WorldWideScience

Sample records for polarized nuclear target

  1. Polarized targets at triangle universities nuclear laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Seely, M.L. [North Carolina State Univ., Raleigh, NC (United States); Gould, C.R. [North Carolina State Univ., Raleigh, NC (United States); Haase, D.G. [North Carolina State Univ., Raleigh, NC (United States); Huffman, P.R. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Keith, C.D. [North Carolina State Univ., Raleigh, NC (United States); Roberson, N.R. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Tornow, W. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Wilburn, W.S. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    1995-03-01

    A summary of the polarized and aligned nuclear targets which have been constructed and used at the Triangle Universities Nuclear Laboratory is given. Statically polarized targets, typically operating at a temperature of 12 mK and a magnetic field of 7 T, have provided significant nuclear polarization in {sup 1}H, {sup 3}He, {sup 27}Al, {sup 93}Nb and {sup 165}Ho. A rotating, aligned {sup 165}Ho target is also in use. A {sup 3}He melting curve thermometer has been developed for use in statically polarized targets. A dynamically polarized proton target is under construction. ((orig.))

  2. Polarized nuclear target based on parahydrogen induced polarization

    OpenAIRE

    Budker, D.; Ledbetter, M. P.; Appelt, S.; Bouchard, L. S.; Wojtsekhowski, B.

    2012-01-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ($\\sim$100 Hz) polarization reversal, and operation with large intensity of an electron beam.

  3. Dynamic nuclear polarization of irradiated target materials

    International Nuclear Information System (INIS)

    Seely, M.L.

    1982-01-01

    Polarized nucleon targets used in high energy physics experiments usually employ the method of dynamic nuclear polarization (DNP) to polarize the protons or deuterons in an alcohol. DNP requires the presence of paramagnetic centers, which are customarily provided by a chemical dopant. These chemically doped targets have a relatively low polarizable nucleon content and suffer from loss of polarization when subjected to high doses of ionizing radiation. If the paramagnetic centers formed when the target is irradiated can be used in the DNP process, it becomes possible to produce targets using materials which have a relatively high polarizable nucleon content, but which are not easily doped by chemical means. Furthermore, the polarization of such targets may be much more radiation resistant. Dynamic nuclear polarization in ammonia, deuterated ammonia, ammonium hydroxide, methylamine, borane ammonia, butonal, ethane and lithium borohydride has been studied. These studies were conducted at the Stanford Linear Accelerator Center using the Yale-SLAC polarized target system. Results indicate that the use of ammonia and deuterated ammonia as polarized target materials would make significant increases in polarized target performance possible

  4. Laser-driven nuclear-polarized hydrogen internal gas target

    International Nuclear Information System (INIS)

    Seely, J.; Crawford, C.; Clasie, B.; Xu, W.; Dutta, D.; Gao, H.

    2006-01-01

    We report the performance of a laser-driven polarized internal hydrogen gas target (LDT) in a configuration similar to that used in scattering experiments. This target used the technique of spin-exchange optical pumping to produce nuclear spin polarized hydrogen gas that was fed into a cylindrical storage (target) cell. We present in this paper the performance of the target, methods that were tried to improve the figure-of-merit (FOM) of the target, and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation and the experimental results were in good agreement with the results from the simulation. The best experimental result achieved was at a hydrogen flow rate of 1.1x10 18 atoms/s, where the sample beam exiting the storage cell had 58.2% degree of dissociation and 50.5% polarization. Based on this measurement, the atomic fraction in the storage cell was 49.6% and the density averaged nuclear polarization was 25.0%. This represents the highest FOM for hydrogen from an LDT and is higher than the best FOM reported by atomic beam sources that used storage cells

  5. Nuclear spin polarization of targets

    International Nuclear Information System (INIS)

    Happer, W.

    1990-01-01

    Lasers can be used to produce milligrams to grams of noble gas nuclei with spin polarizations in excess of 50%. These quantities are sufficient to be very useful targets in nuclear physics experiments. Alkali-metal atoms are used to capture the angular momentum of circularly polarized laser photons, and the alkali-metal atoms transfer their angular momentum to noble gas atoms in binary or three-body collisions. Non-radiative collisions between the excited alkali atoms and molecular quenching gases are essential to avoid radiation trapping. The spin exchange can involve gas-phase van der Waals molecules, consisting of a noble gas atom and an alkali metal atom. Surface chemistry is also of great importance in determining the wall-induced relaxation rates of the noble gases

  6. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  7. Simulation and Automation of Microwave Frequency Control in Dynamic Nuclear Polarization for Solid Polarized Targets

    Science.gov (United States)

    Perera, Gonaduwage; Johnson, Ian; Keller, Dustin

    2017-09-01

    Dynamic Nuclear Polarization (DNP) is used in most of the solid polarized target scattering experiments. Those target materials must be irradiated using microwaves at a frequency determined by the difference in the nuclear Larmor and electron paramagnetic resonance (EPR) frequencies. But the resonance frequency changes with time as a result of radiation damage. Hence the microwave frequency should be adjusted accordingly. Manually adjusting the frequency can be difficult, and improper adjustments negatively impact the polarization. In order to overcome these difficulties, two controllers were developed which automate the process of seeking and maintaining the optimal frequency: one being a standalone controller for a traditional DC motor and the other a LabVIEW VI for a stepper motor configuration. Further a Monte-Carlo simulation was developed which can accurately model the polarization over time as a function of microwave frequency. In this talk, analysis of the simulated data and recent improvements to the automated system will be presented. DOE.

  8. On the large COMPASS polarized deuteron target

    CERN Document Server

    Finger, M; Baum, G; Doshita, N; Finger, M Jr; Gautheron, F; Goertz, St; Hasegawa, T; Heckmann, J; Hess, Ch; Horikawa, N; Ishimoto, S; Iwata, T; Kisselev, Y; Koivuniemi, J; Kondo, K; Le Goff, J-M; Magnon, A; Marchand, C; Matsuda, T; Meyer, W; Reicherz, G; Srnka, A

    2006-01-01

    The spin structure of the nucleons is investigated in deep inelastic scattering of a polarized muon beam and a polarized nucleon target in the COMPASS experiment at CERN since 2001. To achieve high luminosities a large solid polarized target is used. The COMPASS polarized target consists of a high cooling power $^{3}$He/$^{4}$He dilution refrigerator capable to maintain working temperature of the target material at about 50mK, a superconducting solenoid and dipole magnet system for longitudinal and transversal magnetic field on the target material, respectively, target cells containing polarizable material, microwave cavities and high power microwave radiation systems for dynamic nuclear polarization and the nuclear magnetic resonance system for nuclear spin polarization measurements. During 2001–2004 experiments superconducting magnet system with opening angle $\\pm$69 mrad, polarized target holder with two target cells and corresponding microwave and NMR systems have been used. For the data taking from 200...

  9. Polarized targets in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Cates, G.D. Jr. [Princeton Univ., NJ (United States)

    1994-12-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail.

  10. Polarized targets in high energy physics

    International Nuclear Information System (INIS)

    Cates, G.D. Jr.

    1994-01-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous 3 He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail

  11. Polarized photoproduction from nuclear targets with arbitrary spin and relation to deep inelastic scattering

    International Nuclear Information System (INIS)

    Hoodbhoy, P.; Massachusetts Inst. of Tech., Cambridge; Quaid-i-Azam Univ., Islamabad

    1990-01-01

    Inclusive photo-production from polarized targets of arbitrary spin is analyzed by using multipoles. The Drell-Hearn-Gerasimov sum rule, which was originally fromulated for spin-1/2 targets, is generalized to all spins and multipoles, and shown to have some interesting consequences. Measurements to test the new rules, or to derive nuclear structure information from them, could be incorporated into existing plans at electron accelerator facilities. Finally, the possible relevance of these generalized sum rules to sum rules measurable in polarized lepton-polarized target deep inelastic inclusive scattering is discussed. (orig.)

  12. Polarized internal targets for electronuclear experiments

    International Nuclear Information System (INIS)

    van den Brand, J.F.J.

    1993-01-01

    Polarized internal gas targets represent a unique opportunity for the measurement of spin observables in electro-nuclear physics. Two measurements will be discussed. First, spin observables have been measured in elastic and quasi-free scattering of 45, 200, 300, and 415 MeV polarized protons from a polarized 3 He internal gas target at the Indiana University Cyclotron Facility Cooler Ring. The data obtained constitute the first measurement of spin correlation parameters using a storage ring with polarized beam and polarized internal gas target. Second, a quasi-free (e,e'p) experiment using tensor polarized deuterium will be discussed. Here, the goal is the measurement of the S- and D-state parts of the proton spectral function by scattering 700 MeV electrons from an atomic beam source. Large acceptance detectors have been used in both experiments. The internal-target technique has broad applicability in nuclear and particle physics

  13. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  14. Physics with polarized electrons and targets

    International Nuclear Information System (INIS)

    Donnelly, T.W.

    1984-01-01

    With the advent of electron stretcher or storage rings electron scattering from polarized targets becomes a general new tool for nuclear structure studies. Without such facilities it is necessary to have very dense polarized targets for use with the typical (less or approximately equal 50 μA) electron beams available and very few measurements of this type have been attempted. On the other hand, with electron rings the effective circulating current can be greatly increased. In this case much thinner internal targets may be used while still maintaining the same luminosity as in external beam experiments. In ancticipation of such new experimental capabilities we have re-developed the theoretical basis for discussions of electron scattering from polarized targets using either unpolarized or polarized electron beams. This work takes the formalism of unpolarized (e,e') and extends it in a straightforward way to include general polarizations of electrons, target nuclei, recoil nuclei or any combinations of these polarizations. In the present context it is only possible to provide a brief summary of the general form of the cross section and to present a few illustrative examples of the nuclear structure information that may be extracted from such polarization measurements

  15. Polarized few-nucleon targets: new developments

    International Nuclear Information System (INIS)

    Haeusser, O.

    1992-09-01

    We discuss recent improvements in producing polarized few-nucleon targets for nuclear and particle physics experiments. The emphasis is on progress with polarized gas targets intended for experiments at electron and proton storage rings. (author) 54 refs., 1 tab

  16. Polarized few-nucleon targets: new developments

    Energy Technology Data Exchange (ETDEWEB)

    Haeusser, O

    1992-09-01

    We discuss recent improvements in producing polarized few-nucleon targets for nuclear and particle physics experiments. The emphasis is on progress with polarized gas targets intended for experiments at electron and proton storage rings. (author) 54 refs., 1 tab.

  17. Laser-driven polarized H/D sources and targets

    International Nuclear Information System (INIS)

    Clasie, B.; Crawford, C.; Dutta, D.; Gao, H.; Seely, J.; Xu, W.

    2005-01-01

    Traditionally, Atomic Beam Sources are used to produce targets of nuclear polarized hydrogen (H) or deuterium (D) for experiments using storage rings. Laser-Driven Sources (LDSs) offer a factor of 20-30 gain in the target thickness (however, with lower polarization) and may produce a higher overall figure of merit. The LDS is based on the technique of spin-exchange optical pumping where alkali vapor is polarized by absorbing circularly polarized laser photons. The H or D atoms are nuclear-polarized through spin-exchange collisions with the polarized alkali vapor and through subsequent hyperfine interactions during frequent H-H or D-D collisions

  18. Review of polarized ammonium target

    International Nuclear Information System (INIS)

    Matsuda, Tatsuo

    1987-01-01

    Recently, ammonia (NH 3 ) and deutron ammonia (ND 3 ), instead of conventional alcohol substances, have been used more frequently as a polarized target substance for experiments of polarization at high energy regions. This article reviews major features of the polarized (deutron) ammonia targets. The dynamic nuclear polarization (DNT) method is widely used in high energy polarization experiments. While only a low polarization degree of hydrogen nucleus of 1.7 percent can be obtained by the Brute force method, DNP can produce polarization as high as ∼ 90 percent (2.5 T, ∼ 200 mK). In 1979, ammonia was irradiated with radiations to form NH 2 free radicals, resulting in the achievement of a high polarization degree of greater than 90 percent (hydrogen). Since then, ammonia and deutron ammonia have increasingly been replacing alcohols including butanol. Irradiation of a target substance with radiations destroys the structure of the substance, leading to a decrease in polarization degree. However, ammonia produces unpaired electrons as a result of irradiation, allowing it to be highly resistant to radiation. This report also present some study results, including observations on effects of radiation on the polarization degree of a target, effects of annealing, and polarization of 14 N. A process for producing an ammonia target is also described. (Nogami, K.)

  19. System for measuring the proton polarization in a polarized target

    International Nuclear Information System (INIS)

    Karnaukhov, I.M.; Lukhanin, A.A.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1984-01-01

    The system for measuring the proton polarization in a polarized target representing the high-sensitivity nuclear magnetic resonance (NMR) is described Q-meter with series connection and a circuit for measuring system resonance characteristic is used for NMR-absorption signal recording. Measuring coil is produced of a strip conductor in order to obtain uniform system sensitivity to polarization state in all target volume and improve signal-to-noise ratio. Polarization measuring system operates ion-line with the M-6000 computer. The total measuring error for the value of free proton polarization in target taking into account the error caused by local depolarization of working substance under irradiation by high-intense photon beam is <= 6%. Long-term application of the described system for measuring the proton polarization in the LUEh-20000 accelerator target used in the pion photoproduction experiments has demonstrated its high reliability

  20. NMR dispersion measurement of dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Davies, K.; Cox, S.F.J.

    1978-01-01

    The feasibility of monitoring dynamic nuclear polarization from the NMR dispersive susceptibility is examined. Two prototype instruments are tested in a polarized proton target using organic target material. The more promising employs a tunnel diode oscillator, inside the target cavity, and should provide a precise polarization measurement working at a frequency far enough from the main resonance for the disturbance of the measured polarization to be negligible. Other existing methods for measuring target polarization are briefly reviewed. (author)

  1. Electron spin resonance and its implication on the maximum nuclear polarization of deuterated solid target materials

    International Nuclear Information System (INIS)

    Heckmann, J.; Meyer, W.; Radtke, E.; Reicherz, G.; Goertz, S.

    2006-01-01

    ESR spectroscopy is an important tool in polarized solid target material research, since it allows us to study the paramagnetic centers, which are used for the dynamic nuclear polarization (DNP). The polarization behavior of the different target materials is strongly affected by the properties of these centers, which are added to the diamagnetic materials by chemical doping or irradiation. In particular, the ESR linewidth of the paramagnetic centers is a very important parameter, especially concerning the deuterated target materials. In this paper, the results of the first precise ESR measurements of the deuterated target materials at a DNP-relevant magnetic field of 2.5 T are presented. Moreover, these results allowed us to experimentally study the correlation between ESR linewidth and maximum deuteron polarization, as given by the spin-temperature theory

  2. Proceedings of the workshop on polarized targets in storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1984-08-01

    Polarization phenomena have played an increasingly important part in the study of nuclei and nucleons in recent years. Polarization studies have been hampered by the relatively few and rather fragile polarized targets which are presently available. The concept of polarized gas targets in storage rings opens a much wider range of possibilities than is available in the external target geometry. This novel method will represent a considerable advance in nuclear physics and will continue to receive much attention in plans for future facilities. An internal, polarized-target station is being planned for the cooler ring at the Indiana University Cyclotron Facility. Internal targets are compatible with recent designs of electron accelerators proposed by the Massachusetts Institute of Technology and the Southeastern Universities Research Association. The key to nuclear-science programs based on internal targets pivots on recent developments in polarized atomic beam methods, which include the more recent laser-driven polarized targets. The workshop drew together a unique group of physicists in the fields of high-energy, nuclear and atomic physics. The meeting was organized in a manner that stimulated discussion among the 58 participants and focused on developments in polarized target technology and the underlying atomic physics. An impressive array of future possibilities for polarized targets as well as current developments in polarized target technology were discussed at the workshop. Abstracts of individual items from the workshop were prepared separately for the data base

  3. The Bochum Polarized Target

    International Nuclear Information System (INIS)

    Reicherz, G.; Goertz, S.; Harmsen, J.; Heckmann, J.; Meier, A.; Meyer, W.; Radtke, E.

    2001-01-01

    The Bochum 'Polarized Target' group develops the target material 6 LiD for the COMPASS experiment at CERN. Several different materials like alcohols, alcanes and ammonia are under investigation. Solid State Targets are polarized in magnetic fields higher than B=2.5T and at temperatures below T=1K. For the Dynamic Nuclear Polarization process, paramagnetic centers are induced chemically or by irradiation with ionizing beams. The radical density is a critical factor for optimization of polarization and relaxation times at adequate magnetic fields and temperatures. In a high sensitive EPR--apparatus, an evaporator and a dilution cryostat with a continuous wave NMR--system, the materials are investigated and optimized. To improve the polarization measurement, the Liverpool NMR-box is modified by exchanging the fixed capacitor for a varicap diode which not only makes the tuning very easy but also provides a continuously tuned circuit. The dependence of the signal area upon the circuit current is measured and it is shown that it follows a linear function

  4. A horizontal dilution refrigerator for polarized target

    International Nuclear Information System (INIS)

    Isagawa, S.; Ishimoto, S.; Masaike, A.; Morimoto, K.

    1978-01-01

    A horizontal dilution refrigerator was constructed with a view to the spin frozen target and the deuteron polarized target. High cooling power at high temperature such as 3.7 mW at 400 mK serves for overcoming a heat load of microwave to polarize the nuclear spins in the target material. The cooling power at 50 mK was 50 μW, which is sufficient to hold the high nuclear polarization for long time. The lowest temperature reached was 26 mK. The refrigerator has rather simple heat exchangers, a long stainless steel double tube heat exchanger and two coaxial type heat exchangers with sintered copper. The mixing chamber is made of polytetrafluoroethylene (TFE) and demountable so that the target material can be easily put into it. (Auth.)

  5. Effect of nonlinearity of spin interaction with electromagnetic resonance field on characteristics of polarized nuclear target

    International Nuclear Information System (INIS)

    Vertij, A.A.; Gavrilov, S.P.; Shestopalov, V.P.

    1990-01-01

    Interaction of incident nuclear particle beam with J = 1/2 (neutrons) spin and (J = 1/2) protons with the target substance is considered. It is shown that neutron polarization at the target exit and neutron transparency (G) of the target depend significantly on incident wave amplitude level and physical parameter values which characterize the target, such as target temperature, resonator mirror reflection factor, number of spins interacting with the field, etc. Under interaction of neutrons with a target resonator which features a high mirror reflection factor and low losses for absorption which is not related to magnetic dipole absorption, a bistable response of neutron polarization and G manifests itself. 1 ref

  6. System for measuring of proton polarization in polarized target

    International Nuclear Information System (INIS)

    Derkach, A.Ya.; Lukhanin, A.A.; Karnaukhov, I.M.; Kuz'menko, V.S.; Telegin, Yu.N.; Trotsenko, V.I.; Chechetenko, V.F.

    1981-01-01

    Measurement system of proton polarization in the target, which uses the method of nuclear magnetic resonance is described. To record the signal of NMR-absorption a parallel Q-meter of voltage with analogous subtraction of resonance characteristics of measurement circuit is used. To obtain gradual sensitivity of the system to polarization state in the whole volume of the target the measurement coils is made of tape conductor. The analysis and mathematical modelling of Q-meter are carried out. Corrections for nonlinearity and dispersion are calculated. Key diagrams of the main electron blocks of Q-meter are presented. The system described operates on line with the M6000 computer. Total error of measurement of polarization value of free protons in the target does not exceed 6% [ru

  7. Polarized gas targets for storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1990-01-01

    It is widely recognized that polarized gas targets in electron storage rings represent a new opportunity for precision nuclear physics studies. New developments in polarized target technology specific to internal applications will be discussed. In particular, polarized gas targets have been used in the VEPP-3 electron ring in Novosibirsk. A simple storage cell was used to increase the total target thickness by a factor of 15 over the simple gas jet target from an atomic beam source. Results from the initial phase of this project will be reported. In addition, the plans for increasing the luminosity by an additional order or magnitude will be presented. The application of this work to polarized hydrogen and deuterium targets for the HERA ring will be noted. The influence of beam-induced depolarization, a phenomena encountered in short-pulse electron storage rings, will be discussed. Finally, the performance tests of laser-driven sources will be presented. 8 refs., 12 figs., 1 tab

  8. The polarized double cell target of the SMC

    International Nuclear Information System (INIS)

    Adams, D.; Adeva, B.; Arik, E.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, G.; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjoerkholm, P.; Bonner, B.E.; Botton, N. de; Boutemeur, M.; Bradamante, F.; Bravar, A.; Bressan, A.; Bueltmann, S.; Burtin, E.; Cavata, C.; Crabb, D.; Cranshaw, J.; Cuhadar, T.; Torre, S. Dalla; Dantzig, R. van; Derro, B.; Deshpande, A.; Dhawan, S.; Dulya, C.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Forthmann, S.; Frois, B.; Gallas, A.; Garzon, J.A.; Gaussiran, T.; Gilly, H.; Giorgi, M.; Goeler, E. von; Goertz, S.; Gracia, G.; Groot, N. de; Perdekamp, M. Grosse; Guelmez, E.; Haft, K.; Harrach, D. von; Hasegawa, T.; Hautle, P.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Kabuss, E.M.; Kageya, T.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kiryluk, J.; Kishi, A.; Kisselev, Yu.; Klostermann, L.; Kraemer, D.; Krivokhijine, V.; Kroeger, W.; Kurek, K.; Kyynaeraeinen, J.; Lamanna, M.; Landgraf, U.; Layda, T.; Le Goff, J.M.; Lehar, F.; Lesquen, A. de; Lichtenstadt, J.; Lindqvist, T.; Litmaath, M.; Lowe, M.; Magnon, A.; Mallot, G.K.; Marie, F.; Martin, A.; Martino, J.; Matsuda, T.; Mayes, B.; McCarthy, J.S.; Medved, K.; Meyer, W.; Middelkoop, G. van; Miller, D.; Miyachi, Y.; Mori, K.; Moromisato, J.; Nassalski, J.; Naumann, L.; Neganov, B.; Niinikoski, T.O.; Oberski, J.E.J.; Ogawa, A.; Ozben, C.; Parks, D.P.; Pereira, H.; Penzo, A.; Perrot-Kunne, F.; Peshekhonov, D.; Piegaia, R.; Pinsky, L.; Platchkov, S.; Plo, M.; Pose, D.; Postma, H.; Pretz, J.; Pussieux, T.; Pyrlik, J.; Raedel, G.; Reyhancan, I.; Reicherz, G.; Rieubland, J.M.; Rijllart, A.; Roberts, J.B.; Rock, S.; Rodriguez, M.; Rondio, E.; Rosado, A.; Roscherr, B.; Sabo, I.; Saborido, J.; Sandacz, A.; Savin, I.; Schiavon, P.; Schiller, A.; Schueler, K.P.; Segel, R.; Seitz, R.; Semertzidis, Y.; Sever, F.; Shanahan, P.; Sichtermann, E.P.; Simeoni, F.; Smirnov, G.I.; Staude, A.; Steinmetz, A.; Stiegler, U.; Stuhrmann, H.; Szleper, M.; Teichert, K.M.; Tessarotto, F.; Thers, D.; Tlaczala, W.; Trentalange, S.; Tripet, A.; Unel, G.; Velasco, M.; Vogt, J.; Voss, R.; Weinstein, R.; Whitten, C.; Windmolders, R.; Willumeit, R.; Wislicki, W.; Witzmann, A.; Zanetti, A.M.; Zaremba, K.; Zhao, J.

    1999-01-01

    The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993-1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials -- butanol, ammonia, and deuterated butanol -- with maximum degrees of polarization of 94%, 91% and 60%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses, the accuracies achieved were between 2.0% and 3.2%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, construction and performance of the target are reviewed

  9. The polarized double cell target of the SMC

    CERN Document Server

    Adams, D; Adeva, B; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Layda, T; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Neganov, B S; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Pereira, H; Penzo, Aldo L; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Pussieux, T; Pyrlik, J; Rädel, G; Reyhancan, I; Reicherz, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Schüler, K P; Segel, R E; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Thers, D; Tlaczala, W; Trentalange, S; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Zanetti, A M; Zaremba, K; Zhao, J

    1999-01-01

    The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993 to 1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials $-$ butanol, ammonia, and deuterated butanol, with maximum degrees of polarization of 94, 91, and 60 \\%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses. The achieved accuracies were between 2.0 and 3.2 \\%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, the ...

  10. New investigations of polarized solid HD targets

    International Nuclear Information System (INIS)

    Honig, A.; Whisnant, C.S.

    1995-01-01

    Polarized solid HD targets in a frozen-spin mode, with superior nuclear physics characteristics and simple operational configurations, have previously been restricted in their deployment due to a disproportionate target production time with respect to utilization time. Recent investigations have yielded frozen-spin polarization lifetimes, at a convenient target temperature of 1.5 K, of nearly a year for both H and D at high holding fields, and of more than a week at sub-Tesla holding fields. These results, taken together with the advent of new interesting spin-physics using relatively weakly ionizing beams, such as polarized photon beams, remove the above impediment and open up the use of polarized solid HD to long duration nuclear spin-physics experiments. Large, multiple targets can be produced, retrieved from the polarization-production apparatus with a cold-transport (4 K) device, stored for very long times in inexpensive (1.5 K, 7 T) cryostats, and introduced 'off-the-shelf' into in-beam cryostats via the portable cold-transport apparatus. Various modes for achieving polarized H and/or D, as well as already achieved and expected polarization values, are reported. Experimental results are given on Kapitza resistance between the solid HD and the cooling wires necessary to obtain low temperatures during the heat-evolving polarization process. 15 mK is achievable using gold-plated aluminum wires, which constitute 15% extraneous nucleons over the number of polarizable H or D nucleons. Application to more highly ionizing beams is also given consideration. ((orig.))

  11. Cryogenic polarized target facility: status

    International Nuclear Information System (INIS)

    Gould, C.; Nash, H.K.; Roberson, N.; Schneider, M.; Seagondollar, W.; Soderstrum, J.

    1985-01-01

    The TUNL cryogenically polarized target facility consists of a 3 He- 4 He dilution refrigerator and a superconducting magnet, together capable of maintaining samples at between 10 and 20 mK in magnetic fields up to 7 Tesla. At these temperatures and magnetic fields brute-force nuclear orientation occurs. Polarizations from 20 to 60% are attainable in about twenty nonzero spin nuclei. Most are metals, ranging in mass from 6 Li to 209 Bi, but the nuclei 1 H and 3 He are also polarizable via this method. The main effort is directed towards a better determination of the effective spin-spin force in nuclei. These experiments are briefly described and the beam stabilization system, cryostat and polarized 3 He targets are discussed

  12. Modeling alignment enhancement for solid polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Keller, D. [University of Virginia, Charlottesville, VA (United States)

    2017-07-15

    A model of dynamic orientation using optimized radiofrequency (RF) irradiation produced perpendicular to the holding field is developed for the spin-1 system required for tensor-polarized fixed-target experiments. The derivation applies to RF produced close to the Larmor frequency of the nucleus and requires the electron spin-resonance linewidth to be much smaller than the nuclear magnetic resonance frequency. The rate equations are solved numerically to study a semi-saturated steady-state resulting from the two sources of irradiation: microwave from the DNP process and the additional RF used to manipulate the tensor polarization. The steady-state condition and continuous-wave NMR lineshape are found that optimize the spin-1 alignment in the polycrystalline materials used as solid polarized targets in charged-beam nuclear and particle physics experiments. (orig.)

  13. COMPASS polarized target for Drell-Yan

    CERN Document Server

    Pešek, M

    2014-01-01

    In the COMPASS Drell–Yan experiment the pion beam with momen tum of 190 GeV/ c and in- tensity up to 10 8 pions/s will interact with transversely polarized proton t arget producing muon pair via Drell–Yan process. The solid-state NH 3 will be polarized by dynamic nuclear polar- ization. Maximum polarization reached during data taking i s expected to be up to 90%. The non-interacting beam and other particles produced inside t he target will be stopped in the hadron absorber after the target. Two target cells, sepparated by a 20 cm gap in between, each 55 cm long and 4 cm in diameter give the target material volume about 691 cm 3 . The target platform needs to be moved by 2.3 m in upstream dire ction from the position used in previous experiments in order to accomodate the absorber. D uring the beam time higher radiation is expected in the area of the control room. Thus a new target r emote control system is needed. The target magnet is undergoing a substantial upgrade. Drell–Yan data taking is expected t...

  14. Dynamically polarized hydrogen target as a broadband, wavelength-independent thermal neutron spin polarizer

    International Nuclear Information System (INIS)

    Zhao Jinkui; Garamus, Vasil M.; Mueller, Wilhelm; Willumeit, Regine

    2005-01-01

    A hydrogen-rich sample with dynamically polarized hydrogen nuclei was tested as a wavelength-independent neutron transmission spin polarizer. The experiment used a modified setup of the dynamic nuclear polarization target station at the GKSS research center. The standard solvent sample at the GKSS DNP station was used. It is 2.8mm thick and consists of 43.4wt% water, 54.6wt% glycerol, and 2wt% of EHBA-Cr(v) complex. The wavelength of the incident neutrons for the transmission experiment was λ=8.1A with Δλ/λ=10%. The polarization of neutron beam after the target sample was analyzed with a supermirror analyzer. A neutron polarization of -52% was achieved at the hydrogen polarization of -69%. Further experiments will test the feasibility of other hydrogen-rich materials, such as methane, as the polarizer. A theoretical calculation shows that a polarized methane target would allow over 95% neutron polarizations with more than 30% transmission

  15. Spin-polarized 3He nuclear targets and metastable 4He atoms by optical pumping with a tunable, Nd:YAP laser

    International Nuclear Information System (INIS)

    Bohler, C.L.; Schearer, L.D.; Leduc, M.; Nacher, P.J.; Zachorowski, L.; Milner, R.G.; McKeown, R.D.; Woodward, C.E.

    1988-01-01

    Several Nd:YAP lasers were constructed which could be broadly tuned in the 1083-nm region which includes the helium 2 3 S-2 3 P transition, using a Lyot filter and thin, uncoated etalons within the laser cavity. 1 W of power could be extracted at 1083 nm through a 1% transmitting output coupler. This laser beam was used to optically pump metastable 4 He and 3 He 2 3 S helium atoms in a weak discharge cell, spin polarizing the metastable ensemble. In a 3 He cell the polarization is transferred to the nuclear spin system. A 3 He target cell at 0.3 Torr was polarized to 52% in a few minutes. We describe the application of this system to the design of polarized targets for experiments in nuclear physics

  16. System of measurement of proton polarization in a polarized target

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukov, I.M.; Chechetenko, V.F.; Lukhanin, A.A.; Telegin, Y.N.; Trotsenko, V.I.

    1985-05-01

    This paper describes a nuclear magnetic resonance spectrometer with high sensitivity. The signal of NMR absorption is recorded by a Q-meter with a series circuit and a circuit for compensation of the resonance characteristic of the measuring circuit. In order to ensure uniform sensitivity of the system to the state of polarization throughout the volume of the target and to enhance the S/N ration the measuring coil is made of a flat conductor. The polarization-measuring system works on-line with an M-6000 computer. The total error of measurement of the polarization of free protons in a target with allowance for the error due to local depolarization of free protons in a target with allowance for the error due to local depolarization of the working substance under irradiation with an intense photon beam is less than or equal to 6%.

  17. A polarized solid {sup 3}He target for neutron transmission experiments

    Energy Technology Data Exchange (ETDEWEB)

    Keith, C.D. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Gould, C.R. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Haase, D.G. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Huffman, P.R. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Roberson, N.R. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Seely, M.L. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Wilburn, W.S. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    1995-04-01

    We describe the construction and operation of a solid {sup 3}He polarized nuclear target which we have used for measurements of the spin dependence of the n-{sup 3}He interaction at MeV energies. The target, which contains 0.4 mole of {sup 3}He was polarized to 38% at 12 mK in a field of 7 T. The target is suitable for nuclear physics measurements which are insensitive to the large magnetic field and produce beam heating of tenths of microwatts.We discuss refinements and paths to improved solid {sup 3}He targets at higher polarizations and lower fields. ((orig.)).

  18. Laser-driven polarized hydrogen and deuterium internal targets

    International Nuclear Information System (INIS)

    Jones, C.E.; Fedchak, J.A.; Kowalczyk, R.S.

    1995-01-01

    After completing comprehensive tests of the performance of the source with both hydrogen and deuterium gas, we began tests of a realistic polarized deuterium internal target. These tests involve characterizing the atomic polarization and dissociation fraction of atoms in a storage cell as a function of flow and magnetic field, and making direct measurements of the average nuclear tensor polarization of deuterium atoms in the storage cell. Transfer of polarization from the atomic electron to the nucleus as a result of D-D spin-exchange collisions was observed in deuterium, verifying calculations suggesting that high vector polarization in both hydrogen and deuterium can be obtained in a gas in spin temperature equilibrium without inducing RF transitions between the magnetic substates. In order to improve the durability of the system, the source glassware was redesigned to simplify construction and installation and eliminate stress points that led to frequent breakage. Improvements made to the nuclear polarimeter, which used the low energy 3 H(d,n) 4 He reaction to analyze the tensor polarization of the deuterium, included installing acceleration lenses constructed of wire mesh to improve pumping conductance, construction of a new holding field coil, and elimination of the Wien filter from the setup. These changes substantially simplified operation of the polarimeter and should have reduced depolarization in collisions with the wall. However, when a number of tests failed to show an improvement of the nuclear polarization, it was discovered that extended operation of the system with a section of teflon as a getter for potassium caused the dissociation fraction to decline with time under realistic operating conditions, suggesting that teflon may not be a suitable material to eliminate potassium from the target. We are replacing the teflon surfaces with drifilm-coated ones and plan to continue tests of the polarized internal target in this configuration

  19. A polarized sup 3 He internal target for storage rings

    CERN Document Server

    Poolman, H R; Bulten, H J; Doets, M; Ent, R; Ferro-Luzzi, M; Geurts, D G; Harvey, M; Mul, F A

    2000-01-01

    A polarized sup 3 He internal target was employed at the internal target facility of the Amsterdam electron Pulse Stretcher and Storage ring (AmPS) at the Dutch National Institute for Nuclear and High-Energy Physics (NIKHEF). The unique features of internal targets such as chemical and isotopic purity, high and rapidly reversible polarization, and the ability to manipulate the target spin orientation were successfully demonstrated. A nuclear polarization of 0.50 (0.42) at a sup 3 He gas flow of 1.0 (2.0)x10 sup 1 sup 7 at s sup - sup 1 could be obtained. Operation at a nominal flow of 1x10 sup 1 sup 7 at s sup - sup 1 resulted in a target thickness of 0.7x10 sup 1 sup 5 at cm sup - sup 2 at a target temperature of 17 K.

  20. Quasielastic nucleon scattering using polarized beams and targets

    International Nuclear Information System (INIS)

    Haeusser, O.

    1990-07-01

    Inelastic scattering of polarized intermediate energy nucleons to continuum nuclear states is discussed with emphasis on recent results. Spin momentum correlations of protons in polarized targets of 3 He were observed for the first time. Complete spin observables in (p,p') show effects of the nuclear spin-isospin response and of an NN interaction modified by the nuclear medium. A comparison of Gamow Teller and isovector M1 giant resonance strengths in the sd shell provides evidence for large meson exchange current effects in the M1. (Author) (37 refs., 2 tabs., 9 figs.)

  1. Nonlinear Magnetic Phenomena in Highly Polarized Target Materials

    CERN Document Server

    Kiselev, Yu F

    2007-01-01

    The report introduces and surveys nonlinear magnetic phenomena which have been observed at high nuclear polarizations in polarized targets of the SMC and of the COMPASS collaborations at CERN. Some of these phenomena, namely the frequency modulation eect and the distortion of the NMR line shape, promote the development of the polarized target technique. Others, as the spin-spin cross-relaxation between spin subsystems can be used for the development of quantum statistical physics. New findings bear on an electromagnetic noise and the spectrally resolved radiation from LiD with negatively polarized nuclei detected by low temperature bolometers. These nonlinear phenomena need to be taken into account for achieving the ultimate polarizations.

  2. Irradiation cryostat for LiH and LiD polarized solid targets

    International Nuclear Information System (INIS)

    Goertz, S.

    1991-01-01

    Scattering experiments with polarized nucleon targets are an important tool to understand the nuclear spin structure. Pion photoproduction experiments on polarized protrons and neutrons as well as measurements of the neutron and deuteron formfactors will be performed at ELSA. 7 LiH and 6 LiD seem to be attractive target materials for these experiments, because they offer high proton and deuteron polarisation, respectively. Expecially 6 LiD has further very important advantages compared to the common deuteron target materials as d-Butanol and ND 3 . This work describes the mechanism of DNP (Dynamic Nuclear Polarization) in LiH and LiD and gives a view on the nature of the so-called paramagnetic impurities in these materials. In order to maximize the nuclear polarization, the production of these radicals have to take place under well defined temperature conditions. Therefore the first version of an irradiation cryostat was built and tested in regard to its cooling power and temperature adjustment. (orig.)

  3. The Spin Structure of the Neutron Determined Using a Polarized He-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, H

    2004-01-06

    Described is a study of the internal spin structure of the neutron performed by measuring the asymmetry in spin-dependent deep inelastic scattering of polarized electrons from nuclear polarized {sup 3}He. Stanford Linear Accelerator experiment E142's sample of 400 million scattering events collected at beam energies between 19 and 26 GeV led to the most precise measurement of a nucleon spin structure function to date. The {sup 3}He target represents a major advance in polarized target technology, using the technique of spin exchange with optically pumped rubidium vapor to produce a typical {sup 3}He nuclear polarization of 34% in a 30cm long target cell with a gas density of 2.3 x 10{sup 20} cm{sup -3}. The target polarization was measured to {+-}7% using an Adiabatic Fast Passage NMR system calibrated with the thermal equilibrium polarization of the protons in a sample of water. The relatively high polarization and target thickness were the result of the development of large volume glass target cells which had inherent nuclear spin relaxation times for the {sup 3}He gas of as long as 70 hours. A target cell production procedure is presented which focuses on special glass blowing techniques to minimize surface interactions with the {sup 3}He nuclei and careful gas purification and vacuum system procedures to reduce relaxation inducing impurities.

  4. Polarization transfer from polarized nuclear spin to μ- spin in muonic atom

    International Nuclear Information System (INIS)

    Kuno, Yoshitaka; Nagamine, Kanetada; Yamazaki, Toshimitsu.

    1987-02-01

    A theoretical study of polarization transfer from an initially-polarized nuclear spin to a μ - spin in a muonic atom is given. The switching of the hyperfine interaction at excited muonic states as well as at the ground 1s state is taken into account. The upper state of hyperfine doublet at the muonic 1s state is considered to proceed down to the lower state. It is found that as the hyperfine interaction becomes effective at higher excited muonic orbitals, a less extent of polarization is transferred from the nuclear spin to the μ - spin. The theoretical values obtained are compared with the recent experiment of μ - repolarization in a polarized 209 Bi target. (author)

  5. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-01-01

    A proposed design for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target

  6. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-05-01

    A proposed design for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target. 15 references, 10 figures

  7. Polarized targets and beams

    International Nuclear Information System (INIS)

    Meyer, W.

    1985-01-01

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  8. A technique for measurement of vector and tensor polarization in solid spin one polarized targets

    International Nuclear Information System (INIS)

    Kielhorn, W.F.

    1991-06-01

    Vector and tensor polarizations are explicitly defined and used to characterize the polarization states of spin one polarized targets, and a technique for extracting these polarizations from nuclear magnetic resonance (NMR) data is developed. This technique is independent of assumptions about spin temperature, but assumes the target's crystal structure induces a quadrupole interaction with the spin one particles. Analysis of the NMR signals involves a computer curve fitting algorithm implemented with a fast Fourier transform method which speeds and simplifies curve fitting algorithms used previously. For accurate curve fitting, the NMR electronic circuit must be modeled by the fitting algorithm. Details of a circuit, its model, and data collected from this circuit are given for a solid deuterated ammonia target. 37 refs., 19 figs., 3 tabs

  9. The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring

    International Nuclear Information System (INIS)

    Airapetian, A.; Akopov, N.; Akopov, Z.

    2005-01-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented

  10. The HERMES polarized hydrogen and deuterium gas target in the HERA electron storage ring

    International Nuclear Information System (INIS)

    Airapetian, A.; Akopov, N.; Akopov, Z.; Peking University, Beijing

    2004-08-01

    The HERMES hydrogen and deuterium nuclear-polarized gas targets have been in use since 1996 with the polarized electron beam of HERA at DESY to study the spin structure of the nucleon. Polarized atoms from a Stern-Gerlach Atomic Beam Source are injected into a storage cell internal to the HERA electron ring. Atoms diffusing from the center of the storage cell into a side tube are analyzed to determine the atomic fraction and the atomic polarizations. The atoms have a nuclear polarization, the axis of which is defined by an external magnetic holding field. The holding field was longitudinal during 1996-2000, and was changed to transverse in 2001. The design of the target is described, the method for analyzing the target polarization is outlined, and the performance of the target in the various running periods is presented. (orig.)

  11. A technique for measurement of vector and tensor polarization in solid spin one polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Kielhorn, W.F.

    1991-06-01

    Vector and tensor polarizations are explicitly defined and used to characterize the polarization states of spin one polarized targets, and a technique for extracting these polarizations from nuclear magnetic resonance (NMR) data is developed. This technique is independent of assumptions about spin temperature, but assumes the target's crystal structure induces a quadrupole interaction with the spin one particles. Analysis of the NMR signals involves a computer curve fitting algorithm implemented with a fast Fourier transform method which speeds and simplifies curve fitting algorithms used previously. For accurate curve fitting, the NMR electronic circuit must be modeled by the fitting algorithm. Details of a circuit, its model, and data collected from this circuit are given for a solid deuterated ammonia target. 37 refs., 19 figs., 3 tabs.

  12. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  13. Commissioning experiment of the polarized internal gas target with deuterium at ANKE/COSY

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Boxing [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Collaboration: ANKE-Collaboration

    2012-07-01

    In order to conduct the production experiments with polarized deuterium target and (un)polarized proton beam at ANKE/COSY, a commissioning experiment of the polarized internal target with deuterium is imperative. The commissioning experiment includes the measurements of both the vector (Q{sub y}) and tensor (Q{sub yy}) polarization of the deuterium gas target through the nuclear reactions with large and well known analyzing powers, which can be detected in ANKE. The dependence of the polarizations along the storage cell is also determined. The poster presents the physics case for the experiments with deuterium polarized internal target and the apparatus needed for the commissioning experiment, as well as the procedure of extraction for spin observables.

  14. Status of the hydrogen and deuterium atomic beam polarized target for NEPTUN experiment

    International Nuclear Information System (INIS)

    Balandikov, N.I.; Ershov, V.P.; Fimushkin, V.V.; Kulikov, M.V.; Pilipenko, Y.K.; Shutov, V.B.

    1995-01-01

    NEPTUN-NEPTUN-A is a polarized experiment at Accelerating and Storage Complex (UNK, IHEP) with two internal targets. Status of the atomic beam polarized target that is being developed at the Joint Institute for Nuclear Research, Dubna is presented. copyright 1995 American Institute of Physics

  15. Nuclear physics with internal targets in electron storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1986-01-01

    Two key experiments in nuclear physics will be discussed in order to illustrate the advantages of the internal target method and demonstrate the power of polarization techniques in electron scattering studies. The progress of internal target experiments will be discussed and the technology of internal polarized target development will be reviewed. 43 refs., 11 figs

  16. First use of a laser-driven polarized H/D target at the IUCF cooler

    International Nuclear Information System (INIS)

    Bailey, K.; Brack, J.; Cadman, R. V.; Cummings, W. J.; Fedchak, J.; Fox, B.; Gao, H.; Grosshauser, C.; Holt, R. J.; Jones, C.; Kinney, E.; Kowalczyk, R.; Lu, Z.-T.; Miller, M. A.; Nagengast, W.; Owen, B.; Rith, K.; Schmidt, F.; Schulte, E.; Sowinski, J.; Sperisen, F.; Stenger, J.; Thorsland, E.; Williamson, S.

    1997-01-01

    The HERMES Laser-Driven Target Task Force (Argonne, Erlangen and Illinois) is charged with developing a polarized H/D target for use in the HERA ring at DESY. Rapid progress was made in the beginning of 1996, leading us to the decision to test the target in a realistic experimental environment. In particular, polarizations of 0.6 and flows above 10 18 atoms·s -1 have been achieved on the bench. The laser-driven target and a simple detector system are currently installed in Cooler storage ring at the Indiana University Cyclotron Facility in order to test its applicability to nuclear physics experiments. Target polarizations are being measured using the rvec H(p, p) and rvec D(p, p) reactions. Initial tests were reasonably successful and the target is well along toward becoming viable for nuclear physics

  17. Stanford polarized atomic beam target

    International Nuclear Information System (INIS)

    Mavis, D.G.; Dunham, J.S.; Hugg, J.W.; Glavish, H.F.

    1976-01-01

    A polarized atomic beam source was used to produce an atomic hydrogen beam which was in turn used as a polarized proton target. A target density of 2 x 10'' atoms/cm 3 and a target polarization of 0.37 without the use of rf transitions were measured. These measurements indicate that a number of experiments are currently feasible with a variety of polarized target beams

  18. Local field in LiD polarized target material

    CERN Document Server

    Kisselev, Yu V; Baum, G; Berglund, P; Doshita, N; Gautheron, F; Görtz, S; Horikawa, N; Koivuniemi, J H; Kondo, K; Magnon, A; Meyer, Werner T; Reicherz, G

    2004-01-01

    We have experimentally studied the first and the second moments of D, **6Li and **7Li (I greater than 1/2) NMR lines in a granulated LiD- target material as a function of nuclear polarizations and the data has been compared with a theory elaborated by Abragam, Roinel and Bouffard for monocrystalline samples. The experiments were carried out in the large COMPASS twin-target at CERN. The static local magnetic field of the polarized nuclei was measured by frequency shift between the NMR-signals in the two oppositely polarized cells and lead to the first moment, whereas the investigation of the second moment was done through Gaussian approximation. The average field magnitude in granulated material was estimated 20% larger than the value given by the calculations for monocrystalline samples of cylindrical shape. The second moment shows a qualitative agreement with the theory but it is slightly larger at the negative than at the positive polarization. In a polarized mode, the moments depend on the saturated microw...

  19. Physics in the GeV region with polarized targets in electron storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1988-01-01

    There is evidence from the D(γ,p)n reaction that the meson-exchange model is failing in the GeV region. Surprisingly, it appears that the new (Dγ,p)n data favor the energy dependence of the nuclear chromodynamics model rather that of the meson-exchange model. Application of the polarization method to electron scattering studies is in its infancy, and it is potentially a very powerful technique. The internal target method coupled with laser-driven polarized targets should represent an important tool for nuclear physics

  20. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  1. Spin Interactions and Cross-checks of Polarization in NH$_{3}$ Target

    CERN Document Server

    Kiselev, Yu; Doshita, N; Gautheron, F; Hess, Ch; Iwata, T; Koivuniemi, J; Kondo, K; Magnon, A; Mallot, G; Michigami, T; Meyer, W; Reicherz, G

    2008-01-01

    We study the magnetic structure of irradiated ammonia (NH$_{3}$) polarized by Dynamic Nuclear Polarization method at 0.2 K and at 2.5 T field. In this material, the electron spins, induced by ionizing radiation, couple $^{14}$N and $^{1}$H spins by the indirect spin-spin interaction. As a result, the local frequencies of $^{1}$H-spins are varied depending on $^{14}$N spin polarizations and lead to an asymmetry in the proton signal. This asymmetry allowes a good detection of $^{14}$N spins directly on the proton Larmor frequency. In the long COMPASS target at CERN, we use the cross-checks between spectral asymmetries and integral polarizations to decrease the relative error for longitudinal target polarizations up to $\\pm$2.0%.

  2. Measurement of pzz of the laser-driven polarized deuterium target

    International Nuclear Information System (INIS)

    Jones, C.E.; Coulter, K.P.; Holt, R.J.; Poelker, M.; Potterveld, D.P.; Kowalczyk, R.S.; Buchholz, M.; Neal, J.; van den Brand, J.F.J.

    1993-01-01

    The question of whether nuclei are polarized as a result of H-H (D-D) spin-exchange collisions within the relatively dense gas of a laser-driven source of polarized hydrogen (deuterium) can be addressed directly by measuring the nuclear polarization of atoms from the source. The feasibility of using a polarimeter based on the D + T → n + 4 He reaction to measure the tensor polarization of deuterium in an internal target fed by the laser-driven source has been tested. The device and the measurements necessary to test the spin-exchange polarization theory are described

  3. Fusion of a polarized projectile with a polarized target

    International Nuclear Information System (INIS)

    Christley, J.A.; Johnson, R.C.; Thompson, I.J.

    1995-01-01

    The fusion cross sections for a polarized target with both unpolarized and polarized projectiles are studied. Expressions for the observables are given for the case when both nuclei are polarized. Calculations for fusion of an aligned 165 Ho target with 16 O and polarized 7 Li beams are presented

  4. Medium effects in DIS from polarized nuclear targets

    Energy Technology Data Exchange (ETDEWEB)

    Fanchiotti, Huner; Garcia Canal, Carlos A.; Tarutina, Tatiana [Universidad Nacional de La Plata, Departamento de Fisica, C.C. 67, La Plata (Argentina); Universidad Nacional de La Plata, IFLP(CONICET), C.C. 67, La Plata (Argentina); Vento, Vicente [Universidad de Valencia, Consejo Superior de Investigaciones Cientificas, Departamento de Fisica Teorica and Instituto de Fisica Corpuscular, Burjassot (Valencia) (Spain)

    2014-07-15

    The behavior of the nucleon structure functions in lepton nuclei deep inelastic scattering, both polarized and unpolarized, due to nuclear structure effects is reanalyzed. The study is performed in two schemes: an x-rescaling approach, and one in which there is an increase of sea quark components in the in-medium nucleon, related to the low-energy N-N interaction. In view of a recent interesting experimental proposal to study the behavior of the proton spin structure functions in nuclei we proceed to compare these approaches in an effort to enlighten the possible phenomenological interest of such difficult experiment. (orig.)

  5. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  6. Microwave-gated dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Bornet, Aurélien; Pinon, Arthur; Jhajharia, Aditya

    2016-01-01

    Dissolution dynamic nuclear polarization (D-DNP) has become a method of choice to enhance signals in nuclear magnetic resonance (NMR). Recently, we have proposed to combine cross-polarization (CP) with D-DNP to provide high polarization P((13)C) in short build-up times. In this paper, we show...

  7. Prospects for a deuterium internal target, tensor polarized by optical pumping: spin exchange

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-01-01

    The prospects for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) appropriate for nuclear physics studies in medium and high energy particle storage rings are discussed. Using the technique of electron spin exchange with an optically pumped sodium (or potassium) vapor, we hope to polarize deuterium at a rate approx. 10 17 atoms/sec. Predictions for the deuterium polarization for a particular target cell design will be presented leading to the identification of the required optical pumping power and cell wall depolarization probability to attain optimum performance. The technical obstacles to be surmounted in such a target design will also be discussed

  8. Electron scattering with polarized targets at TESLA

    International Nuclear Information System (INIS)

    Anselmino, M.; Aschenauer, E.C.; Belostotski, S.

    2000-11-01

    Measurements of polarized electron-nucleon scattering can be realized at the TESLA linear collider facility with projected luminosities that are about two orders of magnitude higher than those expected of other experiments at comparable energies. Longitudinally polarized electrons, accelerated as a small fraction of the total current in the e + arm of TESLA, can be directed onto a solid state target that may be either longitudinally or transversely polarized. A large variety of polarized parton distribution and fragmentation functions can be determined with unprecedented accuracy, many of them for the first time. A main goal of the experiment is the precise measurement of the x- and Q 2 -dependence of the experimentally totally unknown quark transversity distributions that will complete the information on the nucleon's quark spin structure as relevant for high energy processes. Comparing their Q 2 -evolution to that of the corresponding helicity distributions constitutes an important precision test of the predictive power of QCD in the spin sector. Measuring transversity distributions and tensor charges allows access to the hitherto unmeasured chirally odd operators in QCD which are of great importance to understand the role of chiral symmetry. The possibilities of using unpolarized targets and of experiments with a real photon beam turn TESLA-N into a versatile next-generation facility at the intersection of particle and nuclear physics. (orig.)

  9. Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Vivien E. [Blaise Pascal Univ., Aubiere (France)

    2013-10-01

    The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, having both a polarized beam and a highly efficient polarized target is essential. For the target, this means high polarization and high relative density of polarized material. A Hydrogen Deuteride (HD) target that presents both such characteristics has been developed first at Brookhaven National Lab (BNL) and brought to the Hall B of Jefferson Lab in 2008. The HD target has been shown to work successfully under a high intensity photon beam (BNL and Jefferson Lab). However, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the target was tested for the first time in its frozen spin mode under an electron beam at Jefferson Lab in 2012 during the g14 experiment. This dissertation presents the principles and usage procedures of this HD target. The polarimetry of this target with Nuclear Magnetic Resonance (NMR) during the electron beam tests is also discussed. In addition, this dissertation also describes another way to perform target polarimetry with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.

  10. Solid Polarized Targets and Applications

    International Nuclear Information System (INIS)

    Crabb, D. G.

