WorldWideScience

Sample records for polarized neutron study

  1. Layered magnets: polarized neutron reflection studies

    Energy Technology Data Exchange (ETDEWEB)

    Zabel, H; Schreyer, A [Ruhr-Univ. Bochum, Lehrstuhl fuer Experimentalphysik/Festkoerperphysik, Bochum (Germany)

    1996-11-01

    Neutron reflectivity measurements from extended surfaces, thin films and superlattices provide information on the chemical profile parallel to the film normal, including film thicknesses, average composition and interfacial roughness parameters. Reflectivity measurements with polarized neutrons are particularly powerful for analyzing the magnetic density profiles in thin films and superlattices in addition to chemical profiles. The basic theory of polarized neutron reflectivity is provided, followed by some examples and more recent applications concerning polarized neutron reflectivity studies from exchange coupled Fe/Cr superlattices. (author) 5 figs., 13 refs.

  2. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  3. Study on condensed media with polarized neutrons

    International Nuclear Information System (INIS)

    Drabkin, G.M.

    1974-01-01

    In this paper are considered the results of a study of the secondary magnetic superstructure of ferromagnets in the phase transition region by means of polarized neutrons. The results obtained are compared with experimental data

  4. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  5. Polarized Epithermal Neutron Studies of Magnetic Domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Yu. D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; Roberson, N.R.

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV< En<100eV), which process more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurements at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target

  6. Polarized epithermal neutron studies of magnetic domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Y.D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina; Roberson, N.R.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV n <100eV), which precess more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurement at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59 eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target. copyright 1997 American Institute of Physics

  7. A neutron beam polarizer for study of parity violation in neutron-nucleus interactions

    International Nuclear Information System (INIS)

    Penttilae, S.I.; Bowman, J.D.; Delheij, P.P.; Frankle, C.M.; Haase, D.G.; Postma, H.; Seestrom, S.J.; Yen, Y.

    1995-01-01

    A dynamically-polarized proton target operating at 5 Tesla and 1 K has been built to polarize an epithermal neutron beam for studies of parity violation in compound-nuclear resonances. Nearly 0.9 proton polarization was obtained in an electron-beam irradiated ammonia target. This was used to produce a neutron beam polarization of 0.7 at epithermal energies. The combination of the polarized proton target and the LANSCE spallation neutron source produces the most intense pulsed polarized epithermal neutron beam in the world. The neutron-beam polarizer is described and methods to determine neutron beam polarization are presented. copyright 1995 American Institute of Physics

  8. A neutron beam polarizer for study of parity violation in neutron-nucleus interactions

    International Nuclear Information System (INIS)

    Penttilae, S.I.; Bowman, J.D.; Frankle, C.M.; Seestrom, S.J.; Yen, Yi-Fen; Delheij, P.P.J.; Haase, D.G.; Postma, H.

    1994-01-01

    A dynamically-polarized proton target operating at 5 Tesla and 1 K has been built to, neutron beam for studies of parity violation in compound-nuclear resonances. Nearly 0.9 proton polarization was obtained in an electron-beam irradiated ammonia target. This was used to produce a neutron beam polarization of 0.7 at epithermal energies. The combination of the polarized proton target and the LANSCE spallation neutron source produces the most intense pulsed polarized epithermal neutron beam in the world. The neutron-beam polarizer is described and methods to determine neutron beam polarization are presented

  9. Exchange bias studied with polarized neutron reflectivity

    International Nuclear Information System (INIS)

    Velthuis, S. G. E. te

    2000-01-01

    The role of Polarized Neutron Reflectivity (PNR) for studying natural and synthetic exchange biased systems is illustrated. For a partially oxidized thin film of Co, cycling of the magnetic field causes a considerable reduction of the bias, which the onset of diffuse neutron scattering shows to be due to the loosening of the ferromagnetic domains. On the other hand, PNR measurements of a model exchange bias junction consisting of an n-layered Fe/Cr antiferromagnetic (AF) superlattice coupled with an m-layered Fe/Cr ferromagnetic (F) superlattice confirm the predicted collinear magnetization in the two superlattices. The two magnetized states of the F (along or opposite to the bias field) differ only in the relative orientation of the F and adjacent AF layer. The possibility of reading clearly the magnetic state at the interface pinpoints the commanding role that PNR is having in solving this intriguing problem

  10. Neutron depolarization studies on magnetization process using pulsed polarized neutrons

    International Nuclear Information System (INIS)

    Mitsuda, Setsuo; Endoh, Yasuo

    1985-01-01

    Neutron depolarization experiments investigating the magnetization processes have been performed by using pulsed polarized neutrons for the first time. Results on both quenched and annealed ferromagnets of Fe 85 Cr 15 alloy indicate the significant difference in the wavelength dependence of depolarization between them. It also constitutes the experimental demonstration of the theoretical prediction of Halpern and Holstein. (author)

  11. Polarized neutron spectrometer

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.

    2000-01-01

    The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru

  12. Nuclear polarization and neutrons

    International Nuclear Information System (INIS)

    Glaettli, H.

    1985-01-01

    Different possibilities for the use of polarized nuclei in thermal neutron scattering on condensed matter are reviewed. Highly polarized nuclei are the starting point for studying dipolar magnetic order. Systematic measurement of spin-dependent scattering lengths is possible on samples with polarized nuclei. Highly polarized hydrogen should help to unravel complicated structures in chemistry and biology. The use of polarized proton targets as an energy-independent neutron polarizer in the thermal and epithermal region should be considered afresh. (author)

  13. Instrumentation with polarized neutrons

    International Nuclear Information System (INIS)

    Boeni, P.; Muenzer, W.; Ostermann, A.

