; (7) the computerized polarization monitor; (8) the 4 He liquefier and gas recovery system; and (9) miscellaneous auxiliary equipment

  2. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T

    2003-11-05

    This thesis describes a precision measurement of the neutron spin dependent structure function, g{sub 1}{sup n}(x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a {sup 3}He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized {sup 3}He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the {sup 3}He polarization. The fraction of events which originated in the {sup 3}He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure {sup 3}He reference cell in place of the polarized {sup 3}He target. The spin dependent structure function g{sub 1}{sup n}(z) was measured in the Bjorken x range of 0.014 < x < 0.7 with an average Q{sup 2} of 5 (GeV/c){sup 2}. One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g{sub 1}{sup n}(x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g{sub 1}{sup n}(x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g

  3. Combining orthogonal polarization for elongated target detection with GPR

    International Nuclear Information System (INIS)

    Lualdi, Maurizio; Lombardi, Federico

    2014-01-01

    For an accurate imaging of ground penetrating radar data the polarization characteristics of the propagating electromagnetic (EM) wavefield and wave amplitude variations with antenna pattern orientation must be taken into account. For objects that show some directionality feature and cylindrical shape any misalignment between transmitter and target can strongly modify the polarization state of the backscattered wavefield, thus conditioning the detection capability of the system. Hints on the depolarization can be used to design the optimal GPR antenna survey to avoid omissions and pitfalls during data processing. This research addresses the issue of elongated target detection through a multi azimuth (or multi polarization) approach based on the combination of mutually orthogonal GPR data. Results from the analysis of the formal scattering problem demonstrate how this strategy can reach a scalar formulation of the scattering matrix and achieve a rotational invariant quantity. The effectiveness of the algorithm is then evaluated with a detailed field example showing results closely proximal to those obtained under the optimal alignment condition: detection is significantly improved and the risk of target missing is reduced. (paper)

  4. Low temperature polarized target for spin structure studies of nucleons at COMPASS

    CERN Document Server

    Pesek, Michael

    In presented thesis we describe concept of Deep Inelastic Scattering of leptons on nucleons in context of nucleon spin structure studies. Both polarized and unpolarized cases are discussed and concept of Transverse Momentum Dependent Parton Distribution Functions (TMD PDF) is introduced. The possibility of TMDs measurement using Semi-inclusive DIS (SIDIS) is described along with related results from COMPASS experiment. The future Drell-Yan programme at COMPASS is briefly mentioned and its importance is presented on the universality test i.e. change of sign of T-odd TMDs when measured in Drell-Yan and SIDIS. The importance of Polarized Target (PT) for spin structure studies is highlighted and principles of Dynamic Nuclear Polarization (DNP) are given using both Solid effect and spin temperature concept. COMPASS experiment is described in many details with accent given to PT. Finally the thermal equilibrium (TE) calibration procedure is described and carried out for 2010 and 2011 physics runs at COMPASS. The av...

  5. Polarization imaging enhancement for target vision through haze

    Science.gov (United States)

    Wu, Hai-Ying; Zhang, San-Xi; Li, Jie; LI, Bin; Tang, Zi-li; Liu, Biao; Jia, Wen-Wu

    2016-10-01

    Haze, fog, and smoke are turbid medium in the atmosphere which usually degrade viewing condition of outdoor scenes. The resulted images lose contrast and color fidelity with serious degradation. Due to loss of large detailed information of measured scene, it will usually lead to invalid detection and measurement. The suspended particles in the atmosphere and the scene being measured give rise to polarization changes by their reflection. In the process of reflection, absorption and scattering, the object itself can be determined by its own polarization characteristics. Based on this point, we proposed an approach for target vision through haze. This approach is based on the polarization differences between the scene being measured and the scattering background to move the haze effects. It can realize a great visibility enhancement and enable the scene rendering even if imaged under restricted viewing conditions with low polarization. In this work, the detailed theoretical operation principle is presented. A validating imaging system is established and the corresponding experiment is carried out. We present the experimental results of haze-free image of scene with recovered high contrast. This method also can be used to effectively enhance the imaging performance of any other optical system.

  6. Oocyte Polarization Is Coupled to the Chromosomal Bouquet, a Conserved Polarized Nuclear Configuration in Meiosis.

    Directory of Open Access Journals (Sweden)

    Yaniv M Elkouby

    2016-01-01

    Full Text Available The source of symmetry breaking in vertebrate oocytes is unknown. Animal-vegetal oocyte polarity is established by the Balbiani body (Bb, a conserved structure found in all animals examined that contains an aggregate of specific mRNAs, proteins, and organelles. The Bb specifies the oocyte vegetal pole, which is key to forming the embryonic body axes as well as the germline in most vertebrates. How Bb formation is regulated and how its asymmetric position is established are unknown. Using quantitative image analysis, we trace oocyte symmetry breaking in zebrafish to a nuclear asymmetry at the onset of meiosis called the chromosomal bouquet. The bouquet is a universal feature of meiosis where all telomeres cluster to one pole on the nuclear envelope, facilitating chromosomal pairing and meiotic recombination. We show that Bb precursor components first localize with the centrosome to the cytoplasm adjacent to the telomere cluster of the bouquet. They then aggregate around the centrosome in a specialized nuclear cleft that we identified, assembling the early Bb. We show that the bouquet nuclear events and the cytoplasmic Bb precursor localization are mechanistically coordinated by microtubules. Thus the animal-vegetal axis of the oocyte is aligned to the nuclear axis of the bouquet. We further show that the symmetry breaking events lay upstream to the only known regulator of Bb formation, the Bucky ball protein. Our findings link two universal features of oogenesis, the Bb and the chromosomal bouquet, to oocyte polarization. We propose that a meiotic-vegetal center couples meiosis and oocyte patterning. Our findings reveal a novel mode of cellular polarization in meiotic cells whereby cellular and nuclear polarity are aligned. We further reveal that in zygotene nests, intercellular cytoplasmic bridges remain between oocytes and that the position of the cytoplasmic bridge coincides with the location of the centrosome meiotic-vegetal organizing center

  7. Oocyte Polarization Is Coupled to the Chromosomal Bouquet, a Conserved Polarized Nuclear Configuration in Meiosis.

    Science.gov (United States)

    Elkouby, Yaniv M; Jamieson-Lucy, Allison; Mullins, Mary C

    2016-01-01

    The source of symmetry breaking in vertebrate oocytes is unknown. Animal-vegetal oocyte polarity is established by the Balbiani body (Bb), a conserved structure found in all animals examined that contains an aggregate of specific mRNAs, proteins, and organelles. The Bb specifies the oocyte vegetal pole, which is key to forming the embryonic body axes as well as the germline in most vertebrates. How Bb formation is regulated and how its asymmetric position is established are unknown. Using quantitative image analysis, we trace oocyte symmetry breaking in zebrafish to a nuclear asymmetry at the onset of meiosis called the chromosomal bouquet. The bouquet is a universal feature of meiosis where all telomeres cluster to one pole on the nuclear envelope, facilitating chromosomal pairing and meiotic recombination. We show that Bb precursor components first localize with the centrosome to the cytoplasm adjacent to the telomere cluster of the bouquet. They then aggregate around the centrosome in a specialized nuclear cleft that we identified, assembling the early Bb. We show that the bouquet nuclear events and the cytoplasmic Bb precursor localization are mechanistically coordinated by microtubules. Thus the animal-vegetal axis of the oocyte is aligned to the nuclear axis of the bouquet. We further show that the symmetry breaking events lay upstream to the only known regulator of Bb formation, the Bucky ball protein. Our findings link two universal features of oogenesis, the Bb and the chromosomal bouquet, to oocyte polarization. We propose that a meiotic-vegetal center couples meiosis and oocyte patterning. Our findings reveal a novel mode of cellular polarization in meiotic cells whereby cellular and nuclear polarity are aligned. We further reveal that in zygotene nests, intercellular cytoplasmic bridges remain between oocytes and that the position of the cytoplasmic bridge coincides with the location of the centrosome meiotic-vegetal organizing center. These results

  8. High-energy nuclear optics of polarized particles

    CERN Document Server

    Baryshevsky, Vladimir G

    2012-01-01

    The various phenomena caused by refraction and diffraction of polarized elementary particles in matter have opened up a new research area in the particle physics: nuclear optics of polarized particles. Effects similar to the well-known optical phenomena such as birefringence and Faraday effects, exist also in particle physics, though the particle wavelength is much less than the distance between atoms of matter. Current knowledge of the quasi-optical effects, which exist for all particles in any wavelength range (and energies from low to extremely high), will enable us to investigate different properties of interacting particles (nuclei) in a new aspect. This pioneering book will provide detailed accounts of quasi-optical phenomena in the particle polarization, and will interest physicists and professionals in experimental particle physics.

  9. Recent progress in the development of a polarized proton target for reactions with radioactive ion beams

    International Nuclear Information System (INIS)

    Urrego-Blanco, J.P.; Bingham, C.R.; Brandt, B. van den; Galindo-Uribarri, A.; Gomez del Campo, J.; Hautle, P.; Konter, J.A.; Padilla-Rodal, E.; Schmelzbach, P.A.

    2007-01-01

    Polarization observables in nuclear reactions with stable beams have provided important information concerning structural properties of nuclei and reaction mechanisms and hold great promise in the context of exotic nuclei. We report on the development of a polarized target based on plastic foils of 20-200 μm thickness to be used with radioactive ion beams. The operation of such a target requires a moderately high magnetic field and very low temperatures. The plastic foil is placed inside a chamber attached to the mixing chamber of a 3 He- 4 He dilution refrigerator. Cooling of the foil is achieved via a superfluid film of 4 He that can be supplied through two capillaries. The chamber has two thin, highly uniform silicon nitride windows. An NMR coil is attached to the target to monitor the polarization. Results of a first test to characterize the target system, using the elastic scattering of 38 MeV 12 C by protons in inverse kinematics are presented

  10. Mass Producing Targets for Nuclear Fusion

    Science.gov (United States)

    Wang, T. G.; Elleman, D. D.; Kendall, J. M.

    1983-01-01

    Metal-encapsulating technique advances prospects of controlling nuclear fusion. Prefilled fusion targets form at nozzle as molten metal such as tin flows through outer channel and pressurized deuterium/tritium gas flows through inner channel. Molten metal completely encloses gas charge as it drops off nozzle.

  11. Optically pumped polarized alkali atomic beams and targets

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1984-01-01

    The optical pumping of 23 Na and 6 Li atomic beams is discussed. Experiments on the optical pumping of 23 Na atomic beams using either a single mode dye laser followed by a double passed acousto-optic modulator or a multimode dye laser are reported. The optical pumping of a 23 Na vapor target for use in a polarized H - ion source is discussed. Results on the use of viton as a wall coating with a long relaxation time are reported. 31 references, 6 figures, 3 tables

  12. High-Frequency Dynamic Nuclear Polarization in the Nuclear Rotating Frame

    DEFF Research Database (Denmark)

    Farrar, C. T.; Hall, D. A.; Gerfen, G. J.

    2000-01-01

    A proton dynamic nuclear polarization (DNP) NMR signal enhancement (ϵ) close to thermal equilibrium, ϵ = 0.89, has been obtained at high field (B0 = 5 T, νepr = 139.5 GHz) using 15 mM trityl radical in a 40:60 water/glycerol frozen solution at 11 K. The electron-nuclear polarization transfer...... is performed in the nuclear rotating frame with microwave irradiation during a nuclear spin-lock pulse. The growth of the signal enhancement is governed by the rotating frame nuclear spin–lattice relaxation time (T1ρ), which is four orders of magnitude shorter than the nuclear spin–lattice relaxation time (T1n......). Due to the rapid polarization transfer in the nuclear rotating frame the experiment can be recycled at a rate of 1/T1ρ and is not limited by the much slower lab frame nuclear spin–lattice relaxation rate (1/T1n). The increased repetition rate allowed in the nuclear rotating frame provides an effective...

  13. 16th International Workshop on Polarized Sources, Targets, and Polarimetry (PSTP 2015)

    CERN Document Server

    2015-01-01

    The Workshop on Polarized Sources, Targets and Polarimetry has been a tradition for more than 20 years, moving between Europe, USA and Japan. The XVIth International Workshop on Polarized Sources, Targets and Polarimetry (PSTP 2015) will take place at the Ruhr-University of Bochum, Germany. The workshop addresses the physics and technological challenges related to polarized gas/solid targets, polarized electron/positron/ion/neutron sources, polarimetry and their applications. will be published in Proceedings of Science

  14. Pre-polarization enhancement by dynamic nuclear polarization in SQUID-based ultra-low-field nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong-Joo; Kim, Kiwoong; Kang, Chan Seok; Hwang, Seong-min; Lee, Yong-Ho, E-mail: kwkim@kriss.re.k [Brain and Cognition Measurement Laboratory, Korea Research Institute of Standards and Science (KRISS), Doryong-dong, Yuseong-gu, Daejeon 305-340 (Korea, Republic of)

    2010-11-15

    We achieved enhanced pre-polarization in a superconducting quantum interference device (SQUID)-based microtesla nuclear magnetic resonance (NMR) experiment by using dynamic nuclear polarization (DNP). The pre-polarization field is necessary to provide enough signal to noise to perform SQUID-based ultra-low-field (ULF) NMR/magnetic resonance imaging (MRI) experiments. However, it is quite tricky to deal with the strong transient magnetic field when operating the SQUID in a magnetically shielded room (MSR); besides the direct interference with the sensitive SQUID sensor, the strong magnetic field and its abrupt change generate magnetization in local areas in the MSR and eddy currents along the wall, which makes the NMR measurement difficult. The enhanced {sup 1}H NMR signals of water in TEMPOL and TEMPO solutions were obtained with a relatively weak radio-frequency (rf) field and double-relaxation oscillation SQUIDs (DROS) at a few mT pre-polarization fields. In our experimental condition, the enhancement factor was near ten in spite of the rf power far below the saturation in both samples.

  15. Pre-polarization enhancement by dynamic nuclear polarization in SQUID-based ultra-low-field nuclear magnetic resonance

    Science.gov (United States)

    Lee, Seong-Joo; Kim, Kiwoong; Kang, Chan Seok; Hwang, Seong-min; Lee, Yong-Ho

    2010-11-01

    We achieved enhanced pre-polarization in a superconducting quantum interference device (SQUID)-based microtesla nuclear magnetic resonance (NMR) experiment by using dynamic nuclear polarization (DNP). The pre-polarization field is necessary to provide enough signal to noise to perform SQUID-based ultra-low-field (ULF) NMR/magnetic resonance imaging (MRI) experiments. However, it is quite tricky to deal with the strong transient magnetic field when operating the SQUID in a magnetically shielded room (MSR); besides the direct interference with the sensitive SQUID sensor, the strong magnetic field and its abrupt change generate magnetization in local areas in the MSR and eddy currents along the wall, which makes the NMR measurement difficult. The enhanced 1H NMR signals of water in TEMPOL and TEMPO solutions were obtained with a relatively weak radio-frequency (rf) field and double-relaxation oscillation SQUIDs (DROS) at a few mT pre-polarization fields. In our experimental condition, the enhancement factor was near ten in spite of the rf power far below the saturation in both samples.

  16. Improved techniques for the analysis of experiments with polarized targets. [1 to 2 GeV/c, polarization

    Energy Technology Data Exchange (ETDEWEB)

    Barrelet, E.

    1975-06-01

    An experiment was performed at the Bevatron to measure the polarization in the reaction ..pi../sup -/p ..-->.. ..pi../sup 0/n from a polarized target, at beam momenta between 1 and 2 GeV/c. Concentration is placed on the original aspects of our analysis, in particular: the geometrical reconstruction of the elastic events; the use of the high analyzing power of the reaction studied to probe the polarization of the target in magnitude and distribution; a study of the statistical estimation of the polarization parameter; a detailed study of the quasielastic background. (JFP)

  17. Synthesis of chromium (V) complex in deuterated propanediol for a target with ''frozen'' polarization of deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Bunyatova, E.I.; Bubnov, N.N.

    1987-02-15

    A deutron polarized frozen spin target was developed. To reach higher deuteron content and maximum polarization, the chromium (V) complex with ligands on the basis of fully deuterated propanediol-1,2 was synthesized. The synthesis and the EPR investigation is described. The research has been performed at the Laboratory of Nuclear Problems, JINR.

  18. Dynamic nuclear polarization of nucleic acid with endogenously bound manganese

    Energy Technology Data Exchange (ETDEWEB)

    Wenk, Patricia [University of Tübingen, Werner Siemens Imaging Center and Department of Preclinical Imaging and Radiopharmacy (Germany); Kaushik, Monu; Richter, Diane [Goethe University, Institute of Physical und Theoretical Chemistry, Institute of Biophysical Chemistry und Center for Biomolecular Magnetic Resonance (BMRZ) (Germany); Vogel, Marc; Suess, Beatrix [Technical University Darmstadt, Department of Biology (Germany); Corzilius, Björn, E-mail: corzilius@em.uni-frankfurt.de [Goethe University, Institute of Physical und Theoretical Chemistry, Institute of Biophysical Chemistry und Center for Biomolecular Magnetic Resonance (BMRZ) (Germany)

    2015-09-15

    We report the direct dynamic nuclear polarization (DNP) of {sup 13}C nuclei of a uniformly [{sup 13}C,{sup 15}N]-labeled, paramagnetic full-length hammerhead ribozyme (HHRz) complex with Mn{sup 2+} where the enhanced polarization is fully provided by the endogenously bound metal ion and no exogenous polarizing agent is added. A {sup 13}C enhancement factor of ε = 8 was observed by intra-complex DNP at 9.4 T. In contrast, “conventional” indirect and direct DNP experiments were performed using AMUPol as polarizing agent where we obtained a {sup 1}H enhancement factor of ε ≈ 250. Comparison with the diamagnetic (Mg{sup 2+}) HHRz complex shows that the presence of Mn{sup 2+} only marginally influences the (DNP-enhanced) NMR properties of the RNA. Furthermore two-dimensional correlation spectra ({sup 15}N–{sup 13}C and {sup 13}C–{sup 13}C) reveal structural inhomogeneity in the frozen, amorphous state indicating the coexistence of several conformational states. These demonstrations of intra-complex DNP using an endogenous metal ion as well as DNP-enhanced MAS NMR of RNA in general yield important information for the development of new methods in structural biology.

  19. An active electron polarized scintillating GSO target for neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Baiboussinov, B. [INFN, Sez. di Padova, Via Marzolo 8, 35131 Padova (Italy); Braggio, C., E-mail: braggio@pd.infn.it [INFN, Sez. di Padova, Via Marzolo 8, 35131 Padova (Italy); Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Cardini, A. [INFN, Sez. di Cagliari, S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari) (Italy); Carugno, G. [INFN, Sez. di Padova, Via Marzolo 8, 35131 Padova (Italy); Congiu, F. [Dipartimento di Fisica, Universita di Cagliari, S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari) (Italy); Gain, S. [St. Petersburg State Polytechnical University, 195251 St. Petersburg, Polytekhnicheskaya 29 (Russian Federation); Galeazzi, G. [INFN, Laboratori Nazionali di Legnaro, Viale dell Universita, 2 35020 Legnaro (PD) (Italy); Lai, A. [INFN, Sez. di Cagliari, S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari) (Italy); Lehman, A.; Mocci, P.; Mura, A.; Quochi, F.; Saba, M. [Dipartimento di Fisica, Universita di Cagliari, S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari) (Italy); Saitta, B. [INFN, Sez. di Cagliari, S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari) (Italy); Dipartimento di Fisica, Universita di Cagliari, S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari) (Italy); Sartori, G. [INFN, Sez. di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2012-12-01

    The feasibility of an electron-polarized, active target to be used as detector in neutrino scattering experiments, suggested by several theoretical papers, has been investigated. We report on the properties of the paramagnetic crystal Gd{sub 2}SiO{sub 5} (GSO), in which 7.7% of the total number of electrons present can be polarized by lowering the temperature and applying an intense external magnetic field. The material magnetic susceptibility has been measured down to cryogenic temperatures showing that for H=5 T and T=4 K about 80% of the maximum allowed magnetization can be attained. Also the spectral and time response of the crystal have been characterized and the scintillation process has been studied using a photomultiplier to measure the response to gamma rays irradiation and cosmic rays operating the GSO crystal at 13.5 K. An avalanche photodiode (APD) readout of the scintillation signal from the GSO crystal has also been performed, since the magnetic field-independent response of this device allows it to be placed close to the crystal in the cryogenic environment.

  20. Macrophage Polarization in Cerebral Aneurysm: Perspectives and Potential Targets

    Directory of Open Access Journals (Sweden)

    Lingmin Shao

    2017-01-01

    Full Text Available Cerebral aneurysms (CAs have become a health burden not only because their rupture is life threatening, but for a series of devastating complications left in survivors. It is well accepted that sustained chronic inflammation plays a crucial role in the pathology of cerebral aneurysms. In particular, macrophages have been identified as critical effector cells orchestrating inflammation in CAs. In recent years, dysregulated M1/M2 polarization has been proposed to participate in the progression of CAs. Although the pathological mechanisms of M1/M2 imbalance in CAs remain largely unknown, recent advances have been made in the understanding of the molecular basis and other immune cells involving in this sophisticated network. We provide a concise overview of the mechanisms associated with macrophage plasticity and the emerging molecular targets.

  1. Frozen Acrylamide Gels as Dynamic Nuclear Polarization Matrices.

    KAUST Repository

    Viger-Gravel, Jasmine

    2017-05-24

    We show that aqueous acrylamide gels can be used to provide dynamic nuclear polarization (DNP) NMR signal enhancements of around 200 at 9.4 T and 100 K. The enhancements are shown to increase with cross linker concentration and low concentrations of the AMUPol biradical. We show that this DNP matrix can be used in situations where conventional incipient wetness methods fail, such as to obtain DNP surface enhanced NMR spectra from inorganic nanoparticles. In particular, we obtain 113Cd spectra from CdTe-COOH NPs in minutes. The spectra clearly indicate a highly-disordered cadmium rich surface.

  2. Target detection in sun glint using the improved MWIR polarization technique

    Science.gov (United States)

    Zheng, Ji; Zhao, Huijie; Li, Yansong; Cheng, Chi; Sun, Xiaofeng; Song, Pengfei; Wang, Shitao

    2017-08-01

    The sun glint problem is a major issue to be addressed for MWIR marine targets detection. The traditional technique based on the single horizontal linear polarizer was a common method to reduce the sun glint by eliminating its s-polarized component, nevertheless, the residual p-polarized component could be still too strong to saturate the detector in some cases. To solve this problem, the improved polarization technique based on two rotatable polarizers is presented. The field experiment results show that the improved polarization technique can significantly reduce sun glint and enhance the contrast of target images, confirming the effectiveness of the technology.

  3. Medium polarization and pairing in asymmetric nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J. M. [Chinese Academy of Science, Institute of Modern Physics (China); Lombardo, U., E-mail: lombardo@lns.infn.it [Dipartimento di Fisica e Astronomia, and INFN-LNS (Italy); Zhang, H. F. [Lanzhou University, School of Nuclear Science and Technology (China); Zuo, W. [Chinese Academy of Science, Institute of Modern Physics (China)

    2017-01-15

    The many-body theory of asymmetric nuclear matter is developed beyond the Brueckner–Hartree–Fock approximation to incorporate the medium polarization effects. The extension is performed within the Babu–Brown induced interaction theory. After deriving the particle–hole interaction in the form of Landau–Migdal parameters, the effects of the induced component on the symmetry energy are investigated along with the screening of {sup 1}S{sub 0} proton–proton and {sup 3}PF{sub 2} neutron–neutron pairing, which are relevant for the neutron-star cooling. The crossover from repulsive (screening) to attractive (anti-screening) interaction going from pure neutron matter to symmetric nuclear matter is discussed.

  4. Performance of a Polarized Deuterium Internal Target in a Medium-Energy Electron Storage Ring.

    NARCIS (Netherlands)

    Zhou, Z.L.; Ferro Luzzi, M.M.E.; van den Brand, J.F.J.; Bulten, H.J.; Alarcon, R.; van Bommel, R.; Botto, T.; Bouwhuis, M.; Buchholz, M.; Choi, S.; Comfort, J.; Doets, M.; Dolfini, S.; Ent, R.; Gaulard, C.; de Jager, C.W.; Lang, J.; de Lange, D.J.; Miller, M.A.; Passchier, E.; Passchier, I.; Poolman, H.R.; Six, E.; Steijger, J.J.M.; Unal, O.; de Vries, H.

    1996-01-01

    A polarized deuterium target internal to a medium-energy electron storage ring is described in the context of spindependent (e, e′d) and (e ,e′p) experiments. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used

  5. A cryostat to hold frozen-spin polarized HD targets in CLAS: HDice-II

    International Nuclear Information System (INIS)

    The design, fabrication, operation, and performance of a 3/4 He dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam running is reported. The device operates both vertically (for target loading) and horizontally (for target bombardment). The device proves capable of maintaining a base temperature of 50 mK and a holding field of 1 T for extended periods. These characteristics enabled multi-month polarization lifetimes for frozen spin HD targets having proton polarization of up to 50% and deuteron up to 27%.

  6. A cryostat to hold frozen-spin polarized HD targets in CLAS: HDice-II

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, M.M., E-mail: mlowry@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Bass, C.D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); D' Angelo, A. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Universita' di Roma ‘Tor Vergata’, and INFN Sezione di Roma ‘Tor Vergata’, Via della Ricerca Scientifica, 1, I-00133 Roma (Italy); Deur, A.; Dezern, G. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Hanretty, C. [University of Virginia, 1400 University Avenue, Charlottesville, VA 22903 (United States); Ho, D. [Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Kageya, T.; Kashy, D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Khandaker, M. [Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Laine, V. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Université Blaise Pascal, 34 Avenue Carnot, 63000 Clermont-Ferrand (France); O' Connell, T. [University of Connecticut, 115 N Eagleville Road, Storrs-Mansfield, CT 06269 (United States); Pastor, O. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Peng, P. [University of Virginia, 1400 University Avenue, Charlottesville, VA 22903 (United States); Sandorfi, A.M. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Sokhan, D. [Institut de Physique Nucleaire, Bat 100 – M053, Orsay 91406 (France); and others

    2016-04-11

    The design, fabrication, operation, and performance of a {sup 3/4}He dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam running is reported. The device operates both vertically (for target loading) and horizontally (for target bombardment). The device proves capable of maintaining a base temperature of 50 mK and a holding field of 1 T for extended periods. These characteristics enabled multi-month polarization lifetimes for frozen spin HD targets having proton polarization of up to 50% and deuteron up to 27%.

  7. Nuclear polarization study: new frontiers for tests of QED in heavy highly charged ions.

    Science.gov (United States)

    Volotka, Andrey V; Plunien, Günter

    2014-07-11

    A systematic investigation of the nuclear polarization effects in one- and few-electron heavy ions is presented. The nuclear polarization corrections in the zeroth and first orders in 1/Z are evaluated to the binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown that the nuclear polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections. This allows for new prospects for probing the QED effects in a strong electromagnetic field and the determination of fundamental constants.

  8. Investigation of polarized-proton target materials by differential calorimetry: preliminary results

    International Nuclear Information System (INIS)

    Hill, D.A.; Hill, J.J.

    1980-01-01

    A simple differential calorimeter was designed and operated for an investigation of the thermodynamic properties of polarized target materials. The calibration and use of the calorimeter are discussed, after a brief exposition of our motivation for this work. The results of a preliminary study of target materials is presented with emphasis on the relevance of the glass state to dynamic polarization in chemically-doped targets

  9. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    Science.gov (United States)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  10. Polarization Observables from two-pion and ρ meson photoproduction on polarized HD target at JLab

    Energy Technology Data Exchange (ETDEWEB)

    Zonta, Irene [Univ. of Rome, Tor Vergata (Italy)

    2015-05-01

    The preliminary results discussed in this theses have been carried out with the Nuclear Physics group of the Department of Physics at the University of Rome Tor Vergata, under the supervision of Prof. A. D’Angelo.On March 2012 I joined the CLAS collaboration at the Thomas Jefferson National Laboratory, in Virginia, USA, and became a term member after a probation period of 9 months. As a member I could participate to the g14 data taking, started on November 18th 2011 and finished on May 18th 2012. In that period I was in charge of the timing calibration of the CLAS forward electromagnetic spectrometer. For the duration of the experiment, I was also responsible of the Raman laboratory located at the University of Rome Tor Vergata, where the Raman measurements were performed. The Raman measurements were crucial for determining the relative concentrations of H2 and D2 in the Hydrogen-Deuteride gas which was used for the target of the g14 experiment.

  11. Measurement of inclusive quasielastic scattering of polarized electrons from polarized 3He

    International Nuclear Information System (INIS)

    Woodward, C.E.; Beise, E.J.; Belz, J.E.; Carr, R.W.; Filippone, B.W.; Lorenzon, W.B.; McKeown, R.D.; Mueller, B.; O'Neill, T.G.; Dodson, G.; Dow, K.; Farkhondeh, M.; Kowalski, S.; Lee, K.; Makins, N.; Milner, R.; Thompson, A.; Tieger, D.; van den Brand, J.; Young, A.; Yu, X.; Zumbro, J.

    1990-01-01

    We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized 3 He gas target. This measurement represents the first demonstration of a new method for studying electromagnetic nuclear structure: the scattering of polarized electrons from a polarized nuclear target. The measured asymmetry is in good agreement with a Faddeev calculation and supports the picture of spin-dependent quasielastic scattering from polarized 3 He as predominantly scattering from a polarized neutron

  12. Polarized proton and deuteron targets for the usage in intensive proton beams

    International Nuclear Information System (INIS)

    Get'man, V.A.; Derkach, A.Ya.; Karnaukhov, I.M.; Lukhanin, A.A.; Razumnyj, A.A.; Sorokin, P.V.; Sporo, E.A.; Telegin, Yu.N.

    1982-01-01

    Polarized proton and deuteron targets are developed and tested for conducting investigations in intense photon beams. A flowsheet of polarization targets which includes: working agent of the target, superconducting magnet, cryostat of 3 He evaporation with 3 He pumping and recirculation systems, SHF system of 4 mm range for polarization pumping, measuring system of target polarization protons is presented. Working agent of the targets includes frozen balls with 1.5 mm diameter. Ethylene-glucol and 1.2-propylene-glycol were used as a working substance for proton targets. Completely deuterated ethylene-glycol was used for the deuteron target. Vertical magnetic field with 2.7 T intensity is produced by a superconducting magnetic system. Polarization pumping is exercised at 75 GHz frequency. Q-meter of direct current is used for determination of polarization. Working temperature of the cryostat is approximately 0.5 K. The lock device permits to exercise replacement of the target working agent during 30 minutes

  13. Polarization effects in mercuric iodide crystals used for nuclear detection

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed-Brahim, T.; Benmalek, M.

    1984-08-01

    The use of the semiconducting mercuric iodide as an X and ..gamma..-ray detector is limited by the polarization taking place in the material. The authors present a study of this polarization and two experimental methods to get rid of it (long time interband illumination or positively polarized MIS structure). Finally, they propose an explanation of the phenomenon.

  14. Measurement of the nuclear polarization of hydrogen and deuterium molecules using a Lamb-shift polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Engels, Ralf, E-mail: r.w.engels@fz-juelich.de; Gorski, Robert; Grigoryev, Kiril; Mikirtychyants, Maxim; Rathmann, Frank; Seyfarth, Hellmut; Ströher, Hans; Weiss, Philipp [Institut für Kernphysik, Forschungszentrum Jülich, Wilhelm-Johnen-Str. 1, 52428 Jülich (Germany); Kochenda, Leonid; Kravtsov, Peter; Trofimov, Viktor; Tschernov, Nikolay; Vasilyev, Alexander; Vznuzdaev, Marat [Laboratory of Cryogenic and Superconductive Technique, Petersburg Nuclear Physics Institute, Orlova Roscha 1, 188300 Gatchina (Russian Federation); Schieck, Hans Paetz gen. [Institut für Kernphysik, Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany)

    2014-10-15

    Lamb-shift polarimeters are used to measure the nuclear polarization of protons and deuterons at energies of a few keV. In combination with an ionizer, the polarization of hydrogen and deuterium atoms was determined after taking into account the loss of polarization during the ionization process. The present work shows that the nuclear polarization of hydrogen or deuterium molecules can be measured as well, by ionizing the molecules and injecting the H{sub 2}{sup +} (or D{sub 2}{sup +}) ions into the Lamb-shift polarimeter.

  15. Thermosetting polymer for dynamic nuclear polarization: Solidification of an epoxy resin mixture including TEMPO

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Yohei, E-mail: noda.yohei@jaea.go.jp [Quantum Beam Science Centre, Sector of Nuclear Science Research, Japan Atomic Energy Agency, Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Kumada, Takayuki [Quantum Beam Science Centre, Sector of Nuclear Science Research, Kansai Photon Science Institute, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Yamaguchi, Daisuke; Shamoto, Shin-ichi [Quantum Beam Science Centre, Sector of Nuclear Science Research, Japan Atomic Energy Agency, Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan)

    2015-03-11

    We investigated the dynamic nuclear polarization (DNP) of typical thermosetting polymers (two-component type epoxy resins; Araldite{sup ®} Standard or Araldite{sup ®} Rapid) doped with a (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO) radical. The doping process was developed by carefully considering the decomposition of TEMPO during the solidification of the epoxy resin. The TEMPO electron spin in each two-component paste decayed slowly, which was favorable for our study. Furthermore, despite the dissolved TEMPO, the mixture of the two-component paste successfully solidified. With the resulting TEMPO-doped epoxy-resin samples, DNP experiments at 1.2 K and 3.35 T indicated a magnitude of a proton-spin polarization up to 39%. This polarization is similar to that (35%) obtained for TEMPO-doped polystyrene (PS), which is often used as a standard sample for DNP. To combine this solidification of TEMPO-including mixture with a resin-casting technique enables a creation of polymeric target materials with a precise and complex structure.

  16. Thermosetting polymer for dynamic nuclear polarization: Solidification of an epoxy resin mixture including TEMPO

    International Nuclear Information System (INIS)

    Noda, Yohei; Kumada, Takayuki; Yamaguchi, Daisuke; Shamoto, Shin-ichi

    2015-01-01

    We investigated the dynamic nuclear polarization (DNP) of typical thermosetting polymers (two-component type epoxy resins; Araldite ® Standard or Araldite ® Rapid) doped with a (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO) radical. The doping process was developed by carefully considering the decomposition of TEMPO during the solidification of the epoxy resin. The TEMPO electron spin in each two-component paste decayed slowly, which was favorable for our study. Furthermore, despite the dissolved TEMPO, the mixture of the two-component paste successfully solidified. With the resulting TEMPO-doped epoxy-resin samples, DNP experiments at 1.2 K and 3.35 T indicated a magnitude of a proton-spin polarization up to 39%. This polarization is similar to that (35%) obtained for TEMPO-doped polystyrene (PS), which is often used as a standard sample for DNP. To combine this solidification of TEMPO-including mixture with a resin-casting technique enables a creation of polymeric target materials with a precise and complex structure

  17. Nuclear Security: Target Analysis-rev

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Surinder Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gibbs, Philip W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bultz, Garl A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    The objectives of this presentation are to understand target identification, including roll-up and protracted theft; evaluate target identification in the SNRI; recognize the target characteristics and consequence levels; and understand graded safeguards.

  18. QED corrections in deep-inelastic scattering from tensor polarized deuteron target

    CERN Document Server

    Gakh, G I

    2001-01-01

    The QED correction in the deep inelastic scattering from the polarized tensor of the deuteron target is considered. The calculations are based on the covariant parametrization of the deuteron quadrupole polarization tensor. The Drell-Yan representations in the electrodynamics are used for describing the radiation real and virtual particles

  19. Consideration of R2Fe14B layers as targets with polarized electrons

    NARCIS (Netherlands)

    Hoogduin, JM; van Klinken, J

    Thin layers of R2Fe14B magnets (R = rare earth) can be magnetized perpendicularly to their planes and can be used as targets of polarized electrons with polarization of approximate to 4% to facilitate Moller/Bhabha and Compton polarimetry of electrons/positrons and photons, respectively. (C) 1998

  20. Tunable 13C/1H dual channel matching circuit for dynamic nuclear polarization system with cross-polarization

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy

    2016-01-01

    In this paper we report initial results of design and practical implementation of tuning and matching circuit to estimate a performance of Dynamic Nuclear Polarization (DNP) at a magnetic field of 6.7 T. It is shown that developed circuit for signal observation is compact, easy to make and provides...

  1. Polarization Calculation and Underwater Target Detection Inspired by Biological Visual Imaging

    Directory of Open Access Journals (Sweden)

    Jie Shen

    2014-04-01

    Full Text Available In challenging underwater environments, the polarization parameter maps calculated by the Stokes model are characterized by the high noise and error, harassing the underwater target detection tasks. In order to solve this problem, this paper proposes a novel bionic polarization calculation and underwater target detection method by modeling the visual system of mantis shrimps. This system includes many operators including a polarization-opposition calculation, a factor optimization and a visual neural network model. A calibration learning method is proposed to search the optimal value of the factors in the linear subtraction model. Finally, a six-channel visual neural network model is proposed to detect the underwater targets. Experimental results proved that the maps produced by the polarization-opposition parameter is more accurate and have lower noise than that produced by the Stokes parameter, achieving better performance in underwater target detection tasks.

  2. Target mass effects in polarized deep-inelastic scattering

    International Nuclear Information System (INIS)

    Piccione, A.

    1998-01-01

    We present a computation of nucleon mass corrections to nucleon structure functions for polarized deep-inelastic scattering. We perform a fit to existing data including mass corrections at first order in m 2 /Q 2 and we study the effect of these corrections on physically interesting quantities. We conclude that mass corrections are generally small, and compatible with current estimates of higher twist uncertainties, when available. (orig.)

  3. NUCLEON POLARIZATION IN 3-BODY MODELS OF POLARIZED LI-6

    NARCIS (Netherlands)

    SCHELLINGERHOUT, NW; KOK, LP; COON, SA; ADAM, RM

    1993-01-01

    Just as He-3 --> can be approximately characterized as a polarized neutron target, polarized Li-6D has been advocated as a good isoscalar nuclear target for the extraction of the polarized gluon content of the nucleon. The original argument rests upon a presumed ''alpha + deuteron'' picture of Li-6,

  4. Measurement of azimuthal asymmetries associated with deeply virtual Compton scattering on a longitudinally polarized deuterium target

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Physikalisches Institut, Universitaet Giessen, 35392 Giessen (Germany)] [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Akopov, N. [Yerevan Physics Institute, 375036 Yerevan (Armenia); Akopov, Z. [DESY, 22603 Hamburg (Germany); Aschenauer, E.C. [DESY, 15738 Zeuthen (Germany); Augustyniak, W. [Andrzej Soltan Institute for Nuclear Studies, 00-689 Warsaw (Poland); Avakian, R.; Avetissian, A. [Yerevan Physics Institute, 375036 Yerevan (Armenia); Avetisyan, E. [DESY, 22603 Hamburg (Germany); Belostotski, S. [Petersburg Nuclear Physics Institute, Gatchina, Leningrad region 188300 (Russian Federation); Bianchi, N. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Blok, H.P. [National Institute for Subatomic Physics (Nikhef), 1009 DB Amsterdam (Netherlands)] [Department of Physics and Astronomy, VU University, 1081 HV Amsterdam (Netherlands); Borissov, A. [DESY, 22603 Hamburg (Germany); Bowles, J. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Brodski, I. [Physikalisches Institut, Universitaet Giessen, 35392 Giessen (Germany); Bryzgalov, V. [Institute for High Energy Physics, Protvino, Moscow region 142281 (Russian Federation); Burns, J. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Capiluppi, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara and Dipartimento di Fisica, Universita di Ferrara, 44100 Ferrara (Italy); Capitani, G.P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Cisbani, E. [Istituto Nazionale di Fisica Nucleare, Sezione Roma 1, Gruppo Sanita and Physics Laboratory, Istituto Superiore di Sanita, 00161 Roma (Italy); Ciullo, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara and Dipartimento di Fisica, Universita di Ferrara, 44100 Ferrara (Italy)

    2011-01-21

    Azimuthal asymmetries in exclusive electroproduction of a real photon from a longitudinally polarized deuterium target are measured with respect to target polarization alone and with respect to target polarization combined with beam helicity and/or beam charge. The asymmetries appear in the distribution of the real photons in the azimuthal angle {phi} around the virtual photon direction, relative to the lepton scattering plane. The asymmetries arise from the deeply virtual Compton scattering process and its interference with the Bethe-Heitler process. The results for the beam-charge and beam-helicity asymmetries from a tensor polarized deuterium target with vanishing vector polarization are shown to be compatible with those from an unpolarized deuterium target, which is expected for incoherent scattering dominant at larger momentum transfer. Furthermore, the results for the single target-spin asymmetry and for the double-spin asymmetry are found to be compatible with the corresponding asymmetries previously measured on a hydrogen target. For coherent scattering on the deuteron at small momentum transfer to the target, these findings imply that the tensor contribution to the cross section is small. Furthermore, the tensor asymmetry is found to be compatible with zero.

  5. High magnetic field uniformity superconducting magnet for a movable polarized target

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Bartenev, V.D.; Blinov, N.A.

    1998-01-01

    The superconducting polarizing magnet was constructed for movable polarized target (MPT) with working volume 200 mm long and 30 mm in diameter. The magnet provides a polarizing magnetic field up to 6 T with the uniformity of 4.5 x 10 -4 in the working volume of the target. The magnet windings are made of a NbTi wire, impregnated with the epoxy resin and placed in the horizontal cryostat with 'warm' aperture diameter of 96 mm. The design and technology of the magnet winding are described. Results of the magnetic field map measurements using a NMR-magnetometer are given. The MPT set-up is installed in the beam line of polarized neutrons produced by break-up of polarized deuterons extracted from the Synchrophasotron of the Laboratory of High Energies (LHE), JINR, Dubna

  6. Temperature dependence of cross-effect dynamic nuclear polarization in rotating solids

    DEFF Research Database (Denmark)

    Geiger, Michel-Andreas; Orwick-Rydmark, Marcella; Märker, Katharina

    2016-01-01

    Dynamic nuclear polarization exploits electron spin polarization to boost signal-to-noise in magic-angle-spinning (MAS) NMR, creating new opportunities in materials science, structural biology, and metabolomics studies. Since protein NMR spectra recorded under DNP conditions can show improved...

  7. Formulation and utilization of choline based samples for dissolution dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Bowen, Sean; Ardenkjær-Larsen, Jan Henrik

    2013-01-01

    Hyperpolarization by the dissolution dynamic nuclear polarization (DNP) technique permits the generation of high spin polarization of solution state. However, sample formulation for dissolution-DNP is often difficult, as concentration and viscosity must be optimized to yield a dissolved sample...

  8. Target recognition of log-polar ladar range images using moment invariants

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Cao, Jie; Yu, Haoyong

    2017-01-01

    The ladar range image has received considerable attentions in the automatic target recognition field. However, previous research does not cover target recognition using log-polar ladar range images. Therefore, we construct a target recognition system based on log-polar ladar range images in this paper. In this system combined moment invariants and backpropagation neural network are selected as shape descriptor and shape classifier, respectively. In order to fully analyze the effect of log-polar sampling pattern on recognition result, several comparative experiments based on simulated and real range images are carried out. Eventually, several important conclusions are drawn: (i) if combined moments are computed directly by log-polar range images, translation, rotation and scaling invariant properties of combined moments will be invalid (ii) when object is located in the center of field of view, recognition rate of log-polar range images is less sensitive to the changing of field of view (iii) as object position changes from center to edge of field of view, recognition performance of log-polar range images will decline dramatically (iv) log-polar range images has a better noise robustness than Cartesian range images. Finally, we give a suggestion that it is better to divide field of view into recognition area and searching area in the real application.

  9. Nuclear reactivity indices in the context of spin polarized density functional theory

    International Nuclear Information System (INIS)

    Cardenas, Carlos; Lamsabhi, Al Mokhtar; Fuentealba, Patricio

    2006-01-01

    In this work, the nuclear reactivity indices of density functional theory have been generalized to the spin polarized case and their relationship to electron spin polarized indices has been established. In particular, the spin polarized version of the nuclear Fukui function has been proposed and a finite difference approximation has been used to evaluate it. Applications to a series of triatomic molecules demonstrate the ability of the new functions to predict the geometrical changes due to a change in the spin multiplicity. The main equations in the different ensembles have also been presented

  10. Measurement of cell wall depolarization of polarized hydrogen gas targets in a weak magnetic field

    International Nuclear Information System (INIS)

    Price, J.S.; Haeberli, W.

    1994-01-01

    Polarized gas targets using windowless storage cells are being developed for use as internal targets in medium and high energy particle storage rings. Tests were conducted to evaluate wall depolarization for different cell wall materials. Measurements of the target polarization were made on polarized vector H 0 gas targets in a weak magnetic field. Fifteen materials were tested in geometries corresponding to different average number of wall collisions, N 0 , from 40 to 380 collisions, for wall temperatures, T, from 20 K to 300 K. A method was developed to measure the polarization of a vector H 0 target in a 0.5 mT field: a beam of 50 keV D + picks up electrons from the target gas and the vector D 0 acquires a tensor polarization, p zz , which is measured by means of the 3 H( vector d, n) 4 He reaction. A simple model for depolarization at surfaces is proposed. Comparison to the data shows fair agreement, but the model is unrealistic in that it does not include the effects of the recombination of atoms on the surface to form molecules. ((orig.))

  11. A study of lithium deuteride as a material for a polarized target

    CERN Document Server

    Bültmann, S; Day, D B; Fatemi, R D; Gardner, B; Harris, C M; Johnson, J R; Mccarthy, J S; McKee, P M; Meyer, Werner T; Penttilae, S I; Ponikvar, E; Rijllart, A; Rondon, Oscar A; Lorant, S S; Tobias, W A; Trentalange, S; Zhu, H; Zihlmann, B; Zimmermann, D

    1999-01-01

    Experiment E155 at the Stanford Linear Accelerator Center (SLAC) measured the spin-dependent structure of the proton and neutron, using for the first time sup 6 LiD as the polarized deuteron target material in a high-energy electron beam. This compound provides a significantly higher dilution factor than any other solid deuteron target material currently used in high-energy physics experiments. Results of the polarization behavior of the sup 6 LiD target material before and after exposure to the 50 GeV/c electron beam used in E155 are presented.

  12. Many-body kinetics of dynamic nuclear polarization by the cross effect

    Science.gov (United States)

    Karabanov, A.; Wiśniewski, D.; Raimondi, F.; Lesanovsky, I.; Köckenberger, W.

    2018-03-01

    Dynamic nuclear polarization (DNP) is an out-of-equilibrium method for generating nonthermal spin polarization which provides large signal enhancements in modern diagnostic methods based on nuclear magnetic resonance. A particular instance is cross-effect DNP, which involves the interaction of two coupled electrons with the nuclear spin ensemble. Here we develop a theory for this important DNP mechanism and show that the nonequilibrium nuclear polarization buildup is effectively driven by three-body incoherent Markovian dissipative processes involving simultaneous state changes of two electrons and one nucleus. We identify different parameter regimes for effective polarization transfer and discuss under which conditions the polarization dynamics can be simulated by classical kinetic Monte Carlo methods. Our theoretical approach allows simulations of the polarization dynamics on an individual spin level for ensembles consisting of hundreds of nuclear spins. The insight obtained by these simulations can be used to find optimal experimental conditions for cross-effect DNP and to design tailored radical systems that provide optimal DNP efficiency.

  13. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    Science.gov (United States)

    2017-10-01

    since, in the absence of such knowledge, the development of effective therapeutic interventions to target CSCs and prevent cancer progression and...yes) (2) Presentations: a. 2016 Keystone Symposia- Stem Cells & Cancer, Breckenridge, “Epigenetic regulation promotes obesity related breast

  14. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    Science.gov (United States)

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.

  15. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions

    OpenAIRE

    Nefiodov, A. V.; Plunien, G.; Soff, G.

    2002-01-01

    The influence of nuclear polarization on the bound-electron $g$ factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron $g$ factor in highly charged ions.

  16. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    DEFF Research Database (Denmark)

    Clarkson, R B; Odintsov, B M; Ceroke, P J

    1998-01-01

    ; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the nuclear spin population...

  17. Dynamical nuclear polarization by means of shallow donors in ZnO quantum dots

    NARCIS (Netherlands)

    Baranov, P.G.; Orlinskii, S.B.; de Mello-Donega, C.|info:eu-repo/dai/nl/125593899; Meijerink, A.|info:eu-repo/dai/nl/075044986; Blok, H.; Schmidt, J.

    2009-01-01

    The almost complete dynamic nuclear polarization (DNP) of nuclear spins has been demonstrated can be achieved in ZnO and AgCl single crystals by saturating the EPR transition of the shallow donor (SD) present in this crystals with using high-frequency (275 and 95 GHz) at low temperatures. DNP

  18. IDH2 Mutations Define a Unique Subtype of Breast Cancer with Altered Nuclear Polarity

    Science.gov (United States)

    Chiang, Sarah; Weigelt, Britta; Wen, Huei-Chi; Pareja, Fresia; Raghavendra, Ashwini; Martelotto, Luciano G.; Burke, Kathleen A.; Basili, Thais; Li, Anqi; Geyer, Felipe C.; Piscuoglio, Salvatore; Ng, Charlotte K.Y.; Jungbluth, Achim A.; Balss, Jörg; Pusch, Stefan; Baker, Gabrielle M.; Cole, Kimberly S.; von Deimling, Andreas; Batten, Julie M.; Marotti, Jonathan D.; Soh, Hwei-Choo; McCalip, Benjamin L.; Serrano, Jonathan; Lim, Raymond S.; Siziopikou, Kalliopi P.; Lu, Song; Liu, Xiaolong; Hammour, Tarek; Brogi, Edi; Snuderl, Matija; Iafrate, A. John; Reis-Filho, Jorge S.; Schnitt, Stuart J.