    2008-01-01

    Examples are given of dynamically polarized targets in use today and how the subsystems have changed to meet the needs of todays experiments. Particular emphasis is placed on target materials such as ammonia and lithium deuteride. Recent polarization studies of irradiated materials such as butanol, deuterated butanol, polyethylene, and deuterated polyethylene are presented. The operation of two non-DNP target systems as well as applications of traditional DNP targets are briefly discussed

  11. A novel method to assay special nuclear materials by measuring prompt neutrons from polarized photofission

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J.M., E-mail: mueller@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States); Ahmed, M.W. [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States); Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707 (United States); Weller, H.R. [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States)

    2014-08-01

    A novel method of measuring the enrichment of special nuclear material is presented. Recent photofission measurements using a linearly polarized γ-ray beam were performed on samples of {sup 232}Th, {sup 233,235,238}U, {sup 237}Np, and {sup 239,240}Pu. Prompt neutron polarization asymmetries, defined to be the difference in the prompt neutron yields parallel and perpendicular to the plane of beam polarization divided by their sum, were measured. It was discovered that the prompt neutron polarization asymmetries differed significantly depending on the sample. Prompt neutrons from photofission of even–even (non-fissile) targets had significant polarization asymmetries (∼0.2 to 0.5), while those from odd-A (generally fissile) targets had polarization asymmetries close to zero. This difference in the polarization asymmetries could be exploited to measure the fissile versus non-fissile content of special nuclear materials, and potentially to detect the presence of fissile material during active interrogation. The proposed technique, its expected performance, and its potential applicability are discussed.

  12. A novel method to assay special nuclear materials by measuring prompt neutrons from polarized photofission

    International Nuclear Information System (INIS)

    Mueller, J.M.; Ahmed, M.W.; Weller, H.R.

    2014-01-01

    A novel method of measuring the enrichment of special nuclear material is presented. Recent photofission measurements using a linearly polarized γ-ray beam were performed on samples of 232 Th, 233,235,238 U, 237 Np, and 239,240 Pu. Prompt neutron polarization asymmetries, defined to be the difference in the prompt neutron yields parallel and perpendicular to the plane of beam polarization divided by their sum, were measured. It was discovered that the prompt neutron polarization asymmetries differed significantly depending on the sample. Prompt neutrons from photofission of even–even (non-fissile) targets had significant polarization asymmetries (∼0.2 to 0.5), while those from odd-A (generally fissile) targets had polarization asymmetries close to zero. This difference in the polarization asymmetries could be exploited to measure the fissile versus non-fissile content of special nuclear materials, and potentially to detect the presence of fissile material during active interrogation. The proposed technique, its expected performance, and its potential applicability are discussed

  13. Initial investigations of (np)-scattering with a polarized deuterium target at ANKE-COSY

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Boxing

    2015-07-01

    The understanding of the forces among nucleons is fundamental to the whole of nuclear and hadronic physics. The nucleon-nucleon (NN) scattering is the ideal probe to study the nuclear forces. The scattering amplitudes for the complete description of the NN interactions can be reconstructed from phase-shift analyses (PSA), which requires measurements with polarized experiments. The existing data allow to extract unambiguous proton-proton (pp) amplitudes below 2 GeV. However, there is very little known about the neutron-proton (np) system above 800 MeV nucleon energy. THE ANKE-COSY collaboration has embarked on a systematic program which aims to extract the np scattering amplitudes through the deuteron-proton charge-exchange process dp→{pp}{sub s}n. First part of the program via polarized deuteron beam and hydrogen target allowed successful measurement of np amplitudes up to 1.135 GeV nucleon energy, which is the maximum nucleon energy that can be accessed with deuteron beam at COSY. Via inverse kinematics, i.e. using a proton beam incident on a polarized deuterium target will allow to enhance the np study up to 2.8 GeV, the highest energy available at COSY. The method of inverse kinematics has to be validated prior to the production experiment. As the proof-of-principle (POP) experiment, the initial research has been conducted at proton energy T{sub p}=600 MeV using a polarized deuterium target. The projectiles were measured by two silicon tracking telescopes (STT) placed closed to the target and by the ANKE sub-detection systems. Four polarization modes of the deuterium target were employed. In order to increase the effective target thickness, polarized deuterium atoms produced by the atomic beam source (ABS) was filled into a storage cell, where the circulating COSY beam collides with the target. The target polarizations were measured using the proton-deuteron elastic reaction. The vector and tensor analyzing powers A{sub y} and A{sub yy} of pvector d

  14. Development Of A Hydrogen And Deuterium Polarized Gas Target For Application In Storage Rings

    International Nuclear Information System (INIS)

    Haeberli, Willy

    2009-01-01

    The exploration of spin degrees of freedom in nuclear and high-energy interactions requires the use of spin-polarized projectiles and/or spin-polarized targets. During the last two decades, the use of external beams from cyclotrons has to a large extent been supplanted by use of circulating beams stored in storage rings. In these experiments, the circulating particles pass millions of times through targets internal to the ring. Thus the targets need to be very thin to avoid beam loss by scattering out of the acceptance aperture of the ring.

  15. A highly polarized hydrogen/deuterium internal gas target embedded in a toroidal magnetic spectrometer

    International Nuclear Information System (INIS)

    Cheever, D.; Ihloff, E.; Kelsey, J.; Kolster, H.; Meitanis, N.; Milner, R.; Shinozaki, A.; Tsentalovich, E.; Zwart, T.; Ziskin, V.; Xiao, Y.; Zhang, C.

    2006-01-01

    A polarized hydrogen/deuterium internal gas target has been constructed and operated at the internal target region of the South Hall Ring (SHR) of the MIT-Bates Linear Accelerator Center to carry out measurements of spin-dependent electron scattering at 850MeV. The target used an Atomic Beam Source (ABS) to inject a flux of highly polarized atoms into a thin-walled, coated storage cell. The polarization of the electron beam was determined using a Compton laser backscattering polarimeter. The target polarization was determined using well-known nuclear reactions. The ABS and storage cell were embedded in the Bates Large Acceptance Toroidal Spectrometer (BLAST), which was used to detect scattered particles from the electron-target interactions. The target has been designed to rapidly (∼8h) switch operation from hydrogen to deuterium. Further, this target was the first to be operated inside a magnetic spectrometer in the presence of a magnetic field exceeding 2kG. An ABS intensity 2.5x10 16 at/s and a high polarization (∼70%) inside the storage cell have been achieved. The details of the target design and construction are described here and the performance over an 18 month period is reported

  16. Polarized target physics at the Bonn electron accelerators

    International Nuclear Information System (INIS)

    Meyer, W.

    1988-12-01

    At the BONN 2.5 GeV electron synchrotron experiments with polarized nucleon targets have a long tradition. Starting with measurements of the target asymmetry in single pion photoproduction off polarized protons, resp. neutrons, the experiments have been concentrated on photodisintegration measurements of polarized deuterons. Parallel to these activities a considerable progress in the field of the target technology, e.g. cryogenics and target materials, has been made, by which all the measurements have profitted enormously. Especially the development of the new target material ammonia has allowed the first use of a polarized deuteron (ND 3 ) target in an intense electron beam. The construction of a frozen spin target, which will be used in combination with a tagged polarized photon beam, makes a new generation of polarized target experiments in photon induced reactions possible. Together with electron scattering off polarized deuterons and neutrons they will be a main activity in the physics program at the new stretcher accelerator ELSA in BONN. (orig.)

  17. Nuclear spin polarized alkali beams (Li and Na): Production and acceleration

    International Nuclear Information System (INIS)

    Jaensch, H.; Becker, K.; Blatt, K.; Leucker, H.; Fick, D.

    1987-01-01

    Recent improvements of the Heidelberg source for polarized heavy ions (PSI) are described. By means of optical pumping in combination with the existing multipole separation magnet the beam figure of merit (polarization 2 x intensity) was doubled. 7 Li and 23 Na atomic beams can now be produced in pure hyperfine magnetic substates. Fast switching of the polarization is achieved by an adiabatic medium field transition. The hyperfine magnetic substate population is determined by laser-induced fluorescence spectroscopy. In routine operation atomic beams with nuclear polarization p α ≥0.85 (α=z, zz) are obtained. The acceleration of polarized 23 Na - ions by a 12 MV tandem accelerator introduces a new problem: the energy at the terminal stripper foil is not sufficient to produce a usable yield of naked ions. For partially stripped ions hyperfine interaction of the remaining electrons with the nuclear spin reduces the nuclear polarization. Using in addition the Heidelberg postaccelerator 23 Na 9+ beams of energies between 49 and 184 MeV were obtained with an alignment on target of P zz ≅0.45. 7 Li beams have also been accelerated up to 45 MeV with an alignment of P zz =0.69. (orig.)

  18. Nuclear physics with polarized particles

    CERN Document Server

    Paetz gen Schieck, Hans

    2012-01-01

    The measurement of spin-polarization observables in reactions of nuclei and particles is of great utility and advantage when the effects of single-spin sub-states are to be investigated. Indeed, the unpolarized differential cross-section encompasses the averaging over the spin states of the particles, and thus loses details of the interaction process. This introductory text combines, in a single volume, course-based lecture notes on spin physics and on polarized-ion sources with the aim of providing a concise yet self-contained starting point for newcomers to the field, as well as for lecturers in search of suitable material for their courses and seminars. A significant part of the book is devoted to introducing the formal theory-a description of polarization and of nuclear reactions with polarized particles. The remainder of the text describes the physical basis of methods and devices necessary to perform experiments with polarized particles and to measure polarization and polarization effects in nuclear rea...

  19. Polarized Electron Beams for Nuclear Physics at the MIT Bates Accelerator Center

    CERN Document Server

    Farkhondeh, Manouchehr; Franklin, Wilbur; Ihloff, Ernie; McAllister, Brian; Milner, Richard; North, William; Tschalär, C; Tsentalovich, Evgeni; Wang, Defa; Wang, Dong; Wang, Fuhua; Zolfaghari, Abbasali; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    The MIT Bates Accelerator Center is delivering highly polarized electron beams to its South Hall Ring for use in Nuclear Physics Experiments. Circulating electron currents in excess of 200 mA with polarization of 70% are scattered from a highly polarized, but very thin atomic beam source deuterium target. At the electron source a compact diode laser creates photoemission of quasi-CW mA pulses of polarized electrons at low duty factors from a strained GaAs photocathode. Refurbished RF transmitters provide power to the 2856 MHz linac, accelerating the beam to 850 MeV in two passes before injection into the South Hall Ring. In the ring a Siberian snake serves to maintain a high degree of longitudinal polarization at the BLAST scattering target. A Compton laser back-scattering polarimeter measures the electron beam polarization with a statistical acuracy of 6% every 15 minutes.

  20. Performance of a hydrogen/deuterium polarized gas target in a storage ring

    International Nuclear Information System (INIS)

    Buuren, L.D. van; Szczerba, D.; Brand, J.F.J. van den; Bulten, H.J.; Ferro-Luzzi, M.; Klous, S.; Kolster, H.; Lang, J.; Mul, F.A.; Poolman, H.R.; Simani, M.C.

    2001-01-01

    The performance of a high-density polarized hydrogen/deuterium gas target internal to a medium-energy electron storage ring is presented. Compared to our previous electron scattering experiments with tensor-polarized deuterium at NIKHEF (Zhou et al., Nucl. Instr. and Meth. A 378 (1996) 40; Ferro-Luzzi et al., Phys. Rev. Lett. 77 (1996) 2630; Van den Brand et al., Phys. Rev. Lett. 78 (1997) 1235; Bouwhuis et al., Phys. Rev. Lett. 82 (1999) 687; Zhou et al., Phys. Rev. Lett. 82 (1999) 687) the target figure of merit, (polarization) 2 xluminosity, was improved by more than an order of magnitude. The target density was increased by upgrading the flux of nuclear-polarized atoms injected into the storage cell and by using a longer (60 cm) and colder (∼70 K) storage cell. A maximal target thickness of 1.2 (1.1)±0.1x10 14 nuclei/cm 2 was achieved with deuterium (hydrogen). With typical beam currents of 110 mA, this corresponds to a luminosity of about 8.4 (7.8)±0.8x10 31 e - nuclei cm -2 s -1 . By reducing the molecular background and using a stronger target guide field, a higher polarization was achieved. The target was used in combination with a 720 MeV polarized electron beam stored in the AmPS ring (NIKHEF) to measure spin observables in electron-proton and electron-deuteron scattering. Scattered electrons were detected in a large acceptance magnetic spectrometer. Ejected hadrons were detected in a single time-of-flight scintillator array. The product of beam and target vector polarization, P e P t , was determined from the known spin-correlation parameters of e'p quasi-elastic (or elastic) scattering. With the deuterium (hydrogen) target, values up to P e P t =0.49±0.03 (0.32±0.03) were obtained with an electron beam polarization of P e =0.62±0.04 (0.56±0.03) as measured with a Compton backscattering polarimeter (Passchier et al., Nucl. Instr. and Meth. A 414 (1998) 4988). From this, we deduce a cell-averaged target polarization of P t =0.78±0.07 (0.58±0

  1. High-Frequency Dynamic Nuclear Polarization in the Nuclear Rotating Frame

    DEFF Research Database (Denmark)

    Farrar, C. T.; Hall, D. A.; Gerfen, G. J.

    2000-01-01

    A proton dynamic nuclear polarization (DNP) NMR signal enhancement (ϵ) close to thermal equilibrium, ϵ = 0.89, has been obtained at high field (B0 = 5 T, νepr = 139.5 GHz) using 15 mM trityl radical in a 40:60 water/glycerol frozen solution at 11 K. The electron-nuclear polarization transfer...... is performed in the nuclear rotating frame with microwave irradiation during a nuclear spin-lock pulse. The growth of the signal enhancement is governed by the rotating frame nuclear spin–lattice relaxation time (T1ρ), which is four orders of magnitude shorter than the nuclear spin–lattice relaxation time (T1n......). Due to the rapid polarization transfer in the nuclear rotating frame the experiment can be recycled at a rate of 1/T1ρ and is not limited by the much slower lab frame nuclear spin–lattice relaxation rate (1/T1n). The increased repetition rate allowed in the nuclear rotating frame provides an effective...

  2. Nuclear polarization and neutrons

    International Nuclear Information System (INIS)

    Glaettli, H.

    1985-01-01

    Different possibilities for the use of polarized nuclei in thermal neutron scattering on condensed matter are reviewed. Highly polarized nuclei are the starting point for studying dipolar magnetic order. Systematic measurement of spin-dependent scattering lengths is possible on samples with polarized nuclei. Highly polarized hydrogen should help to unravel complicated structures in chemistry and biology. The use of polarized proton targets as an energy-independent neutron polarizer in the thermal and epithermal region should be considered afresh. (author)

  3. Dynamic nuclear polarization tests in some polymers for polarized targets

    International Nuclear Information System (INIS)

    Brandt, B. van den; Hautle, P.; Konter, J.A.; Mango, S.; Bunyatova, E.I.

    1998-01-01

    The results of dynamic polarization tests in polyethylene (PE) and ethylene propylene copolymer (EPC), doped with the stable free radical 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), are presented. Sizable proton polarizations have been achieved in a magnetic field of 2.5 T at a temperature below 0.3 K and 5T at 1 K

  4. Superconducting polarizing magnet for a movable polarized target

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Bartenev, V.D.; Blinov, N.A.

    1998-01-01

    The superconducting polarizing magnet was constructed for the JINR (Dubna) movable polarized target (MPT) with working volume 200 mm long and 30 mm in diameter. The magnet provides a polarizing magnetic field up to 6 T in the centre with the uniformity of 4.5 x 10 -4 in the working volume of the target. The magnet contains a main solenoidal winding 558 mm long and 206/144 mm in diameters, and compensating and correcting winding placed at its ends. The windings are made of a NbTi wire, impregnated with the epoxy resin and placed in the horizontal cryostat. The diameter of the 'warm' aperture of the magnet cryostat is 96 mm. The design and technology of the magnet winding are described. Results of the magnetic field map measurements, using a NMR-magnetometer are given. A similar magnet constructed at DAPNIA, CEA/Saclay (France), represented a model for the present development. The MPT array is installed in the beam line of polarized neutrons produced by break-up of polarized deuterons extracted from the synchrophasotron of the Laboratory of High Energies (LHE), JINR (Dubna)

  5. Nuclear polarization in muonic 208Pb

    International Nuclear Information System (INIS)

    Haga, Akihiro; Tanaka, Yasutoshi; Horikawa, Yataro

    2002-01-01

    We calculate nuclear-polarization energy shifts in muonic 208 Pb. We employ a relativistic field-theoretical calculation and evaluate the ladder, cross, and seagull terms of the two-photon exchange diagrams in both the Feynman and Coulomb gauges. Gauge independence is very well satisfied with the calculated nuclear-polarization energies. Using these results, we analyze fine-structure splitting energies of muonic 208 Pb because of the presence of the persisting discrepancies between experiment and calculation. The present nuclear-polarization energies explain about half of the anomaly in the Δ2p fine-structure splitting energy, and only one-fourth of the anomaly in the Δ3p fine-structure splitting energy

  6. Remote Monitoring of the Polarized Target's Control for E1039

    Science.gov (United States)

    Fox, David; SeaQuest Collaboration

    2017-09-01

    The 1039 experiment at FNAL will further our understanding of spin structure by measuring the contribution that sea quarks orbital angular momentum provide to overall nucleon spin. It is accepted that the valence-quarks of nucleons only provide 30% of the total nucleon spin. To study the nucleon's sea quark contribution, E1039 will use the Drell-Yan process by colliding 120 GeV un-polarized beam protons with polarized ammonia targets of hydrogen and deuterium. The asymmetric spin distributions of resulting dimuons will be measured. These asymmetries are sensitive, among other effects, to the orbital angular momentum contribution of the sea quarks. The polarized target requires a multi-stage vacuum pump located near the target. Since access to its present controls will not be possible during running, remote control and monitoring upgrades were required. A secondary control panel was purchased and tested. Information from the programmable logic controller (PLC) must be fed into our data stream to enable remote monitoring and to signal possible alarm conditions. This solution and the program created using explicit TCP/IP messaging to extract data tags from the PLC and log it within our databases will be presented. Supported by U.S. D.O.E. Medium Energy Nuclear Physics under Grant DE-FG02-03ER41243.

  7. NUCLEON POLARIZATION IN 3-BODY MODELS OF POLARIZED LI-6

    NARCIS (Netherlands)

    SCHELLINGERHOUT, NW; KOK, LP; COON, SA; ADAM, RM

    1993-01-01

    Just as He-3 --> can be approximately characterized as a polarized neutron target, polarized Li-6D has been advocated as a good isoscalar nuclear target for the extraction of the polarized gluon content of the nucleon. The original argument rests upon a presumed ''alpha + deuteron'' picture of Li-6,

  8. Nuclear polarization in hydrogenlike 82208Pb81+

    International Nuclear Information System (INIS)

    Haga, Akihiro; Tanaka, Yasutoshi; Horikawa, Yataro

    2002-01-01

    We calculate nuclear-polarization energy shifts for the hydrogenlike 82 208 Pb 81+ . The retarded transverse part as well as the longitudinal part is taken into account as the electromagnetic interaction between an electron and the nucleus. With a finite charge distribution for the nuclear ground state and the random-phase approximation to describe the nuclear excitations, we obtain nuclear-polarization energy of the 1s 1/2 state as -38.2 (-37.0) meV in the Feynman (Coulomb) gauge. For the 2s 1/2 , 2p 1/2 , and 2p 3/2 states, they are -6.7 (-6.4), -0.2 (-0.2), and +0.0 (+0.0) meV, respectively. The transverse contribution is small in comparison with the longitudinal nuclear-polarization correction. It is about 12% both for the 1s 1/2 and 2s 1/2 states. The seagull term in the two-photon exchange diagrams is also shown to be quite important to obtain the gauge-invariant nuclear-polarization energies

  9. Polarized target as analyzer of polarization of particle beam with spin Ssub(B)=1/2

    International Nuclear Information System (INIS)

    Golovin, V.M.; Golubeva, M.B.; Gornushkin, Yu.A.

    1982-01-01

    A possibility of using a polarized target as a target analyzer of beam particle polarization (Ssub(T)=1/2 Psub(T) vector) so that all the components of beam polarization Ssub(B)=1/2 anti Psub(B) should be determined in one experiment, is revealed. A proton polarization target is considered as a polarization target-analyzer. Asub(SK) and Asub(kk) asymmetry tensors are considered for elastic pp and pn scatterings by amplitudes of NN scattering which attain the values of 0.3-0.9 at 95-400 MeV. Asub(kk)(pp) and Asub(sk)(pp) are experimentally measured in the 445-576 MeV range. It is found that their highest absolute values are equal to 0.4-0.5 and 0.2-0.3 respectively. Elastic proton scattering on polarized electrons may be another variant of using polarized target for measuring proton beam polarization. Asub(sk) and Asub(kk) components of asymmetry tensor of elastic pe scattering are graphically presented. A possibility of using a polarized charge with spin I=1/2 as a target-analyzer of particle beam polarization is marked

  10. Polarized proton target-IV. Operations manual

    International Nuclear Information System (INIS)

    Hill, D.; Fletcher, O.; Moretti, A.; Onesto, F.

    1976-01-01

    Standard operating procedures are presented for the vacuum, cryogenic, and electronic systems of a polarized proton target. The systems are comprised of (1) a target cryostat; (2) a 4 He pumping system; (3) a 3 He pumping system; (4) a microwave system; (5) a magnet and power supply; (6) a computerized polarization monitor; and (7) miscellaneous auxiliary equipment

  11. The control system of the polarized internal target of ANKE at COSY

    Energy Technology Data Exchange (ETDEWEB)

    Kleines, H. [Zentralinstitut fuer Elektronik, Forschungszentrum Juelich, 52425 Juelich (Germany); Sarkadi, J. [Zentralinstitut fuer Elektronik, Forschungszentrum Juelich, 52425 Juelich (Germany); Zwoll, K. [Zentralinstitut fuer Elektronik, Forschungszentrum Juelich, 52425 Juelich (Germany); Engels, R. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Grigoryev, K. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Mikirtychyants, M. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Nekipelov, M. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Rathmann, F. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Seyfarth, H. [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany)]. E-mail: h.seyfarth@fz-juelich.de; Kravtsov, P. [St. Petersburg Nuclear Physics Institute, 188350 Gatchina (Russian Federation); Vasilyev, A. [St. Petersburg Nuclear Physics Institute, 188350 Gatchina (Russian Federation)

    2006-05-10

    The polarized internal target for the ANKE experiment at the Cooler Synchrotron COSY of the Forschungszentrum Juelich utilizes a polarized atomic beam source to feed a storage cell with polarized hydrogen or deuterium atoms. The nuclear polarization is measured with a Lamb-shift polarimeter. For common control of the two systems, industrial equipment was selected providing reliable, long-term support and remote control of the target as well as measurement and optimization of its operating parameters. The interlock system has been implemented on the basis of SIEMENS SIMATIC S7-300 family of programmable logic controllers. In order to unify the interfacing to the control computer, all front-end equipment is connected via the PROFIBUS DP fieldbus. The process control software was implemented using the Windows-based WinCC toolkit from SIEMENS. The variety of components, to be controlled, and the logical structure of the control and interlock system are described. Finally, a number of applications derived from the present development to other, new installations are briefly mentioned.

  12. The control system of the polarized internal target of ANKE at COSY

    Science.gov (United States)

    Kleines, H.; Sarkadi, J.; Zwoll, K.; Engels, R.; Grigoryev, K.; Mikirtychyants, M.; Nekipelov, M.; Rathmann, F.; Seyfarth, H.; Kravtsov, P.; Vasilyev, A.

    2006-05-01

    The polarized internal target for the ANKE experiment at the Cooler Synchrotron COSY of the Forschungszentrum Jülich utilizes a polarized atomic beam source to feed a storage cell with polarized hydrogen or deuterium atoms. The nuclear polarization is measured with a Lamb-shift polarimeter. For common control of the two systems, industrial equipment was selected providing reliable, long-term support and remote control of the target as well as measurement and optimization of its operating parameters. The interlock system has been implemented on the basis of SIEMENS SIMATIC S7-300 family of programmable logic controllers. In order to unify the interfacing to the control computer, all front-end equipment is connected via the PROFIBUS DP fieldbus. The process control software was implemented using the Windows-based WinCC toolkit from SIEMENS. The variety of components, to be controlled, and the logical structure of the control and interlock system are described. Finally, a number of applications derived from the present development to other, new installations are briefly mentioned.

  13. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  14. Report of the workshop on polarized target materials

    International Nuclear Information System (INIS)

    Court, G.R.; Crabb, D.G.; Fernow, R.C.; Fitzgerald, D.H.; Gray, S.W.; Hill, D.A.; Jarmer, J.J.; Krisch, A.D.; Krumpolic, M.; Niinikoski, T.O.

    1978-01-01

    The workshop concentrated on an examination of: radiation damage in polarized target materials, a survey of clean target materials, and dynamic polarization results with the new stable Cr(V) complexes. In addition to the normal polarized target experts with backgrounds in high energy physics, low temperature physics and solid state physics, scientists with strong backgrounds in various areas of chemistry and radiation damage physics were included, as these areas were quite crucial to the workshop goals. However, it is clear that much closer collaboration with experts in these areas will be necessary to find polarized target materials that allow more precise experiments on high P 2 perpendicular processes and inclusive processes

  15. Implementation of the Polarized HD target at the Thomas Jefferson National Accelerator Facility

    International Nuclear Information System (INIS)

    Chaden Djalali; David Tedeschi

    2007-01-01

    The original goal of this proposal was to study frozen spin polarized targets (HD target and other technologies) and produce a conceptual design report for the implementation of such a target in the HALL B detector of the Thomas Jefferson National Accelerator Facility (JLab). During the first two years of the proposal, we came to the conclusion that the best suited target for JLab was a frozen spin target and helped with the design of such a target. We have not only achieved our original goal but have exceeded it by being involved in the actual building and testing of parts the target. The main reason for this success has been the hiring of a senior research associate, Dr. Oleksandr Dzyubak, who had more than 10 years of experience in the field of frozen spin polarized targets. The current grant has allowed the USC nuclear physics group to strengthen its role in the JLab collaboration and make important contribution to both the detector development and the scientific program

  16. Initial research of np scattering with polarized deuterium target at ANKE/COSY

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Boxing [Institut fuer Kernphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Institute of Modern Physics, Chinese Academy of Sciences, 73000 Lanzhou (China); Collaboration: ANKE-Collaboration

    2014-07-01

    With the goal of understanding the nuclear forces, the ANKE collaboration has been working on a systematic NN spin program for many years. Due to the lack of free neutron sources experimental data of np scattering are very rare, especially at higher energies. It has been shown that using phase shift analysis (PSA) it is possible to reconstruct np scattering amplitudes from the spin observables of pd → {pp}{sub {sup 1}S{sub 0}}n charge-exchange reaction. So far experiments were conducted using polarized deuteron beams and hydrogen target, which led to valuable results. To extend the research up to the highest nucleon energy available at COSY (2.8 GeV), proton beam and polarized deuterium target will be used. This talk presents the results of the commissioning experiment of a deuterium target at ANKE with emphasis on the initial research of charge-exchange reaction.

  17. Robust techniques for polarization and detection of nuclear spin ensembles

    Science.gov (United States)

    Scheuer, Jochen; Schwartz, Ilai; Müller, Samuel; Chen, Qiong; Dhand, Ish; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2017-11-01

    Highly sensitive nuclear spin detection is crucial in many scientific areas including nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), and quantum computing. The tiny thermal nuclear spin polarization represents a major obstacle towards this goal which may be overcome by dynamic nuclear spin polarization (DNP) methods. The latter often rely on the transfer of the thermally polarized electron spins to nearby nuclear spins, which is limited by the Boltzmann distribution of the former. Here we utilize microwave dressed states to transfer the high (>92 % ) nonequilibrium electron spin polarization of a single nitrogen-vacancy center (NV) induced by short laser pulses to the surrounding 13C carbon nuclear spins. The NV is repeatedly repolarized optically, thus providing an effectively infinite polarization reservoir. A saturation of the polarization of the nearby nuclear spins is achieved, which is confirmed by the decay of the polarization transfer signal and shows an excellent agreement with theoretical simulations. Hereby we introduce the polarization readout by polarization inversion method as a quantitative magnetization measure of the nuclear spin bath, which allows us to observe by ensemble averaging macroscopically hidden polarization dynamics like Landau-Zener-Stückelberg oscillations. Moreover, we show that using the integrated solid effect both for single- and double-quantum transitions nuclear spin polarization can be achieved even when the static magnetic field is not aligned along the NV's crystal axis. This opens a path for the application of our DNP technique to spins in and outside of nanodiamonds, enabling their application as MRI tracers. Furthermore, the methods reported here can be applied to other solid state systems where a central electron spin is coupled to a nuclear spin bath, e.g., phosphor donors in silicon and color centers in silicon carbide.

  18. Broad-aperture polarized proton target with arbitrary orientation of polarization vector

    International Nuclear Information System (INIS)

    Belyaev, A.A.; Get'man, V.A.; Derkach, A.Ya.; Karnaukhov, I.M.; Lukhanin, A.A.; Razumnyj, A.A.; Sorokin, P.V.; Sporov, E.A.; Telegin, Yu.N.; Trotsenko, V.I.

    1985-01-01

    Polarized proton target with the Helmholtz broad-aperture superconducting magnetic system is described. Axial aperture α=95 deg, inter-coil access angle β=23 deg. The structure of the target allows various versions of the installation what make sure an arbitrary orientation of polarization vector. The 0.1 W cold output 3 He evaporation cryostat was used to obtain the work temperature 0.5 K allowing quick transformation to a 3 He- 4 He dilution refrigerator. Results of the study are given on the dynamical proton polarization in 1,2-propylenglycol with various stable Cr 5 complexes

  19. Polarized proton and deuteron solid HD targets

    International Nuclear Information System (INIS)

    Honig, A.

    1977-01-01

    A decade has now elapsed since HD was proposed as a polarized proton and deuteron target with exceptionally desirable properties. These include a very high free proton proportion, independently polarizable proton and deuteron systems, and a ''frozen-spin'' mode of operation which allows separation of the functions of production and utilization of the highly polarized target. A discussion is given of what can be expected of the polarized HD system right now, without further research. The basic features of solid HD pertinent to its use as a ''frozen-spin'' target are outlined, then a summary is given of the particular experimental results which support the contention that the target will perform successfully, and finally, some feasible operating modes and the expected performances from them are presented

  20. Ejectile polarization and nuclear orbitals

    International Nuclear Information System (INIS)

    Ohnishi, A.; Maruyama, T.; Horiuchi, H.

    1992-01-01

    Ejectile polarization phenomena are studied by the use of 'Quantum Molecular Dynamics plus external mean field' model. It is shown that the far-side contribution increases as the incident energy increases or the target charge decreases. The incident energy and the target dependence of ejectile polarization data is reproduced qualitatively. The near- and far-side contributions themselves are calculated to be almost monotone functions of ejectile momentum as is predicted in a simple projectile fragmentation scheme without the assumption that the linear and angular momentum transfers are negligible, and their statistical average results in various shapes in ejectile polarization

  1. NMR parallel Q-meter with double-balanced-mixer detection for polarized target experiments

    International Nuclear Information System (INIS)

    Boissevain, J.; Tippens, W.B.

    1983-01-01

    A constant-voltage, parallel-tuned nuclear magnetic resonance (NMR) circuit, patterned after a Liverpool design, has been developed for polarized target experiments. Measuring the admittance of the resonance circuit allows advantageous use of double-balanced mixer detection. The resonant circuit is tolerant of stray capacitance between the NMR coil and the target cavity, thus easing target-cell-design constraints. The reference leg of the circuit includes a voltage-controlled attenuator and phase shifter for ease of tuning. The NMR output features a flat background and has good linearity and stability

  2. Polarized proton target with horizontal spin orientation

    International Nuclear Information System (INIS)

    Bunyatova, Eh.I.; Kiselev, Yu.F.; Kozlenko, N.G.

    1988-01-01

    Proton target, the polarization vector of which may be arbitrary oriented in horizontal plane relatively to the beam, is developed and tested. 70% value of polarization is obtained. 0.6 K temperature is acquired through 3 He pumping out continuous cycle. 1.2-propylene glycol - Cr(V) was used as working medium. Magnetic system is made in the form of Helmholtz sperconducting coils with working curren close to critical one. Target polarization is measured by NMR technique using original system of proton signal processing

  3. Recent progress in the development of a polarized proton target for reactions with radioactive ion beams

    International Nuclear Information System (INIS)

    Urrego-Blanco, J.P.; Bingham, C.R.; Brandt, B. van den; Galindo-Uribarri, A.; Gomez del Campo, J.; Hautle, P.; Konter, J.A.; Padilla-Rodal, E.; Schmelzbach, P.A.

    2007-01-01

    Polarization observables in nuclear reactions with stable beams have provided important information concerning structural properties of nuclei and reaction mechanisms and hold great promise in the context of exotic nuclei. We report on the development of a polarized target based on plastic foils of 20-200 μm thickness to be used with radioactive ion beams. The operation of such a target requires a moderately high magnetic field and very low temperatures. The plastic foil is placed inside a chamber attached to the mixing chamber of a 3 He- 4 He dilution refrigerator. Cooling of the foil is achieved via a superfluid film of 4 He that can be supplied through two capillaries. The chamber has two thin, highly uniform silicon nitride windows. An NMR coil is attached to the target to monitor the polarization. Results of a first test to characterize the target system, using the elastic scattering of 38 MeV 12 C by protons in inverse kinematics are presented

  4. Long-Lifetime Low-Scatter Neutron Polarization Target

    International Nuclear Information System (INIS)

    Richardson, Jonathan M.

    2004-01-01

    Polarized neutrons scattering is an important technology for characterizing magnetic and other materials. Polarized helium three (P-3He) is a novel technology for creating polarized beams and, perhaps more importantly, for the analysis of polarization in highly divergent scattered beams. Analysis of scattered beams requires specialized targets with complex geometries to ensure accurate results. Special materials and handling procedures are required to give the targets a long useful lifetime. In most cases, the targets must be shielded from stray magnetic fields from nearby equipment. SRL has developed and demonstrated hybrid targets made from glass and aluminum. We have also developed and calibrated a low-field NMR system for measuring polarization lifetimes. We have demonstrated that our low-field system is able to measure NMR signals in the presence of conducting (metallic) cell elements. We have also demonstrated a non-magnetic valve that can be used to seal the cells. We feel that these accomplishments in Phase I are sufficient to ensure a successful Phase II program. The commercial market for this technology is solid. There are over nine neutron scattering centers in the US and Canada and over 22 abroad. Currently, the US plans to build a new $1.4B scattering facility called the Spallation Neutron Source (SNS). The technology developed in this project will allow SRL to supply targets to both existing and future facilities. SRL is also involved with the application of P-3He to medical imaging

  5. Polarized deuteron elastic scattering from a polarized proton target

    International Nuclear Information System (INIS)

    Schmelzer, R.; Kuiper, H.; Schoeberl, M.; Berber, S.; Hilmert, H.; Koeppel, R.; Pferdmenges, R.; Zankel, H.

    1983-01-01

    Measurements are reported of the spin correlation parameter Cy,y for the elastic scattering of 10.0 MeV vector polarized deuterons from a polarized proton target at five CM angles (76 0 ,85 0 ,98 0 ,115 0 ,132 0 ). The experimental results are compared with different predictions. A Faddeev type calculation on the basis of local potentials also including approximate Coulomb distortion is favoured by our experimental results. (orig.)

  6. Nuclear studies at TUNL using polarized neutron beams

    International Nuclear Information System (INIS)

    Walter, R.L.; Howell, C.R.; Tornow, W.

    1992-01-01

    Experimental data obtained using polarized neutron beams has proven to be essential for determining the nucleon-nucleon and the nucleon-nucleus interaction. The present paper reviews the experimental methods and some results of the Triangle Universities Nuclear Laboratory for a variety of polarization experiments involving neutron elastic scattering. A brief introduction to the nucleon-nucleon problem and its relation to the three-nucleon problem is presented; data for n-p and n-d analyzing powers are highlighted. Measurements involving heavier targets ( 93 Nb and 208 Pb) and their connection to the development of conventional and dispersive optical models are shown. The importance of the dispersive model for 27 Al in relation to conclusions about the nucleon-nucleus spin-spin potential is presented. Comparisons of microscopic models to data for 10 B and 28 Si are described

  7. Polarized deuteron elastic scattering from a polarized proton target

    Energy Technology Data Exchange (ETDEWEB)

    Schmelzer, R.; Kuiper, H.; Schoeberl, M.; Berber, S.; Hilmert, H.; Koeppel, R.; Pferdmenges, R. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Physikalisches Inst.); Zankel, H. (Graz Univ. (Austria). Inst. fuer Theoretische Physik)

    1983-01-13

    Measurements are reported of the spin correlation parameter Cy,y for the elastic scattering of 10.0 MeV vector polarized deuterons from a polarized proton target at five CM angles (76/sup 0/,85/sup 0/,98/sup 0/,115/sup 0/,132/sup 0/). The experimental results are compared with different predictions. A Faddeev type calculation on the basis of local potentials also including approximate Coulomb distortion is favoured by our experimental results.

  8. H- ion current from a polarized vapor target

    International Nuclear Information System (INIS)

    Cornelius, W.D.

    1984-01-01

    A method of determining the polarization transferred to hydrogen atoms in charge-exchange reactions is outlined. The method also provides a means of determining target polarizations once the polarization transfer function is known

  9. Core Technology Development of Nuclear spin polarization

    International Nuclear Information System (INIS)

    Yoo, Byung Duk; Gwon, Sung Ok; Kwon, Duck Hee; Lee, Sung Man

    2009-12-01

    In order to study nuclear spin polarization, we need several core technologies such as laser beam source to polarize the nuclear spin, low pressured helium cell development whose surface is essential to maintain polarization otherwise most of the polarized helium relaxed in short time, development of uniform magnetic field system which is essential for reducing relaxation, efficient vacuum system, development of polarization measuring system, and development of pressure raising system about 1000 times. The purpose of this study is to develop resonable power of laser system, that is at least 5 watt, 1083 nm, 4GHz tuneable. But the limitation of this research fund enforce to develop amplifying system into 5 watt with 1 watt system utilizing laser-diod which is already we have in stock. We succeeded in getting excellent specification of fiber laser system with power of 5 watts, 2 GHz linewidth, more than 80 GHz tuneable

  10. On the thermal properties of polarized nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Montasser, S.S.; Ramadan, S.

    1979-08-01

    The thermal properties of polarized nuclear matter are calculated using Skyrme III interaction modified by Dabrowski for polarized nuclear matter. The temperature dependence of the volume, isospin, spin and spin isospin pressure and energies are determined. The temperature, isospin, spin and spin isospin dependence of the equilibrium Fermi momentum is also discussed. (author)

  11. The SLAC high-density gaseous polarized 3He target

    International Nuclear Information System (INIS)

    Johnson, J.R.; Chupp, T.E.; Smith, T.B.; Cates, G.D.; Driehuys, B.; Middleton, H.; Newbury, N.R.; Hughes, E.W.; Meyer, W.

    1995-01-01

    A large-scale high-pressure gaseous 3 He polarized target has been developed for use with a high-intensity polarized electron beam at the Stanford Linear Accelerator Center. This target was used successfully in an experiment to study the spin structure of the neutron. The target provided an areal density of about 7x10 21 nuclei/cm 2 and operated at 3 He polarizations between about 30% and 40% for the six-week duration of the experiment. ((orig.))

  12. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    International Nuclear Information System (INIS)

    Smith, T

    2003-01-01

    This thesis describes a precision measurement of the neutron spin dependent structure function, g 1 n (x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a 3 He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized 3 He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the 3 He polarization. The fraction of events which originated in the 3 He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure 3 He reference cell in place of the polarized 3 He target. The spin dependent structure function g 1 n (z) was measured in the Bjorken x range of 0.014 2 of 5 (GeV/c) 2 . One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g 1 n (x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g 1 n (x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g 1 n (x) to low x. The precision of the measurement made by the E154 collaboration at SLAC puts a tighter

  13. Time reversal tests in polarized neutron reactions

    International Nuclear Information System (INIS)

    Asahi, Koichiro; Bowman, J.D.; Crawford, B.

    1998-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In recent years the nuclear weak interaction has been studied in the compound nucleus via parity violation. The observed parity-violating effects are strongly enhanced by nuclear structure. The predictions are that the interaction of polarized neutrons with polarized nuclear targets could be also used to perform sensitive tests of time-reversal-violation because of the nuclear enhancements. The author has designed experiments to search for time-reversal violation in neutron-nucleus interactions. He has also developed techniques to polarize neutrons with laser-polarized 3 He gas targets. Using the polarized 3 He neutron spin filter, he has performed two experiments at LANSCE: an absolute neutron beam polarization measurement with an accuracy of 0.2--0.3% and a neutron spin-rotation measurement on a 139 La sample

  14. Dynamical nuclear polarization using multi-colour control of color centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pengcheng [Huazhong University of Science and Technology, School of Physics, Wuhan (China); Huazhong University of Science and Technology, Center for Quantum Optical Science, Wuhan (China); Plenio, Martin B. [Universitaet Ulm, Institut fuer Theoretische Physik, Ulm (Germany); Universitaet Ulm, Center for Integrated Quantum Science and Technology, Ulm (Germany); Cai, Jianming [Huazhong University of Science and Technology, School of Physics, Wuhan (China); Huazhong University of Science and Technology, Center for Quantum Optical Science, Wuhan (China); Universitaet Ulm, Institut fuer Theoretische Physik, Ulm (Germany); Universitaet Ulm, Center for Integrated Quantum Science and Technology, Ulm (Germany)

    2016-12-15

    Dynamical nuclear polarization (DNP) transfers the polarization of electron spins at cryogenic temperatures to achieve strong nuclear polarization for applications in nuclear magnetic resonance. Recently introduced approaches employ optical pumping of nitrogen-vacancy (NV) centers in diamond to achieve DNP even at ambient temperatures. In such schemes microwave radiation is used to establish a Hartmann-Hahn condition between the NV electron spin and proximal nuclear spins to facilitate polarization transfer. For a single monochromatic microwave driving field, the Hartmann-Hahn condition cannot be satisfied for an ensemble of NV centers due to inhomogeneous broadening and reduces significantly the overall efficiency of dynamical nuclear polarization using an ensemble of NV centers. Here, we adopt generalized Hartmann-Hahn type dynamical nuclear polarization schemes by applying microwave driving fields with (multiple) time-modulated frequencies. We show that it is possible to enhance the effective coupling between an ensemble of NV center spins with inhomogeneous broadening and nuclear spins, thereby improving significantly the overall efficiency of dynamical nuclear polarization. This approach can also be used to achieve dynamical nuclear polarization of an ensemble of nuclei with a distribution of Larmor frequencies, which would be helpful in magnetic resonance spectroscopy using a single NV spin sensor. (orig.)

  15. PST 2009: XIII International Workshop on Polarized Sources Targets and Polarimetry

    Science.gov (United States)

    Lenisa, Paolo

    2011-05-01

    The workshops on polarized sources, targets, and polarimetry are held every two years. In 2009 the meeting took place in Ferrara, Italy, and was organized by the University of Ferrara and INFN. Sessions on Polarized Proton and Deuterium Sources, Polarized Electron Sources, Polarimetry, Polarized Solid Targets, and Polarized Internal Targets, highlighted topics, recent developments, and progress in the field. A session dedicated to Future Facilities provided an overview of a number of new activities in the spin-physics sector at facilities that are currently in the planning stage. Besides presenting a broad overview of polarized ion sources, electron sources, solid and gaseous targets, and their neighbouring fields, the workshop also addressed the application of polarized atoms in applied sciences and medicine that is becoming increasingly important.

  16. Report of the workshop on nuclear polarization phenomena

    International Nuclear Information System (INIS)

    1985-01-01

    The third work shop on the study of the nuclear polarization was held in December 1984 at RCNP (Research Center for Nuclear Physics). Osaka University, in advance of the comming international conference. About 80 researchers gathered and discussed both theoretical and experimental aspects of nuclear polarization phenomena. Forty eight papers were presented at the work shop and they are collected in this report. Although almost all of them are written in Japanese, the abstracts are prepared in English. (Aoki, K.)

  17. Optically enhanced nuclear cross polarization in acridine-doped fluorene

    Energy Technology Data Exchange (ETDEWEB)

    Oshiro, C.M.

    1982-06-01

    The objective of this work has been to create large polarizations of the dilute /sup 13/C nuclei in the solid state. The idea was to create /sup 1/H polarizations larger than Boltzmann and to use the proton enhanced nuclear induction spectroscopy cross polarization technique to then transfer this large polarization to the /sup 13/C spin system. Optical Nuclear Polarization (ONP) of acridine-doped fluorene single crystals was studied. In addition, ONP of powdered samples of the acridine-doped fluorene was studied. In general, many compounds do not crystallize easily or do not form large crystals suitable for NMR experiments. Powdered, amorphous and randomly dispersed samples are generally far more readily available than single crystals. One objective of this work has been to (first) create large /sup 1/H polarizations. Although large optical proton polarizations in single crystals have been reported previously, optically generated polarizations in powdered samples have not been reported. For these reasons, ONP studies of powdered samples of the acridine-doped fluorene were also undertaken. Using ONP in combination with the proton enhanced nuclear induction spectroscopy experiment, large /sup 13/C polarizations have been created in fluorene single crystals. These large /sup 13/C polarizations have permitted the determination of the seven incongruent chemical shielding tensors of the fluorene molecule. Part 2 of this thesis describes the proton enhanced nuclear induction spectroscopy experiment. Part 3 describes the ONP experiment. Part 4 is a description of the experimental set-up. Part 5 describes the data analysis for the determination of the chemical shielding tensors. Part 6 presents the results of the ONP experiments performed in this work and the chemical shielding tensors determined.

  18. Optically enhanced nuclear cross polarization in acridine-doped fluorene

    International Nuclear Information System (INIS)

    Oshiro, C.M.

    1982-06-01

    The objective of this work has been to create large polarizations of the dilute 13 C nuclei in the solid state. The idea was to create 1 H polarizations larger than Boltzmann and to use the proton enhanced nuclear induction spectroscopy cross polarization technique to then transfer this large polarization to the 13 C spin system. Optical Nuclear Polarization (ONP) of acridine-doped fluorene single crystals was studied. In addition, ONP of powdered samples of the acridine-doped fluorene was studied. In general, many compounds do not crystallize easily or do not form large crystals suitable for NMR experiments. Powdered, amorphous and randomly dispersed samples are generally far more readily available than single crystals. One objective of this work has been to (first) create large 1 H polarizations. Although large optical proton polarizations in single crystals have been reported previously, optically generated polarizations in powdered samples have not been reported. For these reasons, ONP studies of powdered samples of the acridine-doped fluorene were also undertaken. Using ONP in combination with the proton enhanced nuclear induction spectroscopy experiment, large 13 C polarizations have been created in fluorene single crystals. These large 13 C polarizations have permitted the determination of the seven incongruent chemical shielding tensors of the fluorene molecule. Part 2 of this thesis describes the proton enhanced nuclear induction spectroscopy experiment. Part 3 describes the ONP experiment. Part 4 is a description of the experimental set-up. Part 5 describes the data analysis for the determination of the chemical shielding tensors. Part 6 presents the results of the ONP experiments performed in this work and the chemical shielding tensors determined

  19. Many-body kinetics of dynamic nuclear polarization by the cross effect

    Science.gov (United States)

    Karabanov, A.; Wiśniewski, D.; Raimondi, F.; Lesanovsky, I.; Köckenberger, W.

    2018-03-01

    Dynamic nuclear polarization (DNP) is an out-of-equilibrium method for generating nonthermal spin polarization which provides large signal enhancements in modern diagnostic methods based on nuclear magnetic resonance. A particular instance is cross-effect DNP, which involves the interaction of two coupled electrons with the nuclear spin ensemble. Here we develop a theory for this important DNP mechanism and show that the nonequilibrium nuclear polarization buildup is effectively driven by three-body incoherent Markovian dissipative processes involving simultaneous state changes of two electrons and one nucleus. We identify different parameter regimes for effective polarization transfer and discuss under which conditions the polarization dynamics can be simulated by classical kinetic Monte Carlo methods. Our theoretical approach allows simulations of the polarization dynamics on an individual spin level for ensembles consisting of hundreds of nuclear spins. The insight obtained by these simulations can be used to find optimal experimental conditions for cross-effect DNP and to design tailored radical systems that provide optimal DNP efficiency.

  20. Construction and test of a polarized proton target

    International Nuclear Information System (INIS)

    Aures, R.

    1983-12-01

    This work describes experiments in which for the first time a proton target has been constructed which is polarized by the ''brute-force'' method. This method requires very low temperatures and high magnetic fields. The low temperatures (down to 10 mK) are obtained by a 3 He/ 4 He dilution refrigerator, the magnetic field (up to 9 T) is produced by a superconducting split pair magnet. The proton target has a volume of about 18 cm 3 and consists of pressed titaniumhydride powder, which has a titanium/-hydrogen ratio of 1:1,96. The hydrogen content is 1,3 mol. Titaniumhydride has the advantage of sufficient heat conductivity at low temperatures and a very high proton density. The heat conductivity of the sample is measured, with and without the presence of a magnetic field. Thermodynamical measurements and adiabatic demagnetisation experiments proved quantitatively the polarization of the protons. The polarization of the proton has been measured in a transmission experiment using polarized neutrons of 1.2 MeV. The result shows a good agreement of theoretical and actual polarization. From the results it can be concluded, that this sample can be used successfully as a polarized proton target for neutron scattering experiments to measure spin-correlations. (orig.) [de

  1. Electro- and photonuclear physics with polarized beams and targets

    International Nuclear Information System (INIS)

    Holt, R.J.

    1987-01-01

    Two long-standing issues in photonuclear physics, the giant M1 resonance in Pb and deuteron photodisintegration, have been studied recently with polarized photons at Urbana and Frascati, respectively. The implications that this work has for settling these key issues will be discussed. In addition, the advantages of the internal polarized target method for electron scattering studies will be discussed and the technology of internal polarized target development will be reviewed. The first results from a spin-exchange, optically-pumped polarized H and D source will be presented

  2. Superconducting shielding for a polarized target in PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Mora Espi, Maria Carmen; Froehlich, Bertold; Dbeyssi, Alaa; Aguar Bartolome, Patricia; Gerz, Kathrin; Ahmed, Samer; Wang, Yadi; Lin, Dexu; Feldbauer, Florian [Helmholtz-Institut Mainz (Germany); Penuelas, Ana [Universitat de Valencia (Spain); Collaboration: PANDA-Collaboration

    2016-07-01

    The measurement of the phase between the electric and the magnetic form factors of the proton can be measured using a polarized interaction. A feasible possibility to allow this kind of reactions would be to develop a transversely polarized proton target to be used in the PANDA experiment. The first step to achieve the transverse target polarization is to study the feasibility of shielding the target region from the external 2 T longitudinal magnetic field generated by the PANDA solenoid. BSCOO-2212, a new high-temperature superconductor material, has been identified as a possible candidate to be used for shielding this external magnetic field. Tests at 4 K have taken place in the Helmholtz Institute Mainz with this material, and the first preliminary results are shown here.

  3. Spin filtering neutrons with a proton target dynamically polarized using photo-excited triplet states

    International Nuclear Information System (INIS)

    Haag, M.; Brandt, B. van den; Eichhorn, T.R.; Hautle, P.; Wenckebach, W.Th.

    2012-01-01

    In a test of principle a neutron spin filter has been built, which is based on dynamic nuclear polarization (DNP) using photo-excited triplet states. This DNP method has advantages over classical concepts as the requirements for cryogenic equipment and magnets are much relaxed: the spin filter is operated in a field of 0.3 T at a temperature of about 100 K and has performed reliably over periods of several weeks. The neutron beam was also used to analyze the polarization of the target employed as a spin filter. We obtained an independent measurement of the proton spin polarization of ∼0.13 in good agreement with the value determined with NMR. Moreover, the neutron beam was used to measure the proton spin polarization as a function of position in the naphthalene sample. The polarization was found to be homogeneous, even at low laser power, in contradiction to existing models describing the photo-excitation process.

  4. The origin of the mid-infrared nuclear polarization of active galactic nuclei

    Science.gov (United States)

    Lopez-Rodriguez, E.; Alonso-Herrero, A.; Diaz-Santos, T.; Gonzalez-Martin, O.; Ichikawa, K.; Levenson, N. A.; Martinez-Paredes, M.; Nikutta, R.; Packham, C.; Perlman, E.; Almeida, C. Ramos; Rodriguez-Espinosa, J. M.; Telesco, C. M.

    2018-05-01

    We combine new (NGC 1275, NGC 4151, and NGC 5506) and previously published (Cygnus A, Mrk 231, and NGC 1068) sub-arcsecond resolution mid-infrared (MIR; 8-13 μm) imaging- and spectro-polarimetric observations of six Seyfert galaxies using CanariCam on the 10.4-m Gran Telescopio CANARIAS. These observations reveal a diverse set of physical processes responsible for the nuclear polarization, and permit characterization of the origin of the MIR nuclear polarimetric signature of active galactic nuclei (AGN). For all radio quiet objects, we found that the nuclear polarization is low (sensitivity to detect such extended emission (i.e., NGC 1068 and NGC 4151). We suggest that the higher degree of polarization previously found in lower resolution data arises only on the larger-than-nuclear scales. Only the radio-loud Cygnus A exhibits significant nuclear polarization (˜11 per cent), attributable to synchrotron emission from the pc-scale jet close to the core. We present polarization models that suggest that the MIR nuclear polarization for highly obscured objects arises from a self-absorbed MIR polarized clumpy torus and/or dichroism from the host galaxy, while for unabsorbed cores, MIR polarization arises from dust scattering in the torus and/or surrounding nuclear dust.