    2009-01-01

    Neutron scattering with polarization analysis is an indispensable tool for the investigation of novel materials exhibiting electronic, magnetic, and orbital degrees of freedom. In addition, polarized neutrons are necessary for neutron spin precession techniques that path the way to obtain extremely high resolution in space and time. Last but not least, polarized neutrons are being used for fundamental studies as well as very recently for neutron imaging. Many years ago, neutron beam lines were simply adapted for polarized beam applications by adding polarizing elements leading usually to unacceptable losses in neutron intensity. Recently, an increasing number of beam lines are designed such that an optimum use of polarized neutrons is facilitated. In addition, marked progress has been obtained in the technology of 3 He polarizers and the reflectivity of large-m supermirrors. Therefore, if properly designed, only factors of approximately 2-3 in neutron intensity are lost. It is shown that S-benders provide neutron beams with an almost wavelength independent polarization. Using twin cavities, polarized beams with a homogeneous phase space and P>0.99 can be produced without significantly sacrificing intensity. It is argued that elliptic guides, which are coated with large m polarizing supermirrors, provide the highest flux.

  14. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  15. Applications of polarized neutrons

    International Nuclear Information System (INIS)

    Mezei, F.

    1993-01-01

    The additional spin degree of freedom of the neutron can be made use of in neutron scattering work in two fundamental ways: (a) directly for the identification of magnetic scattering effects and (b) indirectly as a spectroscopic tool for modulating and analysing beams. Although strong magnetic scattering contributions can often be studied by unpolarized neutrons, a fully unambiguous separation of nuclear and magnetic phenomena can only be achieved by the additional information provided by polarized neutrons, especially if one of the two kinds of contributions is weak compared to the other. In the most general case a sample with both magnetic and nuclear features can be characterized by as many as 16 independent dynamic correlation functions instead of the single well known S(q, ω) for non-magnetic nuclear scattering only. Polarization analysis in principle allows one to determine all these 16 functions. The indirect applications of polarized neutrons are also steadily gaining importance. The most widely used method of this kind, the application of Larmor precessions for high resolution energy analysis in Neutron Spin Echo spectroscopy opened up a whole new domain in inelastic neutron scattering which was not accessible to any other spectroscopic method with or without neutrons before. (author)

  16. Polarized neutron study of TbNi2

    International Nuclear Information System (INIS)

    Givord, D.; Givord, F.; Gignoux, D.; Koehler, W.C.; Moon, R.M.

    1976-01-01

    Neutron diffraction experiments have been carried out on a TbNi 2 single crystal. Below the Curie temperature, 42 K, a magnetic contribution is observed only on nuclear scattering peaks. Therefore, the terbium atoms form a ferromagnetic structure. Polarized neutron measurements performed in the paramagnetic state, in an applied magnetic field of 57 kOe, reveal a non-uniform polarization of the conduction band. Within the experimental accuracy, no 3d magnetic moment is observed on nickel atoms. This result is consistent with the assumption of rare earth magnetic ordering occurring through the polarization of conduction electrons. (author)

  17. Workshop on polarized neutron filters and polarized pulsed neutron experiments

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2004-07-01

    The workshop was held in KEK by thirty-three participants on April 26, 2004. The polarized neutron filter method was only discussed. It consists of three parts; the first part was discussed on the polarized neutron methods, the second part on the polarized neutron experiments and the third on the pulse neutron spectrometer and polarized neutron experiments. The six papers were presented such as the polarized 3 He neutron spin filter, neutron polarization by proton polarized filter, soft master and neutron scattering, polarized neutron in solid physics, polarization experiments by chopper spectroscope and neutron polarization system in superHRPD. (S.Y.)

  18. The representation of neutron polarization

    International Nuclear Information System (INIS)

    Byrne, J.

    1979-01-01

    Neutron beam polarization representation is discussed under the headings; transfer matrices, coherent parity violation for neutrons, neutron spin rotation in helical magnetic fields, polarization and interference. (UK)

  19. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  20. Scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Schweizer, J.

    2007-01-01

    In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)

  1. Nuclear studies at TUNL using polarized neutron beams

    International Nuclear Information System (INIS)

    Walter, R.L.; Howell, C.R.; Tornow, W.

    1992-01-01

    Experimental data obtained using polarized neutron beams has proven to be essential for determining the nucleon-nucleon and the nucleon-nucleus interaction. The present paper reviews the experimental methods and some results of the Triangle Universities Nuclear Laboratory for a variety of polarization experiments involving neutron elastic scattering. A brief introduction to the nucleon-nucleon problem and its relation to the three-nucleon problem is presented; data for n-p and n-d analyzing powers are highlighted. Measurements involving heavier targets ( 93 Nb and 208 Pb) and their connection to the development of conventional and dispersive optical models are shown. The importance of the dispersive model for 27 Al in relation to conclusions about the nucleon-nucleus spin-spin potential is presented. Comparisons of microscopic models to data for 10 B and 28 Si are described

  2. Polarized Neutron Scattering

    OpenAIRE

    Roessli, B.; Böni, P.

    2000-01-01

    The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.