    2017-01-01

    Solid papillary carcinoma with reverse polarity (SPCRP) is a rare breast cancer subtype with an obscure etiology. In this study, we sought to describe its unique histopathologic features and to identify the genetic alterations that underpin SPCRP using massively parallel whole-exome and targeted sequencing. The morphologic and immunohistochemical features of SPCRP support the invasive nature of this subtype. Ten of 13 (77%) SPCRPs harbored hotspot mutations at R172 of the isocitrate dehydrogenase IDH2, of which 8 of 10 displayed concurrent pathogenic mutations affecting PIK3CA or PIK3R1. One of the IDH2 wild-type SPCRPs harbored a TET2 Q548* truncating mutation coupled with a PIK3CA H1047R mutation. Functional studies demonstrated that IDH2 and PIK3CA hotspot mutations are likely drivers of SPCRP, resulting in its reversed nuclear polarization phenotype. Our results offer a molecular definition of SPCRP as a distinct breast cancer subtype. Concurrent IDH2 and PIK3CA mutations may help diagnose SPCRP and possibly direct effective treatment. PMID:27913435

  19. Long-term cost targets for nuclear energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; McDonald, A.

    2004-01-01

    In 2000 the International Atomic Energy Agency (IAEA) began the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) to help guide nuclear R and D strategies targeted on anticipated mid-century energy system needs. One part of INPRO seeks to develop cost targets for new designs to be competitive in mid-century markets. The starting point was the 40 scenarios of the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change. This paper summarizes four of the SRES scenarios, one from each of the four SRES scenario families. It discusses their implications for nuclear energy, including cost targets, and develops for each an 'aggressive nuclear' variant. The aggressive nuclear variants estimate the potential market for nuclear energy if, by improving faster than assumed by the SRES authors, nuclear energy can make inroads into vulnerable market shares projected for its competitors. In addition to projected demands for nuclear generated electricity, hydrogen and heat, the aggressive variants include prospective demand for nuclear desalination and use in upgrading fossil fuels. The paper then presents learning rates and implied cost targets consistent with the aggressive nuclear variants of the SRES scenarios. One provocative initial result is that many of the scenarios with substantial nuclear expansion do not seem to require big reductions in nuclear investment costs. One interpretation discussed at the end of the paper highlights the difference between cost reductions consistent with long-term energy system optimization based on perfect foresight, and cost reductions necessary to attract private investment in today's 'deregulating' and uncertain energy markets. (orig.)

  20. Development of a polarized deuterium target to measure T/sub 20/ in electron storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Young, L.; Coulter, K.; Gilman, R.A.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Napolitano, J.; Potterveld, D.; Lasarenko, B.A.; Mishnev, S.I.

    1989-01-01

    The development of a polarized deuterium target to measure the analyzing power in electron scattering from the deuteron at the highest possible momentum transfer is described. Two areas of research have been simultaneously pursued: the development of a storage cell for polarized atoms (ANL and INP) and the development of a high-flux laser-driven source of polarized deuterium (ANL). The successful combination of these two technological developments will produce a polarized target having a figure of merit of np/sub zz//sup 2/ approx. np/sub z//sup 2/ approx. 10/sup 14/ cm/sup /minus/2/. The progress to date, including, feasibility tests of the storage cell concept, design of a high-density storage cell ad the development of the laser-driven source will be described. 14 refs., 7 figs.

  1. Particle production from nuclear targets and the structure of hadrons

    International Nuclear Information System (INIS)

    Bialas, A.

    Production processes from nuclear targets allow studying interactions of elementary hadronic constituents in nuclear matter. The information thus obtained on the structure of hadrons and on the properties of hadronic constituents is presented. Both soft (low momentum transfer) and hard (high momentum transfer) processes are discussed. (author)

  2. Mid-infrared imaging system based on polarizers for detecting marine targets covered in sun glint.

    Science.gov (United States)

    Zhao, Huijie; Ji, Zheng; Zhang, Ying; Sun, Xiaofeng; Song, Pengfei; Li, Yansong

    2016-07-25

    When a marine target is detected by a mid-infrared detector on a sunny day, the target's information could be lost if it is located in sun glint. Therefore, we developed a new mid-infrared imaging system capable of effectively detecting marine targets in regions of strong sun glint, which is presented in this report. Firstly, the theory of the analysis methods employed in different detection scenarios is briefly described to establish whether one or two polarizers should be utilized to suppress further the p-polarized component of sun glint. Secondly, for the case in which a second polarizer is employed, the formula for the optimum angle between the two polarizers is given. Then, the results of our field experiment are presented, demonstrating that the developed system can significantly reduce sun glint and can enhance the contrast of target images. A commonly used image processing algorithm proved capable of identifying a target in sun glint, confirming the effectiveness of our proposed mid-infrared polarization imaging system.

  3. Thickness and uniformity measurements of nuclear targets

    International Nuclear Information System (INIS)

    Xu Guoji; Meng Xiangjin; Luo Xinghua; Guan Shouren

    1987-06-01

    This paper introduces the methods of target thickness and uniformity measurements including weighing, α-particle thickness gauge, quartz thickness gauge, optical transmittance and Rutherford backscattering. An α-particle gauging which measures target thicknesses up to several μm is metioned. A fast thickness measurements for C, Au and Cu targets by spectrophotometer is given. A high sensitive quartz gauge which can measure minimum deposit of 0.04 μg/cm 2 is described. Thickness and impurity determinations by RBS with accuracy better than 5% are summarized

  4. An ``active'' target for spin physics: polarizing nuclei in plastic scintillators

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.; Nemchonok, I. B.

    2002-03-01

    Polarized scintillating targets are now routinely available: protons, deuterons or other nuclei in blocks of scintillating organic polymer, doped with the free radical TEMPO, have been polarized dynamically in a field of 2.5 T in a vertical 3He-4He dilution refrigerator. A 19 mm diameter plastic lightguide carries the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat.

  5. Evaluation of Waveform Structure Features on Time Domain Target Recognition under Cross Polarization

    Science.gov (United States)

    Selver, M. A.; Seçmen, M.; Zoral, E. Y.

    2016-08-01

    Classification of aircraft targets from scattered electromagnetic waves is a challenging application, which suffers from aspect angle dependency. In order to eliminate the adverse effects of aspect angle, various strategies were developed including the techniques that rely on extraction of several features and design of suitable classification systems to process them. Recently, a hierarchical method, which uses features that take advantage of waveform structure of the scattered signals, is introduced and shown to have effective results. However, this approach has been applied to the special cases that consider only a single planar component of electric field that cause no-cross polarization at the observation point. In this study, two small scale aircraft models, Boeing-747 and DC-10, are selected as the targets and various polarizations are used to analyse the cross-polarization effects on system performance of the aforementioned method. The results reveal the advantages and the shortcomings of using waveform structures in time-domain target identification.

  6. Moving targets. Economic competitiveness of nuclear power

    International Nuclear Information System (INIS)

    Rogner, H.H.; Langlois, L.

    2000-01-01

    Most world electricity markets are now moving towards greater competition, driven in part by technology, low fuel prices, and experience that competitive markets are more self-sustaining. Electric power is being sold in a number of markets in member countries of the Organization for Economic Cooperation and Development (OECD) for around US $0.02 per kilowatt-hour (kWh). Can nuclear generation match such prices? If not, can it be made to do so? Electricity companies are now in the business of selling a commodity (kWh) and commercial services instead of a strategic good. Excess capacity, low demand growth and lower product prices in major industrialized countries have forced power generators and their suppliers to be more concerned with the costs of their operations and profitability of their investments. These companies increasingly need a commercial, profit-oriented approach if they are to survive and prosper. Even more, they will need to make substantial cost reductions over the next few years. The nuclear industry is no exception. How does nuclear power stack up in this environment? The IAEA Planning and Economic Studies Section is doing a series of studies on precisely these questions, divided into issues affecting the near, medium and long-term future of nuclear power. This corresponds roughly to matters affecting existing plants, upgrades and life extensions, or new plants. In general, the studies find that nuclear power has the potential to be competitive in all three markets. But realizing that potential will require significant changes on the part of the industry and its regulators. This article focuses on the prevailing market situation in many industrialized countries. Several lessons also are applicable to developing countries, particularly in cases where the financing of electric power projects is expected to come from international capital markets. The overall situation is distinctly different for developing countries. Typically the capacity there for

  7. HD gas purification for polarized HDice targets production at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Whisnant, Charles; D' Angelo, Annalisa; Colaneri, Luca; Devilbiss, J; Kageya, Tsuneo; Loving, D A; Lowry, Michael; Rizzo, Alessandro; Sandorfi, Andrew; Schaerf, Carlo; Storey, J D; Wallace, C M; Wei, Xiangdong; Zonta, Irene

    2014-06-01

    Solid, frozen-spin targets of molecular HD were rst developed for nuclear physics by a collaboration between Syracuse University and Brookhaven National Lab. They have been successfully used in measurements with photon beams, rst at the Laser-Electron-Gamma-Source [1] and most recently at Je erson Lab during the running of the E06-101 (g14) experiment [2]. Preparations are underway to utilize the targets in future electron experiments after the completion of the 12 GeV JLab upgrade [3]. HD is an attractive target since all of the material is polarizable, of low Z, and requires only modest holding elds. At the same time, the small contributions from the target cell can be subtracted from direct measurements. Reaching the frozen-spin state with both high polarization and a signi cant spin relaxation time requires careful control of H2 and D2 impurities. Commercially available HD contains 0.5 - 2% concentrations of H2 and D2. Low-temperature distillation is required to reduce these concentrations to the 104 level to enable useful target production. This distillation is done using a column lled with heli-pack C [4] to give good separation e ciency. Approximately 12 moles of commercial HD is condensed into the mechanically refrigerated system at the base temperature of 11K. The system is then isolated and the temperature stabilized at 18K producing liquid HD, which is boiled by a resistive heater. The circulation established by the boil-o condensing throughout the column then ltering back down produces a steady-state isotopic separation permitting the extraction of HD gas with very low H2 and D2 content. A residual gas analyzer initially monitors distillation. Once the H2 concentration falls below its useful operating range, samples are periodically collected for analysis using gas chromatography [5] and Raman scattering. Where the measurement techniques overlap, good agreement is obtained. The operation of the distillery and results of gas analysis will be discussed

  8. The Probing Radio Signal Polarization Effect on Separation Efficiency of Surface Target Response

    Directory of Open Access Journals (Sweden)

    A. N. Pinchuk

    2015-01-01

    Full Text Available The aim of the study was a quantitative analysis of the level of interference with radar monitoring characteristics of surface targets, caused by the scattered electromagnetic field, arising due to the interaction between radio waves and sea surface, which is a study aspect a radiooceanography encompasses. Backscatter signal, arising from the interaction of radio waves and sea surface, extends in a direction opposite the probing radar signal of spread marine and coastal radar stations.With radar sounding of sea surface at high incidence angles of radio waves, a basic physical mechanism to form the received signal is resonant (Bragg scattering, and at small incidence angles of radio waves it is quasi-specular reflection. Consequently, the energy of electromagnetic radiation, backscattered by the sea surface, depends on the type of wave polarization: for horizontal polarization it is less than for vertical one.The paper presents a mathematical model, which describes dependence of interference level caused by interaction between radio waves and sea surface, on the radio wave polarization for the case when the same polarization is used to sent-out and receive a radio wave.To determine the noise reduction to be achievable with radar monitoring the surface targets by selecting the polarization of the probing radar signal, a signal/noise ratio is analyzed for its different polarizations.It is shown that in order to reduce the noise level caused by the interaction between radio waves and sea surface, it is possible to use the differences in the level of scattered radio signals of different polarization: with horizontally-polarized radar operation at incidence angles of 75°- 85° a signal/noise ratio is by 20-35 dB higher than that of vertically- polarized one.

  9. Proceedings of the Workshop on future of nuclear physics in Europe with polarized electrons and photons

    International Nuclear Information System (INIS)

    Didelez, J.P.; Tamas, G.

    1990-01-01

    In the proceedings of the workshop, held at the Institut de Physique Nucleaire in Orsay, France, full texts of 20 contributions are presented. The two main topics were polarized electrons and polarized photons. It has been reported that significant processes have been made recently in the science and technology of polarized electron sources, polarized targets and polarimeters. The relevant tools are therefore now available to complete extensive experimental programs. The 20 papers are indexed and abstracted separately for the INIS database. (R.P.)

  10. Isotope production and target preparation for nuclear astrophysics data

    Directory of Open Access Journals (Sweden)

    Schumann Dorothea

    2017-01-01

    Full Text Available Targets are in many cases an indispensable ingredient for successful experiments aimed to produce nuclear data. With the recently observed shift to study nuclear reactions on radioactive targets, this task can become extremely challenging. Concerted actions of a certain number of laboratories able to produce isotopes and manufacture radioactive targets are urgently needed. We present here some examples of successful isotope and target production at PSI, in particular the production of 60Fe samples used for half-life measurements and neutron capture cross section experiments, the chemical processing and fabrication of lanthanide targets for capture cross section experiments at n_TOF (European Organization for Nuclear Research (CERN, Switzerland as well as the recently performed manufacturing of highly-radioactive 7Be targets for the measurement of the 7Be(n,α4He cross section in the energy range of interest for the Big-Bang nucleosynthesis contributing to the solving of the cosmological Li-problem. The two future projects: “Determination of the half-life and experiments on neutron capture cross sections of 53Mn” and “32Si – a new chronometer for nuclear dating” are briefly described. Moreover, we propose to work on the establishment of a dedicated network on isotope and target producing laboratories.

  11. Isotope production and target preparation for nuclear astrophysics data

    Science.gov (United States)

    Schumann, Dorothea; Dressler, Rugard; Maugeri, Emilio Andrea; Heinitz, Stephan

    2017-09-01

    Targets are in many cases an indispensable ingredient for successful experiments aimed to produce nuclear data. With the recently observed shift to study nuclear reactions on radioactive targets, this task can become extremely challenging. Concerted actions of a certain number of laboratories able to produce isotopes and manufacture radioactive targets are urgently needed. We present here some examples of successful isotope and target production at PSI, in particular the production of 60Fe samples used for half-life measurements and neutron capture cross section experiments, the chemical processing and fabrication of lanthanide targets for capture cross section experiments at n_TOF (European Organization for Nuclear Research (CERN), Switzerland) as well as the recently performed manufacturing of highly-radioactive 7Be targets for the measurement of the 7Be(n,α)4He cross section in the energy range of interest for the Big-Bang nucleosynthesis contributing to the solving of the cosmological Li-problem. The two future projects: "Determination of the half-life and experiments on neutron capture cross sections of 53Mn" and "32Si - a new chronometer for nuclear dating" are briefly described. Moreover, we propose to work on the establishment of a dedicated network on isotope and target producing laboratories.

  12. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    DEFF Research Database (Denmark)

    Vinding, Mads Sloth; Laustsen, Christoffer; Maximov, Ivan I.

    2013-01-01

    Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction. This is ach......Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction....... This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region...

  13. Dynamic nuclear polarization in thin polymer foils and tubes

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.

    1995-02-01

    First results of DNP at 2.5 T and below 0.3 K in thin polymer foils and tubes with the chemical composition (CX 2) n, [ X = 1H, 2D, 19F ], doped with TEMPO, are presented. Appreciable polarization of protons, deuterons, and 19F-nuclei were obtained. The samples can be handled at room temperature for several hours, and therefore they are suitable for new applications.

  14. Dynamic nuclear polarization in thin polymer foils and tubes

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, B. van den [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Bunyatova, E.I. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Hautle, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Konter, J.A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Mango, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-03-01

    First results of DNP at 2.5 T and below 0.3 K in thin polymer foils and tubes with the chemical composition (CX{sub 2}){sub n}, [X={sup 1}H, {sup 2}D, {sup 19}F], doped with TEMPO, are presented. Appreciable polarizations of protons, deuterons, and {sup 19}F-nuclei were obtained. The samples can be handled at room temperature for several hours, and therefore they are suitable for new applications. ((orig.))

  15. Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage.

    Science.gov (United States)

    Hailer, Frank; Kutschera, Verena E; Hallström, Björn M; Klassert, Denise; Fain, Steven R; Leonard, Jennifer A; Arnason, Ulfur; Janke, Axel

    2012-04-20

    Recent studies have shown that the polar bear matriline (mitochondrial DNA) evolved from a brown bear lineage since the late Pleistocene, potentially indicating rapid speciation and adaption to arctic conditions. Here, we present a high-resolution data set from multiple independent loci across the nuclear genomes of a broad sample of polar, brown, and black bears. Bayesian coalescent analyses place polar bears outside the brown bear clade and date the divergence much earlier, in the middle Pleistocene, about 600 (338 to 934) thousand years ago. This provides more time for polar bear evolution and confirms previous suggestions that polar bears carry introgressed brown bear mitochondrial DNA due to past hybridization. Our results highlight that multilocus genomic analyses are crucial for an accurate understanding of evolutionary history.

  16. A portable cryostat for the cold transfer of polarized solid HD targets: HDice-I

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Christopher D. [JLAB, Newport News, VA (United States); Sandorfi, Andy M. [JLAB, Newport News, VA (United States); Bade, C.; Blecher, M.; Caracappa, A.; D' Angelo, A.; Deur, A.; Dezern, G.; Glueckler, H.; Hanretty, C.; Ho, D.; Kageya, T.; Khandaker, M.; Laine, V.; Lincoln, F.; Lowry, M. M.; Mahon, J. C.; Connell, T. O.; Peng, P.; Preedom, B.; Seyfarth, H.; Stroeher, H.; Thorn, C. E.; Wei, X.; Whisnant, C. S.

    2014-02-01

    A device has been developed with moveable liquid nitrogen and liquid helium volumes that is capable of reaching over two meters into the coldest regions of a cryostat or dilution refrigerator and reliably extracting or installing a target of solid, polarized hydrogen deuteride (HD). This Transfer Cryostat incorporates a cylindrical neodymium rare-earth magnet that is configured as a Halbach dipole, which is maintained at 77 K and produces a 0.1 T field around the HD target. Multiple layers provide a hermetic 77 K-shield as the device is used to maintain a target at 2 K during a transfer between cryostats. Tests with frozen-spin HD show negligible polarization loss for either H or D over typical transfer periods. Multiple target transfers with this apparatus have shown an overall reliability of about 95% per transfer, which is a significant improvement over earlier versions of the device.

  17. A portable cryostat for the cold transfer of polarized solid HD targets: HDice-I

    Energy Technology Data Exchange (ETDEWEB)

    Bass, C.D., E-mail: bassc@lemoyne.edu [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bade, C. [Ohio University, Athens, OH 45701 (United States); Blecher, M. [Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Caracappa, A. [Brookhaven National Laboratory, Upton, NY 11973 (United States); D' Angelo, A. [Universita’ di Roma “Tor Vergata” and INFN Sezione di Roma2, 00133 Roma (Italy); Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Deur, A.; Dezern, G. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Glueckler, H. [Forschungszentrum Jülich GmbH, Jülich (Germany); Hanretty, C. [University of Virginia, Charlottesville, VA 22903 (United States); Ho, D. [Carnegie-Mellon University, Pittsburgh, PA 15213 (United States); Honig, A. [Syracuse University, Syracuse, NY 13210 (United States); Kageya, T. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Khandaker, M. [Norfolk State University, Norfolk, VA 23504 (United States); Laine, V. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Université Blaise Pascal, Clermont-Ferrand, 63177 Aubiere (France); Lincoln, F. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Lowry, M.M. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States); Mahon, J.C. [Ohio University, Athens, OH 45701 (United States); O' Connell, T. [University of Connecticut, Storrs-Mansfield, CT 06269 (United States); and others

    2014-02-11

    A device has been developed with moveable liquid nitrogen and liquid helium volumes that is capable of reaching over 2 m into the coldest regions of a cryostat or dilution refrigerator and reliably extracting or installing a target of solid, polarized hydrogen deuteride (HD). This Transfer Cryostat incorporates a cylindrical neodymium rare-earth magnet that is configured as a Halbach dipole, which is maintained at 77 K and produces a 0.1 T field around the HD target. Multiple layers provide a hermetic 77 K-shield as the device is used to maintain a target at 2 K during a transfer between cryostats. Tests with frozen-spin HD show very little polarization loss for either H (−1±2%, relative) or D (0±3%, relative) over typical transfer periods. Multiple target transfers with this apparatus have shown an overall reliability of about 95% per transfer, which is a significant improvement over earlier versions of the device.

  18. Cluster formation restricts dynamic nuclear polarization of xenon in solid mixtures

    DEFF Research Database (Denmark)

    Kuzma, N. N.; Pourfathi, M.; Kara, H.

    2012-01-01

    During dynamic nuclear polarization (DNP) at 1.5 K and 5 T, Xe-129 nuclear magnetic resonance (NMR) spectra of a homogeneous xenon/1-propanol/trityl-radical solid mixture exhibit a single peak, broadened by H-1 neighbors. A second peak appears upon annealing for several hours at 125 K. Its charac....... Subsequent DNP system modifications designed to reduce the overheating resulted in four-fold increase of Xe-129 polarization, from 5.3% to 21%. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4751021]...

  19. Method of generating intense nuclear polarized beams by selective photodetachment of negative ions

    International Nuclear Information System (INIS)

    Hershcovitch, A.

    1986-01-01

    A novel method for production of nuclear polarized negative hydrogen ions by selective neutralization with a laser of negative hydrogen ions in a magnetic field is described. This selectivity is possible since a final state of the neutralized atom, and hence the neutralization energy, depends on its nuclear polarization. The main advantages of this scheme are the availability of multi-ampere negative ion sources and the possibility of neutralizing negative ions with very high efficiency. An assessment of the required laser power indicates that this method is in principle feasible with today's technology

  20. On possibility of time reversal symmetry violation in neutrino elastic scattering on polarized electron target

    Science.gov (United States)

    Sobków, W.; Błaut, A.

    2018-03-01

    In this paper we indicate a possibility of utilizing the elastic scattering of Dirac low-energy (˜ 1 MeV) electron neutrinos (ν _es) on a polarized electron target (PET) in testing the time reversal symmetry violation (TRSV). We consider a scenario in which the incoming ν _e beam is a superposition of left chiral (LC) and right chiral (RC) states. LC ν _e interact mainly by the standard V-A and small admixture of non-standard scalar S_L, pseudoscalar P_L, tensor T_L interactions, while RC ones are only detected by the exotic V + A and S_R, P_R, T_R interactions. As a result of the superposition of the two chiralities the transverse components of ν e spin polarization (T-even and T-odd) may appear. We compute the differential cross section as a function of the recoil electron azimuthal angle and scattered electron energy, and show how the interference terms between standard V-A and exotic S_R, P_R, T_R couplings depend on the various angular correlations among the transversal ν _e spin polarization, the polarization of the electron target, the incoming neutrino momentum and the outgoing electron momentum in the limit of relativistic ν _e. We illustrate how the maximal value of recoil electrons azimuthal asymmetry and the asymmetry axis location of outgoing electrons depend on the azimuthal angle of the transversal component of the ν _e spin polarization, both for the time reversal symmetry conservation (TRSC) and TRSV. Next, we display that the electron energy spectrum and polar angle distribution of the recoil electrons are also sensitive to the interference terms between V-A and S_R, P_R, T_R couplings, proportional to the T-even and T-odd angular correlations among the transversal ν _e polarization, the electron polarization of the target, and the incoming ν _e momentum, respectively. We also discuss the possibility of testing the TRSV by observing the azimuthal asymmetry of outgoing electrons, using the PET without the impact of the transversal

  1. REV-ERB and ROR nuclear receptors as drug targets

    Science.gov (United States)

    Kojetin, Douglas J.; Burris, Thomas P.

    2016-01-01

    The nuclear receptors REV-ERB (consisting of REV-ERBα and REV-ERBβ) and retinoic acid receptor-related orphan receptors (RORs; consisting of RORα, RORβ and RORγ) are involved in many physiological processes, including regulation of metabolism, development and immunity as well as the circadian rhythm. The recent characterization of endogenous ligands for these former orphan nuclear receptors has stimulated the development of synthetic ligands and opened up the possibility of targeting these receptors to treat several diseases, including diabetes, atherosclerosis, autoimmunity and cancer. This Review focuses on the latest developments in ROR and REV-ERB pharmacology indicating that these nuclear receptors are druggable targets and that ligands targeting these receptors may be useful in the treatment of several disorders. PMID:24577401

  2. Targeting Nuclear Receptors to Treat Fibrostenotic Crohn’s Disease

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0137 TITLE: Targeting Nuclear Receptors to Treat Fibrostenotic Crohn’s Disease PRINCIPAL INVESTIGATOR: Simon A...Nuclear Receptors to Treat Fibrostenotic Crohn’s Disease 5a. CONTRACT NUMBER W81XWH-16-1-0137 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT While current therapies are effective in many patients with Crohn’s disease

  3. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    Energy Technology Data Exchange (ETDEWEB)

    Goodson, Boyd McLean [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  4. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    International Nuclear Information System (INIS)

    Goodson, Boyd M.

    1999-01-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI

  5. Applying TM-polarization geoelectric exploration for study of low-contrast three-dimensional targets

    Science.gov (United States)

    Zlobinskiy, Arkadiy; Mogilatov, Vladimir; Shishmarev, Roman

    2018-03-01

    With using new field and theoretical data, it has been shown that applying the electromagnetic field of transverse magnetic (TM) polarization will give new opportunities for electrical prospecting by the method of transient processes. Only applying a pure field of the TM polarization permits poor three-dimensional objects (required metalliferous deposits) to be revealed in a host horizontally-layered medium. This position has good theoretical grounds. There is given the description of the transient electromagnetic method, that uses only the TM polarization field. The pure TM mode is excited by a special source, which is termed as a circular electric dipole (CED). The results of three-dimensional simulation (by the method of finite elements) are discussed for three real geological situations for which applying electromagnetic fields of transverse electric (TE) and transverse magnetic (TM) polarizations are compared. It has been shown that applying the TE mode gives no positive results, while applying the TM polarization field permits the problem to be tackled. Finally, the results of field works are offered, which showed inefficiency of application of the classical TEM method, whereas in contrast, applying the field of TM polarization makes it easy to identify the target.

  6. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Lv, Xiaonan [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100090 (China); Herrler, Georg [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Enjuanes, Luis [Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid (Spain); Zhou, Xingdong [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Qu, Bo [Faculty of Life Sciences, Northeast Agricultural University, Harbin 150030 (China); Meng, Fandan [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Cong, Chengcheng [College Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110161 (China); Ren, Xiaofeng; Li, Guangxing [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China)

    2015-04-15

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.

  7. Electrically tunable dynamic nuclear spin polarization in GaAs quantum dots at zero magnetic field

    Science.gov (United States)

    Manca, M.; Wang, G.; Kuroda, T.; Shree, S.; Balocchi, A.; Renucci, P.; Marie, X.; Durnev, M. V.; Glazov, M. M.; Sakoda, K.; Mano, T.; Amand, T.; Urbaszek, B.

    2018-04-01

    In III-V semiconductor nano-structures, the electron and nuclear spin dynamics are strongly coupled. Both spin systems can be controlled optically. The nuclear spin dynamics are widely studied, but little is known about the initialization mechanisms. Here, we investigate optical pumping of carrier and nuclear spins in charge tunable GaAs dots grown on 111A substrates. We demonstrate dynamic nuclear polarization (DNP) at zero magnetic field in a single quantum dot for the positively charged exciton X+ state transition. We tune the DNP in both amplitude and sign by variation of an applied bias voltage Vg. Variation of ΔVg on the order of 100 mV changes the Overhauser splitting (nuclear spin polarization) from -30 μeV (-22%) to +10 μeV (+7%) although the X+ photoluminescence polarization does not change sign over this voltage range. This indicates that absorption in the structure and energy relaxation towards the X+ ground state might provide favourable scenarios for efficient electron-nuclear spin flip-flops, generating DNP during the first tens of ps of the X+ lifetime which is on the order of hundreds of ps. Voltage control of DNP is further confirmed in Hanle experiments.

  8. Polypropylene track membranes as a promising material for targets with polarized protons

    Science.gov (United States)

    Barashkova, I. I.; Bunyatova, E. I.; Kravets, L. I.

    2014-01-01

    Polypropylene track membranes made by irradiation of polypropylene films with a beam of high-energy heavy ions followed by chemical etching of latent ion tracks are proposed for being used as a polarized target material. To give membranes paramagnetic properties needed for allowing dynamic polarization of nuclei, the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl was introduced in the samples by the thermal diffusion technique. Using the electron paramagnetic resonance method, we obtained information on paramagnetic centers in the polymer matrix of the membranes and determined the nitroxyl radical concentration and rotational mobility of the spin probe in them.

  9. MEASUREMENT OF POLARIZATION OBSERVABLES IN VECTOR MESON PHOTOPRODUCTION USING A TRANSVERSELY-POLARIZED FROZEN-SPIN TARGET AND POLARIZED PHOTONS AT CLAS, JEFFERSON LAB

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Priyashree [Florida State Univ., Tallahassee, FL (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-11-30

    The study of baryon resonances provides a deeper understanding of the strong interaction because the dynamics and relevant degrees of freedom hidden within them are re ected by the properties of the excited states of baryons. Higher-lying excited states at and above 1.7 GeV/c2 are generally predicted to have strong couplings to final states involving a heavier meson, e. g. one of the vector mesons, ρ, ω φ, as compared to a lighter pseudoscalar meson, e. g. π and η. Decays to the ππΝ final states via πΔ also become more important through the population of intermediate resonances. We observe that nature invests in mass rather than momentum. The excited states of the nucleon are usually found as broadly overlapping resonances which may decay into a multitude of final states involving mesons and baryons. Polarization observables make it possible to isolate single resonance contributions from other interference terms. The CLAS g9 (FROST) experiment, as part of the N* spectroscopy program at Je?erson Laboratory, accumulated photoproduction data using circularly- & linearly-polarized photons incident on a transversely-polarized butanol target (g9b experiment) in the photon energy range 0:3-2:4 GeV & 0:7-2:1 GeV, respectively. In this work, the analysis of reactions and polarization observables which involve two charged pions, either in the fully exclusive reaction γρ -> ρπ+π- or in the semi-exclusive reaction with a missing neutral pion, γρ -> ρπ+π-(π0) will be presented. For the reaction ρπ+π-, eight polarization observables (Is, Ic, Px, Py, Psx; y, Pcx; y) have been extracted. The high statistics data rendered it possible to extract these observables in three dimensions. All of them are first-time measurements. The fairly good agreement of Is, Ic obtained from this analysis with the experimental results from a previous CLAS experiment provides support for the first-time measurements. For the reaction γρ -> ρω -> ρπ+π(π0, five polarization

  10. Deposition techniques for the preparation of thin film nuclear targets

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1987-07-01

    This review commences with a brief description of the basic principles that regulate vacuum evaporation and the physical processes involved in thin film formation, followed by a description of the experimental methods used. The principle methods of heating the evaporant are detailed and the means of measuring and controlling the film thickness are elucidated. Types of thin film nuclear targets are considered and various film release agents are listed. Thin film nuclear target behaviour under ion-bombardment is described and the dependence of nuclear experimental results upon target thickness and uniformity is outlined. Special problems associated with preparing suitable targets for lifetime measurements are discussed. The causes of stripper-foil thickening and breaking under heavy-ion bombardment are considered. A comparison is made between foils manufactured by a glow discharge process and those produced by vacuum sublimation. Consideration is given to the methods of carbon stripper-foil manufacture and to the characteristics of stripper-foil lifetimes are considered. Techniques are described that have been developed for the fabrication of special targets, both from natural and isotopically enriched material, and also of elements that are either chemically unstable, or thermally unstable under irradiation. The reduction of metal oxides by the use of hydrogen or by utilising a metallothermic technique, and the simultaneous evaporation of reduced rare earth elements is described. A comprehensive list of the common targets is presented

  11. Stable isotope-resolved analysis with quantitative dissolution dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Lerche, Mathilde Hauge; Yigit, Demet; Frahm, Anne Birk

    2018-01-01

    Metabolite profiles and their isotopomer distributions can be studied non-invasively in complex mixtures with NMR. The advent of dissolution Dynamic Nuclear Polarization (dDNP) and isotope enrichment add sensitivity and resolution to such met-abolic studies. Metabolic pathways and networks can...

  12. A 282 GHz Probe for Dynamic Nuclear Polarization

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy

    of the coil is976 MHz. A magnetic field distribution at 108 MHz and 430 MHz was calculated for the RF coil, the results revealedgood homogeneity and intensity along x,y,z axes. Figure 1 shows the general view of the probe and cross section through the microwave container with field distribution. Operating......Introduction In DNP, microwave irradiation of a sample facilitates the transfer of spin polarization from electrons tonuclei. One of the way to improve the DNP enhancement is to transfer microwave power from the mm-wave source tothe sample more effectively. Several methods and techniques...... to efficiently transport microwave energy from the microwave source to the sample have been developed. For example, a corrugated waveguide allows to deliver mm-wave energy from external source to the probe with minimum losses1.The conventional approach at high frequencies is to irradiate the sample directly from...

  13. Target and double spin asymmetries of deeply virtual π0 production with a longitudinally polarized proton target and CLAS

    Directory of Open Access Journals (Sweden)

    A. Kim

    2017-05-01

    Full Text Available The target and double spin asymmetries of the exclusive pseudoscalar channel e→p→→epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS. The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, −t and ϕ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and E¯T. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.

  14. Nuclear Data Target Accuracy Requirements For MA Burners

    International Nuclear Information System (INIS)

    Palmiotti, G.; Salvatores, M.

    2011-01-01

    A nuclear data target accuracy assessment has been carried out for two types of transmuters: a critical sodium fast reactor(SFR) and an accelerator driven system (ADMAB). Results are provided for a 7 group energy structure. Considerations about fuel cycle parameters uncertainties illustrate their dependence from the isotope final densities at end of cycle.

  15. Summary of physics from measurements with longitudinally polarized beams and targets at ZGS energies

    Energy Technology Data Exchange (ETDEWEB)

    Yokosawa, A.

    1980-09-01

    An extensive amount of data were obtained from measurements of proton-proton elastic scattering from 1 to 12 GeV/c using longitudinally polarized beams and targets. Physics learned from these data as well as other related experimental results is summarized. The topics include structures observed in nucleon-nucleon scattering at lower energies and dinucleon resonances, pp scattering-amplitude measurements at 6 GeV/c, and lerge p/sub perpendicular/ results in pp elastic scattering.

  16. Orphan nuclear receptors, excellent targets of drug discovery.

    Science.gov (United States)

    Shi, Yanhong

    2006-11-01

    To date, the pharmaceutical industry has placed a considerable amount of interest in the discovery of drug targets and diagnostics. One of the most challenging areas of drug discovery today is the search for novel receptor-ligand pairs. Nuclear receptors comprise a large superfamily of ligand-dependent transcription factors that regulate the expression of genes critical for a variety of biological processes, including development, growth, differentiation, and homeostasis. Orphan nuclear receptors, for which the ligands are not yet identified, represent the most ancient component of the nuclear receptor superfamily. Orphan nuclear receptors not only offer a unique system to uncover novel signaling pathways that impact human health, but also provide excellent targets of drug discoveries for a variety of human diseases. This review highlights advances made on ligand identification for orphan nuclear receptors using transgenic mouse models, cell-based screening, direct binding, structure-based assays, and computer-aided virtual screening. With rapid advances in combinatorial chemistry and high throughput screening, along with other modern technologies, this field promises a bountiful harvest.

  17. Multispin-assisted optical pumping of bulk 13C nuclear spin polarization in diamond

    Science.gov (United States)

    Pagliero, Daniela; Rao, K. R. Koteswara; Zangara, Pablo R.; Dhomkar, Siddharth; Wong, Henry H.; Abril, Andrea; Aslam, Nabeel; Parker, Anna; King, Jonathan; Avalos, Claudia E.; Ajoy, Ashok; Wrachtrup, Joerg; Pines, Alexander; Meriles, Carlos A.

    2018-01-01

    One of the most remarkable properties of the nitrogen-vacancy (NV) center in diamond is that optical illumination initializes its electronic spin almost completely, a feature that can be exploited to polarize other spin species in their proximity. Here we use field-cycled nuclear magnetic resonance to investigate the mechanisms of spin-polarization transfer from NVs to 13C spins in diamond at room temperature. We focus on the dynamics near 51 mT, where a fortuitous combination of energy-matching conditions between electron and nuclear spin levels gives rise to alternative polarization transfer channels. By monitoring the 13C spin polarization as a function of the applied magnetic field, we show 13C spin pumping takes place via a multispin cross-relaxation process involving the N V- spin and the electronic and nuclear spins of neighboring P1 centers. Further, we find that this mechanism is insensitive to the crystal orientation relative to the magnetic field, although the absolute level of 13C polarization—reaching up to ˜3 % under optimal conditions—can vary substantially depending on the interplay between optical pumping efficiency, photogenerated carriers, and laser-induced heating.

  18. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein–protein interfaces

    International Nuclear Information System (INIS)

    Wylie, Benjamin J.; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.

    2015-01-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces

  19. Polarizing T and B cell responses by APC-targeted subunit vaccines.

    Directory of Open Access Journals (Sweden)

    Gunnveig eGrødeland

    2015-07-01

    Full Text Available Current influenza vaccines mostly aim at the induction of specific neutralizing antibodies. While antibodies are important for protection against a particular virus strain, T cells can recognize epitopes that will offer broader protection against influenza. We have previously developed a DNA vaccine format by which protein antigens can be targeted specifically to receptors on antigen presenting cells (APCs. The DNA-encoded vaccine proteins are homodimers, each chain consisting of a targeting unit, a dimerization unit, and an antigen. The strategy of targeting antigen to APCs greatly enhances immune responses as compared to non-targeted controls. Furthermore, targeting of antigen to different receptors on APCs can polarize the immune response to different arms of immunity. Here, we discuss how targeting of hemagglutinin (HA to MHC class II molecules increases Th2 and IgG1 antibody responses, whereas targeting to chemokine receptors XCR1 or CCR1/3/5 increases Th1 and IgG2a responses, in addition to CD8+ T cell responses. We also discuss these results in relation to work published by others on APC-targeting. Differential targeting of APC surface molecules may allow the induction of tailor-made phenotypes of adaptive immune responses that are optimal for protection against various infectious agents, including influenza virus.

  20. A polarized hydrogen/deuterium atomic beam source for internal target experiments

    International Nuclear Information System (INIS)

    Szczerba, D.; Buuren, L.D. van; Brand, J.F.J. van den; Bulten, H.J.; Ferro-Luzzi, M.; Klous, S.; Kolster, H.; Lang, J.; Mul, F.; Poolman, H.R.; Simani, M.C.

    2000-01-01

    A high-brightness hydrogen/deuterium atomic beam source is presented. The apparatus, previously used in electron scattering experiments with tensor-polarized deuterium (Ferro-Luzzi et al., Phys. Rev. Lett. 77 (1996) 2630; van den Brand et al., Phys. Rev. Lett. 78 (1997) 1235; Zhou et al., Phys. Rev. Lett. 82 (1998) 687; Bouwhuis et al., Phys. Rev. Lett. 82 (1999) 3755), was configured as a source for internal target experiments to measure single- and double-polarization observables, with either polarized hydrogen or vector/tensor polarized deuterium. The atomic beam intensity was enhanced by a factor of ∼2.5 by optimizing the Stern-Gerlach focusing system using high tip-field (∼1.5 T) rare-earth permanent magnets, and by increasing the pumping speed in the beam-formation chamber. Fluxes of (5.9±0.2)x10 16 1 H/s were measured in a diameter 12 mmx122 mm compression tube with its entrance at a distance of 27 cm from the last focusing element. The total output flux amounted to (7.6±0.2)x10 16 1 H/s

  1. Dynamic Nuclear Polarization and Relaxation of H and D Atoms in Solid Mixtures of Hydrogen Isotopes

    Science.gov (United States)

    Sheludiakov, S.; Ahokas, J.; Järvinen, J.; Vainio, O.; Lehtonen, L.; Vasiliev, S.; Lee, D. M.; Khmelenko, V. V.

    2017-04-01

    We report on a study of dynamic nuclear polarization and electron and nuclear spin relaxation of atomic hydrogen and deuterium in solid molecular matrices of H2, D2, and HD mixtures. The electron and nuclear spin relaxation times (T_{1e} and T_{1N}) were measured within the temperature range 0.15-2.5 K in a magnetic field of 4.6 T, conditions which ensure a high polarization of electron spins. We found that T_{1e} is nearly temperature independent in this temperature range, while T_{1N} decreased by two orders of magnitude upon raising temperature. Such strong temperature dependence is typical for the nuclear Orbach mechanism of relaxation via the electron spins. We found that the nuclear spins of H atoms in solid D2 and D2{:}HD can be efficiently polarized by the Overhauser effect. Pumping the forbidden transitions of H atoms also leads to DNP, with the efficiency strongly dependent on the concentration of D atoms. This behavior indicates the cross effect mechanism of the DNP and nuclear relaxation, which turns out to be well resolved in the conditions of our experiments. Efficient DNP of H atoms was also observed when pumping the middle D line located in the center of the ESR spectrum. This phenomenon can be explained in terms of clusters or pairs of H atoms with a strong exchange interaction. These clusters have partially allowed transitions in the center of the ESR spectrum, and DNP may be created via the resolved cross effect.

  2. Parity nonconserving asymmetries in the resonance scattering and nuclear reactions induced by polarized protons

    International Nuclear Information System (INIS)

    Dumitrescu, O.; Horoi, M.; Carstoiu, F.; Stratan, G.

    1989-01-01

    The parity-nonconserving nucleon-nucleon (PNC-NN) interaction studied in nuclear systems provides an unique window on ΔS=0 hadronic weak processes. To check the predictions concerning the interactions between weak hadronic currents, low energy nuclear physics processes appear to be very suitable. Considering the nuclear reactions induced by polarized protons as low energy nuclear processes we derive expressions for the longitudinal and irregular transverse PNC analysing powers, when the reactions take place via parity mixed resonances. Applications for 13 C(p-vector,p) 13 C, 15 N(p-vector,p) 15 N and 15 N(p-vector,α) 12 C resonance reactions are done. (author). 23 refs, 4 figs, 2 tabs

  3. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  4. Enabling surface nuclear magnetic resonance at high-noise environments using a pre-polarization pulse

    Science.gov (United States)

    Lin, Tingting; Yang, Yujing; Teng, Fei; Müller-Petke, Mike

    2018-02-01

    The technique of surface nuclear magnetic resonance (SNMR) has been widely used for hydrological investigations in recent years. Unfortunately, the detected SNMR signals are limited to tens of nanovolts and are thus susceptible to environmental noise. While pre-polarization pulses to enhance the detected signal amplitudes are common in laboratory applications, SNMR field testing has only utilized excitation pulses until now. In conducting measurements in China, we demonstrate that adding a pre-polarization field to the SNMR pulse sequence is feasible and allows for the reliable detection of SNMR signals in noisy scenarios that otherwise prohibit signal detection. We introduce a forward modelling for pre-polarization using SNMR and present a three-layer model obtained from inverse modelling that satisfies the observed data from the field experiment. We expect this development to open up new applications for SNMR technology, especially in high-noise level places, such as active mines.

  5. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva

    2016-08-15

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  6. Dynamic nuclear polarization by frequency modulation of a tunable gyrotron of 260 GHz

    Science.gov (United States)

    Yoon, Dongyoung; Soundararajan, Murari; Cuanillon, Philippe; Braunmueller, Falk; Alberti, Stefano; Ansermet, Jean-Philippe

    2016-01-01

    An increase in Dynamic Nuclear Polarization (DNP) signal intensity is obtained with a tunable gyrotron producing frequency modulation around 260 GHz at power levels less than 1 W. The sweep rate of frequency modulation can reach 14 kHz, and its amplitude is fixed at 50 MHz. In water/glycerol glassy ice doped with 40 mM TEMPOL, the relative increase in the DNP enhancement was obtained as a function of frequency-sweep rate for several temperatures. A 68 % increase was obtained at 15 K, thus giving a DNP enhancement of about 80. By employing λ / 4 and λ / 8 polarizer mirrors, we transformed the polarization of the microwave beam from linear to circular, and achieved an increase in the enhancement by a factor of about 66% for a given power.

  7. Nuclear spin polarized alkali beams (Na, Li): Optical pumping with electro-optically modulated laser beam

    International Nuclear Information System (INIS)

    Reich, H.; Jaensch, H.J.

    1990-01-01

    An improvement of the Heidelberg source for polarized heavy ions (PSI) is described. To produce a nuclear spin polarized atomic Na beam an electro-optically modulated laser beam has been used for optical pumping. An electro-optic modulator (EOM) was constructed with a bandwidth of 1.8 GHz. Without a spin separating Stern-Gerlach magnet it is now possible to prepare a Na atomic beam in one single hyperfine magnetic substate. Thus the beam figure of merit (polarization 2 x intensity of the beam) has been improved by a factor of 4 as compared to the previous setup. Experiences with the new system collected from several beam times are discussed. (orig.)

  8. Laser - Polarized HE-3 Target Used for a Precision Measurement of the Neutron Spin Structure

    Energy Technology Data Exchange (ETDEWEB)

    Romalis, M

    2003-11-05

    This thesis describes a precision measurement of the deep inelastic neutron spin structure function g{sub 1}{sup n}(x). The main motivation for the experiment is a test of the Bjorken sum rule. Because of smaller statistical errors and broader kinematic coverage than in previous experiments, we are able to study in detail the behavior of the spin structure function g{sub 1}{sup n}(x) for low values of the Bjorken scaling variable x. We find that it has a strongly divergent behavior, in contradiction to the naive predictions of the Regge theory. This calls into question the methods commonly used for extrapolation of g{sub 1}{sup n}(x) to x = 0. The difference between the proton and the neutron spin structure functions is less divergent at low x, so a test of the Bjorken sum rule is possible. We confirm the sum rule with an accuracy of 8%. The experiment was performed at SLAC using a 50 GeV polarized electron beam and a polarized {sup 3}He target. In this thesis the polarized target is described in detail. We used the technique of Rb optical pumping and Rb-He spin exchange to polarize the {sup 3}He. Because of a novel mechanical design our target had the smallest dilution ever achieved for a high density gas target. Since this is a precision measurement, particular efforts were made to reduce the systematic errors due to the uncertainty in the target parameters. Most important parameters were measured by more than one method. We implemented novel techniques for measuring the thickness of the glass windows of the target, the {sup 3}He density, and the polarization. In particular, one of the methods for measuring the gas density relied on the broadening of the Rb optical absorption lines by collisions with {sup 3}He atoms. The calibration of this technique resulted in the most precise measurements of the pressure broadening parameters for {sup 3}He as well as several other gases, which are described in an Appendix. The polarization of the {sup 3}He was also measured by

  9. Cluster formation restricts dynamic nuclear polarization of xenon in solid mixtures.

    Science.gov (United States)

    Kuzma, N N; Pourfathi, M; Kara, H; Manasseh, P; Ghosh, R K; Ardenkjaer-Larsen, J H; Kadlecek, S J; Rizi, R R

    2012-09-14

    During dynamic nuclear polarization (DNP) at 1.5 K and 5 T, (129)Xe nuclear magnetic resonance (NMR) spectra of a homogeneous xenon/1-propanol/trityl-radical solid mixture exhibit a single peak, broadened by (1)H neighbors. A second peak appears upon annealing for several hours at 125 K. Its characteristic width and chemical shift indicate the presence of spontaneously formed pure Xe clusters. Microwave irradiation at the appropriate frequencies can bring both peaks to either positive or negative polarization. The peculiar time evolution of (129)Xe polarization in pure Xe clusters during DNP can be modelled as an interplay of spin diffusion and T(1) relaxation. Our simple spherical-cluster model offers a sensitive tool to evaluate major DNP parameters in situ, revealing a severe spin-diffusion bottleneck at the cluster boundaries and a significant sample overheating due to microwave irradiation. Subsequent DNP system modifications designed to reduce the overheating resulted in four-fold increase of (129)Xe polarization, from 5.3% to 21%.

  10. Target-fueled nuclear reactor for medical isotope production

    Science.gov (United States)

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  11. Development of a mobile dynamic nuclear polarizer for continuous flow applications

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Sandro; Dollmann, Bjoern; Bauer, Christian; Koelzer, Michael; Spiess, Hans W.; Hinderberger, Dariush; Muennemann, Kerstin [Max Planck Institute for Polymer Research, Mainz (Germany); Bluemler, Peter [Johannes Gutenberg University, Institute of Physics, Mainz (Germany)

    2011-07-01

    Despite its wide applicability in natural science, NMR still suffers from its inherently low sensitivity. This could be overcome by hyperpolarization of molecules via dynamic nuclear polarization (DNP). Here, we introduce a mobile DNP polarizer, based on an inexpensive Halbach magnet operating at 0.35 T. It shows an almost vanishing magnetic flux at its outer side and is not disturbing other instruments. It can be placed directly next to a superconducting magnet, thus limiting the transport time of the hyperpolarized sample. It will be shown, that the Halbach magnet has the same DNP performance like an electromagnet. Although DNP methods have found important applications in science, two problems remain: Firstly radicals are needed, which are mostly toxic. This problem becomes crucial with regard to medical applications. Secondly, the sample must be transported from the polarization magnet to the place of detection and polarization losses due to T1 occur. We are currently implementing a flow system to the mobile DNP polarizer, which should overcome both obstacles. The radicals will be immobilized in a gel matrix and the hyperpolarized radical free fluid is pumped subsequently directly in the MRI scanner.

  12. High-spin nuclear target of 178m2Hf: creation and nuclear reaction studies

    International Nuclear Information System (INIS)

    Oganessyan, Yu.Ts.; Karamyan, S.A.; Gangrskij, Yu.P.