  5. Polarized proton Target-III operators manual, revision A

    International Nuclear Information System (INIS)

    Hill, D.; Moretti, A.; Onesto, F.; Rynes, P.

    1976-04-01

    A revision is given of a manual containing standard operating procedures for the vacuum, cryogenic, and electronic systems of a polarized proton target. The discussion includes the target cryostat, the 3 He and 4 He pumping systems, remote monitors and controls, the microwave system, the magnet and power supply, the computerized polarization monitor, the 4 He liquifier and gas recovery system, and miscellaneous auxiliary equipment

  6. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T

    2003-11-05

    This thesis describes a precision measurement of the neutron spin dependent structure function, g{sub 1}{sup n}(x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a {sup 3}He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized {sup 3}He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the {sup 3}He polarization. The fraction of events which originated in the {sup 3}He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure {sup 3}He reference cell in place of the polarized {sup 3}He target. The spin dependent structure function g{sub 1}{sup n}(z) was measured in the Bjorken x range of 0.014 < x < 0.7 with an average Q{sup 2} of 5 (GeV/c){sup 2}. One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g{sub 1}{sup n}(x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g{sub 1}{sup n}(x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g

  7. Polarized proton and deuteron targets for the usage in intensive proton beams

    International Nuclear Information System (INIS)

    Get'man, V.A.; Derkach, A.Ya.; Karnaukhov, I.M.; Lukhanin, A.A.; Razumnyj, A.A.; Sorokin, P.V.; Sporo, E.A.; Telegin, Yu.N.

    1982-01-01

    Polarized proton and deuteron targets are developed and tested for conducting investigations in intense photon beams. A flowsheet of polarization targets which includes: working agent of the target, superconducting magnet, cryostat of 3 He evaporation with 3 He pumping and recirculation systems, SHF system of 4 mm range for polarization pumping, measuring system of target polarization protons is presented. Working agent of the targets includes frozen balls with 1.5 mm diameter. Ethylene-glucol and 1.2-propylene-glycol were used as a working substance for proton targets. Completely deuterated ethylene-glycol was used for the deuteron target. Vertical magnetic field with 2.7 T intensity is produced by a superconducting magnetic system. Polarization pumping is exercised at 75 GHz frequency. Q-meter of direct current is used for determination of polarization. Working temperature of the cryostat is approximately 0.5 K. The lock device permits to exercise replacement of the target working agent during 30 minutes

  8. Prospects of polarized fixed target Drell-Yan experiments

    International Nuclear Information System (INIS)

    Liu, M X; Jiang, X; Crabb, D G; Chen, J P; Bai, M

    2011-01-01

    It has been proposed that the Siverse transverse single spin asymmetry in Drell-Yan production in transversely polarized p+p collisions would have an opposite sign compared to what has been observed in the polarized Semi-Inclusive Deep Inelastic Scattering (SIDIS) experiments. Experimental confirmation or disproval of this prediction would provide a novel fundamental test of QCD and shed new light on our theoretical understanding of the transverse spin physics phenomena. We discuss the prospects and physics sensitivities of polarized fixed target Drell-Yan experiments that could utilize the existing proton and other hadron beams at Fermilab, and polarized proton beams at RHIC with a polarized solid proton and/or neutron target option. We show that if realized, the new experiments would provide critical measurements of not only the sign change (or not) of Sivers functions, but also the information of quark and antiquark's Sivers distributions over a wide kinematic range.

  9. The electron-spin--nuclear-spin interaction studied by polarized neutron scattering.

    Science.gov (United States)

    Stuhrmann, Heinrich B

    2007-11-01

    Dynamic nuclear spin polarization (DNP) is mediated by the dipolar interaction of paramagnetic centres with nuclear spins. This process is most likely to occur near paramagnetic centres at an angle close to 45 degrees with respect to the direction of the external magnetic field. The resulting distribution of polarized nuclear spins leads to an anisotropy of the polarized neutron scattering pattern, even with randomly oriented radical molecules. The corresponding cross section of polarized coherent neutron scattering in terms of a multipole expansion is derived for radical molecules in solution. An application using data of time-resolved polarized neutron scattering from an organic chromium(V) molecule is tested.

  10. Nuclear physics with polarized heavy ions

    International Nuclear Information System (INIS)

    Fick, D.; Grawert, G.; Turkiewicz, I.M.

    1992-01-01

    Polarized heavy ion beams ( 6 Li, 7 Li, 23 Na) have been in use as tools for the investigation of nuclear scattering and nuclear reactions for almost two decades. This review attempts to survey the research activities in this field with reference to nuclear structure, nuclear dynamics and reaction mechanisms. Besides reviewing the results from full quantum mechanical coupled channels analyses of data, special attention is paid to handwaving arguments and semiclassical pictures as a complementary way of obtaining a better understanding of the relevant physics. (orig.)

  11. Self-Sustaining Dynamical Nuclear Polarization Oscillations in Quantum Dots

    DEFF Research Database (Denmark)

    Rudner, Mark Spencer; Levitov, Leonid

    2013-01-01

    Early experiments on spin-blockaded double quantum dots revealed robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias. Despite experimental evidence implicating dynamical nuclear polarization, the mechanism has remained a mystery. Here we introduce......) and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The proposed framework naturally explains the differences in phenomenology between vertical and lateral quantum dot structures as well as the extremely long oscillation periods....

  12. Large enhancement of deuteron polarization with frequency modulated microwaves

    CERN Document Server

    AUTHOR|(CDS)2067425; Arik, S; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin,; Baum, G; Berglund, P; Betev, L; Birda, I G; Birsa, R; Bjrkholm, P; Bonner, B E; de Botton, N; Boutemeur, M; Bradamante, Franco; Bressan, A; Brullc, A; Buchanan, J; Bültmann, S; Burtin, E; Cavata, C; Chen, J P; Clement, J; Clocchiatti, M; Corcoran, M D; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Deshpande, S; Dalla Torre, A; Van Dantzig, R; Dhawan, S; Dulya, C; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Day, D; Feinstein, F; Fernández, C; Frois, B; Garabatos, C; Garzón, J A; Gaussiran, T; Giorgi, M; von Goeler, E; Goloutvin, Igor A; Gómez, A; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, D; von Harrach, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; De Jong, M; Kabu, E M; Kageya, T; Kaiser, R; Karev, A; Kessler, H J; Ketel, T J; Kiryushin, Yu T; Kishi, A; Kisselev, Yu; Klostermann, L; Krämer, Dietrich; Kukhtin, V; Kyynarinen, J; Lamanna, M; Landgraf, U; Lau, V; Krivokhijinea, K; Layda, T; Le Go, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; López-Ponte, S; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B; McCarthy, J S; van Middelkoop, K; Medved, G; Miller, D; Mitchell, J; Mori, K; Moromisato, J; Mutchler, G S; Nagaitsev, A; Nassalski, J; Naumann, Lutz; Neganov, B; Niinikoski, T O; Oberski, J E J; Ogawa, A; Okumi, S; Ozben, C S; Penzo, Aldo L; Pérez, C A; Perrot-Kunne, F; Piegaia, R; Pinsky, L; Platchkov, S; Pló, M; Pose, D; Postma, D; Peshekhonov, H; Pretz, J; Pussieux, T; Pyrlik, J; Reyhancan, I; Rieubland, Jean Michel; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, E; Rondon, O; Ropelewski, Leszek; Rosado, A; Sabo, I; Saborido, J; Salvato, G; Sandacz, A; Sanders, D; Savin, I; Schiavon, Paolo; Schüler, K P; Segel, R; Seitz, R; Semertzidis, Y; Sergeev, S; Sever, F; Shanahan, P; Sichtermann, E P; Smirnov, G; Staude, A; Steinmetz, A; Stuhrmann, H; Teichert, K M; Tessarotto, F; Thiel, W; Velasco, M; Vogt, J; Voss, R; Weinstein, R; Whitten, C; Willumeit, R; Windmolders, R; Wislicki, W; Witzmann, A; Yañez, A; Zanetti, A M; Zhao, J; Zamiatin, N I

    1996-01-01

    We report a large enhancement of 1.7 in deuteron polarization up to values of 0.6 due to frequency modulation of the polarizing microwaves in a two liters polarized target using the method of dynamic nuclear polarization. This target was used during a deep inelastic polarized muon-deuteron scattering experiment at CERN. Measurements of the electron paramagnetic resonance absorption spectra show that frequency modulation gives rise to additional microwave absorption in the spectral wings. Although these results are not understood theoretically, they may provide a useful testing ground for the deeper understanding of dynamic nuclear polarization.

  13. Camouflaged target detection based on polarized spectral features

    Science.gov (United States)

    Tan, Jian; Zhang, Junping; Zou, Bin

    2016-05-01

    The polarized hyperspectral images (PHSI) include polarization, spectral, spatial and radiant features, which provide more information about objects and scenes than traditional intensity or spectrum ones. And polarization can suppress the background and highlight the object, leading to the high potential to improve camouflaged target detection. So polarized hyperspectral imaging technique has aroused extensive concern in the last few years. Nowadays, the detection methods are still not very mature, most of which are rooted in the detection of hyperspectral image. And before using these algorithms, Stokes vector is used to process the original four-dimensional polarized hyperspectral data firstly. However, when the data is large and complex, the amount of calculation and error will increase. In this paper, tensor is applied to reconstruct the original four-dimensional data into new three-dimensional data, then, the constraint energy minimization (CEM) is used to process the new data, which adds the polarization information to construct the polarized spectral filter operator and takes full advantages of spectral and polarized information. This way deals with the original data without extracting the Stokes vector, so as to reduce the computation and error greatly. The experimental results also show that the proposed method in this paper is more suitable for the target detection of the PHSI.

  14. Summary of the XIII International Workshop on Polarized Sources, Targets and Polarimetry

    Science.gov (United States)

    Rathmann, F.

    2011-01-01

    The workshops on polarized sources, targets, and polarimetry are held every two years. The present meeting took place in Ferrara, Italy, and was organized by the University of Ferrara. Sessions on Polarized Proton and Deuterium Sources, Polarized Electron Sources, Polarimetry, Polarized Solid Targets, and Polarized Internal Targets, highlighted topics, recent developments, and progress in the field. A session decicated to Future Facilities provided an overview of a number of new activities in the spin-physics sector at facilities that are currently in the planning stage. Besides presenting a broad overview of polarized ion sources, electron sources, solid and gaseous targets, and their neighboring fields, the workshop also addressed the application of polarized atoms in applied sciences and medicine that is becoming increasingly important.

  15. A polarized atomic-beam target for COSY-Juelich

    International Nuclear Information System (INIS)

    Eversheim, P. D.; Altmeier, M.; Felden, O.; Glende, M.; Walker, M.; Hiemer, A.; Gebel, R.

    1998-01-01

    An atomic-beam target (ABT) for the EDDA experiment has been built in Bonn and was tested for the very first time at the cooler synchrotron COSY. The ABT differs from the polarized colliding-beams ion source for COSY in the DC-operation of the dissociator and the use of permanent 6-pole magnets. At present the beam optics of the ABT is set-up for maximum density in the interaction zone, but for target-cell operation it can be modified to give maximum intensity. The modular concept of this atomic ground-state target allows to provide all vector- (and tensor) polarizations for protons and deuterons, respectively. Up to now the polarization of the atomic-beam could be verified by the EDDA experiment to be > or approx. 80% with a density in the interaction zone of > or approx. 10 11 atoms/cm 2

  16. Scattering of polarized electrons from polarized targets: Coincidence reactions and prescriptions for polarized half-off-shell single-nucleon cross sections

    International Nuclear Information System (INIS)

    Caballero, J.A.; Massachusetts Inst. of Tech., Cambridge, MA; Donnelly, T.W.; Massachusetts Inst. of Tech., Cambridge, MA; Poulis, G.I.; Massachusetts Inst. of Tech., Cambridge, MA

    1993-01-01

    Coincidence reactions of the type vector A( vector e, e'N)B involving the scattering of polarized electrons from polarized targets are discussed within the context of the plane-wave impulse approximation. Prescriptions are developed for polarized half-off single-nucleon cross sections; the different prescriptions are compared for typical quasi-free kinematics. Illustrative results are presented for coincidence polarized electron scattering from typical polarized nuclei. (orig.)

  17. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  18. Spin polarized states in strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2004-01-01

    The possibility of appearance of spin polarized states in strongly asymmetric nuclear matter is analyzed within the framework of a Fermi liquid theory with the Skyrme effective interaction. The zero temperature dependence of the neutron and proton spin polarization parameters as functions of density is found for SLy4 and SLy5 effective forces. It is shown that at some critical density strongly asymmetric nuclear matter undergoes a phase transition to the state with the oppositely directed spins of neutrons and protons while the state with the same direction of spins does not appear. In comparison with neutron matter, even small admixture of protons strongly decreases the threshold density of spin instability. It is clarified that protons become totally polarized within a very narrow density domain while the density profile of the neutron spin polarization parameter is characterized by the appearance of long tails near the transition density

  19. Nuclear-physical investigations with oriented nuclei and polarized neutrons

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Pikel'ner, L.B.; Sharapov, Eh.I.

    1980-01-01

    Several experiments with oriented nuclei and polarized neutrons are considered, as well as some methods of polarization of neutrons and nuclei. Experiments on the study of spin dependence of neutron cross sections for fissionable and nonfissionable nuclei interaction of polarized neutrons with polarized nuclei as well as measurement of magnetic momenta of compound-states of rare-earth nuclei. Described are some investigations with thermal neutrons: study on spin dependence of neutron scattering length with nuclei and gamma radiation of neutron radiation capture. Difficulties of production of high-intensive polarized neutron beams and construction of oriented targets are noted. Neutron polarization by transmission of them through a polarized proton target is the most universal method (out of existing methods) in the energy range under consideration [ru

  20. 16th International Workshop on Polarized Sources, Targets, and Polarimetry (PSTP 2015)

    CERN Document Server

    2015-01-01

    The Workshop on Polarized Sources, Targets and Polarimetry has been a tradition for more than 20 years, moving between Europe, USA and Japan. The XVIth International Workshop on Polarized Sources, Targets and Polarimetry (PSTP 2015) will take place at the Ruhr-University of Bochum, Germany. The workshop addresses the physics and technological challenges related to polarized gas/solid targets, polarized electron/positron/ion/neutron sources, polarimetry and their applications. will be published in Proceedings of Science

  1. Improved techniques for the analysis of experiments with polarized targets. [1 to 2 GeV/c, polarization

    Energy Technology Data Exchange (ETDEWEB)

    Barrelet, E.

    1975-06-01

    An experiment was performed at the Bevatron to measure the polarization in the reaction ..pi../sup -/p ..-->.. ..pi../sup 0/n from a polarized target, at beam momenta between 1 and 2 GeV/c. Concentration is placed on the original aspects of our analysis, in particular: the geometrical reconstruction of the elastic events; the use of the high analyzing power of the reaction studied to probe the polarization of the target in magnitude and distribution; a study of the statistical estimation of the polarization parameter; a detailed study of the quasielastic background. (JFP)

  2. Calibration of the Fermilab E-704 polarized target

    International Nuclear Information System (INIS)

    Hill, D.A.

    1992-01-01

    This report lists the final, best estimate of the target polarization P T as a function of time for all of the periods during which scattering data were (or may have been) collected. The information under ''RUN'' refers to Δσ L -runs. The notation ''sfs'' stands for ''start of frozen spin,'' ''efs'' for ''end of frozen spin,'' ''→ la'' for ''go to large-aperture'' target magnet position, and ''nla'' for ''not large-aperture'' position, i.e., the target magnet is in ''polarizing'' position. Where the ''NOTE'' column is blank it means that all standard frozen-spin conditions were in effect: the target temperature was reduced and the magnet was in large-aperture position. The timing marks were developed on the basis of three criteria: (1) the availability of direct NMR data, (2) the inclusion of major Target and Run boundaries, and (3) the arbitrary inclusion of enough ''minor'' Run boundaries to shorten large timing gaps. The sign of the P T -values is given in the NMR convention: (+) corresponds to predominant occupation of the Zeeman ground state (the ''thermal'' NMR-signals are considered positive). Since the target magnet field pointed upstream, (+) corresponds to target spin antiparallel to the beam momentum. The estimated uncertainty on P T is ±6.5% (2σ), and the estimated uncertainty on the ratio of values for the two signs of polarization, P T (+)/PT(-), is ±4.3% (2σ)

  3. Oocyte Polarization Is Coupled to the Chromosomal Bouquet, a Conserved Polarized Nuclear Configuration in Meiosis.

    Directory of Open Access Journals (Sweden)

    Yaniv M Elkouby

    2016-01-01

    Full Text Available The source of symmetry breaking in vertebrate oocytes is unknown. Animal-vegetal oocyte polarity is established by the Balbiani body (Bb, a conserved structure found in all animals examined that contains an aggregate of specific mRNAs, proteins, and organelles. The Bb specifies the oocyte vegetal pole, which is key to forming the embryonic body axes as well as the germline in most vertebrates. How Bb formation is regulated and how its asymmetric position is established are unknown. Using quantitative image analysis, we trace oocyte symmetry breaking in zebrafish to a nuclear asymmetry at the onset of meiosis called the chromosomal bouquet. The bouquet is a universal feature of meiosis where all telomeres cluster to one pole on the nuclear envelope, facilitating chromosomal pairing and meiotic recombination. We show that Bb precursor components first localize with the centrosome to the cytoplasm adjacent to the telomere cluster of the bouquet. They then aggregate around the centrosome in a specialized nuclear cleft that we identified, assembling the early Bb. We show that the bouquet nuclear events and the cytoplasmic Bb precursor localization are mechanistically coordinated by microtubules. Thus the animal-vegetal axis of the oocyte is aligned to the nuclear axis of the bouquet. We further show that the symmetry breaking events lay upstream to the only known regulator of Bb formation, the Bucky ball protein. Our findings link two universal features of oogenesis, the Bb and the chromosomal bouquet, to oocyte polarization. We propose that a meiotic-vegetal center couples meiosis and oocyte patterning. Our findings reveal a novel mode of cellular polarization in meiotic cells whereby cellular and nuclear polarity are aligned. We further reveal that in zygotene nests, intercellular cytoplasmic bridges remain between oocytes and that the position of the cytoplasmic bridge coincides with the location of the centrosome meiotic-vegetal organizing center

  4. Proton and neutron polarized targets for nucleon-nucleon experiments at SATURNE II

    International Nuclear Information System (INIS)

    Ball, J.; Combet, M.; Sans, J.L.; Benda, B.; Chaumette, P.; Deregel, J.; Durand, G.; Dzyubak, A.P.; Gaudron, C.; Lehar, F.; Janout, Z.; Khachaturov, B.A.

    1996-01-01

    A SATURNE polarized target has been used for nucleon-nucleon elastic scattering and transmission experiments for 15 years. The polarized proton target is a 70 cm 3 cartridge loaded with Pentanol-2. For polarized neutron target, two cartridges loaded with 6 LiD and 6 LiH are set in the refrigerator and can be quickly inserted in the beam. First experiments using 6 Li products in quasielastic pp or pn analyzing power measurements are compared with the same observables measured in a free nucleon-nucleon scattering using polarized proton targets. Angular distribution as a function of a kinematically conjugate angle and coplanarity in nucleon-nucleon scattering is shown for different targets. (author)

  5. Optically pumped polarized 23Na vapor target for use in polarized ion source. Technical progress report

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1984-01-01

    We are currently measuring relaxation times in an optically pumped 23 Na vapor target. Our research is directed toward improvements in the optically pumped Na vapor targets used for the production of polarized H - ions. In this progress report we review the properties of the optically pumped polarized H - ion source and especially the optically pumped Na vapor target employed in this source as well as discussing the progress of our research on relaxation times in an optically pumped Na vapor target. 30 references, 6 figures, 3 tables

  6. Nuclear Fusion with Polarized Nucleons & PolFusion

    CERN Document Server

    Engels, Ralf; Büscher, Markus; Vasilyev, Alexander

    2016-01-01

    This book offers a detailed examination of the latest work on the potential of polarized fuel to realize the vision of energy production by nuclear fusion. It brings together contributions from nuclear physicists and fusion physicists with the aims of fostering exchange of information between the two communities, describing the current status in the field, and examining new ideas and projects under development. It is evident that polarized fuel can offer huge improvements for the first generation of fusion reactors and open new technological possibilities for future generations, including neutron lean reactors, which could be the most popular and sustainable energy production option to avoid environmental problems. Nevertheless, many questions must be resolved before polarized fuel can be used for energy production in the different reactor types. Readers will find this book to be a stimulating source of information on the key issues. It is based on contributions from leading scientists delivered at the meetin...

  7. Optimum measurement and analysis of small polarization asymmetry in high-energy inelastic scattering using a polarized target

    International Nuclear Information System (INIS)

    Niinikoski, T.O.

    1976-01-01

    Optimum linear filter theory is employed for maximizing the signal-to-noise ratio in measurements of small polarization asymmetry in the presence of severe counting efficiency fluctuation, most likely to occur in high-energy inclusive and inelastic scattering experiments, using a polarized target. The r.m.s. error of the polarization asymmetry is obtained in closed form, allowing numeric optimization of the operation of the target. Guidelines are given for processing the record of data. (Auth.)

  8. Tensor polarized deuteron targets for intermediate energy physics experiments

    International Nuclear Information System (INIS)

    Meyer, W.; Schilling, E.

    1985-03-01

    At intermediate energies measurements from a tensor polarized deuteron target are being prepared for the following reactions: the photodisintegration of the deuteron, the elastic pion-deuteron scattering and the elastic electron-deuteron scattering. The experimental situation of the polarization experiments for these reactions is briefly discussed in section 2. In section 3 the definitions of the deuteron polarization and the possibilities to determine the vector and tensor polarization are given. Present tensor polarization values and further improvements in this field are reported in section 4. (orig.)

  9. NMR of insensitive nuclei enhanced by dynamic nuclear polarization.

    Science.gov (United States)

    Miéville, Pascal; Jannin, Sami; Helm, Lothar; Bodenhausen, Geoffrey

    2011-01-01

    Despite the powerful spectroscopic information it provides, Nuclear Magnetic Resonance (NMR) spectroscopy suffers from a lack of sensitivity, especially when dealing with nuclei other than protons. Even though NMR can be applied in a straightforward manner when dealing with abundant protons of organic molecules, it is very challenging to address biomolecules in low concentration and/or many other nuclei of the periodic table that do not provide as intense signals as protons. Dynamic Nuclear Polarization (DNP) is an important technique that provides a way to dramatically increase signal intensities in NMR. It consists in transferring the very high electron spin polarization of paramagnetic centers (usually at low temperature) to the surrounding nuclear spins with appropriate microwave irradiation. DNP can lead to an enhancement of the nuclear spin polarization by up to four orders of magnitude. We present in this article some basic concepts of DNP, describe the DNP apparatus at EPFL, and illustrate the interest of the technique for chemical applications by reporting recent measurements of the kinetics of complexation of 89Y by the DOTAM ligand.

  10. Michel Borghini as a Mentor and Father of the Theory of Polarization in Polarized Targets

    Science.gov (United States)

    de Boer, Wim

    2016-02-01

    This paper is a contribution to the memorial session for Michel Borghini at the Spin 2014 conference in Bejing, honoring his pivotal role for the development of polarized targets in high energy physics. Borghini proposed for the first time the correct mechanism for dynamic polarization in polarized targets using organic materials doped with free radicals. In these amorphous materials the spin levels are broadened by spin-spin interactions and g-factor anisotropy, which allows a high dynamic polarization of nuclei by cooling of the spin-spin interaction reservoir. In this contribution I summarize the experimental evidence for this mechanism. These pertinent experiments were done at CERN in the years 1971 - 1974, when I was a graduate student under the guidance of Michel Borghini. I finish by shortly describing how Borghini’s spin temperature theory is now applied in cancer therapy.

  11. Polarization Calculation and Underwater Target Detection Inspired by Biological Visual Imaging

    Directory of Open Access Journals (Sweden)

    Jie Shen

    2014-04-01

    Full Text Available In challenging underwater environments, the polarization parameter maps calculated by the Stokes model are characterized by the high noise and error, harassing the underwater target detection tasks. In order to solve this problem, this paper proposes a novel bionic polarization calculation and underwater target detection method by modeling the visual system of mantis shrimps. This system includes many operators including a polarization-opposition calculation, a factor optimization and a visual neural network model. A calibration learning method is proposed to search the optimal value of the factors in the linear subtraction model. Finally, a six-channel visual neural network model is proposed to detect the underwater targets. Experimental results proved that the maps produced by the polarization-opposition parameter is more accurate and have lower noise than that produced by the Stokes parameter, achieving better performance in underwater target detection tasks.

  12. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    Science.gov (United States)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  13. The scattering of polarized neutrons from statically polarized solid {sup 3}He

    Energy Technology Data Exchange (ETDEWEB)

    Haase, D.G.; Keith, C.D.; Gould, C.R.; Seely, M.L. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Huffman, P.R.; Roberson, N.R.; Tornow, W.; Wilburn, W.S. [Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)]|[Duke University, Durham, NC 27708-0308 (United States)

    1998-01-11

    We have constructed a 0.4 mole solid {sup 3}He target, cryogenically polarized at 12 mK in a field of 7 T. The 0.04 atoms/b target reached a polarization of 38% in 35 h. Such a target may be applied to any experiment which is tolerant of the large ambient magnetic field and which produces target heating of less than a microwatt. High energy neutron and photon scattering experiments meet these requirements. The target`s figure of merit for neutron transmission measurement exceeds that of polarized gas targets by greater than 35. At the Triangle Universities Nuclear Laboratory we have used the target to measure the total cross section differences {Delta}{sigma}{sub T} and {Delta}{sigma}{sub L} for incident polarized neutrons of energies 2-8 MeV. The cross section difference is sensitive to the excited state structure of the n-{sup 3}He system. The results have been compared to a recent R-matrix analysis of A=4 scattering and reaction data, and provide support for the {sup 4}He level scheme derived from that analysis. (orig.). 11 refs.

  14. Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality.

    Science.gov (United States)

    Raymond, Michael J; Ray, Poulomi; Kaur, Gurleen; Fredericks, Michael; Singh, Ajay V; Wan, Leo Q

    2017-02-01

    Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.

  15. Investigation of polarized-proton target materials by differential calorimetry: preliminary results

    International Nuclear Information System (INIS)

    Hill, D.A.; Hill, J.J.

    1980-01-01

    A simple differential calorimeter was designed and operated for an investigation of the thermodynamic properties of polarized target materials. The calibration and use of the calorimeter are discussed, after a brief exposition of our motivation for this work. The results of a preliminary study of target materials is presented with emphasis on the relevance of the glass state to dynamic polarization in chemically-doped targets

  16. VME online system of the Bonn polarized nucleon targets and polarization measurements on NH3

    International Nuclear Information System (INIS)

    Thiel, W.

    1991-02-01

    The measurement of spin observables is the main purpose of the PHOENICS detector at the Bonn Electron Accelerator ELSA. Therefore a new frosen spin target was built allowing any spin orientation by means of two perpendicular holding fields and the use of a polarizing field up to 7 Tesla. With a vertical dilution refrigerator the polarization can be frozen at a temperature of 70 mK. This thesis describe a VME based control and monitor system for the various parts of this target. It mainly consists of a VIP processor together with different kinds of I/O and interface boards. Caused by its modular structure in hard- and software it can be easyly set up to control and monitor different hardware environments. A menu and command oriented user interface running on an ATARI computer allows a comfortable operation. Secondly the new NMR system is described in detail. It is based on the Liferpool module allowing a dispersion user interface running on an ATARI computer allows a comfortable operation. Secondly the new NMR system is described in detail. It is based on the Liverpool module allowing a dispersion free detection and a simple adjustment to different magnetic fields. A similar VME system takes care of all the necessary task for the polarization measurements. Fast optodecoupled analog I/O modules a e used as an interface to the NMR hardware. Finally the first measurements with this target are presented. Using NH 3 as target material and a polarizing field of 3.5 Tesla a proton polarization of +94% and -100% could be achieved. By lowering the magnetic field to 0.35 Tesla a superradiance effect was observed. (orig.)

  17. Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble

    International Nuclear Information System (INIS)

    Herzog, B. E.; Cadeddu, D.; Xue, F.; Peddibhotla, P.; Poggio, M.

    2014-01-01

    As the number of spins in an ensemble is reduced, the statistical fluctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer-scale ensembles of nuclear spins in a KPF 6 sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble.

  18. Resonance-inclined optical nuclear spin polarization of liquids in diamond structures

    Science.gov (United States)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2016-02-01

    Dynamic nuclear polarization (DNP) of molecules in a solution at room temperature has the potential to revolutionize nuclear magnetic resonance spectroscopy and imaging. The prevalent methods for achieving DNP in solutions are typically most effective in the regime of small interaction correlation times between the electron and nuclear spins, limiting the size of accessible molecules. To solve this limitation, we design a mechanism for DNP in the liquid phase that is applicable for large interaction correlation times. Importantly, while this mechanism makes use of a resonance condition similar to solid-state DNP, the polarization transfer is robust to a relatively large detuning from the resonance due to molecular motion. We combine this scheme with optically polarized nitrogen-vacancy (NV) center spins in nanodiamonds to design a setup that employs optical pumping and is therefore not limited by room temperature electron thermal polarization. We illustrate numerically the effectiveness of the model in a flow cell containing nanodiamonds immobilized in a hydrogel, polarizing flowing water molecules 4700-fold above thermal polarization in a magnetic field of 0.35 T, in volumes detectable by current NMR scanners.

  19. Irradiated NH3 and ND3 - two new target materials for polarized targets

    International Nuclear Information System (INIS)

    Meyer, W.

    1982-11-01

    A study of dynamic nuclear polarization (DNP) in NH 3 and ND 3 was made at the Bonn 2.5 GeV electron synchrotron. The paramagnetic radicals in the polycristalline ammonia beads were created by irradiation in the high intensity 20 MeV electron beam (> 10 14 electrons/sec) of the injection linac. During irradiation the ammonia beads, produced by dropping into liquid nitrogen, were cooled in liquid argon at approx.= 90 K. DNP measurements were performed at 1 K, 0.5 K and 0.2 K in a 2.5 T magnetic field. Samples of NH 3 , prepared in this way, yielded a maximum proton polarization of 66% at a temperature of 0.5 K with a short polarization build-up time of 9 minutes. ND 3 could be polarized at a temperature of 0.2 K up to 31%. The radiation resistance of the polarization of NH 3 is better than that of butanol. (orig.)

  20. Target recognition of log-polar ladar range images using moment invariants

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Cao, Jie; Yu, Haoyong

    2017-01-01

    The ladar range image has received considerable attentions in the automatic target recognition field. However, previous research does not cover target recognition using log-polar ladar range images. Therefore, we construct a target recognition system based on log-polar ladar range images in this paper. In this system combined moment invariants and backpropagation neural network are selected as shape descriptor and shape classifier, respectively. In order to fully analyze the effect of log-polar sampling pattern on recognition result, several comparative experiments based on simulated and real range images are carried out. Eventually, several important conclusions are drawn: (i) if combined moments are computed directly by log-polar range images, translation, rotation and scaling invariant properties of combined moments will be invalid (ii) when object is located in the center of field of view, recognition rate of log-polar range images is less sensitive to the changing of field of view (iii) as object position changes from center to edge of field of view, recognition performance of log-polar range images will decline dramatically (iv) log-polar range images has a better noise robustness than Cartesian range images. Finally, we give a suggestion that it is better to divide field of view into recognition area and searching area in the real application.

  1. Feasibility study of a transversely polarized target in PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Bertold [Helmholtz Institut Mainz (Germany)

    2014-07-01

    PANDA (Antiproton Annihilation at Darmstadt) is a key project at the Facility for Antiproton and Ion Research (FAIR), currently under construction at the GSI Darmstadt. PANDA is a state of the art detector for antiproton-proton fixed target experiments. A transversely polarized target in PANDA would allow the determination of the proton electromagnetic form factors in the time-like region with unprecedented accuracy and the first-time extraction of their imaginary part, opening a new window for investigating the nucleon structure. As a first step for achieving a transverse target polarization, the target region has to be shielded against the 2 T longitudinal magnetic flux from the solenoid of the PANDA spectrometer. We present numerical simulations and experimental results on intense magnetic flux shielding using a high temperature superconducting hollow cylinder.

  2. The CERN polarized atomic hydrogen beam target project

    International Nuclear Information System (INIS)

    Kubischta, W.; Dick, L.

    1990-01-01

    The UA6-experiment at the CERN p bar p Colider is at present using an unpolarized hydrogen cluster target with a thickness up to 5.10 14 atoms/cm 2 . It is planned to replace this target by a polarized atomic hydrogen beam target with a thickness up to about 10 13 atoms/cm 2 . This paper discusses basic requirements and results of atom optical calculations

  3. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0644 TITLE: Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: Chun-Ju...Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0644 5c. PROGRAM ELEMENT...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Cancer stem cells (CSCs), a cell population with acquired perpetuating self-renewal properties which

  4. Pentanol-based target material with polarized protons

    International Nuclear Information System (INIS)

    Bunyatova, E.I.

    1992-01-01

    1-pentanol is a promising material for a target with polarized protons owing to its high resistance to radiation damage. To develop the target, the solutions of 1-pentanol or 2-pentanol with complexes of pentavalent chromium ware investigated. The material based EHBA-Cr(V) solution in a glass-like matrix, consisting of 1-pentanol, 3-pentanol and 1,2-propanediol, was proposed as a target material. It was investigated by the electron paramagnetic resonance and differential scanning calorimetry methods. 24 refs.; 3 figs.; 1 tab

  5. Dynamic Nuclear Polarization and other magnetic ideas at EPFL.

    Science.gov (United States)

    Bornet, Aurélien; Milani, Jonas; Wang, Shutao; Mammoli, Daniele; Buratto, Roberto; Salvi, Nicola; Segaw, Takuya F; Vitzthum, Veronika; Miéville, Pascal; Chinthalapalli, Srinivas; Perez-Linde, Angel J; Carnevale, Diego; Jannin, Sami; Caporinia, Marc; Ulzega, Simone; Rey, Martial; Bodenhausen, Geoffrey

    2012-01-01

    Although nuclear magnetic resonance (NMR) can provide a wealth of information, it often suffers from a lack of sensitivity. Dynamic Nuclear Polarization (DNP) provides a way to increase the polarization and hence the signal intensities in NMR spectra by transferring the favourable electron spin polarization of paramagnetic centres to the surrounding nuclear spins through appropriate microwave irradiation. In our group at EPFL, two complementary DNP techniques are under investigation: the combination of DNP with magic angle spinning at temperatures near 100 K ('MAS-DNP'), and the combination of DNP at 1.2 K with rapid heating followed by the transfer of the sample to a high-resolution magnet ('dissolution DNP'). Recent applications of MAS-DNP to surfaces, as well as new developments of magnetization transfer of (1)H to (13)C at 1.2 K prior to dissolution will illustrate the work performed in our group. A second part of the paper will give an overview of some 'non-enhanced' activities of our laboratory in liquid- and solid-state NMR.

  6. Theory of coherent dynamic nuclear polarization in quantum dots

    DEFF Research Database (Denmark)

    Neder, Izhar; Rudner, Mark Spencer; Halperin, Bertrand

    2014-01-01

    We consider the production of dynamic nuclear spin polarization (DNP) in a two-electron double quantum dot, in which the electronic levels are repeatedly swept through a singlet-triplet avoided crossing. Our analysis helps to elucidate the intriguing interplay between electron-nuclear hyperfine...

  7. Polarization: A Must for Fusion

    Directory of Open Access Journals (Sweden)

    Guidal M.

    2012-10-01

    Full Text Available Recent realistic simulations confirm that the polarization of the fuel would improve significantly the DT fusion efficiency. We have proposed an experiment to test the persistence of the polarization in a fusion process, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the neutrons and the change in the corresponding total cross section are related to the polarization persistence. The experimental polarization of DT fuel is a technological challenge. Possible paths for Magnetic Confinement Fusion (MCF and for Inertial Confinement Fusion (ICF are reviewed. For MCF, polarized gas can be used. For ICF, cryogenic targets are required. We consider both, the polarization of gas and the polarization of solid DT, emphasizing the Dynamic Nuclear polarization (DNP of HD and DT molecules.

  8. Nuclear polarization study: new frontiers for tests of QED in heavy highly charged ions.

    Science.gov (United States)

    Volotka, Andrey V; Plunien, Günter

    2014-07-11

    A systematic investigation of the nuclear polarization effects in one- and few-electron heavy ions is presented. The nuclear polarization corrections in the zeroth and first orders in 1/Z are evaluated to the binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown that the nuclear polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections. This allows for new prospects for probing the QED effects in a strong electromagnetic field and the determination of fundamental constants.

  9. High magnetic field uniformity superconducting magnet for a movable polarized target

    International Nuclear Information System (INIS)

    Anishchenko, N.G.; Bartenev, V.D.; Blinov, N.A.

    1998-01-01

    The superconducting polarizing magnet was constructed for movable polarized target (MPT) with working volume 200 mm long and 30 mm in diameter. The magnet provides a polarizing magnetic field up to 6 T with the uniformity of 4.5 x 10 -4 in the working volume of the target. The magnet windings are made of a NbTi wire, impregnated with the epoxy resin and placed in the horizontal cryostat with 'warm' aperture diameter of 96 mm. The design and technology of the magnet winding are described. Results of the magnetic field map measurements using a NMR-magnetometer are given. The MPT set-up is installed in the beam line of polarized neutrons produced by break-up of polarized deuterons extracted from the Synchrophasotron of the Laboratory of High Energies (LHE), JINR, Dubna

  10. Combining orthogonal polarization for elongated target detection with GPR

    International Nuclear Information System (INIS)

    Lualdi, Maurizio; Lombardi, Federico

    2014-01-01

    For an accurate imaging of ground penetrating radar data the polarization characteristics of the propagating electromagnetic (EM) wavefield and wave amplitude variations with antenna pattern orientation must be taken into account. For objects that show some directionality feature and cylindrical shape any misalignment between transmitter and target can strongly modify the polarization state of the backscattered wavefield, thus conditioning the detection capability of the system. Hints on the depolarization can be used to design the optimal GPR antenna survey to avoid omissions and pitfalls during data processing. This research addresses the issue of elongated target detection through a multi azimuth (or multi polarization) approach based on the combination of mutually orthogonal GPR data. Results from the analysis of the formal scattering problem demonstrate how this strategy can reach a scalar formulation of the scattering matrix and achieve a rotational invariant quantity. The effectiveness of the algorithm is then evaluated with a detailed field example showing results closely proximal to those obtained under the optimal alignment condition: detection is significantly improved and the risk of target missing is reduced. (paper)

  11. Performance of a hydrogen/deuterium polarized gas target in a storage ring

    NARCIS (Netherlands)

    van Buuren, L.D.; Szczerba, D.; van den Brand, J.F.J.; Bulten, H.J.; Klous, S.; Mul, F.A.; Poolman, H.R.; Simani, M.C.

    2001-01-01

    The performance of a hydrogen/deuterium polarized gas target in a storage ring is presented. The target setup consisted of an atomic beam source, a cryogenic storage cell and a Breit-Rabi polarimeter. High frequency transition units were constructed to produce vector polarized hydrogen and

  12. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neovascularization.

    Science.gov (United States)

    Dubrac, Alexandre; Genet, Gael; Ola, Roxana; Zhang, Feng; Pibouin-Fragner, Laurence; Han, Jinah; Zhang, Jiasheng; Thomas, Jean-Léon; Chedotal, Alain; Schwartz, Martin A; Eichmann, Anne

    2016-01-26

    Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here, we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2- and VEGF-induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, and pathological ocular neovascularization and wound healing, as well. These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2, and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis. © 2015 American Heart Association, Inc.

  13. Feasibility studies of a polarized positron source based on the Bremsstrahlung of polarized electrons

    International Nuclear Information System (INIS)

    Dumas, J.

    2011-09-01

    The nuclear and high-energy physics communities have shown a growing interest in the availability of high current, highly-polarized positron beams. A sufficiently energetic polarized photon or lepton incident on a target may generate, via Bremsstrahlung and pair creation within a solid target foil, electron-positron pairs that should carry some fraction of the initial polarization. Recent advances in high current (> 1 mA) spin polarized electron sources at Jefferson Lab offer the perspective of creating polarized positrons from a low energy electron beam. This thesis discusses polarization transfer from electrons to positrons in the perspective of the design optimization of a polarized positron source. The PEPPo experiment, aiming at a measurement of the positron polarization from a low energy (< 10 MeV) highly spin polarized electron beam is discussed. A successful demonstration of this technique would provide an alternative scheme for the production of low energy polarized positrons and useful information for the optimization of the design of polarized positron sources in the sub-GeV energy range. (author)

  14. High-energy nuclear optics of polarized particles

    CERN Document Server

    Baryshevsky, Vladimir G

    2012-01-01

    The various phenomena caused by refraction and diffraction of polarized elementary particles in matter have opened up a new research area in the particle physics: nuclear optics of polarized particles. Effects similar to the well-known optical phenomena such as birefringence and Faraday effects, exist also in particle physics, though the particle wavelength is much less than the distance between atoms of matter. Current knowledge of the quasi-optical effects, which exist for all particles in any wavelength range (and energies from low to extremely high), will enable us to investigate different properties of interacting particles (nuclei) in a new aspect. This pioneering book will provide detailed accounts of quasi-optical phenomena in the particle polarization, and will interest physicists and professionals in experimental particle physics.

  15. Cryogenic control system of the large COMPASS polarized target

    CERN Document Server

    Gautheron, F; Baum, G; Berglund, P; Doshita, N; Görtz, S; Gustafsson, K K; Horikawa, N; Kisselev, Yu V; Koivuniemi, J H; Kondo, K; Meyer, Werner T; Reicherz, G

    2004-01-01

    The dilution refrigerator used to cool the large COMPASS polarized target is monitored through a PC running LabVIEW trademark 6.1 under Windows 2000 trademark . About 60 parameters of the target (temperatures, pressures, flow rates) are continuously plotted and checked. They are periodically recorded in an Oracle trademark database and in a data file. An alarm for every parameter can be individually activated and optionally connected to a GSM (Global System for Mobile Communication) delivery message system. A web server receives and publishes the online status of the target with online tables and graphics on a dedicated COMPASS polarized target information web site. A Siemens programmable logic controller (PLC) powered by an uninterruptable source keeps the cryogenic system safe and stable during the long beam periods by controlling valves and interlocks. This safety feature protects the dilution refrigerator against potential damages in case of power failure.

  16. Detailed studies of a high-density polarized hydrogen gas target for storage rings

    International Nuclear Information System (INIS)

    Zapfe, K.; Brueckner, W.; Gaul, H.G.; Grieser, M.; Lin, M.T.; Moroz, Z.; Povh, B.; Rall, M.; Stechert, B.; Steffens, E.; Stenger, J.; Stock, F.; Tonhaeuser, J.; Montag, C.; Rathmann, F.; Fick, D.; Braun, B.; Graw, G.; Haeberli, W.

    1996-01-01

    A high-density target of polarized atomic hydrogen gas for applications in storage rings was produced by injecting atoms from an atomic beam source into a T-shaped storage cell. The influence of the internal gas target on electron-cooled beams of 27 MeV α-particles and 23 MeV protons in the Heidelberg Test Storage Ring has been studied in detail. Target polarization and target thickness were measured by means of 27 MeV α-particles. For hyperfine states 1+2 a target thickness of n=(0.96±0.04) x 10 14 H/cm 2 was achieved with the cell walls cooled to 100 K. Working with a weak magnetic holding field (∼5 G) the maximum target polarization was P T =0.84±0.02 when state 1 and P T =0.46±0.01 when states 1+2 were injected. The target polarization was found to be constant over a period of 3 months with a net charge of Q∼100 C passing the storage cell. (orig.)

  17. A cryostat to hold frozen-spin polarized HD targets in CLAS: HDice-II

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, M.M., E-mail: mlowry@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Bass, C.D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); D' Angelo, A. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Universita' di Roma ‘Tor Vergata’, and INFN Sezione di Roma ‘Tor Vergata’, Via della Ricerca Scientifica, 1, I-00133 Roma (Italy); Deur, A.; Dezern, G. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Hanretty, C. [University of Virginia, 1400 University Avenue, Charlottesville, VA 22903 (United States); Ho, D. [Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Kageya, T.; Kashy, D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Khandaker, M. [Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Laine, V. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Université Blaise Pascal, 34 Avenue Carnot, 63000 Clermont-Ferrand (France); O' Connell, T. [University of Connecticut, 115 N Eagleville Road, Storrs-Mansfield, CT 06269 (United States); Pastor, O. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Peng, P. [University of Virginia, 1400 University Avenue, Charlottesville, VA 22903 (United States); Sandorfi, A.M. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Sokhan, D. [Institut de Physique Nucleaire, Bat 100 – M053, Orsay 91406 (France); and others

    2016-04-11

    The design, fabrication, operation, and performance of a {sup 3/4}He dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam running is reported. The device operates both vertically (for target loading) and horizontally (for target bombardment). The device proves capable of maintaining a base temperature of 50 mK and a holding field of 1 T for extended periods. These characteristics enabled multi-month polarization lifetimes for frozen spin HD targets having proton polarization of up to 50% and deuteron up to 27%.

  18. Dissolution Dynamic Nuclear Polarization capability study with fluid path

    DEFF Research Database (Denmark)

    Malinowski, Ronja Maja; Lipsø, Hans Kasper Wigh; Lerche, Mathilde Hauge

    2016-01-01

    Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperp......Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden...... of the hyperpolarized product is by use of a closed fluid path that constitutes a barrier to contamination. The fluid path can be filled with the pharmaceuticals, i.e. imaging agent and solvents, in a clean room, and then stored or immediately used at the polarizer. In this study, we present a method of filling...

  19. Thermosetting polymer for dynamic nuclear polarization: Solidification of an epoxy resin mixture including TEMPO

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Yohei, E-mail: noda.yohei@jaea.go.jp [Quantum Beam Science Centre, Sector of Nuclear Science Research, Japan Atomic Energy Agency, Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Kumada, Takayuki [Quantum Beam Science Centre, Sector of Nuclear Science Research, Kansai Photon Science Institute, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215 (Japan); Yamaguchi, Daisuke; Shamoto, Shin-ichi [Quantum Beam Science Centre, Sector of Nuclear Science Research, Japan Atomic Energy Agency, Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan)

    2015-03-11

    We investigated the dynamic nuclear polarization (DNP) of typical thermosetting polymers (two-component type epoxy resins; Araldite{sup ®} Standard or Araldite{sup ®} Rapid) doped with a (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO) radical. The doping process was developed by carefully considering the decomposition of TEMPO during the solidification of the epoxy resin. The TEMPO electron spin in each two-component paste decayed slowly, which was favorable for our study. Furthermore, despite the dissolved TEMPO, the mixture of the two-component paste successfully solidified. With the resulting TEMPO-doped epoxy-resin samples, DNP experiments at 1.2 K and 3.35 T indicated a magnitude of a proton-spin polarization up to 39%. This polarization is similar to that (35%) obtained for TEMPO-doped polystyrene (PS), which is often used as a standard sample for DNP. To combine this solidification of TEMPO-including mixture with a resin-casting technique enables a creation of polymeric target materials with a precise and complex structure.

  20. Preparation of thin nuclear targets

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1979-03-01

    Thin film backings, sources and targets are needed for many applications in low energy nuclear physics and nuclear chemistry experiments. A survey of techniques used in the preparation of nuclear targets is first briefly discussed. These are classified as chemical, mechanical and physical preparations. Vacuum evaporation, being the most generally used technique, is discussed in detail. It is highly desirable to monitor the film thickness and control the deposition rate during evaporation and to measure the final target thickness after deposition has concluded. The relative merits of various thickness measuring techniques are described. Stages in the fabrication and mounting of self-supporting foils are described in detail, with emphasis given to the preparation of thin self-supporting carbon foils used as target backings and stripper foils. Various target backings, and the merits of the more generally used release agents are described in detail. The preparations of more difficult elemental targets are discussed, and a comprehensive list of the common targets is presented

  1. Development of high-performance alkali-hybrid polarized 3He targets for electron scattering

    Science.gov (United States)

    Singh, Jaideep T.; Dolph, P. A. M.; Tobias, W. A.; Averett, T. D.; Kelleher, A.; Mooney, K. E.; Nelyubin, V. V.; Wang, Yunxiao; Zheng, Yuan; Cates, G. D.

    2015-05-01

    Background: Polarized 3He targets have been used as effective polarized neutron targets for electron scattering experiments for over twenty years. Over the last ten years, the effective luminosity of polarized 3He targets based on spin-exchange optical pumping has increased by over an order of magnitude. This has come about because of improvements in commercially-available lasers and an improved understanding of the physics behind the polarization process. Purpose: We present the development of high-performance polarized 3He targets for use in electron scattering experiments. Improvements in the performance of polarized 3He targets, target properties, and operating parameters are documented. Methods: We utilize the technique of alkali-hybrid spin-exchange optical pumping to polarize the 3He targets. Spectrally narrowed diode lasers used for the optical pumping greatly improved the performance. A simulation of the alkali-hybrid spin-exchange optical pumping process was developed to provide guidance in the design of the targets. Data was collected during the characterization of 24 separate glass target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. Results: From the data obtained we made determinations of the so-called X -factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable 3He polarization to well under 100%. The presence of the X -factor spin-relaxation mechanism was clearly evident in our data. Good agreement between the simulation and the actual target performance was obtained by including details such as off-resonant optical pumping. Included in our results is a measurement of the K -3He spin-exchange rate coefficient kseK=(7.46 ±0.62 ) ×10-20cm3/s over the temperature range 503 K to 563 K. Conclusions: In order to achieve high performance under the operating conditions described in this paper

  2. Polarization reversal of proton spins in solid-state targets by superradiance effects

    International Nuclear Information System (INIS)

    Reichertz, L.A.

    1991-02-01

    Scattering experiments with polarized targets are prepared at the Bonn accelerator ELSA. The new Bonn frozen spin target (BOFROST) developed for real photon experiments at the PHOENICS detector has been tested in the laboratory. Proton polarization values of -99% and +94% in ammonia, -96% and +90% in butanol have been achieved at a magnetic field of 3.5 Tesla. At a temperature of 70 mK and a magnetic field of 0.35 Tesla a very fast spontaneous polarization reversal has been observed. This effect occured at negative polarization only and has been identified as a self-induced superradiance effect in the proton spin system. This work describes the polarization and relaxation measurements at BOFROST and detailed experiments concerning the superradiance effect. (orig.) [de

  3. Characteristics of target polarization by laser ablation

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Delle Side, D.; Giuffreda, E.; Nassisi, V.

    2015-01-01

    Roč. 33, č. 4 (2015), 601-605 ISSN 0263-0346 R&D Projects: GA ČR GAP205/12/0454; GA MŠk EE2.3.20.0279 Grant - others:LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : Target current in laser-produced plasmas * positive and negative target polarization * space structure of ion front Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.649, year: 2015

  4. Electron and nuclear spin system polarization in semiconductors by light

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenya, B; Flejsher, V

    1981-02-01

    Discussed are the principles of optical electron spin orientation, dynamic polarization and cooling of nuclear spin systems in optical electron orientation, and behavioural characteristics of bound electron and nuclear spin systems of a semiconductor in the optical orientation situation.

  5. Nuclear reactivity indices in the context of spin polarized density functional theory

    International Nuclear Information System (INIS)

    Cardenas, Carlos; Lamsabhi, Al Mokhtar; Fuentealba, Patricio

    2006-01-01

    In this work, the nuclear reactivity indices of density functional theory have been generalized to the spin polarized case and their relationship to electron spin polarized indices has been established. In particular, the spin polarized version of the nuclear Fukui function has been proposed and a finite difference approximation has been used to evaluate it. Applications to a series of triatomic molecules demonstrate the ability of the new functions to predict the geometrical changes due to a change in the spin multiplicity. The main equations in the different ensembles have also been presented

  6. Electron and nuclear spin system polarization in semiconductors by light

    International Nuclear Information System (INIS)

    Zakharchenya, B.; Flejsher, V.

    1981-01-01

    Discussed are the principles of optical electron spin orientation, dynamic polarization and cooling of nuclear spin systems in optical electron orientation, and behavioural characteristics of bound electron and nuclear spin systems of a semiconductor in the optical orientation situation. (J.P.)

  7. Feasibility study of a transversely polarized target in PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Heybat; Deiseroth, Malte; Khaneft, Dmitry; Noll, Oliver; Valente, Roserio; Zambrana, Manuel [Helmholtz-Institut Mainz (Germany); Johannes Gutenberg-Universitaet Mainz (Germany); Ahmed, Samer [Helmholtz-Institut Mainz (Germany); Capozza, Luigi; Dbeyssi, Alaa; Froehlich, Bertold; Lin, Dexu; Maas, Frank; Mora Espi, Maria Carmen; Morales Morales, Cristina; Rodriguez Pineiro, David; Zimmermann, Iris [Helmholtz-Institut Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2015-07-01

    The PANDA (Antiproton Annihilation at Darmstadt) spectrometer, located at the Facility for Antiproton and Ion Research (FAIR), is an excellent tool for exploring the nucleon structure. An unpolarized target allows the determination of the electromagnetic time-like form factor of the proton. An additional experiment in which the target is transversely polarized is necessary for the first-time extraction of their imaginary part. A transverse polarization requires the shielding of the 2 T longitudinal field from the PANDA-Solenoid at the target volume and an additional transverse holding field. We present results from our first experiment at the Institut fuer Kernphysik in Mainz on intense magnetic flux shielding using a BSCCO (bismuth strontium calcium copper oxide) thin-wall hollow cylinder at 4.2 K and a 1.4 T external magnetic field and compare this to numerical calculations.