  3. SUSANS With Polarized Neutrons.

    Science.gov (United States)

    Wagh, Apoorva G; Rakhecha, Veer Chand; Strobl, Makus; Treimer, Wolfgang

    2005-01-01

    Super Ultra-Small Angle Neutron Scattering (SUSANS) studies over wave vector transfers of 10(-4) nm(-1) to 10(-3) nm(-1) afford information on micrometer-size agglomerates in samples. Using a right-angled magnetic air prism, we have achieved a separation of ≈10 arcsec between ≈2 arcsec wide up- and down-spin peaks of 0.54 nm neutrons. The SUSANS instrument has thus been equipped with the polarized neutron option. The samples are placed in a uniform vertical field of 8.8 × 10(4) A/m (1.1 kOe). Several magnetic alloy ribbon samples broaden the up-spin neutron peak significantly over the ±1.3 × 10(-3) nm(-1) range, while leaving the down-spin peak essentially unaltered. Fourier transforms of these SUSANS spectra corrected for the instrument resolution, yield micrometer-range pair distribution functions for up- and down-spin neutrons as well as the nuclear and magnetic scattering length density distributions in the samples.

  4. Polarized neutron reflectivity and scattering studies of magnetic heterostructures

    International Nuclear Information System (INIS)

    Zabel, H; Theis-Broehl, K

    2003-01-01

    The current interest in the magnetism of ultrathin films and multilayers is driven by their manifold applications in the magneto-and spin-electronic areas, for instance as magnetic field sensors or as information storage devices. In this regard, there is a large interest in exploring spin structures and spin disorder at the interface of magnetic heterostructures, to investigate magnetic domains in thin films and superlattices, and to understand remagnetization processes of various laterally shaped magnetic nanostructures. Traditionally neutron scattering has played a dominant role in the determination of spin structures, phase transitions and magnetic excitations in bulk materials. Today, its potential for the investigation of thin magnetic films has to be redefined. Polarized neutron reflectivity (PNR) at small wavevectors can provide precise information on the magnetic field distribution parallel to the film plane and on layer resolved magnetization vectors. In addition, PNR is not only sensitive to structural interface roughness but also to the magnetic roughness. Furthermore, magnetic hysteresis measurements from polarized small angle Bragg reflections allows us to filter out correlation effects during magnetization reversals of magnetic stripes and islands. An overview is provided on most recent PNR investigations of magnetic heterostructures

  5. GUIDE FOR POLARIZED NEUTRONS

    Science.gov (United States)

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  6. Imaging with Polarized Neutrons

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2018-01-01

    Full Text Available Owing to their zero charge, neutrons are able to pass through thick layers of matter (typically several centimeters while being sensitive to magnetic fields due to their intrinsic magnetic moment. Therefore, in addition to the conventional attenuation contrast image, the magnetic field inside and around a sample can be visualized by detecting changes of polarization in a transmitted beam. The method is based on the spatially resolved measurement of the cumulative precession angles of a collimated, polarized, monochromatic neutron beam that traverses a magnetic field or sample.

  7. Optical neutron polarizers

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1990-01-01

    A neutron wave will be refracted by an appropriately varying potential. Optical neutron polarizers use spatially varying, spin- dependent potentials to refract neutrons of opposite spin states into different directions, so that an unpolarized beam will be split into two beams of complementary polarization by such a device. This paper will concentrate on two methods of producing spin-dependent potentials which are particularly well-suited to polarizing cold neutron beams, namely thin-film structures and field-gradient techniques. Thin-film optical devices, such as supermirror multilayer structures, are usually designed to deviate only one spin-state, so that they offer the possibility of making insertion (transmission) polarizers. Very good supermirrors may now be designed and fabricated, but it is not always straightforward to design mirror-based devices which are useful in real (divergent beam) applications, and some practical configurations will be discussed. Field-gradient devices, which are usually based on multipolar magnets, have tended to be too expensive for general use, but this may change with new developments in superconductivity. Dipolar and hexapolar configurations will be considered, with emphasis on the focusing characteristics of the latter. 21 refs., 7 figs

  8. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2000-01-01

    The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li(p,n) 7 Be, and T(p,n) 3 He reactions. (authors)

  9. General analysis for experimental studies of time-reversal-violating effects in slow neutron propagation through polarized matter

    International Nuclear Information System (INIS)

    Lamoreaux, S.K.; Golub, R.

    1994-01-01

    A general technique is developed for the analysis of proposed experimental studies of possible P,T-violating effects in the neutron-nucleus interaction based on low-energy neutron transmission through polarized matter. The analysis is applied to proposed experimental schemes and we determine the levels at which the absolute neutron polarization, magnetic fields, and target polarization must be controlled in order for these experiments to obtain a given sensitivity to P,T-violating effects

  10. Time reversal tests in polarized neutron reactions

    International Nuclear Information System (INIS)

    Asahi, Koichiro; Bowman, J.D.; Crawford, B.

    1998-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In recent years the nuclear weak interaction has been studied in the compound nucleus via parity violation. The observed parity-violating effects are strongly enhanced by nuclear structure. The predictions are that the interaction of polarized neutrons with polarized nuclear targets could be also used to perform sensitive tests of time-reversal-violation because of the nuclear enhancements. The author has designed experiments to search for time-reversal violation in neutron-nucleus interactions. He has also developed techniques to polarize neutrons with laser-polarized 3 He gas targets. Using the polarized 3 He neutron spin filter, he has performed two experiments at LANSCE: an absolute neutron beam polarization measurement with an accuracy of 0.2--0.3% and a neutron spin-rotation measurement on a 139 La sample

  11. The polarization of fast neutrons

    International Nuclear Information System (INIS)

    Talov, V.V.