    1993-01-01

    A long-lived (31 years) four-quasiparticle isomer 178m 2 Hf(I,K π =16,16 + ) was produced in microweight quantities using the nuclear reaction 176 Yb( 4 He, 2n). Methods of precision chemistry and mass-separation for the purification of the produced Hf material have been developed. Thin targets of isomeric hafnium-178 on carbon backings were prepared and used in experiments on a neutron, proton and deuteron beams. First results on nuclear reactions on a high-spin exotic target were obtained. Experiments on electromagnetic interactions of the isomeric hafnium using methods of the collinear laser spectroscopy as well as of the nuclear orientation of hafnium implanted into a crystalline media were started. 11 refs.; 11 figs.; 2 tabs

  13. Low-temperature dynamic nuclear polarization at 9.4 T with a 30 mW microwave source.

    Science.gov (United States)

    Thurber, Kent R; Yau, Wai-Ming; Tycko, Robert

    2010-06-01

    Dynamic nuclear polarization (DNP) can provide large signal enhancements in nuclear magnetic resonance (NMR) by transfer of polarization from electron spins to nuclear spins. We discuss several aspects of DNP experiments at 9.4 T (400 MHz resonant frequency for (1)H, 264 GHz for electron spins in organic radicals) in the 7-80K temperature range, using a 30 mW, frequency-tunable microwave source and a quasi-optical microwave bridge for polarization control and low-loss microwave transmission. In experiments on frozen glycerol/water doped with nitroxide radicals, DNP signal enhancements up to a factor of 80 are observed (relative to (1)H NMR signals with thermal equilibrium spin polarization). The largest sensitivity enhancements are observed with a new triradical dopant, DOTOPA-TEMPO. Field modulation with a 10 G root-mean-squared amplitude during DNP increases the nuclear spin polarizations by up to 135%. Dependencies of (1)H NMR signal amplitudes, nuclear spin relaxation times, and DNP build-up times on the dopant and its concentration, temperature, microwave power, and modulation frequency are reported and discussed. The benefits of low-temperature DNP can be dramatic: the (1)H spin polarization is increased approximately 1000-fold at 7 K with DNP, relative to thermal polarization at 80K. (c) 2010 Elsevier Inc. All rights reserved.

  14. Hadron-pair production on transversely polarized targets in semi-inclusive deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Christopher

    2014-07-29

    Nucleons such as protons and neutrons are composite objects made of quarks, which are bound together by the strong force via the exchange of gluons. The probability of finding a quark of flavor q carrying the momentum fraction x of the fast moving parent nucleon is described by a parton distribution function (PDF) f{sub 1}{sup q}(x), the number density. The spin, an intrinsic angular momentum of elementary particles such as quarks but also of composite objects like nucleons, couples with magnetic fields, which allows one to align it. Taking into account this additional parameter, the spin, the scheme of PDFs in leading twist is expanded by the helicity distribution g{sub 1}{sup q}(x) and the transversity distribution h{sub 1}{sup q}(x). The first distribution covers the case where the nucleon and the quark are longitudinally polarized, while a transverse polarization is taken into account by the latter. A tool for the investigation of the PDFs is inclusive deep inelastic scattering (DIS) of electro-magnetic probes off (un)polarized nucleons at fixed-target experiments. This only gives access to f{sub 1}{sup q}(x) and g{sub 1}{sup q}(x), while the chiral-odd nature of the transversity distribution prevents a measurement without detecting the final hadronic states. However, h{sub 1}{sup q}(x) can be observed in semi-inclusive DIS (SIDIS) in combination with another chiral-odd function like the dihadron fragmentation function H{sub 1} {sup angle} {sup q} in the production of a hadron-pair. The resulting experimental challenge is the reason why f{sub 1}{sup q}(x) and g{sub 1}{sup q}(x) have been investigated for almost four decades, while h{sub 1}{sup q}(x) is still subject to recent measurements and analyses. The 160 GeV/c polarized muon beam of CERN's M2 beamline allows the COMPASS experiment to investigate spin effects using polarized solid-state targets. Since the year 2002 COMPASS has collected unique data sets on transversely polarized targets of lithium

  15. A bulk superconducting MgB2 cylinder for holding transversely polarized targets

    Science.gov (United States)

    Statera, M.; Balossino, I.; Barion, L.; Ciullo, G.; Contalbrigo, M.; Lenisa, P.; Lowry, M. M.; Sandorfi, A. M.; Tagliente, G.

    2018-02-01

    An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. A feasibility study with a prototype bulk MgB2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electron scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.

  16. Laser polarization dependence of proton emission from a thin foil target irradiated by a 70 fs, intense laser pulse

    International Nuclear Information System (INIS)

    Fukumi, A.; Nishiuchi, M.; Daido, H.; Li, Z.; Sagisaka, A.; Ogura, K.; Orimo, S.; Kado, M.; Hayashi, Y.; Mori, M.; Bulanov, S.V.; Esirkepov, T.; Nemoto, K.; Oishi, Y.; Nayuki, T.; Fujii, T.; Noda, A.; Nakamura, S.

    2005-01-01

    A study of proton emission from a 3-μm-thick Ta foil target irradiated by p-, s-, and circularly polarized laser pulses with respect to the target plane has been carried out. Protons with energies up to 880 keV were observed in the target normal direction under the irradiation by the p-polarized laser pulse, which yielded the highest efficiency for proton emission. In contrast, s- and circularly polarized laser pulses gave the maximum energies of 610 and 680 keV, respectively. The difference in the maximum energy between the p- and s-polarized cases was associated with the difference between the sheath fields estimated from electron spectra

  17. Kinematic approximation in the theory of stimulated nuclear polarization in radical recombination

    International Nuclear Information System (INIS)

    Mikhailov, S.A.; Purtov, P.A.

    1989-01-01

    Within the kinematic approximation, we have developed the theory of stimulated nuclear polarization (SNP) in reactions of geminal recombination of radicals in a strong d.c. magnetic field. We have obtained analytical formulas which are applicable for analysis of SNP effects occurring when the reactions are carried out in nonviscous solutions. The result is represented in the form of integrals with respect to the Green's function determining the kinematics of reagent approach. As an illustration of the proposed theory, we have calculated the polarization of nuclei formed in the reaction products of p-benzoquinone in CD 3 OD and in C 6 D 6 with addition of phenol, and we compare with experiment

  18. Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory

    International Nuclear Information System (INIS)

    Chamorro, E.; Proft, F. de; Geerlings, P.

    2005-01-01

    An extension of Cohen's nuclear Fukui function is presented in the spin-polarized framework of density-functional theory (SP-DFT). The resulting new nuclear Fukui function indices Φ Nα and Φ Sα are intended to be the natural descriptors for the responses of the nuclei to changes involving charge transfer at constant multiplicity and also the spin polarization at constant number of electrons. These generalized quantities allow us to gain new insights within a perturbative scheme based on DFT. Calculations of the electronic and nuclear SP-DFT quantities are presented within a Kohn-Sham framework of chemical reactivity for a sample of molecules, including H 2 O, H 2 CO, and some simple nitrenes (NX) and phosphinidenes (PX), with X=H, Li, F, Cl, OH, SH, NH 2 , and PH 2 . Results have been interpreted in terms of chemical bonding in the context of Berlin's theorem, which provides a separation of the molecular space into binding and antibinding regions

  19. Dynamic nuclear polarization using frequency modulation at 3.34 T

    Science.gov (United States)

    Hovav, Y.; Feintuch, A.; Vega, S.; Goldfarb, D.

    2014-01-01

    During dynamic nuclear polarization (DNP) experiments polarization is transferred from unpaired electrons to their neighboring nuclear spins, resulting in dramatic enhancement of the NMR signals. While in most cases this is achieved by continuous wave (cw) irradiation applied to samples in fixed external magnetic fields, here we show that DNP enhancement of static samples can improve by modulating the microwave (MW) frequency at a constant field of 3.34 T. The efficiency of triangular shaped modulation is explored by monitoring the 1H signal enhancement in frozen solutions containing different TEMPOL radical concentrations at different temperatures. The optimal modulation parameters are examined experimentally and under the most favorable conditions a threefold enhancement is obtained with respect to constant frequency DNP in samples with low radical concentrations. The results are interpreted using numerical simulations on small spin systems. In particular, it is shown experimentally and explained theoretically that: (i) The optimal modulation frequency is higher than the electron spin-lattice relaxation rate. (ii) The optimal modulation amplitude must be smaller than the nuclear Larmor frequency and the EPR line-width, as expected. (iii) The MW frequencies corresponding to the enhancement maxima and minima are shifted away from one another when using frequency modulation, relative to the constant frequency experiments.

  20. Electronic device for measuring the polarization parameter in the π-p → π0n charge exchange reaction on a polarized proton target

    International Nuclear Information System (INIS)

    Brehin, S.

    1967-12-01

    An electronic apparatus has been constructed to measure the polarization parameter P 0 (t) in π - p → π 0 n charge exchange scattering at 5.9 GeV/c and 11,2 GeV/c on polarized proton target. This device insures triggering of a heavy plate spark chamber, allowing visualisation of γ rays from the π 0 decays when the associated neutron offers suitable characteristics in direction and energy. The neutron is detected by an array of 32 counters and his energy is measured by a time of flight method. Electronic circuits of this apparatus are described as test and calibration methods used. (author) [fr

  1. Study of nuclear isovector spin responses from polarization transfer in (p,n) reactions at intermediate energies

    International Nuclear Information System (INIS)

    Wakasa, Tomotsugu

    1997-01-01

    We have measured a complete set of polarization transfer observables has been measured for quasi-free (p vector, n vector) reactions on 2 H, 6 Li, 12 C, 40 Ca, and 208 Pb at a bombarding energy of 346MeV and a laboratory scattering angle of 22deg (q=1.7 fm -1 ). The polarization transfer observables for all five targets are remarkably similar. These polarization observables yield separated spin-longitudinal (σ·q) and spin-transverse (σxq) nuclear responses. These results are compared to the spin-transverse responses measured in deep-inelastic electron scattering as well as to nuclear responses based on the random phase approximation. Such a comparison reveals an enhancement in the (p vector, n vector) spin-transverse channel, which masks the effect of pionic correlations in the response ratio. Second, the double differential cross sections at θ lab between 0deg and 12.3deg and the polarization transfer D NN at 0deg for the 90 Zr(p,n) reaction are measured at a bombarding energy of 295MeV. The Gamow-Teller(GT) strength B(GT) in the continuum deduced from the L=0 cross section is compared both with the perturbative calculation by Bertsch and Hamamoto and with the second-order random phase approximation calculation by Drozdz et al. The sum of B(GT) values up to 50MeV excitation becomes S β- =28.0±1.6 after subtracting the contribution of the isovector spin-monopole strength. This S β- value of 28.0±1.6 corresponds to about (93±5)% of the minimum value of the sum-rule 3(N-Z)=30. Last, first measurements of D NN (0deg) for (p vector, n vector) reactions at 295MeV yield large negative values up to 50MeV excitation for the 6 Li, 11 B, 12 C, 13 C(p vector, n vector) reactions. DWIA calculations using the Franey and Love (FL) 270MeV interaction reproduce differential cross sections and D NN (0deg) values, while the FL 325MeV interaction yield D NN (0deg) values less negative than the experimental values. (J.P.N.)

  2. Simultaneous nuclear data target accuracy study for innovative fast reactors

    International Nuclear Information System (INIS)

    Aliberti, G.; Palmiotti, G.; Salvatores, M.

    2007-01-01

    The present paper summarizes the major outcomes of a study conducted within a Nuclear Energy Agency Working Party on Evaluation Cooperation (NEA WPEC) initiative aiming to investigate data needs for future innovative nuclear systems, to quantify them and to propose a strategy to meet them. Within the NEA WPEC Subgroup 26 an uncertainty assessment has been carried out using covariance data recently processed by joint efforts of several US and European Labs. In general, the uncertainty analysis shows that for the wide selection of fast reactor concepts considered, the present integral parameters uncertainties resulting from the assumed uncertainties on nuclear data are probably acceptable in the early phases of design feasibility studies. However, in the successive phase of preliminary conceptual designs and in later design phases of selected reactor and fuel cycle concepts, there will be the need for improved data and methods, in order to reduce margins, both for economic and safety reasons. It is then important to define as soon as possible priority issues, i.e. which are the nuclear data (isotope, reaction type, energy range) that need improvement, in order to quantify target accuracies and to select a strategy to meet the requirements needed (e.g. by some selected new differential measurements and by the use of integral experiments). In this context one should account for the wide range of high accuracy integral experiments already performed and available in national or, better, international data basis, in order to indicate new integral experiments that will be needed to account for new requirements due to innovative design features, and to provide the necessary full integral data base to be used for validation of the design simulation tools.

  3. Measurement of double-spin asymmetries associated with deeply virtual Compton scattering on a transversely polarized hydrogen target

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Physikalisches Institut, Universitaet Giessen, 35392 Giessen (Germany); Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Akopov, N. [Yerevan Physics Institute, 375036 Yerevan (Armenia); Akopov, Z. [DESY, 22603 Hamburg (Germany); Aschenauer, E.C. [DESY, 15738 Zeuthen (Germany); Augustyniak, W. [Andrzej Soltan Institute for Nuclear Studies, 00-689 Warsaw (Poland); Avakian, R.; Avetissian, A. [Yerevan Physics Institute, 375036 Yerevan (Armenia); Avetisyan, E. [DESY, 22603 Hamburg (Germany); Belostotski, S. [Petersburg Nuclear Physics Institute, Gatchina, Leningrad region 188300 (Russian Federation); Bianchi, N. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Blok, H.P. [National Institute for Subatomic Physics (Nikhef), 1009 DB Amsterdam (Netherlands); Department of Physics and Astronomy, VU University, 1081 HV Amsterdam (Netherlands); Borissov, A. [DESY, 22603 Hamburg (Germany); Bowles, J. [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Brodski, I. [Physikalisches Institut, Universitaet Giessen, 35392 Giessen (Germany); Bryzgalov, V. [Institute for High Energy Physics, Protvino, Moscow region 142281 (Russian Federation); Burns, J. [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Capiluppi, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara and Dipartimento di Fisica, Universita di Ferrara, 44100 Ferrara (Italy); Capitani, G.P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Cisbani, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, gruppo Sanita and Istituto Superiore di Sanita, 00161 Rome (Italy); Ciullo, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara and Dipartimento di Fisica, Universita di Ferrara, 44100 Ferrara (Italy)

    2011-10-05

    Double-spin asymmetries in exclusive electroproduction of real photons from a transversely polarized hydrogen target are measured with respect to the product of target polarization with beam helicity and beam charge, and with respect to the product of target polarization with beam helicity alone. The asymmetries arise from the deeply virtual Compton scattering process and its interference with the Bethe-Heitler process. They are related to the real part of the same combination of Compton form factors as that determining the previously published transverse target single-spin asymmetries through the imaginary part. The results for the double-spin asymmetries are found to be compatible with zero within the uncertainties of the measurement, and are not incompatible with the predictions of the only available GPD-based calculation.

  4. Seismic effects on the reliability of polar cranes for nuclear power plants

    International Nuclear Information System (INIS)

    Kaiser, W.; Friedrich, H.; Knoefel, L.

    1985-01-01

    In order to meet the requirements of nuclear safety reactor components have to be designed aseismically. A model for studying simulated seismic effects on the reliability of containment equipment polar cranes is presented. Based on this model vertical and horizontal motions of the crane are investigated. Emphasis is laid on non-linearities caused by malfunctions such as lift of the crane from the runaway, lift of the trolley from the beams, slackening of the ropes as well as sliding of blocked track wheels. Seismic excitations are simulated by computer produced accelerograms

  5. Cross sections of deuteron induced nuclear reactions on metal targets

    International Nuclear Information System (INIS)

    Tarkanyi, F.; Ditroi, F.; Takacs, S.

    2005-01-01

    Integral excitation functions for the production of residual nuclides with light charged particles are basic data for different applications. The proton induced nuclear reactions are the most widely used and their cross section data are extensively studied. For practical applications these reactions are followed in importance by deuteron induced reactions. Due to the stripping process the production yield of the deuteron induced reactions is significant. High intensity deuteron beams can be produced relatively simply by accelerators. Deuteron induced reactions play an important role in secondary fast neutron sources, in thin layer activation technology, etc. The search of the literature shows that the cross section database for deuteron induced reactions is very poor (very few data above 15-20 MeV). No systematical study has been performed earlier. In addition the published data (except for a few well measured monitor and medically important reactions) show large discrepancies. To meet the requirements of these applications we performed a systematical experimental study of deuteron induced activation cross sections for different targets up to 50 MeV deuteron energy during the last years. Here we summarize the results for the most widely used technological materials: i.e. for metals. The targets were irradiated with external beams of the cyclotrons of Debrecen, Brussels and Sendai, Residual nuclei were measured by X- and gamma-spectrometry without chemical separation. The investigation includes a few hundred reactions induced on the following 20 target elements: Al, Ti, Fe, Ni, Cu, Zn, Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, Sn, Te, W, Ir, Pt, Pb. A significant part of the measured data is new. The measured excitation functions were compared with the theory by using the ALICE-IPPE and TALYS codes. For a few elements, isotopic cross sections were measured on highly enriched targets ( 100 Mo, 122,123 Te, 114 Cd) for medical radioisotope production Applications in the field of

  6. Nuclear safety targets and problems of social acceptability

    International Nuclear Information System (INIS)

    Macgill, S.M.

    1989-01-01

    The following are among the factors which make the problem of setting acceptable safety targets for societal protection from possible nuclear accidents one of such formidable proportion: The varied and often conflicting positions among and between the many constituencies with a claim to interest in the problem: local, national and international populations; lay, workplace and professional communities; private and public interests; active environmental lobbies and intentionally passive publics; powerful influences and politically unprivileged classes; press and mass media. To seek 'acceptability' of safety targets through common consensus is problematised by the difficulty in overcoming the immense social and historical forces that give rise to the prevailing contrariety among different people's positions. To seek resolution of differences by some appropriate weighting of the different views of different constituencies is problematised by the lack of unique identification of what the constituencies are, by the difficulty in faithfully representing their views, and by the absence of 'laws of social entitlement' vis-a-vis the weight that should be given to each. In sum, the problem of setting socially acceptable safety targets is itself bound up with inherently open ended questions of democracy and representation. (author)

  7. Gas, Liquid and Molten Targets at Cyclotron Beams: Target Systems and Related Nuclear Database

    International Nuclear Information System (INIS)

    Ditrói, F.; Tárkányi, F.; Takács, S.

    2009-01-01

    In a systematic study our group worked on measurement of activation data of charged particle induced nuclear reaction possible involved in the production of radioisotopes for medical use. We have investigated the cross section and yield data of proton, deuteron helium-3 and alpha particle induced reactions on target materials for isotope productions relevant for medical applications as well as nuclear reactions on different structural material applied in construction of different target units. The acquired information are used or in the future can be used to determine the type of the construction materials optimal for building a certain target unit to be able to produce high specific activity and high quality radioactive isotope. In this work we have investigated different materials in activation point of view. Also several materials and reactions were studied for monitoring purposes. Use of thin metallic foils is a simple method to determine the parameters of the charged particle beams applied for isotope production. Using this method one can determine the energy and intensity of the bombarding beam and in certain cases the distribution or the profile of the bombarding beam. (author)

  8. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    International Nuclear Information System (INIS)

    Clarkson, R.B.; Odintsov, B.M.; Ceroke, P.J.; Ardenkjaer-Larsen, J.H.; Fruianu, M.; Belford, R.L.

    1998-01-01

    Carbon chars have been synthesized in our laboratory from a variety of starting materials, by means of a highly controlled pyrolysis technique. These chars exhibit electron paramagnetic resonance (EPR) line shapes which change with the local oxygen concentration in a reproducible and stable fashion; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the 1 H nuclear spin population in conjunction with electron Zeeman pumping. Low-frequency EPR, DNP and DNP-enhanced MRI all show promise as oximetry methods when used with carbon chars. (author)

  9. The Precision Measurement of the Neutron Spin Structure Function Using Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X

    2004-01-05

    Using a 48.6 GeV polarized electron beam scattering off a polarized {sup 3}He target at Stanford Linear Accelerator Centre (SLAC), they measured the neutron spin structure function g{sub 1}{sup n} over kinematic(x) ranging 0.014 < x <0.7 and 1 < Q{sup 2} < 17GeV{sup 2}. The measurement gave the integral result over the neutron spin structure function {integral}{sub 0.014}{sup 0.7} g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.004(stat) {+-} 0.005(syst) at an average Q{sup 2} = 5GeV{sup 2}. Along with the proton results from SLAC E143 experiment (0.03 < x) and SMC experiment (0.014 < x < 0.03), they find the Bjorken sum rule appears to be largely saturated by the data integrated down to x of 0.014. However, they observe relatively large values for g{sub 1}{sup n} at low x. The result calls into question the usual methods (Regge theory) for extrapolating to x = 0 to find the full neutron integral {integral}{sub 0}{sup t} g{sub 1}{sup n}(x) dx, needed for testing the Quark-Parton Model (QMP).

  10. Passive sampling for target and nontarget analyses of moderately polar and nonpolar substances in water.

    Science.gov (United States)

    Allan, Ian J; Harman, Christopher; Ranneklev, Sissel B; Thomas, Kevin V; Grung, Merete

    2013-08-01

    The applicability of silicone rubber and low-density polyethylene (LDPE) as passive sampling materials for target and nontarget analyses of moderately polar and nonpolar substances was assessed through a field deployment of samplers along a small, polluted stream in Oslo, Norway. Silicone and LDPE samplers of identical surface area (but different volumes) were deployed at 6 sites in the River Alna for 49 d. Quantitative target analysis by gas chromatography-mass spectrometry (quadrupole, single-ion monitoring mode) demonstrated that masses of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine compounds absorbed in the 2 polymeric materials were consistent with the current understanding of the control and mode of accumulation in these sampler materials. Some deviation was observed for decabromodiphenyl ether (BDE-209) and may be linked to the large molecular size of this substance, resulting in lower diffusivity in the LDPE. Target and nontarget analyses with gas chromatography coupled to high resolution time-of-flight mass spectrometry allowed the identification of a wide range of chemicals, including organophosphate compounds (OPCs) and musk compounds (galaxolide and tonalid). Semiquantitative analysis revealed enhanced quantities of the OPCs in silicone material, indicating some limitation in the absorption and diffusion of these substances in LDPE. Overall, silicone allows nontarget screening analysis for compounds with a wider range of log octanol-water partition coefficient values than what can be achieved with LDPE. Copyright © 2013 SETAC.

  11. Large enhancement of deuteron polarization with frequency modulated microwaves

    CERN Document Server

    Adeva, B; Arik, S; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin,; Baum, G; Berglund, P; Betev, L; Birda, I G; Birsa, R; Bjrkholm, P; Bonner, B E; de Botton, N; Boutemeur, M; Bradamante, Franco; Bressan, A; Brullc, A; Buchanan, J; Bültmann, S; Burtin, E; Cavata, C; Chen, J P; Clement, J; Clocchiatti, M; Corcoran, M D; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Deshpande, S; Dalla Torre, A; Van Dantzig, R; Dhawan, S; Dulya, C; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Day, D; Feinstein, F; Fernández, C; Frois, B; Garabatos, C; Garzón, J A; Gaussiran, T; Giorgi, M; von Goeler, E; Goloutvin, Igor A; Gómez, A; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, D; von Harrach, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; De Jong, M; Kabu, E M; Kageya, T; Kaiser, R; Karev, A; Kessler, H J; Ketel, T J; Kiryushin, Yu T; Kishi, A; Kisselev, Yu; Klostermann, L; Krämer, Dietrich; Kukhtin, V; Kyynarinen, J; Lamanna, M; Landgraf, U; Lau, V; Krivokhijinea, K; Layda, T; Le Go, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; López-Ponte, S; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B; McCarthy, J S; van Middelkoop, K; Medved, G; Miller, D; Mitchell, J; Mori, K; Moromisato, J; Mutchler, G S; Nagaitsev, A; Nassalski, J; Naumann, Lutz; Neganov, B; Niinikoski, T O; Oberski, J E J; Ogawa, A; Okumi, S; Ozben, C S; Penzo, Aldo L; Pérez, C A; Perrot-Kunne, F; Piegaia, R; Pinsky, L; Platchkov, S; Pló, M; Pose, D; Postma, D; Peshekhonov, H; Pretz, J; Pussieux, T; Pyrlik, J; Reyhancan, I; Rieubland, Jean Michel; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, E; Rondon, O; Ropelewski, Leszek; Rosado, A; Sabo, I; Saborido, J; Salvato, G; Sandacz, A; Sanders, D; Savin, I; Schiavon, Paolo; Schüler, K P; Segel, R; Seitz, R; Semertzidis, Y; Sergeev, S; Sever, F; Shanahan, P; Sichtermann, E P; Smirnov, G; Staude, A; Steinmetz, A; Stuhrmann, H; Teichert, K M; Tessarotto, F; Thiel, W; Velasco, M; Vogt, J; Voss, R; Weinstein, R; Whitten, C; Willumeit, R; Windmolders, R; Wislicki, W; Witzmann, A; Yañez, A; Zanetti, A M; Zhao, J; Zamiatin, N I

    1996-01-01

    We report a large enhancement of 1.7 in deuteron polarization up to values of 0.6 due to frequency modulation of the polarizing microwaves in a two liters polarized target using the method of dynamic nuclear polarization. This target was used during a deep inelastic polarized muon-deuteron scattering experiment at CERN. Measurements of the electron paramagnetic resonance absorption spectra show that frequency modulation gives rise to additional microwave absorption in the spectral wings. Although these results are not understood theoretically, they may provide a useful testing ground for the deeper understanding of dynamic nuclear polarization.

  12. Effect of heavy atoms on photochemically induced dynamic nuclear polarization in liquids

    Science.gov (United States)

    Okuno, Yusuke; Cavagnero, Silvia

    2018-01-01

    Given its short hyperpolarization time (∼10-6 s) and mostly non-perturbative nature, photo-chemically induced dynamic nuclear polarization (photo-CIDNP) is a powerful tool for sensitivity enhancement in nuclear magnetic resonance. In this study, we explore the extent of 1H-detected 13C nuclear hyperpolarization that can be gained via photo-CIDNP in the presence of small-molecule additives containing a heavy atom. The underlying rationale for this methodology is the well-known external-heavy-atom (EHA) effect, which leads to significant enhancements in the intersystem-crossing rate of selected photosensitizer dyes from photoexcited singlet to triplet. We exploited the EHA effect upon addition of moderate amounts of halogen-atom-containing cosolutes. The resulting increase in the transient triplet-state population of the photo-CIDNP sensitizer fluorescein resulted in a significant increase in the nuclear hyperpolarization achievable via photo-CIDNP in liquids. We also explored the internal-heavy-atom (IHA) effect, which is mediated by halogen atoms covalently incorporated into the photosensitizer dye. Widely different outcomes were achieved in the case of EHA and IHA, with EHA being largely preferable in terms of net hyperpolarization.

  13. Nuclear fallout provides a new link between aPKC and polarized cell trafficking.

    Science.gov (United States)

    Calero-Cuenca, Francisco J; Espinosa-Vázquez, José Manuel; Reina-Campos, Miguel; Díaz-Meco, María T; Moscat, Jorge; Sotillos, Sol

    2016-04-18

    Cell polarity, essential for cell physiology and tissue coherence, emerges as a consequence of asymmetric localization of protein complexes and directional trafficking of cellular components. Although molecules required in both processes are well known their relationship is still poorly understood. Here we show a molecular link between Nuclear Fallout (Nuf), an adaptor of Rab11-GTPase to the microtubule motor proteins during Recycling Endosome (RE) trafficking, and aPKC, a pivotal kinase in the regulation of cell polarity. We demonstrate that aPKC phosphorylates Nuf modifying its subcellular distribution. Accordingly, in aPKC mutants Nuf and Rab11 accumulate apically indicating altered RE delivery. We show that aPKC localization in the apico-lateral cortex is dynamic. When we block exocytosis, by means of exocyst-sec mutants, aPKC accumulates inside the cells. Moreover, apical aPKC concentration is reduced in nuf mutants, suggesting aPKC levels are maintained by recycling. We demonstrate that active aPKC interacts with Nuf, phosphorylating it and, as a result, modifying its subcellular distribution. We propose a regulatory loop by which Nuf promotes aPKC apical recycling until sufficient levels of active aPKC are reached. Thus, we provide a novel link between cell polarity regulation and traffic control in epithelia.

  14. Overhauser Geomagnetic Sensor Based on the Dynamic Nuclear Polarization Effect for Magnetic Prospecting

    Science.gov (United States)

    Ge, Jian; Dong, Haobin; Liu, Huan; Yuan, Zhiwen; Dong, He; Zhao, Zhizhuo; Liu, Yonghua; Zhu, Jun; Zhang, Haiyang

    2016-01-01

    Based on the dynamic nuclear polarization (DNP) effect, an alternative design of an Overhauser geomagnetic sensor is presented that enhances the proton polarization and increases the amplitude of the free induction decay (FID) signal. The short-pulse method is adopted to rotate the enhanced proton magnetization into the plane of precession to create an FID signal. To reduce the negative effect of the powerful electromagnetic interference, the design of the anti-interference of the pick-up coil is studied. Furthermore, the radio frequency polarization method based on the capacitive-loaded coaxial cavity is proposed to improve the quality factor of the resonant circuit. In addition, a special test instrument is designed that enables the simultaneous testing of the classical proton precession and the Overhauser sensor. Overall, comparison experiments with and without the free radical of the Overhauser sensors show that the DNP effect does effectively improve the amplitude and quality of the FID signal, and the magnetic sensitivity, resolution and range reach to 10 pT/Hz1/2@1 Hz, 0.0023 nT and 20–100 μT, respectively. PMID:27258283

  15. Overhauser Geomagnetic Sensor Based on the Dynamic Nuclear Polarization Effect for Magnetic Prospecting

    Directory of Open Access Journals (Sweden)

    Jian Ge

    2016-06-01

    Full Text Available Based on the dynamic nuclear polarization (DNP effect, an alternative design of an Overhauser geomagnetic sensor is presented that enhances the proton polarization and increases the amplitude of the free induction decay (FID signal. The short-pulse method is adopted to rotate the enhanced proton magnetization into the plane of precession to create an FID signal. To reduce the negative effect of the powerful electromagnetic interference, the design of the anti-interference of the pick-up coil is studied. Furthermore, the radio frequency polarization method based on the capacitive-loaded coaxial cavity is proposed to improve the quality factor of the resonant circuit. In addition, a special test instrument is designed that enables the simultaneous testing of the classical proton precession and the Overhauser sensor. Overall, comparison experiments with and without the free radical of the Overhauser sensors show that the DNP effect does effectively improve the amplitude and quality of the FID signal, and the magnetic sensitivity, resolution and range reach to 10 pT/Hz 1 / 2 @1 Hz, 0.0023 nT and 20–100 μ T, respectively.

  16. Bis-gadolinium complexes for solid effect and cross effect dynamic nuclear polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Monu; Corzilius, Bjoern [Goethe-Universitaet Frankfurt am Main, Institut fuer Physikalische und Theoretische Chemie, Institut fuer Biophysikalische Chemie und Biomolekulares Magnetresonanzzentrum (BMRZ) (Germany); Qi, Mian; Godt, Adelheid [Fakultaet fuer Chemie und Centrum fuer Molekulare Materialien (CM2), Universitaet Bielefeld (Germany)

    2017-04-03

    High-spin complexes act as polarizing agents (PAs) for dynamic nuclear polarization (DNP) in solid-state NMR spectroscopy and feature promising aspects towards biomolecular DNP. We present a study on bis(Gd-chelate)s which enable cross effect (CE) DNP owing to spatial confinement of two dipolar-coupled electron spins. Their well-defined Gd..Gd distances in the range of 1.2-3.4 nm allowed us to elucidate the Gd..Gd distance dependence of the DNP mechanism and NMR signal enhancement. We found that Gd..Gd distances above 2.1 nm result in solid effect DNP while distances between 1.2 and 2.1 nm enable CE for {sup 1}H, {sup 13}C, and {sup 15}N nuclear spins. We compare 263 GHz electron paramagnetic resonance (EPR) spectra with the obtained DNP field profiles and discuss possible CE matching conditions within the high-spin system and the influence of dipolar broadening of the EPR signal. Our findings foster the understanding of the CE mechanism and the design of high-spin PAs for specific applications of DNP. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. 1H chemically induced dynamic nuclear polarization in the photodecomposition of uranyl carboxylates

    International Nuclear Information System (INIS)

    Rykov, S.V.; Khudyakov, I.V.; Skakovsky, E.D.; Burrows, H.D.; Formosinho, S.J.; Miguel, M. da G.M.

    1991-01-01

    Chemically induced dynamic nuclear polarization ( 1 H CIDNP) has been observed during photolysis of uranyl salts of pivalic, propionic, and acetic acids in D 2 O solution, [ 2 H 6 ]acetone, [ 2 H 4 ]methanol, or in some other solvent. The multiplet polarization of isobutene and isobutane protons has been found under photolysis of deoxygenated pivalate solution. The polarized compounds are formed in the triplet pairs of tert-butyl free radicals. 1 H Emission of the tert-butylperoxyl group and emission of 1 H from isobutene have been recorded under photolysis of air-saturated pivalate solutions. The CIDNP of butane protons stays as a multiplet. Such changes in the presence of air/oxygen have arisen apparently because of the formation of tert-butylperoxyl free radical and its reaction with tert-butyl radical products, i.e. hydroperoxide (peroxide) and isobutene. Isobutene probably forms a complex with molecular oxygen which has a very short proton relaxation time. During the photolysis of uranyl pivalate in the presence of p-benzoquinone (5 x 10 -2 -0.1 mol dm -3 ) we have not observed any CIDNP, whereas under p-benzoquinone concentrations of 10 -3 -10 -2 mol dm -3 the CIDNP from both hydroquinone and p-benzoquinone has been followed. Photolysis of uranyl propionate has led to CIDNP from butane protons. An emission from methyl group protons of a compound with an ethylperoxyl fragment in the presence of air/oxygen has been observed. The same polarization picture has arisen under interaction of photoexcited uranyl with propionic acid. During the photolysis of uranyl acetate at relatively low concentrations (10 -2 mol dm -3 ) a CIDNP very similar to that registered for uranyl propionate was recorded. The ethyl fragment is probably obtained in reactions for two methyl radicals formed from acetate with the parent uranyl acetate, namely hydrogen-atom abstraction and addition reactions. (author)

  18. History of target and special sample preparation at the Central Bureau for Nuclear Measurements

    International Nuclear Information System (INIS)

    Audenhove, J.V.; Pauwels, J.

    1981-01-01

    The Central Bureau for Nuclear Measurements is a laboratory whose special aim was the fabrication, analysis and distribution of foils, targets and other samples for nuclear measurements. Preparation and assaying techniques that have been used since 1963 are briefly reviewed

  19. Dissecting the signaling events that impact classical nuclear import and target nuclear transport factors.

    Directory of Open Access Journals (Sweden)

    Mohamed Kodiha

    2009-12-01

    Full Text Available Signaling through MEK-->ERK1/2 and PI3 kinases is implicated in many aspects of cell physiology, including the survival of oxidant exposure. Oxidants play a role in numerous physiological and pathophysiological processes, many of which rely on transport in and out of the nucleus. However, how oxidative stress impacts nuclear trafficking is not well defined.To better understand the effect of stress on nucleocytoplasmic trafficking, we exposed cells to the oxidant diethyl maleate. This treatment activated MEK-->ERK1/2 as well as PI3 kinase-->Akt cascades and triggered the inhibition of classical nuclear import. To define the molecular mechanisms that regulate nuclear transport, we examined whether MEK and PI3 kinase signaling affected the localization of key transport factors. Using recently developed tools for image acquisition and analysis, the subcellular distributions of importin-alpha, CAS, and nucleoporins Nup153 and Nup88 were quantified in different cellular compartments. These studies identified specific profiles for the localization of transport factors in the nucleus and cytoplasm, and at the nuclear envelope. Our results demonstrate that MEK and PI3 kinase signaling as well as oxidative stress control nuclear trafficking and the localization of transport components. Furthermore, stress not only induced changes in transport factor distribution, but also upregulated post-translational modification of transport factors. Our results are consistent with the idea that the phosphorylation of importin-alpha, CAS, Nup153, and Nup88, and the O-GlcNAc modification of Nup153 increase when cells are exposed to oxidant.Our studies defined the complex regulation of classical nuclear import and identified key transport factors that are targeted by stress, MEK, and PI3 kinase signaling.

  20. Targeted initiatives. Support for nuclear engineering education in the USA

    International Nuclear Information System (INIS)

    Gutteridge, John

    2001-01-01

    Recruitment and education of a new generation of nuclear engineers stands to benefit in the USA from a range of programmes involving governmental bodies, universities, and industry groups. They are part of efforts to attract more students to consider and prepare for careers in the nuclear industry, and to provide financial support for nuclear research and education. Career prospects in the nuclear field are brightening. The demand for nuclear engineers and nuclear trained personnel is on the rise as the new century opens. During the past year several studies were completed in an attempt to ascertain the problems in nuclear engineering education and define initiatives to address these problems

  1. Polarized electron beams at SLAC

    International Nuclear Information System (INIS)

    Moffeit, K.C.

    1992-11-01

    SLAC has successfully accelerated high energy polarized electrons for the Stanford Linear Collider and fixed polarized nuclear target experiments. The polarized electron beams at SLAC use a gallium arsenide (GaAlAs for E-142) photon emission source to provide the beam of polarized electrons with polarization of approximately 28% (41% for E-142). While the beam emittance is reduced in the damping ring for SLC operation a system of bend magnets and superconducting solenoids preserve and orient the spin direction for maximum longitudinal polarization at the collision point. The electron polarization is monitored with a Compton scattering polarimeter, and was typically 22% at the e+e- collision point for the 1992 run. Improvements are discussed to increase the source polarization and to reduce the depolarization effects between the source and the collision point

  2. Dynamic Nuclear Polarization at low temperature and high magnetic eld for biomedical applications in Magnetic Resonance Spectroscopic Imaging

    International Nuclear Information System (INIS)

    Goutailler, Florent

    2011-01-01

    The aim of this thesis work was to design, build and optimize a large volume multi-samples DNP (Dynamic Nuclear Polarization) polarizer dedicated to Magnetic Resonance Spectroscopic Imaging applications. The experimental system is made up of a high magnetic field magnet (3,35 T) in which takes place a cryogenic system with a pumped bath of liquid helium ( 4 He) allowing temperatures lower than 1,2 K. A set of inserts is used for the different steps of DNP: irradiation of the sample by a microwave field (f=94 GHz and P=50 mW), polarization measurement by Nuclear Magnetic Resonance... With this system, up to three samples of 1 mL volume can be polarized to a rate of few per-cents. The system has a long autonomy of four hours, so it can be used for polarizing molecules with a long time constant of polarization. Finally, the possibility to get quasi-simultaneously, after dissolution, several samples with a high rate of polarization opens the way of new applications in biomedical imaging. (author) [fr

  3. Characterization of nuclear physics targets using Rutherford backscattering and particle induced X-ray emission

    International Nuclear Information System (INIS)

    Rubehn, T.; Wozniak, G.J.; Phair, L.; Moretto, L.G.; Yu, K.M.

    1997-01-01

    Rutherford backscattering and particle induced X-ray emission have been utilized to precisely characterize targets used in nuclear fission experiments. The method allows for a fast and non-destructive determination of target thickness, homogeneity and element composition. (orig.)

  4. Asymmetry measurements in nucleon--nucleon scattering with polarized beams and targets at ZGS to Fermilab energies

    International Nuclear Information System (INIS)

    Yakosawa, A.

    1977-01-01

    Results of various asymmetry measurements in nucleon-nucleon scattering with polarized beams and targets at ZGS energies are presented. A possible direct-channel resonance in the pp system is discussed. Most of the discussion above ZGS energies are aimed at future measurements

  5. Waveguide transition with vacuum window for multiband dynamic nuclear polarization systems

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy

    2016-01-01

    broadband than commercially available windows, which are usually optimized for single band operation. It is demonstrated that high-density polyethylene with urethane adhesive can be used as a low loss microwave vacuum window in multiband DNP systems. The overall assembly performance and dimensions are found......A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more...... using full-wave simulations. The practical aspects of the window implementation in the waveguide are discussed. To verify the design and simulation results, the window is tested experimentally at the three frequencies of interest....

  6. Evaluation of nuclear facility decommissioning projects. Summary report: Three Mile Island Unit 2 polar crane recovery

    Energy Technology Data Exchange (ETDEWEB)

    Doerge, D.H.; Miller, R.L.

    1984-08-01

    This document summarizes information concerning restoration of the Three Mile Island-Unit 2 Polar Crane to a fully operational condition following the loss of coolant accident experienced on March 28, 1979. The data collected from activity reports, reactor containment entry records, and other sources were placed in a computerized information retrieval/manipulation system which permits extraction/manipulation of specific data which could be utilized in planning for recovery activities should a similar accident occur in a nuclear generating plant. The information is presented in both computer output form and a manually assembled summarization. This report contains only the manpower requirements and radiation exposures actually incurred during recovery operations within the reactor containment and does not include support activities or costs.

  7. The use of dynamic nuclear polarization in 1H and 13C solid state NMR

    International Nuclear Information System (INIS)

    Duijvestijn, M.J.

    1985-01-01

    The Dynamic Nuclear Polarization (DNP) effect is used at room temperature in combination with 13 C NMR. Due to the low natural abundance of 13 C spins (1%) the signal is very weak, but when the DNP effect is used the 13 C signal can be enhanced and therefore the number of scans and the measuring time considerably reduced. The theory is presented and the experimental set-up is described. Experiments on polystyrene, artificially doped with free radicals are described and it is examined whether the theory of the DNP effect can be used in a quantitative way. Applications of the use of the DNP effect in 13 C NMR are shown. Excellent spectra are presented of artificial and natural diamonds, possibly to be used for diamond characterization purposes. 161 refs.; 61 figs.; 3 tabs

  8. Identification of crystals in Hanford nuclear waste using polarized light microscopy

    International Nuclear Information System (INIS)

    Herting, D.L.

    1984-09-01

    The use of polarized light microscopy for identifying crystals encountered in Rockwell Hanford Operations chemical studies is described. Identifying characteristics and full-color photographs are presented for crystals commonly found in Hanford Site nuclear waste, including sodium nitrate, sodium nitrite, sodium aluminate, sodium phosphate, sodium fluoride, ammonium heptafluorozirconate, sodium sulfate, sodium carbonate, and ammonium nitrate. These characteristics are described in terms of birefringence, extinction position, interference figure, sign of elongation, optic sign, and crystal morphology. Background information on crystal optics is presented so that these traits can be understood by the nonmicroscopist. Detailed operational instructions are given so that the novice microscope user can make the proper adjustments of the instrument to search for and observe the identifying features of the crystals

  9. Dynamic Nuclear Polarization of High-Density Atomic Hydrogen in Solid Mixtures of Molecular Hydrogen Isotopes

    Science.gov (United States)

    Sheludiakov, S.; Ahokas, J.; Järvinen, J.; Zvezdov, D.; Vainio, O.; Lehtonen, L.; Vasiliev, S.; Mao, S.; Khmelenko, V. V.; Lee, D. M.

    2014-12-01

    We report on magnetic resonance studies of high-density atomic hydrogen and deuterium in solid hydrogen matrices at temperatures below 1 K. Average concentrations of H atoms ≈3 ×1019 cm-3 are obtained in chemical tunneling reactions of isotope exchange with D atoms. The products of these reactions are closely located pairs of H atoms near D2 molecules with strong exchange interactions. We discovered a dynamic nuclear polarization effect on H atoms created by pumping the center of the H electron spin resonance spectrum, similar to the Overhauser effect in metals. Our results indicate that H atoms may be arranged inside molecular matrices at separations equivalent to local concentrations of 2.6 ×1021 cm-3 . This opens up a way to build a metallic state of atomic hydrogen at zero pressure.

  10. Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering

    Science.gov (United States)

    Herlitschke, M.; Disch, S.; Sergueev, I.; Schlage, K.; Wetterskog, E.; Bergström, L.; Hermann, R. P.

    2016-04-01

    The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4 nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization to 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.

  11. Enhanced solid-state NMR correlation spectroscopy of quadrupolar nuclei using dynamic nuclear polarization.

    Science.gov (United States)

    Lee, Daniel; Takahashi, Hiroki; Thankamony, Aany S L; Dacquin, Jean-Philippe; Bardet, Michel; Lafon, Olivier; Paëpe, Gaël De

    2012-11-14

    By means of a true sensitivity enhancement for a solid-state NMR spectroscopy (SSNMR) experiment performed under dynamic nuclear polarization (DNP) conditions, corresponding to 4-5 orders of magnitude of time savings compared with a conventional SSNMR experiment, it is shown that it is possible to record interface-selective (27)Al-(27)Al two-dimensional dipolar correlation spectra on mesoporous alumina, an advanced material with potential industrial applications. The low efficiency of cross-polarization and dipolar recoupling for quadrupolar nuclei is completely negated using this technique. The important presence of pentacoordinated Al has not only been observed, but its role in bridging interfacial tetra- and hexacoordinated Al has been determined. Such structural information, collected at low temperature (∼103 K) and 9.4 T with the use of DNP, would have been impossible to obtain under standard conditions, even using a higher magnetic field. However, here it is demonstrated that this information can be obtained in only 4 h. This work clearly opens a new avenue for the application of SSNMR to quadrupolar nuclei and notably the atomic-scale structure determination of catalysis materials such as mesoporous alumina.

  12. A novel variable field system for field-cycled dynamic nuclear polarization spectroscopy

    Science.gov (United States)

    Shet, Keerthi; Caia, George L.; Kesselring, Eric; Samouilov, Alexandre; Petryakov, Sergey; Lurie, David J.; Zweier, Jay L.

    2010-08-01

    Dynamic nuclear polarization (DNP) is an NMR-based technique which enables detection and spectral characterization of endogenous and exogenous paramagnetic substances measured via transfer of polarization from the saturated unpaired electron spin system to the NMR active nuclei. A variable field system capable of performing DNP spectroscopy with NMR detection at any magnetic field in the range 0-0.38 T is described. The system is built around a clinical open-MRI system. To obtain EPR spectra via DNP, partial cancellation of the detection field B0NMR is required to alter the evolution field B0EPR at which the EPR excitation is achieved. The addition of resistive actively shielded field cancellation coils in the gap of the primary magnet provides this field offset in the range of 0-100 mT. A description of the primary magnet, cancellation coils, power supplies, interfacing hardware, RF electronics and console are included. Performance of the instrument has been evaluated by acquiring DNP spectra of phantoms with aqueous nitroxide solutions (TEMPOL) at three NMR detection fields of 97 G, 200 G and 587 G corresponding to 413 kHz, 851.6 kHz and 2.5 MHz respectively and fixed EPR evolution field of 100 G corresponding to an irradiation frequency of 282.3 MHz. This variable-field DNP system offers great flexibility for the performance of DNP spectroscopy with independent optimum choice of EPR excitation and NMR detection fields.

  13. An Alderman-Grant resonator for S-Band Dynamic Nuclear Polarization

    Science.gov (United States)

    Neudert, Oliver; Raich, Hans-Peter; Mattea, Carlos; Stapf, Siegfried; Münnemann, Kerstin

    2014-05-01

    An Alderman-Grant resonator with resonance at 2 GHz (S-Band) was simulated, developed and constructed for Dynamic Nuclear Polarization (DNP) experiments at 73 mT. The resonator fits into magnet bores with a minimum diameter of 20 mm and is compatible with standard 3 mm NMR tubes. The compact resonator design achieves good separation of electric and magnetic fields and therefore can be used with comparatively large sample volumes with only small sample heating effects comparable to those obtained with optimized X- and W-Band DNP setups. The saturation efficiency and sample heating effects were investigated for Overhauser DNP experiments of aqueous solutions of TEMPOL radical, showing relative saturation better than 0.9 and sample heating not exceeding a few Kelvin even at high microwave power and long irradiation time. An application is demonstrated, combining the DNP setup with a commercial fast field cycling NMR relaxometer. Using this resonator design at low microwave frequencies can provide DNP polarization for a class of low-field and time-domain NMR experiments and therefore may enable new applications that benefit from increased sensitivity.

  14. Mining the epigenetic landscape of tissue polarity in search of new targets for cancer therapy.

    Science.gov (United States)

    Atrian, Farzaneh; Lelièvre, Sophie A

    2015-01-01

    The epigenetic nature of cancer encourages the development of inhibitors of epigenetic pathways. Yet, the clinical use for solid tumors of approved epigenetic drugs is meager. We argue that this situation might improve upon understanding the coinfluence between epigenetic pathways and tissue architecture. We present emerging information on the epigenetic control of the polarity axis, a central feature of epithelial architecture created by the orderly distribution of multiprotein complexes at cell-cell and cell-extracellular matrix contacts and altered upon cancer onset (with apical polarity loss), invasive progression (with basolateral polarity loss) and metastatic development (with basoapical polarity imbalance). This information combined with the impact of polarity-related proteins on epigenetic mechanisms of cancer enables us to envision how to guide the choice of drugs specific for distinct epigenetic modifiers, in order to halt cancer development and counter the consequences of polarity alterations.