  8. Nuclear magnetic resonance in pulse radiolysis. Chemically induced dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Johnson, K.W.; Lowers, R.H.

    1976-01-01

    Nuclear magnetic resonance and chemically induced dynamic nuclear polarization (CIDNP) were applied to the study of pulse radiolysis. Samples were irradiated with a 3-MeV electron beam from the Argonne Van de Graaff accelerator in an EPR magnet (approximately 4000 G) which had axial holes for beam access. A fast flow system transferred the irradiated solution to the rotating 5-mm NMR sample tube. The NMR spectra of mixtures of sodium acetate and methanol were presented to demonstrate the features of the CIDNP in pulse radiolysis

  9. Basis for calculating cross sections for nuclear magnetic resonance spin-modulated polarized neutron scattering.

    Science.gov (United States)

    Kotlarchyk, Michael; Thurston, George M

    2016-12-28

    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

  10. Low-Temperature Dynamic Nuclear Polarization at 9.4 Tesla With a 30 Milliwatt Microwave Source

    Science.gov (United States)

    Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2010-01-01

    Dynamic nuclear polarization (DNP) can provide large signal enhancements in nuclear magnetic resonance (NMR) by transfer of polarization from electron spins to nuclear spins. We discuss several aspects of DNP experiments at 9.4 Tesla (400 MHz resonant frequency for 1H, 264 GHz for electron spins in organic radicals) in the 7–80 K temperature range, using a 30 mW, frequency-tunable microwave source and a quasi-optical microwave bridge for polarization control and low-loss microwave transmission. In experiments on frozen glycerol/water doped with nitroxide radicals, DNP signal enhancements up to a factor of 80 are observed (relative to 1H NMR signals with thermal equilibrium spin polarization). The largest sensitivity enhancements are observed with a new triradical dopant, DOTOPA-TEMPO. Field modulation with a 10 G root-mean-squared amplitude during DNP increases the nuclear spin polarizations by up to 135%. Dependencies of 1H NMR signal amplitudes, nuclear spin relaxation times, and DNP build-up times on the dopant and its concentration, temperature, microwave power, and modulation frequency are reported and discussed. The benefits of low-temperature DNP can be dramatic: the 1H spin polarization is increased approximately 1000-fold at 7 K with DNP, relative to thermal polarization at 80 K. PMID:20392658

  11. On the large COMPASS polarized deuteron target

    Czech Academy of Sciences Publication Activity Database

    Ball, J.; Baum, G.; Doshita, N.; Finger Jr., M.; Finger, M.; Gautheron, F.; Goertz, S.; Hasegawa, T.; Heckmann, J.; Hess, C.; Horikawa, N.; Ishimoto, S.; Iwata, T.; Kisselev, Y.; Koivuniemi, J.H.; Kondo, K.; Le Goff, J.M.; Magnon, A.; Marchand, C.; Matsuda, T.; Meyer, W.; Reicherz, G.; Srnka, Aleš

    2006-01-01

    Roč. 56, Suppl. F (2006), F295-F305 ISSN 0011-4626 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : COMPASS * polarized target * Dilution refrigerator Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.568, year: 2006

  12. A neutron beam polarizer for study of parity violation in neutron-nucleus interactions

    International Nuclear Information System (INIS)

    Penttilae, S.I.; Bowman, J.D.; Frankle, C.M.; Seestrom, S.J.; Yen, Yi-Fen; Delheij, P.P.J.; Haase, D.G.; Postma, H.

    1994-01-01

    A dynamically-polarized proton target operating at 5 Tesla and 1 K has been built to, neutron beam for studies of parity violation in compound-nuclear resonances. Nearly 0.9 proton polarization was obtained in an electron-beam irradiated ammonia target. This was used to produce a neutron beam polarization of 0.7 at epithermal energies. The combination of the polarized proton target and the LANSCE spallation neutron source produces the most intense pulsed polarized epithermal neutron beam in the world. The neutron-beam polarizer is described and methods to determine neutron beam polarization are presented

  13. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neo-Vascularization

    Science.gov (United States)

    Dubrac, Alexandre; Genet, Gael; Ola, Roxana; Zhang, Feng; Pibouin-Fragner, Laurence; Han, Jinah; Zhang, Jiasheng; Thomas, Jean-Léon; Chedotal, Alain; Schwartz, Martin A.; Eichmann, Anne

    2015-01-01

    Background Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. Methods and Results Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2 and VEGF induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, as well as pathological ocular neovascularization and wound healing. Conclusions These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2 and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis. PMID:26659946

  14. Target correlation and polarization effects on the electron impact ionization of He atoms

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Hari P, E-mail: hps1@physics.ucf.edu [Physics Department, University of Central Florida, Orlando, FL 32816 (United States)

    2011-03-28

    We have reported here the results of our investigation of the effects of electron correlation and polarization of the target in the incident channel on the electron impact ionization of the helium atom. The triple differential cross section (TDCS) is calculated for 28.6 eV incident electron energy for the case when the two final-state outgoing electrons share 4.0 eV excess energy equally and unequally and leave in the opposite direction. The electron correlation and polarization of the He-target in the initial state are considered completely ab initio using the recently extended multiconfiguration Hartree-Fock method. The electron correlation between the two outgoing electrons in the final state is included through the variationally determined screening potential. It is found that both target correlation and polarization in the incident channel play an important role; the polarization has larger effect on the TDCS than the target correlation. We compared our results with available experimental and theoretical data.

  15. High-efficiency optical pumping of nuclear polarization in a GaAs quantum well

    Science.gov (United States)

    Mocek, R. W.; Korenev, V. L.; Bayer, M.; Kotur, M.; Dzhioev, R. I.; Tolmachev, D. O.; Cascio, G.; Kavokin, K. V.; Suter, D.

    2017-11-01

    The dynamic polarization of nuclear spins by photoexcited electrons is studied in a high quality GaAs/AlGaAs quantum well. We find a surprisingly high efficiency of the spin transfer from the electrons to the nuclei as reflected by a maximum nuclear field of 0.9 T in a tilted external magnetic field of 1 T strength only. This high efficiency is due to a low leakage of spin out of the polarized nuclear system, because mechanisms of spin relaxation other than the hyperfine interaction are strongly suppressed, leading to a long nuclear relaxation time of up to 1000 s. A key ingredient to that end is the low impurity concentration inside the heterostructure, while the electrostatic potential from charged impurities in the surrounding barriers becomes screened through illumination by which the spin relaxation time is increased compared to keeping the system in the dark. This finding indicates a strategy for obtaining high nuclear spin polarization as required for long-lasting carrier spin coherence.

  16. A neutron beam polarizer for study of parity violation in neutron-nucleus interactions

    International Nuclear Information System (INIS)

    Penttilae, S.I.; Bowman, J.D.; Delheij, P.P.; Frankle, C.M.; Haase, D.G.; Postma, H.; Seestrom, S.J.; Yen, Y.

    1995-01-01

    A dynamically-polarized proton target operating at 5 Tesla and 1 K has been built to polarize an epithermal neutron beam for studies of parity violation in compound-nuclear resonances. Nearly 0.9 proton polarization was obtained in an electron-beam irradiated ammonia target. This was used to produce a neutron beam polarization of 0.7 at epithermal energies. The combination of the polarized proton target and the LANSCE spallation neutron source produces the most intense pulsed polarized epithermal neutron beam in the world. The neutron-beam polarizer is described and methods to determine neutron beam polarization are presented. copyright 1995 American Institute of Physics

  17. Nuclear targets within the project of solving CHAllenges in Nuclear DAta

    Science.gov (United States)

    Sibbens, Goedele; Moens, André; Vanleeuw, David; Lewis, David; Aregbe, Yetunde

    2017-09-01

    In the frame of the European Commission funded integrated project CHANDA (solving CHAllenges in Nuclear DAta) the importance of nuclear target preparation for the accurateness and reliability of experimental nuclear data is set in a dedicated work package (WP3). The global aim of WP3 is the development of a network for nuclear target preparation and characterization, enabling to coordinate the target production corresponding to the experimental requirements. Therefore, a set of tasks within the work package needs to be followed. Primarily, an inventory of target related facilities and radioisotope providers was created. In the next step a priority list of target requests was made in agreement with the target user considering the technical specification, the scheduled experiments and the availability of the target laboratories. A set of target requests has been assigned to the Target Preparation laboratory of the European Commission - Joint Research Centre - Directorate G (EC-JRC.G.2) in Geel, Belgium. This contribution gives an overview of the nuclear targets that are produced within the CHANDA project. The equipment and techniques available for the preparation and characterization of uranium, plutonium and neptunium layers with an areal density ranging from 60 to 205 μg cm-2 will be emphasized.

  18. Cryogenic polarized-target facility. Progress report, July 1, 1981-June 30, 1982

    International Nuclear Information System (INIS)

    Gould, C.R.; Haase, D.G.

    1982-01-01

    The goal of this three-year research project is to build a cryogenically polarized target facility for measuring total neutron cross sections for polarized neutrons incident on polarized nuclei. The components of the system have been assembled at TUNL during the current contract period. These include the dilution-refrigerator support assembly, the dilution-refrigerator itself, the dewar, the beam line, the shielding cave for the neutron source, and the neutron-detector shield and rolling-cart assembly. The dilution refrigerator is presently undergoing testing at liquid-nitrogen and liquid-helium temperatures. Experiments with aluminum and copper targets are scheduled for the coming contract period

  19. A study of lithium deuteride as a material for a polarized target

    CERN Document Server

    Bültmann, S; Day, D B; Fatemi, R D; Gardner, B; Harris, C M; Johnson, J R; Mccarthy, J S; McKee, P M; Meyer, Werner T; Penttilae, S I; Ponikvar, E; Rijllart, A; Rondon, Oscar A; Lorant, S S; Tobias, W A; Trentalange, S; Zhu, H; Zihlmann, B; Zimmermann, D

    1999-01-01

    Experiment E155 at the Stanford Linear Accelerator Center (SLAC) measured the spin-dependent structure of the proton and neutron, using for the first time sup 6 LiD as the polarized deuteron target material in a high-energy electron beam. This compound provides a significantly higher dilution factor than any other solid deuteron target material currently used in high-energy physics experiments. Results of the polarization behavior of the sup 6 LiD target material before and after exposure to the 50 GeV/c electron beam used in E155 are presented.

  20. Nuclear polarization contribution to the Lamb-shift in heavy atoms

    International Nuclear Information System (INIS)

    Plunien, G.; Mueller, B.; Greiner, W.

    1988-08-01

    The energy shift of the 1s 1/2 -state in 238 92 U due to virtual excitation of nuclear rotational modes is shown to be considerable correction for atomic high precision experiments. In contrast to this nuclear polarization effects are of minor importance for Lamb-shift studies in 208 82 Pb. (orig.)

  1. Polarization observables for strangeness photoproduction on a frozen spin target with CLAS at Jefferson Lab

    International Nuclear Information System (INIS)

    Fegan, Stuart

    2012-01-01

    The FROST experiment at Jefferson Lab used the CLAS detector in Hall B with the intention of performing a complete measurement of polarization observables associated with strangeness photoproduction, in combination with data from previous JLab experiments. This was achieved by utilizing the FROST polarized target in conjunction with polarized photon beams, allowing direct measurement of beam-target double polarization observables. By studying strangeness reactions, such as γp → K + Λ 0 , it may be possible to find 'missing' baryon resonances, predicted by symmetric quark models but not observed in previous experiments, whose results are consistent with the di-quark model. It is thought these 'missing' resonances remain undiscovered because they have different coupling strengths for different reaction channels, such as the strangeness reactions, whereas the current data is dominated by studies of pN reactions. Observing these resonances therefore has important implications for our knowledge of the excited states of nucleons, and the models predicting the quark interactions within them. The G polarization observable is one of the beam-target double polarization observables, associated with a longitudinally polarized target and a linearly polarized photon beam, and its measurement for the strangeness reaction γp → K + Λ 0 is the focus of the work presented.

  2. QED corrections in deep-inelastic scattering from tensor polarized deuteron target

    CERN Document Server

    Gakh, G I

    2001-01-01

    The QED correction in the deep inelastic scattering from the polarized tensor of the deuteron target is considered. The calculations are based on the covariant parametrization of the deuteron quadrupole polarization tensor. The Drell-Yan representations in the electrodynamics are used for describing the radiation real and virtual particles

  3. Low-temperature dynamic nuclear polarization at 9.4 T with a 30 mW microwave source.

    Science.gov (United States)

    Thurber, Kent R; Yau, Wai-Ming; Tycko, Robert

    2010-06-01

    Dynamic nuclear polarization (DNP) can provide large signal enhancements in nuclear magnetic resonance (NMR) by transfer of polarization from electron spins to nuclear spins. We discuss several aspects of DNP experiments at 9.4 T (400 MHz resonant frequency for (1)H, 264 GHz for electron spins in organic radicals) in the 7-80K temperature range, using a 30 mW, frequency-tunable microwave source and a quasi-optical microwave bridge for polarization control and low-loss microwave transmission. In experiments on frozen glycerol/water doped with nitroxide radicals, DNP signal enhancements up to a factor of 80 are observed (relative to (1)H NMR signals with thermal equilibrium spin polarization). The largest sensitivity enhancements are observed with a new triradical dopant, DOTOPA-TEMPO. Field modulation with a 10 G root-mean-squared amplitude during DNP increases the nuclear spin polarizations by up to 135%. Dependencies of (1)H NMR signal amplitudes, nuclear spin relaxation times, and DNP build-up times on the dopant and its concentration, temperature, microwave power, and modulation frequency are reported and discussed. The benefits of low-temperature DNP can be dramatic: the (1)H spin polarization is increased approximately 1000-fold at 7 K with DNP, relative to thermal polarization at 80K. (c) 2010 Elsevier Inc. All rights reserved.

  4. A polarized {sup 3}He target for the photon beam at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J., E-mail: j.krimmer@ipnl.in2p3.fr [Institut fuer Physik, Johannes Gutenberg-Universitaet, Staudinger Weg 7, 55099 Mainz (Germany); Institut de Physique Nucleaire de Lyon, 4 rue Enrico Fermi, 69622 Villeurbanne cedex (France); Aguar Bartolome, P.; Ahrens, J. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Johann-Joachim-Becher-Weg 45, 55099 Mainz (Germany); Altieri, S. [INFN Sezione di Pavia, Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Universita di Pavia, Pavia (Italy); Arends, H.J. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Johann-Joachim-Becher-Weg 45, 55099 Mainz (Germany); Heil, W.; Karpuk, S.; Otten, E.W. [Institut fuer Physik, Johannes Gutenberg-Universitaet, Staudinger Weg 7, 55099 Mainz (Germany); Pedroni, P. [INFN Sezione di Pavia, Pavia (Italy); Salhi, Z. [Institut fuer Physik, Johannes Gutenberg-Universitaet, Staudinger Weg 7, 55099 Mainz (Germany); Thomas, A. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Johann-Joachim-Becher-Weg 45, 55099 Mainz (Germany)

    2011-08-21

    A polarized {sup 3}He target has been installed for the first time inside the 4{pi} Crystal Ball detector at the tagged photon beam of the MAinz MIcrotron (MAMI). It has been demonstrated that the system works reliably and that the polarization losses during handling of the polarized gas are under control. Initial polarization values up to 70% and total relaxation times up to 20 h could be obtained during a first test beam time devoted to the measurement of the double polarized photoabsorption cross-section in the {Delta}(1232) baryon resonance region.

  5. Optical pumping production of spin polarized hydrogen

    International Nuclear Information System (INIS)

    Knize, R.J.; Happer, W.; Cecchi, J.L.

    1984-01-01

    There has been much interest recently in the production of large quantities of spin polarized hydrogen in various fields including controlled fusion, quantum fluids, high energy, and nuclear physics. One promising method for the development of large quantities of spin polarized hydrogen is the utilization of optical pumping with a laser. Optical pumping is a process where photon angular momentum is converted into electron and nuclear spin. The advent of tunable CW dye lasers (approx. 1 watt) allow the production of greater than 10 18 polarized atoms/sec. We have begun a program at Princeton to investigate the physics and technology of using optical pumping to produce large quantities of spin polarized hydrogen. Initial experiments have been done in small closed glass cells. Eventually, a flowing system, open target, or polarized ion source could be constructed

  6. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-01-01

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR

  7. Anomalous neutron scattering in nuclear-polarized media

    International Nuclear Information System (INIS)

    Bashkin, E.P.

    1989-01-01

    A novel inelastic scattering exchange mechanism involving spin flip is considered for slow neutrons moving through a nuclear-polarized medium. The scattering is accompanied by the emission or absorption of thermal fluctuations of the transverse magnetization of the medium. The main role in the fluctuations is played by weakly decaying Larmor precession of the nuclear spins in an external magnetic field. Under 'giant opalescence' conditions the effect is enormous and the respective cross sections exceed significantly those for ordinary elastic scattering. Thus, for 29 Si and 3 He in typical experimental conditions the cross sections for the inelastic processes are of the order of 10 5 -10 6 barn

  8. Performance of a Polarized Deuterium Internal Target in a Medium-Energy Electron Storage Ring.

    NARCIS (Netherlands)

    Zhou, Z.L.; Ferro Luzzi, M.M.E.; van den Brand, J.F.J.; Bulten, H.J.; Alarcon, R.; van Bommel, R.; Botto, T.; Bouwhuis, M.; Buchholz, M.; Choi, S.; Comfort, J.; Doets, M.; Dolfini, S.; Ent, R.; Gaulard, C.; de Jager, C.W.; Lang, J.; de Lange, D.J.; Miller, M.A.; Passchier, E.; Passchier, I.; Poolman, H.R.; Six, E.; Steijger, J.J.M.; Unal, O.; de Vries, H.

    1996-01-01

    A polarized deuterium target internal to a medium-energy electron storage ring is described in the context of spindependent (e, e′d) and (e ,e′p) experiments. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used

  9. On feasibility of the experiments with a polarized deuteron beam and a polarized target at Charles University in relation with polarized fusion

    International Nuclear Information System (INIS)

    Plis, Yu.A.

    2001-01-01

    There is an interest in the problem of polarized fusion with the neutron-free d 3 He reaction. Up to now, the experimental data on the cross sections of two dd reactions, which produce neutrons at once or through secondary dt reaction, are absent for polarized deuterons. There is a relatively cheap way to carry out the experiments with polarized deuterons at the Charles University in Prague. A polarized deuteron beam with energy from 100 keV up to approximately 1 MeV may be produced on the Van de Graaff accelerator by the channeling of a deuteron beam through magnetized Ni single crystal foil, according M. Kaminsky [Phys. Rev. Lett. 23, 819 (1969)]. This method permits to produce a polarized deuteron beam of an energy ≤1 MeV with a current of ∼1 nA, vector polarization P 3 up to 2/3 and tensor polarization P 33 =0. It will be necessary to modify the existing polarized target at Charles University for work with a low energy deuteron beam [N. S. Borisov et al., Nucl. Instr. and Meth. A 345, 421 (1994)

  10. Safety targets for nuclear power plants

    International Nuclear Information System (INIS)

    Herttrich, P.M.

    1985-01-01

    By taking as an example the safety targets of the American nuclear energy authority US-NRC, this paper explains what is meant by global, quantitative safety targets for nuclear power plants and what expectations are associated with the selecton of such safety targets. It is shown how probabilistic methods can be an appropriate completion of proven deterministic methods and what are the sectors where their application may become important in future. (orig./HP) [de

  11. Distillation of hydrogen isotopes for polarized HD targets

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, T., E-mail: takeshi@rcnp.osaka-u.ac.jp [Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047 (Japan); Bouchigny, S. [IN2P3, Institut de Physique Nucleaire, F-91406 Orsay (France); CEA LIST, BP6-92265 Fontenay-aux-Roses, CEDEX (France); Didelez, J.-P. [IN2P3, Institut de Physique Nucleaire, F-91406 Orsay (France); Fujiwara, M. [Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047 (Japan); Fukuda, K. [Kansai University of Nursing and Health Sciences, Shizuki Awaji 656-2131 (Japan); Kohri, H.; Kunimatsu, T.; Morisaki, C.; Ono, S. [Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047 (Japan); Rouille, G. [IN2P3, Institut de Physique Nucleaire, F-91406 Orsay (France); Tanaka, M. [Kobe Tokiwa University, Ohtani-cho 2-6-2, Nagata, Kobe 653-0838 (Japan); Ueda, K.; Uraki, M.; Utsuro, M. [Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047 (Japan); Wang, S.Y. [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Physics, National Kaohsiung Normal University, Kaohsiung 824, Taiwan (China); Yosoi, M. [Research Center for Nuclear Physics, Osaka University, Mihogaoka 10-1, Ibaraki, Osaka 567-0047 (Japan)

    2012-02-01

    We have developed a new cryogenic distillation system to purify Hydrogen-Deuteride (HD) gas for polarized HD targets in LEPS experiments at SPring-8. A small amount of ortho-H{sub 2} ({approx}0.01%) in the HD gas plays an important role in efficiently polarizing the HD target. Since there are 1-5% impurities of H{sub 2} and D{sub 2} in commercially available HD gases, it is necessary to purify the HD gas up to {approx}99.99%. The distillation system is equipped with a cryogenic distillation unit filled with many small stainless steel cells called 'Heli-pack'. The distillation unit consists of a condenser part, a rectification part, and a reboiler part. The unit is kept at the temperature of 17-21 K. The Heli-pack has a large surface area that makes a good contact between gases and liquids. An amount of 5.2 mol of commercial HD gas is fed into the distillation unit. Three trials were carried out to purify the HD gas by changing temperatures (17.5 K and 20.5 K) and gas extraction speeds (1.3 ml/min and 5.2 ml/min). The extracted gas was analyzed using a gas analyzer system combining a quadrupole mass spectrometer with a gas chromatograph. One mol of HD gas with a purity better than 99.99% has been successfully obtained for the first time. The effective NTP (Number of Theoretical Plates), which is an indication of the distillation performances, is obtained to be 37.2{+-}0.6. This value is in good agreement with a designed value of 37.9. The HD target is expected to be efficiently polarized under a well-controlled condition by adding an optimal amount of ortho-H{sub 2} to the purified HD gas.

  12. Polarization imaging enhancement for target vision through haze

    Science.gov (United States)

    Wu, Hai-Ying; Zhang, San-Xi; Li, Jie; LI, Bin; Tang, Zi-li; Liu, Biao; Jia, Wen-Wu

    2016-10-01

    Haze, fog, and smoke are turbid medium in the atmosphere which usually degrade viewing condition of outdoor scenes. The resulted images lose contrast and color fidelity with serious degradation. Due to loss of large detailed information of measured scene, it will usually lead to invalid detection and measurement. The suspended particles in the atmosphere and the scene being measured give rise to polarization changes by their reflection. In the process of reflection, absorption and scattering, the object itself can be determined by its own polarization characteristics. Based on this point, we proposed an approach for target vision through haze. This approach is based on the polarization differences between the scene being measured and the scattering background to move the haze effects. It can realize a great visibility enhancement and enable the scene rendering even if imaged under restricted viewing conditions with low polarization. In this work, the detailed theoretical operation principle is presented. A validating imaging system is established and the corresponding experiment is carried out. We present the experimental results of haze-free image of scene with recovered high contrast. This method also can be used to effectively enhance the imaging performance of any other optical system.

  13. Cluster formation restricts dynamic nuclear polarization of xenon in solid mixtures

    DEFF Research Database (Denmark)

    Kuzma, N. N.; Pourfathi, M.; Kara, H.

    2012-01-01

    During dynamic nuclear polarization (DNP) at 1.5 K and 5 T, Xe-129 nuclear magnetic resonance (NMR) spectra of a homogeneous xenon/1-propanol/trityl-radical solid mixture exhibit a single peak, broadened by H-1 neighbors. A second peak appears upon annealing for several hours at 125 K. Its...

  14. Long-term cost targets for nuclear energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; McDonald, A.

    2004-01-01

    In 2000 the International Atomic Energy Agency (IAEA) began the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) to help guide nuclear R and D strategies targeted on anticipated mid-century energy system needs. One part of INPRO seeks to develop cost targets for new designs to be competitive in mid-century markets. The starting point was the 40 scenarios of the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change. This paper summarizes four of the SRES scenarios, one from each of the four SRES scenario families. It discusses their implications for nuclear energy, including cost targets, and develops for each an 'aggressive nuclear' variant. The aggressive nuclear variants estimate the potential market for nuclear energy if, by improving faster than assumed by the SRES authors, nuclear energy can make inroads into vulnerable market shares projected for its competitors. In addition to projected demands for nuclear generated electricity, hydrogen and heat, the aggressive variants include prospective demand for nuclear desalination and use in upgrading fossil fuels. The paper then presents learning rates and implied cost targets consistent with the aggressive nuclear variants of the SRES scenarios. One provocative initial result is that many of the scenarios with substantial nuclear expansion do not seem to require big reductions in nuclear investment costs. One interpretation discussed at the end of the paper highlights the difference between cost reductions consistent with long-term energy system optimization based on perfect foresight, and cost reductions necessary to attract private investment in today's 'deregulating' and uncertain energy markets. (orig.)

  15. NMR signal analysis in the large COMPASS $^{14}$NH$_{3}$ target

    CERN Document Server

    Koivuniemi, J; Hess, C; Kisselev, Y U; Meyer, W; Radtke, E; Reicherz, G; Doshita, N; Iwata, T; Kondo, K; Michigami, T

    2009-01-01

    In the large COMPASS polarized proton target the 1508 cm$^{3}$ of irradiated granular ammonia is polarized with dynamic nuclear polarization method using 4 mm microwaves in 2.5 T eld. The nuclear polarization up to 90 - 93 % is determined with cw NMR. The properties of the observed ammonia proton signals are described and spin thermodynamics in high elds is presented. Also the second moment of the NMR line is estimated.

  16. New experimental possibility to search for the ratio of a possible T-violating amplitude to the weak-interaction amplitude in polarized neutron transmission through a polarized nuclear target

    CERN Document Server

    Lukashevich, V V; Dallman, David

    2011-01-01

    This paper considers a spin-dependent neutron interaction with optical potentials (fields) from the strong interaction, the weak interaction, and an assumed T-violating interaction. The vector sum of these fields and their interferences determines an effective field of the target with an angular position in space due to polar and azimuthal angles. The phase of the azimuthal component is found to be the sum of two angles. The tangent of the first angle is equal to the ratio of the T-violating forward-scattering amplitude D to the weak-interaction amplitude C. The quantity is of interest. The tangent of the second angle depends on the spin rotation in the residual pseudomagnetic field of the target, and it can be treated as a background effect. This paper shows that the second angle has different signs in measurements with polarized and unpolarized neutrons; thus, two measurements allow it to be compensated for. In addition, the use of the Ramsey method of separated oscillatory fields for measurement of the neu...

  17. Polarization phenomena in few-body systems

    International Nuclear Information System (INIS)

    Conzett, H.E.

    1975-12-01

    Recent polarization studies in N--N scattering at and below 50 MeV have provided specific and significant improvements in the phase-shift parameters. High energy investigations with both polarized proton beams and targets have shown unexpectedly large spin effects, and this provides a challenge for theoretical effort to explain these results. Experimental and theoretical work on the three-nucleon problem continues to yield new and interesting results, with the emphasis now shifting to polarization studies in the breakup reaction. On-going work on several-nucleon systems continues to provide polarization data for general analyses, nuclear structure information, or specific resonance effects. Finally, the basic interaction symmetries continue to have unique and important consequences for polarization observables. 17 figures

  18. Influence of laser-target interaction on the polarization of a CO2-laser

    International Nuclear Information System (INIS)

    Du, K.; Herziger, G.; Loosen, P.; Seelig, W.

    1988-01-01

    Laser materials processing shows a special peculiarity compared to other customary techniques: the generally reflecting target introduces optical feedback into the system. This feedback changes the mode properties of the laser radiation according to the targets dynamics. The authors report on one of these aspects of laser-target interaction resulting in the change of the polarization of the incident light. Based of rate equations, a theoretical model is presented in this paper that allows the calculation of this change with respect of the target properties, yielding a simple relation for the two orthogonal planes of polarization of a laser mode. This relation turns out to be linearly dependent of a function ψ (t) which describes the optical feedback. The relation holds for target reflexions of up to 10% and four times larger than τ 2 x τ 2 /τ 1 - τ 2 (where τ 1 , τ 2 are the time constants of the passive resonator for the two orthogonal planes of polarization). The model offers a method for the modulation for the modulation of laser radiation without change of frequency or intensity. It might also be of interest for high-power CO 2 laser cutting and welding of metals

  19. The tagged photon beam polarization of the jet target experiment

    International Nuclear Information System (INIS)

    Bianchi, N.; Muccifora, V.

    1989-01-01

    The applicability of the residual electron selection method to the tagging method of the jet target laboratory has been studied. With this end in view the behaviour of the polarized bremsstrahlung cross section in the range considered has been analysed, while the polarization increase by means of the RES has been evaluated. The vertical conditions of the focusing of the tagging spectrometer as a function of energy have been determined. Finally the gamma beam density and the tagging efficiency have been calculated

  20. Nuclear Targeting Terms for Engineers and Scientists

    Energy Technology Data Exchange (ETDEWEB)

    St Ledger, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-01

    The Department of Defense has a methodology for targeting nuclear weapons, and a jargon that is used to communicate between the analysts, planners, aircrews, and missile crews. The typical engineer or scientist in the Department of Energy may not have been exposed to the nuclear weapons targeting terms and methods. This report provides an introduction to the terms and methodologies used for nuclear targeting. Its purpose is to prepare engineers and scientists to participate in wargames, exercises, and discussions with the Department of Defense. Terms such as Circular Error Probable, probability of hit and damage, damage expectancy, and the physical vulnerability system are discussed. Methods for compounding damage from multiple weapons applied to one target are presented.

  1. Studies of nuclear structure via polarization transfer experiments

    International Nuclear Information System (INIS)

    Moss, J.M.

    1985-01-01

    Inelastic scattering and charge exchange reactions at medium energies are discussed. Theoretical treatments of these phenomena based on the Dirac equation are presented. A LAMPF experiment in which polarization observables were employed in the search for collective effects in the nuclear pion field is discussed. This experiment is compared with the EMC (European Muon Collaboration) effect. 37 refs., 11 figs

  2. Inhomogeneous nuclear spin polarization induced by helicity-modulated optical excitation of fluorine-bound electron spins in ZnSe

    Science.gov (United States)

    Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2015-12-01

    Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.

  3. The polarized atomic-beam target for the EDDA experiment and the time-reversal invariance test at COSY

    International Nuclear Information System (INIS)

    Eversheim, P.D.; Altmeier, M.; Felden, O.

    1996-01-01

    For the the EDDA experiment, which was set up to measure the p-vector - p-vector excitation function during the acceleration ramp of the cooler synchrotron COSY at Juelich, a polarized atomic-beam target was designed regarding the restrictions imposed by the geometry of the EDDA detector. Later, when the time-reversal invariance experiment is to be performed, the EDDA detector will serve as efficient internal polarimeter and the source has to deliver tensor polarized deuterons. The modular design of this polarized atomic-beam target that allows to meet these conditions are discussed in comparison to other existing polarized atomic-beam targets. (orig.)

  4. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K.

    Science.gov (United States)

    Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.

  5. Nuclear targets, recoil ion catchers and reaction chambers

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Schuck, C; Collatz, R; Meunier, R; Ledu, D; Folger, H; Lafoux, A; Lagrange, JM; Pautrat, M; Waast, B; Phillips, WR; Blunt, D; Durell, JL; Varley, BJ; Dagnall, PG; Dorning, SJ; JONES, MA; Smith, AG; Bacelar, JCS; Rzaca-Urban, T; Amzal, N; Meliani, Z; Vanhorenbeeck, J; Passoja, A; Urban, W

    1998-01-01

    The main features of nuclear targets, recoil ion catchers and reaction chambers used in nuclear spectroscopic investigations involving in-beam multi-e-gamma spectrometers are discussed. The relative importance of the F-ray background due to the accelerated ion-target and the recoil-ion-target

  6. Observation of strongly forbidden solid effect dynamic nuclear polarization transitions via electron-electron double resonance detected NMR

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A.; Corzilius, Björn; Haze, Olesya; Swager, Timothy M.; Griffin, Robert G., E-mail: rgg@mit.edu [Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We present electron paramagnetic resonance experiments for which solid effect dynamic nuclear polarization transitions were observed indirectly via polarization loss on the electron. This use of indirect observation allows characterization of the dynamic nuclear polarization (DNP) process close to the electron. Frequency profiles of the electron-detected solid effect obtained using trityl radical showed intense saturation of the electron at the usual solid effect condition, which involves a single electron and nucleus. However, higher order solid effect transitions involving two, three, or four nuclei were also observed with surprising intensity, although these transitions did not lead to bulk nuclear polarization—suggesting that higher order transitions are important primarily in the transfer of polarization to nuclei nearby the electron. Similar results were obtained for the SA-BDPA radical where strong electron-nuclear couplings produced splittings in the spectrum of the indirectly observed solid effect conditions. Observation of high order solid effect transitions supports recent studies of the solid effect, and suggests that a multi-spin solid effect mechanism may play a major role in polarization transfer via DNP.

  7. Method of generating intense nuclear polarized beams by selective photodetachment of negative ions

    International Nuclear Information System (INIS)

    Hershcovitch, A.

    1986-01-01

    A novel method for production of nuclear polarized negative hydrogen ions by selective neutralization with a laser of negative hydrogen ions in a magnetic field is described. This selectivity is possible since a final state of the neutralized atom, and hence the neutralization energy, depends on its nuclear polarization. The main advantages of this scheme are the availability of multi-ampere negative ion sources and the possibility of neutralizing negative ions with very high efficiency. An assessment of the required laser power indicates that this method is in principle feasible with today's technology

  8. Effect of Beam Scanning on Target Polarization Scattering Matrix Observed by Fully Polarimetric Phased-array Radar

    Directory of Open Access Journals (Sweden)

    Li Mianquan

    2016-04-01

    Full Text Available The polarization feature of a fully Polarimetric Phased-Array Radar (PPAR antenna varies according to the beam-scanning angle, thereby introducing two problems on the target Polarization Scattering Matrix (PSM measurement. First, the antenna polarization basis is defined within the vertical cross-section of an electromagnetic wave propagation direction, and the polarization basis of each beam direction angle is not identical, resulting in the PSM of a fixed-posture target observed by PPAR being not identical for different beam-scanning angles. Second, the cross polarization of the PPAR antenna increases with increasing beamscanning angle, resulting in a crosstalk among the elements of PSM observed by PPAR. This study focuses on the analysis of the abovementioned two aspects of the effect of beam scanning on target PSM observed by PPAR. The results will establish a more accurate observation of the equation for the precision PSM measurement of PPAR.

  9. Radiative electron rearrangement and polarization in target K x-ray spectra

    International Nuclear Information System (INIS)

    Jamison, K.A.

    1978-01-01

    Two topics in the atomic physics of ion-atom collisions are studied. The first is an investigation of a free-atom decay process that is shown to be a two-electron one-photon decay. This two-electron decay requires an initial state with multiple inner-shell vacancies that has a high probability of creation in ion-atom collisions. Because this decay promotes one electron to a higher shell while allowing the other to fall to a lower shell, it is referred to as radiative electron rearrangement (RER). The investigation of this process includes the experimental study of the x-ray spectra region approx. 150 eV below the characteristic Kα 1 2 target radiation in third period elements when bombarded by various ion beams in the energy range 1 to 2 MeV/amu. Theoretical calculations of the transition energies, line strengths, and line widths are performed to verify the origin of the RER lines. The second topic of consideration is the study of the polarization of Kα satellite radiation from targets of Al and Si. It is shown that the polarization, which is observed experimentally with a curved-crystal polarimeter, is due to the nonstatistical population of the magnetic substates created in specific ion-atom collisions. Further, the polarization of the RER lines is studied. The connection between the polarization of the normal Kα satellite radiation and the polarization of the RER lines adds final proof to their origin as two-electron one-photon transitions

  10. Polarization of fast neutrons in VVR-M reactor

    International Nuclear Information System (INIS)

    Garusov, E.A.; Lifshits, E.P.; Petrov, Yu.V.

    1987-01-01

    Neutron polarization in the reactor leads to circular polarization of γ quanta emitted both in radiational capture of neutrons and in the transition of nuclei excited as a result of inelastic scattering to the ground state. This may be used to determine the polarization of reactor neutrons. The circular polarization of γ quanta at light-water and graphite targets at the center of the active zone of the VVR-M reactor at the B.P. Konstantinov Leningrad Institute of Nuclear Physics was recently measured. A simplified experimental scheme is shown. Fast neutrons leaving the active zone of the reactor were excited in the inelastic scattering at the target nuclei. The polarization of the γ quanta emitted by nuclei in transitions to the ground state was measured by a polarimeter positioned above the active zone. The reason for the circular polarization of γ quanta may also be nonconservation of P parity on account of weak interaction in the capture of a neutron by hydrogen

  11. The polarized atomic-beam target for the EDDA experiment and the time-reversal invariance test at COSY

    Science.gov (United States)

    Eversheim, P. D.; Altmeier, M.; Felden, O.

    1997-02-01

    For the the EDDA experiment, which was set up to measure the p¯-p¯ excitation function during the acceleration ramp of the cooler synchrotron COSY at Jülich, a polarized atomic-beam target was designed regarding the restrictions imposed by the geometry of the EDDA detector. Later, when the time-reversal invariance experiment is to be performed, the EDDA detector will serve as efficient internal polarimeter and the source has to deliver tensor polarized deuterons. The modular design of this polarized atomic-beam target that allows to meet these conditions will be discussed in comparison to other existing polarized atomic-beam targets.

  12. OMEGA polar-drive target designs

    International Nuclear Information System (INIS)

    Radha, P. B.; Marozas, J. A.; Marshall, F. J.; Shvydky, A.; Collins, T. J. B.; Goncharov, V. N.; McKenty, P. W.; Sangster, T. C.; Skupsky, S.; McCrory, R. L.; Meyerhofer, D. D.

    2012-01-01

    Low-adiabat polar-drive (PD) [Skupsky et al., Phys. Plasmas 11, 2763 (2004)] implosion designs for the OMEGA [Boehly et al., Opt. Commun. 133, 495 (1997)] laser are described. These designs for cryogenic deuterium–tritium and warm plastic shells use a temporal laser pulse shape with three pickets followed by a main pulse [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)]. The designs are at two different on-target laser intensities, with different in-flight aspect ratios (IFARs). These designs permit studies of implosion energetics and target performance closer to ignition-relevant intensities (∼7 × 10 14 W/cm 2 at the quarter-critical surface, where nonlocal heat conduction and laser–plasma interactions can play an important role) but at lower values of IFAR ∼ 22 or at lower intensity (∼3 × 10 14 W/cm 2 ) but at a higher IFAR (IFAR ∼ 32, where shell instability can play an important role). PD geometry requires repointing of laser beams to improve shell symmetry. The higher-intensity designs optimize target performance by repointing beams to a lesser extent, compensating for the reduced equatorial drive by increasing the energies of the repointed beams. They also use custom beam profiles that improve equatorial illumination at the expense of irradiation at higher latitudes. These latter designs will be studied when new phase plates for the OMEGA Laser System, corresponding to the custom beam profiles, are obtained.

  13. Stable isotope-resolved analysis with quantitative dissolution dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Lerche, Mathilde Hauge; Yigit, Demet; Frahm, Anne Birk

    2018-01-01

    Metabolite profiles and their isotopomer distributions can be studied non-invasively in complex mixtures with NMR. The advent of dissolution Dynamic Nuclear Polarization (dDNP) and isotope enrichment add sensitivity and resolution to such met-abolic studies. Metabolic pathways and networks can be...

  14. IDH2 Mutations Define a Unique Subtype of Breast Cancer with Altered Nuclear Polarity

    Science.gov (United States)

    Chiang, Sarah; Weigelt, Britta; Wen, Huei-Chi; Pareja, Fresia; Raghavendra, Ashwini; Martelotto, Luciano G.; Burke, Kathleen A.; Basili, Thais; Li, Anqi; Geyer, Felipe C.; Piscuoglio, Salvatore; Ng, Charlotte K.Y.; Jungbluth, Achim A.; Balss, Jörg; Pusch, Stefan; Baker, Gabrielle M.; Cole, Kimberly S.; von Deimling, Andreas; Batten, Julie M.; Marotti, Jonathan D.; Soh, Hwei-Choo; McCalip, Benjamin L.; Serrano, Jonathan; Lim, Raymond S.; Siziopikou, Kalliopi P.; Lu, Song; Liu, Xiaolong; Hammour, Tarek; Brogi, Edi; Snuderl, Matija; Iafrate, A. John; Reis-Filho, Jorge S.; Schnitt, Stuart J.

    2017-01-01

    Solid papillary carcinoma with reverse polarity (SPCRP) is a rare breast cancer subtype with an obscure etiology. In this study, we sought to describe its unique histopathologic features and to identify the genetic alterations that underpin SPCRP using massively parallel whole-exome and targeted sequencing. The morphologic and immunohistochemical features of SPCRP support the invasive nature of this subtype. Ten of 13 (77%) SPCRPs harbored hotspot mutations at R172 of the isocitrate dehydrogenase IDH2, of which 8 of 10 displayed concurrent pathogenic mutations affecting PIK3CA or PIK3R1. One of the IDH2 wild-type SPCRPs harbored a TET2 Q548* truncating mutation coupled with a PIK3CA H1047R mutation. Functional studies demonstrated that IDH2 and PIK3CA hotspot mutations are likely drivers of SPCRP, resulting in its reversed nuclear polarization phenotype. Our results offer a molecular definition of SPCRP as a distinct breast cancer subtype. Concurrent IDH2 and PIK3CA mutations may help diagnose SPCRP and possibly direct effective treatment. PMID:27913435

  15. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    Energy Technology Data Exchange (ETDEWEB)

    Goodson, Boyd McLean [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  16. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    International Nuclear Information System (INIS)

    Goodson, Boyd M.

    1999-01-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI

  17. Dynamical nuclear spin polarization induced by electronic current through double quantum dots

    International Nuclear Information System (INIS)

    Lopez-Monis, Carlos; Platero, Gloria; Inarrea, Jesus

    2011-01-01

    We analyse electron-spin relaxation in electronic transport through coherently coupled double quantum dots (DQDs) in the spin blockade regime. In particular, we focus on hyperfine (HF) interaction as the spin-relaxation mechanism. We pay special attention to the effect of the dynamical nuclear spin polarization induced by the electronic current on the nuclear environment. We discuss the behaviour of the electronic current and the induced nuclear spin polarization versus an external magnetic field for different HF coupling intensities and interdot tunnelling strengths. We take into account, for each magnetic field, all HF-mediated spin-relaxation processes coming from different opposite spin level approaches. We find that the current as a function of the external magnetic field shows a peak or a dip and that the transition from a current dip to a current peak behaviour is obtained by decreasing the HF coupling or by increasing the interdot tunnelling strength. We give a physical picture in terms of the interplay between the electrons tunnelling out of the DQD and the spin-flip processes due to the nuclear environment.

  18. Study of the nuclear structure of 3He by means of polarization observables

    International Nuclear Information System (INIS)

    Weinriefer, Markus

    2011-01-01

    With the possibility to measure several polarization degrees of freedom in the quasi-elastic electron scattering of 3 He is a new way to access small, but important partial wave contributions (S ' , D-wave) to the 3 He ground state. This gives direct access to a better understanding of the three-body-system. It also opens up a way to directly test the 3 He structure and dynamics. With this information it is possible to test ab initio calculations and to calculate corrections that are needed for different experiments (measurement of G en for example). Modern Faddeev-calculations do not only give a quantitative description of the 3 He ground state. They also give insight in so called spin dependent momentum distributions. A systematic experimental investigation is needed to get a good basis for tests of the theoretical models. A triple-polarization-experiment can give important data in this field. Also with the help of such an experiment one can investigate if polarized 3 He can be used as an effective polarized proton target by the method of ''deuteron-tagging''. The experiment presented in this work combines for the first time beam- and target-polarization as well as a measurement of the polarization of the outgoing proton. The measurement was done in summer of 2007 at the three spectrometer setup of the A1 collaboration at the MAMI accelerator. A beam energy of E=855 MeV was used and we measured at q 2 =-0.14 (GeV/c) 2 (ω=0.13 GeV, q=0.4 GeV/c). The measured cross section, as well as the beam-target- and triple-asymmetry were compared to a theoretical calculation by J. Golak (he gives a plane wave impulse approximation (PWIA) calculation and a calculation also taking final state interaction into account). The cross section was also compared to a model by de Forest that is using a measured spectral function. The comparison shows a good agreement between the measured cross section as well as the double and triple asymmetry and the theoretical calculations. The

  19. Dynamic nuclear-polarization studies of paramagnetic species in solution

    International Nuclear Information System (INIS)

    Glad, W.E.

    1982-07-01

    Dynamic Nuclear Polarization (DNP) was used to measure the electron spin lattice relaxation times, T 1 , of transition metal ions in aqueous solution. Saturation which is induced in the electron spin system is transferred to the solvent proton spins by dipole-dipole interactions. The change in the polarization of the proton spins is much larger than it is in the electron spins. The change in proton polarization is easily measured by proton Nuclear Magnetic Resonance (NMR). In one experimental arrangement the sample solution was continuously flowed through a microwave cavity to the NMR coil. The NMR was observed with a continuous wave NMR spectrometer. In a second arrangement the whole sample tube was moved from within the microwave cavity to the NMR coil in less than 40 ms by a blast of compressed air. The NMR was then observed with a pulse-Fourier-transform spectrometer. With the second arrangement a mean-square microwave magnetic field at the sample of more than 10 G 2 is obtainable with 14 W of microwave power. Measurements of DNP at 9 GHz were made on aqueous solutions of VO 2+ , Mn 2+ , Cr(CN) 6 3- , Cu 2+ and Cu(ethylenediamine) 2 (H 2 0) 2 2+ ions from 3 to 60 0 C. It was also possible to observe DNP on resolved proton resonances from mixed water-acetonitrile solutions of VO 2+ and Cr(CN) 6 3- ions

  20. Polarization of nuclear spins by a cold nanoscale resonator

    International Nuclear Information System (INIS)

    Butler, Mark C.; Weitekamp, Daniel P.

    2011-01-01

    A cold nanoscale resonator coupled to a system of nuclear spins can induce spin relaxation. In the low-temperature limit where spin-lattice interactions are ''frozen out,'' spontaneous emission by nuclear spins into a resonant mechanical mode can become the dominant mechanism for cooling the spins to thermal equilibrium with their environment. We provide a theoretical framework for the study of resonator-induced cooling of nuclear spins in this low-temperature regime. Relaxation equations are derived from first principles, in the limit where energy donated by the spins to the resonator is quickly dissipated into the cold bath that damps it. A physical interpretation of the processes contributing to spin polarization is given. For a system of spins that have identical couplings to the resonator, the interaction Hamiltonian conserves spin angular momentum, and the resonator cannot relax the spins to thermal equilibrium unless this symmetry is broken by the spin Hamiltonian. The mechanism by which such a spin system becomes ''trapped'' away from thermal equilibrium can be visualized using a semiclassical model, which shows how an indirect spin-spin interaction arises from the coupling of multiple spins to one resonator. The internal spin Hamiltonian can affect the polarization process in two ways: (1) By modifying the structure of the spin-spin correlations in the energy eigenstates, and (2) by splitting the degeneracy within a manifold of energy eigenstates, so that zero-frequency off-diagonal terms in the density matrix are converted to oscillating coherences. Shifting the frequencies of these coherences sufficiently far from zero suppresses the development of resonator-induced correlations within the manifold during polarization from a totally disordered state. Modification of the spin-spin correlations by means of either mechanism affects the strength of the fluctuating spin dipole that drives the resonator. In the case where product states can be chosen as energy

  1. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Thurber, Kent R., E-mail: thurberk@niddk.nih.gov; Tycko, Robert [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States)

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  2. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    International Nuclear Information System (INIS)

    Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We report solid state 13 C and 1 H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1 H and cross-polarized 13 C NMR signals from 15 N, 13 C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T 1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations

  3. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  4. Molecular nuclear imaging for targeting and trafficking

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Jeong, Hwan-Jeong

    2006-01-01

    Noninvasive molecular targeting in living subjects is highly demanded for better understanding of such diverse topics as the efficient delivery of drugs, genes, or radionuclides for the diagnosis or treatment of diseases. Progress in molecular biology, genetic engineering and polymer chemistry provides various tools to target molecules and cells in vivo. We used chitosan as a polymer, and 99m Tc as a radionuclide. We developed 99m Tc-galactosylated chitosan to target asialoglycoprotein receptors for nuclear imaging. We also developed 99m Tc-HYNIC-chitosan-transferrin to target inflammatory cells, which was more effective than 67 Ga-citrate for imaging inflammatory lesions. For an effective delivery of molecules, a longer circulation time is needed. We found that around 10% PEGylation was most effective to prolong the circulation time of liposomes for nuclear imaging of 99m Tc-HMPAO-labeled liposomes in rats. Using various characteristics of molecules, we can deliver drugs into targets more effectively. We found that 99m Tc-labeled biodegradable pullulan-derivatives are retained in tumor tissue in response to extracellular ion-strength. For the trafficking of various cells or bacteria in an intact animal, we used optical imaging techniques or radiolabeled cells. We monitored tumor-targeting bacteria by bioluminescent imaging techniques, dentritic cells by radiolabeling and neuronal stem cells by sodium-iodide symporter reporter gene imaging. In summary, we introduced recent achievements of molecular nuclear imaging technologies in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune and stem cells using molecular nuclear imaging techniques

  5. Polarization: A must for fusion

    Directory of Open Access Journals (Sweden)

    Didelez J.-P.

    2013-11-01

    Full Text Available The complete polarization of DT fuel would increase the fusion reactivity by 50% in magnetic as well as in inertial confinements. The persistence of polarization in a fusion process could be tested, using a terawatt laser hitting a polarized HD target. The polarized deuterons heated in the plasma induced by the laser can fuse producing a 3He and a neutron in the final state. The angular distribution of the emitted neutrons and the change in the corresponding total Cross Section (CS can sign the polarization persistence. The polarization of solid H2, D2 or T2 Hydrogen isotopes is very difficult. However, it has been possible to polarize HD, a hetero-molecular form of Hydrogen, by static polarization, at very low temperature and very high field. The radioactivity of DT molecules forbids there high polarization by the static method, therefore one has to develop the Dynamic Nuclear Polarization (DNP by RF transitions. The DNP of HD has been investigated in the past. The magnetic properties of HD and DT molecules are very similar, it is therefore expected that any polarization result obtained with HD could be extrapolated to DT.

  6. Detection-Discrimination Method for Multiple Repeater False Targets Based on Radar Polarization Echoes

    Directory of Open Access Journals (Sweden)

    Z. W. ZONG

    2014-04-01

    Full Text Available Multiple repeat false targets (RFTs, created by the digital radio frequency memory (DRFM system of jammer, are widely used in practical to effectively exhaust the limited tracking and discrimination resource of defence radar. In this paper, common characteristic of radar polarization echoes of multiple RFTs is used for target recognition. Based on the echoes from two receiving polarization channels, the instantaneous polarization radio (IPR is defined and its variance is derived by employing Taylor series expansion. A detection-discrimination method is designed based on probability grids. By using the data from microwave anechoic chamber, the detection threshold of the method is confirmed. Theoretical analysis and simulations indicate that the method is valid and feasible. Furthermore, the estimation performance of IPRs of RFTs due to the influence of signal noise ratio (SNR is also covered.

  7. Increasing Spin Coherence in Nanodiamond via Dynamic Nuclear Polarization

    Science.gov (United States)

    Gaebel, Torsten; Rej, Ewa; Boele, Thomas; Waddington, David; Reilly, David

    Nanodiamonds are of interest for quantum information technology, as metrological sensors, and more recently as a probe of biological environments. Here we present results examining how intrinsic defects can be used for dynamic nuclear polarization that leads to a dramatic increase in both T1 and T2 for 13C spins in nanodiamond. Mechanisms to explain this enhancement are discussed.

  8. Polarized proton target-III. Operations manual, revision B

    International Nuclear Information System (INIS)

    Hill, D.; Moretti, A.; Onesto, F.; Rynes, P.

    1978-01-01

    The manual presented contains certain standard operating procedures for the vacuum, cryogenic, and electronic systems of PPT-III. In total, these systems comprise the following major divisions: (1) the target cryostat; (2) the 4 He pumping system; (3) the 3 He pumping system; (4) the remote monitors and controls; (5) the microwave system; (6) the magnet and power supply; (7) the computerized polarization monitor; (8) the 4 He liquefier and gas recovery system; and (9) miscellaneous auxiliary equipment

  9. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    Science.gov (United States)

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Target and double spin asymmetries of deeply virtual π 0 production with a longitudinally polarized proton target and CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A.; Avakian, H.; Burkert, V.; Joo, K.; Kim, W.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Badui, R. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D' Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garc con, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; McCracken, M. E.; McKinnon, B.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.

    2017-05-01

    The target and double spin asymmetries of the exclusive pseudoscalar channel e→p→→epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, -t and Φ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and E¯T. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.