    2001-01-01

    It is insufficient to know coordinates and momentum to describe a state of a neutron. It is necessary to define a spin orientation. As far as it is known from quantum mechanics, a half spin has a projection in the positive direction or in the negative direction. The probability of both projections in an unpolarized beam is equal. If a direction exists, in which the projection is more probably then beam is called polarized in this direction. It is essential to know polarization of neutrons for characteristics of a neutron source, which is emitting it. The question of polarization of fast neutrons came up in 50's. The present work is the review of polarization of fast neutrons and methods of polarization analysis. This also includes information about polarization of fast neutrons from first papers, which described polarization in the D(d,n) 3 He, 7 Li (p,n) 7 Be, T(p,n) 3 He reactions. (authors)

  12. Anomalous spin distribution in the superconducting ferromagnet UCoGe studied by polarized neutron diffraction

    NARCIS (Netherlands)

    Prokeš, K.; de Visser, A.; Huang, Y.K.; Fåk, B.; Ressouche, E.

    2010-01-01

    We report a polarized neutron-diffraction study conducted to reveal the nature of the weak ferromagnetic moment in the superconducting ferromagnet UCoGe. We find that the ordered moment in the normal phase in low magnetic fields (B∥c) is predominantly located at the U atom and has a magnitude of

  13. A polarizing neutron periscope for neutron imaging

    International Nuclear Information System (INIS)

    Schulz, Michael; Boeni, Peter; Calzada, Elbio; Muehlbauer, Martin; Neubauer, Andreas; Schillinger, Burkhard

    2009-01-01

    Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.

  14. Polarizing neutron by light-irradiated graphene

    International Nuclear Information System (INIS)

    Peng, Feng

    2015-01-01

    We study the spin orientation of the neutron scattered by light-irradiated graphene and calculate the average value of spin z-component of the neutron in terms of a generating functional technique. Our calculation results indicate that there is a remarkable neutron polarization effect when a neutron penetrates graphene irradiated by a circularly polarized light. We analyse the dynamical source of generating this effect from the aspect of photon-mediated interaction between the neutron spin and valley pseudospin. By comparing with the polarization induced by a magnetic field, we find that this polarization may be equivalent to the one led by a magnetic field of several hundred Teslas if the photon frequency is in the X-ray frequency range. This provides an approach of polarizing neutrons. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. The electron-spin--nuclear-spin interaction studied by polarized neutron scattering.

    Science.gov (United States)

    Stuhrmann, Heinrich B

    2007-11-01

    Dynamic nuclear spin polarization (DNP) is mediated by the dipolar interaction of paramagnetic centres with nuclear spins. This process is most likely to occur near paramagnetic centres at an angle close to 45 degrees with respect to the direction of the external magnetic field. The resulting distribution of polarized nuclear spins leads to an anisotropy of the polarized neutron scattering pattern, even with randomly oriented radical molecules. The corresponding cross section of polarized coherent neutron scattering in terms of a multipole expansion is derived for radical molecules in solution. An application using data of time-resolved polarized neutron scattering from an organic chromium(V) molecule is tested.

  16. Polarized Neutron Studies on Antiferromagnetic Single Crystals: Technical Report No. 4

    Science.gov (United States)

    Nathans, R.; Riste, T.; Shirane, G.; Shull, C.G.

    1958-11-26

    The theory of neutron scattering by magnetic crystals as given by Halpern and Johnson predicts changes in the polarization state of the neutron beam upon scattering which depend upon the relative orientation of the neutron polarization vector and the crystal magnetic axis. This was investigated experimentally with a polarized beam spectrometer using single crystals of Cr{sub 2}O{sub 3} and alpha - Fe{sub 2}O{sub 3} in which reside unique antiferromagnetic axes. Studies were made on several different reflections in both crystals for a number of different temperatures both below and above the Neel point. Results support the theoretical predictions and indicate directions for the moments in these crystals consistent with previous work. A more detailed study of the polarization changes in the (111) reflection in alpha - Fe{sub 2}O{sub 3} at room temperature on application of a magnetic field was carried out, The results indicate that the principal source of the parasitic ferromagnetism in hematite is essentially independent of the orientation of the antiferromagnetic domains within the crystal.

  17. Scatterings and reactions by means of polarized neutron beam

    International Nuclear Information System (INIS)

    Koori, N.

    1989-01-01

    A high resolution polarized neutron beam should be prepared for nuclear physics, which will be planned with the new ring cyclotron at RCNP. Studies on scatterings and reactions by means of polarized neutron beams are reviewed briefly. Beam lines for polarized neutrons are summarized. An example of high resolution measurements of neutron induced reactions is described. (author)

  18. A new polarized neutrons method for studying depth-inhomogeneously magnetized magnetic films

    International Nuclear Information System (INIS)

    Korneev, D.A.

    1990-01-01

    The main specific features of the process of polarized thermal neutrons specular reflection from the surface of depth-inhomogeneously magnetic films are considered theoretically. It is shown how using the method of specular reflection of polarized thermal neutrons from such a films surface, one may restore the depth distribution of the local magnetization vector M-vector(z). 9 refs

  19. Towards helium-3 neutron polarizers

    International Nuclear Information System (INIS)

    Tasset, F.