  15. First measurement of target and double spin asymmetries for polarized e- polarized p --> e p pi0 in the nucleon resonance region above the Delta(1232)

    Energy Technology Data Exchange (ETDEWEB)

    Biselli, Angela; Burkert, Volker; Amaryan, Moscov; Amaryan, Moskov; Asryan, Gegham; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Baillie, Nathan; Ball, J.P.; Ball, Jacques; Baltzell, Nathan; Battaglieri, Marco; Bedlinskiy, Ivan; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Blaszczyk, Lukasz; Bookwalter, Craig; Boyarinov, Sergey; Bosted, Peter; Bradford, Robert; Branford, Derek; Briscoe, William; Brooks, William; Bultmann, S.; Bueltmann, Stephen; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Casey, Liam; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Crabb, Donald; Crede, Volker; Dale, Daniel; Dashyan, Natalya; De Masi, Rita; De Vita, Raffaella; De Sanctis, Enzo; Degtiarenko, Pavel; Deur, Alexandre; Dhamija, Seema; Dickson, Richard; Djalali, Chaden; Dodge, Gail; Doughty, David; Dugger, Michael; Dzyubak, Oleksandr; Egiyan, Hovanes; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Feuerbach, Robert; Fersch, Robert; Forest, Tony; Fradi, Ahmed; Garcon, Michel; Gavalian, Gagik; Gevorgyan, Nerses; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gohn, Wesley; Gothe, Ralf; Graham, Lewis; Griffioen, Keith; Guidal, Michel; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hafidi, Kawtar; Hakobyan, Hayk; Hanretty, Charles; Hassall, Neil; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Keller, Dustin; Kellie, James; Khandaker, Mahbubul; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Kossov, Mikhail; Krahn, Zebulun; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Kuznetsov, Viacheslav; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, David; Livingston, Kenneth; Lu, Haiyun; MacCormick, Marion; Markov, Nikolai; Mattione, Paul; McKinnon, Bryan; McNabb, John; Mecking, Bernhard; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Mikhaylov, Konstantin; Mirazita, Marco; Mokeev, Viktor; Moreno, Brahim; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Nasseripour, Rakhsha; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; Osipenko, Mikhail; Ostrovidov, Alexander; Park, Kil; Park, Seungkyung; Pasyuk, Evgueni; Paterson, Craig; Pereira, Sergio; Pierce, Joshua; Pivnyuk, Nikolay; Pogorelko, Oleg; Pozdnyakov, Sergey; Price, John; Prok, Yelena; Protopopescu, Dan; Raue, Brian; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Saini, Mukesh; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schott, Diane; Schumacher, Reinhard; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shvedunov, Nikolay; Smith, Elton; Sober, Daniel; Sokhan, Daria; Stavinskiy, Aleksey; Stepanyan, Samuel; Stepanyan, Stepan; Stokes, Burnham; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Tedeschi, David; Tkabladze, Avtandil; Tkachenko, Svyatoslav; Todor, Luminita; Ungaro, Maurizio; Vineyard, Michael; Vlassov, Alexander; Watts, Daniel; Weinstein, Lawrence; Weygand, Dennis; Williams, M.; Wolin, Elliott; Wood, Michael; Yegneswaran, Amrit; Yurov, Mikhail; Zana, Lorenzo; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen

    2008-10-01

    DOI: http://dx.doi.org/10.1103/PhysRevC.78.045204
    The exclusive channel polarized proton(polarized e,e prime p)pi0 was studied in the first and second nucleon resonance regions in the Q2 range from 0.187 to 0.770 GeV2 at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). Longitudinal target and beam-target asymmetries were extracted over a large range of center-of-mass angles of the pi0 and compared to the unitary isobar model MAID, the dynamic model by Sato and Lee, and the dynamic model DMT. A strong sensitivity to individual models was observed, in particular for the target asymmetry and in the higher invariant mass region. This data set, once included in the global fits of the above models, is expected to place strong constraints on the electrocoupling amplitudes A_{1/2} and S_{1/2} for the Roper resonance N(1400)P11, and the N(1535)S11 and N(1520)D13 states.

  16. Account of magnetic field effects of polarized proton target on charged particle trajectories in experiments with magnetic spectrometers

    International Nuclear Information System (INIS)

    Telegin, Yu.N.; Ranyuk, Yu.N.; Karnaukhov, I.M.; Lukhanin, A.A.; Sporov, E.A.

    1980-01-01

    Some effects of the influence of magnetic field of a polarized proton target (PPT) on trajectories of secondary particles in experiments using magnetic spectrometers are considered. It is shown that these effects can be eliminated by the target shift relatively to the spectrometer rotation axis and variation of the spectrometer installation angle. Numerical calculations of the correction values were performed for emitted particle momenta of 100-800 MeB/s and working intensity of the H 0 magnetic field H 0 =27 kG. The influence of the PPT magnetic field on the functions of angular and energy resolution in the γp→π + n experiment is investigated. The results obtained can be used in experiments with a polarized proton target

  17. Single-Spin Asymmetries in Semi-Inclusive Deep-Inelastic Scattering on a Transversely Polarized Hydrogen Target

    Science.gov (United States)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Amarian, M.; Andrus, A.; Aschenauer, E. C.; Augustyniak, W.; Avakian, R.; Avetissian, A.; Avetissian, E.; Bacchetta, A.; Bailey, P.; Balin, D.; Beckmann, M.; Belostotski, S.; Bianchi, N.; Blok, H. P.; Böttcher, H.; Borissov, A.; Borysenko, A.; Bouwhuis, M.; Brüll, A.; Bryzgalov, V.; Capitani, G. P.; Cappiluppi, M.; Chen, T.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Leo, R. De; Demey, M.; Nardo, L. De; Sanctis, E. De; Devitsin, E.; Nezza, P. Di; Düren, M.; Ehrenfried, M.; Elalaoui-Moulay, A.; Elbakian, G.; Ellinghaus, F.; Elschenbroich, U.; Fabbri, R.; Fantoni, A.; Fechtchenko, A.; Felawka, L.; Frullani, S.; Gapienko, G.; Gapienko, V.; Garibaldi, F.; Garrow, K.; Gavrilov, G.; Gharibyan, V.; Grebeniouk, O.; Gregor, I. M.; Hadjidakis, C.; Hafidi, K.; Hartig, M.; Hasch, D.; Henoch, M.; Hesselink, W. H.; Hillenbrand, A.; Hoek, M.; Holler, Y.; Hommez, B.; Hristova, I.; Iarygin, G.; Ilyichev, A.; Ivanilov, A.; Izotov, A.; Jackson, H. E.; Jgoun, A.; Kaiser, R.; Kinney, E.; Kisselev, A.; Kobayashi, T.; Kopytin, M.; Korotkov, V.; Kozlov, V.; Krauss, B.; Krivokhijine, V. G.; Lagamba, L.; Lapikás, L.; Laziev, A.; Lenisa, P.; Liebing, P.; Linden-Levy, L. A.; Lorenzon, W.; Lu, H.; Lu, J.; Lu, S.; Ma, B.-Q.; Maiheu, B.; Makins, N. C.; Mao, Y.; Marianski, B.; Marukyan, H.; Masoli, F.; Mexner, V.; Meyners, N.; Michler, T.; Mikloukho, O.; Miller, C. A.; Miyachi, Y.; Muccifora, V.; Nagaitsev, A.; Nappi, E.; Naryshkin, Y.; Nass, A.; Negodaev, M.; Nowak, W.-D.; Oganessyan, K.; Ohsuga, H.; Osborne, A.; Pickert, N.; Potterveld, D. H.; Raithel, M.; Reggiani, D.; Reimer, P. E.; Reischl, A.; Reolon, A. R.; Riedl, C.; Rith, K.; Rosner, G.; Rostomyan, A.; Rubacek, L.; Rubin, J.; Ryckbosch, D.; Salomatin, Y.; Sanjiev, I.; Savin, I.; Schäfer, A.; Schill, C.; Schnell, G.; Schüler, K. P.; Seele, J.; Seidl, R.; Seitz, B.; Shanidze, R.; Shearer, C.; Shibata, T.-A.; Shutov, V.; Sinram, K.; Sommer, W.; Stancari, M.; Statera, M.; Steffens, E.; Steijger, J. J.; Stenzel, H.; Stewart, J.; Stinzing, F.; Tait, P.; Tanaka, H.; Taroian, S.; Tchuiko, B.; Terkulov, A.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; van der Nat, P. B.; van der Steenhoven, G.; van Haarlem, Y.; Vetterli, M. C.; Vikhrov, V.; Vincter, M. G.; Vogel, C.; Volmer, J.; Wang, S.; Wendland, J.; Wilbert, J.; Smit, G. Ybeles; Ye, Y.; Ye, Z.; Yen, S.; Zihlmann, B.; Zupranski, P.

    2005-01-01

    Single-spin asymmetries for semi-inclusive electroproduction of charged pions in deep-inelastic scattering of positrons are measured for the first time with transverse target polarization. The asymmetry depends on the azimuthal angles of both the pion (ϕ) and the target spin axis (ϕS) about the virtual-photon direction and relative to the lepton scattering plane. The extracted Fourier component πUT is a signal of the previously unmeasured quark transversity distribution, in conjunction with the Collins fragmentation function, also unknown. The component πUT arises from a correlation between the transverse polarization of the target nucleon and the intrinsic transverse momentum of quarks, as represented by the previously unmeasured Sivers distribution function. Evidence for both signals is observed, but the Sivers asymmetry may be affected by exclusive vector meson production.

  18. Single and double spin asymmetries for deeply virtual Compton scattering measured with CLAS and a longitudinally polarized proton target

    Energy Technology Data Exchange (ETDEWEB)

    Pisano, S.; Biselli, A.; Niccolai, S.; Seder, E.; Guidal, M.; Mirazita, M.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bosted, P.; Briscoe, B.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crabb, D. G.; Crede, V.; D' Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garcon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, X.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacCormick, M.; MacGregor, Ian J. D.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Munoz Camacho, C.; Nadel-Turonski, P.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Phelps, W.; Phillips, J. J.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatie, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Skorodumina, I.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Turisini, M.; Ungaro, M.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2015-03-19

    Single-beam, single-target, and double-spin asymmetries for hard exclusive photon production on the proton e→p→e'p'γ are presented. The data were taken at Jefferson Lab using the CLAS detector and a longitudinally polarized 14NH3 target. The three asymmetries were measured in 165 4-dimensional kinematic bins, covering the widest kinematic range ever explored simultaneously for beam and target-polarization observables in the valence quark region. The kinematic dependences of the obtained asymmetries are discussed and compared to the predictions of models of Generalized Parton Distributions. As a result, the measurement of three DVCS spin observables at the same kinematic points allows a quasi-model-independent extraction of the imaginary parts of the H and H~ Compton Form Factors, which give insight into the electric and axial charge distributions of valence quarks in the proton.

  19. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization.

    Science.gov (United States)

    Scott, Faith J; Saliba, Edward P; Albert, Brice J; Alaniva, Nicholas; Sesti, Erika L; Gao, Chukun; Golota, Natalie C; Choi, Eric J; Jagtap, Anil P; Wittmann, Johannes J; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th Sigurdsson, Snorri; Barnes, Alexander B

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a agile high-power microwave sources. Copyright © 2018. Published by Elsevier Inc.

  20. Real-time calculation and visualization of spectra in field-cycled dynamic nuclear polarization spectroscopy.

    Science.gov (United States)

    Deng, Yuanmu; Shet, Keerthi; Li, Haihong; Kuppusamy, Periannan; Zweier, Jay L

    2006-04-01

    Field-cycled dynamic nuclear polarization (FC-DNP), which is based on the Overhauser effect, provides a new way to perform in vivo measurements of free radicals in biological systems. Since it measures the alterations of the nuclear magnetic resonance (NMR) signal in the presence of paramagnetic molecules, a customized program is usually needed in FC-DNP experiments to extract spectral information from the acquired NMR signals. While this program can be designed to calculate the spectrum after all the NMR signals are collected, the batch-processing mode inevitably causes delay and is not convenient for in vivo applications. In this paper, we report the development of a real-time DNP spectrum calculation and visualization program, called RT_DNP, for FC-DNP experiments. A dynamic data exchange (DDE) client was implemented to enable real-time receipt of the system information and the NMR signals from a commercial NMR console. The received NMR signals and experimental parameters were then used to calculate the DNP spectrum during the data acquisition. The real-time DNP spectrum calculation and visualization program was tested in experiments. A seamless integration of the program into a commercial NMR console has been achieved.

  1. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization

    Science.gov (United States)

    Scott, Faith J.; Saliba, Edward P.; Albert, Brice J.; Alaniva, Nicholas; Sesti, Erika L.; Gao, Chukun; Golota, Natalie C.; Choi, Eric J.; Jagtap, Anil P.; Wittmann, Johannes J.; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th. Sigurdsson, Snorri; Barnes, Alexander B.

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.

  2. Nuclear and perinuclear targeting efficiency of quantum dots depends on density of peptidic targeting residues on their surface.

    Science.gov (United States)

    Maity, Amit Ranjan; Stepensky, David

    2017-07-10

    Targeted delivery to the cell nucleus can enhance the efficiency of drugs with nuclear site of action (some anti-cancer agents, DNA drugs, etc.), and can reduce their toxicity. Such targeting can be attained using nano-drug delivery systems (nano-DDSs) decorated with nuclear targeting sequences (such as nuclear localization sequence peptides, NLS). Several types of nano-DDSs decorated with NLS peptides were designed, but their investigation usually did not include quantitate analysis of the decoration efficiency and its correlation with the nano-DDSs intracellular localization. Thus, the major mechanisms and limiting factors of the nano-DDSs nuclear targeting are largely unknown yet. In this study, we report quantitative data for specific nano-formulation (CdSe-ZnS quantum dots) that include the efficiencies of its decoration with NLS residues and of its nuclear and perinuclear targeting, and demonstrate correlation between these parameters. For instance, QDs decorated with 83, 246, and 265 NLS peptides accumulated efficiently in the nucleus of HeLa cells or its vicinity (an average of 30.4%, 43.3%, and 49.0% of the intracellular QDs, respectively). On the other hand, QDs decorated with 63, 231, and 308 scrambled peptides accumulated in the nucleus of HeLa cells or its vicinity to a much lower extent (an average of 17.3%, 21.1%, and 25.5% of the intracellular QDs, respectively). Thus, results of our study provide important insights into the structure-activity correlations (i.e., the relationships between the formulation properties and the intracellular fate of nano-DDSs) of nuclear-targeted drug delivery. We plan to apply the research tools that were developed in the course of this and our previous studies to investigate the nuclear and perinuclear targeting activities of different NLS sequences, and to investigate the effects of nano-DDSs size, charge, shape, decoration efficiency with nuclear targeting sequences, and other structural factors on nuclear and

  3. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    Science.gov (United States)

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. The role of macrophage polarization on bipolar disorder: Identifying new therapeutic targets.

    Science.gov (United States)

    Ascoli, Bruna M; Géa, Luiza P; Colombo, Rafael; Barbé-Tuana, Florência M; Kapczinski, Flávio; Rosa, Adriane Ribeiro

    2016-07-01

    Bipolar disorder is a chronic, severe and disabling disease; however, its pathophysiology remains poorly understood. Recent evidence has suggested that inflammation and immune dysregulation play a significant role in the pathophysiology of bipolar disorder. This review is aimed to highlight the importance of systemic inflammation in modulating the inflammatory response of microglia and hence its potential involvement with bipolar disorder. We also discuss novel therapeutic strategies that emerge from this new research. This article presents a theoretical synthesis of the effects of systemic inflammation on the immune response of the central nervous system in bipolar disorder. The complex relationship between stress, pro-inflammatory cytokines and microglial dysfunction is summarized, emphasizing the role of the kynurenine pathway in this process and, consequently, their effects on neuronal plasticity. Bipolar patients demonstrate increased serum levels of pro-inflammatory cytokines (interleukin-1β, interleukin-6 and tumor necrosis factor-α) and lower hypothalamic-pituitary-adrenal axis sensitivity. This imbalance in the immune system promotes a change in blood-brain barrier permeability, leading to an inflammatory signal spread in the central nervous system from the periphery, through macrophages activation (M1 polarization). Chronic microglial activation can result in neuronal apoptosis, neurogenesis inhibition, hippocampal volume reduction, lower neurotransmitters synthesis and cytotoxicity, by increasing glutamate production and kynurenine metabolism. This review provides an overview of the mechanisms involved in the immune system imbalance and its potential involvement in the pathophysiology of bipolar disorder. Consequently, new strategies that normalize the immune-inflammatory pathways may provide a valuable therapeutic target for the treatment of these disorders. © The Royal Australian and New Zealand College of Psychiatrists 2016.

  5. Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements

    Science.gov (United States)

    Baars, Holger; Seifert, Patric; Engelmann, Ronny; Wandinger, Ulla

    2017-09-01

    Absolute calibrated signals at 532 and 1064 nm and the depolarization ratio from a multiwavelength lidar are used to categorize primary aerosol but also clouds in high temporal and spatial resolution. Automatically derived particle backscatter coefficient profiles in low temporal resolution (30 min) are applied to calibrate the lidar signals. From these calibrated lidar signals, new atmospheric parameters in temporally high resolution (quasi-particle-backscatter coefficients) are derived. By using thresholds obtained from multiyear, multisite EARLINET (European Aerosol Research Lidar Network) measurements, four aerosol classes (small; large, spherical; large, non-spherical; mixed, partly non-spherical) and several cloud classes (liquid, ice) are defined. Thus, particles are classified by their physical features (shape and size) instead of by source. The methodology is applied to 2 months of continuous observations (24 h a day, 7 days a week) with the multiwavelength-Raman-polarization lidar PollyXT during the High-Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in spring 2013. Cloudnet equipment was operated continuously directly next to the lidar and is used for comparison. By discussing three 24 h case studies, it is shown that the aerosol discrimination is very feasible and informative and gives a good complement to the Cloudnet target categorization. Performing the categorization for the 2-month data set of the entire HOPE campaign, almost 1 million pixel (5 min × 30 m) could be analysed with the newly developed tool. We find that the majority of the aerosol trapped in the planetary boundary layer (PBL) was composed of small particles as expected for a heavily populated and industrialized area. Large, spherical aerosol was observed mostly at the top of the PBL and close to the identified cloud bases, indicating the importance of hygroscopic growth of the particles at high relative

  6. Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe.

    Science.gov (United States)

    Nanni, Emilio A; Barnes, Alexander B; Matsuki, Yoh; Woskov, Paul P; Corzilius, Björn; Griffin, Robert G; Temkin, Richard J

    2011-05-01

    We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B(1S)) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4mm diameter sapphire rotor containing the sample. The predicted average B(1S) field is 13μT/W(1/2), where S denotes the electron spin. For a routinely achievable input power of 5W the corresponding value is γ(S)B(1S)=0.84MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement (ϵ) vs. ω(1S)/(2π) for a sample of (13)C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. A table-top PXI based low-field spectrometer for solution dynamic nuclear polarization.

    Science.gov (United States)

    Biller, Joshua R; Stupic, Karl F; Moreland, J

    2018-03-01

    We present the development of a portable dynamic nuclear polarization (DNP) instrument based on the PCI eXtensions for Instrumentation platform. The main purpose of the instrument is for study of 1 H polarization enhancements in solution through the Overhauser mechanism at low magnetic fields. A DNP probe set was constructed for use at 6.7 mT, using a modified Alderman-Grant resonator at 241 MHz for saturation of the electron transition. The solenoid for detection of the enhanced 1 H signal at 288 kHz was constructed with Litz wire. The largest observed 1 H enhancements (ε) at 6.7 mT for 14 N-CTPO radical in air saturated aqueous solution was ε~65. A concentration dependence of the enhancement is observed, with maximum ε at 5.5 mM. A low resonator efficiency for saturation of the electron paramagnetic resonance transition results in a decrease in ε for the 10.3 mM sample. At high incident powers (42 W) and long pump times, capacitor heating effects can also decrease the enhancement. The core unit and program described here could be easily adopted for multi-frequency DNP work, depending on available main magnets and selection of the "plug and play" arbitrary waveform generator, digitizer, and radiofrequency synthesizer PCI eXtensions for Instrumentatione cards. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  8. HDice, Highly-Polarized Low-Background Frozen-Spin HD Targets for CLAS experiments at Jefferson Lab

    International Nuclear Information System (INIS)

    Large, portable frozen-spin HD (Deuterium-Hydride) targets have been developed for studying nucleon spin properties with low backgrounds. Protons and Deuterons in HD are polarized at low temperatures (∼10mK) inside a vertical dilution refrigerator (Oxford Kelvinox-1000) containing a high magnetic field (up to 17T). The targets reach a frozen-spin state within a few months, after which they can be cold transferred to an In-Beam Cryostat (IBC). The IBC, a thin-walled dilution refrigerator operating either horizontally or vertically, is use with quasi-4π detector systems in open geometries with minimal energy loss for exiting reaction products in nucleon structure experiments. The first application of this advanced target system has been used for Spin Sum Rule experiments at the LEGS facility in Brookhaven National Laboratory. An improved target production and handling system has been developed at Jefferson Lab for experiments with the CEBAF Large Acceptance Spectrometer, CLAS

  9. International Nuclear Target Development Society workshop 1983: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G. (ed.)

    1983-01-01

    Separate abstracts were prepared for 11 of the 19 papers presented. Eight papers were previously included in the data base. Discussion group session papers on carbon stripper foils, problems in producing heavy-ion targets, and problems in producing general type targets are included. (WHK)

  10. International Nuclear Target Development Society workshop 1983: proceedings

    International Nuclear Information System (INIS)

    Thomas, G.

    1983-01-01

    Separate abstracts were prepared for 11 of the 19 papers presented. Eight papers were previously included in the data base. Discussion group session papers on carbon stripper foils, problems in producing heavy-ion targets, and problems in producing general type targets are included

  11. Spin asymmetry in muon-proton deep inelastic scattering on a transversely-polarized target

    CERN Document Server

    Adams, D.; Arik, E.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, Guenter; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjorkholm, P.; Bonner, B.E.; de Botton, N.; Bradamante, F.; Bressan, A.; Brull, A.; Bueltmann, Stephen L.; Burtin, E.; Cavata, C.; Clocchiatti, M.; Corcoran, M.D.; Crabb, D.; Cranshaw, J.; Crawford, M.; Cuhadar, T.; Dalla Torre, S.; van Dantzig, R.; Dhawan, S.; Dulya, C.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Frois, B.; Garzon, J.A.; Gaussiran, T.; Giorgi, M.; von Goeler, E.; Gracia, G.; de Groot, N.; Grosse Perdekamp, M.; Gulmez, Erhan; von Harrach, D.; Hasegawa, T.; Hautle, P.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Kabuss, E.M.; Kaiser, R.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kishi, A.; Kiselev, Yu.; Klostermann, L.; Kramer, D.; Krivokhijine, V.; Kukhtin, V.; Kyynarainen, J.; Lamanna, M.; Landgraf, U.; Lau, K.; Layda, T.; Le Goff, J.M.; Lehar, F.; de Lesquen, A.; Lichtenstadt, J.; Lindqvist, T.; Litmaath, M.; Lopez-Ponte, S.; Lowe, M.; Magnon, A.; Mallot, G.K.; Marie, F.; Martin, A.; Martino, J.; Matsuda, T.; Mayes, B.; McCarthy, J.S.; Medved, K.; van Middelkoop, G.; Miller, D.; Mori, K.; Moromisato, J.; Nagaitsev, A.; Nassalski, J.; Naumann, L.; Niinikoski, T.O.; Oberski, J.E.J.; Parks, D.P.; Penzo, A.; Perez, G.; Kunne, F.; Peshekhonov, D.; Piegaia, R.; Pinsky, Lawrence S.; Platchkov, S.; Plo, M.; Pose, D.; Postma, H.; Pretz, J.; Pussieux, T.; Pyrlik, J.; Reyhancan, I.; Rieubland, J.M.; Rijllart, A.; Roberts, J.B.; Rock, S.; Rodriguez, M.; Rondio, E.; Rosado, A.; Sabo, I.; Saborido, J.; Sandacz, A.; Savin, Igor A.; Schiavon, P.; Schuler, P.; Segel, R.; Seitz, R.; Semertzidis, Y.; Sever, F.; Shanahan, P.; Shumeiko, N.; Smirnov, G.; Staude, A.; Steinmetz, A.; Stiegler, U.; Stuhrmann, H.; Teichert, K.M.; Tessarotto, F.; Velasco, M.; Vogt, J.; Voss, R.; Weinstein, R.; Whitten, C.; Windmolders, R.; Willumeit, R.; Wislicki, W.; Witzmann, A.; Zanetti, A.M.; Zhao, J.

    1994-01-01

    We measured the spin asymmetry in the scattering of 100 GeV longitudinally-polarized muons on transversely polarized protons. The asymmetry was found to be compatible with zero in the kinematic range $0.006

  12. Proceedings of the sixth annual conference of the International Nuclear Target Development Society

    Energy Technology Data Exchange (ETDEWEB)

    Steers, G. (comp.)

    1978-08-01

    The Sixth Annual Conference of the International Nuclear Target Development Society was held at the Lawrence Berkeley Laboratory, University of California, Berkeley, California, on October 19--21, 1977. The discussion covered nuclear target preparation by evaporation, reduction of oxides, electrodeposition, reactive sputtering, rolling, gas jets, and related techniques. Abstracts were prepared for eighteen of the papers presented at the conference and are included in the data base. (GHT)

  13. Real-time multi-target ranging based on chaotic polarization laser radars in the drive-response VCSELs.

    Science.gov (United States)

    Zhong, Dongzhou; Xu, Geliang; Luo, Wei; Xiao, Zhenzhen

    2017-09-04

    According to the principle of complete chaos synchronization and the theory of Hilbert phase transformation, we propose a novel real-time multi-target ranging scheme by using chaotic polarization laser radar in the drive-response vertical-cavity surface-emitting lasers (VCSELs). In the scheme, to ensure each polarization component (PC) of the master VCSEL (MVCSEL) to be synchronized steadily with that of the slave VCSEL, the output x-PC and y-PC from the MVCSEL in the drive system and those in the response system are modulated by the linear electro-optic effect simultaneously. Under this condition, by simulating the influences of some key parameters of the system on the synchronization quality and the relative errors of the two-target ranging, related operating parameters can be optimized. The x-PC and the y-PC, as two chaotic radar sources, are used to implement the real-time ranging for two targets. It is found that the measured distances of the two targets at arbitrary position exhibit strong real-time stability and only slight jitter. Their resolutions are up to millimeters, and their relative errors are very small and less than 2.7%.

  14. Preparation of 7Be targets for nuclear astrophysics research

    Science.gov (United States)

    Maugeri, E. A.; Heinitz, S.; Dressler, R.; Barbagallo, M.; Kivel, N.; Schumann, D.; Ayranov, M.; Musumarra, A.; Gai, M.; Colonna, N.; Paul, M.; Halfon, S.; Cosentino, L.; Finocchiaro, P.; Pappalardo, A.

    2017-02-01

    This work describes the preparation of three 7Be targets which were used in two independent measurements of the 7Be(n,α)4He cross section in the energy range of interest for the Big-Bang nucleosynthesis at the n\\_TOF-CERN facility and at Soreq-SARAF . A more precise value of this cross section could shed light on the long lasting "Cosmological Lithium problem". Two methods for target preparation were used. A target was obtained by deposition and subsequent air-drying of (24.50± 0.54) GBq of Be(NO3)2 droplets precisely positioned onto a stretched low density polyethylene film 0.635 μm thick. The thickness of the deposited Be(NO3)2 layer was deduced using Monte-Carlo simulations to be 0.36 μm. The energy loss of 8500 keV alpha particles passing through the target obtained by air-drying of 7Be(NO3)2 droplets was estimated to be 88 keV . Two other targets were prepared via molecular plating onto ~ 5 μm and 1 mm thick aluminium backings, respectively. The first was obtained by molecular plating (24.47± 0.53) GBq of 7Be, resulting in a deposited layer of Be(OH)2, 1.04 μm thick. The second molecular plated target was obtained depositing (3.95± 0.08) GBq of 7Be. The mean energy loss of 8500 keV alpha particles, passing through the molecular plated target with 5 μm thick aluminium backings was estimated as 814 keV . The energy loss by 8500 keV alpha particles in all the obtained targets is considered tolerable for the envisaged cross section measurements. The preparation and characterization of the targets is here described.

  15. [Development of a hydrogen and deuterium polarized gas target for application in storage rings]: Progress report

    International Nuclear Information System (INIS)

    Haeberli, W.

    1989-01-01

    This paper briefly discusses the following topics: the Wisconsin test facility for storage cells; results of target tests; the new UHV target test system; funding request for a new atomic beam system; and planning of storage ring experiments

  16. Differentiated influences of risk perceptions on nuclear power acceptance according to acceptance targets: Evidence from Korea

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Seung Kook [Policy Research Center, Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of); Lee, Jin Won [School of Management, Xiamen University, Xiamen (China)

    2017-08-15

    The determinants of the public's nuclear power acceptance have received considerable attention as decisive factors regarding nuclear power policy. However, the contingency of the relative importance of different determinants has been less explored. Building on the literature of psychological distance between the individual and the object, the present study demonstrates that the relative effects of different types of perceived risks regarding nuclear power generation differ across acceptance targets. Using a sample of Korea, our results show that, regarding national acceptance of nuclear power generation, perceived risk from nuclear power plants exerts a stronger negative effect than that from radioactive waste management; however, the latter exerts a stronger negative effect than the former on local acceptance of a nuclear power plant. This finding provides implications for efficient public communication strategy to raise nuclear power acceptance.

  17. Differentiated influences of risk perceptions on nuclear power acceptance according to acceptance targets: Evidence from Korea

    International Nuclear Information System (INIS)

    Roh, Seung Kook; Lee, Jin Won

    2017-01-01

    The determinants of the public's nuclear power acceptance have received considerable attention as decisive factors regarding nuclear power policy. However, the contingency of the relative importance of different determinants has been less explored. Building on the literature of psychological distance between the individual and the object, the present study demonstrates that the relative effects of different types of perceived risks regarding nuclear power generation differ across acceptance targets. Using a sample of Korea, our results show that, regarding national acceptance of nuclear power generation, perceived risk from nuclear power plants exerts a stronger negative effect than that from radioactive waste management; however, the latter exerts a stronger negative effect than the former on local acceptance of a nuclear power plant. This finding provides implications for efficient public communication strategy to raise nuclear power acceptance

  18. Differentiated influences of risk perceptions on nuclear power acceptance according to acceptance targets: Evidence from Korea

    Directory of Open Access Journals (Sweden)

    Seungkook Roh

    2017-08-01

    Full Text Available The determinants of the public's nuclear power acceptance have received considerable attention as decisive factors regarding nuclear power policy. However, the contingency of the relative importance of different determinants has been less explored. Building on the literature of psychological distance between the individual and the object, the present study demonstrates that the relative effects of different types of perceived risks regarding nuclear power generation differ across acceptance targets. Using a sample of Korea, our results show that, regarding national acceptance of nuclear power generation, perceived risk from nuclear power plants exerts a stronger negative effect than that from radioactive waste management; however, the latter exerts a stronger negative effect than the former on local acceptance of a nuclear power plant. This finding provides implications for efficient public communication strategy to raise nuclear power acceptance.

  19. The movable polarized target as a basic equipment for high energy spin physics experiments at the JINR-Dubna accelerator complex

    Energy Technology Data Exchange (ETDEWEB)

    Lehar, F.; Adiasevich, B.; Androsov, V.P.; Angelov, N.; Anischenko, N.; Antonenko, V.; Ball, J.; Baryshevsky, V.G.; Bazhanov, N.A.; Belyaev, A.A.; Benda, B.; Bodyagin, V.; Borisov, N.; Borzunov, Yu.; Bradamante, F.; Bunyatova, E.; Burinov, V.; Chernykh, E.; Combet, M.; Datskov, A.; Durand, G.; Dzyubak, A.P.; Fontaine, J.M.; Get`man, V.A.; Giorgi, M.; Golovanov, L.; Grebenyuk, V.; Grosnick, D.; Gurevich, G.; Hasegawa, T.; Hill, D.; Horikawa, N.; Igo, G.; Janout, Z.; Kalinnikov, V.A.; Karnaukhov, I.M.; Kasprzyk, T.; Khachaturov, B.A.; Kirillov, A.; Kisselev, Yu.; Kousmine, E.S.; Kovalenko, A.; Kovaljov, A.I.; Ladygin, V.P.; Lazarev, A.; Leconte, P.; Lesquen, A. de; Lukhanin, A.A.; Mango, S.; Martin, A.; Matafonov, V.N.; Matyushevsky, E.; Mironov, S.; Neganov, A.B.; Neganov, B.S.; Nomofilov, A.; Perelygin, V.; Plis, Yu.; Pilipenko, Yu.; Pisarev, I.L.; Piskunov, N.; Polunin, Yu.; Popkov, Yu.P.; Propov, A.A.; Prokofiev, A.N.; Rekalo, M.P.; Rukoyatkin, P.; Sans, J.L.; Sapozhnikov, M.G.; Sharov, V.; Shilov, S.; Shishov, Yu.; Sitnik, I.M.; Sorokin, P.V.; Spinka, H.; Sporov, E.A.; Strunov, L.N.; Svetov, A.; De Swart, J.J.; Telegin, Yu.P.; Tolmashov, I.; Trentalange, S.; Tsvinev, A.; Usov, Yu.A.; Vikhrov, V.V.; Whitten, C.A.; Zaporozhets, S.; Zarubin, A.; Zhdanov, A.A.; Zolin, L. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de Physique des Particules, de Physique Nucleaire et de l`Instrumentation Associee]|[I.V. Kurchatov Inst. of Atomic Energy, Moscow (Russian Federation)]|[Kharkov Inst. of Physics and Technology (Russian Federation)]|[Lab. of Nuclear Problems, JINR, Dubna (Russian Federation)]|[Lab. of High Energy Physics, JINR, Dubna (Russian Federation)]|[Lab. National SATURNE, CNRS, 91 - Gif-sur-Yvette (France)]|[Inst. of Physics, Belarus Academy of Sciences, Minsk (Belarus)]|[Dept. of Physics, Petersburg Nuclear Physics Inst., Gatchina (Russian Federation)

    1995-03-01

    A movable polarized proton target is planned to be installed in polarized beams of the Synchrophasotron-Nuclotron complex in order to carry out a spin physics experimental program at Dubna. The project is described and the first proposed experiments are discussed. ((orig.))

  20. The movable polarized target as a basic equipment for high energy spin physics experiments at the JINR-Dubna accelerator complex

    International Nuclear Information System (INIS)

    Lehar, F.; Adiasevich, B.; Androsov, V.P.; Angelov, N.; Anischenko, N.; Antonenko, V.; Ball, J.; Baryshevsky, V.G.; Bazhanov, N.A.; Belyaev, A.A.; Benda, B.; Bodyagin, V.; Borisov, N.; Borzunov, Yu.; Bradamante, F.; Bunyatova, E.; Burinov, V.; Chernykh, E.; Combet, M.; Datskov, A.; Durand, G.; Dzyubak, A.P.; Fontaine, J.M.; Get'man, V.A.; Giorgi, M.; Golovanov, L.; Grebenyuk, V.; Grosnick, D.; Gurevich, G.; Hasegawa, T.; Hill, D.; Horikawa, N.; Igo, G.; Janout, Z.; Kalinnikov, V.A.; Karnaukhov, I.M.; Kasprzyk, T.; Khachaturov, B.A.; Kirillov, A.; Kisselev, Yu.; Kousmine, E.S.; Kovalenko, A.; Kovaljov, A.I.; Ladygin, V.P.; Lazarev, A.; Leconte, P.; Lesquen, A. de; Lukhanin, A.A.; Mango, S.; Martin, A.; Matafonov, V.N.; Matyushevsky, E.; Mironov, S.; Neganov, A.B.; Neganov, B.S.; Nomofilov, A.; Perelygin, V.; Plis, Yu.; Pilipenko, Yu.; Pisarev, I.L.; Piskunov, N.; Polunin, Yu.; Popkov, Yu.P.; Propov, A.A.; Prokofiev, A.N.; Rekalo, M.P.; Rukoyatkin, P.; Sans, J.L.; Sapozhnikov, M.G.; Sharov, V.; Shilov, S.; Shishov, Yu.; Sitnik, I.M.; Sorokin, P.V.; Spinka, H.; Sporov, E.A.; Strunov, L.N.; Svetov, A.; De Swart, J.J.; Telegin, Yu.P.; Tolmashov, I.; Trentalange, S.; Tsvinev, A.; Usov, Yu.A.; Vikhrov, V.V.; Whitten, C.A.; Zaporozhets, S.; Zarubin, A.; Zhdanov, A.A.; Zolin, L.

    1995-01-01

    A movable polarized proton target is planned to be installed in polarized beams of the Synchrophasotron-Nuclotron complex in order to carry out a spin physics experimental program at Dubna. The project is described and the first proposed experiments are discussed. ((orig.))

  1. The movable polarized target as a basic equipment for high energy spin physics experiments at the JINR-Dubna accelerator complex

    Science.gov (United States)

    Lehar, F.; Adiasevich, B.; Androsov, V. P.; Angelov, N.; Anischenko, N.; Antonenko, V.; Ball, J.; Baryshevsky, V. G.; Bazhanov, N. A.; Belyaev, A. A.; Benda, B.; Bodyagin, V.; Borisov, N.; Borzunov, Yu.; Bradamante, F.; Bunyatova, E.; Burinov, V.; Chernykh, E.; Combet, M.; Datskov, A.; Durand, G.; Dzyubak, A. P.; Fontaine, J. M.; Get'man, V. A.; Giorgi, M.; Golovanov, L.; Grebenyuk, V.; Grosnick, D.; Gurevich, G.; Hasegawa, T.; Hill, D.; Horikawa, N.; Igo, G.; Janout, Z.; Kalinnikov, V. A.; Karnaukhov, I. M.; Kasprzyk, T.; Khachaturov, B. A.; Kirillov, A.; Kisselev, Yu.; Kousmine, E. S.; Kovalenko, A.; Kovaljov, A. I.; Ladygin, V. P.; Lazarev, A.; Leconte, Ph.; de Lesquen, A.; Lukhanin, A. A.; Mango, S.; Martin, A.; Matafonov, V. N.; Matyushevsky, E.; Mironov, S.; Neganov, A. B.; Neganov, B. S.; Nomofilov, A.; Perelygin, V.; Plis, Yu.; Pilipenko, Yu.; Pisarev, I. L.; Piskunov, N.; Polunin, Yu.; Popkov, Yu. P.; Propov, A. A.; Prokofiev, A. N.; Rekalo, M. P.; Rukoyatkin, P.; Sans, J. L.; Sapozhnikov, M. G.; Sharov, V.; Shilov, S.; Shishov, Yu.; Sitnik, I. M.; Sorokin, P. V.; Spinka, H.; Sporov, E. A.; Strunov, L. N.; Svetov, A.; de Swart, J. J.; Telegin, Yu. P.; Tolmashov, I.; Trentalange, S.; Tsvinev, A.; Usov, Yu. A.; Vikhrov, V. V.; Whitten, C. A.; Zaporozhets, S.; Zarubin, A.; Zhdanov, A. A.; Zolin, L.

    1995-02-01

    A movable polarized proton target is planned to be installed in polarized beams of the Synchrophasotron-Nuclotron complex in order to carry out a spin physics experimental program at Dubna. The project is described and the first proposed experiments are discussed.

  2. Pygmy and core polarization dipole modes in 206Pb: Connecting nuclear structure to stellar nucleosynthesis

    Science.gov (United States)

    Tonchev, A. P.; Tsoneva, N.; Bhatia, C.; Arnold, C. W.; Goriely, S.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.

    2017-10-01

    A high-resolution study of the electromagnetic response of 206Pb below the neutron separation energy is performed using a (γ → ,γ‧) experiment at the HI γ → S facility. Nuclear resonance fluorescence with 100% linearly polarized photon beams is used to measure spins, parities, branching ratios, and decay widths of excited states in 206Pb from 4.9 to 8.1 MeV. The extracted ΣB (E 1) ↑ and ΣB (M 1) ↑ values for the total electric and magnetic dipole strength below the neutron separation energy are 0.9 ± 0.2 e2fm2 and 8.3 ± 2.0 μN2, respectively. These measurements are found to be in very good agreement with the predictions from an energy-density functional (EDF) plus quasiparticle phonon model (QPM). Such a detailed theoretical analysis allows to separate the pygmy dipole resonance from both the tail of the giant dipole resonance and multi-phonon excitations. Combined with earlier photonuclear experiments above the neutron separation energy, one extracts a value for the electric dipole polarizability of 206Pb of αD = 122 ± 10 mb /MeV. When compared to predictions from both the EDF+QPM and accurately calibrated relativistic EDFs, one deduces a range for the neutron-skin thickness of Rskin206 = 0.12- 0.19 fm and a corresponding range for the slope of the symmetry energy of L = 48- 60 MeV. This newly obtained information is also used to estimate the Maxwellian-averaged radiative cross section 205Pb (n , γ)206Pb at 30 keV to be σ = 130 ± 25 mb. The astrophysical impact of this measurement-on both the s-process in stellar nucleosynthesis and on the equation of state of neutron-rich matter-is discussed.

  3. Correlated calculations of indirect nuclear spin-spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD)

    DEFF Research Database (Denmark)

    Enevoldsen, Thomas; Oddershede, Jens; Sauer, Stephan P. A.

    1998-01-01

    We present correlated calculations of the indirect nuclear spin-spin coupling constants of HD, HF, H2O, CH4, C2H2, BH, AlH, CO and N2 at the level of the second-order polarization propagator approximation (SOPPA) and the second-order polarization propagator approximation with coupled-cluster sing...

  4. Simulation of a short-cable Q-meter for measuring the deuteron target polarization

    International Nuclear Information System (INIS)

    Karnaukhov, I.M.; Lukhanin, A.A.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1984-01-01

    Simulation of Q-meter with a phase automatic-frequency control of a reception circuit is carried out in the paper. Effect of circuit parameters and connecting cable on Q-meter sensitivity and magnitude of distortions of recorded signal is studied. It is shown that usage of the cable with a length of lambda/12-lambda/10 instead of traditional semiwave one enables to increase essentially the circuit sensitivity at the same distortion rate. Errors conditioned by distortions of the deuteron magnetic resonance (DMR) signal forms in the reception circuit, which can effect essertially on accuracy of deuteron polarization detection by the method of DMR spectrum decomposition, are discussed. It is shown that in the case of utilization of a short cable the polarization error due to spectrum distortions does not exceed 4...5%

  5. Exercise enhances wound healing and prevents cancer progression during aging by targeting macrophage polarity.

    Science.gov (United States)

    Goh, Jorming; Ladiges, Warren C

    2014-07-01

    Physical activity, which can include regular and repetitive exercise training, has been shown to decrease the incidence of age-related diseases. Aging is characterized by aberrant immune responses, including impaired wound healing and increased cancer risk. The behavior and polarized phenotype of tissue macrophages are distinct between young and old organisms. The balance of M1 and M2 macrophages is altered in the aged tissue microenvironment, with a tilt towards an M2-dominant macrophage population, as well as its associated signaling pathways. These M2-type responses may result in unresolved inflammation and create an environment that impairs wound healing and is favorable for cancer growth. We discuss the concept that exercise training can improve the regulation of macrophage polarization and normalize the inflammatory process, and thereby exert anticancer effects and enhance wound healing in older humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. High-field dissolution dynamic nuclear polarization of [1-13C]pyruvic acid

    DEFF Research Database (Denmark)

    Yoshihara, Hikari A. I.; Can, Emine; Karlsson, Magnus

    2016-01-01

    [1-13C]pyruvate is the most widely used hyperpolarized metabolic magnetic resonance imaging agent. Using a custom-built 7.0 T polarizer operating at 1.0 K and trityl radical-doped [1-13C]pyruvic acid, unextrapolated solution-state 13C polarization greater than 60% was measured after dissolution a...

  7. Interaction profiling identifies the human nuclear exosome targeting complex

    DEFF Research Database (Denmark)

    Lubas, Michal Szymon; Christensen, Marianne Spangsberg; Kristiansen, Maiken Søndergaard

    2011-01-01

    The RNA exosome is a conserved degradation machinery, which obtains full activity only when associated with cofactors. The most prominent activator of the yeast nuclear exosome is the RNA helicase Mtr4p, acting in the context of the Trf4p/Air2p/Mtr4p polyadenylation (TRAMP) complex. The existence...... from nucleoli, and consistently NEXT is specifically required for the exosomal degradation of promoter upstream transcripts (PROMPTs). We also detect putative homolog TRAMP subunits hTRF4-2 (Trf4p) and ZCCHC7 (Air2p) in hRRP6 and hMTR4 precipitates. However, at least ZCCHC7 function is restricted...

  8. Monodisperse Magnetite Nanoparticles Coupled with Nuclear Localization Signal Peptide for Cell-Nucleus Targeting

    OpenAIRE

    Xu, Chenjie; Xie, Jin; Kohler, Nathan; Walsh, Edward G.; Chin, Y. Eugene; Sun, Shouheng

    2008-01-01

    Functionalization of monodisperse superparamagnetic magnetite (Fe3O4) nanoparticles for cell specific targeting is crucial for cancer diagnostics and therapeutics. Targeted magnetic nanoparticles can be used to enhance the tissue contrast in magnetic resonance imaging (MRI), to improve the efficiency in anticancer drug delivery, and to eliminate tumor cells by magnetic fluid hyperthermia. Herein we report the nucleus-targeting Fe3O4 nanoparticles functionalized with protein and nuclear locali...

  9. Pluronic F127 nanomicelles engineered with nuclear localized functionality for targeted drug delivery

    International Nuclear Information System (INIS)

    Li, Yong-Yong; Li, Lan; Dong, Hai-Qing; Cai, Xiao-Jun; Ren, Tian-Bin

    2013-01-01

    PKKKRKV (Pro-Lys-Lys-Lys-Arg-Lys-Val, PV7), a seven amino acid peptide, has emerged as one of the primary nuclear localization signals that can be targeted into cell nucleus via the nuclear import machinery. Taking advantage of chemical diversity and biological activities of this short peptide sequence, in this study, Pluronic F127 nanomicelles engineered with nuclear localized functionality were successfully developed for intracellular drug delivery. These nanomicelles with the size ∼ 100 nm were self-assembled from F127 polymer that was flanked with two PV7 sequences at its both terminal ends. Hydrophobic anticancer drug doxorubicin (DOX) with inherent fluorescence was chosen as the model drug, which was found to be efficiently encapsulated into nanomicelles with the encapsulation efficiency at 72.68%. In comparison with the non-functionalized namomicelles, the microscopic observation reveals that PV7 functionalized nanomicelles display a higher cellular uptake, especially into the nucleus of HepG2 cells, due to the nuclear localization signal effects. Both cytotoxicity and apoptosis studies show that the DOX-loaded nanomicelles were more potent than drug nanomicelles without nuclear targeting functionality. It was thus concluded that PV7 functionalized nanomicelles could be a potentially alternative vehicle for nuclear targeting drug delivery. - Highlights: ► A new nuclear targeted drug delivery system based on micelles is developed. ► This micellar system features a core-shell structure with the size peaked at 100 nm. ► PV7, a short peptide sequence, is adopted as a nuclear targeting ligand. ► PV7 functionalized drug loaded micelles are more potent in killing tumor cells

  10. A polarized deuteron source and its application to nuclear physics (1963)

    International Nuclear Information System (INIS)

    Beurtey, R.

    1963-11-01

    Principles and realization of a polarized deuteron source fitted to the 22 MeV Saclay cyclotron are described. Various vector and tensor polarizations are obtained using radio-frequency transitions between Zeeman sub-levels of the deuterium atoms. Such polarized deuterons enable us the study of spin-dependent interactions in (d, d) scattering and (d, p) reactions. The asymmetries obtained by 40 Ca (d, d) 40 Ca, 12 C (d, p) 13 C and 28 Si (d, p) 29 Si are presented. (author) [fr

  11. Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day.

    Science.gov (United States)

    Albert, Brice J; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L; Rand, Peter W; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Barnes, Alexander B

    2017-10-01

    Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Hadron-pair production on transversely polarized targets in semi-inclusive deep inelastic scattering

    CERN Document Server

    Braun, Christopher

    Nucleons such as protons and neutrons are composite objects made of quarks, which are bound together by the strong force via the exchange of gluons. The probability of finding a quark of flavor q carrying the momentum fraction x of the fast moving parent nucleon is described by a parton distribution function (PDF) f q 1 ( x ) , the number density. The spin, an intrinsic angular momentum of elementary particles such as quarks but also of composite objects like nucleons, couples with magnetic fields, which allows one to align it. Taking into account this additional parameter, the spin, the scheme of PDFs in leading twist is expanded by the helicity distribution g q 1 ( x ) and the transversity distribution h q 1 ( x ) . The first distribution covers the case where the nucleon and the quark are longitudinally polarized, while a transverse polarization is taken into account by the latter. A tool for the investigation of the PDFs is inclusive deep inelastic scattering (DIS) of electro- magnetic probes off (un)pola...

  13. Reaction Measurements with the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Gas Jet Target

    Science.gov (United States)

    Chipps, K. A.; Jensa Collaboration

    2017-09-01

    The development of radioactive ion beams for reaction measurements was a major step forward in nuclear astrophysics, reactions, and structure. However, the move to inverse kinematics presented unique difficulties, in particular with regard to the targets used in such studies. Lower beam intensities may require thicker targets, but this negatively affects the experimental resolution and potential backgrounds. A recent development toward studies of nuclear reactions is the commissioning of the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target. The JENSA system provides a pure, homogeneous, highly localized, dense, and robust gaseous target for radioactive ion beam studies. Charged-particle reactions measurements made with gas jet targets can be cleaner and display better resolution than with traditional targets. With the availability of pure and localized gas jet targets in combination with developments in exotic radioactive ion beams and next-generation detector and spectrometer systems, the range of reaction studies that are experimentally possible is vastly expanded. This talk will focus on the benefits of performing reaction measurements with a gas jet target, including discussion of several example cases using JENSA. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. This work was supported by DOE, NNSA, and NSF.