  11. Polarization of lanthanum nucleus by dynamic polarization method

    International Nuclear Information System (INIS)

    Adachi, Toshikazu; Ishimoto, Shigeru; Masuda, Yasuhiro; Morimoto, Kimio

    1989-01-01

    Preliminary studies have been carried out concerning the application of a dynamic polarization method to polarizing lanthanum fluoride single crystal to be employed as target in experiments with time reversal invariance. The present report briefly outlines the dynamic polarization method and describes some preliminary studies carried out so far. Dynamic polarization is of particular importance because no techniques are currently available that can produce highly polarized static nucleus. Spin interaction between electrons and protons (nuclei) plays a major role in the dynamic polarization method. In a thermal equilibrium state, electrons are polarized almost completely while most protons are not polarized. Positively polarized proton spin is produced by applying microwave to this system. The most hopeful candidate target material is single crystal of LaF 3 containing neodymium because the crystal is chemically stable and easy to handle. The spin direction is of great importance in experiments with time reversal invariance. The spin of neutrons in the target can be cancelled by adjusting the external magnetic field applied to a frozen polarized target. In a frozen spin state, the polarity decreases slowly with a relaxation time that depends on the external magnetic field and temperature. (N.K.)

  12. Few-body experiments with polarized beams and polarized targets

    International Nuclear Information System (INIS)

    Simmons, J.E.

    1983-01-01

    A survey is presented concerning recent polarization experiments in the elastic p-d, p- 3 He, and p- 4 He systems. Mention is made of selected neutron experiments. The nominal energy range is 10 to 1000 MeV. Recent results and interpretations of the p-d system near 10 MeV are discussed. New experiments on the energy dependence of back angle p-d tensor polarization are discussed with respect to resolution of discrepancies and difficulty of theoretical interpretation. Progress is noted concerning multiple scattering interpretation of forward p-d deuteron polarization. Some new results are presented concerning the p- 3 He system and higher energy p- 4 He polarization experiments. 52 references

  13. Magnetic shielding for a transversely polarized target in the longitudinal field of the PANDA solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Bertold; Ahmed, Samer; Dbeyssi, Alaa; Mora Espi, Maria Carmen; Gerz, Kathrin; Lin, Dexu; Maas, Frank; Martinez, Ana Penuelas; Morales, Cristina; Wang, Yadi [Helmholtz Institut Mainz (Germany); Aguar Bartolome, Patricia [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany)

    2016-07-01

    A transversely polarized target in PANDA would allow for the first time access to the imaginary part of the time like electromagnetic proton form factors, namely the phase angle in the imaginary plane between electric and magnetic form factors. Moreover it would allow for a number of other target single spin asymmetries revealing nucleon structure observables connected with the transverse spin structure of the proton. As a first step for achieving a transverse target polarization, the target region has to be shielded against the 2 T longitudinal magnetic flux from the solenoid of the PANDA spectrometer. We present experimental results on intense magnetic flux shielding using a BSCCO-2212 high temperature superconducting hollow cylinder at liquid helium temperature.

  14. Overhauser shift and dynamic nuclear polarization on carbon fibers

    Science.gov (United States)

    Herb, Konstantin; Denninger, Gert

    2018-06-01

    We report on the first experimental magnetic resonance determination of the coupling between electrons and nuclear spins (1H, 13C) in carbon fibers. Our results strongly support the assumption that the electronic spins are delocalized on graphene like structures in the fiber. The coupling between these electrons and the nuclei of the lattice results in dynamic nuclear polarization of the nuclei (DNP), enabling very sensitive NMR experiments on these nuclear spins. For possible applications of graphene in spintronics devices the coupling between nuclei and electrons is essential. We were able to determine the interactions down to 30 × 10-9(30 ppb) . We were even able to detect the coupling of the electrons to 13C (in natural abundance). These experiments open the way for a range of new double resonance investigations with possible applications in the field of material science.

  15. Moeller polarimeter for VEPP-3 storage ring based on internal polarized gas jet target

    International Nuclear Information System (INIS)

    Dyug, M.V.; Grigoriev, A.V.; Kiselev, V.A.; Lazarenko, B.A.; Levichev, E.B.; Mikaiylov, A.I.; Mishnev, S.I.; Nikitin, S.A.; Nikolenko, D.M.; Rachek, I.A.; Shestakov, Yu.V.; Toporkov, D.K.; Zevakov, S.A.; Zhilich, V.N.

    2005-01-01

    A new method to determine the polarization of an electron beam circulating in a storage ring by a non-destructive way, based on measuring the asymmetry in scattering of beam electrons on electrons of the internal polarized gas jet target, has been developed and tested at the VEPP-3 storage ring

  16. High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.

    Science.gov (United States)

    Dementyev, Anatoly E; Cory, David G; Ramanathan, Chandrasekhar

    2011-04-21

    Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3) × 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.

  17. Laser polarization dependence of proton emission from a thin foil target irradiated by a 70 fs, intense laser pulse

    International Nuclear Information System (INIS)

    Fukumi, A.; Nishiuchi, M.; Daido, H.; Li, Z.; Sagisaka, A.; Ogura, K.; Orimo, S.; Kado, M.; Hayashi, Y.; Mori, M.; Bulanov, S.V.; Esirkepov, T.; Nemoto, K.; Oishi, Y.; Nayuki, T.; Fujii, T.; Noda, A.; Nakamura, S.

    2005-01-01

    A study of proton emission from a 3-μm-thick Ta foil target irradiated by p-, s-, and circularly polarized laser pulses with respect to the target plane has been carried out. Protons with energies up to 880 keV were observed in the target normal direction under the irradiation by the p-polarized laser pulse, which yielded the highest efficiency for proton emission. In contrast, s- and circularly polarized laser pulses gave the maximum energies of 610 and 680 keV, respectively. The difference in the maximum energy between the p- and s-polarized cases was associated with the difference between the sheath fields estimated from electron spectra

  18. Optically pumped polarized alkali atomic beams and targets

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1984-01-01

    The optical pumping of 23 Na and 6 Li atomic beams is discussed. Experiments on the optical pumping of 23 Na atomic beams using either a single mode dye laser followed by a double passed acousto-optic modulator or a multimode dye laser are reported. The optical pumping of a 23 Na vapor target for use in a polarized H - ion source is discussed. Results on the use of viton as a wall coating with a long relaxation time are reported. 31 references, 6 figures, 3 tables

  19. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    DEFF Research Database (Denmark)

    Clarkson, R B; Odintsov, B M; Ceroke, P J

    1998-01-01

    ; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the nuclear spin population...

  20. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions

    OpenAIRE

    Nefiodov, A. V.; Plunien, G.; Soff, G.

    2002-01-01

    The influence of nuclear polarization on the bound-electron $g$ factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron $g$ factor in highly charged ions.

  1. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    Science.gov (United States)

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions.

  2. Dynamic nuclear polarization using frequency modulation at 3.34 T.

    Science.gov (United States)

    Hovav, Y; Feintuch, A; Vega, S; Goldfarb, D

    2014-01-01

    During dynamic nuclear polarization (DNP) experiments polarization is transferred from unpaired electrons to their neighboring nuclear spins, resulting in dramatic enhancement of the NMR signals. While in most cases this is achieved by continuous wave (cw) irradiation applied to samples in fixed external magnetic fields, here we show that DNP enhancement of static samples can improve by modulating the microwave (MW) frequency at a constant field of 3.34 T. The efficiency of triangular shaped modulation is explored by monitoring the (1)H signal enhancement in frozen solutions containing different TEMPOL radical concentrations at different temperatures. The optimal modulation parameters are examined experimentally and under the most favorable conditions a threefold enhancement is obtained with respect to constant frequency DNP in samples with low radical concentrations. The results are interpreted using numerical simulations on small spin systems. In particular, it is shown experimentally and explained theoretically that: (i) The optimal modulation frequency is higher than the electron spin-lattice relaxation rate. (ii) The optimal modulation amplitude must be smaller than the nuclear Larmor frequency and the EPR line-width, as expected. (iii) The MW frequencies corresponding to the enhancement maxima and minima are shifted away from one another when using frequency modulation, relative to the constant frequency experiments. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. A Gamma Polarimeter for Neutron Polarization Measurement in a Liquid Deuterium Target for Parity Violation in Polarized Neutron Capture on Deuterium.

    Science.gov (United States)

    Komives, A; Sint, A K; Bowers, M; Snow, M

    2005-01-01

    A measurement of the parity-violating gamma asymmetry in n-D capture would yield information on N-N parity violation independent of the n-p system. Since cold neutrons will depolarize in a liquid deuterium target in which the scattering cross section is much larger than the absorption cross section, it will be necessary to quantify the loss of polarization before capture. One way to do this is to use the large circular polarization of the gamma from n-D capture and analyze the circular polarization of the gamma in a gamma polarimeter. We describe the design of this polarimeter.

  4. Target and double spin asymmetries of deeply virtual π0 production with a longitudinally polarized proton target and CLAS

    Directory of Open Access Journals (Sweden)

    A. Kim

    2017-05-01

    Full Text Available The target and double spin asymmetries of the exclusive pseudoscalar channel e→p→→epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS. The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, −t and ϕ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and E¯T. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.

  5. Target and double spin asymmetries of deeply virtual π0 production with a longitudinally polarized proton target and CLAS

    Science.gov (United States)

    Kim, A.; Avakian, H.; Burkert, V.; Joo, K.; Kim, W.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Badui, R. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garc con, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; McCracken, M. E.; McKinnon, B.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.

    2017-05-01

    The target and double spin asymmetries of the exclusive pseudoscalar channel e → p → → epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, -t and ϕ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and EbarT. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.

  6. Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory

    International Nuclear Information System (INIS)

    Chamorro, E.; Proft, F. de; Geerlings, P.

    2005-01-01

    An extension of Cohen's nuclear Fukui function is presented in the spin-polarized framework of density-functional theory (SP-DFT). The resulting new nuclear Fukui function indices Φ Nα and Φ Sα are intended to be the natural descriptors for the responses of the nuclei to changes involving charge transfer at constant multiplicity and also the spin polarization at constant number of electrons. These generalized quantities allow us to gain new insights within a perturbative scheme based on DFT. Calculations of the electronic and nuclear SP-DFT quantities are presented within a Kohn-Sham framework of chemical reactivity for a sample of molecules, including H 2 O, H 2 CO, and some simple nitrenes (NX) and phosphinidenes (PX), with X=H, Li, F, Cl, OH, SH, NH 2 , and PH 2 . Results have been interpreted in terms of chemical bonding in the context of Berlin's theorem, which provides a separation of the molecular space into binding and antibinding regions

  7. Static nuclear polarisation and polarised targets

    International Nuclear Information System (INIS)

    Heeringa, W.

    1984-12-01

    Recent progress and status of statically polarised nuclear targets are reviewed. Special attention is given to polarised 1 H and 3 He. An important quantity in the determination of the target polarisation is the thermal gradient over the target sample. The dependence of this gradient on heat input, sample geometry, and thermal conductivity of the sample is discussed. Possibilities of performing experiments with proton beams are indicated. (orig.) [de

  8. Luminance and chromatic contributions to a hyperacuity task: isolation by contrast polarity and target separation.

    Science.gov (United States)

    Sun, Hao; Cooper, Bonnie; Lee, Barry B

    2012-03-01

    Vernier thresholds are known to be elevated when a target pair has opposite contrast polarity. Polarity reversal is used to assess the role of luminance and chromatic pathways in hyperacuity performance. Psychophysical hyperacuity thresholds were measured for pairs of gratings of various combinations of luminance (Lum) and chromatic (Chr) contrast polarities, at different ratios of luminance to chromatic contrast. With two red-green gratings of matched luminance and chromatic polarity (+Lum+Chr), there was an elevation of threshold at isoluminance. When both luminance and chromatic polarity were mismatched (-Lum-Chr), thresholds were substantially elevated under all conditions. With the same luminance contrast polarity and opposite chromatic polarity (+Lum-Chr) thresholds were only elevated close to isoluminance; in the reverse condition (-Lum+Chr), thresholds were elevated as in the -Lum-Chr condition except close to equiluminance. Similar data were obtained for gratings isolating the short-wavelength cone mechanism. Further psychophysical measurements assessed the role of target separation with matched or mismatched contrast polarity; similar results were found for luminance and chromatic gratings. Comparison physiological data were collected from parafoveal ganglion cells of the macaque retina. Positional precision of ganglion cell signals was assessed under conditions related to the psychophysical measurements. On the basis of these combined observations, it is argued that both magnocellular, parvocellular, and koniocellular pathways have access to cortical positional mechanisms associated with vernier acuity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Development of a hydrogen and deuterium polarized gas target for application in storage rings. Annual report, February 1, 1986-January 31, 1987

    International Nuclear Information System (INIS)

    Haeberli, W.

    1986-01-01

    Insertion of an internal polarized gas target into storage rings for protons, antiprotons or electrons would permit interesting new experiments, particularly if the circulating beam is polarized as well. The purpose of the present project is the development of a polarized gas target, based on injection of polarized hydrogen or deuterium atoms into a storage cell in order to build up the required target thickness. A method has been developed and tested, which permits measurement of the target polarization under realistic conditions (i.e., in the presence of an intense ion beam) without the need for a large accelerator. First measurements with an oxidized aluminum cell have been made. It is proposed to study wall depolarization in storage cells and to search for suitable wall conditions (wall material, coating, temperature, vacuum conditions) to permit eventual construction of a polarized gas target for a storage ring

  10. Dynamic nuclear polarization of nucleic acid with endogenously bound manganese

    International Nuclear Information System (INIS)

    Wenk, Patricia; Kaushik, Monu; Richter, Diane; Vogel, Marc; Suess, Beatrix; Corzilius, Björn

    2015-01-01

    We report the direct dynamic nuclear polarization (DNP) of 13 C nuclei of a uniformly [ 13 C, 15 N]-labeled, paramagnetic full-length hammerhead ribozyme (HHRz) complex with Mn 2+ where the enhanced polarization is fully provided by the endogenously bound metal ion and no exogenous polarizing agent is added. A 13 C enhancement factor of ε = 8 was observed by intra-complex DNP at 9.4 T. In contrast, “conventional” indirect and direct DNP experiments were performed using AMUPol as polarizing agent where we obtained a 1 H enhancement factor of ε ≈ 250. Comparison with the diamagnetic (Mg 2+ ) HHRz complex shows that the presence of Mn 2+ only marginally influences the (DNP-enhanced) NMR properties of the RNA. Furthermore two-dimensional correlation spectra ( 15 N– 13 C and 13 C– 13 C) reveal structural inhomogeneity in the frozen, amorphous state indicating the coexistence of several conformational states. These demonstrations of intra-complex DNP using an endogenous metal ion as well as DNP-enhanced MAS NMR of RNA in general yield important information for the development of new methods in structural biology

  11. Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage.

    Science.gov (United States)

    Hailer, Frank; Kutschera, Verena E; Hallström, Björn M; Klassert, Denise; Fain, Steven R; Leonard, Jennifer A; Arnason, Ulfur; Janke, Axel

    2012-04-20

    Recent studies have shown that the polar bear matriline (mitochondrial DNA) evolved from a brown bear lineage since the late Pleistocene, potentially indicating rapid speciation and adaption to arctic conditions. Here, we present a high-resolution data set from multiple independent loci across the nuclear genomes of a broad sample of polar, brown, and black bears. Bayesian coalescent analyses place polar bears outside the brown bear clade and date the divergence much earlier, in the middle Pleistocene, about 600 (338 to 934) thousand years ago. This provides more time for polar bear evolution and confirms previous suggestions that polar bears carry introgressed brown bear mitochondrial DNA due to past hybridization. Our results highlight that multilocus genomic analyses are crucial for an accurate understanding of evolutionary history.

  12. Thermostatic properties of semi-infinite polarized nuclear matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.; Hassan, M.Y.M.; Ramadan, S.

    1988-03-01

    The surface and curvature properties of semi-infinite polarized nuclear matter (SPNM) are calculated using an expansion for the Fermi integrals up to T 2 . A density matrix expansion is obtained for a modified form of Seyler-Blanchard interaction. New parameters that characterize the surface and curvature properties of SPNM are introduced. The level density parameter is extracted from the low temperature expansion of the free energy and compared with previous calculations. A reasonable agreement is obtained for the parameters calculated before. (author). 78 refs, 1 fig., 5 tabs

  13. Near infrared spectral polarization imaging of prostate cancer tissues using Cybesin: a receptor-targeted contrast agent

    Science.gov (United States)

    Pu, Yang; Wang, W. B.; Tang, G. C.; Liang, Kexian; Achilefu, S.; Alfano, R. R.

    2013-03-01

    Cybesin, a smart contrast agent to target cancer cells, was investigated using a near infrared (NIR) spectral polarization imaging technique for prostate cancer detection. The approach relies on applying a contrast agent that can target cancer cells. Cybesin, as a small ICG-derivative dye-peptide, emit fluorescence between 750 nm and 900 nm, which is in the "tissue optical window". Cybesin was reported targeting the over-expressed bombesin receptors in cancer cells in animal model and the human prostate cancers over-expressing bombesin receptors. The NIR spectral polarization imaging study reported here demonstrated that Cybesin can be used as a smart optical biomarker and as a prostate cancer receptor targeted contrast agent.

  14. Effect of H-wave polarization on laser radar detection of partially convex targets in random media.

    Science.gov (United States)

    El-Ocla, Hosam

    2010-07-01

    A study on the performance of laser radar cross section (LRCS) of conducting targets with large sizes is investigated numerically in free space and random media. The LRCS is calculated using a boundary value method with beam wave incidence and H-wave polarization. Considered are those elements that contribute to the LRCS problem including random medium strength, target configuration, and beam width. The effect of the creeping waves, stimulated by H-polarization, on the LRCS behavior is manifested. Targets taking large sizes of up to five wavelengths are sufficiently larger than the beam width and are sufficient for considering fairly complex targets. Scatterers are assumed to have analytical partially convex contours with inflection points.

  15. Computer control of the SMC polarized target

    International Nuclear Information System (INIS)

    Le Goff, J.M.; Azoulay, R.; Berglund, P.; Dulya, C.; Gournay, J.F.; Hayashi, N.; Kyynaeraeinen, J.; Magnon, A.; Niinikoski, T.O.; Trentalange, S.

    1995-01-01

    The SMC polarized target is controlled through VME crates driven by CPUs working under the VxWorks operating system. The CPUs are connected to a SUN workstation which provides the user interface due to a graphical package named SL-GMS. This results in user friendliness, high modularity and flexibility. The system allows the control of: (1) the superconductive solenoid and the transverse dipole: control of the power supplies; automatic reversal of the spin direction by field rotation; acquisition, display and storage of the electric and cryogenic parameters; generation of alarms; and (2) the dilution refrigerator: evaporator level control; acquisition, display and storage of ∼100 cryogenic parameters; and generation of alarms. ((orig.))

  16. Hyperfine interaction with polarized atomic environment - the nuclear tilted-foil experiment

    International Nuclear Information System (INIS)

    Niv, Y.

    1985-01-01

    The nuclear tilted-foil experimental field has matured from the early time-integral measurements to the current multifoil time-differential precession and polarization configurations, leading to a wide range of measurements - magnetic moments, quadrupole moments and parity-non-conservation. The physical basis of these experiments is discussed and experimental results are reviewed. (Auth.)

  17. Dynamic Nuclear Polarization at low temperature and high magnetic eld for biomedical applications in Magnetic Resonance Spectroscopic Imaging

    International Nuclear Information System (INIS)

    Goutailler, Florent

    2011-01-01

    The aim of this thesis work was to design, build and optimize a large volume multi-samples DNP (Dynamic Nuclear Polarization) polarizer dedicated to Magnetic Resonance Spectroscopic Imaging applications. The experimental system is made up of a high magnetic field magnet (3,35 T) in which takes place a cryogenic system with a pumped bath of liquid helium ("4He) allowing temperatures lower than 1,2 K. A set of inserts is used for the different steps of DNP: irradiation of the sample by a microwave field (f=94 GHz and P=50 mW), polarization measurement by Nuclear Magnetic Resonance... With this system, up to three samples of 1 mL volume can be polarized to a rate of few per-cents. The system has a long autonomy of four hours, so it can be used for polarizing molecules with a long time constant of polarization. Finally, the possibility to get quasi-simultaneously, after dissolution, several samples with a high rate of polarization opens the way of new applications in biomedical imaging. (author) [fr

  18. Polarization phenomena of nuclear force and weak interaction

    International Nuclear Information System (INIS)

    Konuma, Michitsugu

    1982-01-01

    As one of the projects at the National Laboratory of High Energy Physics (KEK), the measurement of parity non-conservation component in nuclear force was proposed. The theoretical survey of this proposal is reported. The non-relativistic parity non-conserving potential between nucleons can be obtained from the interaction between a quark and a gauge boson. The wave function of a nucleus, which includes the inverse components of the parity, can be written. A practical experiment was designed. The mixing of the inverse components and the interference of an inverse component in the 1042 keV and 1081 keV levels of F 18 may produce the parity non-conservation. The processes which suggest the existence of parity non-conservation were studied. The processes are the circular polarization of gamma-ray emitted from a nucleus, the angular distribution of gamma-ray emitted from polarized nuclei, the collision of the proton beam with helicity of plus and minus on other nuclei, the spin rotation of neutrons, and the alpha decay of the parity non-conservation. The preliminary results of the experiment on the effects of parity non-conservation in the collision process of polarized proton beam have been reported, and the theoretical analyses were performed. The violation of parity conservation in large momentum collision is discussed. The comparison of the theoretical results with the experimental ones is presented. (Kato, T.)

  19. Particle physics using nuclear targets

    International Nuclear Information System (INIS)

    Ferbel, T.

    1978-01-01

    The use of nuclear targets in particle physics is discussed and some recent results obtained in studies of hadronic interactions on nuclei summarized. In particular experimental findings on inclusive production and on coherent dissociation of mesons and baryons at high energies are presented. 41 references

  20. A polarized hydrogen/deuterium atomic beam source for internal target experiments

    International Nuclear Information System (INIS)

    Szczerba, D.; Buuren, L.D. van; Brand, J.F.J. van den; Bulten, H.J.; Ferro-Luzzi, M.; Klous, S.; Kolster, H.; Lang, J.; Mul, F.; Poolman, H.R.; Simani, M.C.

    2000-01-01

    A high-brightness hydrogen/deuterium atomic beam source is presented. The apparatus, previously used in electron scattering experiments with tensor-polarized deuterium (Ferro-Luzzi et al., Phys. Rev. Lett. 77 (1996) 2630; van den Brand et al., Phys. Rev. Lett. 78 (1997) 1235; Zhou et al., Phys. Rev. Lett. 82 (1998) 687; Bouwhuis et al., Phys. Rev. Lett. 82 (1999) 3755), was configured as a source for internal target experiments to measure single- and double-polarization observables, with either polarized hydrogen or vector/tensor polarized deuterium. The atomic beam intensity was enhanced by a factor of ∼2.5 by optimizing the Stern-Gerlach focusing system using high tip-field (∼1.5 T) rare-earth permanent magnets, and by increasing the pumping speed in the beam-formation chamber. Fluxes of (5.9±0.2)x10 16 1 H/s were measured in a diameter 12 mmx122 mm compression tube with its entrance at a distance of 27 cm from the last focusing element. The total output flux amounted to (7.6±0.2)x10 16 1 H/s

  1. Dynamic nuclear polarization of nucleic acid with endogenously bound manganese

    Energy Technology Data Exchange (ETDEWEB)

    Wenk, Patricia [University of Tübingen, Werner Siemens Imaging Center and Department of Preclinical Imaging and Radiopharmacy (Germany); Kaushik, Monu; Richter, Diane [Goethe University, Institute of Physical und Theoretical Chemistry, Institute of Biophysical Chemistry und Center for Biomolecular Magnetic Resonance (BMRZ) (Germany); Vogel, Marc; Suess, Beatrix [Technical University Darmstadt, Department of Biology (Germany); Corzilius, Björn, E-mail: corzilius@em.uni-frankfurt.de [Goethe University, Institute of Physical und Theoretical Chemistry, Institute of Biophysical Chemistry und Center for Biomolecular Magnetic Resonance (BMRZ) (Germany)

    2015-09-15

    We report the direct dynamic nuclear polarization (DNP) of {sup 13}C nuclei of a uniformly [{sup 13}C,{sup 15}N]-labeled, paramagnetic full-length hammerhead ribozyme (HHRz) complex with Mn{sup 2+} where the enhanced polarization is fully provided by the endogenously bound metal ion and no exogenous polarizing agent is added. A {sup 13}C enhancement factor of ε = 8 was observed by intra-complex DNP at 9.4 T. In contrast, “conventional” indirect and direct DNP experiments were performed using AMUPol as polarizing agent where we obtained a {sup 1}H enhancement factor of ε ≈ 250. Comparison with the diamagnetic (Mg{sup 2+}) HHRz complex shows that the presence of Mn{sup 2+} only marginally influences the (DNP-enhanced) NMR properties of the RNA. Furthermore two-dimensional correlation spectra ({sup 15}N–{sup 13}C and {sup 13}C–{sup 13}C) reveal structural inhomogeneity in the frozen, amorphous state indicating the coexistence of several conformational states. These demonstrations of intra-complex DNP using an endogenous metal ion as well as DNP-enhanced MAS NMR of RNA in general yield important information for the development of new methods in structural biology.

  2. Analyzing power measurements for the (π+,π0) reaction on a polarized 13C target

    International Nuclear Information System (INIS)

    Goergen, J.J.

    1991-05-01

    The analyzing powers A y differential cross sections dσ/dΩ for the reaction 13 C(π + ,π 0 ) 13 N have been measured for forward scattering angles at an incident pion kinetic energy of T pi + = 163 MeV by using a transversely polarized target. Analyzing powers and reaction cross sections impose stringent constrains on nuclear reaction models and can be used to test the present understanding of nuclear structure for 1p-shell nuclei. The resulting A y are compared to the predictions of first-order Distorted Wave Impulse Approximation (DWIA) calculations, which reproduce well the differential cross sections. Although there is qualitative agreement at forward angles, the quantitative agreement is poor, especially at scattering angles larger than 50 degrees. Since the DWIA calculations do not appear to be strongly sensitive to the assumed nuclear structure model, the discrepancy in describing the analyzing powers suggests that the reaction mechanism may not yet be well understood and higher order corrections may be important. Also measured were the analyzing powers for the elementary charge exchange reaction π - bar p → π degrees n over the same angular range and at an incident pion kinetic energy of T pi - = 161 MeV. The results are compared to the most recents phase shift predictions. Within the experimental uncertainties, phase shift calculations agree with the measured A y and no changes in the πN phase shifts near the P 33 resonance are needed to describe the data

  3. Analyzing powers and proton spin transfer coefficients in the elastic scattering of 800 MeV polarized protons from an L-type polarized deuteron target at small momentum transfers

    International Nuclear Information System (INIS)

    Adams, D.L.

    1986-10-01

    Analyzing powers and spin transfer coefficients which describe the elastic scattering of polarized protons from a polarized deuteron target have been measured. The energy of the proton beam was 800 MeV and data were taken at laboratory scattering angles of 7, 11, 14, and 16.5 degrees. One analyzing power was also measured at 180 degrees. Three linearly independent orientations of the beam polarization were used and the target was polarized parallel and antiparallel to the direction of the beam momentum. The data were taken with the high resolution spectrometer at the Los Alamos Meson Physics Facility (experiment 685). The results are compared with multiple scattering predictions based on Dirac representations of the nucleon-nucleon scattering matrices. 27 refs., 28 figs., 4 tabs

  4. Frozen Acrylamide Gels as Dynamic Nuclear Polarization Matrices.

    KAUST Repository

    Viger-Gravel, Jasmine; Berruyer, Pierrick; Gajan, David; Basset, Jean-Marie; Lesage, Anne; Tordo, Paul; Ouari, Olivier; Emsley, Lyndon

    2017-01-01

    We show that aqueous acrylamide gels can be used to provide dynamic nuclear polarization (DNP) NMR signal enhancements of around 200 at 9.4 T and 100 K. The enhancements are shown to increase with cross linker concentration and low concentrations of the AMUPol biradical. We show that this DNP matrix can be used in situations where conventional incipient wetness methods fail, such as to obtain DNP surface enhanced NMR spectra from inorganic nanoparticles. In particular, we obtain 113Cd spectra from CdTe-COOH NPs in minutes. The spectra clearly indicate a highly-disordered cadmium rich surface.

  5. Frozen Acrylamide Gels as Dynamic Nuclear Polarization Matrices.

    KAUST Repository

    Viger-Gravel, Jasmine

    2017-05-24

    We show that aqueous acrylamide gels can be used to provide dynamic nuclear polarization (DNP) NMR signal enhancements of around 200 at 9.4 T and 100 K. The enhancements are shown to increase with cross linker concentration and low concentrations of the AMUPol biradical. We show that this DNP matrix can be used in situations where conventional incipient wetness methods fail, such as to obtain DNP surface enhanced NMR spectra from inorganic nanoparticles. In particular, we obtain 113Cd spectra from CdTe-COOH NPs in minutes. The spectra clearly indicate a highly-disordered cadmium rich surface.

  6. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  7. Determination of deuteron beam polarizations at COSY

    Directory of Open Access Journals (Sweden)

    D. Chiladze

    2006-05-01

    Full Text Available The vector (P_{z} and tensor (P_{zz} polarizations of a deuteron beam have been measured using elastic deuteron–carbon scattering at 75.6 MeV and deuteron-proton scattering at 270 MeV. After acceleration to 1170 MeV inside the COSY storage ring, the polarizations of the deuterons were remeasured by studying the analyzing powers of a variety of nuclear reactions. For this purpose a hydrogen cluster target was employed at the ANKE magnetic spectrometer, which is situated at an internal target position in the ring. The overall precisions obtained were about 4% for both P_{z} and P_{zz}. Though all the measurements were consistent with the absence of depolarization during acceleration, only an upper limit of about 6% could be placed on such an effect.

  8. Nuclear-charge polarization at scission in fission from moderately excited light-actinide nuclei

    International Nuclear Information System (INIS)

    Nishinaka, Ichiro

    2009-01-01

    Fragment mass yields and the average neutron multiplicity in the proton-induced fission of 232 Th and 238 U were measured by a double time-of-flight method. The most probable charges of secondary fragments were evaluated from the fragment mass yields measured by the double time-of-flight method and the fractional cumulative and independent yields reported in literature. The nuclear-charge polarization of primary fragments at scission was obtained by correcting the most probable charge of secondary fragments for neutron evaporation. The results show that the nuclear-charge polarization at scission is associated with the liquid-drop properties of nuclei and the proton shell effect with Z = 50 of heavy fragments and that it is practically insensitive to mass and excitation energy of the fissioning nucleus in the region of light-actinide nuclei. (author)

  9. Enhancement of molecular NMR signal induced by polarization transfer from laser-polarized 129Xe

    International Nuclear Information System (INIS)

    Sun Xianping

    2001-01-01

    There is a large non-equilibrium nuclear polarization and a longer relaxation time in the laser-polarized 129 Xe produced by means of optical pumping and spin exchange. The characteristics of the laser-polarized 129 Xe permit the transfer of the polarization to enhance the atomic nuclear spin in liquid, solid and surface of solid molecules. Therefore, the sensitivity in nuclear magnetic resonance measurements for the molecules is enhanced and applications in the investigations of materials and surface sciences are expanded. The progress in the investigations of materials and surface sciences are expanded. The progress in the investigations of the polarization transfer between laser-polarized 129 Xe and the atomic nuclei in the molecules, the relative physics and the measurement of some parameters are introduced

  10. Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning.

    Science.gov (United States)

    Thurber, Kent; Tycko, Robert

    2016-03-01

    We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states. Published by Elsevier Inc.

  11. Review of target studies for heavy ion fusion

    International Nuclear Information System (INIS)

    Lindl, J.D.; Bangerter, R.D.; Mark, J.W.K.; Pan, Y.L.

    1986-01-01

    We present an updated set of gain curves for radiation driven ion beam targets. The improved target performance calculated with nuclear spin polarized fuel will also be discussed. We discuss the conditions required for efficient conversion to x-rays of ion beam energy. These requirements are compared with those obtained for lasers. Recent results on symmetry requirements for direct drive ion beam targets are presented

  12. Study of nuclear isovector spin responses from polarization transfer in (p,n) reactions at intermediate energies

    International Nuclear Information System (INIS)

    Wakasa, Tomotsugu

    1997-01-01

    We have measured a complete set of polarization transfer observables has been measured for quasi-free (p vector, n vector) reactions on 2 H, 6 Li, 12 C, 40 Ca, and 208 Pb at a bombarding energy of 346MeV and a laboratory scattering angle of 22deg (q=1.7 fm -1 ). The polarization transfer observables for all five targets are remarkably similar. These polarization observables yield separated spin-longitudinal (σ·q) and spin-transverse (σxq) nuclear responses. These results are compared to the spin-transverse responses measured in deep-inelastic electron scattering as well as to nuclear responses based on the random phase approximation. Such a comparison reveals an enhancement in the (p vector, n vector) spin-transverse channel, which masks the effect of pionic correlations in the response ratio. Second, the double differential cross sections at θ lab between 0deg and 12.3deg and the polarization transfer D NN at 0deg for the 90 Zr(p,n) reaction are measured at a bombarding energy of 295MeV. The Gamow-Teller(GT) strength B(GT) in the continuum deduced from the L=0 cross section is compared both with the perturbative calculation by Bertsch and Hamamoto and with the second-order random phase approximation calculation by Drozdz et al. The sum of B(GT) values up to 50MeV excitation becomes S β- =28.0±1.6 after subtracting the contribution of the isovector spin-monopole strength. This S β- value of 28.0±1.6 corresponds to about (93±5)% of the minimum value of the sum-rule 3(N-Z)=30. Last, first measurements of D NN (0deg) for (p vector, n vector) reactions at 295MeV yield large negative values up to 50MeV excitation for the 6 Li, 11 B, 12 C, 13 C(p vector, n vector) reactions. DWIA calculations using the Franey and Love (FL) 270MeV interaction reproduce differential cross sections and D NN (0deg) values, while the FL 325MeV interaction yield D NN (0deg) values less negative than the experimental values. (J.P.N.)

  13. Theory for cross effect dynamic nuclear polarization under magic-angle spinning in solid state nuclear magnetic resonance: the importance of level crossings.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2012-08-28

    We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.

  14. Inelastic scattering of polarized protons and nuclear deformation in 16O, 18O

    International Nuclear Information System (INIS)

    de Swiniarski, R.; Pham, D.L.

    1984-01-01

    Many data concerning inelastic scattering of polarized protons at intermediate energy are now available. We have analyzed some of these data coming from LAMPF at 800 MeV for 16 O (6) and 18 O (7) in order to further study nuclear deformations for these light nuclei. Analyzing powers (A(theta)) and cross-sections ((σ/theta)) for elastic and inelastic scattering of 800 MeV polarized protons from 16 O and 18 O have been analyzed in the coupled-channels (CC) collective model using the code ECIS from Raynal

  15. Tunable 13C/1H dual channel matching circuit for dynamic nuclear polarization system with cross-polarization

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy

    2016-01-01

    In this paper we report initial results of design and practical implementation of tuning and matching circuit to estimate a performance of Dynamic Nuclear Polarization (DNP) at a magnetic field of 6.7 T. It is shown that developed circuit for signal observation is compact, easy to make and provides....... Measurement results with a tuning and matching circuit prototype are presented including obtained spectra (13C and 1H) and estimation of the signal-to-noise ratio....

  16. Measurements of nuclear polarization and nuclear magnetic moment of 170Tm in 170Tm:SrF2 by optical pumping

    International Nuclear Information System (INIS)

    Shimomura, K.

    1988-01-01

    Significant nuclear polarization of unstable 170 Tm in Tm 2+ :SrF 2 was for the first time achieved with β-ray radiation detected optical pumping in solids, providing a new powerful method to measure magnetic moments of unstable nuclei. (author)

  17. Measurement of the polarized neutron---polarized 3He total cross section

    International Nuclear Information System (INIS)

    Keith, C.D.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Huffman, P.R.; Roberson, N.R.; Tornow, W.; Wilburn, W.S.

    1995-01-01

    The first measurements of polarized neutron--polarized 3 He scattering in the few MeV energy region are reported. The total cross section difference Δσ T for transversely polarized target and beam has been measured for neutron energies between 1.9 and 7.5 MeV. Comparison is made to predictions of Δσ T using various descriptions of the 4 He continuum. A brute-force polarized target of solid 3 He has been developed for these measurements. The target is 4.3x10 22 atoms/cm 2 thick and is polarized to 38% at 7 Telsa and 12 mK. copyright 1995 American Institute of Physics

  18. Laser - Polarized HE-3 Target Used for a Precision Measurement of the Neutron Spin Structure

    Energy Technology Data Exchange (ETDEWEB)

    Romalis, M

    2003-11-05

    This thesis describes a precision measurement of the deep inelastic neutron spin structure function g{sub 1}{sup n}(x). The main motivation for the experiment is a test of the Bjorken sum rule. Because of smaller statistical errors and broader kinematic coverage than in previous experiments, we are able to study in detail the behavior of the spin structure function g{sub 1}{sup n}(x) for low values of the Bjorken scaling variable x. We find that it has a strongly divergent behavior, in contradiction to the naive predictions of the Regge theory. This calls into question the methods commonly used for extrapolation of g{sub 1}{sup n}(x) to x = 0. The difference between the proton and the neutron spin structure functions is less divergent at low x, so a test of the Bjorken sum rule is possible. We confirm the sum rule with an accuracy of 8%. The experiment was performed at SLAC using a 50 GeV polarized electron beam and a polarized {sup 3}He target. In this thesis the polarized target is described in detail. We used the technique of Rb optical pumping and Rb-He spin exchange to polarize the {sup 3}He. Because of a novel mechanical design our target had the smallest dilution ever achieved for a high density gas target. Since this is a precision measurement, particular efforts were made to reduce the systematic errors due to the uncertainty in the target parameters. Most important parameters were measured by more than one method. We implemented novel techniques for measuring the thickness of the glass windows of the target, the {sup 3}He density, and the polarization. In particular, one of the methods for measuring the gas density relied on the broadening of the Rb optical absorption lines by collisions with {sup 3}He atoms. The calibration of this technique resulted in the most precise measurements of the pressure broadening parameters for {sup 3}He as well as several other gases, which are described in an Appendix. The polarization of the {sup 3}He was also measured by

  19. Physical processes in spin polarized plasmas

    International Nuclear Information System (INIS)

    Kulsrud, R.M.; Valeo, E.J.; Cowley, S.

    1984-05-01

    If the plasma in a nuclear fusion reactor is polarized, the nuclear reactions are modified in such a way as to enhance the reactor performance. We calculate in detail the modification of these nuclear reactions by different modes of polarization of the nuclear fuel. We also consider in detail the various physical processes that can lead to depolarization and show that they are by and large slow enough that a high degree of polarization can be maintained

  20. MEASUREMENT OF POLARIZATION OBSERVABLES IN VECTOR MESON PHOTOPRODUCTION USING A TRANSVERSELY-POLARIZED FROZEN-SPIN TARGET AND POLARIZED PHOTONS AT CLAS, JEFFERSON LAB

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Priyashree [Florida State Univ., Tallahassee, FL (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-11-30

    The study of baryon resonances provides a deeper understanding of the strong interaction because the dynamics and relevant degrees of freedom hidden within them are re ected by the properties of the excited states of baryons. Higher-lying excited states at and above 1.7 GeV/c2 are generally predicted to have strong couplings to final states involving a heavier meson, e. g. one of the vector mesons, ρ, ω φ, as compared to a lighter pseudoscalar meson, e. g. π and η. Decays to the ππΝ final states via πΔ also become more important through the population of intermediate resonances. We observe that nature invests in mass rather than momentum. The excited states of the nucleon are usually found as broadly overlapping resonances which may decay into a multitude of final states involving mesons and baryons. Polarization observables make it possible to isolate single resonance contributions from other interference terms. The CLAS g9 (FROST) experiment, as part of the N* spectroscopy program at Je?erson Laboratory, accumulated photoproduction data using circularly- & linearly-polarized photons incident on a transversely-polarized butanol target (g9b experiment) in the photon energy range 0:3-2:4 GeV & 0:7-2:1 GeV, respectively. In this work, the analysis of reactions and polarization observables which involve two charged pions, either in the fully exclusive reaction γρ -> ρπ+π- or in the semi-exclusive reaction with a missing neutral pion, γρ -> ρπ+π-(π0) will be presented. For the reaction ρπ+π-, eight polarization observables (Is, Ic, Px, Py, Psx; y, Pcx; y) have been extracted. The high statistics data rendered it possible to extract these observables in three dimensions. All of them are first-time measurements. The fairly good agreement of Is, Ic obtained from this analysis with the experimental results from a previous CLAS experiment provides support for the first-time measurements. For the reaction γρ -> ρω -> ρπ+π(π0, five polarization

  1. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    DEFF Research Database (Denmark)

    Vinding, Mads Sloth; Laustsen, Christoffer; Maximov, Ivan I.

    2013-01-01

    . This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region...

  2. Proceedings of the Workshop on future of nuclear physics in Europe with polarized electrons and photons

    International Nuclear Information System (INIS)

    Didelez, J.P.; Tamas, G.

    1990-01-01

    In the proceedings of the workshop, held at the Institut de Physique Nucleaire in Orsay, France, full texts of 20 contributions are presented. The two main topics were polarized electrons and polarized photons. It has been reported that significant processes have been made recently in the science and technology of polarized electron sources, polarized targets and polarimeters. The relevant tools are therefore now available to complete extensive experimental programs. The 20 papers are indexed and abstracted separately for the INIS database. (R.P.)

  3. Development and performance of a 129-GHz dynamic nuclear polarizer in an ultra-wide bore superconducting magnet.

    Science.gov (United States)

    Lumata, Lloyd L; Martin, Richard; Jindal, Ashish K; Kovacs, Zoltan; Conradi, Mark S; Merritt, Matthew E

    2015-04-01

    We sought to build a dynamic nuclear polarization system for operation at 4.6 T (129 GHz) and evaluate its efficiency in terms of (13)C polarization levels using free radicals that span a range of ESR linewidths. A liquid helium cryostat was placed in a 4.6 T superconducting magnet with a 150-mm warm bore diameter. A 129-GHz microwave source was used to irradiate (13)C enriched samples. Temperatures close to 1 K were achieved using a vacuum pump with a 453-m(3)/h roots blower. A hyperpolarized (13)C nuclear magnetic resonance (NMR) signal was detected using a saddle coil and a Varian VNMRS console operating at 49.208 MHz. Samples doped with free radicals BDPA (1,3-bisdiphenylene-2-phenylallyl), trityl OX063 (tris{8-carboxyl-2,2,6,6-benzo(1,2-d:4,5-d)-bis(1,3)dithiole-4-yl}methyl sodium salt), galvinoxyl ((2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy), 2,2-diphenylpicrylhydrazyl (DPPH) and 4-oxo-TEMPO (4-Oxo-2,2,6,6-tetramethyl-1-piperidinyloxy) were assayed. Microwave dynamic nuclear polarization (DNP) spectra and solid-state (13)C polarization levels for these samples were determined. (13)C polarization levels close to 50 % were achieved for [1-(13)C]pyruvic acid at 1.15 K using the narrow electron spin resonance (ESR) linewidth free radicals trityl OX063 and BDPA, while 10-20 % (13)C polarizations were achieved using galvinoxyl, DPPH and 4-oxo-TEMPO. At this field strength free radicals with smaller ESR linewidths are still superior for DNP of (13)C as opposed to those with linewidths that exceed that of the (1)H Larmor frequency.

  4. Mass Producing Targets for Nuclear Fusion

    Science.gov (United States)

    Wang, T. G.; Elleman, D. D.; Kendall, J. M.

    1983-01-01

    Metal-encapsulating technique advances prospects of controlling nuclear fusion. Prefilled fusion targets form at nozzle as molten metal such as tin flows through outer channel and pressurized deuterium/tritium gas flows through inner channel. Molten metal completely encloses gas charge as it drops off nozzle.

  5. Kinematic approximation in the theory of stimulated nuclear polarization in radical recombination

    International Nuclear Information System (INIS)

    Mikhailov, S.A.; Purtov, P.A.

    1989-01-01

    Within the kinematic approximation, we have developed the theory of stimulated nuclear polarization (SNP) in reactions of geminal recombination of radicals in a strong d.c. magnetic field. We have obtained analytical formulas which are applicable for analysis of SNP effects occurring when the reactions are carried out in nonviscous solutions. The result is represented in the form of integrals with respect to the Green's function determining the kinematics of reagent approach. As an illustration of the proposed theory, we have calculated the polarization of nuclei formed in the reaction products of p-benzoquinone in CD 3 OD and in C 6 D 6 with addition of phenol, and we compare with experiment

  6. Recent results from the NN-interaction studies with polarized beams and targets at ANKE-COSY

    Science.gov (United States)

    Dymov, Sergey

    2016-02-01

    Adding to the nucleon-nucleon scattering database is one of the major priorities of the ANKE collaboration. Such data are necessary ingredients, not only for the understanding of nuclear forces, but also for the description of meson production and other nuclear reactions at intermediate energies. By measuring the cross section, deuteron analysing powers, and spin-correlation parameters in the dp → {pp}sn reaction, where {pp}s represents the 1S0 state, information has been obtained on small-angle neutron-proton spin-flip charge-exchange amplitudes. The measurements of pp elastic scattering by the COSY-EDDA have had a major impact on the partial wave analysis of this reaction above 1 GeV. However, these experiments only extended over the central region of c.m. angles, 300 < θcm < 1500, that has left major ambiguities in the phase shift analysis by the SAID group. In contrast, the small angle region is accessible at ANKE-COSY, that allowed measurement of the differential cross section and the analysing power at 50 < θcm < 300 in the 0.8 — 2.8 GeV energy range. The data on the pn elastic scattering are much more scarce than those of pp, especially in the region above 1.15 GeV. The study of the dp → {pp}s n reaction provides the information about the pn elastic scattering at large angles. The small angle scattering was studied with the polarized proton COSY beam and an unpolarised deuterium gas target. The detection the spectator proton in the ANKE vertex silicon detector allowed to use the deuterium target as an effective neutron one. The analysing powers of the process were obtained at six beam energies from 0.8 to 2.4 GeV.

  7. Nuclear target foil fabrication for the Romano Event

    International Nuclear Information System (INIS)

    Weed, J.W.; Romo, J.G. Jr.; Griggs, G.E.

    1984-01-01

    The Vacuum Processes Lab, of LLNL's M.E. Dept. - Material Fabrication Division, was requested to provide 250 coated Parylene target foils for a nuclear physics experiment titled the ROMANO Event. Due to the developmental nature of some of the fabrication procedures, approximately 400 coated foils were produced to satisfy the event's needs. The foils were used in the experiment as subkilovolt x-ray, narrow band pass filters, and wide band ultraviolet filters. This paper is divided into three sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, and (3) foil and substrate inspections

  8. Hadron-pair production on transversely polarized targets in semi-inclusive deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Christopher

    2014-07-29

    Nucleons such as protons and neutrons are composite objects made of quarks, which are bound together by the strong force via the exchange of gluons. The probability of finding a quark of flavor q carrying the momentum fraction x of the fast moving parent nucleon is described by a parton distribution function (PDF) f{sub 1}{sup q}(x), the number density. The spin, an intrinsic angular momentum of elementary particles such as quarks but also of composite objects like nucleons, couples with magnetic fields, which allows one to align it. Taking into account this additional parameter, the spin, the scheme of PDFs in leading twist is expanded by the helicity distribution g{sub 1}{sup q}(x) and the transversity distribution h{sub 1}{sup q}(x). The first distribution covers the case where the nucleon and the quark are longitudinally polarized, while a transverse polarization is taken into account by the latter. A tool for the investigation of the PDFs is inclusive deep inelastic scattering (DIS) of electro-magnetic probes off (un)polarized nucleons at fixed-target experiments. This only gives access to f{sub 1}{sup q}(x) and g{sub 1}{sup q}(x), while the chiral-odd nature of the transversity distribution prevents a measurement without detecting the final hadronic states. However, h{sub 1}{sup q}(x) can be observed in semi-inclusive DIS (SIDIS) in combination with another chiral-odd function like the dihadron fragmentation function H{sub 1} {sup angle} {sup q} in the production of a hadron-pair. The resulting experimental challenge is the reason why f{sub 1}{sup q}(x) and g{sub 1}{sup q}(x) have been investigated for almost four decades, while h{sub 1}{sup q}(x) is still subject to recent measurements and analyses. The 160 GeV/c polarized muon beam of CERN's M2 beamline allows the COMPASS experiment to investigate spin effects using polarized solid-state targets. Since the year 2002 COMPASS has collected unique data sets on transversely polarized targets of lithium

  9. Measurements of the spin structure of the nucleon using SPHICE: A strongly polarized hydrogen and deuterium ice target

    International Nuclear Information System (INIS)

    Babusci, D.; Blecher, M.; Breuer, M.; Caracappa, A.; Commeaux, C.; Didelez, J.; Fan, Q.; Giordano, G.; Hicks, K.; Hoblit, S.; Hoffmann-Rothe, P.; Honig, A.; Kistner, O.C.; Khandaker, M.; Li, Z.; Lucas, M.A.; Matone, G.; Miceli, L.; Preedom, B.M.; Rigney, M.; Sandorfi, A.M.; Schaerf, C.; Thorn, C.E.

    1995-01-01

    Frozen-spin HD polarized targets operating between 0.4 and 4K, used with cold-transfer (4K) techniques, provide great configurational flexibility. Their long depolarization times under target usage conditions assure reasonable match between polarization production and usage times, for weakly ionizing beam fluxes, and the very long relaxation times at fields above 7T (∼1 yr.) provide an economical storage mode and open-quote open-quote off-the-shelf close-quote close-quote availability. copyright 1995 American Institute of Physics

  10. Korea's nuclear public information experiences-target groups and communication strategies

    International Nuclear Information System (INIS)

    Chung, J.K.

    1996-01-01

    Why public information activities in Korea are needed is first explained. There are three basic reasons; 1) to secure necessary sites for construction of large nuclear facilities; such as nuclear power plants, radwaste management facilities, and nuclear fuel-cycle related facilities 2) to maintain a friendly relationship between the local communities and the nuclear industries, 3) to promote better understanding about the nation's peaceful nuclear programs to the various target groups. Categorization of target groups and messages are reviewed. By whom the public information programs are implemented is also explained. An orchestrated effort together with the third communicators is stressed. Basic philosophy of nuclear public information programs is introduced. A high-profile information campaign and a low-profile information campaign are explained. Particular information strategies suitable to Korean situation as examined. In addition, the Korean general public perception on nuclear energy is briefly introduced. Also, some real insights of anti-nuclear movement in Korea together with the arguments are reviewed. In conclusion, the paper stresses that nuclear arguments became no more technical matters but almost socio-political issues. (author)

  11. Comment on "Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage".

    Science.gov (United States)

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-03-29

    Based on nuclear and mitochondrial DNA, Hailer et al. (Reports, 20 April 2012, p. 344) suggested early divergence of polar bears from a common ancestor with brown bears and subsequent introgression. Our population genetic analysis that traces each of the genealogies in the independent nuclear loci does not support the evolutionary model proposed by the authors.

  12. Dynamic nuclear polarization by frequency modulation of a tunable gyrotron of 260GHz.

    Science.gov (United States)

    Yoon, Dongyoung; Soundararajan, Murari; Cuanillon, Philippe; Braunmueller, Falk; Alberti, Stefano; Ansermet, Jean-Philippe

    2016-01-01

    An increase in Dynamic Nuclear Polarization (DNP) signal intensity is obtained with a tunable gyrotron producing frequency modulation around 260GHz at power levels less than 1W. The sweep rate of frequency modulation can reach 14kHz, and its amplitude is fixed at 50MHz. In water/glycerol glassy ice doped with 40mM TEMPOL, the relative increase in the DNP enhancement was obtained as a function of frequency-sweep rate for several temperatures. A 68 % increase was obtained at 15K, thus giving a DNP enhancement of about 80. By employing λ/4 and λ/8 polarizer mirrors, we transformed the polarization of the microwave beam from linear to circular, and achieved an increase in the enhancement by a factor of about 66% for a given power. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva; Viger-Gravel, Jasmine; Abou-Hamad, Edy; Samantaray, Manoja; Hamzaoui, Bilel; Gurinov, Andrei; Anjum, Dalaver H.; Gajan, David; Lesage, Anne; Bendjeriou-Sedjerari, Anissa; Emsley, Lyndon; Basset, Jean-Marie

    2016-01-01

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  14. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva

    2016-08-15

    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  15. Nuclear EGFR as a molecular target in cancer

    International Nuclear Information System (INIS)

    Brand, Toni M.; Iida, Mari; Luthar, Neha; Starr, Megan M.; Huppert, Evan J.; Wheeler, Deric L.