    1995-01-01

    With a large absorption cross-section entirely due to antiparallel spin capture, polarized helium-3 is presently the most promising broad-band polarizer for thermal and epithermal neutrons. Immediate interest was raised amongst the neutron community when a dense gaseous 3 He polarizer was used for the first time in 1988, on a pulsed neutron beam at Los Alamos. With 20 W of laser power on a 30 cm long, 8.6 atm target, 40% 3 He polarization was achieved in a recent polarized electron scattering experiment at SLAC. In this technique the 3 He nuclei are polarized directly at an appropriate high pressure through spin-exchange collisions with a thick, optically pumped rubidium vapor. A different and competitive approach is being presently developed at Mainz University in collaboration with ENS Paris and now the ILL. A discharge is established in pure 3 He at low pressure producing excited metastable atoms which can be optically pumped with infra-red light. Highly effective exchange collision with the atoms remaining in the ground state quickly produces 75% polarization at 1.5 mbar. A truly non-magnetic system then compresses the polarized gas up to several bars as required. The most recent machine comprises a two-stage glass-titanium compressor. In less than 1 h it can inflate a 100 cm 3 target cell with three bars of polarized gas. The very long relaxation times (several days) now being obtained at high pressure with a special metallic coating on the glass walls, the polarized cell can be detached and inserted in the neutron beam as polarizer. We expect 50% 3 He-polarization to be reached soon, allowing such filters to compete favorably with existing Heusler-crystal polarizers at thermal and short neutron wavelengths. It must be stressed that such a system based on a 3 He polarization factory able to feed several passive, transportable, polarizers is well matched to neutron scattering needs. (orig.)

  20. La nouvelle vague in polarized neutron scattering

    International Nuclear Information System (INIS)

    Mezei, F.

    1986-01-01

    Polarized neutron research, like many other subjects in neutron scattering developed in the footsteps of Cliff Shull. The classical polarized neutron technique he pioneered was generalized around 1970 to vectorial beam polarizations and this opened up the way to a ''nouvelle vague'' of neutron scattering experiments. In this paper I will first reexamine the old controversy on the question whether the nature of the neutron magnetic moment is that of a microscopic dipole or of an Amperian current loop. The problem is not only of historical interest, but also of relevance to modern applications. This will be followed by a review of the fundamentals on spin coherence effects in neutron beams and scattering, which are the basis of vectorial beam polarization work. As an example of practical importance, paramagnetic scattering will be discussed. The paper concludes with some examples of applications of the vector polarization techniques, such as study of ferromagnetic domains by neutron beam depolarization and Neutron Spin Echo high resolution inelastic spectroscopy. The sample results presented demonstrate the new opportunities this novel approach opened up in neutrons scattering research. (orig.)

  1. Polarized neutron powder diffraction studies of antiferromagnetic order in bulk and nanoparticle NiO

    DEFF Research Database (Denmark)

    Brok, Erik; Lefmann, Kim; Deen, Pascale P.

    2015-01-01

    surface contribution to the magnetic anisotropy. Here we explore the potential use of polarized neutron diffraction to reveal the magnetic structure in NiO bulk and nanoparticle powders by applying the XYZ-polarization analysis method. Our investigations address in particular the spin orientation in bulk....... The results show that polarization analyzed neutron powder diffraction is a viable method to investigate magnetic order in powders of antiferromagnetic nanoparticles.......In many materials it remains a challenge to reveal the nature of magnetic correlations, including antiferromagnetism and spin disorder. Revealing the spin structure in magnetic nanoparticles is further complicated by the large incoherent neutron scattering cross section from water adsorbed...

  2. Mean energy polarized neutron source

    International Nuclear Information System (INIS)

    Aleshin, V.A.; Zaika, N.I.; Kolotyj, V.V.; Prokopenko, V.S.; Semenov, V.S.

    1988-01-01

    Physical bases and realization scheme of a pulsed source of polarized neutrons with the energy of up to 75 MeV are described. The source comprises polarized deuteron source, transport line, low-energy ion and axial injector to the accelerator, U-240 isochronous cyclotron, targets for polarized neutron production, accelerated deuteron transport line and flight bases. The pulsed source of fast neutrons with the energy of up to 75 MeV can provide for highly polarized neutron beams with the intensity by 2-3 orders higher than in the most perfect source of this range which allows one to perform various experiments with high efficiency and energy resolution. 9 refs.; 1 fig

  3. Nuclear-physical investigations with oriented nuclei and polarized neutrons

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Pikel'ner, L.B.; Sharapov, Eh.I.

    1980-01-01

    Several experiments with oriented nuclei and polarized neutrons are considered, as well as some methods of polarization of neutrons and nuclei. Experiments on the study of spin dependence of neutron cross sections for fissionable and nonfissionable nuclei interaction of polarized neutrons with polarized nuclei as well as measurement of magnetic momenta of compound-states of rare-earth nuclei. Described are some investigations with thermal neutrons: study on spin dependence of neutron scattering length with nuclei and gamma radiation of neutron radiation capture. Difficulties of production of high-intensive polarized neutron beams and construction of oriented targets are noted. Neutron polarization by transmission of them through a polarized proton target is the most universal method (out of existing methods) in the energy range under consideration [ru

  4. Loss-free neutron polarization

    International Nuclear Information System (INIS)

    Mueller, S.; Badurek, G.