  14. Evidence for Nuclear Tensor Polarization of Deuterium Molecules in Storage Cells

    International Nuclear Information System (INIS)

    van den Brand, J.; Bulten, H.; Zhou, Z.; Unal, O.; van den Brand, J.; Ferro-Luzzi, M.; Botto, T.; Bouwhuis, M.; Heimberg, P.; de Jager, C.; de Lange, D.; Nooren, G.; Papadakis, N.; Passchier, I.; Poolman, H.; Steijger, J.; Vodinas, N.; de Vries, H.; van den Brand, J.; Ferro-Luzzi, M.; Lang, J.; Alarcon, R.; Dolfini, S.; Ent, R.; Higinbotham, D.

    1997-01-01

    Deuterium molecules were obtained by recombination, on a copper surface, of deuterium atoms prepared in specific hyperfine states. The molecules were stored for about 5ms in an open-ended cylindrical cell, placed in a 23mT magnetic field, and their tensor polarization was measured by elastic scattering of 704MeV electrons. The results of the measurements are consistent with the deuterium molecules retaining the tensor polarization of the initial atoms. copyright 1997 The American Physical Society

  15. Polarization enhancement in (d)over-right-arrow((p)over-right-arrow,(n)over-right-arrow)He-2 reaction : nuclear teleportation

    NARCIS (Netherlands)

    Hamieh, S

    2004-01-01

    I show that an experimental technique used in nuclear physics may be successfully applied to quantum teleportation (QT) of spin states of massive matter. A new non-local physical effect, the 'quantum-teleportation effect', is discovered for the nuclear polarization measurement. Enhancement of the

  16. Safety targets and public risk perceptions in the nuclear field - technical treadmill or institutional responses?

    International Nuclear Information System (INIS)

    Wynne, B.

    1989-01-01

    The context of our treatment of risk perceptions and safety targets is the apparently wide gap between expert judgements of 'objective risks' and public perceptions of those risks. In the nuclear field the latter appear to so multiply the objective risks as seen by the experts, as to make safety targets vastly too strict (whether for routine discharges or for large accidents), thus design extravagantly expensive on any 'rational' criteria. In recent years the nuclear industry has come to terms more with the public perceptions problem, and has accepted that it is legitimate to exercise different, more severe and costly safety standards in the nuclear field if that is what society wants, as it appears to do. Whilst retaining the conviction that this is scientifically unwarranted, the industry has therefore reconciled itself somewhat to more stringent technical safety targets. (author)

  17. Cross polarization, magic-angle spinning /sup 13/C nuclear magnetic resonance spectroscopy of soil humic fractions

    Energy Technology Data Exchange (ETDEWEB)

    Saiz-Jimenez, C.; Hawkins, B.L.; Maciel, G.E.

    1986-01-01

    Cross polarization, magic-angle spinning /sup 13/C nuclear magnetic resonance spectroscopy was used to characterize humic fractions isolated from different soils. The humic acid fractions are more aromatic than the humin fractions, probably due to the higher polysaccharide content of humins. However, fulvic acid fractions are more aromatic than the corresponding humic acid and humin fractions. These results can be interpreted in terms of the isolation procedure, because the high affinity of Polyclar AT for phenols results in higher aromaticities as compared with other isolation methods (e.g. charcoal).

  18. High quality ion acceleration through the interaction of two matched counterpropagating transversely polarized Gaussian lasers with a flat foil target

    Science.gov (United States)

    Zhou, Weijun; Hong, Xueren; Xie, Baisong; Yang, Yang; Wang, Li; Tian, Jianmin; Tang, Rongan; Duan, Wenshan

    2018-02-01

    In order to generate high quality ion beams through a relatively uniform radiation pressure acceleration (RPA) of a common flat foil, a new scheme is proposed to overcome the curve of the target while being radiated by a single transversely Gaussian laser. In this scheme, two matched counterpropagating transversely Gaussian laser pulses, a main pulse and an auxiliary pulse, impinge on the foil target at the meantime. It is found that in the two-dimensional (2D) particle-in-cell (PIC) simulation, by the restraint of the auxiliary laser, the curve of the foil can be effectively suppressed. As a result, a high quality monoenergetic ion beam is generated through an efficient RPA of the foil target. For example, two counterpropagating transversely circularly polarized Gaussian lasers with normalized amplitudes a1=120 and a2=30 , respectively, impinge on the foil target at the meantime, a 1.3 GeV monoenergetic proton beam with high collimation is obtained finally. Furthermore, the effects on the ions acceleration with different parameters of the auxiliary laser are also investigated.

  19. Formation of large target residues in intermediate energy nuclear collisions

    International Nuclear Information System (INIS)

    Loveland, W.; Aleklett, K.; Sihver, L.; Xu, Z.; Seaborg, G.T.

    1987-04-01

    We have used radiochemical techniques to measure the yields, angular distributions and velocity spectra of the large (A/sub frag/ ≥ 2/3 A/sub tgt/) target residues from the fragmentation of 197 Au by intermediate energy 12 C, 20 Ne, 32 S, 40 Ar, 84 Kr, and 139 La projectiles. The fragment moving frame angular distributions are asymmetric for the lighter projectiles (C-Ar). The fragment velocity spectra are Maxwellian for the Kr induced reactions and non-Maxwellian for the reactions induced by the lighter ions. We interpret these results in terms of a change in the dominant fragment production mechanism(s) from one(s) involving a fast non-equilibrium process for the lighter ions to a slow, equilibrium process for Kr. Comparison of the measured yields and angular distributions with calculations made using a Boltzmann transport equation with appropriate modifications for Pauli blocking, etc., show excellent agreement between data and theory. 12 refs., 12 figs

  20. Long-distance delivery of multi-channel polarization signals in nuclear fusion research

    Science.gov (United States)

    Ko, Jinseok; Chung, Jinil; Lee, Kyuhang

    2017-04-01

    A polarization-preserving optical system that includes a dual photoelastic modulator (PEM) has been designed and fabricated for the motional Stark effect (MSE) diagnostic system which measures internal magnetic field structures inside the tokamak for the Korea Superconducting Tokamak Advanced Research. The collection optics located outside the vacuum window is composed of four lenses, a dielectric coated mirror, and a dichroic beam splitter in addition to the PEM and a polarizer. The fiber dissector is designed based on the focal plane that aligns 25 lines of sight, each of which constitutes a bundle of 19 600-μm fibers. The fibers run about 40 m from the front optics in the tokamak vacuum vessel to the detector in the diagnostic area remote from the tokamak hall. This takes the advantage of the fact that the polarization information is intensity-modulated once going through the PEM and the polarizer. The polarization signals measured by the MSE diagnostic successfully demonstrates its proof-of-principle physics that is critical in the stable and steady-state operation of the tokamak plasmas.

  1. Synthesis of chromium (V) complex on the basis of deuterated ethanediol for a polarized deuteron target

    Energy Technology Data Exchange (ETDEWEB)

    Bunyatova, E.I.; Bubnov, N.N. (Joint Inst. for Nuclear Research, Moscow (USSR). Lab. of Nuclear Problems)

    1984-01-15

    To develop a target with polarised deuterons the chromium (V) complex with deuterated ethanediol ligands was synthesized. The electron paramagnetic resonance (EPR) spectra were employed to determine the concentration and g-factor of the complex. The procedure to obtain the chromium (V) complex with partly deuterated ethanediol ligands is also discussed.

  2. Synthesis of chromium (V) complex on the basis of deuterated ethanediol for a polarized deuteron target

    Science.gov (United States)

    Bunyatova, E. I.; Bubnov, N. N.

    1984-01-01

    To develop a target with polarised deuterons the chromium (V) complex with deuterated ethanediol ligands was synthesized. The electron paramagnetic resonance (EPR) spectra were employed to determine the concentration and g-factor of the complex. The procedure to obtain the chromium (V) complex with partly deuterated ethanediol ligands is also discussed.

  3. New investigations of organic compounds for targets with polarized hydrogen nuclei

    Science.gov (United States)

    Bunyatova, E. I.

    1995-02-01

    Pentanol C 5H 12O, polyethylene (CH 2) n and their deuterated analogues C 5D 12O and (CD 2) n are proposed as target materials. Particular attention is paid to the production of materials in a glass-like (amorphous) state.

  4. New investigations of organic compounds for targets with polarized hydrogen nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bunyatova, E.I. [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1995-03-01

    Pentanol C{sub 5}H{sub 12}O, polyethylene (CH{sub 2}){sub n} and their deuterated analogues C{sub 5}D{sub 12}O and (CD{sub 2}){sub n} are proposed as target materials. Particular attention is paid to the production of materials in a glass-like (amorphous) state. ((orig.))

  5. Frizzled3 controls axonal polarity and intermediate target entry during striatal pathway development

    NARCIS (Netherlands)

    Morello, Francesca; Prasad, Asheeta A.; Rehberg, Kati; Baptista Vieira de Sá, Renata; Antón-Bolaños, Noelia; Leyva-Diaz, Eduardo; Adolfs, Youri; Tissir, Fadel; López-Bendito, Guillermina; Pasterkamp, R. Jeroen

    2015-01-01

    The striatum is a large brain nucleus with an important role in the control of movement and emotions.Mediumspiny neurons (MSNs) are striatal output neurons forming prominent descending axon tracts that target different brain nuclei. However, how MSN axon tracts in the forebrain develop remains

  6. IMPACT OF ENERGY GROUP STRUCTURE ON NUCLEAR DATA TARGET ACCURACY REQUIREMENTS FOR ADVANCED REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    G. Palmiotti; M. Salvatores; H. Hiruta

    2011-06-01

    A target accuracy assessment study using both a fine and a broad energy structure has shown that less stringent nuclear data accuracy requirements are needed for the latter energy structure. However, even though a reduction is observed, still the requirements will be very difficult to be met unless integral experiments are also used to reduce nuclear data uncertainties. Target accuracy assessment is the inverse problem of the uncertainty evaluation. To establish priorities and target accuracies on data uncertainty reduction, a formal approach can be adopted by defining target accuracy on design parameters and finding out required accuracy on data in order to meet them. In fact, the unknown uncertainty data requirements can be obtained by solving a minimization problem where the sensitivity coefficients in conjunction with the constraints on the integral parameters provide the needed quantities for finding the solutions.

  7. Observation of nuclear spin waves in spin-polarized atomic hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Johson, B.R.; Denker, J.S.; Bigelow, N.; Levy, L.P.; Freed, J.H.; Lee, D.M.

    1984-04-23

    We have observed narrow, distinct resonances in the NMR spectrum of dilute spin-polarized atomic hydrogen gas (nroughly-equal10/sup 16/ atoms/cm/sup 3/). The dependence of the observed spectra on temperature, density, polarization, and magnetic field gradient is consistent with theoretical predictions for spin-wave excitations damped by diffusion. We have measured the parameter ..mu.., which is a measure of the importance of exchange effects in spin transport processes, and the diffusion coefficient D/sub 0/, both of which are in reasonable agreement with theory.

  8. Reaction measurements with the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

    Science.gov (United States)

    Chipps, K. A.

    2017-09-01

    Explosive stellar environments are sometimes driven by nuclear reactions on short-lived, radioactive nuclei. These reactions often drive the stellar explosion, alter the observable light curves produced, and dictate the final abundances of the isotopes created. Unfortunately, many reaction rates at stellar temperatures cannot be directly measured in the laboratory, due to the physical limitations of ultra-low cross sections and high background rates. An additional complication arises because many of the important reactions involve radioactive nuclei which have lifetimes too short to be made into a target. As such, direct reactions require very intense and pure beams of exotic nuclei. Indirect approaches with both stable and radioactive beams can, however, provide crucial information on the nuclei involved in these astrophysical reactions. A major development toward both direct and indirect studies of nuclear reactions rates is the commissioning of the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) supersonic gas jet target. The JENSA system provides a pure, homogeneous, highly localized, dense, and robust gaseous target for radioactive ion beam studies. Charged-particle reactions measurements made with gas jet targets can be cleaner and display better resolution than with traditional targets. With the availability of pure and localized gas jet targets in combination with developments in exotic radioactive ion beams and next-generation detector systems, the range of reaction studies that are experimentally possible is vastly expanded. Various representative cases will be discussed.

  9. Dynamical nuclear polarization and confinement effects in ZnO quantum dots

    NARCIS (Netherlands)

    Baranov, P.G.; Orlinskii, S.B.; Hofmann, D.M.; de Mello Donega, C.; Meijerink, A.; Schmidt, J.

    2010-01-01

    The spatial distribution of the electronic wave function of a shallow donor (SD) in a ZnO semiconductor quantum dots (QD's) has been determined in the regime of quantum confinement by using the nuclear spins as probes. Hyperfine (HF) interactions as monitored by electron nuclear double resonance

  10. A changing world: Using nuclear techniques to investigate the impact of climate change on polar and mountainous regions

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2015-01-01

    Nuclear techniques are being used in polar and mountainous regions to study climate change and its impact on the quality of land, water and ecosystems in order to better conserve and manage these resources. Researchers from around the world will be using data from 13 benchmark sites to draw conclusions about the effects of the rapidly changing climate on the Arctic, mountains and the western part of Antarctica, which have alarmed communities, environmentalists, scientists and policy makers. Between July 2015 and July 2016 they will be using isotopic and nuclear techniques, as well as geochemical and biological analytical methods from other scientific disciplines. This will enable them to track soil and water, to monitor the movement of soil and sediment and to assess the effects of melting permafrost on the atmosphere, as well as on the land, water and fragile ecosystems of mountainous and polar regions. The measurements follow numerous on-site tests carried out since November 2014 to perfect the sampling technique.

  11. Shining light on nuclear-targeted therapy using gold nanostar constructs.

    Science.gov (United States)

    Dam, Duncan Hieu M; Culver, Kayla S B; Sisco, Patrick N; Odom, Teri W

    2012-11-01

    Nuclear-targeted therapy has received increasing attention as a potential strategy to improve the therapeutic efficacy of treating cancer. The main challenges include targeting, drug-delivery efficiency and release of anticancer agents to the cancer cell nucleus. Nanoparticles as nanocarriers have started to address some of these issues. However, a lack of understanding in how nanoconstructs interact with the nucleus has precluded detailed studies. In this article, we highlight a nanoconstruct composed of gold (Au) nanostars loaded with nucleolin-specific aptamers. This nanoconstruct induced major changes in the nuclear phenotype through nuclear envelope (NE) invaginations. Femtosecond, light-triggered release of the aptamers from the surface of the Au nanostars further increased the number of NE deformations. Cancer cells with more NE folding showed increased apoptosis as well as decreased cell viability. The author's of this article have revealed that correlation between drug-induced changes in nuclear phenotypes and increased therapeutic efficacy can provide new insight into nuclear-targeted cancer therapy.

  12. Dynamic nuclear polarization in perfluorodimethylcyclohexane doped with a perfluoralkyl free radical

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, B. van den [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Bubnov, N.N. [A.N. Nesmeyanov Inst. of Organo-element Compounds, Russian Acad. of Sci., Moscow (Russian Federation); Bunyatova, E.I. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Hautle, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Konter, J.A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Mango, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Solodovnikov, S.P. [A.N. Nesmeyanov Inst. of Organo-element Compounds, Russian Acad. of Sci., Moscow (Russian Federation); Tumanski, B.L. [A.N. Nesmeyanov Inst. of Organo-element Compounds, Russian Acad. of Sci., Moscow (Russian Federation)

    1995-03-01

    First results of DNP at 2.5 T and below 0.3 K in F-dimethylcyclohexane (C{sub 8}F{sub 16}), doped with F-2,4-dimethyl-3-ethyl-3-pentyl (C{sub 9}F{sub 19}), are presented. A polarization of the {sup 19}F-nuclei of up to 54% was obtained. ((orig.))

  13. Dynamic nuclear polarization in perfluorodimethylcyclohexane doped with a perfluoralkyl free radical

    Science.gov (United States)

    van den Brandt, B.; Bubnov, N. N.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.; Solodovnikov, S. P.; Tumanski, B. L.

    1995-02-01

    First results of DNP at 2.5 T and below 0.3 K in F-dimethylcyclohexane (C 8F 16), doped with F-2,4-dimethyl-3-ethyl-3-pentyl (C 9F 19), are presented. A polarization of the 19F-nuclei of up to 54% was obtained.

  14. Boosting Deuteron Polarization in HD Targets: Experience of moving spins between H and D with RF methods during the E06-101 experiment at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiangdong; Bass, Christopher; D' Angelo, Annalisa; Deur, Alexandre; Dezern, Gary; Kageya, Tsuneo; Laine, Vivien; Lowry, Michael; Sandorfi, Andrew; Teachey, Robert; Wang, Haipeng; Whisnant, Charles

    2014-06-01

    Solid HDice targets are polarized by bringing the HD crystal to thermal equilibrium at low temperature and high magnetic field, typically 10-20 mK and 15 Tesla, at Jefferson Lab. In this regime, due to its smaller magnetic moment, the resulting polarization for D is always at least three times smaller than for H. The controlled amount of polarizing catalysts, o-H2 and p-D2, used in the process of reaching a frozen-spin state, further limit the maximum achievable D polarization. Nonetheless, H and D polarizations can be transferred from one to the other by connecting the H and D sub-states of the HD system with RF. In a large target, the RF power needed for such transitions is effectively limited by non-uniformities in the RF field. High efficiency transfers can require substantial RF power levels, and a tuned-RF circuit is needed to prevent large temperature excursions of the holding cryostat. In this paper, we compare the advantages and limitations of two different RF transfer methods to increase D polarization, Forbidden Adiabatic and Saturated Forbidden RF Transitions. The experience with the HD targets used during the recently completed E06-101 experiment in Hall-B of Jefferson Lab is discussed.

  15. Nuclear reactions of medium and heavy target nuclei with high-energy projectiles

    International Nuclear Information System (INIS)

    Kozma, P.; Damdinsuren, C.

    1988-01-01

    The cross sections of a number of target fragmentation products formed in nuclear reactions of 3.65 AGeV 12 C-ions and 3.65 GeV protons with 197 Au have been measured. The measurements have been done by direct counting of irradiated targets with Ge(Li) gamma-spectrometers. Comparison between these and other data has been used to test the hypotheses of factorization and limiting fragmentation. The total cross section for residue production in both reactions indicates that target residues are formed mainly in central collisions

  16. Pion-induced production of the Zc(3900 ) off a nuclear target

    Science.gov (United States)

    Huang, Yin; He, Jun; Liu, Xiang; Zhang, Hong Fei; Xie, Ju Jun; Chen, Xu Rong

    2016-02-01

    We investigate the possibility to study the charmoniumlike state Zc(3900 ) through the pion-induced production off a nuclear target. By using a high-energy pion beam, the Zc(3900 ) can be produced off a proton or nucleus though the Primakoff effect. The production amplitude is calculated in an effective Lagrangian approach combined with the vector dominance model. The total cross sections of the p (π-,Zc-(3900 )) and p (π-,Zc-(3900 )→J /ψ π-) reactions are calculated, and their order of magnitude is about 0.1 and 0.01 nb, respectively, with an assumption of branch ratio 10% for the Zc(3900 ) decay in J /ψ π channel. If the proton target is replaced by a nuclear target, the production of the Zc(3900 ) enhances obviously. The predicted total cross sections for the A (π-,Zc-(3900 )) and A (π-,Zc-(3900 )→J /ψ π-) reactions with A =12C or 208Pb are on the order of magnitude of 100 and 10 nb, respectively, which is about one thousand times larger than the cross sections off a proton target. Based on these results, we suggest the experimental study of the Zc(3900 ) by using high-energy pion beams with a nuclear target at facilities such as COMPASS and J-PARC.

  17. Voltage switching technique for detecting nuclear spin polarization in a quantum dot

    International Nuclear Information System (INIS)

    Takahashi, Ryo; Kono, Kimitoshi; Tarucha, Seigo; Ono, Keiji

    2010-01-01

    We have introduced a source-drain voltage switching technique for studying nuclear spins in a vertical double quantum dot. Switching the source-drain voltage between the spin-blockade state and the zero-bias Coulomb blockade state can tune the energy difference between the spin singlet and triplet, and effectively turn on/off the hyperfine interaction. Since the change in the nuclear spin state affects the source-drain current, nuclear spin properties can only be detected by transport measurement. Using this technique, we have succeeded in measuring the timescale of nuclear spin depolarization. Furthermore, combining this technique and an RF ac magnetic field, we successfully detected continuous-wave NMR signals of 75 As, 69 Ga, and 71 Ga, which are contained in a quantum dot. (author)

  18. Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kheswa, N.Y., E-mail: kheswa@tlabs.ac.z [iThemba Laboratory for Accelerator Based Science, P.O. Box 722, Somerset West 7129, Western Cape (South Africa); Papka, P.; Buthelezi, E.Z.; Lieder, R.M.; Neveling, R.; Newman, R.T. [iThemba Laboratory for Accelerator Based Science, P.O. Box 722, Somerset West 7129, Western Cape (South Africa)

    2010-02-11

    This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ({sup nat}Ca), lithium-6 ({sup 6}Li) and molybdenum-97 ({sup 97}Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.

  19. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  20. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  1. ANP32B is a nuclear target of henipavirus M proteins.

    Directory of Open Access Journals (Sweden)

    Anja Bauer

    Full Text Available Membrane envelopment and budding of negative strand RNA viruses (NSVs is mainly driven by viral matrix proteins (M. In addition, several M proteins are also known to be involved in host cell manipulation. Knowledge about the cellular targets and detailed molecular mechanisms, however, is poor for many M proteins. For instance, Nipah Virus (NiV M protein trafficking through the nucleus is essential for virus release, but nuclear targets of NiV M remain unknown. To identify cellular interactors of henipavirus M proteins, tagged Hendra Virus (HeV M proteins were expressed and M-containing protein complexes were isolated and analysed. Presence of acidic leucine-rich nuclear phosphoprotein 32 family member B (ANP32B in the complex suggested that this protein represents a direct or indirect interactor of the viral matrix protein. Over-expression of ANP32B led to specific nuclear accumulation of HeV M, providing a functional link between ANP32B and M protein. ANP32B-dependent nuclear accumulation was observed after plasmid-driven expression of HeV and NiV matrix proteins and also in NiV infected cells. The latter indicated that an interaction of henipavirus M protein with ANP32B also occurs in the context of virus replication. From these data we conclude that ANP32B is a nuclear target of henipavirus M that may contribute to virus replication. Potential effects of ANP32B on HeV nuclear shuttling and host cell manipulation by HeV M affecting ANP32B functions in host cell survival and gene expression regulation are discussed.

  2. An Adenovirus DNA Replication Factor, but Not Incoming Genome Complexes, Targets PML Nuclear Bodies.

    Science.gov (United States)

    Komatsu, Tetsuro; Nagata, Kyosuke; Wodrich, Harald

    2016-02-01

    Promyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes. The immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral genomes and

  3. Scattering of polarized 7Li by 120Sn and projectile-target spin-dependent interactions

    International Nuclear Information System (INIS)

    Sakuragi, Y.; Yahiro, M.; Kamimura, M.; Tanifuji, M.

    1986-07-01

    Scattering of 7 Li by 120 Sn targets at E lab = 44 MeV is investigated in the coupled-channel frame by taking account of the projectile virtual excitations to the lowest three excited states. Calculations are performed by the cluster-folding (CF) interactions and the double-folding (DF) one. Both interactions reproduce very well the expeimental data on the cross section, the vector analyzing power, the second-rank tensor ones and the third-rank tensor one in elastic and projectile inelastic scattering, although some differences are found between the CF results and the DF ones. In the calculation, the virtual excitations of the projectile are important for most of the analyzing powers and the spin-orbit interaction is indispensable for the vector analyzing power. These features are in contrast to those in 7 Li - 58 Ni scattering at 20 MeV and are interpreted as over-Coulomb-barrier effects. The scattering amplitudes and the analyzing powers are investigated by the invariant amplitude method, which provides a key connecting the spin-dependent interactions to the analyzing powers. The method proposes an important relationship between the tensor analyzing powers, which is useful in analyses of both theoretical and experimental results. Finally, it is found that in the elastic scattering the second-rank tensor analyzing powers are proportional to the strength of the second-rank tensor interaction and the vector and third-rank tensor analyzing powers to the square or cube of the strength of this interaction, while in the inelastic scattering the cross section is proportional to the square of the strength of the tensor interaction, other quantities being weakly dependent on the strength. (author)

  4. Notes on T-invariance and polarization effects in the elastic scattering of a particle with spin 1/2 on the unpolarized target

    International Nuclear Information System (INIS)

    Lyuboshits, V.V.; Lyuboshits, V.L.

    1998-01-01

    In the frames of T-invariance the analysis of the general dependence of the elastic scattering effective cross section of a particle with spin 1/2 on the unpolarized target with arbitrary spin upon the initial and final polarizations of the particle has been performed. On the base of the T-symmetry of the differential scattering cross section only, without traditional consideration of the spin structure of scattering amplitudes, a simple proof of the Wolfenstein theorem is obtained (this theorem states that the degree of transverse polarization, arising in the elastic scattering of an unpolarized particle on the unpolarized target, is equal to the coefficient of left-right asymmetry in the elastic scattering of the same but transversally polarized particle on the same target). Meantime, it is ascertained that in the case of P-parity violation (conserving T-invariance) there exists no analogous universal relation between the degree of longitudinal polarization and the coefficient of P-odd spin asymmetry in the scattering of longitudinally polarized particles. It is shown, further, that under T-invariance the amplitude and cross section of 'backward' scattering of neutrons on zero-spin nuclei do not depend on spin, and the observation of such a dependence would testify unambiguously to the T-invariance violation. However, according to the fulfilled estimates, the T-noninvariant spin asymmetry in the 'backward' scattering is very small (about 10 -8 - 10 -7 )

  5. Protons and electrons generated from a 5-{mu}m thick copper tape target irradiated by s-, circularly-, and p-polarized 55-fs laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan)], E-mail: lizhong@sinap.ac.cn; Daido, H. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); Fukumi, A. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Bulanov, S.V.; Sagisaka, A.; Ogura, K.; Yogo, A.; Nishiuchi, M.; Orimo, S.; Mori, M. [Advanced Photon Research Center, Japan Atomic Energy Agency, Umeimidai 8-1, Kizu, Kyoto 619-0215 (Japan); Oishi, Y.; Nayuki, T.; Fujii, T.; Nemoto, K. [Central Research Institute of Electric Power Industry, Nagasaka 2-6-1, Yokosuka, Kanagawa 240-0196 (Japan); Nakamura, S.; Noda, A. [Institute of Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Choi, I.W.; Sung, J.H.; Ko, D.-K.; Lee, J. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2007-10-01

    The angular distribution and energy spectra of energetic protons emitted from a 5-{mu}m thick copper tape target irradiated by p-, circularly-, and s-polarized 55-fs laser pulses with intensity of 8-9x10{sup 18} W/cm{sup 2} are measured. The protons are found in the rear target normal direction while the hot electrons are found in the laser propagation direction. The maximum energy of protons is equal to 1.34 MeV for p-polarized irradiation. The energy spectrum of protons depends strongly on the total amount of electrons but it does not so strongly depend on the electron angular distribution under our experiment conditions. Two-dimensional particle in cell simulations also show the maximal proton acceleration for the p-polarized pulse, less efficient acceleration for the circular polarization, and lower acceleration efficiency in the case of the s-polarization, which is related to the electron acceleration efficiency at the front side of the target.

  6. Nuclear IGF-1R predicts chemotherapy and targeted therapy resistance in metastatic colorectal cancer.

    Science.gov (United States)

    Codony-Servat, Jordi; Cuatrecasas, Miriam; Asensio, Elena; Montironi, Carla; Martínez-Cardús, Anna; Marín-Aguilera, Mercedes; Horndler, Carlos; Martínez-Balibrea, Eva; Rubini, Michele; Jares, Pedro; Reig, Oscar; Victoria, Iván; Gaba, Lydia; Martín-Richard, Marta; Alonso, Vicente; Escudero, Pilar; Fernández-Martos, Carlos; Feliu, Jaime; Méndez, Jose Carlos; Méndez, Miguel; Gallego, Javier; Salud, Antonieta; Rojo, Federico; Castells, Antoni; Prat, Aleix; Rosell, Rafael; García-Albéniz, Xabier; Camps, Jordi; Maurel, Joan

    2017-12-05

    Although chemotherapy is the cornerstone treatment for patients with metastatic colorectal cancer (mCRC), acquired chemoresistance is common and constitutes the main reason for treatment failure. Monoclonal antibodies against insulin-like growth factor-1 receptor (IGF-1R) have been tested in pre-treated mCRC patients, but results have been largely deceiving. We analysed time to progression, overall survival, and the mutational status of RAS, BRAF and nuclear p-IGF-1R expression by immunohistochemistry, in 470 metastatic CRC patients. The effect of IGF-1R activation and distribution was also assessed using cellular models of CRC and RNAi for functional validation. Nuclear IGF-1R increased in metastatic tumours compared to paired untreated primary tumours, and significantly correlated with poor overall survival in mCRC patients. In vitro, chemo-resistant cell lines presented significantly higher levels of IGF-1R expression within the nuclear compartment, and PIAS3, a protein implicated also in the sumoylation process of intranuclear proteins, contributed to IGF-1R nuclear sequestration, highlighting the essential role of PIAS3 in this process. Intriguingly, we observed that ganitumab, an IGF-1R blocking-antibody used in several clinical trials, and dasatinib, an SRC inhibitor, increased the nuclear localisation of IGF-1R. Our study demonstrates that IGF-1R nuclear location might lead to chemotherapy and targeted agent resistance.

  7. Direct nuclear reactions with polarized protons: an experimental study of Ge and Se

    International Nuclear Information System (INIS)

    Moonen, W.H.L.

    1986-01-01

    The present investigation, is concerned with excited states of some transitional nuclides, which, through the experimental improvements, became accessible for polarized proton experiments. The aim was to see how nuclei behave when they have a proton and/or neutron number inbetween 28 and 50. Another aim was the completion of the picture of even-even nuclei in general where the research started with the nuclei Fe (Z=26) and Ni (Z=28). Therefore some nuclei were chosen which follow this series: Ge, Z=32, N=38,40,42,44; Se, Z=34, N=42,44,46. (Auth.)

  8. Test of parity-conserving time-reversal invariance using polarized neutrons and nuclear spin aligned holmium

    International Nuclear Information System (INIS)

    Huffman, P.R.; Roberson, N.R.; Wilburn, W.S.; Gould, C.R.; Haase, D.G.; Keith, C.D.; Raichle, B.W.; Seely, M.L.; Walston, J.R.

    1997-01-01

    A test of parity-conserving, time-reversal noninvariance (PC TRNI) has been performed in 5.9 MeV polarized neutron transmission through nuclear spin aligned holmium. The experiment searches for the T-violating fivefold correlation via a double modulation technique emdash flipping the neutron spin while rotating the alignment axis of the holmium. Relative cross sections for spin-up and spin-down neutrons are found to be equal to within 1.2x10 -5 (80% confidence). This is a two orders of magnitude improvement compared to traditional detailed balance studies of time reversal, and represents the most precise test of PC TRNI in a dynamical process, to our knowledge. copyright 1997 The American Physical Society

  9. Methodological developments of low field MRI: Elasto-graphy, MRI-ultrasound interaction and dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Madelin, Guillaume

    2005-01-01

    This thesis deals with two aspects of low field (0.2 T) Magnetic Resonance Imaging (MRI): the research of new contrasts due to the interaction between Nuclear Magnetic Resonance (NMR) and acoustics (elasto-graphy, spin-phonon interaction) and enhancement of the signal-to-noise ratio by Dynamic Nuclear Polarization (DNP). Magnetic Resonance Elasto-graphy (MRE) allows to assess some viscoelastic properties of tissues by visualization of the propagation of low frequency acoustic strain waves. A review on MRE is given, as well as a study on local measurement of the acoustic absorption coefficient. The next part is dedicated to MRI-ultrasound interaction. First, the ultrasonic transducer was calibrated for power and acoustic field using the comparison of two methods: the radiation force method (balance method) and laser interferometry. Then, we tried to modify the T1 contrast of tissues by spin-phonon interaction due to the application of ultrasound at the resonance frequency at 0.2 T, which is about 8.25 MHz. No modification of T1 contrast has been obtained, but the acoustic streaming phenomenon has been observed in liquids. MRI visualization of this streaming could make possible to calibrate transducers as well as to assess some mechanical properties of viscous fluids. The goal of the last part was to set up DNP experiments at 0.2 T in order to enhance the NMR signal. This double resonance method is based on the polarization transfer of unpaired electrons of free radicals to the surrounding protons of water. This transfer occurs by cross relaxation during the saturation of an electronic transition using Electronic Paramagnetic Resonance (EPR). Two EPR cavities operating at 5.43 GHz have been tested on oxo-TEMPO free radicals (nitroxide). An enhancement of the NMR signal by a factor 30 was obtained during these preliminary experiments. (author)

  10. Systems and methods for managing shared-path instrumentation and irradiation targets in a nuclear reactor

    Science.gov (United States)

    Heinold, Mark R.; Berger, John F.; Loper, Milton H.; Runkle, Gary A.

    2015-12-29

    Systems and methods permit discriminate access to nuclear reactors. Systems provide penetration pathways to irradiation target loading and offloading systems, instrumentation systems, and other external systems at desired times, while limiting such access during undesired times. Systems use selection mechanisms that can be strategically positioned for space sharing to connect only desired systems to a reactor. Selection mechanisms include distinct paths, forks, diverters, turntables, and other types of selectors. Management methods with such systems permits use of the nuclear reactor and penetration pathways between different systems and functions, simultaneously and at only distinct desired times. Existing TIP drives and other known instrumentation and plant systems are useable with access management systems and methods, which can be used in any nuclear plant with access restrictions.

  11. Nuclear trafficking of proteins from RNA viruses: potential target for antivirals?

    Science.gov (United States)

    Caly, Leon; Wagstaff, Kylie M; Jans, David A

    2012-09-01

    A key aspect of the infectious cycle of many viruses is the transport of specific viral proteins into the host cell nucleus to perturb the antiviral response. Examples include a number of RNA viruses that are significant human pathogens, such as human immunodeficiency virus (HIV)-1, influenza A, dengue, respiratory syncytial virus and rabies, as well agents that predominantly infect livestock, such as Rift valley fever virus and Venezuelan equine encephalitis virus. Inhibiting the nuclear trafficking of viral proteins as a therapeutic strategy offers an attractive possibility, with important recent progress having been made with respect to HIV-1 and dengue. The results validate nuclear protein import as an antiviral target, and suggest the identification and development of nuclear transport inhibitors as a viable therapeutic approach for a range of human and zoonotic pathogenic viruses. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Feasibility studies of a polarized positron source based on the Bremsstrahlung of polarized electrons

    International Nuclear Information System (INIS)

    Dumas, J.

    2011-09-01

    The nuclear and high-energy physics communities have shown a growing interest in the availability of high current, highly-polarized positron beams. A sufficiently energetic polarized photon or lepton incident on a target may generate, via Bremsstrahlung and pair creation within a solid target foil, electron-positron pairs that should carry some fraction of the initial polarization. Recent advances in high current (> 1 mA) spin polarized electron sources at Jefferson Lab offer the perspective of creating polarized positrons from a low energy electron beam. This thesis discusses polarization transfer from electrons to positrons in the perspective of the design optimization of a polarized positron source. The PEPPo experiment, aiming at a measurement of the positron polarization from a low energy (< 10 MeV) highly spin polarized electron beam is discussed. A successful demonstration of this technique would provide an alternative scheme for the production of low energy polarized positrons and useful information for the optimization of the design of polarized positron sources in the sub-GeV energy range. (author)

  13. Survival, bacterial clearance and thrombocytopenia are improved in polymicrobial sepsis by targeting nuclear transport shuttles.

    Directory of Open Access Journals (Sweden)

    Ruth Ann Veach

    Full Text Available The rising tide of sepsis, a leading cause of death in the US and globally, is not adequately controlled by current antimicrobial therapies and supportive measures, thereby requiring new adjunctive treatments. Severe microvascular injury and multiple organ failure in sepsis are attributed to a "genomic storm" resulting from changes in microbial and host genomes encoding virulence factors and endogenous inflammatory mediators, respectively. This storm is mediated by stress-responsive transcription factors that are ferried to the nucleus by nuclear transport shuttles importins/karyopherins. We studied the impact of simultaneously targeting two of these shuttles, importin alpha 5 (Imp α5 and importin beta 1 (Imp β1, with a cell-penetrating Nuclear Transport Modifier (NTM in a mouse model of polymicrobial sepsis. NTM reduced nuclear import of stress-responsive transcription factors nuclear factor kappa B, signal transducer and activator of transcription 1 alpha, and activator protein 1 in liver, which was also protected from sepsis-associated metabolic changes. Strikingly, NTM without antimicrobial therapy improved bacterial clearance in blood, spleen, and lungs, wherein a 700-fold reduction in bacterial burden was achieved while production of proinflammatory cytokines and chemokines in blood plasma was suppressed. Furthermore, NTM significantly improved thrombocytopenia, a prominent sign of microvascular injury in sepsis, inhibited neutrophil infiltration in the liver, decreased L-selectin, and normalized plasma levels of E-selectin and P-selectin, indicating reduced microvascular injury. Importantly, NTM combined with antimicrobial therapy extended the median time to death from 42 to 83 hours and increased survival from 30% to 55% (p = 0.022 as compared to antimicrobial therapy alone. This study documents the fundamental role of nuclear signaling mediated by Imp α5 and Imp β1 in the mechanism of polymicrobial sepsis and highlights the

  14. Relationship of sea level muon charge ratio to primary composition including nuclear target effects

    Science.gov (United States)

    Goned, A.; Shalaby, M.; Salem, A. M.; Roushdy, M.

    1985-01-01

    The discrepancy between the muon charge ratio observed at low energies and that calculated using pp data is removed by including nuclear target effects. Calculations at high energies show that the primary iron spectrum is expected to change slope from 2 to 2.2 to 2.4 to 2.5 for energies approx. 4 x 10 to the 3 GeV/nucleon if scaling features continue to the highest energies.

  15. NMR signal analysis in the large COMPASS $^{14}$NH$_{3}$ target

    CERN Document Server

    Koivuniemi, J; Hess, C; Kisselev, Y U; Meyer, W; Radtke, E; Reicherz, G; Doshita, N; Iwata, T; Kondo, K; Michigami, T

    2009-01-01

    In the large COMPASS polarized proton target the 1508 cm$^{3}$ of irradiated granular ammonia is polarized with dynamic nuclear polarization method using 4 mm microwaves in 2.5 T eld. The nuclear polarization up to 90 - 93 % is determined with cw NMR. The properties of the observed ammonia proton signals are described and spin thermodynamics in high elds is presented. Also the second moment of the NMR line is estimated.

  16. RNAi-Based Identification of Gene-Specific Nuclear Cofactor Networks Regulating Interleukin-1 Target Genes

    Directory of Open Access Journals (Sweden)

    Johanna Meier-Soelch

    2018-04-01

    Full Text Available The potent proinflammatory cytokine interleukin (IL-1 triggers gene expression through the NF-κB signaling pathway. Here, we investigated the cofactor requirements of strongly regulated IL-1 target genes whose expression is impaired in p65 NF-κB-deficient murine embryonic fibroblasts. By two independent small-hairpin (shRNA screens, we examined 170 genes annotated to encode nuclear cofactors for their role in Cxcl2 mRNA expression and identified 22 factors that modulated basal or IL-1-inducible Cxcl2 levels. The functions of 16 of these factors were validated for Cxcl2 and further analyzed for their role in regulation of 10 additional IL-1 target genes by RT-qPCR. These data reveal that each inducible gene has its own (quantitative requirement of cofactors to maintain basal levels and to respond to IL-1. Twelve factors (Epc1, H2afz, Kdm2b, Kdm6a, Mbd3, Mta2, Phf21a, Ruvbl1, Sin3b, Suv420h1, Taf1, and Ube3a have not been previously implicated in inflammatory cytokine functions. Bioinformatics analysis indicates that they are components of complex nuclear protein networks that regulate chromatin functions and gene transcription. Collectively, these data suggest that downstream from the essential NF-κB signal each cytokine-inducible target gene has further subtle requirements for individual sets of nuclear cofactors that shape its transcriptional activation profile.

  17. Role of aromatic amino acids in carbohydrate binding of plant lectins : Laser photo chemically induced dynamic nuclear polarization study of hevein domain-containing lectins

    NARCIS (Netherlands)

    Siebert, HC; vonderLieth, CW; Kaptein, R; Beintema, JJ; Dijkstra, K; vanNuland, N; Soedjanaatmadja, UMS; Rice, A; Vliegenthart, JFG; Wright, CS; Gabius, HJ

    Carbohydrate recognition by lectins often involves the side chains of tyrosine, tryptophan, and histidine residues. These moieties are able to produce chemically induced dynamic nuclear polarization (CIDNP) signals after laser irradiation in the presence of a suitable radical pair-generating dye.

  18. Dissolution Dynamic Nuclear Polarization of Non-Self-Glassing Agents: Spectroscopy and Relaxation of Hyperpolarized [1-13C]Acetate

    DEFF Research Database (Denmark)

    Flori, Alessandra; Liserani, Matteo; Bowen, Sean

    2015-01-01

    The intrinsic physicochemical properties of the sample formulation are the key factors for efficient hyperpolarization through dissolution dynamic nuclear polarization (dissolution-DNP). We provide a comprehensive characterization of the DNP process for Na-[1-13C]acetate selected as a model for non...

  19. Dorsal stress fibers, transverse actin arcs, and perinuclear actin fibers form an interconnected network that induces nuclear movement in polarizing fibroblasts

    Czech Academy of Sciences Publication Activity Database

    Maninová, Miloslava; Vomastek, Tomáš

    2016-01-01

    Roč. 283, č. 20 (2016), s. 3676-3693 ISSN 1742-464X R&D Projects: GA ČR GA13-06405S Institutional support: RVO:61388971 Keywords : actin dorsal fibers * cell polarity * nuclear reorientation Subject RIV: EE - Microbiology, Virology Impact factor: 3.902, year: 2016

  20. Dynamic nuclear polarization for magnetic resonance imaging. An in-bore approach

    Energy Technology Data Exchange (ETDEWEB)

    Krummenacker, Jan G.

    2012-07-01

    In this thesis, the development of an in-bore liquid state DNP polarizer for MRI applications operating in flow through mode at a magnetic field strength of 1.5 T was described. After an introductory chapter 1 and a chapter 2 on the theoretical background, chapter 3 dealt chiefly with the challenge of performing liquid state DNP at a high magnetic field of 9.2 T. The feasibility of performing liquid state DNP at this field was demonstrated for various solvents, as well as for metabolites in solution. Chapter 4 then moved to the aim of this work, the application of liquid state DNP for MRI experiments. It introduced the rationale of our approach, the hardware that was developed and demonstrated its performance in a clinical MRI tomograph.

  1. Parameterization of hyperpolarized (13)C-bicarbonate-dissolution dynamic nuclear polarization.

    Science.gov (United States)

    Scholz, David Johannes; Otto, Angela M; Hintermair, Josef; Schilling, Franz; Frank, Annette; Köllisch, Ulrich; Janich, Martin A; Schulte, Rolf F; Schwaiger, Markus; Haase, Axel; Menzel, Marion I

    2015-12-01

    (13)C metabolic MRI using hyperpolarized (13)C-bicarbonate enables preclinical detection of pH. To improve signal-to-noise ratio, experimental procedures were refined, and the influence of pH, buffer capacity, temperature, and field strength were investigated. Bicarbonate preparation was investigated. Bicarbonate was prepared and applied in spectroscopy at 1, 3, 14 T using pure dissolution, culture medium, and MCF-7 cell spheroids. Healthy rats were imaged by spectral-spatial spiral acquisition for spatial and temporal bicarbonate distribution, pH mapping, and signal decay analysis. An optimized preparation technique for maximum solubility of 6 mol/L and polarization levels of 19-21% is presented; T1 and SNR dependency on field strength, buffer capacity, and pH was investigated. pH mapping in vivo is demonstrated. An optimized bicarbonate preparation and experimental procedure provided improved T1 and SNR values, allowing in vitro and in vivo applications.

  2. Dynamic nuclear polarization for magnetic resonance imaging. An in-bore approach

    International Nuclear Information System (INIS)

    Krummenacker, Jan G.

    2012-01-01

    In this thesis, the development of an in-bore liquid state DNP polarizer for MRI applications operating in flow through mode at a magnetic field strength of 1.5 T was described. After an introductory chapter 1 and a chapter 2 on the theoretical background, chapter 3 dealt chiefly with the challenge of performing liquid state DNP at a high magnetic field of 9.2 T. The feasibility of performing liquid state DNP at this field was demonstrated for various solvents, as well as for metabolites in solution. Chapter 4 then moved to the aim of this work, the application of liquid state DNP for MRI experiments. It introduced the rationale of our approach, the hardware that was developed and demonstrated its performance in a clinical MRI tomograph.

  3. Enhancing the intestinal absorption of molecules containing the polar guanidino functionality: a double-targeted prodrug approach.

    Science.gov (United States)

    Sun, Jing; Dahan, Arik; Amidon, Gordon L

    2010-01-28

    A prodrug strategy was applied to guanidino-containing analogues to increase oral absorption via hPEPT1 and hVACVase. l-Valine, l-isoleucine, and l-phenylalanine esters of [3-(hydroxymethyl)phenyl]guanidine (3-HPG) were synthesized and evaluated for transport and activation. In HeLa/hPEPT1 cells, Val-3-HPG and Ile-3-HPG exhibited high affinity to hPEPT1 (IC(50): 0.65 and 0.63 mM, respectively), and all three l-amino acid esters showed higher uptake (2.6- to 9-fold) than the parent compound 3-HPG. Val-3-HPG and Ile-3-HPG demonstrated remarkable Caco-2 permeability enhancement, and Val-3-HPG exhibited comparable permeability to valacyclovir. In rat perfusion studies, Val-3-HPG and Ile-3-HPG permeabilities were significantly higher than 3-HPG and exceeded/matched the high-permeability standard metoprolol, respectively. All the l-amino acid 3-HPG esters were effectively activated in HeLa and Caco-2 cell homogenates and were found to be good substrates of hVACVase (k(cat)/K(m) in mM(-1) x s(-1): Val-3-HPG, 3370; Ile-3-HPG, 1580; Phe-3-HPG, 1660). In conclusion, a prodrug strategy is effective at increasing the intestinal permeability of polar guanidino analogues via targeting hPEPT1 for transport and hVACVase for activation.

  4. The exception proves the rule? Dual targeting of nuclear-encoded proteins into endosymbiotic organelles.

    Science.gov (United States)

    Baudisch, Bianca; Langner, Uwe; Garz, Ingo; Klösgen, Ralf Bernd

    2014-01-01

    Plant cells harbor two types of endosymbiotic organelle: mitochondria and chloroplasts. As a consequence of endosymbiotic gene transfer, the majority of their proteins are encoded in the nucleus and post-translationally 're'-imported into the respective target organelle. The corresponding transport signals are usually selective for a single organelle, but several proteins are transported into both the mitochondria and chloroplasts. To estimate the number of proteins with such dual targeting properties in Arabidopsis, we classified the proteins encoded by nuclear genes of endosymbiotic origin according to the respective targeting specificity of their N-terminal transport signals as predicted by the TargetP software package. Selected examples of the resulting protein classes were subsequently analyzed by transient transformation assays as well as by in organello protein transport experiments. It was found that most proteins with high prediction values for both organelles show dual targeting with both experimental approaches. Unexpectedly, however, dual targeting was even found among those proteins that are predicted to be localized solely in one of the two endosymbiotic organelles. In total, among the 16 candidate proteins analyzed, we identified 10 proteins with dual targeting properties. This unexpectedly high proportion suggests that such transport properties are much more abundant than anticipated. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  5. Design and Optimization for the Windowless Target of the China Nuclear Waste Transmutation Reactor

    Directory of Open Access Journals (Sweden)

    Desheng Cheng

    2016-04-01

    Full Text Available A windowless spallation target can provide a neutron source and maintain neutron chain reaction for a subcritical reactor, and is a key component of China's nuclear waste transmutation of coupling accelerator and subcritical reactor. The main issue of the windowless target design is to form a stable and controllable free surface that can ensure that energy spectrum distribution is acquired for the neutron physical design when the high energy proton beam beats the lead–bismuth eutectic in the spallation target area. In this study, morphology and flow characteristics of the free surface of the windowless target were analyzed through the volume of fluid model using computational fluid dynamics simulation, and the results show that the outlet cross section size of the target is the key to form a stable and controllable free surface, as well as the outlet with an arc transition. The optimization parameter of the target design, in which the radius of outlet cross section is 60 ± 1 mm, is verified to form a stable and controllable free surface and to reduce the formation of air bubbles. This work can function as a reference for carrying out engineering design of windowless target and for verification experiments.