    2013-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most targeted receptors in the field of oncology. While anti-EGFR inhibitors have demonstrated clinical success in specific cancers, most patients demonstrate either intrinsic or acquired resistance within one year of treatment. Many mechanisms of resistance to EGFR inhibitors have been identified, one of these being attributed to alternatively localized EGFR from the cell membrane into the cell’s nucleus. Inside the nucleus, EGFR functions as a co-transcription factor for several genes involved in cell proliferation and angiogenesis, and as a tyrosine kinase to activate and stabilize proliferating cell nuclear antigen and DNA dependent protein kinase. Nuclear localized EGFR is highly associated with disease progression, worse overall survival in numerous cancers, and enhanced resistance to radiation, chemotherapy, and the anti-EGFR therapies gefitinib and cetuximab. In this review the current knowledge of how nuclear EGFR enhances resistance to cancer therapeutics is discussed, in addition to highlighting ways to target nuclear EGFR as an anti-cancer strategy in the future

  16. Bis-gadolinium complexes for solid effect and cross effect dynamic nuclear polarization

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Monu; Corzilius, Bjoern [Goethe-Universitaet Frankfurt am Main, Institut fuer Physikalische und Theoretische Chemie, Institut fuer Biophysikalische Chemie und Biomolekulares Magnetresonanzzentrum (BMRZ) (Germany); Qi, Mian; Godt, Adelheid [Fakultaet fuer Chemie und Centrum fuer Molekulare Materialien (CM2), Universitaet Bielefeld (Germany)

    2017-04-03

    High-spin complexes act as polarizing agents (PAs) for dynamic nuclear polarization (DNP) in solid-state NMR spectroscopy and feature promising aspects towards biomolecular DNP. We present a study on bis(Gd-chelate)s which enable cross effect (CE) DNP owing to spatial confinement of two dipolar-coupled electron spins. Their well-defined Gd..Gd distances in the range of 1.2-3.4 nm allowed us to elucidate the Gd..Gd distance dependence of the DNP mechanism and NMR signal enhancement. We found that Gd..Gd distances above 2.1 nm result in solid effect DNP while distances between 1.2 and 2.1 nm enable CE for {sup 1}H, {sup 13}C, and {sup 15}N nuclear spins. We compare 263 GHz electron paramagnetic resonance (EPR) spectra with the obtained DNP field profiles and discuss possible CE matching conditions within the high-spin system and the influence of dipolar broadening of the EPR signal. Our findings foster the understanding of the CE mechanism and the design of high-spin PAs for specific applications of DNP. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Lv, Xiaonan [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100090 (China); Herrler, Georg [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Enjuanes, Luis [Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid (Spain); Zhou, Xingdong [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Qu, Bo [Faculty of Life Sciences, Northeast Agricultural University, Harbin 150030 (China); Meng, Fandan [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Cong, Chengcheng [College Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110161 (China); Ren, Xiaofeng; Li, Guangxing [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China)

    2015-04-15

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.

  18. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    International Nuclear Information System (INIS)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun; Lv, Xiaonan; Herrler, Georg; Enjuanes, Luis; Zhou, Xingdong; Qu, Bo; Meng, Fandan; Cong, Chengcheng; Ren, Xiaofeng; Li, Guangxing

    2015-01-01

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs

  19. High-spin nuclear target of 178m2Hf: creation and nuclear reaction studies

    International Nuclear Information System (INIS)

    Oganessyan, Yu.Ts.; Karamyan, S.A.; Gangrskij, Yu.P.

    1993-01-01

    A long-lived (31 years) four-quasiparticle isomer 178m 2 Hf(I,K π =16,16 + ) was produced in microweight quantities using the nuclear reaction 176 Yb( 4 He, 2n). Methods of precision chemistry and mass-separation for the purification of the produced Hf material have been developed. Thin targets of isomeric hafnium-178 on carbon backings were prepared and used in experiments on a neutron, proton and deuteron beams. First results on nuclear reactions on a high-spin exotic target were obtained. Experiments on electromagnetic interactions of the isomeric hafnium using methods of the collinear laser spectroscopy as well as of the nuclear orientation of hafnium implanted into a crystalline media were started. 11 refs.; 11 figs.; 2 tabs

  20. Dynamically polarized samples for neutron protein crystallography at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Zhao, Jinkui; Pierce, Josh; Robertson, J. L.; Herwig, Kenneth W.; Myles, Dean; Cuneo, Matt; Li, Le; Meilleur, Flora; Standaert, Bob

    2016-01-01

    To prepare for the next generation neutron scattering instruments for the planned second target station at the Spallation Neutron Source (SNS) and to broaden the scientific impact of neutron protein crystallography at the Oak Ridge National Laboratory, we have recently ramped up our efforts to develop a dynamically polarized target for neutron protein crystallography at the SNS. Proteins contain a large amount of hydrogen which contributes to incoherent diffraction background and limits the sensitivity of neutron protein crystallography. This incoherent background can be suppressed by using polarized neutron diffraction, which in the same time also improves the coherent diffraction signal. Our plan is to develop a custom Dynamic Nuclear Polarization (DNP) setup tailored to neutron protein diffraction instruments. Protein crystals will be polarized at a magnetic field of 5 T and temperatures of below 1 K. After the dynamic polarization process, the sample will be brought to a frozen-spin mode in a 0.5 T holding field and at temperatures below 100 mK. In a parallel effort, we are also investigating various ways of incorporating polarization agents needed for DNP, such as site specific spin labels, into protein crystals. (paper)

  1. Linearly polarized photons at ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, Holger [Physikalisches Institut, Universitaet Bonn (Germany)

    2009-07-01

    To investigate the nucleon resonance regime in meson photoproduction, double polarization experiments are currently performed at the electron accelerator ELSA in Bonn. The experiments make use of a polarized target and circularly or linearly polarized photon beams. Linearly polarized photons are produced by coherent bremsstrahlung from an accurately aligned diamond crystal. The orientation of the crystal with respect to the electron beam is measured using the Stonehenge-Technique. Both, the energy of maximum polarization and the plane of polarization, can be deliberately chosen for the experiment. The linearly polarized beam provides the basis for the measurement of azimuthal beam asymmetries, such as {sigma} (unpolarized target) and G (polarized target). These observables are extracted in various single and multiple meson photoproduction channels.

  2. Feasibility study of electron-scattering experiments with a tensor-polarized deuterium target in an electron storage ring

    International Nuclear Information System (INIS)

    Holt, R.J.; Geesaman, D.F.; Goodman, L.S.

    1985-01-01

    The feasibility of using a spin-exchange optical-pumping method to produce a high flux of tensor-polarized deuterium atoms is being tested. In this method, alkali atoms are polarized by optical pumping and the polarization is transferred to deuterium by successive spin-exchange collisions. In a test with a simple model the authors achieved 10 mW of laser power absorbed to the spin-exchange process with deuterium. Construction of a more sophisticated prototype was completed and tests are in progress. Dissociation fractions in excess of 80% for deuterium molecules have been achieved thus far. In order to optimize the performance of the prototype target, a computerized model of the target was constructed. A section of a differential-pumping system was constructed and tested. It was possible to sustain more than the required 5 orders-of-magnitude pressure drop in a distance of approximately 1.5 m

  3. Semi-inclusive DIS Experiments Using Transversely Polarized Targets in Hall-A: Current Results and Future Plans

    Directory of Open Access Journals (Sweden)

    Allada Kalyan

    2012-12-01

    Full Text Available Measurement of single (SSA and double spin asymmetries (DSA in semiinclusive DIS reactions using polarized targets provide a powerful method to probe transverse momentum dependent parton distribution functions (TMDs. In particular, the experimentally measured SSA on nucleon targets can help in extracting the transversity and Sivers distribution functions of u and d-quarks. Similarly, the measured DSA are sensitive to the quark spin-orbital correlations, and provide an access to the TMD parton distribution function (g1T. A recent experiment conducted in Hall-A Jefferson Lab using transversely polarized 3He provide first such measurements on “effective” neutron target. The measurement was performed using 5.9 GeV beam from CEBAF and measured the target SSA/DSA in the SIDIS reaction 3He↑(e, e′π±X. The kinematical range, x = 0.19 ~ 0.34, at Q2 = 1.77 ~ 2.73 (GeV/c2, was focused on the valence quark region. The results from this measurement along with our plans for future high precision measurements in Hall-A are presented.

  4. What should be measured in deuteron breakup with polarized proton target

    International Nuclear Information System (INIS)

    Strokovskij, E.A.

    1995-01-01

    At present, two different approaches are used for interpretation of inclusive data on deuteron breakup with emission of protons-fragments at zero degree by hadrons. According to one of them the observed characteristics of this reaction (cross sections, polarization observables) are determined by the reaction mechanism and the deuteron structure at short distances (in the commonly accepted sense) plays a minor role. According to the other approach it is the deuteron structure at short distances which determines the observed trend of the data. Neither of these approaches can describe the data even qualitatively in the whole investigated region of kinematical variables, having particular success for some narrow region corresponding to long distances. Installation of the polarized proton target at LHE (Laboratory of High Energies) JINR opens an opportunity to perform a rather simple experiment which could discriminate one of these completing approaches. The idea of this experiment is discussed in the present paper. Measurement of the observable suggested here is a particular example of a general problem of a search for spin correlations in inelastic reactions between particles separated well in 4-velocity or rapidity spaces. In our particular case correlations of spin degrees of freedom between particles, one of which is in the target fragmentation region and the other belongs to the projectile fragmentation region, are discussed. 10 refs., 1 fig

  5. Polarized neutron capture in polarized 59Co and 165Ho nuclei

    International Nuclear Information System (INIS)

    Bosman, J.J.

    1976-01-01

    Gamma spectroscopy on the reactions 59 Co(n,γ) 60 Co and 165 Ho(n,γ) 166 Ho with polarized neutrons and polarized targets enabled the assignment of spins to 36 levels in 60 Co and 15 levels in 166 Ho. Several of them had not been reported earlier. The techniques used to polarize neutron beams and targets and the gamma-spectroscopy are extensively discussed

  6. Transverse polarization of Σ+(1189) in photoproduction on a hydrogen target in CLAS

    Science.gov (United States)

    Nepali, C. S.; Amaryan, M.; Adhikari, K. P.; Aghasyan, M.; Anefalos Pereira, S.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Crede, V.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Gabrielyan, M. Y.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kvaltine, N. D.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Torayev, B.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2013-04-01

    Experimental results on the Σ+(1189) hyperon transverse polarization in photoproduction on a hydrogen target using the CLAS detector at Jefferson Laboratory are presented. The Σ+(1189) was reconstructed in the exclusive reaction γ+p→KS0+Σ+(1189) via the Σ+→pπ0 decay mode. The KS0 was reconstructed in the invariant mass of two oppositely charged pions with the π0 identified in the missing mass of the detected pπ+π- final state. Experimental data were collected in the photon energy range Eγ=1.0-3.5 GeV (s range 1.66-2.73 GeV). We observe a large negative polarization of up to 95%. As the mechanism of transverse polarization of hyperons produced in unpolarized photoproduction experiments is still not well understood, these results will help to distinguish between different theoretical models on hyperon production and provide valuable information for the searches of missing baryon resonances.

  7. Effect of initial-state target polarization on the single ionization of helium by 1-keV electron impact

    International Nuclear Information System (INIS)

    Sun Shi-Yan; Ma Xiao-Yan; Li Xia; Miao Xiang-Yang; Jia Xiang-Fu

    2012-01-01

    We report new results of triple differential cross sections for the single ionization of helium by 1-KeV electron impact at the ejection energy of 10 eV. Investigations have been made for both the perpendicular plane and the plane perpendicular to the momentum transfer geometries. The present calculation is based on the three-Coulomb wave function. Here we have also incorporated the effect of target polarization in the initial state. A comparison is made between the present calculation with the results of other theoretical methods and a recent experiment [Dürr M, Dimopoulou C, Najjari B, Dorn A, Bartschat K, Bray I, Fursa D V, Chen Z, Madison D H and Ullrich J 2008 Phys. Rev. A 77 032717]. At an impact energy of 1 KeV, the target polarization is found to induce a substantial change of the cross section for the ionization process. We observe that the effect of target polarization plays a dominant role in deciding the shape of triple differential cross sections. (atomic and molecular physics)

  8. Dynamic nuclear polarization at high Landau levels in a quantum point contact

    Science.gov (United States)

    Fauzi, M. H.; Noorhidayati, A.; Sahdan, M. F.; Sato, K.; Nagase, K.; Hirayama, Y.

    2018-05-01

    We demonstrate a way to polarize and detect nuclear spin in a gate-defined quantum point contact operating at high Landau levels. Resistively detected nuclear magnetic resonance (RDNMR) can be achieved up to the fifth Landau level and at a magnetic field lower than 1 T. We are able to retain the RDNMR signals in a condition where the spin degeneracy of the first one-dimensional (1D) subband is still preserved. Furthermore, the effects of orbital motion on the first 1D subband can be made smaller than those due to electrostatic confinement. This developed RDNMR technique is a promising means to study electronic states in a quantum point contact near zero magnetic field.

  9. Account of magnetic field effects of polarized proton target on charged particle trajectories in experiments with magnetic spectrometers

    International Nuclear Information System (INIS)

    Telegin, Yu.N.; Ranyuk, Yu.N.; Karnaukhov, I.M.; Lukhanin, A.A.; Sporov, E.A.

    1980-01-01

    Some effects of the influence of magnetic field of a polarized proton target (PPT) on trajectories of secondary particles in experiments using magnetic spectrometers are considered. It is shown that these effects can be eliminated by the target shift relatively to the spectrometer rotation axis and variation of the spectrometer installation angle. Numerical calculations of the correction values were performed for emitted particle momenta of 100-800 MeB/s and working intensity of the H 0 magnetic field H 0 =27 kG. The influence of the PPT magnetic field on the functions of angular and energy resolution in the γp→π + n experiment is investigated. The results obtained can be used in experiments with a polarized proton target

  10. Spin exchange in polarized deuterium

    International Nuclear Information System (INIS)

    Przewoski, B. von; Meyer, H.O.; Balewski, J.; Doskow, J.; Ibald, R.; Pollock, R.E.; Rinckel, T.; Wellinghausen, A.; Whitaker, T.J.; Daehnick, W.W.; Haeberli, W.; Schwartz, B.; Wise, T.; Lorentz, B.; Rathmann, F.; Pancella, P.V.; Saha, Swapan K.; Thoerngren-Engblom, P.

    2003-01-01

    We have measured the vector and tensor polarization of an atomic deuterium target as a function of the target density. The polarized deuterium was produced in an atomic beam source and injected into a storage cell. For this experiment, the atomic beam source was operated without rf transitions, in order to avoid complications from the unknown efficiency of these transitions. In this mode, the atomic beam is vector and tensor polarized and both polarizations can be measured simultaneously. We used a 1.2-cm-diam and 27-cm-long storage cell, which yielded an average target density between 3 and 9x10 11 at/cm 3 . We find that the tensor polarization decreases with increasing target density while the vector polarization remains constant. The data are in quantitative agreement with the calculated effect of spin exchange between deuterium atoms at low field

  11. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  12. Correlated calculations of indirect nuclear spin-spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD)

    DEFF Research Database (Denmark)

    Enevoldsen, Thomas; Oddershede, Jens; Sauer, Stephan P. A.

    1998-01-01

    We present correlated calculations of the indirect nuclear spin-spin coupling constants of HD, HF, H2O, CH4, C2H2, BH, AlH, CO and N2 at the level of the second-order polarization propagator approximation (SOPPA) and the second-order polarization propagator approximation with coupled-cluster sing...

  13. Deposition techniques for the preparation of thin film nuclear targets

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1987-07-01

    This review commences with a brief description of the basic principles that regulate vacuum evaporation and the physical processes involved in thin film formation, followed by a description of the experimental methods used. The principle methods of heating the evaporant are detailed and the means of measuring and controlling the film thickness are elucidated. Types of thin film nuclear targets are considered and various film release agents are listed. Thin film nuclear target behaviour under ion-bombardment is described and the dependence of nuclear experimental results upon target thickness and uniformity is outlined. Special problems associated with preparing suitable targets for lifetime measurements are discussed. The causes of stripper-foil thickening and breaking under heavy-ion bombardment are considered. A comparison is made between foils manufactured by a glow discharge process and those produced by vacuum sublimation. Consideration is given to the methods of carbon stripper-foil manufacture and to the characteristics of stripper-foil lifetimes are considered. Techniques are described that have been developed for the fabrication of special targets, both from natural and isotopically enriched material, and also of elements that are either chemically unstable, or thermally unstable under irradiation. The reduction of metal oxides by the use of hydrogen or by utilising a metallothermic technique, and the simultaneous evaporation of reduced rare earth elements is described. A comprehensive list of the common targets is presented

  14. Climate Drives Polar Bear Origins

    Science.gov (United States)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  15. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein–protein interfaces

    International Nuclear Information System (INIS)

    Wylie, Benjamin J.; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.

    2015-01-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces

  16. Real-time multi-target ranging based on chaotic polarization laser radars in the drive-response VCSELs.

    Science.gov (United States)

    Zhong, Dongzhou; Xu, Geliang; Luo, Wei; Xiao, Zhenzhen

    2017-09-04

    According to the principle of complete chaos synchronization and the theory of Hilbert phase transformation, we propose a novel real-time multi-target ranging scheme by using chaotic polarization laser radar in the drive-response vertical-cavity surface-emitting lasers (VCSELs). In the scheme, to ensure each polarization component (PC) of the master VCSEL (MVCSEL) to be synchronized steadily with that of the slave VCSEL, the output x-PC and y-PC from the MVCSEL in the drive system and those in the response system are modulated by the linear electro-optic effect simultaneously. Under this condition, by simulating the influences of some key parameters of the system on the synchronization quality and the relative errors of the two-target ranging, related operating parameters can be optimized. The x-PC and the y-PC, as two chaotic radar sources, are used to implement the real-time ranging for two targets. It is found that the measured distances of the two targets at arbitrary position exhibit strong real-time stability and only slight jitter. Their resolutions are up to millimeters, and their relative errors are very small and less than 2.7%.

  17. The Argonne laser-driven D target: Recent developments and progress

    International Nuclear Information System (INIS)

    Fedchak, J.A.; Bailey, K.; Cummings, W.J.

    1997-01-01

    The first direct measurements of nuclear tensor polarization p zz in a laser-driven polarized D target have been performed at Argonne. We present p zz and electron polarization P e data taken at a magnetic field of 600 G in the optical pumping cell. These results are highly indicative that spin-temperature equilibrium is achieved in the system. To prevent spin relaxation of D and K atoms as well as the molecular recombination of D atoms, the walls of the laser-driven D target are coated with organosilane compounds. We discuss a new coating technique, the open-quotes afterwashclose quotes, developed at Argonne which has yielded stable atomic fraction results when the coating is exposed to K. We also present new coating techniques for glass and Cu substrates

  18. Nuclear reactivity control using laser induced polarization

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1990-01-01

    This patent describes a control element for reactivity control of a fission source provides an atomic density of 3 He in a control volume which is effective to control criticality as the 3 He is spin-polarized. Spin-polarization of the 3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the 3 He for spin-polarizing the 3 He. An alkali-metal vapor may be included with the 3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with 3 He to spin-polarize the 3 He atoms

  19. The movable polarized target as a basic equipment for high energy spin physics experiments at the JINR-Dubna accelerator complex

    Energy Technology Data Exchange (ETDEWEB)

    Lehar, F.; Adiasevich, B.; Androsov, V.P.; Angelov, N.; Anischenko, N.; Antonenko, V.; Ball, J.; Baryshevsky, V.G.; Bazhanov, N.A.; Belyaev, A.A.; Benda, B.; Bodyagin, V.; Borisov, N.; Borzunov, Yu.; Bradamante, F.; Bunyatova, E.; Burinov, V.; Chernykh, E.; Combet, M.; Datskov, A.; Durand, G.; Dzyubak, A.P.; Fontaine, J.M.; Get`man, V.A.; Giorgi, M.; Golovanov, L.; Grebenyuk, V.; Grosnick, D.; Gurevich, G.; Hasegawa, T.; Hill, D.; Horikawa, N.; Igo, G.; Janout, Z.; Kalinnikov, V.A.; Karnaukhov, I.M.; Kasprzyk, T.; Khachaturov, B.A.; Kirillov, A.; Kisselev, Yu.; Kousmine, E.S.; Kovalenko, A.; Kovaljov, A.I.; Ladygin, V.P.; Lazarev, A.; Leconte, P.; Lesquen, A. de; Lukhanin, A.A.; Mango, S.; Martin, A.; Matafonov, V.N.; Matyushevsky, E.; Mironov, S.; Neganov, A.B.; Neganov, B.S.; Nomofilov, A.; Perelygin, V.; Plis, Yu.; Pilipenko, Yu.; Pisarev, I.L.; Piskunov, N.; Polunin, Yu.; Popkov, Yu.P.; Propov, A.A.; Prokofiev, A.N.; Rekalo, M.P.; Rukoyatkin, P.; Sans, J.L.; Sapozhnikov, M.G.; Sharov, V.; Shilov, S.; Shishov, Yu.; Sitnik, I.M.; Sorokin, P.V.; Spinka, H.; Sporov, E.A.; Strunov, L.N.; Svetov, A.; De Swart, J.J.; Telegin, Yu.P.; Tolmashov, I.; Trentalange, S.; Tsvinev, A.; Usov, Yu.A.; Vikhrov, V.V.; Whitten, C.A.; Zaporozhets, S.; Zarubin, A.; Zhdanov, A.A.; Zolin, L. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de Physique des Particules, de Physique Nucleaire et de l`Instrumentation Associee]|[I.V. Kurchatov Inst. of Atomic Energy, Moscow (Russian Federation)]|[Kharkov Inst. of Physics and Technology (Russian Federation)]|[Lab. of Nuclear Problems, JINR, Dubna (Russian Federation)]|[Lab. of High Energy Physics, JINR, Dubna (Russian Federation)]|[Lab. National SATURNE, CNRS, 91 - Gif-sur-Yvette (France)]|[Inst. of Physics, Belarus Academy of Sciences, Minsk (Belarus)]|[Dept. of Physics, Petersburg Nuclear Physics Inst., Gatchina (Russian Federation)

    1995-03-01

    A movable polarized proton target is planned to be installed in polarized beams of the Synchrophasotron-Nuclotron complex in order to carry out a spin physics experimental program at Dubna. The project is described and the first proposed experiments are discussed. ((orig.))

  20. The movable polarized target as a basic equipment for high energy spin physics experiments at the JINR-Dubna accelerator complex

    International Nuclear Information System (INIS)

    Lehar, F.; Adiasevich, B.; Androsov, V.P.; Angelov, N.; Anischenko, N.; Antonenko, V.; Ball, J.; Baryshevsky, V.G.; Bazhanov, N.A.; Belyaev, A.A.; Benda, B.; Bodyagin, V.; Borisov, N.; Borzunov, Yu.; Bradamante, F.; Bunyatova, E.; Burinov, V.; Chernykh, E.; Combet, M.; Datskov, A.; Durand, G.; Dzyubak, A.P.; Fontaine, J.M.; Get'man, V.A.; Giorgi, M.; Golovanov, L.; Grebenyuk, V.; Grosnick, D.; Gurevich, G.; Hasegawa, T.; Hill, D.; Horikawa, N.; Igo, G.; Janout, Z.; Kalinnikov, V.A.; Karnaukhov, I.M.; Kasprzyk, T.; Khachaturov, B.A.; Kirillov, A.; Kisselev, Yu.; Kousmine, E.S.; Kovalenko, A.; Kovaljov, A.I.; Ladygin, V.P.; Lazarev, A.; Leconte, P.; Lesquen, A. de; Lukhanin, A.A.; Mango, S.; Martin, A.; Matafonov, V.N.; Matyushevsky, E.; Mironov, S.; Neganov, A.B.; Neganov, B.S.; Nomofilov, A.; Perelygin, V.; Plis, Yu.; Pilipenko, Yu.; Pisarev, I.L.; Piskunov, N.; Polunin, Yu.; Popkov, Yu.P.; Propov, A.A.; Prokofiev, A.N.; Rekalo, M.P.; Rukoyatkin, P.; Sans, J.L.; Sapozhnikov, M.G.; Sharov, V.; Shilov, S.; Shishov, Yu.; Sitnik, I.M.; Sorokin, P.V.; Spinka, H.; Sporov, E.A.; Strunov, L.N.; Svetov, A.; De Swart, J.J.; Telegin, Yu.P.; Tolmashov, I.; Trentalange, S.; Tsvinev, A.; Usov, Yu.A.; Vikhrov, V.V.; Whitten, C.A.; Zaporozhets, S.; Zarubin, A.; Zhdanov, A.A.; Zolin, L.

    1995-01-01

    A movable polarized proton target is planned to be installed in polarized beams of the Synchrophasotron-Nuclotron complex in order to carry out a spin physics experimental program at Dubna. The project is described and the first proposed experiments are discussed. ((orig.))

  1. Tests of a Coulomb-nuclear polarimeter

    International Nuclear Information System (INIS)

    Pauletta, G.; University of Texas, Austin, TX, 78712)

    1989-01-01

    We report on the development and testing of a polarimeter for the high energy polarized proton and antiproton beam at Fermi National Accelerator Laboratory (FNAL). The polarimeter was designed to make use of a small but well-known analyzing power in the region of Coulomb-nuclear interference (CNI) in order to obtain an absolute measurement of the polarization. Feasibility was established in the course of a brief running period at the end of the last fixed-target period at FNAL and potential for considerable improvement was revealed. Beam-time was insufficient to measure polarization accurately but the data obtained bears out design expectations for the beam-line and confirms polarization-tagging techniques to within uncertainties

  2. Electronic device for measuring the polarization parameter in the π-p → π0n charge exchange reaction on a polarized proton target

    International Nuclear Information System (INIS)

    Brehin, S.

    1967-12-01

    An electronic apparatus has been constructed to measure the polarization parameter P 0 (t) in π - p → π 0 n charge exchange scattering at 5.9 GeV/c and 11,2 GeV/c on polarized proton target. This device insures triggering of a heavy plate spark chamber, allowing visualisation of γ rays from the π 0 decays when the associated neutron offers suitable characteristics in direction and energy. The neutron is detected by an array of 32 counters and his energy is measured by a time of flight method. Electronic circuits of this apparatus are described as test and calibration methods used. (author) [fr

  3. A nonsense mutation of γD-crystallin associated with congenital nuclear and posterior polar cataract in a Chinese family.

    Science.gov (United States)

    Zhai, Yi; Li, Jinyu; Zhu, Yanan; Xia, Yan; Wang, Wei; Yu, Yinhui; Yao, Ke

    2014-01-01

    The goal of this study was to characterize the disease-causing mutations in a Chinese family with congenital nuclear and posterior polar cataracts. Clinical data of patients in the family were recorded using slit-lamp photography and high definition video. Genomic DNA samples were extracted from the peripheral blood of the pedigree members and 100 healthy controls. Mutation screening was performed in the candidate genes by bi-directional sequencing of the amplified products. The congenital cataract phenotype of the pedigree was identified by slit-lamp examinations and observation during surgery as nuclear and posterior polar cataracts. Through the sequencing of the candidate genes, a heterozygous c. 418C>T change was detected in the coding region of the γD-crystallin gene (CRYGD). As a result of this change, a highly conserved arginine residue was replaced by a stop codon (p. R140X). This change was discovered among all of the affected individuals with cataracts, but not among the unaffected family members or the 100 ethnically matched controls. This study identified a novel congenital nuclear and posterior polar cataract phenotype caused by the recurrent mutation p. R140X in CRYGD.

  4. Bounds on Time Reversal Violation From Polarized Neutron Capture With Unpolarized Targets.

    Science.gov (United States)

    Davis, E D; Gould, C R; Mitchell, G E; Sharapov, E I

    2005-01-01

    We have analyzed constraints on parity-odd time-reversal noninvariant interactions derived from measurements of the energy dependence of parity-violating polarized neutron capture on unpolarized targets. As previous authors found, a perturbation in energy dependence due to a parity (P)-odd time (T)-odd interaction is present. However, the perturbation competes with T-even terms which can obscure the T-odd signature. We estimate the magnitudes of these competing terms and suggest strategies for a practicable experiment.

  5. Horizontal cryostat for polarized proton targets; Cryostat horizontal pour cibles de protons polarises

    Energy Technology Data Exchange (ETDEWEB)

    Roubeau, P M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-11-15

    Continuously fed horizontal cryostat to be used for polarized proton targets; includes: 1 standard storage dewar commercially available; 2 shifting of dewar requiring 10 minutes, without any warming of the target; 3 no conventional nitrogen cooled shield but rather taking advantage of the cold helium vapours evaporated in the transfer line and/or the helium evaporated to cool the polarized crystal; 4 a heat exchanger which reduces by a factor of two the consumption of helium lowering in the same ratio the transfer line and/or the helium evaporated to cool the polarized crystal; 5 regulation of the temperature by means of a needle valve included in the superfluid helium line. This cryostat, used in conjunction with a 1000 l/s pump allows one to maintain at 1.06 deg. K a target, in which is dissipated 1 watt hyper frequency power, with an helium consumption of 40 litres/day (measured directly in the storage dewar). (author) [French] Description d'un cryostat horizontal, a alimentation continue, pour cible de protons polarises, presentant les caracteristiques suivantes: 1 utilisation de vases de stockage de modele commercial; 2 echange de vase en 10 minutes sans rechauffement; 3 absence d'azote liquide remplace par les vapeurs froides de l'helium evapore dans la canalisation de transfert et/ou les vapeurs de l'helium evapore pour refroidir le cristal polarise; 4 utilisation d'un echangeur qui aboutit a reduire de moitie la consommation d'helium, donc la pression d'evaporation, et qui permet, pour une pompe donnee, d'abaisser la temperature de fonctionnement de 0.1 degre environ; 5 reglage de la temperature au moyen d'une vanne a aiguille placee sur le circuit d'helium prerefroidi (superfluide). Ce cryostat, utilise avec une pompe de 1000 l/s permet de maintenir a une temperature de 1.06 deg. K une cible dans laquelle est dissipee une puissance d'hyperfrequence de 1 watt, moyennant une consommation d'helium de 40 litres/jour (mesuree dans le vase de stockage). (auteur)

  6. Isotopic characterization of targets for nuclear measurements at CBNM

    International Nuclear Information System (INIS)

    Bievre, P. de

    1985-01-01

    Nuclear measurements for which ''nuclear'' targets are prepared are almost always isotope-specific i.e. they are normally related to a particular nuclide in the target. The amount of this nuclide must be accurately assessed. There are essentially two ways to determine the number of atoms of this particular nuclide. (1) By determination of the amount of element, to which the nuclide belongs, on the target via classsical means; weighing substraction of impurities, calculation of element amount using known of the chemical compound in which the element is incorporated and, finally, measurement of the isotopic composition in order to determine the fraction of the nuclide concerned in the element. An alternative way may be to perform an elemental assay on the target followed by determination of the isotopic composition. (2) Another approach is isotope dilution mass spectrometry where a change in the isotopic composition of the ''target'' is induced by adding a known number of atoms (called ''spike'') of the element with a quite different composition. Measurement of the resulting change in isotopic composition yields directly the number of atoms of the nuclide under investigation. The method is highly selective, accurate and isotope-specific. (orig.)

  7. Actinide targets for fundamental research in nuclear physics

    Science.gov (United States)

    Eberhardt, K.; Düllmann, Ch. E.; Haas, R.; Mokry, Ch.; Runke, J.; Thörle-Pospiech, P.; Trautmann, N.

    2018-05-01

    Thin actinide layers deposited on various substrates are widely used as calibration sources in nuclear spectroscopy. Other applications include fundamental research in nuclear chemistry and -physics, e.g., the chemical and physical properties of super-heavy elements (SHE, Z > 103) or nuclear reaction studies with heavy ions. For the design of future nuclear reactors like fast-fission reactors and accelerator-driven systems for transmutation of nuclear waste, precise data for neutron absorption as well as neutron-induced fission cross section data for 242Pu with neutrons of different energies are of particular importance, requiring suitable Pu-targets. Another application includes studies of nuclear transitions in 229Th harvested as α-decay recoil product from a thin layer of its 233U precursor. For this, a thin and very smooth layer of 233U is used. We report here on the production of actinide layers mostly obtained by Molecular Plating (MP). MP is currently the only fabrication method in cases where the desired actinide material is available only in very limited amounts or possesses a high specific activity. Here, deposition is performed from organic solution applying a current density of 1-2 mA/cm2. Under these conditions target thicknesses of 500-1000 μg/cm2 are possible applying a single deposition step with deposition yields approaching 100 %. For yield determination α-particle spectroscopy, γ-spectroscopy and Neutron Activation Analysis is routinely used. Layer homogeneity is checked with Radiographic Imaging. As an alternative technique to MP the production of thin lanthanide and actinide layers by the so-called "Drop on Demand"-technique applied e.g., in ink-jet printing is currently under investigation.

  8. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    Our experimental efforts over the past 5 years have been aimed at cazrying out ICF shots with spin-polarized 0 fuel. We successfully prepared polarized 0 in HD, and solved the problems of loading target shells with our carefully prepared isotopic -rnixt.l.l?-es, polarizing them so that the 0 polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted fusion chamber. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was dus to mal-timing or insufficient retraction rate of OMEGA'S fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spits of this, all alements of the complex experiment we originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods we developed are being utilized on the ICF upgrades at Rochester and at Livermore. In addition to the solution of the interface problems, we obtained novel results on polymer shell characteristics at low temperatures, and continuation of these experiments is c = ently supported by KLUP. Extensive additional mappings were ca=ied out of nuclear spin relaxation rates of H and D in solid HD in the temperature-magnetic field rangs of 0.01 to 4.2K and 0 - 13 Tesla. New phenomena were discovered, such as association of impurity clustering with very low temperature motion, and inequality of the growth-rate and decay-rate of the magnetization

  9. Polarization enhancement in (d)over-right-arrow((p)over-right-arrow,(n)over-right-arrow)He-2 reaction : nuclear teleportation

    NARCIS (Netherlands)

    Hamieh, S

    2004-01-01

    I show that an experimental technique used in nuclear physics may be successfully applied to quantum teleportation (QT) of spin states of massive matter. A new non-local physical effect, the 'quantum-teleportation effect', is discovered for the nuclear polarization measurement. Enhancement of the

  10. Effect of heavy atoms on photochemically induced dynamic nuclear polarization in liquids

    Science.gov (United States)

    Okuno, Yusuke; Cavagnero, Silvia

    2018-01-01

    Given its short hyperpolarization time (∼10-6 s) and mostly non-perturbative nature, photo-chemically induced dynamic nuclear polarization (photo-CIDNP) is a powerful tool for sensitivity enhancement in nuclear magnetic resonance. In this study, we explore the extent of 1H-detected 13C nuclear hyperpolarization that can be gained via photo-CIDNP in the presence of small-molecule additives containing a heavy atom. The underlying rationale for this methodology is the well-known external-heavy-atom (EHA) effect, which leads to significant enhancements in the intersystem-crossing rate of selected photosensitizer dyes from photoexcited singlet to triplet. We exploited the EHA effect upon addition of moderate amounts of halogen-atom-containing cosolutes. The resulting increase in the transient triplet-state population of the photo-CIDNP sensitizer fluorescein resulted in a significant increase in the nuclear hyperpolarization achievable via photo-CIDNP in liquids. We also explored the internal-heavy-atom (IHA) effect, which is mediated by halogen atoms covalently incorporated into the photosensitizer dye. Widely different outcomes were achieved in the case of EHA and IHA, with EHA being largely preferable in terms of net hyperpolarization.

  11. Particle production from nuclear targets and the structure of hadrons

    International Nuclear Information System (INIS)

    Bialas, A.

    Production processes from nuclear targets allow studying interactions of elementary hadronic constituents in nuclear matter. The information thus obtained on the structure of hadrons and on the properties of hadronic constituents is presented. Both soft (low momentum transfer) and hard (high momentum transfer) processes are discussed. (author)

  12. Pluronic F127 nanomicelles engineered with nuclear localized functionality for targeted drug delivery

    International Nuclear Information System (INIS)

    Li, Yong-Yong; Li, Lan; Dong, Hai-Qing; Cai, Xiao-Jun; Ren, Tian-Bin

    2013-01-01

    PKKKRKV (Pro-Lys-Lys-Lys-Arg-Lys-Val, PV7), a seven amino acid peptide, has emerged as one of the primary nuclear localization signals that can be targeted into cell nucleus via the nuclear import machinery. Taking advantage of chemical diversity and biological activities of this short peptide sequence, in this study, Pluronic F127 nanomicelles engineered with nuclear localized functionality were successfully developed for intracellular drug delivery. These nanomicelles with the size ∼ 100 nm were self-assembled from F127 polymer that was flanked with two PV7 sequences at its both terminal ends. Hydrophobic anticancer drug doxorubicin (DOX) with inherent fluorescence was chosen as the model drug, which was found to be efficiently encapsulated into nanomicelles with the encapsulation efficiency at 72.68%. In comparison with the non-functionalized namomicelles, the microscopic observation reveals that PV7 functionalized nanomicelles display a higher cellular uptake, especially into the nucleus of HepG2 cells, due to the nuclear localization signal effects. Both cytotoxicity and apoptosis studies show that the DOX-loaded nanomicelles were more potent than drug nanomicelles without nuclear targeting functionality. It was thus concluded that PV7 functionalized nanomicelles could be a potentially alternative vehicle for nuclear targeting drug delivery. - Highlights: ► A new nuclear targeted drug delivery system based on micelles is developed. ► This micellar system features a core-shell structure with the size peaked at 100 nm. ► PV7, a short peptide sequence, is adopted as a nuclear targeting ligand. ► PV7 functionalized drug loaded micelles are more potent in killing tumor cells

  13. First measurement of target and double spin asymmetries for polarized e- polarized p --> e p pi0 in the nucleon resonance region above the Delta(1232)

    Energy Technology Data Exchange (ETDEWEB)

    Biselli, Angela; Burkert, Volker; Amaryan, Moscov; Amaryan, Moskov; Asryan, Gegham; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Baillie, Nathan; Ball, J.P.; Ball, Jacques; Baltzell, Nathan; Battaglieri, Marco; Bedlinskiy, Ivan; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Blaszczyk, Lukasz; Bookwalter, Craig; Boyarinov, Sergey; Bosted, Peter; Bradford, Robert; Branford, Derek; Briscoe, William; Brooks, William; Bultmann, S.; Bueltmann, Stephen; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Casey, Liam; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Crabb, Donald; Crede, Volker; Dale, Daniel; Dashyan, Natalya; De Masi, Rita; De Vita, Raffaella; De Sanctis, Enzo; Degtiarenko, Pavel; Deur, Alexandre; Dhamija, Seema; Dickson, Richard; Djalali, Chaden; Dodge, Gail; Doughty, David; Dugger, Michael; Dzyubak, Oleksandr; Egiyan, Hovanes; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Feuerbach, Robert; Fersch, Robert; Forest, Tony; Fradi, Ahmed; Garcon, Michel; Gavalian, Gagik; Gevorgyan, Nerses; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gohn, Wesley; Gothe, Ralf; Graham, Lewis; Griffioen, Keith; Guidal, Michel; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hafidi, Kawtar; Hakobyan, Hayk; Hanretty, Charles; Hassall, Neil; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Keller, Dustin; Kellie, James; Khandaker, Mahbubul; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Kossov, Mikhail; Krahn, Zebulun; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Kuznetsov, Viacheslav; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, David; Livingston, Kenneth; Lu, Haiyun; MacCormick, Marion; Markov, Nikolai; Mattione, Paul; McKinnon, Bryan; McNabb, John; Mecking, Bernhard; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Mikhaylov, Konstantin; Mirazita, Marco; Mokeev, Viktor; Moreno, Brahim; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Nasseripour, Rakhsha; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; Osipenko, Mikhail; Ostrovidov, Alexander; Park, Kil; Park, Seungkyung; Pasyuk, Evgueni; Paterson, Craig; Pereira, Sergio; Pierce, Joshua; Pivnyuk, Nikolay; Pogorelko, Oleg; Pozdnyakov, Sergey; Price, John; Prok, Yelena; Protopopescu, Dan; Raue, Brian; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Saini, Mukesh; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schott, Diane; Schumacher, Reinhard; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shvedunov, Nikolay; Smith, Elton; Sober, Daniel; Sokhan, Daria; Stavinskiy, Aleksey; Stepanyan, Samuel; Stepanyan, Stepan; Stokes, Burnham; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Tedeschi, David; Tkabladze, Avtandil; Tkachenko, Svyatoslav; Todor, Luminita; Ungaro, Maurizio; Vineyard, Michael; Vlassov, Alexander; Watts, Daniel; Weinstein, Lawrence; Weygand, Dennis; Williams, M.; Wolin, Elliott; Wood, Michael; Yegneswaran, Amrit; Yurov, Mikhail; Zana, Lorenzo; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen

    2008-10-01

    DOI: http://dx.doi.org/10.1103/PhysRevC.78.045204
    The exclusive channel polarized proton(polarized e,e prime p)pi0 was studied in the first and second nucleon resonance regions in the Q2 range from 0.187 to 0.770 GeV2 at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). Longitudinal target and beam-target asymmetries were extracted over a large range of center-of-mass angles of the pi0 and compared to the unitary isobar model MAID, the dynamic model by Sato and Lee, and the dynamic model DMT. A strong sensitivity to individual models was observed, in particular for the target asymmetry and in the higher invariant mass region. This data set, once included in the global fits of the above models, is expected to place strong constraints on the electrocoupling amplitudes A_{1/2} and S_{1/2} for the Roper resonance N(1400)P11, and the N(1535)S11 and N(1520)D13 states.

  14. Polarization Studies in Fast-Ion Beam Spectroscopy

    International Nuclear Information System (INIS)

    Trabert, E

    2001-01-01

    In a historical review, the observations and the insight gained from polarization studies of fast ions interacting with solid targets are presented. These began with J. Macek's recognition of zero-field quantum beats in beam-foil spectroscopy as indicating alignment, and D.G. Ellis' density operator analysis that suggested the observability of orientation when using tilted foils. Lastly H. Winter's studies of the ion-beam surface interaction at grazing incidence yielded the means to produce a high degree of nuclear orientation in ion beams

  15. Chemically induced dynamic nuclear polarization in systems containing large hyperfine coupling constants

    International Nuclear Information System (INIS)

    Roth, H.D.; Hutton, R.S.; Hwang, Kuochu; Turro, N.J.; Welsh, K.M.

    1989-01-01

    Nuclear spin polarization effects induced in radical pairs with one or more strong ( 13 C) hyperfine coupling constants have been evaluated. The pairs were generated by photoinduced α-cleavage or hydrogen abstraction reactions of carbonyl compounds. Several examples illustrate how changes in the magnetic field strength (H 0 ) and the g-factor difference (Δg) affect the general appearance of the resulting CIDNP multiplets. The results bear out an earlier caveat concerning the qualitative interpretation of CIDNP effects observed for multiplets

  16. 1H-NMR and photochemically-induced dynamic nuclear polarization studies on bovine pancreatic phospholipase A2

    NARCIS (Netherlands)

    Egmond, M.R.; Slotboom, A.J.; Haas, G.H. de; Dijkstra, Klaas; Kaptein, R.

    1980-01-01

    Proton-NMR resonances of trytophan 3 and tyrosine 69 in bovine pancreatic phospholipase A2, its pro-enzyme and in Ala1-transaminated protein were assigned using photochemically-induced dynamic nuclear polarization (photo-CIDNP) as such or in combination with spin-echo measurements. In addition

  17. Angular distribution coefficients for γ-ray polarization produced in polarized capture reactions

    International Nuclear Information System (INIS)

    Wulf, E.A.; Guillemette, J.; Weller, H.R.; Seyler, R.G.

    1999-01-01

    The previous publications have dealt with the angular momentum formalism of both linear and circularly polarized photons in (γ, x) reactions on both polarized and unpolarized targets, and the inverse (capture) reactions initiated by polarized beams. In the present work, utilizing the general formalism of Welton, the authors deal with the linear polarization of the γ-rays which are produced in capture reactions on unpolarized targets, including the possibility of having incident polarized spin 1/2 projectiles. These capture reactions are denoted by a(rvec x, rvec L)c, where rvec x is the incident polarized spin 1/2 projectile and rvec L represents the outgoing polarized γ-ray. They present here the formalism in a convenient form, display a sample table of coefficients, and illustrate its use by means of several examples. A FORTRAN code will be made available for generating similar coefficients for other reactions

  18. Asymmetry measurements in nucleon--nucleon scattering with polarized beams and targets at ZGS to Fermilab energies

    International Nuclear Information System (INIS)

    Yakosawa, A.

    1977-01-01

    Results of various asymmetry measurements in nucleon-nucleon scattering with polarized beams and targets at ZGS energies are presented. A possible direct-channel resonance in the pp system is discussed. Most of the discussion above ZGS energies are aimed at future measurements

  19. Towards polarization measurements of laser-accelerated helium-3 ions

    Energy Technology Data Exchange (ETDEWEB)

    Engin, Ilhan

    2015-08-28

    In the framework of this thesis, preparatory investigations for the spin-polarization measurement of {sup 3}He ions from laser-induced plasmas have been performed. Therefore, experiments aiming at an efficient laser-induced ion acceleration out of a {sup 4}He gas target were carried out at two high-intensity laser facilities: the Arcturus laser at Heinrich-Heine-Universitaet Duesseldorf as well as PHELIX at GSI Darmstadt. The scientific goal of both experiments was to investigate the ion-acceleration process in underdense plasmas by measuring the ion energy spectra and the angular distribution of the ion signal around the gas-jet target. Laser-accelerated MeV-He-ions could successfully be detected. The main acceleration direction at large angles with regard to the laser propagation direction was determined. In a second step, unpolarized {sup 3}He gas was attached in order to cross-check the experimental results with those of {sup 4}He. With the help of the achieved ion yield data, the expected rates of the fusion reaction D({sup 3}He,p){sup 4}He in the polarized case have been estimated: the information regarding the fusion proton yield from this nuclear reaction allows an experimentally based estimation for future experiments with pre-polarized {sup 3}He gas as plasma target. The experimental data is in line with supporting Particle-in-Cell (PIC) simulations performed on the Juelich supercomputers. For this purpose, the simulated target was defined as a neutral gas. The use of pre-polarized {sup 3}He gas demands a special preparation of a polarized {sup 3}He target for laser-acceleration experiments. This layout includes an (external) homogeneous magnetic holding field (field strength of ∝1.4 mT) for storing the pre-polarized gas for long time durations inside the PHELIX target chamber. For this purpose, a precise Halbach array consisting of horizontally arranged rings with built-in permanent magnets had to be designed, optimized, and constructed to deliver high

  20. Nuclear and radiation safety assurance federal target programme management system

    International Nuclear Information System (INIS)

    Kryukov, O.V.; Vasil'ev, V.A.; Nikishin, D.A.; Linge, I.I.; Obodinskij, A.N.

    2012-01-01

    The Federal Program Nuclear and Radiation Safety Assurance for 2008-2015 is presented. Specifics of Federal target program management as well as changes to program management are discussed. Data on evaluation of management effectiveness is given. Further efforts to resolve the nuclear legacy problem in Russia are also presented [ru

  1. Molecular frame photoemission: a probe of electronic/nuclear photo-dynamics and polarization state of the ionizing light

    International Nuclear Information System (INIS)

    Veyrinas, Kevin

    2015-01-01

    This is thesis is dedicated to the study and the use of the remarkable properties of the molecular frame photoelectron angular distribution (MFPAD). This observable is a very sensitive probe of both the photoionization (PI) processes in small molecules, through the determination of the magnitudes and relative phases of the dipole matrix elements, and the polarization state of the ionizing light, which is entirely encoded in the MFPAD in terms of the Stokes parameters (s1, s2, s3). MFPAD measurements take advantage of dissociative photoionization (DPI) processes by combining an electron-ion 3D momentum spectroscopy technique with the use of different radiation facilities: SOLEIL synchrotron (DESIRS and PLEIADES beamlines) and the XUV PLFA beamline (SLIC, LIDyL Attophysics group, CEA Saclay) based on the interaction of a strong laser field with a gaseous target called high harmonic generation (HHG). The first part of the thesis is devoted to the complete characterization of the polarization state of an incoming radiation. In this context, an original 'molecular polarimetry' method is introduced and demonstrated by comparison with a VUV optical polarimeter available on the DESIRS beamline. Using this method to determine the full polarization ellipse of HHG radiation generated in different conditions on the XUV PLFA facility leads to original results that include the challenging disentanglement of the circular and unpolarized components of the studied radiation. The second part deals with the study of DPI of the H 2 , D 2 and HD molecules induced by circularly polarized light at resonance with the doubly excited states Q1 and Q2. In this energy region (30-35 eV) where direct ionization, autoionization and dissociation compete on a femtosecond timescale, the photonic excitation gives rise to complex ultrafast electronic and nuclear coupled dynamics. The remarkable asymmetries observed in the circular dichroism in the molecular frame, compared to quantum

  2. Studies of nuclear processes

    International Nuclear Information System (INIS)

    Ludwig, E.J.

    1993-01-01

    Results for the period 1 Sep 92 through 31 Aug 93 are presented in nearly a hundred brief papers, some of which present new but preliminary data. Activities reported may be grouped as follows: Fundamental symmetries in the nucleus (parity-mixing measurements, time reversal invariance measurements, signatures of quantum chaos in nuclei), Internucleon reactions (neutron -- proton interactions, the neutron -- neutron scattering length, reactions between deuterons and very light nuclei), Dynamics of very light nuclei (measurements of D states of very light nuclei by transfer reactions, nuclear reactions between very light nuclei, radiative capture reactions with polarized sources), The many-nucleon problem (nuclear astrophysics, high-spin spectroscopy and superdeformation, the nuclear mean field: Dispersive relations and nucleon scattering, configuration mixing in 56 Co and 46 Sc using (d,α) reactions, radiative capture studies, high energy resolution resonance studies at 100--400 keV, nuclear data evaluation for A=3--20), Nuclear instruments and methods (FN tandem accelerator operation, KN accelerator operation and maintenance, atomic beam polarized ion source, development of techniques for determining the concentration of SF 6 in the accelerator insulating gas mixture, production of beams and targets, detector systems, updating of TeX, Psprint, and associated programs on the VAX cluster), and Educational Activities

  3. The influence of target properties on nuclear spectroscopy measurements

    International Nuclear Information System (INIS)

    Dionisio, J.S.; Vieu, C.; Lagrange, J.M.; Pautrat, M.; Vanhorenbeeck, J.; Passoja, A.

    1988-01-01

    A broad review of different kinds of in-beam nuclear spectroscopy measurements particularly influenced by the target properties is outlined. To illustrate such an influence a few typical examples of in-beam electron and gamma-ray spectroscopy measurements, performed at the Orsay MP Tandem accelerator, are reported. In particular several applications of the recoil ion catcher method in the study of short-lived nuclear isomers (with half-lives between ten and few hundred nanoseconds) are briefly described. This method is operated mostly with a pulsed heavy ion beam, bombarding a thin self-supported target but avoiding hitting the catcher foil. Moreover, the time of flight filtering properties of this experimental device is improved by a fast detection of compound nucleus deexcitation (performed with an array of several BaF 2 crystals). This kind of measurement shows clearly the importance of the target qualities as well as the need of good focusing properties and time structure for the accelerated particle beam. Finally, the required characteristics of the targets and recoil stopper foils needed for these measurements (and similar ones performed with the recoil ion shadow method) are analyzed in detail for a few typical experimental arrangements. (author). Abstract only

  4. Fundamental research with polarized slow neutrons

    International Nuclear Information System (INIS)

    Krupchitsky, P.A.

    1987-01-01

    In the last twenty years polarized beams of slow neutrons have been used effectively in fundamental research in nuclear physics. This book gives a thorough introduction to these experimental methods including the most recent techniques of generating and analyzing polarized neutron beams. It clearly shows the close relationship between elementary particle physics and nuclear physics. The book not only addresses specialists but also those interested in the foundations of elementary particle and nuclear physics. With 42 figs

  5. Single-spin asymmetry in electro-production of π+ π- pairs from a transversely polarized proton target at the HERMES experiment

    International Nuclear Information System (INIS)

    Lu, Xiao-Rui

    2008-09-01

    In this thesis, the measurement of an azimuthal amplitude of the asymmetry in the lepto-production of π + π - pairs at the HERMES experiment is reported. The experiment was carried out at DESY in Germany, utilizing the longitudinally polarized 27.6 GeV electron/positron beam of the HERA storage ring in combination with a longitudinally or transversely polarized gaseous target internal to the beam pipe. For the present measurement, the transversely polarized proton target was used and the beam polarization was averaged out in order to measure the asymmetry A UT . A Ring Imaging Cerenkov (RICH) detector allows the precise identification of pions, kaons and protons over essentially the entire momentum range of the experiment. The asymmetry A UT for π + π - pair production was measured for the first time in the world by HERMES. The amplitudes are extracted as functions of different kinematic variables, which can facilitate the comparison with the theoretical models and the extraction of transversity with combination of the measurement of the dihadron fragmentation function. (orig.)

  6. Uses of laser optical pumping to produce polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1983-01-01

    Laser optical pumping can be used to produce polarized alkali atom beams or polarized alkali vapor targets. Polarized alkali atom beams can be converted into polarized alkali ion beams, and polarized alkali vapor targets can be used to produce polarized H - or 3 He - ion beams. In this paper the authors discuss how the polarized alkali atom beams and polarized alkali vapor targets are used to produce polarized ion beams with emphasis on the production of polarized negative ion beams

  7. A review of polarized ion sources

    International Nuclear Information System (INIS)

    Schmor, P.W.

    1995-06-01

    The two main types of polarized ion sources in use on accelerators today are the Atomic Beam Polarized Ion Source (ABIS) source and the Optically Pumped Polarized Ion Source (OPPIS). Both types can provide beams of nuclearly polarized light ions which are either positively or negatively charged. Heavy ion polarized ion sources for accelerators are being developed. (author). 35 refs., 1 tab

  8. Polarization phenomena in heavy-ion reactions

    International Nuclear Information System (INIS)

    Sugimoto, K.; Ishihara, M.; Takahashi, N.