    2001-01-01

    Full text: The so-called concept of 'dynamical' neutron polarization should allow to polarize a beam of thermal or cold neutrons without loosing even one particle. It is based upon the spin-dependent energy splitting of monochromatic neutrons in a NMR-like arrangement of crossed static and oscillating magnetic fields, which causes different interaction times of the two opposite spin states with a subsequent static precession field. If this Larmor rotation is stopped at the moment when the two states are oriented parallel to a given direction, the beam will be fully polarized, on the cost of a tiny energy difference between the two states, however. At pulsed neutron sources this method should even allow loss-free polarization of polychromatic neutrons, if by a suitably chosen time dependence of either the precession or the splitting field the flight-time dispersion of the particles is adequately taken into account. However, until now this quite sophisticated method has not been realized experimentally. We have performed detailed analytical and numerical simulations of such a dynamical polarization facility for pulsed neutron beams in order to proof its feasibility. It turns out that the required space and time dependence of the magnetic fields involved are well within the scope of existing magnet technology. Ref. 1 (author)

  5. Maris polarization in neutron-rich nuclei

    Science.gov (United States)

    Shubhchintak; Bertulani, C. A.; Aumann, T.

    2018-03-01

    We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  6. Spin waves in full-polarized state of Dzyaloshinskii-Moriya helimagnets: Small-angle neutron scattering study

    Science.gov (United States)

    Grigoriev, S. V.; Sukhanov, A. S.; Altynbaev, E. V.; Siegfried, S.-A.; Heinemann, A.; Kizhe, P.; Maleyev, S. V.

    2015-12-01

    We develop the technique to study the spin-wave dynamics of the full-polarized state of the Dzyaloshinskii-Moriya helimagnets by polarized small-angle neutron scattering. We have experimentally proven that the spin-waves dispersion in this state has the anisotropic form. We show that the neutron scattering image displays a circle with a certain radius which is centered at the momentum transfer corresponding to the helix wave vector in helimagnetic phase ks, which is oriented along the applied magnetic field H . The radius of this circle is directly related to the spin-wave stiffness of this system. This scattering depends on the neutron polarization showing the one-handed nature of the spin waves in Dzyaloshinskii-Moriya helimagnets in the full-polarized phase. We show that the spin-wave stiffness A for MnSi helimagnet decreased twice as the temperature increases from zero to the critical temperature Tc.

  7. Polarized epithermal neutron spectrometer at KENS

    International Nuclear Information System (INIS)

    Kohgi, M.

    1983-01-01

    A spectrometer employing a white, epithermal, polarized neutron beam is under construction at KENS. The neutron polarization is achieved by passage through a dynamically polarized proton filter (DPPF). The results of the test experiments show that the DPPF method is promising in obtaining polarized epithermal neutron beam. The basic design of the spectrometer is described

  8. High precision neutron polarization for PERC

    International Nuclear Information System (INIS)

    Klauser, C.

    2013-01-01

    The decay of the free neutron into a proton, an electron and an anti-electron neutrino offers a simple system to study the semi-leptonic weak decay. High precision measurements of angular correlation coefficients of this decay provide the opportunity to test the standard model on the low energy frontier. The Proton Electron Radiation Channel PERC is part of a new generation of expriments pushing the accuracy of such an angular correlation coefficient measurement towards 10 -4 . Past experiments have been limited to an accuracy of 10 -3 with uncertainties on the neutron polarization as one of the leading systematic errors. This thesis focuses on the development of a stable, highly precise neutron polarization for a large, divergent cold neutron beam. A diagnostic tool that provides polarization higher than 99.99 % and analyzes with an accuracy of 10 -4 , the Opaque Test Bench, is presented and validated. It consists of two highly opaque polarized helium cells. The Opaque Test Bench reveals depolarizing effects in polarizing supermirrors commonly used for polarization in neutron decay experiments. These effects are investigated in detail. They are due to imperfect lateral magnetization in supermirror layers and can be minimized by significantly increased magnetizing fields and low incidence angle and supermirror factor m. A subsequent test in the crossed (X-SM) geometry demonstrated polarizations up to 99.97% from supermirrors only, improving neutron polarization with supermirrors by an order of magnitude. The thesis also discusses other neutron optical components of the PERC beamline: Monte-Carlo simulations of the beamline under consideration of the primary guide are carried out. In addition, calculation shows that PERC would statistically profit from an installation at the European Spallation source. Furthermore, beamline components were tested. A radio-frequency spin flipper was confirmed to work with an efficiency higher than 0.9999. (author) [de

  9. Study and production of polarized monochromatic thermal neutron beams; Etude et production de faisceaux monochromatiques polarises de neutrons lents

    Energy Technology Data Exchange (ETDEWEB)

    Beiln, H. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-06-15

    Results obtained with a recently built neutron spectrometer producing monochromatic polarized neutron beams,in the energy rang (10{sup -3} - 10) eV and using a series of artificial (Co: 92 per cent - Fe: 8 per cent) monocrystal as polarizers and analysers, are given. A high precision method for cutting monocrystals is explained. A description of the installation itself as well as some results obtained with Fe{sub 3}O{sub 4} crystals are also given. Experimental result pertaining to various magnetic guide and 'spin flip' system, as required in the handling of such polarized neutron beams, are also discussed. (author) [French] Nous donnons les resultats obtenus avec un spectrometre produisant des neutrons monochromatiques polarises d'energie comprise entre quelques milliemes d'electronvolts et quelques electronvotts qui utilise une serie de monocristaux artificiels de Co: 92 pour cent - Fe: 8 pour cent, comme polariseurs et analyseurs. Nous discutons egalement une methode de taille de monocristaux a tres haute precision. Le dispositif experimental ainsi que quelques resultats preliminaires obtenus avec des monocristaux de Fe{sub 3}O{sub 4} sont egalement donnes. Nous discutons egalement des resultats experimentaux obtenus avec differents systemes de guidage magnetique et de renversement du spin. (auteur)