  6. Common Risk Target for severe accidents of nuclear power plants based on IAEA INES scale

    International Nuclear Information System (INIS)

    Vitázková, Jiřina; Cazzoli, Errico

    2013-01-01

    The IAEA has repeatedly recommended that the nuclear community should arrive at a common understanding and definition of safety goals for severe accidents in nuclear power plants. The recommendation has only found partial answers, despite the numerous working groups and forums devoted to this effort. The most widely accepted definition of goals is based on the concept of Large (Early) Release Frequencies (L(E)RF) and its derivatives, a surrogate concept derived from results of Probabilistic Safety Assessments (PSAs) which was first introduced in the USA almost twenty years ago and much later accepted by the USNRC for risk informed decision making, but not for safety demonstrations. Other types of Safety Goals have been adopted by some nuclear authorities, but the main drawback of all current definitions is that they may apply only to LWRs. The lack of unifying safety/risk parameter throughout of PSAs worldwide is the basis of the present work, and an attempt is made to arrive at the definition of a Risk Target for severe accidents in NPPs, consistent with the IAEA definitions having a technical basis, which can be adopted without modifications for Generation IV power plants. The proposal of Common Risk Target in this work represents an attempt to define a Common Risk Target based on technical reasoning, reflecting IAEA definitions as well as harmonization requirements raised by the whole European Community in various OECD, ASAMPSA2 and SARNET (Guentay et al., 2006) conclusions and Council Directive of The European Union (Community Framework, 2009) as well as lastly performed stress tests of nuclear power plants throughout the Europe (Peer Review Report, 2012). The basic concept of CRT was first introduced and developed within the European project ASAMPSA2 by the authors of this article and was accepted by majority of world PSA experts participating in final evaluation and survey of the project (Guentay, 2011). In the proposed Risk Target concept an innovative

  7. The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam Espe; Johannesen, Helle Hjorth

    2015-01-01

    In recent years there has been an immense development of new targeted anti-cancer drugs. For practicing precision medicine, a sensitive method imaging for non-invasive, assessment of early treatment response and for assisting in developing new drugs is warranted. Magnetic Resonance Spectroscopy (...

  8. International target values 2010 for achievable measurement uncertainties in nuclear material accountancy

    International Nuclear Information System (INIS)

    Dias, Fabio C.; Almeida, Silvio G. de; Renha Junior, Geraldo

    2011-01-01

    The International Target Values (ITVs) are reasonable uncertainty estimates that can be used in judging the reliability of measurement techniques applied to industrial nuclear and fissile materials subject to accountancy and/or safeguards verification. In the absence of relevant experimental estimates, ITVs can also be used to select measurement techniques and calculate sample population during the planning phase of verification activities. It is important to note that ITVs represent estimates of the 'state-of-the-practice', which should be achievable under routine measurement conditions affecting both facility operators and safeguards inspectors, not only in the field, but also in laboratory. Tabulated values cover measurement methods used for the determination of volume or mass of the nuclear material, for its elemental and isotopic assays, and for its sampling. The 2010 edition represents the sixth revision of the International Target Values (ITVs), issued by the International Atomic Energy Agency (IAEA) as a Safeguards Technical Report (STR-368). The first version was released as 'Target Values' in 1979 by the Working Group on Techniques and Standards for Destructive Analysis (WGDA) of the European Safeguards Research and Development Association (ESARDA) and focused on destructive analytical methods. In the latest 2010 revision, international standards in estimating and expressing uncertainties have been considered while maintaining a format that allows comparison with the previous editions of the ITVs. Those standards have been usually applied in QC/QA programmes, as well as qualification of methods, techniques and instruments. Representatives of the Brazilian Nuclear Energy Commission (CNEN) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) participated in previous Consultants Group Meetings since the one convened to establish the first list of ITVs released in 1993 and in subsequent revisions, including the latest one

  9. Ionization of oriented targets by intense circularly polarized laser pulses: Imprints of orbital angular nodes in the two-dimensional momentum distribution

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a few-cycle circularly polarized femtosecond laser pulse that interacts with an oriented target exemplified by an argon atom, initially in a 3px or 3py state. The photoelectron momentum distributions show distinct signatures......, we show that ionization by a circularly polarized pulse completely maps out the angular nodal structure of the initial state, thus providing a potential tool for studying orbital symmetry in individual systems or during chemical reactions....

  10. Monodisperse magnetite nanoparticles coupled with nuclear localization signal peptide for cell-nucleus targeting.

    Science.gov (United States)

    Xu, Chenjie; Xie, Jin; Kohler, Nathan; Walsh, Edward G; Chin, Y Eugene; Sun, Shouheng

    2008-03-07

    Functionalization of monodisperse superparamagnetic magnetite (Fe(3)O(4)) nanoparticles for cell specific targeting is crucial for cancer diagnostics and therapeutics. Targeted magnetic nanoparticles can be used to enhance the tissue contrast in magnetic resonance imaging (MRI), to improve the efficiency in anticancer drug delivery, and to eliminate tumor cells by magnetic fluid hyperthermia. Herein we report the nucleus-targeting Fe(3)O(4) nanoparticles functionalized with protein and nuclear localization signal (NLS) peptide. These NLS-coated nanoparticles were introduced into the HeLa cell cytoplasm and nucleus, where the particles were monodispersed and non-aggregated. The success of labeling was examined and identified by fluorescence microscopy and MRI. The work demonstrates that monodisperse magnetic nanoparticles can be readily functionalized and stabilized for potential diagnostic and therapeutic applications.

  11. An ion accelerator facility for the preparation of nuclear bombardement targets

    International Nuclear Information System (INIS)

    Grime, G.W.; Takacs, J.

    1981-01-01

    As a result of the demand for increasingly complex nuclear bombardment targets in this laboratory, work has started on the construction of a medium-energy accelerator facility capable of preparing targets both by ion implantation and by heavy-ion sputtering. Basic consideration was given in the design to flexibility and simplicity. The ion source chosen was the Harwell sputter ion gun which is capable of producing ions of practically any element at currents up to several hundred μA. This was modified to suit our specific requirement. The acceleration system was constructed to operate at a maximum of 100 kV, and the beam is focussed by a three-cylinder electrostatic lens. The ions are analysed by 50 0 magnet which is capable of a mass dispersion of 7 mm in the target chamber between adjacent mass numbers at mass 100. A slit feedback system is used to stabilise the energy against short-term fluctuations. The system is fitted with two target chambers; one after the magnet and one after the electrostatic lens. The latter is used for applications such as sputtering. Two dimensional scanning is available in both target chambers for ensuring uniformity of implantation over areas larger than the spot size. Using this apparatus, implanted targets of 3 He and 20 Ne have been prepared. In addition high quality films of refractory metals have been sputtered using Ar or Xe beams. (orig.)

  12. Site-specific hydration dynamics in the nonpolar core of a molten globule by dynamic nuclear polarization of water.

    Science.gov (United States)

    Armstrong, Brandon D; Choi, Jennifer; López, Carlos; Wesener, Darryl A; Hubbell, Wayne; Cavagnero, Silvia; Han, Songi

    2011-04-20

    Water-protein interactions play a direct role in protein folding. The chain collapse that accompanies protein folding involves extrusion of water from the nonpolar core. For many proteins, including apomyoglobin (apoMb), hydrophobic interactions drive an initial collapse to an intermediate state before folding to the final structure. However, the debate continues as to whether the core of the collapsed intermediate state is hydrated and, if so, what the dynamic nature of this water is. A key challenge is that protein hydration dynamics is significantly heterogeneous, yet suitable experimental techniques for measuring hydration dynamics with site-specificity are lacking. Here, we introduce Overhauser dynamic nuclear polarization at 0.35 T via site-specific nitroxide spin labels as a unique tool to probe internal and surface protein hydration dynamics with site-specific resolution in the molten globular, native, and unfolded protein states. The (1)H NMR signal enhancement of water carries information about the local dynamics of the solvent within ∼10 Å of a spin label. EPR is used synergistically to gain insights on local polarity and mobility of the spin-labeled protein. Several buried and solvent-exposed sites of apoMb are examined, each bearing a covalently bound nitroxide spin label. We find that the nonpoloar core of the apoMb molten globule is hydrated with water bearing significant translational dynamics, only 4-6-fold slower than that of bulk water. The hydration dynamics of the native state is heterogeneous, while the acid-unfolded state bears fast-diffusing hydration water. This study provides a high-resolution glimpse at the folding-dependent nature of protein hydration dynamics.

  13. Insertion of a nuclear factor kappa B DNA nuclear-targeting sequence potentiates suicide gene therapy efficacy in lung cancer cell lines

    DEFF Research Database (Denmark)

    Cramer, F; Christensen, C L; Poulsen, T T

    2012-01-01

    Lung cancer currently causes the majority of cancer-related deaths worldwide and new treatments are in high demand. Gene therapy could be a promising treatment but currently lacks sufficient efficiency for clinical use, primarily due to limited cellular and nuclear DNA delivery. In the present...... study, we investigated whether it was possible to exploit the endogenous nuclear-shuttling activity by the nuclear factor kappa B (NFκB) system, which is highly prominent in many cancers as well as lung cancer. We observed that insertion of a DNA nuclear-targeting sequence (DTS) recognized by NFκB could...... improve plasmid nuclear delivery and enhance the therapeutic effect of a validated transcriptionally cancer-targeted suicide gene therapy system. A clear correlation between the number of inserted NFκB-binding sites and the therapeutic effect of the suicide system was observed in both small cell lung...

  14. Preparation of a primary target for the production of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Arino, H.; Cosolito, F.J.; George, K.D.; Thornton, A.K.

    1976-01-01

    A primary target for the production of fission products in a nuclear reactor, such as uranium or plutonium fission products, is comprised of an enclosed, cylindrical vessel, preferably comprised of stainless steel, having a thin, continuous, uniform layer of fissionable material, integrally bonded to its inner walls and a port permitting access to the interior of the vessel. A process is also provided for depositing uranium material on to the inner walls of the vessel. Upon irradiation of the target with neutrons from a nuclear reactor, radioactive fission products, such as molybdenum-99, are formed, and thereafter separated from the target by the introduction of an acidic solution through the port to dissolve the irradiated inner layer. The irradiation and dissolution are thus effected in the same vessel without the necessity of transferring the fissionable material and fission products to a separate chemical reactor. Subsequently, the desired isotopes are extracted and purified. Molybdenum-99 decays to technetium-99m which is a valuable medical diagnostic radioisotope. 3 claims, 1 drawing figure

  15. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  16. The Human Nuclear Exosome Targeting Complex Is Loaded onto Newly Synthesized RNA to Direct Early Ribonucleolysis

    Directory of Open Access Journals (Sweden)

    Michal Lubas

    2015-01-01

    Full Text Available The RNA exosome complex constitutes the major nuclear eukaryotic 3′-5′ exonuclease. Outside of nucleoli, the human nucleoplasmic exosome is directed to some of its substrates by the nuclear exosome targeting (NEXT complex. How NEXT targets RNA has remained elusive. Using an in vivo crosslinking approach, we report global RNA binding sites of RBM7, a key component of NEXT. RBM7 associates broadly with RNA polymerase II-derived RNA, including pre-mRNA and short-lived exosome substrates such as promoter upstream transcripts (PROMPTs, enhancer RNAs (eRNAs, and 3′-extended products from snRNA and replication-dependent histone genes. Within pre-mRNA, RBM7 accumulates at the 3′ ends of introns, and pulse-labeling experiments demonstrate that RBM7/NEXT defines an early exosome-targeting pathway for 3′-extended snoRNAs derived from such introns. We propose that RBM7 is generally loaded onto newly synthesized RNA to accommodate exosome action in case of available unprotected RNA 3′ ends.

  17. Solid Tumor-Targeting Theranostic Polymer Nanoparticle in Nuclear Medicinal Fields

    Directory of Open Access Journals (Sweden)

    Akira Makino

    2014-01-01

    Full Text Available Polymer nanoparticles can be prepared by self-assembling of amphiphilic polymers, and various types of molecular assemblies have been reported. In particular, in medicinal fields, utilization of these polymer nanoparticles as carriers for drug delivery system (DDS has been actively tried, and some nanoparticulate drugs are currently under preclinical evaluations. A radionuclide is an unstable nucleus and decays with emission of radioactive rays, which can be utilized as a tracer in the diagnostic imaging systems of PET and SPECT and also in therapeutic purposes. Since polymer nanoparticles can encapsulate most of diagnostic and therapeutic agents with a proper design of amphiphilic polymers, they should be effective DDS carriers of radionuclides in the nuclear medicinal field. Indeed, nanoparticles have been recently attracting much attention as common platform carriers for diagnostic and therapeutic drugs and contribute to the development of nanotheranostics. In this paper, recent developments of solid tumor-targeting polymer nanoparticles in nuclear medicinal fields are reviewed.

  18. Systems and methods for retaining and removing irradiation targets in a nuclear reactor

    Science.gov (United States)

    Runkle, Gary A.; Matsumoto, Jack T.; Dayal, Yogeshwar; Heinold, Mark R.

    2015-12-08

    A retainer is placed on a conduit to control movement of objects within the conduit in access-restricted areas. Retainers can prevent or allow movement in the conduit in a discriminatory fashion. A fork with variable-spacing between prongs can be a retainer and be extended or collapsed with respect to the conduit to change the size of the conduit. Different objects of different sizes may thus react to the fork differently, some passing and some being blocked. Retainers can be installed in inaccessible areas and allow selective movement in remote portions of conduit where users cannot directly interface, including below nuclear reactors. Position detectors can monitor the movement of objects through the conduit remotely as well, permitting engagement of a desired level of restriction and object movement. Retainers are useable in a variety of nuclear power plants and with irradiation target delivery, harvesting, driving, and other remote handling or robotic systems.

  19. Nuclear microbeam analysis of ICF target material made by GDP technique

    Energy Technology Data Exchange (ETDEWEB)

    Rong, C.; He, X. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China); Meng, J., E-mail: eleanor920@163.com [Research Center of Laser Fusion, CAEP, Mianyang 621000 (China); Gao, D. [Research Center of Laser Fusion, CAEP, Mianyang 621000 (China); Zhang, Y.; Li, X.; Lyu, H.; Zhu, Y. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China); Zheng, Y. [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); Wang, X. [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China); Shen, H., E-mail: haoshen@fudan.edu.cn [Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 (China)

    2015-04-01

    Germanium doped carbon–hydrogen polymer (CH) by Glow Discharge Polymer (GDP) technique has become the preferred Inertial Confinement Fusion (ICF) target material. The nondestructive measurement of elements content in the ICF target has become a significant work in recent years. This paper presents the compositional and distributional results of the Germanium doped CH analysis. The Ge doped CH materials as thin film and as hollow sphere were investigated by the Rutherford Backscattering Spectroscopy (RBS) combined with the particle induced X-ray emission (PIXE) and the Elastic Recoil Detection Analysis (ERDA). The samples are thin film with 36 μm thickness and ICF target with 500–2000 μm diameter. The calibration and geometrical arrangement in the analysis of spherical target should be carefully considered in order to acquire accurate results. In the work, the uniformity of the sphere is shown and the ratio of carbon, hydrogen and germanium has been measured. The ratio values are in good agreement with the results obtained by the combustion method. In addition, the difference of the composition from thin film to hollow sphere is also discussed. This work demonstrates that nuclear microbeam analysis is an ideal method to evaluate the ICF target quality.

  20. Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange nuclear magnetic resonance

    Science.gov (United States)

    Butler, J. P.; Mair, R. W.; Hoffmann, D.; Hrovat, M. I.; Rogers, R. A.; Topulos, G. P.; Walsworth, R. L.; Patz, S.

    2002-01-01

    We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.

  1. Nuclear-Targeting Gold Nanorods for Extremely Low NIR Activated Photothermal Therapy.

    Science.gov (United States)

    Pan, Limin; Liu, Jianan; Shi, Jianlin

    2017-05-17

    Photorelated nanomedicine is of particular interest as an emerging paradigm toward precise cancer therapy, as demonstrated by recent developments of photothermal therapy (PTT), an emerging technique employing light-converting agents to burn cancerous cells by overdosed optical energy-converted heat. However, most of the laser irradiations needed for effective PTT significantly exceed the maximal permissible power density in human skin, which is likely to damage surrounding normal tissues. Herein, we report a strategy of intranuclear PTT of cancer enabled by nuclear-targeted delivery of gold nanorods of ∼10.5 × 40.5 nm in size via conjugation with nuclear location signal peptides (GNRs-NLS) under an extremely low near-infrared irradiation of 0.2 W/cm 2 , much below the maximal permissible exposure of skin. Interestingly, we found that a mild but nuclear-focused temperature increase generated by GNRs-NLS is sufficient to cause damage to intranuclear DNA and the inhibition of DNA repair process, which, interestingly, led to the cancer cell apoptosis rather than to conventional cell necrosis by thermal ablation during PTT. Correspondingly, tumors treated with GNRs-NLS exhibited gradual but significant regressions rather than traditional harsh burning-up of tumors, in comparison with negligible antitumor effect by GNRs without nuclear targeting under the same ultralow NIR irradiation. This report demonstrates the successful intranuclear efficient photothermal therapy of cancer via cell apoptosis by photoadsorbing agents, e.g., GNRs-NLS in the present case, with largely mitigated side-effect on normal tissues and therefore substantially improved biosafety.

  2. Identification of nuclear protein targets for six leukemogenic tyrosine kinases governed by post-translational regulation.

    Directory of Open Access Journals (Sweden)

    Andrew Pierce

    Full Text Available Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases.

  3. Marine target detection in quad-pol synthetic aperture radar imagery based on the relative phase of cross-polarized channels

    Science.gov (United States)

    Wang, Yunhua; Li, Huimin; Zhang, Yanmin; Guo, Lixin

    2015-01-01

    A focus on marine target detection in noise corrupted fully polarimetric synthetic aperture radar (SAR) is presented. The property of the relative phase between two cross-polarized channels reveals that the relative phases evaluated within sea surface area or noise corrupted area are widely spread phase angle region [-π,π] due to decorrelation effect; however, the relative phases are concentrated to zero and ±π for real target and its first-order azimuth ambiguities (FOAAs), respectively. Exploiting this physical behavior, the reciprocal of the mean square value of the relative phase (RMSRP) is defined as a new parameter for target detection, and the experiments based on fully polarimetric Radarsat-2 SAR images show that the strong noise and the FOAAs can be effectively suppressed in RMSRP image. Meanwhile, validity of the new parameter for target detection is also verified by two typical Radarsat-2 SAR images, in which targets' ambiguities and strong noise are present.

  4. ON THE ANODIC POLARIZATION BEHAVIOR OF CARBON STEEL IN HANFORD NUCLEAR WASTES

    Energy Technology Data Exchange (ETDEWEB)

    BOOMER, K.D.

    2007-01-31

    The effect of the important chemical constituents in the Hanford nuclear waste simulant on the anodic behavior of carbon steel was studied. Specifically, the effect of pH, nitrite concentration, nitrite/nitrate concentration ratios, total organic carbon and the chloride concentration on the open circuit potential, pitting potential and repassivation potential was evaluated. It was found that pH adjusting, although capable of returning the tank chemistry back to specification, did not significantly reduce the corrosivity of the stimulant compared to the present condition. Nitrite was found to be a potent inhibitor for carbon steel. A critical concentration of approximately 1.2M appeared to be beneficial to increase the difference of repassivation potential and open circuit potential considerably and thus prevent pitting corrosion from occurring. No further benefit was gained when increasing nitrite concentration to a higher level. The organic compounds were found to be weak inhibitors in the absence of nitrite and the change of chloride from 0.05M to 0.2M did not alter the anodic behavior dramatically.

  5. ON THE ANODIC POLARIZATION BEHAVIOR OF CARBON STEEL IN HANFORD NUCLEAR WASTES

    International Nuclear Information System (INIS)

    BOOMER, K.D.

    2007-01-01

    The effect of the important chemical constituents in the Hanford nuclear waste simulant on the anodic behavior of carbon steel was studied. Specifically, the effect of pH, nitrite concentration, nitrite/nitrate concentration ratios, total organic carbon and the chloride concentration on the open circuit potential, pitting potential and repassivation potential was evaluated. It was found that pH adjusting, although capable of returning the tank chemistry back to specification, did not significantly reduce the corrosivity of the stimulant compared to the present condition. Nitrite was found to be a potent inhibitor for carbon steel. A critical concentration of approximately 1.2M appeared to be beneficial to increase the difference of repassivation potential and open circuit potential considerably and thus prevent pitting corrosion from occurring. No further benefit was gained when increasing nitrite concentration to a higher level. The organic compounds were found to be weak inhibitors in the absence of nitrite and the change of chloride from 0.05M to 0.2M did not alter the anodic behavior dramatically

  6. Single-spin asymmetry in electro-production of {pi}{sup +} {pi}{sup -} pairs from a transversely polarized proton target at the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiao-Rui

    2008-10-15

    In this thesis, the measurement of an azimuthal amplitude of the asymmetry in the lepto-production of {pi}{sup +}{pi}{sup -} pairs at the HERMES experiment is reported. The experiment was carried out at DESY in Germany, utilizing the longitudinally polarized 27.6 GeV electron/positron beam of the HERA storage ring in combination with a longitudinally or transversely polarized gaseous target internal to the beam pipe. For the present measurement, the transversely polarized proton target was used and the beam polarization was averaged out in order to measure the asymmetry A{sub UT}. A Ring Imaging Cerenkov (RICH) detector allows the precise identification of pions, kaons and protons over essentially the entire momentum range of the experiment. The asymmetry A{sub UT} for {pi}{sup +}{pi}{sup -} pair production was measured for the first time in the world by HERMES. The amplitudes are extracted as functions of different kinematic variables, which can facilitate the comparison with the theoretical models and the extraction of transversity with combination of the measurement of the dihadron fragmentation function. (orig.)

  7. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer.

    Science.gov (United States)

    Zhou, Xiaoqing; Xin, Jige; Fan, Nana; Zou, Qingjian; Huang, Jiao; Ouyang, Zhen; Zhao, Yu; Zhao, Bentian; Liu, Zhaoming; Lai, Sisi; Yi, Xiaoling; Guo, Lin; Esteban, Miguel A; Zeng, Yangzhi; Yang, Huaqiang; Lai, Liangxue

    2015-03-01

    The domestic pig has been widely used as an important large animal model. Precise and efficient genetic modification in pig provides a great promise in biomedical research. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been successfully used to produce many gene-targeted animals. However, these animals have been generated by co-injection of Cas9 mRNA and single-guide RNA (sgRNA) into one-cell stage embryos, which mostly resulted in mosaicism of the modification. One or two rounds of further breeding should be performed to obtain homozygotes with identical genotype and phenotype. To address this issue, gene-targeted somatic cells can be used as donor for somatic cell nuclear transfer (SCNT) to produce gene-targeted animals with single and identical mutations. In this study, we applied Cas9/sgRNAs to effectively direct gene editing in porcine fetal fibroblasts and then mutant cell colonies were used as donor to generate homozygous gene-targeted pigs through single round of SCNT. As a result, we successfully obtained 15 tyrosinase (TYR) biallelic mutant pigs and 20 PARK2 and PINK1 double-gene knockout (KO) pigs. They were all homozygous and no off-target mutagenesis was detected by comprehensive analysis. TYR (-/-) pigs showed typical albinism and the expression of parkin and PINK1 were depleted in PARK2 (-/-)/PINK1 (-/-) pigs. The results demonstrated that single- or double-gene targeted pigs can be effectively achieved by using the CRISPR/Cas9 system combined with SCNT without mosaic mutation and detectable off-target effects. This gene-editing system provides an efficient, rapid, and less costly manner to generate genetically modified pigs or other large animals.

  8. Myocardial regeneration in adriamycin cardiomyopathy by nuclear expression of GLP1 using ultrasound targeted microbubble destruction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuyuan [Baylor Research Institute, Baylor University Medical Center, 3812 Elm Street, Dallas, TX (United States); Chen, Jiaxi [The University of Texas Southwestern Medical Center at Dallas, Medical School, 5235 Harry Hine Blvd., Dallas, TX (United States); Huang, Pintong [Department of Ultrasonography, The 2nd Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang Province (China); Meng, Xing-Li; Clayton, Sandra; Shen, Jin-Song [Baylor Research Institute, Baylor University Medical Center, 3812 Elm Street, Dallas, TX (United States); Grayburn, Paul A., E-mail: paulgr@baylorhealth.edu [Baylor Research Institute, Baylor University Medical Center, 3812 Elm Street, Dallas, TX (United States); Department of Internal Medicine, Division of Cardiology, Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall St, Suite H030, Dallas, TX (United States)

    2015-03-20

    Recently GLP-1 was found to have cardioprotective effects independent of those attributable to tight glycemic control. Methods and results: We employed ultrasound targeted microbubble destruction (UTMD) to deliver piggybac transposon plasmids encoding the GLP-1 gene with a nuclear localizing signal to rat hearts with adriamycin cardiomyopathy. After a single UTMD treatment, overexpression of transgenic GLP-1 was found in nuclei of rat heart cells with evidence that transfected cardiac cells had undergone proliferation. UTMD-GLP-1 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Nuclear overexpression of GLP-1 by inducing phosphorylation of FoxO1-S256 and translocation of FoxO1 from the nucleus to the cytoplasm significantly inactivated FoxO1 and activated the expression of cyclin D1 in nuclei of cardiac muscle cells. Reversal of adriamycin cardiomyopathy appeared to be mediated by dedifferentiation and proliferation of nuclear FoxO1-positive cardiac muscle cells with evidence of embryonic stem cell markers (OCT4, Nanog, SOX2 and c-kit), cardiac early differentiation markers (NKX2.5 and ISL-1) and cellular proliferation markers (BrdU and PHH3) after UTMD with GLP-1 gene therapy. Conclusions: Intranuclear myocardial delivery of the GLP-1gene can reverse established adriamycin cardiomyopathy by stimulating myocardial regeneration. - Highlights: • The activation of nuclear FoxO1 in cardiac muscle cells associated with adriamycin cardiomyopathy. • Myocardial nuclear GLP-1 stimulates myocardial regeneration and reverses adriamycin cardiomyopathy. • The process of myocardial regeneration associated with dedifferentiation and proliferation.

  9. Polarization phenomena in few-body systems

    International Nuclear Information System (INIS)

    Conzett, H.E.

    1975-12-01

    Recent polarization studies in N--N scattering at and below 50 MeV have provided specific and significant improvements in the phase-shift parameters. High energy investigations with both polarized proton beams and targets have shown unexpectedly large spin effects, and this provides a challenge for theoretical effort to explain these results. Experimental and theoretical work on the three-nucleon problem continues to yield new and interesting results, with the emphasis now shifting to polarization studies in the breakup reaction. On-going work on several-nucleon systems continues to provide polarization data for general analyses, nuclear structure information, or specific resonance effects. Finally, the basic interaction symmetries continue to have unique and important consequences for polarization observables. 17 figures

  10. Development of Efficient and Robust Heteronuclear Cross-Polarization Techniques for Biological Solid-State Nuclear Magnetic Resonance Spectroscopy

    DEFF Research Database (Denmark)

    Jain, Sheetal Kumar

    2014-01-01

    →13C polarization transfer to facilitate 2-dimensional experiments detecting 14N in the indirect dimension are shown. Finally, to test the polarization transfer efficiency with very large chemical shift anisotropies, 19F→13C polarization transfer experiments for Poly Tetra Fluoro Ethylene (PTFE...

  11. Investigations of astrophysically interesting nuclear reactions by the use of gas target techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, J.W. [Inst. fuer Strahlenphysik, Univ. Stuttgart, Stuttgart (Germany)

    1998-06-01

    A brief review of the common properties of windowless and recirculating gas targets is presented. As example the Stuttgart gas target facility Rhinoceros in the extended and in the supersonic jet mode with its properties and techniques is explained, also with respect to gas purification techniques. Furthermore several typical experiments from the field of nuclear astrophysics with characteristic results are described (D({alpha},{gamma}){sup 6}Li, {sup 15}N({alpha},{gamma}){sup 19}F, {sup 16}O(p,{gamma}){sup 17}F, {sup 16}O({alpha},{gamma}){sup 20}Ne, {sup 20}Ne({alpha},{gamma}){sup 24}Mg, {sup 21}Ne({alpha},n){sup 24}Mg, {sup 18}O({alpha},n){sup 21}Ne, {sup 17}O({alpha},n){sup 20}Ne). In several cases the experimental sensitivity could be raised by up to a factor of 10{sup 6}. (orig.)

  12. Extended methods using thick-targets for nuclear reaction data of radioactive isotopes

    Science.gov (United States)

    Ebata, Shuichiro; Aikawa, Masayuki; Imai, Shotaro

    2017-09-01

    The nuclear transmutation is a technology to dispose of radioactive wastes. However, we do not have enough basic data for its developments, such as thick-target yields (TTY) and the interaction cross sections for radioactive material. We suggest two methods to estimate the TTY using inverse kinematics and to obtain the excitation function of the interaction cross sections which is named the thick-target transmission (T3) method. We deduce the energy-dependent conversion relation between the TTYs of the original system and its inverse kinematics, which can be replaced to a constant coefficient in the high energy region. Furthermore we show the usefulness of the T3 method to investigate the excitation function of the 12C + 27Al reaction in the simulation.

  13. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  14. Targets and criteria for the effective participation of national industry in a domestic nuclear power programme

    International Nuclear Information System (INIS)

    Py, J.P.

    1986-01-01

    The interest in maximum use of national resource is common to all countries, the highly industrialized as well as the developing ones. Although benefits can be expected from national participation in a domestic nuclear power programme and may not be limited to this programme, such national participation is restricted by constraining factors: economic, financial, technical and political. Considering the various natures of activities - design, procurement, manufacturing, erection -, their technical difficulties, their potential spin-off effects on the overall industrial development of a country, the paper reviews the materials and components of a nuclear power plants which can be selected as targets for domestic production. The paper also reviews criteria which must be considered in setting these Target materials and components in order to overcome restricting factors to national participation such as cost of national products, financing, investment capability, adequate market size, availability of qualified manpower, industrial capability and quality standards, availability of technology and know-how, conflicts of interests. Some concrete examples drawn from previous experience will illustrate France efforts to overcome these limiting factors [fr

  15. Nuclear targeting by fragmentation of the Potato spindle tuber viroid genome

    International Nuclear Information System (INIS)

    Abraitiene, Asta; Zhao Yan; Hammond, Rosemarie

    2008-01-01

    Transient expression of engineered reporter RNAs encoding an intron-containing green fluorescent protein (GFP) from a Potato virus X-based expression vector previously demonstrated the nuclear targeting capability of the 359 nucleotide Potato spindle tuber viroid (PSTVd) RNA genome. To further delimit the putative nuclear-targeting signal, PSTVd subgenomic fragments were embedded within the intron, and recombinant reporter RNAs were inoculated onto Nicotiana benthamiana plants. Appearance of green fluorescence in leaf tissue inoculated with PSTVd-fragment-containing constructs indicated shuttling of the RNA into the nucleus by fragments as short as 80 nucleotides in length. Plant-to-plant variation in the timing of intron removal and subsequent GFP fluorescence was observed; however, earliest and most abundant GFP expression was obtained with constructs containing the conserved hairpin I palindrome structure and embedded upper central conserved region. Our results suggest that this conserved sequence and/or the stem-loop structure it forms is sufficient for import of PSTVd into the nucleus

  16. The Nuclear Hormone Receptor PPARγ as a Therapeutic Target in Major Diseases

    Directory of Open Access Journals (Sweden)

    Martina Victoria Schmidt

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor γ (PPARγ belongs to the nuclear hormone receptor superfamily and regulates gene expression upon heterodimerization with the retinoid X receptor by ligating to peroxisome proliferator response elements (PPREs in the promoter region of target genes. Originally, PPARγ was identified as being essential for glucose metabolism. Thus, synthetic PPARγ agonists, the thiazolidinediones (TZDs, are used in type 2 diabetes therapy as insulin sensitizers. More recent evidence implied an important role for the nuclear hormone receptor PPARγ in controlling various diseases based on its anti-inflammatory, cell cycle arresting, and proapoptotic properties. In this regard, expression of PPARγ is not restricted to adipocytes, but is also found in immune cells, such as B and T lymphocytes, monocytes, macrophages, dendritic cells, and granulocytes. The expression of PPARγ in lymphoid organs and its modulation of macrophage inflammatory responses, lymphocyte proliferation, cytokine production, and apoptosis underscore its immune regulating functions. Moreover, PPARγ expression is found in tumor cells, where its activation facilitates antitumorigenic actions. This review provides an overview about the role of PPARγ as a possible therapeutic target approaching major, severe diseases, such as sepsis, cancer, and atherosclerosis.

  17. Nucleolin is a nuclear target of heparan sulfate derived from glypican-1.

    Science.gov (United States)

    Cheng, Fang; Belting, Mattias; Fransson, Lars-Åke; Mani, Katrin

    2017-05-01

    The recycling, S-nitrosylated heparan sulfate (HS) proteoglycan glypican-1 releases anhydromannose (anMan)-containing HS chains by a nitrosothiol-catalyzed cleavage in endosomes that can be constitutive or induced by ascorbate. The HS-anMan chains are then transported to the nucleus. A specific nuclear target for HS-anMan has not been identified. We have monitored endosome-to-nucleus trafficking of HS-anMan by deconvolution and confocal immunofluorescence microscopy using an anMan-specific monoclonal antibody in non-growing, ascorbate-treated, and growing, untreated, wild-type mouse embryonic fibroblasts and hypoxia-exposed Alzheimer mouse Tg2576 fibroblasts and human U87 glioblastoma cells. In all cells, nuclear HS-anMan targeted a limited number of sites of variable size where it colocalized with DNA and nucleolin, an established marker for nucleoli. HS-anMan also colocalized with ethynyl uridine-tagged nascent RNA and two acetylated forms of histone H3. Acute hypoxia increased the formation of HS-anMan in both Tg2576 and U87 cells. A portion of HS-anMan colocalized with nucleolin at small discrete sites, while most of the nucleolin and nascent RNA was dispersed. In U87 cells, HS-anMan, nucleolin and nascent RNA reassembled after prolonged hypoxia. Nucleolar HS may modulate synthesis and/or release of rRNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Nucleolin is a nuclear target of heparan sulfate derived from glypican-1

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Fang [Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund (Sweden); Belting, Mattias [Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund (Sweden); Fransson, Lars-Åke [Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund (Sweden); Mani, Katrin, E-mail: katrin.mani@med.lu.se [Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund (Sweden)

    2017-05-01

    The recycling, S-nitrosylated heparan sulfate (HS) proteoglycan glypican-1 releases anhydromannose (anMan)-containing HS chains by a nitrosothiol-catalyzed cleavage in endosomes that can be constitutive or induced by ascorbate. The HS-anMan chains are then transported to the nucleus. A specific nuclear target for HS-anMan has not been identified. We have monitored endosome-to-nucleus trafficking of HS-anMan by deconvolution and confocal immunofluorescence microscopy using an anMan-specific monoclonal antibody in non-growing, ascorbate-treated, and growing, untreated, wild-type mouse embryonic fibroblasts and hypoxia-exposed Alzheimer mouse Tg2576 fibroblasts and human U87 glioblastoma cells. In all cells, nuclear HS-anMan targeted a limited number of sites of variable size where it colocalized with DNA and nucleolin, an established marker for nucleoli. HS-anMan also colocalized with ethynyl uridine-tagged nascent RNA and two acetylated forms of histone H3. Acute hypoxia increased the formation of HS-anMan in both Tg2576 and U87 cells. A portion of HS-anMan colocalized with nucleolin at small discrete sites, while most of the nucleolin and nascent RNA was dispersed. In U87 cells, HS-anMan, nucleolin and nascent RNA reassembled after prolonged hypoxia. Nucleolar HS may modulate synthesis and/or release of rRNA.

  19. International target values 2010 for achievable measurement uncertainties in nuclear material accountancy

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Fabio C., E-mail: fabio@ird.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Almeida, Silvio G. de; Renha Junior, Geraldo, E-mail: silvio@abacc.org.b, E-mail: grenha@abacc.org.b [Agencia Brasileiro-Argentina de Contabilidade e Controle de Materiais Nucleares (ABACC), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The International Target Values (ITVs) are reasonable uncertainty estimates that can be used in judging the reliability of measurement techniques applied to industrial nuclear and fissile materials subject to accountancy and/or safeguards verification. In the absence of relevant experimental estimates, ITVs can also be used to select measurement techniques and calculate sample population during the planning phase of verification activities. It is important to note that ITVs represent estimates of the 'state-of-the-practice', which should be achievable under routine measurement conditions affecting both facility operators and safeguards inspectors, not only in the field, but also in laboratory. Tabulated values cover measurement methods used for the determination of volume or mass of the nuclear material, for its elemental and isotopic assays, and for its sampling. The 2010 edition represents the sixth revision of the International Target Values (ITVs), issued by the International Atomic Energy Agency (IAEA) as a Safeguards Technical Report (STR-368). The first version was released as 'Target Values' in 1979 by the Working Group on Techniques and Standards for Destructive Analysis (WGDA) of the European Safeguards Research and Development Association (ESARDA) and focused on destructive analytical methods. In the latest 2010 revision, international standards in estimating and expressing uncertainties have been considered while maintaining a format that allows comparison with the previous editions of the ITVs. Those standards have been usually applied in QC/QA programmes, as well as qualification of methods, techniques and instruments. Representatives of the Brazilian Nuclear Energy Commission (CNEN) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) participated in previous Consultants Group Meetings since the one convened to establish the first list of ITVs released in 1993 and in subsequent revisions

  20. Nuclear cooperation targets global challenges. States back main pillars of the IAEA's work to strengthen nuclear safety, verification and technology transfer

    International Nuclear Information System (INIS)

    2000-01-01

    States meeting at the 44th IAEA General Conference in Vienna have set a challenging agenda for international nuclear cooperation into the 21st century that targets issues of global safety, security, and sustainable development. They adopted resolutions endorsing the Agency's programmes for strengthening activities under its three main pillars of work - nuclear verification, safety, and technology - that are closely linked to major challenges before the world. The document presents the main actions taken during the conference

  1. In Vitro Evaluation of Molecular Tumor Targets in Nuclear Medicine: Immunohistochemistry Is One Option, but Under Which Conditions?

    Science.gov (United States)

    Reubi, Jean Claude

    2017-12-01

    The identification of new molecular targets for diagnostic and therapeutic applications using in vitro methods is an important challenge in nuclear medicine. One such method is immunohistochemistry, increasingly popular because it is easy to perform. This review presents the case for conducting receptor immunohistochemistry to evaluate potential molecular targets in human tumor tissue sections. The focus is on the immunohistochemistry of G-protein-coupled receptors, one of the largest families of cell surface proteins, representing a major class of drug targets and thus playing an important role in nuclear medicine. This review identifies common pitfalls and challenges and provides guidelines on performing such immunohistochemical studies. An appropriate validation of the target is a prerequisite for developing robust and informative new molecular probes. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  2. Large-angle production of charged pions with incident pion beams on nuclear targets

    CERN Document Server

    Apollonio, M.; Bagulya, A.; Barr, G.; Blondel, A.; Bobisut, F.; Bogomilov, M.; Bonesini, M.; Booth, C.; Borghi, S.; Bunyatov, S.; Burguet-Castell, J.; Catanesi, M.G.; Cervera-Villanueva, A.; Chimenti, P.; Coney, L.; Di Capua, E.; Dore, U.; Dumarchez, J.; Edgecock, R.; Ellis, M.; Ferri, F.; Gastaldi, U.; Giani, S.; Giannini, G.; Gibin, D.; Gilardoni, S.; Gorbunov, P.; Gossling, C.; Gomez-Cadenas, J.J.; Grant, A.; Graulich, J.S.; Gregoire, G.; Grichine, V.; Grossheim, A.; Guglielmi, A.; Howlett, L.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Kirsanov, M.; Kolev, D.; Krasnoperov, A.; Martin-Albo, J.; Meurer, C.; Mezzetto, M.; Mills, G.B.; Morone, M.C.; Novella, P.; Orestano, D.; Palladino, V.; Panman, J.; Papadopoulos, I.; Pastore, F.; Piperov, S.; Polukhina, N.; Popov, B.; Prior, G.; Radicioni, E.; Schmitz, D.; Schroeter, R.; Skoro, G.; Sorel, M.; Tcherniaev, E.; Temnikov, P.; Tereschenko, V.; Tonazzo, A.; Tortora, L.; Tsenov, R.; Tsukerman, I.; Vidal-Sitjes, G.; Wiebusch, C.; Zucchelli, P.

    2009-01-01

    Measurements of the double-differential pi+/- production cross-section in the range of momentum 100 MeV/c <= p <= 800 MeV/c and angle 0.35 rad <= theta <= 2.15 rad using pi+/- beams incident on beryllium, aluminium, carbon, copper, tin, tantalum and lead targets are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The secondary pions were produced by beams in a momentum range from 3 GeV/c to 12.9 GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections d2sigma/dpdtheta at six incident beam momenta. Data at 3 GeV/c, 5 GeV/c, 8 GeV/c, and 12 GeV/c are available for all targets while additional data at 8.9 GeV/...

  3. Proliferating cell nuclear antigen (Pcna) as a direct downstream target gene of Hoxc8

    Energy Technology Data Exchange (ETDEWEB)

    Min, Hyehyun; Lee, Ji-Yeon; Bok, Jinwoong; Chung, Hyun Joo [Department of Anatomy, Embryology Laboratory, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Myoung Hee, E-mail: mhkim1@yuhs.ac [Department of Anatomy, Embryology Laboratory, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2010-02-19

    Hoxc8 is a member of Hox family transcription factors that play crucial roles in spatiotemporal body patterning during embryogenesis. Hox proteins contain a conserved 61 amino acid homeodomain, which is responsible for recognition and binding of the proteins onto Hox-specific DNA binding motifs and regulates expression of their target genes. Previously, using proteome analysis, we identified Proliferating cell nuclear antigen (Pcna) as one of the putative target genes of Hoxc8. Here, we asked whether Hoxc8 regulates Pcna expression by directly binding to the regulatory sequence of Pcna. In mouse embryos at embryonic day 11.5, the expression pattern of Pcna was similar to that of Hoxc8 along the anteroposterior body axis. Moreover, Pcna transcript levels as well as cell proliferation rate were increased by overexpression of Hoxc8 in C3H10T1/2 mouse embryonic fibroblast cells. Characterization of 2.3 kb genomic sequence upstream of Pcna coding region revealed that the upstream sequence contains several Hox core binding sequences and one Hox-Pbx binding sequence. Direct binding of Hoxc8 proteins to the Pcna regulatory sequence was verified by chromatin immunoprecipitation assay. Taken together, our data suggest that Pcna is a direct downstream target of Hoxc8.

  4. Uses of laser optical pumping to produce polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1983-01-01

    Laser optical pumping can be used to produce polarized alkali atom beams or polarized alkali vapor targets. Polarized alkali atom beams can be converted into polarized alkali ion beams, and polarized alkali vapor targets can be used to produce polarized H - or 3 He - ion beams. In this paper the authors discuss how the polarized alkali atom beams and polarized alkali vapor targets are used to produce polarized ion beams with emphasis on the production of polarized negative ion beams

  5. sup 1 sup 2 sup 9 I targets for studies of nuclear waste transmutation

    CERN Document Server

    Ingelbrecht, C; Raptis, K; Altzitzoglou, T; Noguere, G

    2002-01-01

    Nuclear incineration of long-lived fission products and minor actinides is being investigated as an alternative means of reactor waste disposal. sup 1 sup 2 sup 9 I is of particular interest because of its long half-life and high mobility in the environment. Lead iodide targets of sup 1 sup 2 sup 9 I for neutron capture cross-section measurements were prepared from 210 l fuel reprocessing waste solution containing 1.3 g l sup - sup 1 iodine and other fission products. The iodine was separated by oxidation to I sub 2 and extraction into chloroform, reduction to iodide by sodium sulphite and re-extraction into an aqueous phase. Iodide was precipitated using lead nitrate and dried. The chemistry was carried out batch-wise using 400 ml starting solution each time and recycling the chloroform. An extraction efficiency of about 90%, determined by gamma-ray spectrometry, was achieved.

  6. Cholesterol Sulfate and Cholesterol Sulfotransferase Inhibit Gluconeogenesis by Targeting Hepatocyte Nuclear Factor 4α

    Science.gov (United States)

    Shi, Xiongjie; Cheng, Qiuqiong; Xu, Leyuan; Yan, Jiong; Jiang, Mengxi; He, Jinhan; Xu, Meishu; Stefanovic-Racic, Maja; Sipula, Ian; O'Doherty, Robert Martin; Ren, Shunlin

    2014-01-01

    Sulfotransferase (SULT)-mediated sulfation represents a critical mechanism in regulating the chemical and functional homeostasis of endogenous and exogenous molecules. The cholesterol sulfotransferase SULT2B1b catalyzes the sulfoconjugation of cholesterol to synthesize cholesterol sulfate (CS). In this study, we showed that the expression of SULT2B1b in the liver was induced in obese mice and during the transition from the fasted to the fed state, suggesting that the regulation of SULT2B1b is physiologically relevant. CS and SULT2B1b inhibited gluconeogenesis by targeting the gluconeogenic factor hepatocyte nuclear factor 4α (HNF4α) in both cell cultures and transgenic mice. Treatment of mice with CS or transgenic overexpression of the CS-generating enzyme SULT2B1b in the liver inhibited hepatic gluconeogenesis and alleviated metabolic abnormalities both in mice with diet-induced obesity (DIO) and in leptin-deficient (ob/ob) mice. Mechanistically, CS and SULT2B1b inhibited gluconeogenesis by suppressing the expression of acetyl coenzyme A (acetyl-CoA) synthetase (Acss), leading to decreased acetylation and nuclear exclusion of HNF4α. Our results also suggested that leptin is a potential effector of SULT2B1b in improving metabolic function. We conclude that SULT2B1b and its enzymatic by-product CS are important metabolic regulators that control glucose metabolism, suggesting CS as a potential therapeutic agent and SULT2B1b as a potential therapeutic target for metabolic disorders. PMID:24277929

  7. Targeted expression of nuclear transgenes in Chlamydomonas reinhardtii with a versatile, modular vector toolkit.

    Science.gov (United States)

    Lauersen, Kyle J; Kruse, Olaf; Mussgnug, Jan H

    2015-04-01

    We present a versatile vector toolkit for nuclear transgene expression in the model green microalga Chlamydomonas reinhardtii. The vector was designed in a modular fashion which allows quick replacement of regulatory elements and genes of interest. The current toolkit comprises two antibiotic resistance markers (paromomycin and hygromycin B), five codon-optimized light emission reporters, including the Gaussia princeps luciferase, as well as bright cyan, green, yellow, and red fluorescent protein variants. The system has demonstrated robust functional flexibility with signal options to target the protein of interest to the cytoplasm, the nucleus, cellular microbodies, the chloroplast, mitochondria, or via the endoplasmic reticulum-Golgi apparatus secretory pathway into the culture medium. Successful fluorescent reporter protein fusion to C. reinhardtii Rubisco small subunit 1 was accomplished with this system. Localization of the fluorescently tagged protein was observed in the chloroplast pyrenoid via live cell fluorescence microscopy, the first report of heterologous protein localization to this cellular structure. The functionalities of the vector toolkit, the individual modular elements, as well as several combinations thereof are demonstrated in this manuscript. Due to its strategic design, this vector system can quickly be adapted to individual tasks and should therefore be of great use to address specific scientific questions requiring nuclear recombinant protein expression in C. reinhardtii.

  8. Electricity is the real target - nuclear energy the scapegoat. Comparison between nuclear energy and hydro power voting behaviour

    International Nuclear Information System (INIS)

    Aegerter, Irene

    1993-01-01

    As nuclear community sometimes feel desperate because the nuclear energy is a very special subject triggering so much controversy among women and young persons especially it has been found that the battle against nuclear energy is just a pretext. Comparing the campaign on a referendum against hydropower - voted in Switzerland in may 1992 it was found astonishingly that exactly the same arguments were applied as during the campaign for the phase out of nuclear energy in 1990. The results were presented at PIME 1991. Voting behaviour for nuclear energy and hydro power are comparable: the gender gap (32% acceptance by men versus 48% by women) found in the 1992 vote about stopping hydropower plants in Switzerland was bigger than the one found in the 1990 vote about nuclear energy. A detailed analysis of these data is presented

  9. The Gpn3 Q279* cancer-associated mutant inhibits Gpn1 nuclear export and is deficient in RNA polymerase II nuclear targeting.

    Science.gov (United States)

    Barbosa-Camacho, Angel A; Méndez-Hernández, Lucía E; Lara-Chacón, Bárbara; Peña-Gómez, Sonia G; Romero, Violeta; González-González, Rogelio; Guerra-Moreno, José A; Robledo-Rivera, Angélica Y; Sánchez-Olea, Roberto; Calera, Mónica R

    2017-11-01

    Gpn3 is required for RNA polymerase II (RNAPII) nuclear targeting. Here, we investigated the effect of a cancer-associated Q279* nonsense mutation in Gpn3 cellular function. Employing RNAi, we replaced endogenous Gpn3 by wt or Q279* RNAi-resistant Gpn3R in epithelial model cells. RNAPII nuclear accumulation and transcriptional activity were markedly decreased in cells expressing only Gpn3R Q279*. Wild-type Gpn3R localized to the cytoplasm but a fraction of Gpn3R Q279* entered the cell nucleus and inhibited Gpn1-EYFP nuclear export. This property and the transcriptional deficit in Gpn3R Q279*-expressing cells required a PDZ-binding motif generated by the Q279* mutation. We conclude that an acquired PDZ-binding motif in Gpn3 Q279* caused Gpn3 nuclear entry, and inhibited Gpn1 nuclear export and Gpn3-mediated RNAPII nuclear targeting. © 2017 Federation of European Biochemical Societies.

  10. Inhibition of CRM1-mediated nuclear export of influenza A nucleoprotein and nuclear export protein as a novel target for antiviral drug development.

    Science.gov (United States)

    Chutiwitoonchai, Nopporn; Mano, Takafumi; Kakisaka, Michinori; Sato, Hirotaka; Kondoh, Yasumitsu; Osada, Hiroyuki; Kotani, Osamu; Yokoyama, Masaru; Sato, Hironori; Aida, Yoko

    2017-07-01

    An anti-influenza compound, DP2392-E10 based on inhibition of the nuclear export function of the viral nucleoprotein-nuclear export signal 3 (NP-NES3) domain was successfully identified by our previous high-throughput screening system. Here, we demonstrated that DP2392-E10 exerts its antiviral effect by inhibiting replication of a broad range of influenza A subtypes. In regard to the molecular mechanism, we revealed that DP2392-E10 inhibits nuclear export of both viral NP and nuclear export protein (NEP). More specifically, in vitro pull-down assays revealed that DP2392-E10 directly binds cellular CRM1, which mediates nuclear export of NP and NEP. In silico docking suggested that DP2392-E10 binds at a region close to the HEAT9 and HEAT10 domains of CRM1. Together, these results indicate that the CRM1-mediated nuclear export function of influenza virus represents a new potential target for antiviral drug development, and also provide a core structure for a novel class of inhibitors that target this function. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers

    Science.gov (United States)

    Dubroca, Thierry; Smith, Adam N.; Pike, Kevin J.; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R.; Frydman, Lucio; Hill, Stephen

    2018-04-01

    Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 μL, i.e. 3 mm diameter NMR tubes).