    1984-01-01

    This chapter presents a few key experiments which provide direct evidence of the polarization phenomena in heavy-ion reactions. The theory of polarization observables and measurements is given with the necessary formulae. The polarization phenomena is described and studies of product nuclear polarization in heavy-ion reactions are discussed. Studies of heavy-ion reactions induced by polarized beams are examined

  9. Radiological Protection and Nuclear Engineering Studies in Multi-MW Target Systems

    Science.gov (United States)

    Luis, Raul Fernandes

    Several innovative projects involving nuclear technology have emerged around the world in recent years, for applications such as spallation neutron sources, accelerator-driven systems for the transmutation of nuclear waste and radioactive ion beam (RIB) production. While the available neutron Wuxes from nuclear reactors did not increase substantially in intensity over the past three decades, the intensities of neutron sources produced in spallation targets have increased steadily, and should continue to do so during the 21st century. Innovative projects like ESS, MYRRHA and EURISOL lie at the forefront of the ongoing pursuit for increasingly bright neutron sources; driven by proton beams with energies up to 2 GeV and intensities up to several mA, the construction of their proposed facilities involves complex Nuclear Technology and Radiological Protection design studies executed by multidisciplinary teams of scientists and engineers from diUerent branches of Science. The intense neutron Wuxes foreseen for those facilities can be used in several scientiVc research Velds, such as Nuclear Physics and Astrophysics, Medicine and Materials Science. In this work, the target systems of two facilitites for the production of RIBs using the Isotope Separation On-Line (ISOL) method were studied in detail: ISOLDE, operating at CERN since 1967, and EURISOL, the next-generation ISOL facility to be built in Europe. For the EURISOL multi-MW target station, a detailed study of Radiological Protection was carried out using the Monte Carlo code FLUKA. Simulations were done to assess neutron Wuences, Vssion rates, ambient dose equivalent rates during operation and after shutdown and the production of radioactive nuclei in the targets and surrounding materials. DiUerent materials were discussed for diUerent components of the target system, aiming at improving its neutronics performance while keeping the residual activities resulting from material activation as low as possible. The second

  10. Study on polarized optical flow algorithm for imaging bionic polarization navigation micro sensor

    Science.gov (United States)

    Guan, Le; Liu, Sheng; Li, Shi-qi; Lin, Wei; Zhai, Li-yuan; Chu, Jin-kui

    2018-05-01

    At present, both the point source and the imaging polarization navigation devices only can output the angle information, which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly. Optical flow is an image-based method for calculating the velocity of pixel point movement in an image. However, for ordinary optical flow, the difference in pixel value as well as the calculation accuracy can be reduced in weak light. Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection. In this paper, combining the polarization imaging technique with the traditional optical flow algorithm, a polarization optical flow algorithm is proposed, and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors. This research lays the foundation for day and night all-weather polarization navigation applications in future.

  11. A dual-optically-pumped polarized negative deuterium ion source

    International Nuclear Information System (INIS)

    Kinsho, M.; Mori, Y.; Ikegami, K.; Takagi, A.

    1994-01-01

    An optically pumped polarized H - source (OPPIS), which is based on the charge exchange between H + ions and electron-spin-polarized alkali atoms has been developed at KEK. Just by applying this scheme to a deuteron beam, it is difficult to obtain a highly vector polarized deuteron beam. To obtain highly vector polarized D - ions, we have developed a 'dual optical pumping type' of polarized D - source. With this scheme, a 100% vector nuclear-spin polarization for D - ions is possible in principle. In a preliminary experiment, a 60% of vector nuclear-spin polarized D - ions was obtained. (author)

  12. Seismic effects on the reliability of polar cranes for nuclear power plants

    International Nuclear Information System (INIS)

    Kaiser, W.; Friedrich, H.; Knoefel, L.

    1985-01-01

    In order to meet the requirements of nuclear safety reactor components have to be designed aseismically. A model for studying simulated seismic effects on the reliability of containment equipment polar cranes is presented. Based on this model vertical and horizontal motions of the crane are investigated. Emphasis is laid on non-linearities caused by malfunctions such as lift of the crane from the runaway, lift of the trolley from the beams, slackening of the ropes as well as sliding of blocked track wheels. Seismic excitations are simulated by computer produced accelerograms

  13. Production of spin-polarized unstable nuclei by using polarized electron capture process

    International Nuclear Information System (INIS)

    Shimizu, S.

    1998-01-01

    Measurements of emitted radiation from spin polarized nuclei are used to get information on electromagnetic moment of ground state unstable nuclei together with spin or parity state of excited states of their decayed (daughter) nuclei. These data are known to be useful for experimental investigation into the structure of unstable nuclei far from the stability line. The present study aims to establish a general method applicable to 11 Be and 16 N nuclei. To produce spin polarization, a new method in which the electron spin polarization of Rb is firstly produced by laser pumping, then the electron is transferred to the unstable nuclear beam (RNB) when they passes through the Rb vapor is proposed. Finally the polarized RNB will be implanted into superfluid helium to remain with a long spin-relaxation time. Future experimental set up for the above measurement adopted in the available radioactive nuclear beam facilities is briefly described. (Ohno, S.)

  14. Notes on T-invariance and polarization effects in the elastic scattering of a particle with spin 1/2 on the unpolarized target

    International Nuclear Information System (INIS)

    Lyuboshits, V.V.; Lyuboshits, V.L.

    1998-01-01

    In the frames of T-invariance the analysis of the general dependence of the elastic scattering effective cross section of a particle with spin 1/2 on the unpolarized target with arbitrary spin upon the initial and final polarizations of the particle has been performed. On the base of the T-symmetry of the differential scattering cross section only, without traditional consideration of the spin structure of scattering amplitudes, a simple proof of the Wolfenstein theorem is obtained (this theorem states that the degree of transverse polarization, arising in the elastic scattering of an unpolarized particle on the unpolarized target, is equal to the coefficient of left-right asymmetry in the elastic scattering of the same but transversally polarized particle on the same target). Meantime, it is ascertained that in the case of P-parity violation (conserving T-invariance) there exists no analogous universal relation between the degree of longitudinal polarization and the coefficient of P-odd spin asymmetry in the scattering of longitudinally polarized particles. It is shown, further, that under T-invariance the amplitude and cross section of 'backward' scattering of neutrons on zero-spin nuclei do not depend on spin, and the observation of such a dependence would testify unambiguously to the T-invariance violation. However, according to the fulfilled estimates, the T-noninvariant spin asymmetry in the 'backward' scattering is very small (about 10 -8 - 10 -7 )

  15. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1995--31 August 1996

    International Nuclear Information System (INIS)

    Ludwig, E.J.

    1996-01-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers parts of the second and third year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas: precision test of parity-invariance violation in resonance neutron scattering at LANSCE/LANL; parity violation measurements using charged-particle resonances in A = 20--40 targets and the A = 4 system at TUNL; chaotic behavior in the nuclei 30 P and 34 Cl from studies of eigenvalue fluctuations in nuclear level schemes; search for anomalies in the level density (pairing phase transition) in 1f-2p shell nuclei using GEANIE at LANSCE/LANL; parity-conserving time-reversal noninvariance tests using 166 Ho resonances at Geel, ORELA, or LANSCE/LANL; nuclear astrophysics; few-body nuclear systems; Nuclear Data evaluation for A = 3--20 for which TUNL is now the international center. Developments in technology and instrumentation are vital to the research and training program. Innovative work was continued in: polarized beam development; polarized target development; designing new cryogenic systems; designing new detectors; improving high-resolution beams for the KN and FN accelerators; development of an unpolarized Low-Energy Beam Facility for radiative capture studies of astrophysical interest. Preliminary research summaries are presented

  16. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1995--31 August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, E.J.

    1996-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers parts of the second and third year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas: precision test of parity-invariance violation in resonance neutron scattering at LANSCE/LANL; parity violation measurements using charged-particle resonances in A = 20--40 targets and the A = 4 system at TUNL; chaotic behavior in the nuclei {sup 30}P and {sup 34}Cl from studies of eigenvalue fluctuations in nuclear level schemes; search for anomalies in the level density (pairing phase transition) in 1f-2p shell nuclei using GEANIE at LANSCE/LANL; parity-conserving time-reversal noninvariance tests using {sup 166}Ho resonances at Geel, ORELA, or LANSCE/LANL; nuclear astrophysics; few-body nuclear systems; Nuclear Data evaluation for A = 3--20 for which TUNL is now the international center. Developments in technology and instrumentation are vital to the research and training program. Innovative work was continued in: polarized beam development; polarized target development; designing new cryogenic systems; designing new detectors; improving high-resolution beams for the KN and FN accelerators; development of an unpolarized Low-Energy Beam Facility for radiative capture studies of astrophysical interest. Preliminary research summaries are presented.

  17. $\\Lambda$ and $\\bar{\\Lambda}$ polarization at COMPASS

    CERN Document Server

    Kang, Donghee

    2010-01-01

    At the COMPASS experiment $\\Lambda$ and $\\bar{\\Lambda}$ particles are produced with high statistics in deep inelastic scattering (DIS) processes of 160 GeV/c polarized muons. Since both, beam and target, are polarized, various studies on the $\\Lambda$ polarization are possible. We present results on the longitudinal polarization transfer from muons to $\\Lambda$ hyperons produced by scattering off an unpolarized isoscalar target and preliminary results on the transverse $\\Lambda$ polarization with a transversely polarized proton target. The $\\Lambda$ and $\\bar{\\Lambda}$ polarization can be studied by measuring the acceptance corrected angular distribution of its decay products. The longitudinal spin transfers to $\\Lambda$ and $\\bar{\\Lambda}$ produced in the current fragmentation region exhibit different behaviours as a function of $x_{Bj}$ and $x_{F}$. The $x_{Bj}$ and $x_{F}$ dependences of $\\Lambda$ polarization are compatible with zero, while $\\bar{\\Lambda}$ polarization tends to increase with $x_{F}$. Info...

  18. Gas, Liquid and Molten Targets at Cyclotron Beams: Target Systems and Related Nuclear Database

    Energy Technology Data Exchange (ETDEWEB)

    Ditrói, F.; Tárkányi, F.; Takács, S. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary)

    2009-07-01

    In a systematic study our group worked on measurement of activation data of charged particle induced nuclear reaction possible involved in the production of radioisotopes for medical use. We have investigated the cross section and yield data of proton, deuteron helium-3 and alpha particle induced reactions on target materials for isotope productions relevant for medical applications as well as nuclear reactions on different structural material applied in construction of different target units. The acquired information are used or in the future can be used to determine the type of the construction materials optimal for building a certain target unit to be able to produce high specific activity and high quality radioactive isotope. In this work we have investigated different materials in activation point of view. Also several materials and reactions were studied for monitoring purposes. Use of thin metallic foils is a simple method to determine the parameters of the charged particle beams applied for isotope production. Using this method one can determine the energy and intensity of the bombarding beam and in certain cases the distribution or the profile of the bombarding beam. (author)

  19. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    International Nuclear Information System (INIS)

    Clarkson, R.B.; Odintsov, B.M.; Ceroke, P.J.; Ardenkjaer-Larsen, J.H.; Fruianu, M.; Belford, R.L.

    1998-01-01

    Carbon chars have been synthesized in our laboratory from a variety of starting materials, by means of a highly controlled pyrolysis technique. These chars exhibit electron paramagnetic resonance (EPR) line shapes which change with the local oxygen concentration in a reproducible and stable fashion; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the 1 H nuclear spin population in conjunction with electron Zeeman pumping. Low-frequency EPR, DNP and DNP-enhanced MRI all show promise as oximetry methods when used with carbon chars. (author)

  20. Prospects for sub-micron solid state nuclear magnetic resonance imaging with low-temperature dynamic nuclear polarization.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2010-06-14

    We evaluate the feasibility of (1)H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol-water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 microL sample yields a (1)H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that (1)H NMR signals from 1 microm(3) voxel volumes should be readily detectable, and voxels as small as 0.03 microm(3) may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz (1)H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension.

  1. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    Science.gov (United States)

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-07-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.

  2. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  3. Target-fueled nuclear reactor for medical isotope production

    Science.gov (United States)

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  4. Polarized semi-inclusive deep-inelastic scattering on transversely and longitudinally polarized nucleons at HERMES

    International Nuclear Information System (INIS)

    Hommes, B.

    2005-01-01

    The HERMES experiment has measured double spin asymmetries in the cross section for deep-inelastic scattering of longitudinal polarized positrons off longitudinal polarized hydrogen and deuterium targets. From these asymmetries, based on inclusive and semi-inclusive measurements, polarized quark distributions were extracted as a function of x. Single-spin azimuthal asymmetries in semi-inclusive pion production were measured by the HERMES experiment for the first time, with a transversely polarized hydrogen target. Two different sine-dependencies were extracted which can be related to the quark transversity distribution h q 1 (x) and the Sivers function (Author)

  5. Study of kinetics and mechanism of diazo compound reactions using nuclear chemical polarization

    International Nuclear Information System (INIS)

    Gragerov, I.P.; Levit, A.F.; Kiprianova, L.A.; Buchachenko, A.L.; Sterleva, T.G.

    1975-01-01

    It has been established that at the rate-determining steps of the radical reactions in which aniline interacts with isoamyl nitrite and substituted diazo salts interact with sodium methylate, tertiary fatty amines, or phosphinic acid, no transfer of a single electron occurs. The processes of single electron transfer do not seem to play a decisive role in the kinetics of most transformations of diazo compounds. Chemical nuclear polarization is shown to be suitable for kinetic studies of fast radical processes

  6. Single and double spin asymmetries for deeply virtual Compton scattering measured with CLAS and a longitudinally polarized proton target

    Science.gov (United States)

    Pisano, S.; Biselli, A.; Niccolai, S.; Seder, E.; Guidal, M.; Mirazita, M.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bosted, P.; Briscoe, B.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crabb, D. G.; Crede, V.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garçon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, X.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacCormick, M.; MacGregor, I. J. D.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Munoz Camacho, C.; Nadel-Turonski, P.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Phelps, W.; Phillips, J. J.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Skorodumina, I.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Turisini, M.; Ungaro, M.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-03-01

    Single-beam, single-target, and double spin asymmetries for hard exclusive electroproduction of a photon on the proton e →p →→e'p'γ are presented. The data were taken at Jefferson Lab using the CEBAF large acceptance spectrometer and a longitudinally polarized NH3 14 target. The three asymmetries were measured in 165 four-dimensional kinematic bins, covering the widest kinematic range ever explored simultaneously for beam and target-polarization observables in the valence quark region. The kinematic dependences of the obtained asymmetries are discussed and compared to the predictions of models of generalized parton distributions. The measurement of three DVCS spin observables at the same kinematic points allows a quasi-model-independent extraction of the imaginary parts of the H and H ˜ Compton form factors, which give insight into the electric and axial charge distributions of valence quarks in the proton.

  7. Single and double spin asymmetries for deeply virtual Compton scattering measured with CLAS and a longitudinally polarized proton target

    Energy Technology Data Exchange (ETDEWEB)

    Pisano, S.; Biselli, A.; Niccolai, S.; Seder, E.; Guidal, M.; Mirazita, M.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bosted, P.; Briscoe, B.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crabb, D. G.; Crede, V.; D' Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garcon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, X.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacCormick, M.; MacGregor, Ian J. D.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Munoz Camacho, C.; Nadel-Turonski, P.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Phelps, W.; Phillips, J. J.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatie, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Skorodumina, I.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Tian, Ye; Tkachenko, S.; Turisini, M.; Ungaro, M.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2015-03-19

    Single-beam, single-target, and double-spin asymmetries for hard exclusive photon production on the proton e→p→e'p'γ are presented. The data were taken at Jefferson Lab using the CLAS detector and a longitudinally polarized 14NH3 target. The three asymmetries were measured in 165 4-dimensional kinematic bins, covering the widest kinematic range ever explored simultaneously for beam and target-polarization observables in the valence quark region. The kinematic dependences of the obtained asymmetries are discussed and compared to the predictions of models of Generalized Parton Distributions. As a result, the measurement of three DVCS spin observables at the same kinematic points allows a quasi-model-independent extraction of the imaginary parts of the H and H~ Compton Form Factors, which give insight into the electric and axial charge distributions of valence quarks in the proton.

  8. Theory of Inclusive Scattering of Polarized Electrons by Polarized $^{3}$He and the Neutron Form Factors

    OpenAIRE

    Atti, C. Ciofi degli; Pace, E.; Salmé, G.

    1993-01-01

    The theory of inclusive lepton scattering of polarized leptons by polarized J = 1/2 hadrons is presented and the origin of different expressions for the polarized nuclear response function appearing in the literature is explained. The sensitivity of the longitudinal asymmetry upon the neutron form factors is investigated.

  9. Polarized quark distributions in bound nucleon and polarized EMC effect in Thermodynamical Bag Model

    Energy Technology Data Exchange (ETDEWEB)

    Ganesamurthy, Kuppusamy, E-mail: udckgm@sify.co [Research Department of Physics, Urumu Dhanalakshmi College, Trichy 620019 (India); Sambasivam, Raghavan, E-mail: udcsam@sify.co [Research Department of Physics, Urumu Dhanalakshmi College, Trichy 620019 (India)

    2011-04-15

    The polarized parton distribution functions (PDFs) and nuclear structure functions are evaluated by the phenomenological Thermodynamical Bag Model for nuclear media {sup 7}Li and {sup 27}Al. The Fermi statistical distribution function which includes the spin degree of freedom is used in this statistical model. We predict a sizeable polarized EMC effect. The results of quark spin sum and axial coupling constant of bound nucleons are compared with theoretical predictions of modified Nambu-Jona-Lasinio (NJL) model by Bentz et al.

  10. Chemical nuclear polarization effects in photoreactions of 1,4-diazabicyclo[2.2.2]octane with carbonyl-containing compounds

    Science.gov (United States)

    Porkhun, V. I.; Rakhimov, A. I.

    2012-11-01

    Elementary acts of the photoreaction of diamine with 2,6-diphenyl- p-benzoquinone are determined from the effects of chemical nuclear polarization effects. Hydrogen atom transfer is shown to occur in two stages with the participation of a radical ion pair.

  11. ANP32B is a nuclear target of henipavirus M proteins.

    Directory of Open Access Journals (Sweden)

    Anja Bauer

    Full Text Available Membrane envelopment and budding of negative strand RNA viruses (NSVs is mainly driven by viral matrix proteins (M. In addition, several M proteins are also known to be involved in host cell manipulation. Knowledge about the cellular targets and detailed molecular mechanisms, however, is poor for many M proteins. For instance, Nipah Virus (NiV M protein trafficking through the nucleus is essential for virus release, but nuclear targets of NiV M remain unknown. To identify cellular interactors of henipavirus M proteins, tagged Hendra Virus (HeV M proteins were expressed and M-containing protein complexes were isolated and analysed. Presence of acidic leucine-rich nuclear phosphoprotein 32 family member B (ANP32B in the complex suggested that this protein represents a direct or indirect interactor of the viral matrix protein. Over-expression of ANP32B led to specific nuclear accumulation of HeV M, providing a functional link between ANP32B and M protein. ANP32B-dependent nuclear accumulation was observed after plasmid-driven expression of HeV and NiV matrix proteins and also in NiV infected cells. The latter indicated that an interaction of henipavirus M protein with ANP32B also occurs in the context of virus replication. From these data we conclude that ANP32B is a nuclear target of henipavirus M that may contribute to virus replication. Potential effects of ANP32B on HeV nuclear shuttling and host cell manipulation by HeV M affecting ANP32B functions in host cell survival and gene expression regulation are discussed.

  12. A description of a wide beam saddle field ion source used for nuclear target applications

    International Nuclear Information System (INIS)

    Greene, J.P.; Schiel, S.L.; Thomas, G.E.

    1997-01-01

    A description is given of a new, wide beam saddle field sputter source used for the preparation of targets applied in nuclear physics experiments. The ion source characteristics are presented and compared with published results obtained with other sources. Deposition rates acquired utilizing this source are given for a variety of target materials encountered in nuclear target production. New applications involving target thinning and ion milling are discussed

  13. Relaxation of polarized nuclei in superconducting rhodium

    DEFF Research Database (Denmark)

    Knuuttila, T.A.; Tuoriniemi, J.T.; Lefmann, K.

    2000-01-01

    Nuclear spin lattice relaxation rates were measured in normal and superconducting (sc) rhodium with nuclear polarizations up to p = 0.55. This was sufficient to influence the sc state of Rh, whose T, and B-c, are exceptionally low. Because B-c ... is unchanged, the nuclear spin entropy was fully sustained across the sc transition. The relaxation in the sc state was slower at all temperatures without the coherence enhancement close to T-c. Nonzero nuclear polarization strongly reduced the difference between the relaxation rates in the sc and normal...

  14. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

    International Nuclear Information System (INIS)

    Chipps, K.A.; Greife, U.; Bardayan, D.W.; Blackmon, J.C.; Kontos, A.; Linhardt, L.E.; Matos, M.; Pain, S.D.; Pittman, S.T.; Sachs, A.; Schatz, H.; Schmitt, K.T.; Smith, M.S.; Thompson, P.

    2014-01-01

    New radioactive ion beam (RIB) facilities will push further away from stability and enable the next generation of nuclear physics experiments. Of great importance to the future of RIB physics are scattering, transfer, and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure. Targets must also accommodate the use of large area silicon detector arrays, high-efficiency gamma arrays, and heavy ion detector systems to efficiently measure the reaction products. To address these issues, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration has designed, built, and characterized a supersonic gas jet target, capable of providing gas areal densities on par with commonly used solid targets within a region of a few millimeters diameter. Densities of over 5×10 18 atoms/cm 2 of helium have been achieved, making the JENSA gas jet target the most dense helium jet achieved so far

  15. ARGONNE/ NOVOSIBIRSK: Storing polarized deuterons

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Promising new results come from a collaboration between the Institute of Physics, Novosibirsk, and the US Argonne Laboratory, initiated in 1988 to look at the possibilities for using polarized (spin oriented) gas targets in high current electron storage rings, the object being to maximize target polarization levels

  16. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  17. Recent advance in polar seismology: Global impact of the International Polar Year

    Science.gov (United States)

    Kanao, Masaki; Zhao, Dapeng; Wiens, Douglas A.; Stutzmann, Éléonore

    2015-03-01

    The most exciting initiative for the recent polar studies was the International Polar Year (IPY) in 2007-2008. The IPY has witnessed a growing community of seismologists who have made considerable efforts to acquire high-quality data in polar regions. It also provided an excellent opportunity to make significant advances in seismic instrumentation of the polar regions to achieve scientific targets involving global issues. Taking these aspects into account, we organize and publish a special issue in Polar Science on the recent advance in polar seismology and cryoseismology as fruitful achievements of the IPY.

  18. Nuclear clustering and the electron screening puzzle

    Science.gov (United States)

    Bertulani, C. A.; Spitaleri, C.

    2018-01-01

    Electron screening changes appreciably the magnitude of astrophysical nuclear reactions within stars. This effect is also observed in laboratory experiments on Earth, where atomic electrons are present in the nuclear targets. Theoretical models were developed over the past 30 years and experimental measurements have been carried out to study electron screening in thermonuclear reactions. None of the theoretical models were able to explain the high values of the experimentally determined screening potentials. We explore the possibility that the "electron screening puzzle" is due to nuclear clusterization and polarization e_ects in the fusion reactions. We will discuss the supporting arguments for this scenario.

  19. One of the polarized targets that was developed for the S134 experiment

    CERN Multimedia

    1974-01-01

    The target is polarized dynamically as usual in a 25 kg homogeneous magnetic field. It is then cooled to some 50 millidegrees and moved into the large gap of the ETH spectrometer magnet, where the field is 10 kg, with a poorer homogeneity. It stands in front of the beam, in the centre of the detection system, for studying all the spin parameters in the reaction pi-p - K0LAMBDA0 at 5 GeV/c, with an available solid angle of nearly 4 p.

  20. THz-waves channeling in a monolithic saddle-coil for Dynamic Nuclear Polarization enhanced NMR

    Science.gov (United States)

    Macor, A.; de Rijk, E.; Annino, G.; Alberti, S.; Ansermet, J.-Ph.

    2011-10-01

    A saddle coil manufactured by electric discharge machining (EDM) from a solid piece of copper has recently been realized at EPFL for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance experiments (DNP-NMR) at 9.4 T. The corresponding electromagnetic behavior of radio-frequency (400 MHz) and THz (263 GHz) waves were studied by numerical simulation in various measurement configurations. Moreover, we present an experimental method by which the results of the THz-wave numerical modeling are validated. On the basis of the good agreement between numerical and experimental results, we conducted by numerical simulation a systematic analysis on the influence of the coil geometry and of the sample properties on the THz-wave field, which is crucial in view of the optimization of DNP-NMR in solids.

  1. Optically pumped polarized H- ion source

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1986-01-01

    The current status and future prospects for the optically pumped polarized H - ion source are discussed. At the present time H - ion currents of 60 μA and with a polarization of 65% have been produced. The ion current and polarization can be increased significantly if the optically pumped Na charge exchange target density and polarization can be increased. Studies of wall surfaces that permit many bounces before depolarizing the Na electron spin and studies of radiation trapping in optically pumped Na indicate that the Na target density and polarization can be increased substantially. 27 refs., 6 figs., 2 tabs

  2. Nuclear Data Target Accuracy Requirements For MA Burners

    International Nuclear Information System (INIS)

    Palmiotti, G.; Salvatores, M.

    2011-01-01

    A nuclear data target accuracy assessment has been carried out for two types of transmuters: a critical sodium fast reactor(SFR) and an accelerator driven system (ADMAB). Results are provided for a 7 group energy structure. Considerations about fuel cycle parameters uncertainties illustrate their dependence from the isotope final densities at end of cycle.

  3. The Nuclear Spin Nanomagnet

    OpenAIRE

    Korenev, V. L.

    2007-01-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei brings the optical transition energy into resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of...

  4. Techniques in polarization physics

    International Nuclear Information System (INIS)

    Clausnitzer, G.

    1974-01-01

    A review of the current status of the technical tools necessary to perform different kinds of polarization experiments is presented, and the absolute and relative accuracy with which data can be obtained is discussed. A description of polarized targets and sources of polarized fast neutrons is included. Applications of polarization techniques to other fields is mentioned briefly. (14 figures, 3 tables, 110 references) (U.S.)

  5. Scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Schweizer, J.

    2007-01-01

    In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)

  6. The influence of target and sample properties on nuclear data measurements

    International Nuclear Information System (INIS)

    Okamoto, K.

    1988-10-01

    The IAEA Advisory Group Meeting (AGM) on The Influence of Target and Sample Properties on Nuclear Data Measurements was held at the Gesellschaft fuer Schwerionenforschung mbH, Darmstadt, Federal Republic of Germany, during the week 5-9 September 1988. The AGM (hereafter ''Meeting'') was held concurrently during the 14th World Conference (hereafter ''Conference'') of the International Nuclear Target Development Society (INTDS) in co-operation with the IAEA-International Nuclear Data Committee (INDC). The Meeting's special sessions (5th, 7th and 9th September 1988) were held to review and prepare the summary of the papers presented to the Conference and recommendations on the objectives of the AGM. The contributed papers to the Conference are to be published in the Journal Nuclear Instruments and Methods in Physical Research. The contributed notes to the Meeting's special sessions together with the summary of the contributed papers by the Agency's invitees and the discussions during the Meeting's special sessions and the recommendations are issued in this report. (author). Refs, figs and tabs

  7. The Jefferson Lab Frozen Spin Target

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Keith, James Brock, Christopher Carlin, Sara Comer, David Kashy, Josephine McAndrew, David Meekins, Eugene Pasyuk, Joshua Pierce, Mikell Seely

    2012-08-01

    A frozen spin polarized target, constructed at Jefferson Lab for use inside a large acceptance spectrometer, is described. The target has been utilized for photoproduction measurements with polarized tagged photons of both longitudinal and circular polarization. Protons in TEMPO-doped butanol were dynamically polarized to approximately 90% outside the spectrometer at 5 T and 200-300 mK. Photoproduction data were acquired with the target inside the spectrometer at a frozen-spin temperature of approximately 30 mK with the polarization maintained by a thin, superconducting coil installed inside the target cryostat. A 0.56 T solenoid was used for longitudinal target polarization and a 0.50 T dipole for transverse polarization. Spin relaxation times as high as 4000 hours were observed. We also report polarization results for deuterated propanediol doped with the trityl radical OX063.

  8. COSY Juelich - a cooler synchrotron for unpolarized and polarized medium-energy studies

    International Nuclear Information System (INIS)

    Seyfarth, H.

    2001-01-01

    Full text: The Forschungszentrum Juelich (Research Center Juelich) is one of the sixteen national research institutions in the 'Hermann von Helmholtz Association of German Research Centers'. It is dedicated to fundamental and applied research and development which can be summarized under five priorities: (i) structure of matter and materials research, (ii) information technology, (iii) life sciences, (iv) environment precaution research, and (v) energy technology. As one of the institutes within (i). the Institut fur Kernphysik (Institute for Nuclear Research) operates the COSY cooler synchrotron which allows to accelerate unpolarized and polarized protons and deuterons to the maximum momentum of 3450 MeV/c (2640 MeV and 2050 MeV kinetic energy for protons and deuterons, respectively). At low energy electron cooling can be used for beam preparation, whereas stochastic cooling can be applied to the accelerated beam. In the first years of operation since 1993 the experiments have been performed with the unpolarized proton beam. Since 1997 the polarized proton beam is available with increasing intensity and a typical degree of polarization of about 75 % up to the maximum beam energy. In 2000 the first unpolarized deuteron beam could be accelerated and stored at the maximum energy. Four target places exist for the internal experiments PISA. EDDA, COSY-II, and ANKE which use the circulating beam with thin solid strip or fiber targets and gas targets. The four experiments TOF, MOMO, GEM, NESSI, and JESSICA are using external beams. The programs of the experiments JESSICA (Juelich Experimental Spallation Setup in the COSY Area), NESSI (Neutron Scintillator and Silicon), and PISA (Proton Induced Spallation) aim at the measurement of data needed or the design of the target station of the planned European Spallation neutron Source (ESS). The set-up of PISA is replacing the earlier experiment COSY-13 which successfully completed its investigations on the production of

  9. A changing world: Using nuclear techniques to investigate the impact of climate change on polar and mountainous regions

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2015-01-01

    Nuclear techniques are being used in polar and mountainous regions to study climate change and its impact on the quality of land, water and ecosystems in order to better conserve and manage these resources. Researchers from around the world will be using data from 13 benchmark sites to draw conclusions about the effects of the rapidly changing climate on the Arctic, mountains and the western part of Antarctica, which have alarmed communities, environmentalists, scientists and policy makers. Between July 2015 and July 2016 they will be using isotopic and nuclear techniques, as well as geochemical and biological analytical methods from other scientific disciplines. This will enable them to track soil and water, to monitor the movement of soil and sediment and to assess the effects of melting permafrost on the atmosphere, as well as on the land, water and fragile ecosystems of mountainous and polar regions. The measurements follow numerous on-site tests carried out since November 2014 to perfect the sampling technique.

  10. Single-spin asymmetry in electro-production of {pi}{sup +} {pi}{sup -} pairs from a transversely polarized proton target at the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiao-Rui

    2008-10-15

    In this thesis, the measurement of an azimuthal amplitude of the asymmetry in the lepto-production of {pi}{sup +}{pi}{sup -} pairs at the HERMES experiment is reported. The experiment was carried out at DESY in Germany, utilizing the longitudinally polarized 27.6 GeV electron/positron beam of the HERA storage ring in combination with a longitudinally or transversely polarized gaseous target internal to the beam pipe. For the present measurement, the transversely polarized proton target was used and the beam polarization was averaged out in order to measure the asymmetry A{sub UT}. A Ring Imaging Cerenkov (RICH) detector allows the precise identification of pions, kaons and protons over essentially the entire momentum range of the experiment. The asymmetry A{sub UT} for {pi}{sup +}{pi}{sup -} pair production was measured for the first time in the world by HERMES. The amplitudes are extracted as functions of different kinematic variables, which can facilitate the comparison with the theoretical models and the extraction of transversity with combination of the measurement of the dihadron fragmentation function. (orig.)

  11. Mutual control of X-rays and nuclear transitions

    Energy Technology Data Exchange (ETDEWEB)

    Gunst, Jonas Friedrich

    2015-12-14

    In the course of this Thesis the mutual control between X-rays and nuclear transitions is investigated theoretically. In the first Part, we study the nuclear photoexcitation with the highly brilliant and coherent X-ray free-electron lasers (XFELs). Apart from amplifying the direct resonant interaction with nuclear transitions, the super-intense XFEL can produce new states of matter like cold, high-density plasmas where secondary nuclear excitation channels may come into play, e.g., nuclear excitation by electron capture (NEEC). Our results predict that in the case of {sup 57}Fe targets secondary NEEC can be safely neglected, whereas it is surprisingly the dominating contribution (in comparison to the direct photoexcitation) for the XFEL-induced {sup 93m}Mo isomer triggering. Based on these case studies, we elaborate a general set of criteria to identify the prevailing excitation channel for a certain nuclear isotope. These criteria may be most relevant for future nuclear resonance experiments at XFEL facilities. On the opposite frontier, the interplay between single X-ray photons and nuclear transitions offer potential storage and processing applications for information science in their most compact form. In the second Part of this Thesis, we show that nuclear forward scattering off {sup 57}Fe targets can be employed to process polarization-encoded single X-rays via timed magnetic field rotations. Apart from the realization of logical gates with X-rays, the polarization encoding is used to design an X-ray quantum eraser scheme where the interference between scattering paths can be switched off and on in a controlled manner. Such setups may advance time-energy complementarity tests to so far unexplored parameter regimes, e.g., to the domain of X-ray quanta.

  12. Molecular MRI based on hyper-polarized xenon

    International Nuclear Information System (INIS)

    Tassali, Nawal

    2012-01-01

    Magnetic Resonance Imaging (MRI) has a high importance in medicine as it enables the observation of the organs inside the body without the use of radiative or invasive techniques. However it is known to suffer from poor sensitivity. To circumvent this limitation, a key solution resides in the use of hyper-polarized species. Among the entities with which we can drastically increase nuclear polarization, xenon has very specific properties through its interactions with its close environment that lead to a wide chemical shift bandwidth. The goal is thus to use it as a tracer. This PhD thesis focuses on the concept of 129 Xe MRI-based sensors for the detection of biological events. In this approach, hyper-polarized xenon is vectorized to biological targets via functionalized host systems, and then localized thanks to fast dedicated MRI sequences. The conception and set-up of a spin-exchange optical pumping device is first described. Then studies about the interaction of the hyper-polarized noble gas with new cryptophanes susceptible to constitute powerful host molecules are detailed. Also the implementation of recent MRI sequences optimized for the transient character of the hyper-polarization and taking profit of the xenon in-out exchange is described. Applications of this approach for the detection of metallic ions and cellular receptors are studied. Finally, our first in vivo results on a small animal model are presented. (author) [fr

  13. Practical methods of target preparation for use in nuclear experiments

    International Nuclear Information System (INIS)

    Sugai, Isao.

    1976-01-01

    This is the fifth report on the practical methods of target preparation for use in nuclear experiments following the previous one (INS-J-152, 1975). Electro-deposition is a very powerful technique well suited to the preparation of self-supporting targets of Ni, Cr, Zn, Rh, Cd, Sb and Pb metals over a wide range of thickness from 1 to 20 mg/cm 2 . The uniformities of the thicknesses of Cr, Zn, Rh, Cd and Pb targets were measured with α- and β-ray thickness gauges. The impurities in Cr target were checked by the measurement of elastically scattered protons, and by a optical spectrometer. (auth.)

  14. Polarization of the sigma minus hyperon produced by a polarized neutral particle beam

    International Nuclear Information System (INIS)

    Nguyen, A.N.

    1992-01-01

    A spin transfer technique has been tried in an attempt to produce a beam of polarized hyperons. The method makes use of a two-stage targeting scheme where unpolarized protons from Fermilab's Tevatron incident on target number one (Cu) at production angles of ±2.0 mrad would produce a beam of particles containing polarized Λs and Ξs as well as neutrons and Ks. This secondary beam would then be swept magnetically to retain only neutral particles and brought to bear on target number two (Cu) at 0.0 mrad, producing a tertiary beam of hyperons. The polarization of some 1.3 millions reconstructed Σ - → nπ - events in this tertiary beam (the Σ - having been produced in the inclusive reaction neutrals + Cu → Σ - + X) has been measured at average Σ - momenta 320 GeV/c (1.14 millions events) and 410 GeV/c (135,000 events) and found to be |P| = 3.9 ± 3.2 ± 1.8% and |P| = 13.9 ± 8.1 ± 2.0% respectively, where the first uncertainty is statistical and the second systematic. These polarizations are small and consistent with zero, and preclude a meaningful measurement of the Σ - magnetic moment by the spin precession method. The sign of the polarizations at the target is ambiguous, giving rise to two possible different solutions for the magnetic moment-one of two possible different solutions for the magnetic moment-one of which distinctly disagrees with the world average value for the moment. However, this solution fits the data slightly better than the other. This inconsistency would not exist if the polarization is, in fact, zero

  15. Measuring azimuthal asymmetries in semi-inclusive deep-inelastic scattering off transversely polarized protons

    CERN Document Server

    Wollny, Heiner

    2010-01-01

    The COMPASS experiment at the international research center CERN (European Organization for Nuclear Research) is dedicated to study the longitudinal and transverse spin structure of the nucleon. It is a fixed target experiment at the end of the M2 beam line of the SPS accelerator, which provides a 160 GeV/c longitudinally polarized muon beam. In the years 2002, 2003, 2004 and 2006 COMPASS took data scattering off polarized deuterons and in the year 2007 scattering off polarized protons. The analysis of the data taken in 2007 with transversely polarized protons is the topic of this thesis. In leading order and integrating over quark transverse momenta three parton distribution functions are needed for a complete description of the nucleon. Two of them, the quark number density and the helicity distribution are well known. However, the third one, the transversity distribution is up to now almost unknown. In this thesis single spin asymmetries in the cross-section of one hadron and two hadron production are anal...

  16. Identification of crystals in Hanford nuclear waste using polarized light microscopy

    International Nuclear Information System (INIS)

    Herting, D.L.

    1984-09-01

    The use of polarized light microscopy for identifying crystals encountered in Rockwell Hanford Operations chemical studies is described. Identifying characteristics and full-color photographs are presented for crystals commonly found in Hanford Site nuclear waste, including sodium nitrate, sodium nitrite, sodium aluminate, sodium phosphate, sodium fluoride, ammonium heptafluorozirconate, sodium sulfate, sodium carbonate, and ammonium nitrate. These characteristics are described in terms of birefringence, extinction position, interference figure, sign of elongation, optic sign, and crystal morphology. Background information on crystal optics is presented so that these traits can be understood by the nonmicroscopist. Detailed operational instructions are given so that the novice microscope user can make the proper adjustments of the instrument to search for and observe the identifying features of the crystals

  17. Waveguide transition with vacuum window for multiband dynamic nuclear polarization systems

    Energy Technology Data Exchange (ETDEWEB)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy [Technical University of Denmark, Ørsteds Plads 349, 2800 Kgs. Lyngby (Denmark); Ardenkjær-Larsen, Jan Henrik, E-mail: jhar@elektro.dtu.dk [Technical University of Denmark, Ørsteds Plads 349, 2800 Kgs. Lyngby (Denmark); GE Healthcare, Park Alle 295, Brøndby (Denmark)

    2016-05-15

    A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more broadband than commercially available windows, which are usually optimized for single band operation. It is demonstrated that high-density polyethylene with urethane adhesive can be used as a low loss microwave vacuum window in multiband DNP systems. The overall assembly performance and dimensions are found using full-wave simulations. The practical aspects of the window implementation in the waveguide are discussed. To verify the design and simulation results, the window is tested experimentally at the three frequencies of interest.

  18. Principal and experimental study of source of polarized electrons

    International Nuclear Information System (INIS)

    Shang Rencheng; Gao Junfang; Xiao Yuan; Pang Wenning; Deng Jingkang

    1999-01-01

    The getting of polarized electrons was briefly introduced, that is the source of polarized electrons. The measurement of polarization in future, the application of polarized electrons in atomic and molecular physics, condensed physics, biological physics, nuclear and particle physics were discussed

  19. Triangle Universities Nuclear Laboratory: Annual report, TUNL XXVI, 1 September 1986-31 August 1987

    International Nuclear Information System (INIS)

    1987-01-01

    At TUNL particular emphasis is placed on reactions induced by polarized protons, deuterons, and neutrons. Research programs include: studies of spin-spin forces with a polarized target and tests of time reversal invariance, high resolution proton scattering on the tandem, examination of the nucleon-nucleus interactions in light nuclei, charged particle induced reactions with polarized projectiles, radiative capture reactions with polarized beams, and weak interaction studies. We also continue a major commitment to the study of the statistical properties of nuclear levels revealed by elastic and inelastic scattering experiments using ultra high energy-resolution proton beams

  20. Scattering of polarized protons by yttrium, iron and nickel nuclei

    International Nuclear Information System (INIS)

    Melssen, J.P.M.G.

    1978-01-01

    Results are presented of scattering experiments performed on yttrium and some iron and nickel isotopes with polarized proton beams at energies around 20 MeV. The angular distributions of the differential cross sections and analyzing powers have been measured and comparison of these with predictions from theoretical models has led to information about excited nuclear states like spin, parity and details of the wavefunctions. The DWBA has been mostly used to describe the reaction at the bombarding energies and for the target nuclei investigated. (C.F.)

  1. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field

    Science.gov (United States)

    Thurber, Kent R.; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J. R.

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl radical would improve at lower

  2. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field.

    Science.gov (United States)

    Thurber, Kent R; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J R

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13 C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T 1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14 N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl

  3. Polarized Epithermal Neutron Studies of Magnetic Domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Yu. D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; Roberson, N.R.

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV< En<100eV), which process more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurements at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target

  4. Polarized Moessbauer transitions in mixed hyperfine interactions

    International Nuclear Information System (INIS)

    Barb, D.; Tarina, D.

    1975-01-01

    A contribution to the theory of elliptical polarization in the Moessbauer effect for transitions between mixed nuclear states is reported. A relation between the two-dimensional complex vector parameterization and the photon polarization density matrix was used in describing changes in the polarization of the gamma-ray involved. (A.K.)

  5. Nuclear structure research at the Triangle Universities Nuclear Laboratory

    International Nuclear Information System (INIS)

    Mitchell, G.E.

    1992-01-01

    Studies of fundamental symmetries by the TRIPLE collaboration using the unique capabilities at LAMTF have found unexpected systematics in the parity-violating amplitudes for epithermal-neutron scattering. Tests to lower the present limits on time-reversal-invariance violation in the strong interaction are being made at in experiments on the scattering of polarized fast neutrons from aligned holmium targets. Studies of few-nucleon systems have received increasing emphasis over the past year, involving a broad program for testing the low- to medium-energy internucleon interactions, from the tensor component in n-p scattering and the n-n scattering lengths, through three-nucleon systems and the alpha particle, on up to 8 Be. Of particular interest are three-nucleon systems, both in elastic scattering and in three-body breakup. Beam requirements range from production of intense and highly-polarized neutron beams to tensor-polarized beams for measurements at both very low energies (25--80 keV) and at tandem energies for definitive measurements of D-state components of the triton, 3 He, and 4 He obtained from transfer reactions. The program in nuclear astrophysics expanded during 1991--1992. Several facets of the nuclear many-body problem and of excitation mechanisms of the nucleus are being elucidated, including measurements and analyses to elucidate the neutron--nucleus elastic-scattering interaction over a wide range of nuclei and energies. Several projects involved developments in electronuclear physics, instrumentation, rf-transition units, and low-temperature bolometric particle detectors

  6. Nuclear reactions of high energy deuterons with medium mass targets

    International Nuclear Information System (INIS)

    Numajiri, Masaharu; Miura, Taichi; Oki, Yuichi

    1994-01-01

    Formation cross sections of product nuclides in the nuclear reactions of medium mass targets by 10 GeV deuterons were measured with a gamma-ray spectroscopy. The measured data were compared with the cross sections of 12 GeV protons. (author)

  7. Application of polarized nuclei to fusion

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1987-07-01

    It is shown that the d-t fusion reaction can be modified by polarizing nuclear spins. The ways in which this improves reactor performance are mentioned and the feasibility of the process of spin polarization for magnetic fusion is discussed. 18 refs

  8. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  9. TESLA-N electron scattering with polarized targets at TESLA

    International Nuclear Information System (INIS)

    Korotokov, V.

    2001-01-01

    Measurements of polarized eN scattering can be realized at the TESLA linear collider facility at DESY with luminosities that are about two orders of magnitude higher than those expected for other experiments at comparable energies. A large variety of polarized parton distribution and fragmentation functions can be determined with unprecedented accuracy, many of them for the first time

  10. Measuring the sea quark polarization

    International Nuclear Information System (INIS)

    Makdisi, Y.

    1993-01-01

    Spin is a fundamental degree of freedom and measuring the spin structure functions of the nucleon should be a basic endeavor for hadron physics. Polarization experiments have been the domain of fixed target experiments. Over the years large transverse asymmetries have been observed where the prevailing QCD theories predicted little or no asymmetries, and conversely the latest deep inelastic scattering experiments of polarized leptons from polarized targets point to the possibility that little of the nucleon spin is carried by the valence quarks. The possibility of colliding high luminosity polarized proton beams in the Brookhaven Relativistic Heavy Ion Collider (RHIC) provides a great opportunity to extend these studies and systematically probe the spin dependent parton distributions specially to those reactions that are inaccessible to current experiments. This presentation focuses on the measurement of sea quark and possibly the strange quark polarization utilizing the approved RHIC detectors

  11. 1H chemically induced dynamic nuclear polarization in the photodecomposition of uranyl carboxylates

    International Nuclear Information System (INIS)

    Rykov, S.V.; Khudyakov, I.V.; Skakovsky, E.D.; Burrows, H.D.; Formosinho, S.J.; Miguel, M. da G.M.

    1991-01-01

    Chemically induced dynamic nuclear polarization ( 1 H CIDNP) has been observed during photolysis of uranyl salts of pivalic, propionic, and acetic acids in D 2 O solution, [ 2 H 6 ]acetone, [ 2 H 4 ]methanol, or in some other solvent. The multiplet polarization of isobutene and isobutane protons has been found under photolysis of deoxygenated pivalate solution. The polarized compounds are formed in the triplet pairs of tert-butyl free radicals. 1 H Emission of the tert-butylperoxyl group and emission of 1 H from isobutene have been recorded under photolysis of air-saturated pivalate solutions. The CIDNP of butane protons stays as a multiplet. Such changes in the presence of air/oxygen have arisen apparently because of the formation of tert-butylperoxyl free radical and its reaction with tert-butyl radical products, i.e. hydroperoxide (peroxide) and isobutene. Isobutene probably forms a complex with molecular oxygen which has a very short proton relaxation time. During the photolysis of uranyl pivalate in the presence of p-benzoquinone (5 x 10 -2 -0.1 mol dm -3 ) we have not observed any CIDNP, whereas under p-benzoquinone concentrations of 10 -3 -10 -2 mol dm -3 the CIDNP from both hydroquinone and p-benzoquinone has been followed. Photolysis of uranyl propionate has led to CIDNP from butane protons. An emission from methyl group protons of a compound with an ethylperoxyl fragment in the presence of air/oxygen has been observed. The same polarization picture has arisen under interaction of photoexcited uranyl with propionic acid. During the photolysis of uranyl acetate at relatively low concentrations (10 -2 mol dm -3 ) a CIDNP very similar to that registered for uranyl propionate was recorded. The ethyl fragment is probably obtained in reactions for two methyl radicals formed from acetate with the parent uranyl acetate, namely hydrogen-atom abstraction and addition reactions. (author)

  12. Polarized epithermal neutron studies of magnetic domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Y.D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina; Roberson, N.R.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV n <100eV), which precess more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurement at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59 eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target. copyright 1997 American Institute of Physics

  13. Applications of polarized neutrons

    International Nuclear Information System (INIS)

    Mezei, F.

    1993-01-01

    The additional spin degree of freedom of the neutron can be made use of in neutron scattering work in two fundamental ways: (a) directly for the identification of magnetic scattering effects and (b) indirectly as a spectroscopic tool for modulating and analysing beams. Although strong magnetic scattering contributions can often be studied by unpolarized neutrons, a fully unambiguous separation of nuclear and magnetic phenomena can only be achieved by the additional information provided by polarized neutrons, especially if one of the two kinds of contributions is weak compared to the other. In the most general case a sample with both magnetic and nuclear features can be characterized by as many as 16 independent dynamic correlation functions instead of the single well known S(q, ω) for non-magnetic nuclear scattering only. Polarization analysis in principle allows one to determine all these 16 functions. The indirect applications of polarized neutrons are also steadily gaining importance. The most widely used method of this kind, the application of Larmor precessions for high resolution energy analysis in Neutron Spin Echo spectroscopy opened up a whole new domain in inelastic neutron scattering which was not accessible to any other spectroscopic method with or without neutrons before. (author)

  14. A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers

    Science.gov (United States)

    Dubroca, Thierry; Smith, Adam N.; Pike, Kevin J.; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R.; Frydman, Lucio; Hill, Stephen

    2018-04-01

    Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 μL, i.e. 3 mm diameter NMR tubes).

  15. The Gpn3 Q279* cancer-associated mutant inhibits Gpn1 nuclear export and is deficient in RNA polymerase II nuclear targeting.

    Science.gov (United States)

    Barbosa-Camacho, Angel A; Méndez-Hernández, Lucía E; Lara-Chacón, Bárbara; Peña-Gómez, Sonia G; Romero, Violeta; González-González, Rogelio; Guerra-Moreno, José A; Robledo-Rivera, Angélica Y; Sánchez-Olea, Roberto; Calera, Mónica R

    2017-11-01

    Gpn3 is required for RNA polymerase II (RNAPII) nuclear targeting. Here, we investigated the effect of a cancer-associated Q279* nonsense mutation in Gpn3 cellular function. Employing RNAi, we replaced endogenous Gpn3 by wt or Q279* RNAi-resistant Gpn3R in epithelial model cells. RNAPII nuclear accumulation and transcriptional activity were markedly decreased in cells expressing only Gpn3R Q279*. Wild-type Gpn3R localized to the cytoplasm but a fraction of Gpn3R Q279* entered the cell nucleus and inhibited Gpn1-EYFP nuclear export. This property and the transcriptional deficit in Gpn3R Q279*-expressing cells required a PDZ-binding motif generated by the Q279* mutation. We conclude that an acquired PDZ-binding motif in Gpn3 Q279* caused Gpn3 nuclear entry, and inhibited Gpn1 nuclear export and Gpn3-mediated RNAPII nuclear targeting. © 2017 Federation of European Biochemical Societies.

  16. A polarized alkali ion source

    International Nuclear Information System (INIS)

    Boettger, R.; Tungate, G.; Bauer, B.; Egelhof, P.; Moebius, K.H.; Steffens, E.

    1978-01-01

    The beam foil technique has been applied to detect nuclear vector polarization of a 10 keV 23 Na + beam. The result was about 70% of the atomic beam polarization thus limiting the depolarization by the surface ionizer to at most 30%. In a Coulomb excitation experiment with a tensor polarized 42 MeV 23 Na 7+ beam an effect of 0.011 +- 0.003 was measured yielding a value of t 20 approx. 0.04 for the beam polarization. The depolarization during the acceleration process can be estimated to be about 0.8. (orig.) [de

  17. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  18. Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments

    Science.gov (United States)

    Kheswa, N. Y.; Papka, P.; Buthelezi, E. Z.; Lieder, R. M.; Neveling, R.; Newman, R. T.

    2010-02-01

    This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ( natCa), lithium-6 ( 6Li) and molybdenum-97 ( 97Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.

  19. Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kheswa, N.Y., E-mail: kheswa@tlabs.ac.z [iThemba Laboratory for Accelerator Based Science, P.O. Box 722, Somerset West 7129, Western Cape (South Africa); Papka, P.; Buthelezi, E.Z.; Lieder, R.M.; Neveling, R.; Newman, R.T. [iThemba Laboratory for Accelerator Based Science, P.O. Box 722, Somerset West 7129, Western Cape (South Africa)

    2010-02-11

    This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ({sup nat}Ca), lithium-6 ({sup 6}Li) and molybdenum-97 ({sup 97}Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.

  20. Analyzing-power measurements of Coulomb-nuclear interference with the polarized-proton and -antiproton beams at 185 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Akchurin, N; Onel, Y [Iowa Univ., Iowa City, IA (USA). Dept. of Physics; Carey, D; Coleman, R; Cossairt, J D; Read, A L [Fermi National Accelerator Lab., Batavia, IL (USA); Corcoran, M D; Nessi-Tedaldi, F; Nessi, M; Nguyen, C; Phillips, G C; Roberts, J B; White, J L [Rice Univ., Houston, TX (USA). Bonner Nuclear Labs.; Derevschikov, A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Solovyanov, V L; Vasiliev, A N [Institut Fiziki Vysokikh Ehnergij, Serpukhov (USSR); Gazzaly, M M [Minnesota Univ., Minneapolis (USA). Dept. of Physics; Grosnick, D P; Hill, D; Laghai, M; Lopiano, D; Ohashi, Y; Shima, T; Spinka, H; Stanek, R W; Underwood, D G; Yokosawa, A [Argonne National Lab., IL (USA); Imai, K; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Takeutchi, F; Tamura, N; Yoshida, T [Kyoto Univ. (Japan); Kuroda, K; Michalowicz, A [Institut National de Physique Nucleaire et de Physique des Particules, 74 - Annecy-le-Vieux (France). Lab. de P; E-581/704 Collaboration

    1989-10-12

    The analyzing power A{sub N} of proton-proton, proton-hydrocarbon, and antiproton-hydrocarbon scattering in the Coulomb-nuclear interference region has been measured using the 185 GeV/c Fermilab polarized-proton and -antiproton beams. The results are found to be consistent with theoretical predictions within statistical uncertainties. (orig.).