  10. Study and production of polarized monochromatic thermal neutron beams; Etude et production de faisceaux monochromatiques polarises de neutrons lents

    Energy Technology Data Exchange (ETDEWEB)

    Beiln, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-06-15

    Results obtained with a recently built neutron spectrometer producing monochromatic polarized neutron beams,in the energy rang (10{sup -3} - 10) eV and using a series of artificial (Co: 92 per cent - Fe: 8 per cent) monocrystal as polarizers and analysers, are given. A high precision method for cutting monocrystals is explained. A description of the installation itself as well as some results obtained with Fe{sub 3}O{sub 4} crystals are also given. Experimental result pertaining to various magnetic guide and 'spin flip' system, as required in the handling of such polarized neutron beams, are also discussed. (author) [French] Nous donnons les resultats obtenus avec un spectrometre produisant des neutrons monochromatiques polarises d'energie comprise entre quelques milliemes d'electronvolts et quelques electronvotts qui utilise une serie de monocristaux artificiels de Co: 92 pour cent - Fe: 8 pour cent, comme polariseurs et analyseurs. Nous discutons egalement une methode de taille de monocristaux a tres haute precision. Le dispositif experimental ainsi que quelques resultats preliminaires obtenus avec des monocristaux de Fe{sub 3}O{sub 4} sont egalement donnes. Nous discutons egalement des resultats experimentaux obtenus avec differents systemes de guidage magnetique et de renversement du spin. (auteur)

  11. Anisotropy of the incommensurate fluctuations in Sr2RuO4: a study with polarized neutrons.

    Science.gov (United States)

    Braden, M; Steffens, P; Sidis, Y; Kulda, J; Bourges, P; Hayden, S; Kikugawa, N; Maeno, Y

    2004-03-05

    The anisotropy of the magnetic incommensurate fluctuations in Sr2RuO4 has been studied by inelastic neutron scattering with polarized neutrons. We find a sizable enhancement of the out-of-plane component by a factor of 2 for intermediate energy transfer, which appears to decrease for higher energies. Our results qualitatively confirm calculations of the spin-orbit coupling, but the experimental anisotropy and its energy dependence are weaker than predicted.

  12. Deep inelastic scattering of polarized electrons by polarized 3 He and the study of the neutron spin structure

    International Nuclear Information System (INIS)

    Arnold, R.G.; Bosted, P.E.; Dunne, J.; Fellbaum, J.; Keppel, C.; Rock, S.E.; Spengos, M.; Szalata, Z.M.; White, J.L.; Breton, V.; Fonvieille, H.; Roblin, Y.; Shapiro, G.; Hughes, E.W.; Borel, H.; Lombard-Nelsen, R.M.; Marroncle, J.; Morgenstern, J.; Staley, F.; Terrien, Y.; Anthony, P.L.; Dietrich, F.S.; Chupp, T.E.; Smith, T.; Thompson, A.K.; Kuhn, S.E.; Cates, G.D.; Middleton, H.; Newbury, N.R.; Anthony, P.L.; Gearhart, R.; Hughes, E.W.; Maruyama, T.; Meyer, W.; Petratos, G.G.; Pitthan, R.; Rokni, S.H.; Stuart, L.M.; White, J.L.; Woods, M.; Young, C.C.; Erbacher, R.; Kawall, D.; Kuhn, S.E.; Meziani, Z.E.; Holmes, R.; Souder, P.A.; Xu, J.; Meziani, Z.E.; Band, H.R.; Johnson, J.R.; Maruyama, T.; Prepost, R.; Zapala, G.

    1996-01-01

    The neutron longitudinal and transverse asymmetries A 1 n and A 2 n have been extracted from deep inelastic scattering of polarized electrons by a polarized 3 He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions g 1 n (x, Q 2 ) and g 2 n (x, Q 2 ) over the range 0.03 2 of 2 (GeV/c) 2 . The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function g 1 n (x, Q 2 ) is small and negative within the range of our measurement, yielding an integral ∫ 0.03 0.6 g 1 n (x)dx - 0.028 ± 0.006 (stat) ± 0.006 (syst). Assuming Regge behavior at low x, we extract Γ 1 n ∫ 0 1 g 1 n (x)dx = - 0.031 ± 0.006 (stat) ± 0.009 (syst). Combined with previous proton integral results from SLAC experiment E143, we find Γ 1 p - Γ 1 n = 0.160 ± 0.015 in agreement with the Bjorken sum rule prediction Γ 1 p - Γ 1 p 0.176 ± 0.008 at a Q 2 value of 3 (GeV/c) 2 evaluated using α s 0.32 ± 0.05. (authors)

  13. Spin-wave dynamics in Invar Fe65Ni35 studied by small-angle polarized neutron scattering

    NARCIS (Netherlands)

    Brück, E.H.; Grigoriev, S.V.; Deriglazov, V.V.; Okorokov, A.I.; Dijk van, N.H.; Klaasse, J.C.P.