  12. Barcoding the major Mediterranean leguminous crops by combining universal chloroplast and nuclear DNA sequence targets.

    Science.gov (United States)

    Madesis, P; Ganopoulos, I; Ralli, P; Tsaftaris, A

    2012-08-16

    The ability to discriminate all species is the ultimate target in barcoding. The Mediterranean basin is a center of origin for legumes and thus they have played a key role in feeding the Mediterranean population. It is also a region with important protected designation of origin and protected geographical indication legumes that provide income in rural areas. We evaluated the use of two chloroplast regions, trnL and rpoC1, and a nuclear internal transcriber region, ITS2, for their efficiency to barcode the main Mediterranean leguminous crops. Twenty-five legume species were studied. Plant material of pasture and legumes was obtained from the Greek GenBank and the Fodder Crops and Pastures Institute (National Agricultural Research Foundation). DNA was extracted with the Qiagen DNeasy plant mini-kit and PCR amplification was performed using the Kapa Taq DNA polymerase using primers amplifying the chloroplast trnL and rpoC1 regions or the nuclear region ITS2. PCR products were sequenced and the sequences were aligned using CLUSTAL W. Species identification based on the sequence similarity approach was performed using the GenBank database. In order to evaluate intraspecific and interspecific divergence in legumes we used Molecular Evolutionary Genetics Analysis 5 and for pairwise Kimura 2-parameter distance calculations for all 3 DNA regions (2 chloroplast regions, trnL and rpoC1, and the nuclear region ITS2). Four tree-based methods (neighbor joining and maximum parsimony, maximum likelihood, and Bayesian inference analyses) were used to exhibit the molecular identification results to represent differences as an uprooted dendrogram. Additionally, the sequence character-based method was used with DnaSP and the information from each site was treated as a character to distinguish the species from one another. The DNA regions trnL and ITS2 successfully (100%) discriminated the Mediterranean crop legume species used, while rpoC1 identified only 72% of them. Furthermore

  13. New supersonic gas jet target for low energy nuclear reaction studies

    Directory of Open Access Journals (Sweden)

    F. Favela

    2015-12-01

    Full Text Available A windowless supersonic gas jet target (SUGAR has been put in operation recently in Mexico. It is the first target of its kind in the country and the region. New research opportunities become available with this facility through the study of the direct beam-gas interaction: nuclear physics and astrophysics, atomic physics, interaction of radiation with matter and other interdisciplinary applications. A general description of the apparatus and its commissioning is given here. Air, nitrogen and argon jets were produced. Proton and deuteron beams were used to measure key parameters of the system to compare with theoretical estimates. In addition, as a first study case, we present data from the ^{14}N(d,α^{12}C reaction, at center of mass energies between 1.9 and 3.0 MeV with an E-ΔE telescope detector at 35°. Excitation functions for several excited states were constructed and an ^{16}O resonance at 22.72 MeV was confirmed.

  14. New supersonic gas jet target for low energy nuclear reaction studies

    Science.gov (United States)

    Favela, F.; Acosta, L.; Andrade, E.; Araujo, V.; Huerta, A.; de Lucio, O. G.; Murillo, G.; Ortiz, M. E.; Policroniades, R.; Santa Rita, P.; Varela, A.; Chávez, E.

    2015-12-01

    A windowless supersonic gas jet target (SUGAR) has been put in operation recently in Mexico. It is the first target of its kind in the country and the region. New research opportunities become available with this facility through the study of the direct beam-gas interaction: nuclear physics and astrophysics, atomic physics, interaction of radiation with matter and other interdisciplinary applications. A general description of the apparatus and its commissioning is given here. Air, nitrogen and argon jets were produced. Proton and deuteron beams were used to measure key parameters of the system to compare with theoretical estimates. In addition, as a first study case, we present data from the 14N (d ,α )12C reaction, at center of mass energies between 1.9 and 3.0 MeV with an E-Δ E telescope detector at 35°. Excitation functions for several excited states were constructed and an 16O resonance at 22.72 MeV was confirmed.

  15. International target values 2000 for measurement uncertainties in safeguarding nuclear materials

    International Nuclear Information System (INIS)

    Aigner, H.; Binner, R.; Kuhn, E.

    2001-01-01

    The IAEA has prepared a revised and updated version of International Target Values (ITVs) for uncertainty components in measurements of nuclear material. The ITVs represent uncertainties to be considered in judging the reliability of analytical techniques applied to industrial nuclear and fissile material subject to safeguards verification. The tabulated values represent estimates of the 'state of the practice' which ought to be achievable under routine conditions by adequately equipped, experienced laboratories. The ITVs 2000 are intended to be used by plant operators and safeguards organizations as a reference of the quality of measurements achievable in nuclear material accountancy, and for planning purposes. The IAEA prepared a draft of a technical report presenting the proposed ITVs 2000, and in April 2000 the chairmen or officers of the panels or organizations listed below were invited to co- author the report and to submit the draft to a discussion by their panels and organizations. Euratom Safeguards Inspectorate, ESAKDA Working Group on Destructive Analysis, ESARDA Working Group on Non Destructive Analysis, Institute of Nuclear Material Management, Japanese Expert Group on ITV-2000, ISO Working Group on Analyses in Spent Fuel Reprocessing, ISO Working Group on Analyses in Uranium Fuel Fabrication, ISO Working Group on Analyses in MOX Fuel Fabrication, Agencia Brasileno-Argentina de Contabilidad y Control de Materiales Nucleares (ABACC). Comments from the above groups were received and incorporated into the final version of the document, completed in April 2001. The ITVs 2000 represent target standard uncertainties, expressing the precision achievable under stipulated conditions. These conditions typically fall in one of the two following categories: 'repeatability conditions' normally encountered during the measurements done within one inspection period; or 'reproducibility conditions' involving additional sources of measurement variability such as

  16. DAQ systems for the high energy and nuclotron internal target polarimeters with network access to polarization calculation results and raw data

    International Nuclear Information System (INIS)

    Isupov, A.Yu.

    2004-01-01

    On-line data acquisition (DAQ) system for the Nuclotron Internal Target Polarimeter (ITP) at the LHE, JINR, is explained in respect of design and implementation, based on the distributed data acquisition and processing system qdpb. Software modules specific for this implementation (dependent on ITP data contents and hardware layout) are discussed briefly in comparison with those for the High Energy Polarimeter (HEP) at the LHE, JINR. User access methods both to raw data and to results of polarization calculations of the ITP and HEP are discussed

  17. Characterization of X-ray detection system and its application in the search of contaminations in nuclear astrophysics targets

    International Nuclear Information System (INIS)

    Gupta, Arkabrata; Saha, Gourav; Sarkar, S.; Bisoi, Abhijit

    2017-01-01

    We have already prepared two implanted targets ( 14 N and 22 Ne) and characterized them (both surface and bulk) using X-ray photo electron spectroscopy (XPS), Scanning electron microscope (SEM), Rutherford backscattering Spectroscopy (RBS) and nuclear resonance reaction. It can also be possible to characterize the target surface by detecting the characteristic X-ray emitted from the excited target atom. These atoms can be excited by bombarding charge particles, X-rays or gamma rays. In our laboratory we have procured an X-ray source and a X-ray detection system from Moxtek, USA. Our primary motivation is to use this set up to characterize our targets to be used in nuclear astrophysics experiments. In this present work, we have tested the performance of the detector for different shaping time, system dead time. We have also performed some elemental analysis using known sample to validate our system

  18. Study of Λ polarization in relativistic nuclear collisions at √{s_NN}=7.7-200 GeV

    Science.gov (United States)

    Karpenko, Iu.; Becattini, F.

    2017-04-01

    We present a calculation of the global polarization of Λ hyperons in relativistic Au-Au collisions at RHIC Beam Energy Scan range √{s_NN}=7.7{-}200 GeV with a 3+1-dimensional cascade + viscous hydro model, UrQMD + vHLLE. Within this model, the mean polarization of Λ in the out-of-plane direction is predicted to decrease rapidly with collision energy from a top value of about 2% at the lowest energy examined. We explore the connection between the polarization signal and thermal vorticity and estimate the feed-down contribution to Λ polarization due to the decay of higher mass hyperons.

  19. Requirement of nuclear data and inaccuracy of nuclear data in evaluating the target values of shielding calculations for the light water reactor and the high-temperature reactor

    International Nuclear Information System (INIS)

    Kicherer, G.; Hehn, G.

    1982-01-01

    This study tries to investigate for the first time systematically and quantitatively the influence on the prediction of reactor shieldings from inaccuracies in nuclear data playing an essential part in design, monitoring, and estimation of the useful life of power reactors. The main objective is to calculate the contribution of the error in nuclear data to the inaccuracy of the targets of reactor shielding calculations expressed in terms of radiation dose, radiation damages and radiation heat, that have got a high safety relevance. As a result, it can be determined if there remains a sufficiently large margin for the errors from the mathematical method and the geometrical approximation. In the first part of the paper the most important international nuclear data libraries are compared by means of a one-dimensional shielding calculation for the BWR KRB II. In the second part a systematic sensitivity study for the shielding targets of a BWR (KRB II/1300 MWsub(el)) and a HTGR (THTR-300/300 MWsub(el)) is performed for the cross-section data of the individual nuclides. In relation with the evaluated nuclear data errors and the result of the sensitivity study the error in the nuclear data used for the prediction of the radiation damage to the RPV or liner respectively and of the radiation dose in the concrete of the primary shield can be analyzed for light water and high-temperature reactors. (orig.) [de

  20. Reprint of: Reaction measurements with the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

    Science.gov (United States)

    Chipps, K. A.

    2018-01-01

    Explosive stellar environments are sometimes driven by nuclear reactions on short-lived, radioactive nuclei. These reactions often drive the stellar explosion, alter the observable light curves produced, and dictate the final abundances of the isotopes created. Unfortunately, many reaction rates at stellar temperatures cannot be directly measured in the laboratory, due to the physical limitations of ultra-low cross sections and high background rates. An additional complication arises because many of the important reactions involve radioactive nuclei which have lifetimes too short to be made into a target. As such, direct reactions require very intense and pure beams of exotic nuclei. Indirect approaches with both stable and radioactive beams can, however, provide crucial information on the nuclei involved in these astrophysical reactions. A major development toward both direct and indirect studies of nuclear reactions rates is the commissioning of the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) supersonic gas jet target. The JENSA system provides a pure, homogeneous, highly localized, dense, and robust gaseous target for radioactive ion beam studies. Charged-particle reactions measurements made with gas jet targets can be cleaner and display better resolution than with traditional targets. With the availability of pure and localized gas jet targets in combination with developments in exotic radioactive ion beams and next-generation detector systems, the range of reaction studies that are experimentally possible is vastly expanded. Various representative cases will be discussed.

  1. Polarized fuel for controlled thermonuclear fusion

    Science.gov (United States)

    Bartalucci, Sergio

    2017-07-01

    The use of polarized nuclei as a fuel for thermonuclear fusion reactors was suggested more than 30 years ago, providing evidence for a significant increase of the total cross section. In particular, an enhancement factor close to 1.5 is expected in the energy range below 100 keV for the dominant nuclear fusion reactions 2H + 3H → 4He + n + 17.58 MeV and 2H + 3He → 4He + p + 18.34 MeV. Furthermore, the use of polarized fuel allows one to control the ejectile trajectories, via an enhancement in the forward-backward cross section asymmetry due to polarization. This allows some control on the energy transfer from the plasma to the reactor wall or helps concentrate the neutron flux to defined wall areas. Nevertheless, this idea was received with skepticism by the relevant scientific community, due to some uncertainty in the physics of the process, the low efficiency in the production of polarized beams for injection into plasma and the apparent difficulty of preserving the ion polarization for a time long compared with nuclear burning time. But more recently, as a consequence of significant progress in the field of atomic beam sources and polarized targets, the interest in this matter has been refreshed for both inertially and magnetically confined plasmas. The possibility of implementing nuclear polarization in present and future fusion reactors is discussed in this paper. In particular, the interaction between polarized ions and magnetic fields, both static and RF, which are typically used in a Tokamak for plasma heating via ion cyclotron resonance (ICRH), is considered. Also, experimental issues for practically performing a feasibility test on a real fusion reactors are illustrated.

  2. New Drug Candidate Targeting the 4A1 Orphan Nuclear Receptor for Medullary Thyroid Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-03-01

    Full Text Available Medullary thyroid cancer (MTC is a relatively rare thyroid cancer responsible for a substantial fraction of thyroid cancer mortality. More effective therapeutic drugs with low toxicity for MTC are urgently needed. Orphan nuclear receptor 4A1 (NR4A1 plays a pivotal role in regulating the proliferation and apoptosis of a variety of tumor cells. Based on the NR4A1 protein structure, 2-imino-6-methoxy-2H-chromene-3-carbothioamide (IMCA was identified from the Specs compounds database using the protein structure-guided virtual screening approach. Computationally-based molecular modeling studies suggested that IMCA has a high affinity for the ligand binding pocket of NR4A1. MTT [3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide] and apoptosis assays demonstrated that IMCA resulted in significant thyroid cancer cell death. Immunofluorescence assays showed that IMCA induced NR4A1 translocation from the nucleus to the cytoplasm in thyroid cancer cell lines, which may be involved in the cell apoptotic process. In this study, the quantitative polymerase chain reaction results showed that the IMCA-induced upregulation of sestrin1 and sestrin2 was dose-dependent in thyroid cancer cell lines. Western blot showed that IMCA increased phosphorylation of adenosine 5′-monophosphate-activated protein kinase (AMPK and decreased phosphorylation of ribosomal protein S6 kinase (p70S6K, which is the key enzyme in the mammalian target of rapamycin (mTOR pathway. The experimental results suggest that IMCA is a drug candidate for MTC therapy and may work by increasing the nuclear export of NR4A1 to the cytoplasm and the tumor protein 53 (p53-sestrins-AMPK-mTOR signaling pathway.

  3. A Measurement of the neutron electric form factor at very large momentum transfer using polaried electrions scattering from a polarized helium-3 target

    Energy Technology Data Exchange (ETDEWEB)

    Kelleher, Aidan [College of William and Mary, Williamsburg, VA (United States)

    2010-02-01

    Knowledge of the electric and magnetic elastic form factors of the nucleon is essential for an understanding of nucleon structure. Of the form factors, the electric form factor of the neutron has been measured over the smallest range in Q2 and with the lowest precision. Jefferson Lab experiment 02-013 used a novel new polarized 3 He target to nearly double the range of momentum transfer in which the neutron form factor has been studied and to measure it with much higher precision. Polarized electrons were scattered off this target, and both the scattered electron and neutron were detected. Gn E was measured to be 0.0242 ± 0.0020(stat) ± 0.0061(sys) and 0.0247 ± 0.0029(stat) ± 0.0031(sys) at Q2 = 1.7 and 2.5 GeV2 , respectively.

  4. Production of nuclear fragments from the interactions of 24 GeV/c protons in a gold target

    CERN Document Server

    Herz, A J; O'Sullivan, D; Thompson, A

    1976-01-01

    Lexan polycarbonate track detectors have been used to determine the charge and energy spectra of nuclear fragments with Z>or=6 and with kinetic energies as low as approximately=1.0 MeV/nucleon emitted from a thin gold target bombarded with 24 GeV/c protons. (8 refs).

  5. Applications of pulsed nuclear magnetic resonance to chemistry: multiple-pulse NMR, cross polarization, magic-angle spinning annd instrumental design

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, P.D.

    1979-07-01

    Pulsed Nuclear Magnetic Resonance (NMR) has been applied to: (1) Measurements of the prinicpal components of the proton shielding tensors of the hydrides of zirconium chloride and zirconium bromide. Multiple-Pulse techniques have been used to remove static homonuclear dipolar coupling. The anisotropies and isotropic shifts of these tensors have been used to infer the possible locations of the hydrogen within the sandwich-like layers of these unusual compounds. (2) Studies of the oscillatory transfer of magnetic polarization between /sup 1/H and /sup 29/Si in substituted silanes. The technique of J Cross Polarization has been used to enhance sensitivity. The /sup 29/Si NMR shifts of -Si-O- model compounds have been investigated as a possible probe for future studies of the environment of bound oxygen in coal-derived liquids. (3) Measurements of the aromatic fraction of /sup 13/C in whole coals. The techniques of /sup 1/H-/sup 13/C Cross Polarization and Magic-Angle Spinning have been used to enhance sensitivity and remove shift anisotropy. Additional topics described are: (4) Calculation and properties of the broadened lineshape of the shileding Powder Pattern. (5) Calculation of the oscillatory transfer of magnetic polarization for an I-S system. (6) Numerical convolution and its uses. (7) The technique of digital filtering applied in the frequency domain. (8) The designs and properties of four NMR probe-circuits. (9) The design of a single-coil double-resonance probe for combined Magic-Angle Spinning and Cross Polarization. (10) The designs of low Q and high Q rf power amplifiers with emphasis on the rf matching circuitry.

  6. Locating sensors for detecting source-to-target patterns of special nuclear material smuggling: a spatial information theoretic approach.

    Science.gov (United States)

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  7. Locating Sensors for Detecting Source-to-Target Patterns of Special Nuclear Material Smuggling: A Spatial Information Theoretic Approach

    Directory of Open Access Journals (Sweden)

    Xuesong Zhou

    2010-08-01

    Full Text Available In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  8. miR-370 suppresses HBV gene expression and replication by targeting nuclear factor IA.

    Science.gov (United States)

    Fan, Hongxia; Lv, Ping; Lv, Jing; Zhao, Xiaopei; Liu, Min; Zhang, Guangling; Tang, Hua

    2017-05-01

    Hepatitis B virus (HBV) infection is a major health problem worldwide. The roles of microRNAs in the regulation of HBV expression are being increasingly recognized. In this study, we found that overexpression of miR-370 suppressed HBV gene expression and replication in Huh7 cells, whereas antisense knockdown of endogenous miR-370 enhanced HBV gene expression and replication in Huh7 cells and HepG2.2.15 cells. Further, we identified the transcription factor nuclear factor IA (NFIA) as a new host target of miR-370. Overexpression and knockdown studies showed that NFIA stimulated HBV gene expression and replication. Importantly, overexpression of NFIA counteracted the effect of miR-370 on HBV gene expression and replication. Further mechanistic studies showed that miR-370 suppressed HBV replication and gene expression by repressing HBV Enhancer I activity, and one of the NFIA binding site in the Enhancer I element was responsible for the repressive effect of miR-370 on HBV Enhancer I activity. Altogether, our results demonstrated that miR-370 suppressed HBV gene expression and replication through repressing NFIA expression, which stimulates HBV replication via direct regulation on HBV Enhancer I activities. Our findings may provide a new antiviral strategy for HBV infection. J. Med. Virol. 89:834-844, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Circumvention of nuclear factor kappaB-induced chemoresistance by cytoplasmic-targeted anthracyclines.

    Science.gov (United States)

    Bilyeu, Jennifer D; Panta, Ganesh R; Cavin, Lakita G; Barrett, Christina M; Turner, Eddie J; Sweatman, Trevor W; Israel, Mervyn; Lothstein, Leonard; Arsura, Marcello

    2004-04-01

    Nuclear factor kappaB (NF-kappaB) has been implicated in inducible chemoresistance against anthracyclines. In an effort to improve the cytotoxicity of anthracyclines while reducing their cardiotoxic effects, we have developed a novel class of extranuclear-localizing 14-O-acylanthracyclines that bind to the phorbol ester/diacylglycerol-binding C1b domain of conventional and novel protein kinase C (PKC) isoforms, thereby promoting an apoptotic response. Because PKCs have been shown to be involved in NF-kappaB activation, in this report, we determined the mechanism of NF-kappaB activation by N-benzyladriamycin-14-valerate (AD 198) and N-benzyladriamycin-14-pivalate (AD 445), two novel 14-O-acylanthracylines. We show that the induction of NF-kappaB activity in response to drug treatment relies on the activation of PKC-delta and NF-kappaB-activating kinase (NAK), independent of ataxia telengectasia mutated and p53 activities. In turn, NAK activates the IKK complex through phosphorylation of the IKK-2 subunit. We find that neither NF-kappaB activation nor ectopic expression of Bcl-X(L) confers protection from AD 198-induced cell killing. Overall, our data indicate that activation of novel PKC isoforms by cytoplasmic-targeted 14-O-acylanthracyclines promotes an apoptotic response independent of DNA damage, which is unimpeded by inducible activation of NF-kappaB.

  10. Forward production of charged pions with incident protons on nuclear targets at the CERN Proton Synchrotron

    CERN Document Server

    Apollonio, M.; Bagulya, A.; Barr, G.; Blondel, A.; Bobisut, F.; Bogomilov, M.; Bonesini, M.; Booth, C.; Borghi, S.; Bunyatov, S.; Burguet-Castell, J.; Catanesi, M.G.; Cervera-Villanueva, A.; Chimenti, P.; Coney, L.; Di Capua, E.; Dore, U.; Dumarchez, J.; Edgecock, R.; Ellis, M.; Ferri, F.; Gastaldi, U.; Giani, S.; Giannini, G.; Gibin, D.; Gilardoni, S.; Gorbunov, P.; Gossling, C.; Gomez-Cadenas, J.J.; Grant, A.; Graulich, J.S.; Gregoire, G.; Grichine, V.; Grossheim, A.; Guglielmi, A.; Howlett, L.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Kirsanov, M.; Kolev, D.; Krasnoperov, A.; Martin-Albo, J.; Meurer, C.; Mezzetto, M.; Mills, G.B.; Morone, M.C.; Novella, P.; Orestano, D.; Palladino, V.; Panman, J.; Papadopoulos, I.; Pastore, F.; Piperov, Stefan; Polukhina, N.; Popov, B.; Prior, G.; Radicioni, E.; Schmitz, D.; Schroeter, R.; Serdiouk, V.; Skoro, G; Sorel, M.; Tcherniaev, E.; Temnikov, P.; Tereschenko, V.; Tonazzo, A.; Tortora, L.; Tsenov, R.; Tsukerman, I.; Vidal-Sitjes, G.; Wiebusch, C.; Zucchelli, P.

    2009-01-01

    Measurements of the double-differential charged pion production cross-section in the range of momentum 0.5 GeV/c < p < 8.0 GeV/c and angle 0.025 rad < theta <0.25 rad in collisions of protons on beryllium, carbon, nitrogen, oxygen, aluminium, copper, tin, tantalum and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. Incident particles were identified by an elaborate system of beam detectors. The data were taken with thin targets of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using the forward system of the HARP experiment. Results are obtained for the double-differential cross section mainly at four incident proton beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). Measurements are compared with the GEANT4 and MARS Monte Carlo generators. A global parametrization is provided as an approximation of all the collected datasets which can serve as a tool for quick yield...

  11. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Directory of Open Access Journals (Sweden)

    X. H. Liu

    2015-10-01

    Full Text Available We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  12. A review of polarized ion sources

    International Nuclear Information System (INIS)

    Schmor, P.W.

    1995-06-01

    The two main types of polarized ion sources in use on accelerators today are the Atomic Beam Polarized Ion Source (ABIS) source and the Optically Pumped Polarized Ion Source (OPPIS). Both types can provide beams of nuclearly polarized light ions which are either positively or negatively charged. Heavy ion polarized ion sources for accelerators are being developed. (author). 35 refs., 1 tab

  13. The role of Pleistocene glaciations in shaping the evolution of polar and brown bears. Evidence from a critical review of mitochondrial and nuclear genome analyses.

    Science.gov (United States)

    Hassanin, Alexandre

    2015-07-01

    In this report, I review recent molecular studies dealing with the origin and evolution of polar bears (Ursus maritimus), with special emphasis on their relationships with brown bears (U. arctos). On the basis of mitochondrial and nuclear data, different hypotheses have been proposed, including rapid morphological differentiation of U. maritimus, genetic introgression from U. arctos into U. maritimus, or inversely from U. maritimus into U. arctos, involving either male- or female-mediated gene flow. In the light of available molecular and eco-ethological data, I suggest, firstly, that all divergences among major clades of large bears can be linked to glacial periods, secondly, that polar bears diverged from brown bears before 530 thousand years ago (ka), during one of the three glacial marine isotope stages (MIS) 14, 15.2 or 16, and, thirdly, that genetic introgression had occurred from female polar bears into brown bear populations during at least two glacial periods, at 340 ± 10 ka (MIS 10) in western Europe, and at 155 ± 5 ka (MIS 6) on the ABC islands of southeastern Alaska, and probably also in Beringia and Ireland based on ancient DNA sequences. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. Nuclear membrane localization during pollen development and apex-focused polarity establishment of SYP124/125 during pollen germination in Arabidopsis thaliana.

    Science.gov (United States)

    Ichikawa, Mie; Iwano, Megumi; Sato, Masa H

    2015-12-01

    Establishment of apex-polarity. Elongation of the pollen tube is a highly coordinated process involving polarized secretion of cell wall and membrane materials to the apical region. We investigated changes in the localization of soluble NSF attachment proteins (SNAREs) in developing pollen grains and the pollen tube for transgenic Arabidopsis expressing pollen-specific plasma-membrane Qa-SNAREs (SYP124, 125 and 131) fused with the green fluorescent protein (GFP). The expression of SYP124 and SYP125 was firstly detected in the microspore nuclear membrane during pollen mitosis II. Although SYP124, 125 and 131 accumulated throughout the cytosol in the mature pollen grain, GFP-SYP124 and GFP-SYP125 were highly concentrated in the apical or subapical regions of the elongating pollen tube with slightly different localization patterns, whereas GFP-SYP131 was uniformly localized to the plasma membrane of the pollen tube. The apex-focused polarity of GFP-SYP125 was established coincident with formation of a Ca(2+) gradient before pollen germination. These results suggest that SNAREs function differentially in the same cells and that at least two distinct membrane transport pathways are involved in the pollen development and the pollen tube germination and elongation.

  15. Study of the nuclear structure far from stability: Coulomb excitation of neutron-rich Rb isotopes around N=60; Production of nuclear spin polarized beams using the tilted foils technique

    International Nuclear Information System (INIS)

    Sotty, C.

    2013-01-01

    The underlying structure in the region A ∼ 100, N ∼ 60 has been under intensive and extensive investigation, mainly by β-decay and γ-ray spectroscopy from fission processes. Around N ∼ 60, by adding just few neutrons, protons a rapid shape change occurs from spherical-like to well deformed g.s. shape. Shape coexistence has been observed in the Sr and Zr nuclei, and is expected to take place in the whole region. The mechanisms involved in the appearance of the deformation is not well understood. The interplay between down-sloping and up-sloping neutron Nilsson orbital is evoked as one of the main reasons for the sudden shape change. However, a clear identification of the active proton and neutron orbitals was still on-going. For that purpose, the neutron rich 93;95;97;99 Rb isotopes have been studied by Coulomb excitation at CERN (ISOLDE) using the REX-ISOLDE post-accelerator and the MINIBALL setup. The completely unknown structures of 97;99 Rb have been populated and observed. Prompt γ-ray coincidences of low-lying states have been observed and time-correlated in order to build level schemes. The associated transition strengths have been extracted with the GOSIA code. The observed matrix elements of the electromagnetic operator constituted new inputs of further theoretical calculations giving new insight on the involved orbitals. The sensitivity of such experiment can be increased using nuclear spin polarized radioactive ion beam. For that purpose the Tilted Foils Technique (TFT) of polarization has been investigated at CERN. This technique consists to spin polarize the ion beam, passing through thin foils tilted at an oblique angle with respect to the beam direction. The initially obtained atomic polarization is transferred to the nucleus by hyperfine interaction. This technique does not depend on the chemical nature of the element. Short lived nuclei can be polarized in-flight without any need to be stopped in a catcher. It opens up the possibility to

  16. The role of non-elastic nuclear processes for intermediate-energy protons in silicon targets

    International Nuclear Information System (INIS)

    Hormaza, Joel Mesa; Garcia, Cesar E.; Arruda Neto, Joao D.T.; Rodrigues, Tulio E.; Paschuck, Sergei A.; Evseev, Ivan

    2013-01-01

    The transportation of energetic ions in bulk matter is of direct interest in several areas including shielding against ions originating from either space radiations or terrestrial accelerators, cosmic ray propagation studies in galactic medium, or radiobiological effects resulting from the work place or clinical exposures. For carcinogenesis, terrestrial radiation therapy, and radiobiological research, knowledge of beam composition and interactions is necessary to properly evaluate the effects on human and animal tissues. For the proper assessment of radiation exposures both reliable transport codes and accurate input parameters are needed. In the last years efforts have been increasing in order to develop more effective models to describe and predict the damages induced by radiation in electronic devices. In this sense, the interaction of protons with those devices, particularly which operate in space, is a topic of paramount importance, mainly because although the majority of them are made with silicon, experimental data on p+Si nuclear processes is very sparse. In this work we have used a new quite sophisticated Monte Carlo multicollisional intranuclear cascade (MCMC) code for pre-equilibrium emission, plus de-excitation of residual nucleus by two ways: evaporation of particles (mainly nucleons, but also composites) and possibly fragmentation/fission in the case of heavy residues, in order to study some observable of nuclear interaction of protons between 100-200 MeV in a 28 Si target. The code has been developed with very recent improvements that take into account Pauli blocking effects in a novel and more precise way, as well as a more rigorous energy balance, an energy stopping time criterion for pre-equilibrium emission and the inclusion of deuteron, triton and 3He emissions in the evaporation step, which eventually concurs with fragmentation/break-up stage. The fragment mass distributions, as well as the multiplicities and the spectra of secondary particles

  17. Pair Approximation for Polarization Interaction and Adiabatic Nuclear and Electronic Sampling Method for Fluids with Dipole Polarizability

    Czech Academy of Sciences Publication Activity Database

    Předota, Milan; Cummings, P. T.; Chialvo, A. A.

    2002-01-01

    Roč. 100, č. 16 (2002), s. 2703-2717 ISSN 0026-8976 Grant - others:DE(US) AC05-00OR22725 Keywords : polarization interaction * Monte Carlo Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.617, year: 2002

  18. Undercovering the hidden links. Nuclear and isotope techniques target nutritional needs

    International Nuclear Information System (INIS)

    Iyengar, Venkatesh

    2001-01-01

    Global nutrition problems raise a host of questions and warrant action by the international community of scientists, nutritionists, physicians and other medical professionals. What steps should be taken to remedy this situation? How can this be accomplished economically? How can progress be monitored? What is the role of technology in the overall monitoring process? The last question, which is most relevant to this article, is of particular importance to the IAEA and its support of nutrition programmes. The IAEA's activities in human nutrition were initiated to apply nuclear and related isotopic techniques for solving problems prevalent in developing countries. Among the numerous applications available, isotopic techniques are uniquely well suited to targeting and tracking progress in food and nutrition development programmes. These are tools that help evaluate nutritional status of individuals and populations, measure nutrient requirements and the uptake and bio-availability of vitamins and minerals. The IAEA's efforts help to: verify the nature of the nutrition problem and the efficacy of specific interventions; implement nutrition intervention programmes by monitoring effectiveness and reducing programme costs; guide in the processing of local foods for optimal nutritional value; serve as early indicators of important long-term health improvements; and strengthen capacity building in developing countries. Among the numerous applications available, isotopic techniques are uniquely well suited to targeting and tracking progress in food and nutrition development programmes. These are tools that help evaluate nutritional status of individuals and populations, measure nutrient requirements and the uptake and bio-availability of vitamins and minerals. The IAEA's efforts help to: verify the nature of the nutrition problem and the efficacy of specific interventions; implement nutrition intervention programmes by monitoring effectiveness and reducing programme costs

  19. Vector meson production and deep-inelastic scattering on (polarized) sup 1 H, sup 2 H, sup 3 He and sup 1 sup 4 N targets

    CERN Document Server

    Steenhoven, G V D

    2000-01-01

    Selected results of diffractive vector meson leptoproduction and inclusive deep-inelastic lepton scattering are presented. The data have been obtained by the HERMES collaboration using polarized sup 1 H, sup 2 H, sup 3 He, and unpolarized sup 1 sup 4 N targets that were internal to the HERA 27.5 GeV positron beam. Three topics are addressed: (i) The longitudinal part of the rho sup 0 production cross section is shown to be fairly well described by a pQCD calculation based on the Off-Forward Parton Distribution (OFPD) framework; (ii) The rho sup 0 production data reveal a non-zero asymmetry with respect to the spin orientation of the sup 1 H target; and (iii) The ratio of inclusive deep-inelastic scattering data on sup 1 sup 4 N (or sup 3 He) and sup 2 H targets shows a surprising deviation with respect to existing NMC and E665 data on sup 1 sup 2 C, which is interpreted in terms of an A-dependence of the quantity R sigma sub L /sigma sub T.

  20. Proton induced target fragmentation studies on solid state nuclear track detectors using Carbon radiators

    Science.gov (United States)

    Szabó, J.; Pálfalvi, J. K.; Strádi, A.; Bilski, P.; Swakoń, J.; Stolarczyk, L.

    2018-04-01

    One of the limiting factors of an astronaut's career is the dose received from space radiation. High energy protons, being the main components of the complex radiation field present on a spacecraft, give a significant contribution to the dose. To investigate the behavior of solid state nuclear track detectors (SSNTDs) if they are irradiated by such particles, SSNTD stacks containing carbon blocks were exposed to high energy proton beams (70, 100, 150 and 230 MeV) at the Proteus cyclotron, IFJ PAN -Krakow. The incident protons cannot be detected directly; however, tracks of secondary particles, recoils and fragments of the constituent atoms of the detector material and of the carbon radiator are formed. It was found that as the proton energy increases, the number of tracks induced in the PADC material by secondary particles decreases. From the measured geometrical parameters of the tracks the linear energy transfer (LET) spectrum and the dosimetric quantities were determined, applying appropriate calibration. In the LET spectra the LET range of the most important secondary particles could be identified and their abundance showed differences in the spectra if the detectors were short or long etched. The LET spectra obtained on the SSNTDs irradiated by protons were compared to LET spectra of detectors flown on the International Space Station (ISS): they were quite similar, resulting in a quality factor difference of only 5%. Thermoluminescent detectors (TLDs) were applied in each case to measure the dose from primary protons and other lower LET particles present in space. Comparing and analyzing the results of the TLD and SSNTD measurements, it was obtained that proton induced target fragments contributed to the total absorbed dose in 3.2% and to the dose equivalent in 14.2% in this particular space experiment.

  1. Radiative capture of polarized neutrons by aluminium and manganese nuclei

    International Nuclear Information System (INIS)

    1979-01-01

    This investigation treats the angular dependence of the intensity and of the circular polarization of gamma-radiation, that is emitted after capture of polarized neutrons by polarized and unpolarized targets. Interference effects between the (n,γ)-reaction amplitudes with different channel spin are discussed and angular distribution coefficients are calculated in case mixing of dipole and quadrupole radiation occurs. It is indicated how the influence of p-wave capture may be taken into account. The nuclear orientation experiments on aluminium yield the values of the angular distribution coefficients of primary and secondary gamma-ray transitions and by a chi 2 -analysis five spin values are assigned uniquely and several α-values are determined. The nuclear orientation experiments on manganese lead to α-values and unique spin assigments for thirteen nuclear states in 56 Mn. (Auth.)

  2. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  3. On the possibility of using lithium-6 deuteride, irradiated with gas discharge plasma in a target with polarized nuclei of deuterium and lithium

    International Nuclear Information System (INIS)

    Bunyatova, E.I.; Bubnov, N.N.; Solodovnikov, S.P.

    1991-01-01

    A target with polarized nuclei made on the basis of irradiated lithium-6 deuteride is of great interest for carrying out investigations in elementary particle physics. Up to now high-energy electrons have been used for generation of F-centers in 6 LiD. It is shown that one can, in principle, use ultraviolet irradiation and gas discharge plasma for generation of F-centers in 6 LiD. Both types of irradiation cause electron paramagnetic resonance signals from conductance electrons of lithium and form F-centers in 6 LiD. It seems possible to obtain the necessary samples by exposing 6 LiD to the gas discharge plasma. 9 refs.; 2 figs

  4. Role of Nuclear Energy in Japan Post–Fukushima : Alternatives and their Impact on Japan’s GHG Emission Targets

    OpenAIRE

    Niazi, Zarrar

    2013-01-01

    The purpose of this paper, “Role of Nuclear Energy in Japan Post – Fukushima: Alternatives and their Impact onJapan’s GHG Emission Targets”, is to emphasize that Japan’s expected new energy policy must be in accordancewith its existing environmental targets with regards to GHG emissions. The main research question is how Japan cancontinue to meet its emissions targets in the aftermath of the Fukushima crisis, where public opinion—gaugedthrough newspaper articles—in Japan has now become outrig...

  5. Climate Drives Polar Bear Origins

    Science.gov (United States)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  6. Comprehensive analysis of polar and apolar constituents of butter and margarine by nuclear magnetic resonance, reflecting quality and production processes.

    Science.gov (United States)

    Schripsema, Jan

    2008-04-23

    The separation of butter or margarine into polar (soluble in water) and apolar fractions (soluble in chloroform) and subsequent analysis of these fractions by (1)H NMR permits a comprehensive analysis of its constituents. In the polar fraction the preservatives benzoic and sorbic acid, the organic acids citric, lactic, butyric, acetic, and formic acid, and, furthermore, the carbohydrate lactose were quantified. In the apolar fraction the conjugated linoleic acid (CLA) rumenic acid, diglycerides, and linoleic acid were quantified. Rumenic acid is a characteristic component of ruminant fats and was found in all butter samples. The levels varied between 0.50 and 1.08%. Ten brands of Brazilian butter were investigated as was one brand from Norway. Also, two brands of margarine were investigated for comparison. A large variation in especially polar constituents was found between the butter samples, revealing the presence of preservatives in five brands of butter from Brazil, remarkable because these additives are legally not allowed. Furthermore, the levels of organic acids and lactose permitted conclusions about the production process and quality; for example, the presence of higher levels of free butyric acid indicate lipolysis, leading to a lower quality, and low levels of lactose indicate that after churning the residual milk fluids have been removed by an additional washing step in the production process.

  7. Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae

    Directory of Open Access Journals (Sweden)

    James A Nicholls

    2015-09-01

    Full Text Available Evolutionary radiations are prominent and pervasive across many plant lineages in diverse geographical and ecological settings; in neotropical rainforests there is growing evidence suggesting that a significant fraction of species richness is the result of recent radiations. Understanding the evolutionary trajectories and mechanisms underlying these radiations demands much greater phylogenetic resolution than is currently available for these groups. The neotropical tree genus Inga (Leguminosae is a good example, with ~300 extant species and a crown age of 2-10 MY, yet over 6kb of plastid and nuclear DNA sequence data gives only poor phylogenetic resolution among species. Here we explore the use of larger-scale nuclear gene data obtained though targeted enrichment to increase phylogenetic resolution within Inga. Transcriptome data from three Inga species were used to select 264 nuclear loci for targeted enrichment and sequencing. Following quality control to remove probable paralogs from these sequence data, the final dataset comprised 259,313 bases from 194 loci for 24 accessions representing 22 Inga species and an outgroup (Zygia. Bayesian phylogenies reconstructed using either all loci concatenated or a subset of 60 loci in a gene-tree/species-tree approach yielded highly resolved phylogenies. We used coalescent approaches to show that the same targeted enrichment data also have significant power to discriminate among alternative within-species population histories in the widespread species I. umbellifera. In either application, targeted enrichment simplifies the informatics challenge of identifying orthologous loci associated with de novo genome sequencing. We conclude that targeted enrichment provides the large volumes of phylogenetically-informative sequence data required to resolve relationships within recent plant species radiations, both at the species level and for within-species phylogeographic studies.

  8. Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae).

    Science.gov (United States)

    Nicholls, James A; Pennington, R Toby; Koenen, Erik J M; Hughes, Colin E; Hearn, Jack; Bunnefeld, Lynsey; Dexter, Kyle G; Stone, Graham N; Kidner, Catherine A

    2015-01-01

    Evolutionary radiations are prominent and pervasive across many plant lineages in diverse geographical and ecological settings; in neotropical rainforests there is growing evidence suggesting that a significant fraction of species richness is the result of recent radiations. Understanding the evolutionary trajectories and mechanisms underlying these radiations demands much greater phylogenetic resolution than is currently available for these groups. The neotropical tree genus Inga (Leguminosae) is a good example, with ~300 extant species and a crown age of 2-10 MY, yet over 6 kb of plastid and nuclear DNA sequence data gives only poor phylogenetic resolution among species. Here we explore the use of larger-scale nuclear gene data obtained though targeted enrichment to increase phylogenetic resolution within Inga. Transcriptome data from three Inga species were used to select 264 nuclear loci for targeted enrichment and sequencing. Following quality control to remove probable paralogs from these sequence data, the final dataset comprised 259,313 bases from 194 loci for 24 accessions representing 22 Inga species and an outgroup (Zygia). Bayesian phylogenies reconstructed using either all loci concatenated or a gene-tree/species-tree approach yielded highly resolved phylogenies. We used coalescent approaches to show that the same targeted enrichment data also have significant power to discriminate among alternative within-species population histories within the widespread species I. umbellifera. In either application, targeted enrichment simplifies the informatics challenge of identifying orthologous loci associated with de novo genome sequencing. We conclude that targeted enrichment provides the large volumes of phylogenetically-informative sequence data required to resolve relationships within recent plant species radiations, both at the species level and for within-species phylogeographic studies.

  9. Altered surfactant homeostasis and recurrent respiratory failure secondary to TTF-1 nuclear targeting defect

    Directory of Open Access Journals (Sweden)

    Carnielli Virgilio P

    2011-08-01

    Full Text Available Abstract Background Mutations of genes affecting surfactant homeostasis, such as SFTPB, SFTPC and ABCA3, lead to diffuse lung disease in neonates and children. Haploinsufficiency of NKX2.1, the gene encoding the thyroid transcription factor-1 (TTF-1 - critical for lung, thyroid and central nervous system morphogenesis and function - causes a rare form of progressive respiratory failure designated brain-lung-thyroid syndrome. Molecular mechanisms involved in this syndrome are heterogeneous and poorly explored. We report a novel TTF-1 molecular defect causing recurrent respiratory failure episodes in an infant. Methods The subject was an infant with severe neonatal respiratory distress syndrome followed by recurrent respiratory failure episodes, hypopituitarism and neurological abnormalities. Lung histology and ultrastructure were assessed by surgical biopsy. Surfactant-related genes were studied by direct genomic DNA sequencing and array chromatine genomic hybridization (aCGH. Surfactant protein expression in lung tissue was analyzed by confocal immunofluorescence microscopy. For kinetics studies, surfactant protein B and disaturated phosphatidylcholine (DSPC were isolated from serial tracheal aspirates after intravenous administration of stable isotope-labeled 2H2O and 13C-leucine; fractional synthetic rate was derived from gas chromatography/mass spectrometry 2H and 13C enrichment curves. Six intubated infants with no primary lung disease were used as controls. Results Lung biopsy showed desquamative interstitial pneumonitis and lamellar body abnormalities suggestive of genetic surfactant deficiency. Genetic studies identified a heterozygous ABCA3 mutation, L941P, previously unreported. No SFTPB, SFTPC or NKX2.1 mutations or deletions were found. However, immunofluorescence studies showed TTF-1 prevalently expressed in type II cell cytoplasm instead of nucleus, indicating defective nuclear targeting. This pattern has not been reported in human

  10. The manufacture and compound investigation of the isotope supportless targets with higher purity and radiation durability for the nuclear physics experiments

    International Nuclear Information System (INIS)

    Bondarenko, V.B.; Dryapachenko, Yi.P.; Katsubo, L.P.; Kozeryats'ka, G.M.; Mozhzhukhyin, E.M.; Pavlenko, Yu.M.; Posmyityukh, Yi.V.; Khvastunov, O.V.; Sharov, A.F.

    2007-01-01

    Method is presented for target manufacturing from the isotope materials with melting temperature up to 2300 degree C. Vacuum evaporation unit (VUP-5M) was used after the appropriate modernization. Target compound determination with using of the nuclear physics measurements of the Rutherford back scattering (RBS) of the accelerated ions was studied. The target thickness was determined as gravimetric as RBS methods

  11. Synthesis of chromium (V) complex in deuterated propanediol for a target with ``frozen'' polarisation of deuterons

    Science.gov (United States)

    Bunyatova, E. I.; Bubnov, N. N.

    1987-02-01

    A deuteron polarized frozen spin target was developed. To reach higher deuteron content and maximum polarization, the chromium (V) complex with ligands on the basis of fully deuterated propanediol-1,2 was synthesized. The synthesis and the EPR investigation is described. The research has been performed at the Laboratory of Nuclear Problems, JINR.

  12. Analyzing power measurement of pp elastic scattering in the Coulomb-nuclear interference region with the 200-GeV/c polarized-proton beam at Fermilab

    International Nuclear Information System (INIS)

    Akchurin, N.; Langland, J.; Onel, Y.; Bonner, B.E.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Roberts, J.B.; Skeens, J.; White, J.L.; Bravar, A.; Giacomich, R.; Penzo, A.; Schiavon, P.; Zanetti, A.; Bystricky, J.; Lehar, F.; de Lesquen, A.; van Rossum, L.; Cossairt, J.D.; Read, A.L.; Derevschikov, A.A.; Matulenko, Y.A.; Meschanin, A.P.; Nurushev, S.B.; Patalakha, D.I.; Rykov, V.L.; Solovyanov, V.L.; Vasiliev, A.N.; Grosnick, D.P.; Hill, D.A.; Laghai, M.; Lopiano, D.; Ohashi, Y.; Shima, T.; Spinka, H.; Stanek, R.W.; Underwood, D.G.; Yokosawa, A.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Iwatani, K.; Kuroda, K.; Michalowicz, A.; Luehring, F.C.; Miller, D.H.; Maki, T.; Pauletta, G.; Rappazzo, G.F.; Salvato, G.; Takashima, R.

    1993-01-01

    The analyzing power A N of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5x10 -3 to 5.0x10 -2 (GeV/c) 2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed

  13. Goat red blood cells as precursor for iron oxide nanocrystal synthesis to develop nuclear targeted lung cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sreevani, Vellingiri; Shanthi, Krishnamurthy; Kannan, Soundarapandian, E-mail: sk_protein@buc.edu.in

    2013-09-01

    Graphical abstract: - Highlights: • Molecular approach of synthesis of Fe{sub 2}O{sub 3}-NC using goat blood as a bio-precursor. • The method is simple, efficient and environment friendly. • Synthesized nanocrystals were characterized by UV–vis spectroscopy, XRD, SEM, TEM, DLS and EDS. • Nanocrystals exhibited potent cytotoxicity against A549 cancer cell. • Nuclear targeting with expression of caspase-3, caspase-7 and Bcl-2 in A549 cancer cells. - Abstract: In this study, we synthesised iron oxide nanocrystals (Fe{sub 2}O{sub 3}-NC) from goat blood (bio-precursor) using red blood cells (RBC) lysis method (a molecular level approach) for the first time. The formation of Fe{sub 2}O{sub 3}-NC was achieved through a single-phase chemical reduction method. The size distribution of Fe{sub 2}O{sub 3}-NC falls between 20–30 nm for pellet and 100–200 nm for lysate and were found to be crystalline. Fe{sub 2}O{sub 3}-NC demonstrated significant cytotoxicity on A549. We report the direct visualization of interactions between Fe{sub 2}O{sub 3}-NC and the cancer cell nucleus. The active transport of Fe{sub 2}O{sub 3}-NC to the nucleus induces major changes to nuclear phenotype via nuclear envelope invaginations. We further examined the root cause for the involvement of Fe{sub 2}O{sub 3}-NC on the expression of caspase-3, caspase-7 and Bcl-2 in A549 cancer cells. This functional proteomic analysis clearly implies that the lung cancer cell proliferation is perfectly targeted by the biosynthesised Fe{sub 2}O{sub 3}-NC which could provide new insight for nuclear-targeted cancer therapy.

  14. Direct Cytoplasmic Delivery and Nuclear Targeting Delivery of HPMA-MT Conjugates in a Microtubules Dependent Fashion.

    Science.gov (United States)

    Zhong, Jiaju; Zhu, Xi; Luo, Kui; Li, Lian; Tang, Manlin; Liu, Yanxi; Zhou, Zhou; Huang, Yuan

    2016-09-06

    As the hearts of tumor cells, the nucleus is the ultimate target of many chemotherapeutic agents and genes. However, nuclear drug delivery is always hampered by multiple intracellular obstacles, such as low efficiency of lysosome escape and insufficient nuclear trafficking. Herein, an N-(2-hydroxypropyl) methacrylamide (HPMA) polymer-based drug delivery system was designed, which could achieve direct cytoplasmic delivery by a nonendocytic pathway and transport into the nucleus in a microtubules dependent fashion. A special targeting peptide (MT), derived from an endogenic parathyroid hormone-related protein, was conjugated to the polymer backbone, which could accumulate into the nucleus a by microtubule-mediated pathway. The in vitro studies found that low temperature and NaN3 could not influence the cell internalization of the conjugates. Besides, no obvious overlay of the conjugates with lysosome demonstrated that the polymer conjugates could enter the tumor cell cytoplasm by a nonendocytic pathway, thus avoiding the drug degradation in the lysosome. Furthermore, after suppression of the microtubule dynamics with microtubule stabilizing docetaxel (DTX) and destabilizing nocodazole (Noc), the nuclear accumulation of polymeric conjugates was significantly inhibited. Living cells fluorescence recovery after photobleaching study found that the nuclear import rate of conjugates was 2-fold faster compared with the DTX and Noc treated groups. These results demonstrated that the conjugates transported into the nucleus in a microtubules dependent way. Therefore, in addition to direct cytoplasmic delivery, our peptide conjugated polymeric platform could simultaneously mediate nuclear drug accumulation, which may open a new path for further intracellular genes/peptides delivery.