  1. Precision polarization measurements of atoms in a far-off-resonance optical dipole trap

    International Nuclear Information System (INIS)

    Fang, F.; Vieira, D. J.; Zhao, X.

    2011-01-01

    Precision measurement of atomic and nuclear polarization is an essential step for beta-asymmetry measurement of radioactive atoms. In this paper, we report the polarization measurement of Rb atoms in an yttrium-aluminum-garnet (YAG) far-off-resonance optical dipole trap. We have prepared a cold cloud of polarized Rb atoms in the YAG dipole trap by optical pumping and achieved an initial nuclear polarization of up to 97.2(5)%. The initial atom distribution in different Zeeman levels is measured by using a combination of microwave excitation, laser pushing, and atomic retrap techniques. The nuclear-spin polarization is further purified to 99.2(2)% in 10 s and maintained above 99% because the two-body collision loss rate between atoms in mixed spin states is greater than the one-body trap loss rate. Systematic effects on the nuclear polarization, including the off-resonance Raman scattering, magnetic field gradient, and background gas collisions, are discussed.

  2. Study of the parity violation in nuclei - Circular polarization of photons emitted in a nuclear transition

    International Nuclear Information System (INIS)

    Desplanques, Bertrand.

    1975-01-01

    Many experiments have shown parity violation in nuclear forces and a theoretical interpretation of these results should give some information on the weak interaction. The present work has to do with the calculation of the circular polarization of photons emitted in the transitions 5/2 + →7/2 + in 181 Ta and 9/2 - →7/2 + in 175 Lu. This calculation has been done by employing a good description of the final and initial states and in particular by including the effects of the short and long range correlations. The results so obtained differ somewhat from those obtained previously with a simpler nuclear model and seem to favor weak interaction models with a large ΔT=1 component [fr

  3. First measurement of the polarization observable E and helicity-dependent cross sections in single π0 photoproduction from quasi-free nucleons

    Directory of Open Access Journals (Sweden)

    M. Dieterle

    2017-07-01

    Full Text Available The double-polarization observable E and the helicity-dependent cross sections σ1/2 and σ3/2 have been measured for the first time for single π0 photoproduction from protons and neutrons bound in the deuteron at the electron accelerator facility MAMI in Mainz, Germany. The experiment used a circularly polarized photon beam and a longitudinally polarized deuterated butanol target. The reaction products, recoil nucleons and decay photons from the π0 meson were detected with the Crystal Ball and TAPS electromagnetic calorimeters. Effects from nuclear Fermi motion were removed by a kinematic reconstruction of the π0N final state. A comparison to data measured with a free proton target showed that the absolute scale of the cross sections is significantly modified by nuclear final-state interaction (FSI effects. However, there is no significant effect on the asymmetry E since the σ1/2 and σ3/2 components appear to be influenced in a similar way. Thus, the best approximation of the two helicity-dependent cross sections for the free neutron is obtained by combining the asymmetry E measured with quasi-free neutrons and the unpolarized cross section corrected for FSI effects under the assumption that the FSI effects are similar for neutrons and protons.

  4. Nuclear Spin Nanomagnet in an Optically Excited Quantum Dot

    Science.gov (United States)

    Korenev, V. L.

    2007-12-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins—the nuclear spin nanomagnet.

  5. An Adenovirus DNA Replication Factor, but Not Incoming Genome Complexes, Targets PML Nuclear Bodies.

    Science.gov (United States)

    Komatsu, Tetsuro; Nagata, Kyosuke; Wodrich, Harald

    2016-02-01

    Promyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes. The immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral genomes and

  6. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    Science.gov (United States)

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  7. Neutron angular distribution in (γ, n reactions with linearly polarized γ-ray beam generated by laser Compton scattering

    Directory of Open Access Journals (Sweden)

    K. Horikawa

    2014-10-01

    Full Text Available In 1957, Agodi predicted that the neutron angular distribution in (γ, n reactions with a 100% linearly polarized γ-ray beam for dipole excitation should be anisotropic and universally described by the simple function of a+b⋅cos⁡(2ϕ at the polar angle θ=90°, where ϕ is the azimuthal angle. However, this prediction has not been experimentally confirmed in over half a century. We have verified experimentally this angular distribution in the (γ, n reaction for 197Au, 127I, and natural Cu targets using linearly polarized laser Compton scattering γ-rays. The result suggests that the (γ→, n reaction is a novel tool to study nuclear physics in the giant dipole resonance region.

  8. Wien filter for a polarized ions source

    International Nuclear Information System (INIS)

    Perez A, P.I.

    1977-01-01

    In order to carry out investigation works about nuclear structure, the Nuclear Center of Mexico has an accelerator Tandem Van de Graff of 12 Mv. Now in this center there is a polarized ions source, in a setting phase, totally constructed in the workshop of the accelerator. This source, supplies an ion beam with a polarization whose propagation direction is not the adequate one for the dispersion and reaction processes wanted to be realized. A filter Wien was used to obtain the correct direction of the polarization vector. The purpose of this work is the study of the filter necessary conditions in order to reach the desirable objective. In the first part some generalities are given about: polarization phenomena, polarized ions source and description of the performance of the Wien filter. In the second part, the problem of the passage of a polarized beam through the filter is tried and solved. Finally, the design and construction of the filter is presented together with the results of the experimentation with the object to justify the suppositions which were taken into consideration in the solution of the filter problem. (author)

  9. Letter of Intent for a Drell-Yan Experiment with a Polarized Proton Target

    International Nuclear Information System (INIS)

    Geesaman, D.; Reimer, P.; Brown, C.; Christian, D.; Diefenthaler, M.; Peng, J.C.; Chang, W.C.; Chen, Y.C.; Sawada, S.; Chang, T.H.; Huang, J.; Jiang, X.; Leitch, M.; Klein, A.; Liu, K.; Liu, M.; McGaughey, P.; Beise, E.; Nakahara, K.; Aidala, C.; Lorenzon, W.; Raymond, R.; Badman, T.; Long, E.; Slifer, K.; Zielinski, R.; Guo, R.S.; Goto, Y.; El Fassi, L.; Myers, K.; Ransome, R.; Tadepalli, A.; Tice, B.; Chen, J.P.; Nakano, K.; Shibata, T.A.; Crabb, D.; Day, D.; Keller, D.; Rondon, O.

    2014-01-01

    It is well known that the proton is a spin-1/2 particle, but how the constituents (quarks and gluons) assemble to this quantized spin is still a mystery. There is a worldwide effort to map out the individual contributions to the proton spin. It is established that the quark spins contribute around 30%, while the gluon intrinsic angular momentum is still under active investigation at the Relativistic Heavy Ion Collider. Fully resolving the proton spin puzzle requires information on the orbital angular momentum (OAM) of both quarks and gluons. Recent studies have shown that the so-called transverse momentum-dependent parton distribution functions (TMDs) can inform us about the OAM of the partons. One of the most important TMDs, and the main focus of this LOI, is the so-called Sivers function. To summarize, we propose to make the first measurement of the Sivers function of sea quarks, which is expected to be non-zero if the sea quarks contribute orbital angular momentum to the proton spin, as expected from the pion cloud model, which also partially explains the E866 results. Thus, we will be able to deduce whether or not sea quark orbital motion contributes significantly to the proton spin. Specifically, we will determine the contribution from the anti-up quarks, with Bjorken-x in the range of ~ 0.1 to 0.5. Drell-Yan production off a polarized proton target has never been measured, and is complementary to the recently approved (stage-1) experiment E1027 at Fermilab, which will measure the Sivers function of the valence quarks using a polarized proton beam on an unpolarized proton target. If the measured sea quark Sivers function is non-zero, we will also determine its sign.

  10. Safety targets and public risk perceptions in the nuclear field - technical treadmill or institutional responses?

    International Nuclear Information System (INIS)

    Wynne, B.

    1989-01-01

    The context of our treatment of risk perceptions and safety targets is the apparently wide gap between expert judgements of 'objective risks' and public perceptions of those risks. In the nuclear field the latter appear to so multiply the objective risks as seen by the experts, as to make safety targets vastly too strict (whether for routine discharges or for large accidents), thus design extravagantly expensive on any 'rational' criteria. In recent years the nuclear industry has come to terms more with the public perceptions problem, and has accepted that it is legitimate to exercise different, more severe and costly safety standards in the nuclear field if that is what society wants, as it appears to do. Whilst retaining the conviction that this is scientifically unwarranted, the industry has therefore reconciled itself somewhat to more stringent technical safety targets. (author)

  11. Characterization of nuclear physics targets using Rutherford backscattering and particle induced X-ray emission

    International Nuclear Information System (INIS)

    Rubehn, T.; Wozniak, G.J.; Phair, L.; Moretto, L.G.; Yu, K.M.

    1997-01-01

    Rutherford backscattering and particle induced X-ray emission have been utilized to precisely characterize targets used in nuclear fission experiments. The method allows for a fast and non-destructive determination of target thickness, homogeneity and element composition. (orig.)

  12. Spin and diffractive physics with a fixed-target experiment at the LHC (AFTER-LHC)

    Energy Technology Data Exchange (ETDEWEB)

    Lorce, C.; Chambert, V.; Didelez, J. P.; Genolini, B.; Hadjidakis, C.; Lansberg, J. P.; Rosier, P. [IPNO, Universite Paris-Sud, CNRS/IN2P3, F-91406, Orsay (France); Anselmino, M.; Arnaldi, R.; Scomparin, E. [INFN Sez. Torino, Via P. Giuria 1,1-10125, Torino (Italy); Brodsky, S. J. [SLAC National Accelerator Laboratory, Stanford U, Stanford, CA 94309, (United States); Ferreiro, E. G. [Departamento de Fisica de Particulas, Univ. de Santiago de C, 15782 Santiago de C (Spain); Fleuret, F. [Laboratoire Leprince Ringuet, Ecole Polytechnique, CNRS/IN2P3, 91128 Palaiseau (France); Rakotozafindrabe, A. [IRFU/SPhN, CFA Society, 91191 Gifsur-Yvette Cedex (France); Schienbein, I. [LPSC, Universite Joseph Fourier, CNRS/IN2P3/INPG, F-38026 Grenoble (France); Uggerhoj, U. I. [Department of Physics and Astronomy, University of Aarhus (Denmark)

    2013-04-15

    We report on the spin and diffractive physics at a future multi-purpose f xed-target experiment with proton and lead LHC beams extracted by a bent crystal. The LHC multi-TeV beams allow for the most energetic f xed-target experiments ever performed, opening new domains of particle and nuclear physics and complementing that of collider physics, in particular that of RHIC and the EIC projects. The luminosity achievable with AFTER using typical targets would surpass that of RHIC by more than 3 orders of magnitude. The f xed-target mode has the advantage to allow for measurements of single-spin asymmetries with polarized target as well as of single-diffractive processes in the target region.

  13. Spin and diffractive physics with a fixed-target experiment at the LHC (AFTER-LHC)

    International Nuclear Information System (INIS)

    Lorcé, C.; Chambert, V.; Didelez, J. P.; Genolini, B.; Hadjidakis, C.; Lansberg, J. P.; Rosier, P.; Anselmino, M.; Arnaldi, R.; Scomparin, E.; Brodsky, S. J.; Ferreiro, E. G.; Fleuret, F.; Rakotozafindrabe, A.; Schienbein, I.; Uggerhøj, U. I.

    2013-01-01

    We report on the spin and diffractive physics at a future multi-purpose f xed-target experiment with proton and lead LHC beams extracted by a bent crystal. The LHC multi-TeV beams allow for the most energetic f xed-target experiments ever performed, opening new domains of particle and nuclear physics and complementing that of collider physics, in particular that of RHIC and the EIC projects. The luminosity achievable with AFTER using typical targets would surpass that of RHIC by more than 3 orders of magnitude. The f xed-target mode has the advantage to allow for measurements of single-spin asymmetries with polarized target as well as of single-diffractive processes in the target region.

  14. Optimum nuclear design of target fuel rod for Mo-99 production in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyun [Kyung Hee University, Seoul (Korea)

    1998-04-01

    Nuclear target design for Mo-99 production in HANARO was performed, KAERI proposed target design was analyzed and its feasibility was shown. Three commercial target designs of Cintichem, ANL and KAERI were tested for the HANARO irradiation an d they all satisfied with design specification. A parametric study was done for target design options and Mo-99 yields ratio and surface heat flux were compared. Tested parameters were target fuel thickness, irradiation location, target axial length, packing density of powder fuel, size of target radius, target geometry, fuel enrichment, fuel composition, and cladding material. Optimized target fuel was designed for both LEU and HEU options. (author). 17 refs., 33 figs., 42 tabs.

  15. Tests of a polarized source of hydrogen and deuterium based on spin-exchange optical pumping and a storage cell for polarized deuterium

    International Nuclear Information System (INIS)

    Holt, R.J.; Gilman, R.; Kinney, E.R.

    1988-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which is based on the principle of spin-exchange optical pumping has been developed at Argonne. The advantages of this method over conventional polarized sources for internal target experiments is discussed. At present, the laser-driven polarized source delivers hydrogen 8 x 10 16 atoms/s with a polarization of 24% and deuterium at 6 x 10 16 atoms/s with a polarization of 25%. A passive storage cell for polarized deuterium was tested in the VEPP-3 electron storage ring. The storage cell was found to increase the target thickness by approximately a factor of three and no loss in polarization was observed. 10 refs., 4 figs., 2 tabs

  16. EU 2030 targets 'unachievable' without long-term nuclear operation

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Lubomir [NucNet, Brussels (Belgium)

    2015-01-15

    Nuclear energy will continue to support greenhouse gas emission reduction targets until 2020, but without decisions on long-term operation of ageing reactors, it will be difficult for the EU to meet its 2030 targets, International Energy Agency (IEA) executive director Maria van der Hoeven, tells NucNet in an interview. The IEA has quite a few remarks and questions related to the EU goals of competitiveness, security of supply and sustainability. It is good to have these targets, but up until now the EU is missing the direct connection between the three goals. What is mostly needed to achieve the goals is to finalise the EU's internal energy market. Secondly cost-effective climate and energy policies are needed because it is not only about climate and energy, but also about economic development and competitiveness. The ageing EU reactor fleet requires country-level and owner/operator-level decisions in the short term regarding plant safety regulations, plant upgrades, uprates, lifetime extensions and licence renewals. Upgrading and uprating existing nuclear plants is one of the cheapest ways of producing carbon-free electricity in the EU. Without long-term operation, the IEA expects nuclear capacity in the EU could fall by a factor of six by 2030 and that will make it more difficult to achieve the EU's 2030 climate targets. Public opinion is an important topic for the acceptance of all energy sources and it is different in all IEA member countries. Europe is very sensitive to almost all forms of energy, including wind turbines and solar panels. This is linked to a lack of information, so we need more and better transparency on information for people.

  17. Solid-State NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Bardet, Michel; De Paepe, Gael; Hediger, Sabine; Ayala, Isabel; Simorre, Jean-Pierre

    2013-01-01

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool. (authors)

  18. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.

    Science.gov (United States)

    Takahashi, Hiroki; Ayala, Isabel; Bardet, Michel; De Paëpe, Gaël; Simorre, Jean-Pierre; Hediger, Sabine

    2013-04-03

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool.

  19. Efficient composite broadband polarization retarders and polarization filters

    Science.gov (United States)

    Dimova, E.; Ivanov, S. S.; Popkirov, G.; Vitanov, N. V.

    2014-12-01

    A new type of broadband polarization half-wave retarder and narrowband polarization filters are described and experimentally tested. Both, the retarders and the filters are designed as composite stacks of standard optical half-wave plates, each of them twisted at specific angles. The theoretical background of the proposed optical devices was obtained by analogy with the method of composite pulses, known from the nuclear and quantum physics. We show that combining two composite filters built from different numbers and types of waveplates, the transmission spectrum is reduced from about 700 nm to about 10 nm width.We experimentally demonstrate that this method can be applied to different types of waveplates (broadband, zero-order, multiple order, etc.).

  20. NICMOS POLARIMETRY OF 'POLAR-SCATTERED' SEYFERT 1 GALAXIES

    International Nuclear Information System (INIS)

    Batcheldor, D.; Robinson, A.; Axon, D. J.; Young, S.; Quinn, S.; Smith, J. E.; Hough, J.; Alexander, D. M.

    2011-01-01

    The nuclei of Seyfert 1 galaxies exhibit a range of optical polarization characteristics that can be understood in terms of two scattering regions producing orthogonal polarizations: an extended polar scattering region (PSR) and a compact equatorial scattering region (ESR), located within the circum-nuclear torus. Here we present NICMOS 2.0 μm imaging polarimetry of six 'polar-scattered' Seyfert 1 (S1) galaxies, in which the PSR dominates the optical polarization. The unresolved nucleus ( 2μm ) is consistent with the average for the optical spectrum(θ v ), implying that the nuclear polarization is dominated by polar scattering at both wavelengths. The same is probably true for NGC 3227. In both NGC 4593 and Mrk 766, there is a large difference between θ 2μm and θ v off-nucleus, where polar scattering is expected to dominate. This may be due to contamination by interstellar polarization in NGC 4593, but there is no clear explanation in the case of the strongly polarized Mrk 766. Lastly, in Mrk 1239, a large change (∼60 0 ) in θ 2 μ m between the nucleus and the annulus indicates that the unresolved nucleus and its immediate surroundings have different polarization states at 2 μm, which we attribute to the ESR and PSR, respectively. A further implication is that the source of the scattered 2 μm emission in the unresolved nucleus is the accretion disk, rather than torus hot dust emission.

  1. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization

    Science.gov (United States)

    Scott, Faith J.; Saliba, Edward P.; Albert, Brice J.; Alaniva, Nicholas; Sesti, Erika L.; Gao, Chukun; Golota, Natalie C.; Choi, Eric J.; Jagtap, Anil P.; Wittmann, Johannes J.; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th. Sigurdsson, Snorri; Barnes, Alexander B.

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.

  2. Need for an intense polarized source at LAMPF. Report on a workshop held at Los Alamos, November 9, 1983

    International Nuclear Information System (INIS)

    McNaughton, M.W.; Silbar, R.R.; van Dyck, O.B.

    1984-04-01

    We report on a workshop to consider the need for an intense polarized source at LAMPF. The primary justification for such a source comes from the nucleon-nucleon program; neutron-proton scattering is seriously underdetermined and cannot be satisfactorily completed without such an intense source. Further justification comes from nuclear (vector n,p) and (vector p, vector n) reactions, as well as from traditional nuclear physics at the LAMPF high resolution spectrometer. We recommend that a source capable of providing a few μA beam on target be built as soon as possible

  3. COMPASS polarized Drell-Yan experiment

    CERN Document Server

    Doshita, Norihiro

    2016-01-01

    The COMPASS II started at 2012 that includes polarized Drell-Yan program with a polarized solid target. The availability of pion beam provides an access to the Drell-Yan physics throughout the process where quark(target)-antiquark(beam) pair annihilates electromagnetically with a production of dilepton pair. Study of angular dependencies of the Drell-Yan process cross-section allows us to access to parton distribution functions (PDFs) or, more precisely, a convolutions of various PDFs. The transversely polarized target together with negative pion beam is an important feature of the COMPASS Drell-Yan experiment, that provides us with unique data on transverse momentum dependent (TMD) PDFs. After a plot run in 2014, the experiment has just started in 2015. The role of the Drell-Yan experiment at COMPASS in TMD PDFs study, with a comparison to semi-inclusive deep inelastic scattering experiment, is described. The experimental set-up, the status of the data taking in 2015 and preliminary analysis results in the 2...

  4. Polarized Source Performance and Developments at Jefferson Lab

    International Nuclear Information System (INIS)

    Matt Poelker; P. Adderley; J. Clark; A. Day; Joseph Grames; J. Hansknecht; P. Hartmann; R. Kazimi; P. Rutt; Charles Sinclair; M. Steigerwald

    2000-01-01

    The polarized photoinjector at Jefferson Lab continues to provide high average current, high polarization, high quality beam to nuclear physics Users in as many as three endstations simultaneously. Long lifetime operation has been obtained from two identical polarized guns. A new high power mode locked Ti-sapphire laser has been constructed to enhance the effective operating lifetime of the photoinjector. Efforts to enhance beam polarization and reduced helicity correlated beam systematic effects are underway

  5. Pulsed diode source of polarized ions

    International Nuclear Information System (INIS)

    Katzenstein, J.; Rostoker, N.

    1983-01-01

    The advantages of polarized nuclei for fusion reactors have recently been described. We propose a pulsed source of polarized nuclei that consists of an ion diode with a polarized anode. With magnetic resonance techniques the nuclear spins of the protons of solid NH 3 can be made about 90 to 95% polarized. This material would be used for the anode. The diode would be pulsed with a voltage of 1-200K-volts for 1-2 μ sec. Flashover of the anode produces a surface plasma from which the polarized protons would be extracted to form a beam. Depolarization could be detected by comparing reaction cross sections and/or distribution of reaction products with similar results for unpolarized beams

  6. Invited article: polarization "down under": the polarized time-of-flight neutron reflectometer PLATYPUS.

    Science.gov (United States)

    Saerbeck, T; Klose, F; Le Brun, A P; Füzi, J; Brule, A; Nelson, A; Holt, S A; James, M

    2012-08-01

    This review presents the implementation and full characterization of the polarization equipment of the time-of-flight neutron reflectometer PLATYPUS at the Australian Nuclear Science and Technology Organisation (ANSTO). The functionality and efficiency of individual components are evaluated and found to maintain a high neutron beam polarization with a maximum of 99.3% through polarizing Fe/Si supermirrors. Neutron spin-flippers with efficiencies of 99.7% give full control over the incident and scattered neutron spin direction over the whole wavelength spectrum available in the instrument. The first scientific experiments illustrate data correction mechanisms for finite polarizations and reveal an extraordinarily high reproducibility for measuring magnetic thin film samples. The setup is now fully commissioned and available for users through the neutron beam proposal system of the Bragg Institute at ANSTO.

  7. Polarization Smoothing Generalized MUSIC Algorithm with Polarization Sensitive Array for Low Angle Estimation.

    Science.gov (United States)

    Tan, Jun; Nie, Zaiping

    2018-05-12

    Direction of Arrival (DOA) estimation of low-altitude targets is difficult due to the multipath coherent interference from the ground reflection image of the targets, especially for very high frequency (VHF) radars, which have antennae that are severely restricted in terms of aperture and height. The polarization smoothing generalized multiple signal classification (MUSIC) algorithm, which combines polarization smoothing and generalized MUSIC algorithm for polarization sensitive arrays (PSAs), was proposed to solve this problem in this paper. Firstly, the polarization smoothing pre-processing was exploited to eliminate the coherence between the direct and the specular signals. Secondly, we constructed the generalized MUSIC algorithm for low angle estimation. Finally, based on the geometry information of the symmetry multipath model, the proposed algorithm was introduced to convert the two-dimensional searching into one-dimensional searching, thus reducing the computational burden. Numerical results were provided to verify the effectiveness of the proposed method, showing that the proposed algorithm has significantly improved angle estimation performance in the low-angle area compared with the available methods, especially when the grazing angle is near zero.

  8. Towards helium-3 neutron polarizers

    International Nuclear Information System (INIS)

    Tasset, F.

    1995-01-01

    With a large absorption cross-section entirely due to antiparallel spin capture, polarized helium-3 is presently the most promising broad-band polarizer for thermal and epithermal neutrons. Immediate interest was raised amongst the neutron community when a dense gaseous 3 He polarizer was used for the first time in 1988, on a pulsed neutron beam at Los Alamos. With 20 W of laser power on a 30 cm long, 8.6 atm target, 40% 3 He polarization was achieved in a recent polarized electron scattering experiment at SLAC. In this technique the 3 He nuclei are polarized directly at an appropriate high pressure through spin-exchange collisions with a thick, optically pumped rubidium vapor. A different and competitive approach is being presently developed at Mainz University in collaboration with ENS Paris and now the ILL. A discharge is established in pure 3 He at low pressure producing excited metastable atoms which can be optically pumped with infra-red light. Highly effective exchange collision with the atoms remaining in the ground state quickly produces 75% polarization at 1.5 mbar. A truly non-magnetic system then compresses the polarized gas up to several bars as required. The most recent machine comprises a two-stage glass-titanium compressor. In less than 1 h it can inflate a 100 cm 3 target cell with three bars of polarized gas. The very long relaxation times (several days) now being obtained at high pressure with a special metallic coating on the glass walls, the polarized cell can be detached and inserted in the neutron beam as polarizer. We expect 50% 3 He-polarization to be reached soon, allowing such filters to compete favorably with existing Heusler-crystal polarizers at thermal and short neutron wavelengths. It must be stressed that such a system based on a 3 He polarization factory able to feed several passive, transportable, polarizers is well matched to neutron scattering needs. (orig.)

  9. The Precision Measurement of the Neutron Spin Structure Function Using Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X

    2004-01-05

    Using a 48.6 GeV polarized electron beam scattering off a polarized {sup 3}He target at Stanford Linear Accelerator Centre (SLAC), they measured the neutron spin structure function g{sub 1}{sup n} over kinematic(x) ranging 0.014 < x <0.7 and 1 < Q{sup 2} < 17GeV{sup 2}. The measurement gave the integral result over the neutron spin structure function {integral}{sub 0.014}{sup 0.7} g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.004(stat) {+-} 0.005(syst) at an average Q{sup 2} = 5GeV{sup 2}. Along with the proton results from SLAC E143 experiment (0.03 < x) and SMC experiment (0.014 < x < 0.03), they find the Bjorken sum rule appears to be largely saturated by the data integrated down to x of 0.014. However, they observe relatively large values for g{sub 1}{sup n} at low x. The result calls into question the usual methods (Regge theory) for extrapolating to x = 0 to find the full neutron integral {integral}{sub 0}{sup t} g{sub 1}{sup n}(x) dx, needed for testing the Quark-Parton Model (QMP).

  10. Dorsal stress fibers, transverse actin arcs, and perinuclear actin fibers form an interconnected network that induces nuclear movement in polarizing fibroblasts

    Czech Academy of Sciences Publication Activity Database

    Maninová, Miloslava; Vomastek, Tomáš

    2016-01-01

    Roč. 283, č. 20 (2016), s. 3676-3693 ISSN 1742-464X R&D Projects: GA ČR GA13-06405S Institutional support: RVO:61388971 Keywords : actin dorsal fibers * cell polarity * nuclear reorientation Subject RIV: EE - Microbiology, Virology Impact factor: 3.902, year: 2016

  11. Polarized coincidence electroproduction

    International Nuclear Information System (INIS)

    Heimann, R.L.

    1975-03-01

    A study is made of the inclusive electroproduction of single hadrons off a polarized target. Bjorken scaling laws and the hadron azimuthal distribution are derived from the quark parton model. The polarization asymmetries scale when the target spin is along the direction of the virtual photon, and (apart from significant exception) vanish for transverse spin. These results have a simple explanation; emphasis is given both to the general mathematical formalism and to intuitive physical reasoning. Through this framework other cases are considered: quarks with anomalous magnetic moment; renormalization group effects and asymptotic freedom; production of vector mesons (whose spin state is analysed by their decay); relation to large transverse momentum hadron production; and a covariant parton model calculation. Spin 0 partons and Regge singularities are also considered. All of these cases (apart from the last two) modify the pattern of conclusions. Vector meson production shows polarization enhancements in the density matrix element rhosub(0+); the renormalization group approach does not lead to any significant suppressions. They are also less severe in parton models for large Psub(T) hadrons, and are not supported by the covariantly formulated calculation. The origins of these differences are isolated and used to exemplify the sensitivity polarized hadron electroproduction has to delicate detail that is otherwise concealed. (author)

  12. A quasi-optical and corrugated waveguide microwave transmission system for simultaneous dynamic nuclear polarization NMR on two separate 14.1 T spectrometers.

    Science.gov (United States)

    Dubroca, Thierry; Smith, Adam N; Pike, Kevin J; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R; Frydman, Lucio; Hill, Stephen

    2018-04-01

    Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T ( 1 H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13 C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31 P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T ( 1 H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 µL, i.e. 3 mm diameter NMR tubes). Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Nuclear reactions of medium and heavy target nuclei with high-energy projectiles

    International Nuclear Information System (INIS)

    Kozma, P.; Damdinsuren, C.

    1988-01-01

    The cross sections of a number of target fragmentation products formed in nuclear reactions of 3.65 AGeV 12 C-ions and 3.65 GeV protons with 197 Au have been measured. The measurements have been done by direct counting of irradiated targets with Ge(Li) gamma-spectrometers. Comparison between these and other data has been used to test the hypotheses of factorization and limiting fragmentation. The total cross section for residue production in both reactions indicates that target residues are formed mainly in central collisions

  14. The space distribution of neutrons generated in massive lead target by relativistic nuclear beam

    International Nuclear Information System (INIS)

    Chultem, D.; Damdinsuren, Ts.; Enkh-Gin, L.; Lomova, L.; Perelygin, V.; Tolstov, K.

    1993-01-01

    The present paper is devoted to implementation of solid state nuclear track detectors in the research of the neutron generation in extended lead spallation target. Measured neutrons space distribution inside the lead target and neutron distribution in the thick water moderator are assessed. (Author)

  15. Spin polarized deuterium

    International Nuclear Information System (INIS)

    Glyde, H.R.; Hernadi, S.I.

    1986-01-01

    Several ground state properties of (electron) spin-polarized deuterium (D) such as the energy, single quasiparticle energies and lifetimes, Landau parameters and sound velocities are evaluated. The calculations begin with the Kolos-Wolneiwicz potential and use the Galitskii-FeynmanHartree-Fock (GFHF) approximation. The deuteron nucleas has spin I = 1, and spin states I/sub z/ = 1,0,-1. We explore D 1 , D 2 and D 3 in which, respectively, one spin state only is populated, two states are equally populated, and three states are equally populated. We find the GFHF describes D 1 well, but D 2 and D 3 less well. The Landau parameters, F/sub L/, are small compared to liquid 3 He and very small for doubly polarized D 1 (i.e. the F/sub L/ decrease with nuclear polarization)

  16. Free energy functionals for polarization fluctuations: Pekar factor revisited.

    Science.gov (United States)

    Dinpajooh, Mohammadhasan; Newton, Marshall D; Matyushov, Dmitry V

    2017-02-14

    The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar's perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parameter accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).

  17. Free energy functionals for polarization fluctuations: Pekar factor revisited

    International Nuclear Information System (INIS)

    Dinpajooh, Mohammadhasan; Newton, Marshall D.; Matyushov, Dmitry V.

    2017-01-01

    The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. This separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom, within dielectric continuum models. The main qualitative prediction of Pekar’s perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parameter accounting for the solvent effect on electron transfer. We study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. But, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).

  18. Neutron polarizing set-up of the Sofia IRT research reactor

    International Nuclear Information System (INIS)

    Krezhov, K.; Mikhajlova, V.; Okorokov, A.

    1990-01-01

    Neutron polarizing set-up of one of the horizontal beam tubes of the IRT-200 research reactor of the Bulgarian Institute of Nuclear Research and Nuclear Energy is presented. Neutron mirrors are extensively used in an effort to compensate the moderate reactor beam intensity by the high reflected intensity and wide-band transmittance of the mirror neutron guides. Time-to-flight technique using a slotted neutron absorbing chopper with a horizontal rotation axis has been applied to obtain the exit neutron spectra. Beam polarization and flipping ratios have been determined. Cadmium ratio in the polarized beam has been found almost 10 4 and the average polarization has been measured to be higher than 96%. 3 figs, 3 refs

  19. Study of the threshold anomaly in the scattering of polarized 7Li from 208Pb

    International Nuclear Information System (INIS)

    Martel, I.; Gomez-Camacho, J.; Blyth, C.O.; Davis, N.J.; Rusek, K.; Connell, K.A.; Lilley, J.S.; Bailey, M.W.

    1995-01-01

    Experimental data on elastic and inelastic analysing powers T 20 and inelastic cross sections for the scattering of polarized 7 Li from a 208 Pb target are presented. The experimental data are analyzed with DWBA and coupled channels calculations, which show the sensitivity of the experimental data to the real and imaginary parts of the nuclear transition form factor. This study reveals the existence of a threshold anomaly for the transition terms of the interaction. ((orig.))

  20. Elastic scattering of polarized protons by 20Ne between 4.5 Mev and 5.5 Mev

    International Nuclear Information System (INIS)

    Avila A, O.L.

    1979-01-01

    Starting with the study of 20 Ne(p,p) 20 nuclear reaction, we obtained information about the nuclear structure of 21 Na. The experiment was made at Notre Dame University; a target of 20 Ne was bombarded with polarized protons, changing the incident energy of them between 4.5 Mev and 5.5 Mev at intervals of 10 keV. Fourteen detectors were set covering angles from 35 degrees until 165 degrees, with intervals of 10 degrees each. In this form measurements for computing polarization and differential sections were obtained, with them an analysis of runnings of phase was made, and the parameters associated with two of the excited levels of the composed formed nucleous 21 Na, that are viewed as resonances in the section were settled; those resonances correspond to a level Psub(3/2) of energy excitation 6.877, a total width of 36 keV, and a level Fsub(7/2) of energy excitation 6.992 and total width of 48 keV. I hope that these results will be part of a set of values that will be utilized in order to confront them with the existent nuclear models. (author)

  1. Cognitive Targeting: A Coercive Air Power Theory for Conventional Escalation Control Against Nuclear Armed Adversaries

    Science.gov (United States)

    2016-06-01

    strategic,” in the cognitive targeting paradigm , are those that directly disable - in the strategic audience’s mind – the attractiveness or...This study analyses the applicability of three operational targeting paradigms to coerce a nuclear-armed adversary in a regional crisis, while...principles and elements of war and understand the coercive ability of utility targeting (a capabilities-based targeting paradigm , CBTP), axiological

  2. Thin-thick hydrogen target for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Gheller, J.-M.; Juster, F.-P.; Authelet, G. [CEA Saclay, Irfu/SACM, F-91191 Gif-Sur-Yvette cedex (France); Vinyar, I. [PELIN Limited Liability Company 27 A, Gzhatskaya Str, office 103 St. Petersbourg 195220 (Russian Federation); Relland, J. [CEA Saclay, Irfu/SIS, F-91191 Gif-Sur-Yvette cedex (France); Commeaux, C. [Institut de Physique Nucléaire, campus Universitaire-Bat 103, 91406 Orsay cedex (France)

    2014-01-29

    In spectroscopic studies of unstable nuclei, hydrogen targets are of key importance. The CHyMENE Project aims to provide to the nuclear physics community a thin and pure solid windowless hydrogen or deuterium target. CHyMENE project must respond to this request for the production of solid Hydrogen. The solid hydrogen target is produced in a continuous flow (1 cm/s) by an extrusion technique (developed with the PELIN laboratory) in a vacuum chamber. The shape of the target is determined by the design of the nozzle at the extrusion process. For the purpose, the choice is a rectangular shape with a width of 10 mm and a thickness in the range of 30-50 microns necessary for the physics objectives. The cryostat is equipped with a GM Cryocooler with sufficient power for the solidification of the hydrogen in the lower portion of the extruder. In the higher part of the cryostat, the hydrogen gas is first liquefied and partially solidified. It is then compressed at 100 bars in the cooled extruder before expulsion of the film through the nozzle at the center of the reaction vacuum chamber. After the previous step, the solid hydrogen ribbon falls by gravity into a dedicated chamber where it sublimes and the gas is pumped and evacuated in a exhaust line. This paper deals with the design of the cryostat with its equipment, with the sizing of the thermal bridge (Aluminum and copper), with the results regarding the contact resistance as well as with the vacuum computations of the reaction and recovery hydrogen gas chambers.

  3. Using polarized positrons to probe physics beyond the standard model

    Science.gov (United States)

    Furletova, Yulia; Mantry, Sonny

    2018-05-01

    A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. A comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C3u - C3d and would complement the proposed plan for a precision extraction of the combination 2C2u - Cd at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e+ → τ+ transitions in a manner that is independent and complementary to the proposed e- → τ- search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e+ + e- → A' + γ.

  4. Nuclear targeting by fragmentation of the Potato spindle tuber viroid genome

    International Nuclear Information System (INIS)

    Abraitiene, Asta; Zhao Yan; Hammond, Rosemarie

    2008-01-01

    Transient expression of engineered reporter RNAs encoding an intron-containing green fluorescent protein (GFP) from a Potato virus X-based expression vector previously demonstrated the nuclear targeting capability of the 359 nucleotide Potato spindle tuber viroid (PSTVd) RNA genome. To further delimit the putative nuclear-targeting signal, PSTVd subgenomic fragments were embedded within the intron, and recombinant reporter RNAs were inoculated onto Nicotiana benthamiana plants. Appearance of green fluorescence in leaf tissue inoculated with PSTVd-fragment-containing constructs indicated shuttling of the RNA into the nucleus by fragments as short as 80 nucleotides in length. Plant-to-plant variation in the timing of intron removal and subsequent GFP fluorescence was observed; however, earliest and most abundant GFP expression was obtained with constructs containing the conserved hairpin I palindrome structure and embedded upper central conserved region. Our results suggest that this conserved sequence and/or the stem-loop structure it forms is sufficient for import of PSTVd into the nucleus

  5. Behavior of tight-junction, adherens-junction and cell polarity proteins during HNF-4α-induced epithelial polarization

    International Nuclear Information System (INIS)

    Satohisa, Seiro; Chiba, Hideki; Osanai, Makoto; Ohno, Shigeo; Kojima, Takashi; Saito, Tsuyoshi; Sawada, Norimasa

    2005-01-01

    We previously reported that expression of tight-junction molecules occludin, claudin-6 and claudin-7, as well as establishment of epithelial polarity, was triggered in mouse F9 cells expressing hepatocyte nuclear factor (HNF)-4α [H. Chiba, T. Gotoh, T. Kojima, S. Satohisa, K. Kikuchi, M. Osanai, N. Sawada. Hepatocyte nuclear factor (HNF)-4α triggers formation of functional tight junctions and establishment of polarized epithelial morphology in F9 embryonal carcinoma cells, Exp. Cell Res. 286 (2003) 288-297]. Using these cells, we examined in the present study behavior of tight-junction, adherens-junction and cell polarity proteins and elucidated the molecular mechanism behind HNF-4α-initiated junction formation and epithelial polarization. We herein show that not only ZO-1 and ZO-2, but also ZO-3, junctional adhesion molecule (JAM)-B, JAM-C and cell polarity proteins PAR-3, PAR-6 and atypical protein kinase C (aPKC) accumulate at primordial adherens junctions in undifferentiated F9 cells. In contrast, CRB3, Pals1 and PATJ appeared to exhibit distinct subcellular localization in immature cells. Induced expression of HNF-4α led to translocation of these tight-junction and cell polarity proteins to beltlike tight junctions, where occludin, claudin-6 and claudin-7 were assembled, in differentiated cells. Interestingly, PAR-6, aPKC, CRB3 and Pals1, but not PAR-3 or PATJ, were also concentrated on the apical membranes in differentiated cells. These findings indicate that HNF-4α provokes not only expression of tight-junction adhesion molecules, but also modulation of subcellular distribution of junction and cell polarity proteins, resulting in junction formation and epithelial polarization

  6. Polarized proton collider at RHIC

    International Nuclear Information System (INIS)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S.Y.; Luccio, A.; MacKay, W.W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.N.

    2003-01-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998, reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to √s=500 GeV

  7. Semileptonic weak and electromagnetic interactions in nuclei: recoil polarization in muon capture

    International Nuclear Information System (INIS)

    Rosenfelder, R.

    1979-01-01

    An analysis of the polarization of the recoiling nucleus following the capture of polarized muons by nuclei is performed. New general expressions for arbitrary nuclear spin are obtained in terms of the same reduced matrix elements which govern inelastic electron scattering and β-decay. As an application the A = 12 system is considered and uncertainties in the nuclear structure are studied by using different sets of one-body density matrices. With the canonical values of the weak form factors (i.e. absence of second-class currents) a fairly good agreement with the experimental data is achieved including the inelastic form factor at high momentum transfers and the recently measured average 12 B polarization. Implications of the new corrected value of the average polarization on weak form factors and nuclear structure are discussed. (Auth.)

  8. Protein Targeting: ER Leads the Way to the Inner Nuclear Envelope.

    Science.gov (United States)

    Blackstone, Craig

    2017-12-04

    Efficient targeting of newly synthesized membrane proteins from the endoplasmic reticulum to the inner nuclear membrane depends on nucleotide hydrolysis. A new study shows that this dependence reflects critical actions of the atlastin family of GTPases in maintaining the morphology of the endoplasmic reticulum network. Published by Elsevier Ltd.

  9. Radioactive targets for nuclear astrophysics research at LANSCE

    International Nuclear Information System (INIS)

    Koehler, P.E.; O'Brien, H.A.; Gursky, J.C.

    1990-01-01

    During the past few years we have made measurements of (n,p) and (n,α) cross sections on several radioactive nuclei of importance to nuclear astrophysics. The measurements were made at the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE) from thermal neutron energy to approximately 100 keV. Successful measurements have been completed on the radioisotopes 7 Be, 22 Na and 36 Cl while preliminary data have been taken on targets of 54 Mn and 55 Fe. Similar measurements have also been made on the stable isotopes 14 N, 17 O and 35 Cl. We are currently assembling a 4π barium fluoride (BaF 2 ) detector which will allow us to expand our program to (n,γ) measurements. The (n,γ) (and in some cases future (n,p)) measurements will require targets with higher specific activity and greater chemical purity than we have so far been able to use. We discuss the fabrication techniques used for the samples produced so far, the requirements the future (n,γ) targets must meet and our current plans for producing them, and the physics motivations for the measurements

  10. Nuclear safety targets and problems of social acceptability

    International Nuclear Information System (INIS)

    Macgill, S.M.

    1989-01-01

    The following are among the factors which make the problem of setting acceptable safety targets for societal protection from possible nuclear accidents one of such formidable proportion: The varied and often conflicting positions among and between the many constituencies with a claim to interest in the problem: local, national and international populations; lay, workplace and professional communities; private and public interests; active environmental lobbies and intentionally passive publics; powerful influences and politically unprivileged classes; press and mass media. To seek 'acceptability' of safety targets through common consensus is problematised by the difficulty in overcoming the immense social and historical forces that give rise to the prevailing contrariety among different people's positions. To seek resolution of differences by some appropriate weighting of the different views of different constituencies is problematised by the lack of unique identification of what the constituencies are, by the difficulty in faithfully representing their views, and by the absence of 'laws of social entitlement' vis-a-vis the weight that should be given to each. In sum, the problem of setting socially acceptable safety targets is itself bound up with inherently open ended questions of democracy and representation. (author)

  11. IMPACT OF ENERGY GROUP STRUCTURE ON NUCLEAR DATA TARGET ACCURACY REQUIREMENTS FOR ADVANCED REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    G. Palmiotti; M. Salvatores; H. Hiruta

    2011-06-01

    A target accuracy assessment study using both a fine and a broad energy structure has shown that less stringent nuclear data accuracy requirements are needed for the latter energy structure. However, even though a reduction is observed, still the requirements will be very difficult to be met unless integral experiments are also used to reduce nuclear data uncertainties. Target accuracy assessment is the inverse problem of the uncertainty evaluation. To establish priorities and target accuracies on data uncertainty reduction, a formal approach can be adopted by defining target accuracy on design parameters and finding out required accuracy on data in order to meet them. In fact, the unknown uncertainty data requirements can be obtained by solving a minimization problem where the sensitivity coefficients in conjunction with the constraints on the integral parameters provide the needed quantities for finding the solutions.

  12. In Vitro Evaluation of Molecular Tumor Targets in Nuclear Medicine: Immunohistochemistry Is One Option, but Under Which Conditions?

    Science.gov (United States)

    Reubi, Jean Claude

    2017-12-01

    The identification of new molecular targets for diagnostic and therapeutic applications using in vitro methods is an important challenge in nuclear medicine. One such method is immunohistochemistry, increasingly popular because it is easy to perform. This review presents the case for conducting receptor immunohistochemistry to evaluate potential molecular targets in human tumor tissue sections. The focus is on the immunohistochemistry of G-protein-coupled receptors, one of the largest families of cell surface proteins, representing a major class of drug targets and thus playing an important role in nuclear medicine. This review identifies common pitfalls and challenges and provides guidelines on performing such immunohistochemical studies. An appropriate validation of the target is a prerequisite for developing robust and informative new molecular probes. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  13. Tests of Micro-Pattern Gaseous Detectors for active target time projection chambers in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Damoy, S.; Perez Loureiro, D. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Chambert, V.; Dorangeville, F. [IPNO, CNRS/IN2P3, Orsay (France); Druillole, F. [CEA, DSM/Irfu/SEDI, Gif-Sur-Yvette (France); Grinyer, G.F. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Lermitage, A.; Maroni, A.; Noël, G. [IPNO, CNRS/IN2P3, Orsay (France); Porte, C.; Roger, T. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Rosier, P. [IPNO, CNRS/IN2P3, Orsay (France); Suen, L. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France)

    2014-01-21

    Active target detection systems, where the gas used as the detection medium is also a target for nuclear reactions, have been used for a wide variety of nuclear physics applications since the eighties. Improvements in Micro-Pattern Gaseous Detectors (MPGDs) and in micro-electronics achieved in the last decade permit the development of a new generation of active targets with higher granularity pad planes that allow spatial and time information to be determined with unprecedented accuracy. A novel active target and time projection chamber (ACTAR TPC), that will be used to study reactions and decays of exotic nuclei at facilities such as SPIRAL2, is presently under development and will be based on MPGD technology. Several MPGDs (Micromegas and Thick GEM) coupled to a 2×2 mm{sup 2} pixelated pad plane have been tested and their performances have been determined with different gases over a wide range of pressures. Of particular interest for nuclear physics experiments are the angular and energy resolutions. The angular resolution has been determined to be better than 1° FWHM for short traces of about 4 cm in length and the energy resolution deduced from the particle range was found to be better than 5% for 5.5 MeV α particles. These performances have been compared to Geant4 simulations. These experimental results validate the use of these detectors for several applications in nuclear physics.

  14. Tests of Micro-Pattern Gaseous Detectors for active target time projection chambers in nuclear physics

    International Nuclear Information System (INIS)

    Pancin, J.; Damoy, S.; Perez Loureiro, D.; Chambert, V.; Dorangeville, F.; Druillole, F.; Grinyer, G.F.; Lermitage, A.; Maroni, A.; Noël, G.; Porte, C.; Roger, T.; Rosier, P.; Suen, L.

    2014-01-01

    Active target detection systems, where the gas used as the detection medium is also a target for nuclear reactions, have been used for a wide variety of nuclear physics applications since the eighties. Improvements in Micro-Pattern Gaseous Detectors (MPGDs) and in micro-electronics achieved in the last decade permit the development of a new generation of active targets with higher granularity pad planes that allow spatial and time information to be determined with unprecedented accuracy. A novel active target and time projection chamber (ACTAR TPC), that will be used to study reactions and decays of exotic nuclei at facilities such as SPIRAL2, is presently under development and will be based on MPGD technology. Several MPGDs (Micromegas and Thick GEM) coupled to a 2×2 mm 2 pixelated pad plane have been tested and their performances have been determined with different gases over a wide range of pressures. Of particular interest for nuclear physics experiments are the angular and energy resolutions. The angular resolution has been determined to be better than 1° FWHM for short traces of about 4 cm in length and the energy resolution deduced from the particle range was found to be better than 5% for 5.5 MeV α particles. These performances have been compared to Geant4 simulations. These experimental results validate the use of these detectors for several applications in nuclear physics

  15. Spin polarized 3He: a ''new'' quantum fluid

    International Nuclear Information System (INIS)

    Lhuillier, C.; Laloe, F.

    1979-01-01

    The physical properties of a 3 He fluid are studied, in which all nuclear spins are parallel to each other (fully polarized 3 He). At low temperatures, significant differences can exist between this polarized fluid and normal 3 He. The origin of these differences is purely quantum mechanical and arises from the Pauli exclusion principle. At low densities, only the transport properties of the gas are modified. At higher densities. The equilibrium properties (virial coefficients) are also changed by the nuclear polarization. Changes of the liquid-vapour or liquid-solid equilibrium pressures, as well as modifications of the 3 He- 4 He mixture phase diagram are predicted. This article gives a preliminary theoretical study of these new effects. Experimental prospects are briefly discussed [fr

  16. Scatterings and reactions by means of polarized neutron beam

    International Nuclear Information System (INIS)

    Koori, N.

    1989-01-01

    A high resolution polarized neutron beam should be prepared for nuclear physics, which will be planned with the new ring cyclotron at RCNP. Studies on scatterings and reactions by means of polarized neutron beams are reviewed briefly. Beam lines for polarized neutrons are summarized. An example of high resolution measurements of neutron induced reactions is described. (author)

  17. Inhibition of CRM1-mediated nuclear export of influenza A nucleoprotein and nuclear export protein as a novel target for antiviral drug development.

    Science.gov (United States)

    Chutiwitoonchai, Nopporn; Mano, Takafumi; Kakisaka, Michinori; Sato, Hirotaka; Kondoh, Yasumitsu; Osada, Hiroyuki; Kotani, Osamu; Yokoyama, Masaru; Sato, Hironori; Aida, Yoko

    2017-07-01

    An anti-influenza compound, DP2392-E10 based on inhibition of the nuclear export function of the viral nucleoprotein-nuclear export signal 3 (NP-NES3) domain was successfully identified by our previous high-throughput screening system. Here, we demonstrated that DP2392-E10 exerts its antiviral effect by inhibiting replication of a broad range of influenza A subtypes. In regard to the molecular mechanism, we revealed that DP2392-E10 inhibits nuclear export of both viral NP and nuclear export protein (NEP). More specifically, in vitro pull-down assays revealed that DP2392-E10 directly binds cellular CRM1, which mediates nuclear export of NP and NEP. In silico docking suggested that DP2392-E10 binds at a region close to the HEAT9 and HEAT10 domains of CRM1. Together, these results indicate that the CRM1-mediated nuclear export function of influenza virus represents a new potential target for antiviral drug development, and also provide a core structure for a novel class of inhibitors that target this function. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day.

    Science.gov (United States)

    Albert, Brice J; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L; Rand, Peter W; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Barnes, Alexander B

    2017-10-01

    Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Marine target detection in quad-pol synthetic aperture radar imagery based on the relative phase of cross-polarized channels

    Science.gov (United States)

    Wang, Yunhua; Li, Huimin; Zhang, Yanmin; Guo, Lixin

    2015-01-01

    A focus on marine target detection in noise corrupted fully polarimetric synthetic aperture radar (SAR) is presented. The property of the relative phase between two cross-polarized channels reveals that the relative phases evaluated within sea surface area or noise corrupted area are widely spread phase angle region [-π,π] due to decorrelation effect; however, the relative phases are concentrated to zero and ±π for real target and its first-order azimuth ambiguities (FOAAs), respectively. Exploiting this physical behavior, the reciprocal of the mean square value of the relative phase (RMSRP) is defined as a new parameter for target detection, and the experiments based on fully polarimetric Radarsat-2 SAR images show that the strong noise and the FOAAs can be effectively suppressed in RMSRP image. Meanwhile, validity of the new parameter for target detection is also verified by two typical Radarsat-2 SAR images, in which targets' ambiguities and strong noise are present.

  20. EPIC - an electron-polarized ion collider

    International Nuclear Information System (INIS)

    Cameron, J.M.

    1999-01-01

    As discussed earlier in this workshop, we have been studying at the Indiana University Cyclotron Facility (IUCF) for some time the potential of a facility-the Light Ion Spin Synchrotron (LISS)- focusing on reactions induced by polarized nucleons at ∼ 1 to 20 GeV. The technology would extrapolate from what we have learned using our existing Cooler ring using internal polarized targets. Indeed, these techniques are most viable at higher energies where the loss of the stored beam is due to the nuclear reactions which are of interest and not that of multiple Coulomb scattering which dominate in our present energy range. However, while the internal targets are not exactly fixed, they certainly do not contribute to the available energy in the center of momentum frame. Consequently, the energy and momentum which can be effective explored are 6 GeV and 3 GeV/c respectively, about the same range that we expect to explore using electromagnetic probes using the enhanced Thomas Jefferson National Accelerator Laboratory electron beam. Looking at the structure of hadrons, as we currently understand it, one can divide it into four size scales. The LISS facility would permit studies of the manifestation of the nucleon substructure but generally would not get to scales where one would only have incoherent interactions at the partonic level. Following in a path already trodden by our European colleagues, we have recently started to look at the possibility of adding an electronic collider option to our plans. This would significantly increase the kinematic range, with 25 GeV protons and 4 GeV electrons (one gets over 20 GeV in the center of mass-equivalent to about 200 GeV on a fixed proton target). The accessible range provides coverage up to Q 2 = 20 GeV/ c 2 and down to x ∼ 10 -2 (here x = Q 2 /2Mv, the usual Bjorken scaling variable). As the energy of both beams would be variable, one can cover the whole range between HERMES and CERN/FNAL muon beams. Examples of the range of