  15. Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, Olivier [Universite de Lille Nord de France; Thankamony, Aany S. Lilly [Universite de Lille Nord de France; Kokayashi, Takeshi [Ames Laboratory; Carnevale, Diego [Ecole Polytechnique Federale de Lausanne; Vitzthum, Veronika [Ecole Polytechnique Federale de Lausanne; Slowing, Igor I. [Ames Laboratory; Kandel, Kapil [Ames Laboratory; Vezin, Herve [Universite de Lille Nord de France; Amoureux, Jean-Paul [Universite de Lille Nord de France; Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne; Pruski, Marek [Ames Laboratory

    2012-12-21

    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of 13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H–1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements εon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to εon/off ≈ 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated.

  16. Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser

    Directory of Open Access Journals (Sweden)

    A. Picciotto

    2014-08-01

    Full Text Available We show that a spatially well-defined layer of boron dopants in a hydrogen-enriched silicon target allows the production of a high yield of alpha particles of around 10^{9} per steradian using a nanosecond, low-contrast laser pulse with a nominal intensity of approximately 3×10^{16}  W cm^{−2}. This result can be ascribed to the nature of the long laser-pulse interaction with the target and with the expanding plasma, as well as to the optimal target geometry and composition. The possibility of an impact on future applications such as nuclear fusion without production of neutron-induced radioactivity and compact ion accelerators is anticipated.

  17. Physical processes in spin polarized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kulsrud, R.M.; Valeo, E.J.; Cowley, S.

    1984-05-01

    If the plasma in a nuclear fusion reactor is polarized, the nuclear reactions are modified in such a way as to enhance the reactor performance. We calculate in detail the modification of these nuclear reactions by different modes of polarization of the nuclear fuel. We also consider in detail the various physical processes that can lead to depolarization and show that they are by and large slow enough that a high degree of polarization can be maintained.

  18. Measurements of Polarization Transfers in Real Compton Scattering by a proton target at JLAB. A new source of information on the 3D shape of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Fanelli, Cristiano V. [Sapienza Univ. of Rome (Italy)

    2015-03-01

    In this thesis work, results of the analysis of the polarization transfers measured in real Compton scattering (RCS) by the Collaboration E07-002 at the Je fferson Lab Hall-C are presented. The data were collected at large scattering angle (theta_cm = 70deg) and with a polarized incident photon beam at an average energy of 3.8 GeV. Such a kind of experiments allows one to understand more deeply the reaction mechanism, that involves a real photon, by extracting both Compton form factors and Generalized Parton Distributions (GPDs) (also relevant for possibly shedding light on the total angular momentum of the nucleon). The obtained results for the longitudinal and transverse polarization transfers K_LL and K_LT, are of crucial importance, since they confirm unambiguously the disagreement between experimental data and pQCD prediction, as it was found in E99-114 experiment, and favor the Handbag mechanism. The E99-114 and E07-002 results can contribute to attract new interest on the great yield of the Compton scattering by a nucleon target, as demonstrated by the recent approval of an experimental proposal submitted to the Jefferson Lab PAC 42 for a Wide-angle Compton Scattering experiment, at 8 and 10 GeV Photon Energies. The new experiments approved to run with the updated 12 GeV electron beam at JLab, are characterized by much higher luminosities, and a new GEM tracker is under development to tackle the challenging backgrounds. Within this context, we present a new multistep tracking algorithm, based on (i) a Neural Network (NN) designed for a fast and efficient association of the hits measured by the GEM detector which allows the track identification, and (ii) the application of both a Kalman filter and Rauch-Tung-Striebel smoother to further improve the track reconstruction. The full procedure, i.e. NN and filtering, appears very promising, with high performances in terms of both association effciency and reconstruction accuracy, and these preliminary results will

  19. Interactions of 10.6 GeV/n gold nuclei with light and heavy target nuclei in nuclear emulsion

    International Nuclear Information System (INIS)

    Cherry, M.L.; Denes-Jones, P.

    1994-03-01

    We have investigated the particle production and fragmentation of nuclei participating in the interactions of 10.6 GeV/n gold nuclei in nuclear emulsions. A new criteria has been developed to distinguish between the interactions of these gold nuclei with the light (H, C, N, O) and heavy (Ag, Br) target nuclei in the emulsion. This has allowed separate analyzes of the multiplicity and pseudo-rapidity distributions of the singly charged particles emitted in Au-(H, C, N, O) and Au-(Ag, Br) interactions, as well as of the models of breakup of the projectile and target nuclei. The pseudo-rapidity distributions show strong forward asymmetries, particularly for the interactions with the light nuclei. Heavy target nuclei produce a more severe breakup of the projectile gold nucleus than do the lighter targets. A negative correlation between the number of fragments emitted from the target nuclei and the degree of centrality of the collisions has been observed, which can be attributed to the total destruction of the relatively light target nuclei by these very heavy projectile nuclei. (author). 14 refs, 11 figs, 1 tab

  20. Japan's anti-nuclear weapons policy misses its target, even in the war on terrorism.

    Science.gov (United States)

    DiFilippo, Anthony

    2003-01-01

    While actively working to promote the abolition of all nuclear weapons from the world since the end of the cold war, Japan's disarmament policies are not without problems. Promoting the elimination of nuclear weapons as Japan remains under the US nuclear umbrella creates a major credibility problem for Tokyo, since this decision maintains a Japanese deterrence policy at the same time that officials push for disarmament. Tokyo also advocates a gradual approach to the abolition of nuclear weapons, a decision that has had no effect on those countries that have been conducting sub-critical nuclear testing, nor stopped India and Pakistan from carrying out nuclear tests. Consistent with Article 9 of the Constitution, the Japanese war-renouncing constitutional clause, Tokyo toughened Japan's sizeable Official Development Assistance (ODA) programme in the early 1990s. Because of the anti-military guidelines included in Japan's ODA programme, Tokyo stopped new grant and loan aid to India and Pakistan in 1998 after these countries conducted nuclear tests. However, because of the criticism Japan faced from its failure to participate in the 1991 Gulf War, Tokyo has been seeking a new Japanese role in international security during the post-cold war period. Deepening its commitment to the security alliance with the US, Tokyo has become increasingly influenced by Washington's global polices, including the American war on terrorism. After Washington decided that Pakistan would be a key player in the US war on terrorism, Tokyo restored grant and loan aid to both Islamabad and New Delhi, despite the unequivocal restrictions of Japan's ODA programme.

  1. Capabilities of the Los Alamos National Laboratory in nuclear target technology

    International Nuclear Information System (INIS)

    Gursky, J.C.

    1984-01-01

    Targets are made at Los Alamos for experiments at the Ion Beam Facility (Van de Graaff), the Medium Energy Physics Facility (LAMPF), and for experiments conducted at many other accelerators in the US and Europe. Thin, isotopic targets are made by sputtering and evaporation. Versatile, large-scale facilities exist for ceramics and plastics fabrication, electroplating, powder metallurgy, fabrication by pressing, casting and rolling, chemical and physical vapor deposition and sputtering. Special developments include ultra-precision machining, cryogenic targets and shaped-foil targets. 20 references

  2. Targeting cytosolic proliferating cell nuclear antigen (PCNA in neutrophil-dominated inflammation

    Directory of Open Access Journals (Sweden)

    Alessia eDe Chiara

    2012-10-01

    Full Text Available New therapeutic approaches that can accelerate neutrophil apoptosis under inflammatory conditions to enhance the resolution of inflammation are now under study. Neutrophils are deprived of proliferative capacity and have a tightly controlled lifespan to avoid their persistence at the site of injury. We have recently described that the proliferating cell nuclear antigen (PCNA, a nuclear factor involved in DNA replication and repair of proliferating cells is a key regulator of neutrophil survival. In this review, we will try to put into perspective the physiologic relevance of PCNA in neutrophils. We will discuss key issues such as molecular structure, post-translational modifications, based on our knowledge of nuclear PCNA, assuming that similar principles governing its function are conserved between nuclear and cytosolic PCNA. The example of cystic fibrosis that features one of the most intense neutrophil-dominated pulmonary inflammation will be discussed. We believe that through an intimate comprehension of the cytosolic PCNA scaffold based on nuclear PCNA knowledge, novel pathways regulating neutrophil survival can be unraveled and innovative agents can be developed to dampen inflammation where it proves detrimental.

  3. Nuclear cereblon modulates transcriptional activity of Ikaros and regulates its downstream target, enkephalin, in human neuroblastoma cells

    International Nuclear Information System (INIS)

    Wada, Takeyoshi; Asahi, Toru; Sawamura, Naoya

    2016-01-01

    The gene coding cereblon (CRBN) was originally identified in genetic linkage analysis of mild autosomal recessive nonsyndromic intellectual disability. CRBN has broad localization in both the cytoplasm and nucleus. However, the significance of nuclear CRBN remains unknown. In the present study, we aimed to elucidate the role of CRBN in the nucleus. First, we generated a series of CRBN deletion mutants and determined the regions responsible for the nuclear localization. Only CRBN protein lacking the N-terminal region was localized outside of the nucleus, suggesting that the N-terminal region is important for its nuclear localization. CRBN was also identified as a thalidomide-binding protein and component of the cullin-4-containing E3 ubiquitin ligase complex. Thalidomide has been reported to be involved in the regulation of the transcription factor Ikaros by CRBN-mediated degradation. To investigate the nuclear functions of CRBN, we performed co-immunoprecipitation experiments and evaluated the binding of CRBN to Ikaros. As a result, we found that CRBN was associated with Ikaros protein, and the N-terminal region of CRBN was required for Ikaros binding. In luciferase reporter gene experiments, CRBN modulated transcriptional activity of Ikaros. Furthermore, we found that CRBN modulated Ikaros-mediated transcriptional repression of the proenkephalin gene by binding to its promoter region. These results suggest that CRBN binds to Ikaros via its N-terminal region and regulates transcriptional activities of Ikaros and its downstream target, enkephalin. - Highlights: • We found that CRBN is a nucleocytoplasmic shutting protein and identified the key domain for nucleocytoplasmic shuttling. • CRBN associates with the transcription factor Ikaros via the N-terminal domain. • CRBN modulates Ikaros-mediated transcriptional regulation and its downstream target, enkephalin.

  4. Nuclear cereblon modulates transcriptional activity of Ikaros and regulates its downstream target, enkephalin, in human neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Takeyoshi [Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Asahi, Toru [Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Sawamura, Naoya, E-mail: naoya.sawamura@gmail.com [Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan)

    2016-08-26

    The gene coding cereblon (CRBN) was originally identified in genetic linkage analysis of mild autosomal recessive nonsyndromic intellectual disability. CRBN has broad localization in both the cytoplasm and nucleus. However, the significance of nuclear CRBN remains unknown. In the present study, we aimed to elucidate the role of CRBN in the nucleus. First, we generated a series of CRBN deletion mutants and determined the regions responsible for the nuclear localization. Only CRBN protein lacking the N-terminal region was localized outside of the nucleus, suggesting that the N-terminal region is important for its nuclear localization. CRBN was also identified as a thalidomide-binding protein and component of the cullin-4-containing E3 ubiquitin ligase complex. Thalidomide has been reported to be involved in the regulation of the transcription factor Ikaros by CRBN-mediated degradation. To investigate the nuclear functions of CRBN, we performed co-immunoprecipitation experiments and evaluated the binding of CRBN to Ikaros. As a result, we found that CRBN was associated with Ikaros protein, and the N-terminal region of CRBN was required for Ikaros binding. In luciferase reporter gene experiments, CRBN modulated transcriptional activity of Ikaros. Furthermore, we found that CRBN modulated Ikaros-mediated transcriptional repression of the proenkephalin gene by binding to its promoter region. These results suggest that CRBN binds to Ikaros via its N-terminal region and regulates transcriptional activities of Ikaros and its downstream target, enkephalin. - Highlights: • We found that CRBN is a nucleocytoplasmic shutting protein and identified the key domain for nucleocytoplasmic shuttling. • CRBN associates with the transcription factor Ikaros via the N-terminal domain. • CRBN modulates Ikaros-mediated transcriptional regulation and its downstream target, enkephalin.

  5. Special aspects on nuclear targets for high-energy heavy-ion accelerator experiments

    International Nuclear Information System (INIS)

    Folger, H.; Hartmann, W.; Klemm, J.; Thalheimer, W.

    1984-07-01

    Important facts about the GSI UNILAC accelerator are reviewed under the special aspects of target and stripper foil applications including general range considerations as seen after the upgrading of the machine to an energy of 20 MeV/u for all ions up to uranium. It is also reported about current works and recent developments in target preparations at GSI divided into four main groups of preparation procedures with sufficient overlap: cold rollings, carbon sublimation-condensations, focussed heavy-ion sputter deposition, and the wide field of high-vacuum evaporation-condensations. Among others, a Ca reduction-distillation procedure is described, a new assembly is shown for sublimation-condensations of uniform C layers of 0.1 to 0.76 mg/cm 2 area densities. A selection of only a few applications of targets at the UNILAC can be given. Improved actinide targets are discussed, in-beam measurements of properties of targets on rotating wheels are explained, and a large-area target wheel with a circumference of nearly one meter is shown. SEM micrographs of damaged targets are given and explained. (orig.)

  6. Characterization, subcellular localization and nuclear targeting of casein kinase 2 from Zea mays

    DEFF Research Database (Denmark)

    Peracchia, G; Jensen, A B; Culiáñez-Macià, F A

    1999-01-01

    by using in-frame fusions of the maize CK2alpha subunit to the reporter gene encoding beta-glucuronidase (GUS) which were assayed in transiently transformed onion epidermal cells. Analysis of chimeric constructs identified one region containing a nuclear localization signal (NLS) that is highly conserved...

  7. Developmental excitatory-to-inhibitory GABA-polarity switch is disrupted in 22q11.2 deletion syndrome: a potential target for clinical therapeutics.

    Science.gov (United States)

    Amin, Hayder; Marinaro, Federica; De Pietri Tonelli, Davide; Berdondini, Luca

    2017-11-16

    Individuals with 22q11.2 microdeletion syndrome (22q11.2 DS) show cognitive and behavioral dysfunctions, developmental delays in childhood and risk of developing schizophrenia and autism. Despite extensive previous studies in adult animal models, a possible embryonic root of this syndrome has not been determined. Here, in neurons from a 22q11.2 DS mouse model (Lgdel +/- ), we found embryonic-premature alterations in the neuronal chloride cotransporters indicated by dysregulated NKCC1 and KCC2 protein expression levels. We demonstrate with large-scale spiking activity recordings a concurrent deregulation of the spontaneous network activity and homeostatic network plasticity. Additionally, Lgdel +/- networks at early development show abnormal neuritogenesis and void of synchronized spontaneous activity. Furthermore, parallel experiments on Dgcr8 +/- mouse cultures reveal a significant, yet not exclusive contribution of the dgcr8 gene to our phenotypes of Lgdel +/- networks. Finally, we show that application of bumetanide, an inhibitor of NKCC1, significantly decreases the hyper-excitable action of GABA A receptor signaling and restores network homeostatic plasticity in Lgdel +/- networks. Overall, by exploiting an on-a-chip 22q11.2 DS model, our results suggest a delayed GABA-switch in Lgdel +/- neurons, which may contribute to a delayed embryonic development. Prospectively, acting on the GABA-polarity switch offers a potential target for 22q11.2 DS therapeutic intervention.

  8. Storage and Containment of Nuclear Targets for Pulsed Fission-Fusion Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — The combined fission-fusion fuel target is the heart of an engine concept that can open the solar system to fast and efficient human exploration. This is a unique...

  9. Solubilization of a polar oil used in nuclear industry by amphiphilic tri-block copolymers solutions. Relation between structure and behavior by proton nuclear magnetic resonance and small angle neutron scattering

    International Nuclear Information System (INIS)

    Causse, J.

    2005-01-01

    The first step in a decommissioning operation of a nuclear plant concerns the nuclear decontamination of various surfaces. More and more techniques developed for nuclear decontamination use soluble surfactants in aqueous solution with suitable chemical reagents. In most cases decontamination is based on the removal of a surface layer containing most of the activity (grease, organic deposits, paint, oxide layer...). The Tributylphosphate (TBP), a polar oil, is widely used as a complexing agent of Plutonium and Uranium in nuclear industry. This lipophilic compound, containing radioactive residues, strongly sticks on many surfaces. This organic layer is resistant to all classical treatments. Micellar systems proved to be efficient to pull TBP away and solubilize it so as to make easier its draining. In this study, Amphiphilic tri-block copolymers, referred to as Pluronics (polyethylene(oxide) - polypropylene(oxide) - polyethylene(oxide), (EO) n PO) m EO) n ) have been selected as polymeric amphiphiles so as to solubilize TBP in their supramolecular aggregates above the critical aggregation concentration. A first systematic study of the phase behavior of various three components systems (TBP-Water-Pluronic) by turbidity showed the particular behavior of one copolymer (the L64, (EO) 13 PO) 30 EO) 13 ), especially its very high TBP solubilization capacity. Consequently, the main part of this thesis has been devoted to the structural characterization of this micellar system (TBP-Water-L64) using 1 H NMR and SANS measurements. 1 H NMR gave information on the chemical environment of each component in the mixture and especially allowed hypothesis on the TBP location in the copolymer aggregates to be drawn. Direct structural information (size, shape, correlations) were obtained by SANS. Both experimental technique were proved to be very complementary and allowed a structural evolution of the aggregates following addition of TBP in the system to be evidenced. (author)

  10. Targeting Nuclear EGFR: Strategies for Improving Cetuximab Therapy in Lung Cancer

    Science.gov (United States)

    2015-12-01

    Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, et al . Evidence for a causal association between human papillomavirus and a subset of...to see if nEGFR can serve as a predictive biomarker for cetuximab response in lung SCC. 14 REFERENCES 1. Pirker, R., et al . Cetuximab plus...Huang, W.C., et al . Nuclear Translocation of Epidermal Growth Factor Receptor by Akt-dependent Phosphorylation Enhances Breast Cancer-resistant

  11. Ancient Origin of the U2 Small Nuclear RNA Gene-Targeting Non-LTR Retrotransposons Utopia.

    Science.gov (United States)

    Kojima, Kenji K; Jurka, Jerzy

    2015-01-01

    Most non-long terminal repeat (non-LTR) retrotransposons encoding a restriction-like endonuclease show target-specific integration into repetitive sequences such as ribosomal RNA genes and microsatellites. However, only a few target-specific lineages of non-LTR retrotransposons are distributed widely and no lineage is found across the eukaryotic kingdoms. Here we report the most widely distributed lineage of target sequence-specific non-LTR retrotransposons, designated Utopia. Utopia is found in three supergroups of eukaryotes: Amoebozoa, SAR, and Opisthokonta. Utopia is inserted into a specific site of U2 small nuclear RNA genes with different strength of specificity for each family. Utopia families from oomycetes and wasps show strong target specificity while only a small number of Utopia copies from reptiles are flanked with U2 snRNA genes. Oomycete Utopia families contain an "archaeal" RNase H domain upstream of reverse transcriptase (RT), which likely originated from a plant RNase H gene. Analysis of Utopia from oomycetes indicates that multiple lineages of Utopia have been maintained inside of U2 genes with few copy numbers. Phylogenetic analysis of RT suggests the monophyly of Utopia, and it likely dates back to the early evolution of eukaryotes.

  12. Ancient Origin of the U2 Small Nuclear RNA Gene-Targeting Non-LTR Retrotransposons Utopia.

    Directory of Open Access Journals (Sweden)

    Kenji K Kojima

    Full Text Available Most non-long terminal repeat (non-LTR retrotransposons encoding a restriction-like endonuclease show target-specific integration into repetitive sequences such as ribosomal RNA genes and microsatellites. However, only a few target-specific lineages of non-LTR retrotransposons are distributed widely and no lineage is found across the eukaryotic kingdoms. Here we report the most widely distributed lineage of target sequence-specific non-LTR retrotransposons, designated Utopia. Utopia is found in three supergroups of eukaryotes: Amoebozoa, SAR, and Opisthokonta. Utopia is inserted into a specific site of U2 small nuclear RNA genes with different strength of specificity for each family. Utopia families from oomycetes and wasps show strong target specificity while only a small number of Utopia copies from reptiles are flanked with U2 snRNA genes. Oomycete Utopia families contain an "archaeal" RNase H domain upstream of reverse transcriptase (RT, which likely originated from a plant RNase H gene. Analysis of Utopia from oomycetes indicates that multiple lineages of Utopia have been maintained inside of U2 genes with few copy numbers. Phylogenetic analysis of RT suggests the monophyly of Utopia, and it likely dates back to the early evolution of eukaryotes.

  13. Atomic structure of the nuclear pore complex targeting domain of a Nup116 homologue from the yeast, Candida glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Sampathkumar, Parthasarathy; Kim, Seung Joong; Manglicmot, Danalyn; Bain, Kevin T.; Gilmore, Jeremiah; Gheyi, Tarun; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D.; Matsui, Tsutomu; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Wasserman, Stephen R.; Rout, Michael P.; Sali, Andrej; Sauder, J. Michael; Almo, Steven C.; Burley, Stephen K. (Einstein); (SLAC); (Rockefeller); (UCSF); (Lilly)

    2012-10-23

    The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and the cytoplasm. The yeast NPC is an eightfold symmetric annular structure composed of {approx}456 polypeptide chains contributed by {approx}30 distinct proteins termed nucleoporins. Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N-terminal 'FG' repeats containing a Gle2p-binding sequence motif and a NPC targeting domain at its C-terminus. We report the crystal structure of the NPC targeting domain of Candida glabrata Nup116, consisting of residues 882-1034 [CgNup116(882-1034)], at 1.94 {angstrom} resolution. The X-ray structure of CgNup116(882-1034) is consistent with the molecular envelope determined in solution by small-angle X-ray scattering. Structural similarities of CgNup116(882-1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiae Nup145N, and human Nup98 are discussed.

  14. A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery.

    Science.gov (United States)

    Chen, Hui; Wang, Zhuyuan; Zong, Shenfei; Chen, Peng; Zhu, Dan; Wu, Lei; Cui, Yiping

    2015-10-07

    A graphene quantum dot-based FRET system is demonstrated for nuclear-targeted drug delivery, which allows for real-time monitoring of the drug release process through FRET signals. In such a system, graphene quantum dots (GQDs) simultaneously serve as the carriers of drugs and donors of FRET pairs. Additionally, a peptide TAT as the nuclear localization signal is conjugated to GQDs, which facilitates the transportation of the delivery system to the nucleus. We have demonstrated that: (a) both the conjugated TAT and small size of GQDs contribute to targeting the nucleus, which results in a significantly enhanced intranuclear accumulation of drugs; (b) FRET signals being extremely sensitive to the distance between donors and acceptors are capable of real-time monitoring of the separation process of drugs and GQDs, which is more versatile in tracking the drug release dynamics. Our strategy for the assembly of a FRET-based drug delivery system may be unique and universal for monitoring the dynamic release process. This study may give more exciting new opportunities for improving the therapeutic efficacy and tracking precision.

  15. CYTOCHROMES P450,NUCLEAR RECEPTORS AND FIBROBLAST GROWTH FACTORS- NEW ENDOCRINE AXES AS POTENCIAL DRUG TARGETS TO TREAT METABOLIC DISORDERS

    Directory of Open Access Journals (Sweden)

    Klementina Fon Tacer

    2009-06-01

    Full Text Available background Coordinate action of endocrine and nervous system enables adaptation of higher organisms to constant changes in the environment. Fibroblast growth factors (FGFs primarily regulate embryonic and organ development, however, FGF19 subfamily members despite the name act in an endocrine fashion. The studies of endocrine FGFs resulted in the discovery of new endocrine axes, composed of small lipophilic molecules and members of three protein families: cytochromes P450, nuclear receptors, and FGFs. Cytochromes P450 are enzymes responsible for metabolism of different lipid molecules. Nuclear receptors bind lipid metabolites and act as metabolic sensors. They become activated and as transcriptional factors turn on expression of endocrine FGFs. eFGFs regulate metabolic pathways in target organs that express specific FGF receptor/coreceptor pair. FGF15/19 is expressed in the small intestine and is involved in the postprandial bile acid negative feedback loop in the liver. FGF21 is liver-borne fasting hormone that induces fat utilization. FGF23 is expressed in bone and acts on kidney to regulate phosphate and vitamin D metabolism.Conclusions We describe herein three new endocrine axes that were probably developed for fine tuning metabolite concentration within narrow physiological limits and prevent their toxicity in excess. They play important role in the pathophysiology underlying diverse metabolic disorders and are expected to be potential targets for therapeutic interventions.

  16. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites.

    Science.gov (United States)

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-Ichi; Ohishi, Kazuki; Suzuki, Jun-Ichi

    2016-12-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization ( P H ). The following samples were prepared: (i) a binary mixture of styrene-butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = -35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å -1 ) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å -1 ) decreased with increasing P H , which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H . At P H = -35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix

  17. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites1

    Science.gov (United States)

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-ichi; Ohishi, Kazuki; Suzuki, Jun-ichi

    2016-01-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization (P H). The following samples were prepared: (i) a binary mixture of styrene–butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = −35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å−1) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å−1) decreased with increasing P H, which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H. At P H = −35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix

  18. Spin exchange in polarized deuterium

    International Nuclear Information System (INIS)

    Przewoski, B. von; Meyer, H.O.; Balewski, J.; Doskow, J.; Ibald, R.; Pollock, R.E.; Rinckel, T.; Wellinghausen, A.; Whitaker, T.J.; Daehnick, W.W.; Haeberli, W.; Schwartz, B.; Wise, T.; Lorentz, B.; Rathmann, F.; Pancella, P.V.; Saha, Swapan K.; Thoerngren-Engblom, P.

    2003-01-01

    We have measured the vector and tensor polarization of an atomic deuterium target as a function of the target density. The polarized deuterium was produced in an atomic beam source and injected into a storage cell. For this experiment, the atomic beam source was operated without rf transitions, in order to avoid complications from the unknown efficiency of these transitions. In this mode, the atomic beam is vector and tensor polarized and both polarizations can be measured simultaneously. We used a 1.2-cm-diam and 27-cm-long storage cell, which yielded an average target density between 3 and 9x10 11 at/cm 3 . We find that the tensor polarization decreases with increasing target density while the vector polarization remains constant. The data are in quantitative agreement with the calculated effect of spin exchange between deuterium atoms at low field

  19. Testing nuclear forces by polarization transfer coefficients in d(p,p)d and d(p,d)p reactions at Ep=22.7 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Evgeny Epelbaum

    2005-05-01

    The proton to proton polarization transfer coefficients K{sub x}{sup x'}, K{sub y}{sup y'}, K{sub z}{sup x'} and the proton to deuteron polarization transfer coefficients K{sub x}{sup x'}, K{sub y}{sup y'}, K{sub z}{sup x'}, K{sub x}{sup y'z'}, K{sub y}{sup z'z'}, K{sub z}{sup y'z'}, K{sub y}{sup x'z'} and K{sub y}{sup x'x'-y'y'} have been measured in d({rvec p}, {rvec p})d and d({rvec p}, {rvec d})p reactions at E{sub p}{sup lab} = 22.7 MeV, respectively. The data have been compared to predictions of modern nuclear forces obtained by solving the three-nucleon Faddeev equations in momentum space. Realistic (semi) phenomenological nucleon-nucleon potentials combined with model three-nucleon forces and modern chiral nuclear forces have been used. The AV18, CD Bonn, Nijm I and II nucleon-nucleon interactions have been applied alone or combined with the Tucson-Melbourne 99 three-nucleon force, adjusted separately for each potential to reproduce the triton binding energy. For the AV18 potential also the Urbana IX three-nucleon force have been used. In addition chiral NN potentials in the next-to-leading-order and chiral two- and three-nucleon forces in the next-to-next-to-leading-order have been applied. Only when three-nucleon forces are included a satisfactory description of all data results. For the chiral approach the restriction to the forces in the next-to-leading order is insufficient. Only when going over to the next-to-next-to-leading order one gets a satisfactory description of the data, similar to the one obtained with the (semi) phenomenological forces.

  20. 2-PROTON CORRELATIONS IN THE TARGET FRAGMENTATION REGION OF NUCLEAR COLLISIONS AT 200-A-GEV

    NARCIS (Netherlands)

    AWES, TC; BARLAG, C; BERGER, F; BLOOMER, MA; BLUME, C; BOCK, D; BOCK, R; BOHNE, EM; BUCHER, D; CLAUSSEN, A; CLEWING, G; DRAGON, L; EKLUND, A; GARPMAN, S; GLASOW, R; GUTBROD, HH; HOLKER, G; IDH, J; JACOBS, P; KAMPERT, KH; KOLB, BW; LOHNER, H; LUND, [No Value; OBENSHAIN, FE; OSKARSSON, A; OTTERLUND, [No Value; PEITZMANN, T; PLASIL, F; POSKANZER, AM; PURSCHKE, M; ROTERS, B; SAINI, S; SANTO, R; SCHMIDT, HR; SORENSEN, SP; STEFFENS, K; STEINHAEUSER, P; STENLUND, E; STUKEN, D; YOUNG, GR

    Correlations between protons are studied in the target fragmentation region of reactions of protons and O-16 with C, Cu, Ag, Au and of S-32 With Al and Au at 200 A GeV. The emitted protons were measured with the Plastic Ball detector in the WA80 experiment at the CERN SPS. The comparison of the

  1. High Performance Computing and Storage Requirements for Nuclear Physics: Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wasserman, Harvey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-04-30

    In April 2014, NERSC, ASCR, and the DOE Office of Nuclear Physics (NP) held a review to characterize high performance computing (HPC) and storage requirements for NP research through 2017. This review is the 12th in a series of reviews held by NERSC and Office of Science program offices that began in 2009. It is the second for NP, and the final in the second round of reviews that covered the six Office of Science program offices. This report is the result of that review

  2. Sub-minute kinetics of human red cell fumarase: 1 H spin-echo NMR spectroscopy and 13 C rapid-dissolution dynamic nuclear polarization.

    Science.gov (United States)

    Shishmarev, Dmitry; Wright, Alan J; Rodrigues, Tiago B; Pileio, Giuseppe; Stevanato, Gabriele; Brindle, Kevin M; Kuchel, Philip W

    2018-03-01

    Fumarate is an important probe of metabolism in hyperpolarized magnetic resonance imaging and spectroscopy. It is used to detect the release of fumarase in cancer tissues, which is associated with necrosis and drug treatment. Nevertheless, there are limited reports describing the detailed kinetic studies of this enzyme in various cells and tissues. Thus, we aimed to evaluate the sub-minute kinetics of human red blood cell fumarase using nuclear magnetic resonance (NMR) spectroscopy, and to provide a quantitative description of the enzyme that is relevant to the use of fumarate as a probe of cell rupture. The fumarase reaction was studied using time courses of 1 H spin-echo and 13 C-NMR spectra. 1 H-NMR experiments showed that the fumarase reaction in hemolysates is sufficiently rapid to make its kinetics amenable to study in a period of approximately 3 min, a timescale characteristic of hyperpolarized 13 C-NMR spectroscopy. The rapid-dissolution dynamic nuclear polarization (RD-DNP) technique was used to hyperpolarize [1,4- 13 C]fumarate, which was injected into concentrated hemolysates. The kinetic data were analyzed using recently developed FmR α analysis and modeling of the enzymatic reaction using Michaelis-Menten equations. In RD-DNP experiments, the decline in the 13 C-NMR signal from fumarate, and the concurrent rise and fall of that from malate, were captured with high spectral resolution and signal-to-noise ratio, which allowed the robust quantification of fumarase kinetics. The kinetic parameters obtained indicate the potential contribution of hemolysis to the overall rate of the fumarase reaction when 13 C-NMR RD-DNP is used to detect necrosis in animal models of implanted tumors. The analytical procedures developed will be applicable to studies of other rapid enzymatic reactions using conventional and hyperpolarized substrate NMR spectroscopy. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Field-cycled dynamic nuclear polarization (FC-DNP) of {sup 14}N and {sup 15}N nitroxide radicals at low magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Polyon, C [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Lurie, D J [Bio-Medical Physics, School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD (United Kingdom); Youngdee, W [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Thomas, C [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Thomas, I [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2007-09-21

    Theoretical Overhauser-detected EPR spectra of {sup 14}N and {sup 15}N nitroxide systems in low magnetic field by field-cycled dynamic nuclear polarization (FC-DNP) were described by a combination of DNP theory and a model of FC-DNP. Spectra were simulated at magnetic fields between 0 and 8 mT. The simulations were able to predict both the EPR peak positions and their amplitudes, corresponding to those from FC-DNP experiments with {sup 14}N and {sup 15}N TEMPOL solutions. EPR irradiation was in the 45-133 MHz range while NMR signal detection occurred at a field of 59 mT. At this frequency range, four {pi} transitions of a {sup 14}N system and three {pi} transitions of a {sup 15}N system were observed. The simulation programmes were also used to predict the spectral amplitudes of the FC-DNP with EPR irradiation power in the 1-15 W range. Theoretical FC-DNP systems were in good agreement with experimental results; however, at low magnetic fields the inhomogeneity of our magnet system resulted in the EPR peaks being left-shifted and somewhat broader than those from the theoretical prediction.

  4. Nuclear Structure Studies in the 132Sn Region: Safe Coulex with Carbon Targets

    Energy Technology Data Exchange (ETDEWEB)

    Allmond, James M [ORNL; Stuchbery, Andrew E [ORNL; Galindo-Uribarri, Alfredo {nmn} [ORNL; Padilla-Rodal, Elizabeth [Universidad Nacional Autonoma de Mexico (UNAM); Radford, David C [ORNL; Batchelder, J. C. [Oak Ridge Associated Universities (ORAU); Bingham, C. R. [University of Tennessee, Knoxville (UTK); Howard, Meredith E [ORNL; Liang, J Felix [ORNL; Manning, Brett M [ORNL; Pain, Steven D [ORNL; Stone, N. J. [University of Tennessee, Knoxville (UTK); Varner, Jr, Robert L [ORNL; Yu, Chang-Hong [ORNL

    2015-01-01

    The collective and single-particle structure of nuclei in the 132Sn region was recently studied by Coulomb excitation and heavy-ion induced transfer reactions using carbon, beryllium, and titanium targets. In particular, Coulomb excitation was used determine a complete set of electromagnetic moments for the first 2+ states and one-neutron transfer was used to probe the purity and evolution of single-neutron states. These recent experiments were conducted at the Holifield Radioactive Ion Beam Facility at ORNL using a CsI-HPGe detector array (BareBall- CLARION) to detect scattered particles and emitted gamma rays from the in-beam reactions. A Bragg-curve detector was used to measure the energy loss of the various beams through the targets and to measure the radioactive beam compositions. A sample of the Coulomb excitation results is presented here with an emphasis placed on 116Sn. In particular, the safe Coulex criterion for carbon targets will be analyzed and discussed.

  5. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2018-01-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements. PMID:29503479

  6. Optically polarized 3He

    Science.gov (United States)

    Gentile, T. R.; Nacher, P. J.; Saam, B.; Walker, T. G.

    2017-10-01

    This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.

  7. Fabrication of advanced targets for laser driven nuclear fusion reactions through standard microelectronics technology approaches.

    Czech Academy of Sciences Publication Activity Database

    Picciotto, A.; Crivellari, M.; Bellutti, P.; Barozzi, M.; Kucharik, M.; Krása, Josef; Swidlovsky, A.; Malinowska, A.; Velyhan, Andriy; Ullschmied, Jiří; Margarone, Daniele

    2017-01-01

    Roč. 12, October (2017), č. článku P10001. ISSN 1748-0221 Grant - others:OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Nuclear instruments and methods for hot plasma diagnostics * Plasma generation (laserproduced, RF, x ray-produced) * Plasma diagnostics - charged-particle spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: 2.11 Other engineering and technologies; 2.11 Other engineering and technologies (FZU-D) Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/12/10/P10001/meta

  8. Obtention of differential sections in nuclear reactions using a thick target

    International Nuclear Information System (INIS)

    Chavez R, R.

    2000-01-01

    The nuclear reaction analysis (NRA) technique is used mainly for detecting the presence and concentration of light elements of great importance such as: carbon, nitrogen and oxygen. This work has the objective to obtain the differential sections of 16 O and 14 N starting from the irradiation with deuterons of TiSrO 3 samples, of AIN and AIN 2 at energies of 2000 KeV and 1800 KeV respectively. The present work have four chapters; chapter 1 is focused to the physical aspects which takes part in the NRA technique. The technical requirements as well as the necessary equipment for developing the techniques are described in the chapter 2. In chapter 3 it is described the algorithm developed for to obtain the differential sections starting from experimental data, and finally, in chapter 4 are given the results and conclusions. (Author)

  9. Coincidence: Fortran code for calculation of (e, e'x) differential cross-sections, nuclear structure functions and polarization asymmetry in self-consistent random phase approximation with Skyrme interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cavinato, M.; Marangoni, M.; Saruis, A.M.

    1990-10-01

    This report describes the COINCIDENCE code written for the IBM 3090/300E computer in Fortran 77 language. The output data of this code are the (e, e'x) threefold differential cross-sections, the nuclear structure functions, the polarization asymmetry and the angular correlation coefficients. In the real photon limit, the output data are the angular distributions for plane polarized incident photons. The code reads from tape the transition matrix elements previously calculated, by in continuum self-consistent RPA (random phase approximation) theory with Skyrme interactions. This code has been used to perform a numerical analysis of coincidence (e, e'x) reactions with polarized electrons on the /sup 16/O nucleous.

  10. Nuclear-breakup mechanisms in the interaction of relativistic projectiles with heavy targets

    International Nuclear Information System (INIS)

    Steinberg, E.P.

    1982-01-01

    The breakup of a Au nucleus under bombardment with relativistic p, α, and 20 Ne has been investigated in an extensive, multi-detector study. The present discussion addresses some of the many aspects of the experimental results. A broad distribution of coincident fragment masses is observed, with the total fragment kinetic energy being higher than expected for a fission mechanism for total fragment mass less than or equal to 120. The formation of light fragments is shown to be inconsistent with a binary breakup mechanism, and a multi-fragment target breakup is suggested. In general, the results indicate a broad spectrum of violence in the collisions, from gentle, leading to the production of heavy spallation products and fission, to essentially explosive, leading to multi-fragment breakup into light mas products. These aspects of the reactions represent a late-stage breakup of the target residues and are positively correlated with the violence of the initial fast stage of the collision as measured by the charged particle multiplicity

  11. Nuclear Expression of a Mitochondrial DNA Gene: Mitochondrial Targeting of Allotopically Expressed Mutant ATP6 in Transgenic Mice

    Directory of Open Access Journals (Sweden)

    David A. Dunn

    2012-01-01

    Full Text Available Nuclear encoding of mitochondrial DNA transgenes followed by mitochondrial targeting of the expressed proteins (allotopic expression; AE represents a potentially powerful strategy for creating animal models of mtDNA disease. Mice were created that allotopically express either a mutant (A6M or wildtype (A6W mt-Atp6 transgene. Compared to non-transgenic controls, A6M mice displayed neuromuscular and motor deficiencies (wire hang, pole, and balance beam analyses; P0.05. This study illustrates a mouse model capable of circumventing in vivo mitochondrial mutations. Moreover, it provides evidence supporting AE as a tool for mtDNA disease research with implications in development of DNA-based therapeutics.

  12. Nuclear expression of a mitochondrial DNA gene: mitochondrial targeting of allotopically expressed mutant ATP6 in transgenic mice.

    Science.gov (United States)

    Dunn, David A; Pinkert, Carl A

    2012-01-01

    Nuclear encoding of mitochondrial DNA transgenes followed by mitochondrial targeting of the expressed proteins (allotopic expression; AE) represents a potentially powerful strategy for creating animal models of mtDNA disease. Mice were created that allotopically express either a mutant (A6M) or wildtype (A6W) mt-Atp6 transgene. Compared to non-transgenic controls, A6M mice displayed neuromuscular and motor deficiencies (wire hang, pole, and balance beam analyses; P 0.05). This study illustrates a mouse model capable of circumventing in vivo mitochondrial mutations. Moreover, it provides evidence supporting AE as a tool for mtDNA disease research with implications in development of DNA-based therapeutics.

  13. Development of a personalized dosimetric tool for radiation protection in case of internal contamination and targeted radiotherapy in nuclear medicine

    International Nuclear Information System (INIS)

    Chiavassa, S.

    2005-12-01

    Current internal dosimetric estimations are based on the M.I.R.D. formalism and used standard mathematical models. These standard models are often far from a given patient morphology and do not allow to perform patient-specific dosimetry. The aim of this study was to develop a personalized dosimetric tool, which takes into account real patient morphology, composition and densities. This tool, called O.E.D.I.P.E., a French acronym of Tool for the Evaluation of Personalized Internal Dose, is a user-friendly graphical interface. O.E.D.I.P.E. allows to create voxel-based patient-specific geometries and associates them with the M.C.N.P.X. Monte Carlo code. Radionuclide distribution and absorbed dose calculation can be performed at the organ and voxel scale. O.E.D.I.P.E. can be used in nuclear medicine for targeted radiotherapy and in radiation protection in case of internal contamination. (author)

  14. Nuclear localization domains of GATA activator Gln3 are required for transcription of target genes through dephosphorylation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Numamoto, Minori; Tagami, Shota; Ueda, Yusuke; Imabeppu, Yusuke; Sasano, Yu; Sugiyama, Minetaka; Maekawa, Hiromi; Harashima, Satoshi

    2015-08-01

    The GATA transcription activator Gln3 in the budding yeast (Saccharomyces cerevisiae) activates transcription of nitrogen catabolite repression (NCR)-sensitive genes. In cells grown in the presence of preferred nitrogen sources, Gln3 is phosphorylated in a TOR-dependent manner and localizes in the cytoplasm. In cells grown in non-preferred nitrogen medium or treated with rapamycin, Gln3 is dephosphorylated and is transported from the cytoplasm to the nucleus, thereby activating the transcription of NCR-sensitive genes. Caffeine treatment also induces dephosphorylation of Gln3 and its translocation to the nucleus and transcription of NCR-sensitive genes. However, the details of the mechanism by which phosphorylation controls Gln3 localization and transcriptional activity are unknown. Here, we focused on two regions of Gln3 with nuclear localization signal properties (NLS-K, and NLS-C) and one with nuclear export signal (NES). We constructed various mutants for our analyses: gln3 containing point mutations in all potential phosphoacceptor sites (Thr-339, Ser-344, Ser-347, Ser-355, Ser-391) in the NLS and NES regions to produce non-phosphorylatable (alanine) or mimic-phosphorylatable (aspartic acid) residues; and deletion mutants. We found that phosphorylation of Gln3 was impaired in all of these mutations and that the aspartic acid substitution mutants showed drastic reduction of Gln3-mediated transcriptional activity despite the fact that the mutations had no effect on nuclear localization of Gln3. Our observations suggest that these regions are required for transcription of target genes presumably through dephosphorylation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. The transcription factor Prep1 controls hepatic insulin sensitivity and gluconeogenesis by targeting nuclear localization of FOXO1.

    Science.gov (United States)

    Kulebyakin, Konstantin; Penkov, Dmitry; Blasi, Francesco; Akopyan, Zhanna; Tkachuk, Vsevolod

    2016-12-02

    Liver plays a key role in controlling body carbohydrate homeostasis by switching between accumulation and production of glucose and this way maintaining constant level of glucose in blood. Increased blood glucose level triggers release of insulin from pancreatic β-cells. Insulin represses hepatic glucose production and increases glucose accumulation. Insulin resistance is the main cause of type 2 diabetes and hyperglycemia. Currently thiazolidinediones (TZDs) targeting transcriptional factor PPARγ are used as insulin sensitizers for treating patients with type 2 diabetes. However, TZDs are reported to be associated with cardiovascular and liver problems and stimulate obesity. Thus, it is necessary to search new approaches to improve insulin sensitivity. A promising candidate is transcriptional factor Prep1, as it was shown earlier it could affect insulin sensitivity in variety of insulin-sensitive tissues. The aim of the present study was to evaluate a possible involvement of transcriptional factor Prep1 in control of hepatic glucose accumulation and production. We created mice with liver-specific Prep1 knockout and discovered that hepatocytes derived from these mice are much more sensitive to insulin, comparing to their WT littermates. Incubation of these cells with 100 nM insulin results in almost complete inhibition of gluconeogenesis, while in WT cells this repression is only partial. However, Prep1 doesn't affect gluconeogenesis in the absence of insulin. Also, we observed that nuclear content of gluconeogenic transcription factor FOXO1 was greatly reduced in Prep1 knockout hepatocytes. These findings suggest that Prep1 may control hepatic insulin sensitivity by targeting FOXO1 nuclear stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta.

    Science.gov (United States)

    van Kooten, G Cornelis; Duan, Jun; Lynch, Rachel

    2016-01-01

    This paper explores the viability of relying on wind power to replace upwards of 60% of electricity generation in Alberta that would be lost if coal-fired generation is phased out. Using hourly wind data from 17 locations across Alberta, we are able to simulate the potential wind power output available to the Alberta grid when modern, 3.5 MW-capacity wind turbines are spread across the province. Using wind regimes for the years 2006 through 2015, we find that available wind power is less than 60% of installed capacity 98% of the time, and below 30% of capacity 74% of the time. There is only a small amount of correlation between wind speeds at different locations, but yet it remains necessary to rely on fossil fuel generation. Then, based on the results from a grid allocation model, we find that CO2 emissions can be reduced by about 30%, but only through a combination of investment in wind energy and reliance on purchases of hydropower from British Columbia. Only if nuclear energy is permitted into the generation mix would Alberta be able to meet its CO2-emissions reduction target in the electricity sector. With nuclear power, emissions can be reduced by upwards of 85%.

  17. Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta

    Science.gov (United States)

    Duan, Jun; Lynch, Rachel

    2016-01-01

    This paper explores the viability of relying on wind power to replace upwards of 60% of electricity generation in Alberta that would be lost if coal-fired generation is phased out. Using hourly wind data from 17 locations across Alberta, we are able to simulate the potential wind power output available to the Alberta grid when modern, 3.5 MW-capacity wind turbines are spread across the province. Using wind regimes for the years 2006 through 2015, we find that available wind power is less than 60% of installed capacity 98% of the time, and below 30% of capacity 74% of the time. There is only a small amount of correlation between wind speeds at different locations, but yet it remains necessary to rely on fossil fuel generation. Then, based on the results from a grid allocation model, we find that CO2 emissions can be reduced by about 30%, but only through a combination of investment in wind energy and reliance on purchases of hydropower from British Columbia. Only if nuclear energy is permitted into the generation mix would Alberta be able to meet its CO2-emissions reduction target in the electricity sector. With nuclear power, emissions can be reduced by upwards of 85%. PMID:27902712

  18. Targeting novel integrative nuclear FGFR1 signaling by nanoparticle-mediated gene transfer stimulates neurogenesis in the adult brain.

    Science.gov (United States)

    Stachowiak, Ewa K; Roy, Indrajit; Lee, Yu-Wei; Capacchietti, Mariolina; Aletta, John M; Prasad, Paras N; Stachowiak, Michal K

    2009-06-01

    Neurogenesis, the process of differentiation of neuronal stem/progenitor cells (NS/PC) into mature neurons, holds the key to the treatment of various neurodegenerative disorders, which are a major health issue for the world's aging population. We report that targeting the novel integrative nuclear FGF Receptor 1 signaling (INFS) pathway enhances the latent potential of NS/PCs to undergo neuronal differentiation, thus promoting neurogenesis in the adult brain. Employing organically modified silica (ORMOSIL)-DNA nanoplexes to efficiently transfect recombinant nuclear forms of FGFR1 and its FGF-2 ligand into the brain subventricular zone, we find that INFS stimulates the NS/PC to withdraw from the cell cycle, differentiate into doublecortin expressing migratory neuroblasts and neurons that migrate to the olfactory bulb, subcortical brain regions and in the brain cortex. Thus, nanoparticle-mediated non-viral gene transfer may be used to induce selective differentiation of NS/PCs, providing a potentially significant impact on the treatment of a broad range of neurological disorders.

  19. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  20. Nuclear science fights malaria. Radiation and molecular techniques can play targeted roles

    International Nuclear Information System (INIS)

    Groth, Steffen; Khan, Baldip; Robinson, Alan; Hendrichs, Jorge

    2001-01-01

    Malaria is the most important insect transmitted disease. Globally there are 300 to 500 million clinical cases of malaria a year. They result in two million deaths per year (one every 30 seconds), more than 90% of which occur in sub-Saharan Africa. More than 90% of those affected are children less than five years old. The economic impact of the disease is felt disproportionately by poor families who may spend a fourth of their annual income on prevention and control measures. The causative agents are parasites of the genus Plasmodium and they are transmitted only by female mosquitoes of the genus Anopheles. Among key strategies to control malaria are the surveillance of anti-malarial drug efficacy through monitoring the levels of drug resistance, and the reduction of mosquito populations. Nuclear techniques can play important roles in these efforts to combat malaria. This article reports on IAEA activities associated with drug-resistant malaria and describes how molecular methods making use of radioactive isotopes can provide a great advantage in the diagnosis of resistance. The article further presents the IAEA's plans for initiating a research programme to assess the feasibility of developing the Sterile Insect Technique (SIT) as a complementary method to control the vector of malaria