    2002-01-01

    Abstract. Spin dynamics in Fe65Ni35 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below TC=485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping & were obtained by

  14. Polarized-neutron study of spin dynamics in the Kondo insulator YbB12.

    Science.gov (United States)

    Nemkovski, K S; Mignot, J-M; Alekseev, P A; Ivanov, A S; Nefeodova, E V; Rybina, A V; Regnault, L-P; Iga, F; Takabatake, T

    2007-09-28

    Inelastic neutron scattering experiments have been performed on the archetype compound YbB(12), using neutron polarization analysis to separate the magnetic signal from the phonon background. With decreasing temperature, components characteristic for a single-site spin-fluctuation dynamics are suppressed, giving place to specific, strongly Q-dependent, low-energy excitations near the spin-gap edge. This crossover is discussed in terms of a simple crystal-field description of the incoherent high-temperature state and a predominantly local mechanism for the formation of the low-temperature singlet ground state.

  15. Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system.

    Science.gov (United States)

    Awaji, Naoki; Miyajima, Toyoo; Doi, Shuuichi; Nomura, Kenji

    2010-12-01

    It has recently been found that the exchange bias of a MnIr/CoFe system can be increased significantly by adding a thermal treatment to the bilayer. To reveal the origin of the higher exchange bias, we performed polarized neutron reflectivity measurements at the JRR-3 neutron source. The magnetization vector near the MnIr/CoFe interface for thermally treated samples differed from that for samples without the treatment. We propose a model in which the pinned spin area at the interface is extended due to the increased roughness and atomic interdiffusion that result from the thermal treatment.

  16. Polarized neutron scattering research: the beginning

    International Nuclear Information System (INIS)

    Mezei, F.

    2005-01-01

    The visionary idea of using neutron scattering for the study of magnetic phenomena in condensed matter was proposed by Bloch in 1936, mere 4 years after the neutron was discovered. It was based on one of the surprises the neutron presented the scientific community with: it is neutral, yet it has a magnetic moment, which latter was then not yet directly observed though. Although the first results proved to be mathematically wrong, due to a non-trivial ambiguity of classical electromagnetism theory, which could only be settled by neutron beam experiments 15 years later, the recognition lead to the advent of a most productive area of modern research, which culminated in the development of the powerful and sophisticated techniques of polarized neutron scattering. This recollection traces the early milestones of the development of the field in strong interaction between theory and experiment

  17. Off-specular polarized neutron reflectometry study of magnetic dots with a strong shape anisotropy

    CERN Document Server

    Temst, K; Moshchalkov, V V; Bruynseraede, Y; Fritzsche, H; Jonckheere, R

    2002-01-01

    We have measured the off-specular polarized neutron reflectivity of a regular array of rectangular magnetic polycrystalline Co dots, which were prepared by a combination of electron-beam lithography, molecular beam deposition, and lift-off processes. The dots have a length-to-width ratio of 4:1 imposing a strong shape anisotropy. The intensity of the off-specular satellite reflection was monitored as a function of the magnetic field applied parallel to the rows of dots and in the plane of the sample, allowing us to analyze the magnetization-reversal process using the four spin-polarized cross sections. (orig.)

  18. Deep inelastic scattering of polarized electrons by polarized {sup 3} He and the study of the neutron spin structure

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R G; Bosted, P E; Dunne, J; Fellbaum, J; Keppel, C; Rock, S E; Spengos, M; Szalata, Z M; White, J L [Washington State Univ., Pullman, WA (United States); Breton, V; Fonvieille, H; Roblin, Y [Clermont-Ferrand-2 Univ., 63 - Aubiere (France); Shapiro, G [Lawrence Berkeley Lab., CA (United States); Hughes, E W [California Inst. of Tech., Pasadena, CA (United States); Borel, H; Lombard-Nelsen, R M; Marroncle, J; Morgenstern, J; Staley, F; Terrien, Y [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee; Petratos, G G [Kent State Univ., OH (United States); Anthony, P L; Dietrich, F S [Lawrence Livermore National Lab., CA (United States); Chupp, T E; Smith, T [Michigan Univ., Dearborn, MI (United States); Thompson, A K [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Kuhn, S E [Norfolk State Univ., VA (United States); Cates, G D; Middleton, H; Newbury, N R [Princeton Univ., NJ (United States); Anthony, P L; Gearhart, R; Hughes, E W; Maruyama, T; Meyer, W; Petratos, G G; Pitthan, R; Rokni, S H; Stuart, L M; White, J L; Woods, M; Young, C C [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Erbacher, R; Kawall, D; Kuhn, S E; Meziani, Z E [Stanford Univ., CA (United States); Holmes, R; Souder, P A; Xu, J [Syracuse Univ., NY (United States); Meziani, Z E [Temple Univ., Philadelphia, PA (United States); Band, H R; Johnson, J R; Maruyama, T; Prepost, R; Zapala, G [Wisconsin Univ., Madison, WI (United States)

    1997-12-31

    The neutron longitudinal and transverse asymmetries A{sub 1}{sup n} and A{sub 2}{sup n} have been extracted from deep inelastic scattering of polarized electrons by a polarized {sup 3}He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions g{sub 1}{sup n}(x, Q{sup 2}) and g{sub 2}{sup n} (x, Q{sup 2}) over the range 0.03 < x < 0.6 at an average Q{sup 2} of 2 (GeV/c){sup 2}. The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function g{sub 1}{sup n} (x, Q{sup 2}) is small and negative within the range of our measurement, yielding an integral {integral}{sub 0.03}{sup 0.6} g{sub 1}{sup n} (x)dx - 0.028 {+-} 0.006 (stat) {+-} 0.006 (syst). Assuming Regge behavior at low x, we extract {Gamma}{sub 1}{sup n} {integral}{sub 0}{sup 1} g{sub 1}{sup n} (x)dx = - 0.031 {+-} 0.006 (stat) {+-} 0.009 (syst). Combined with previous proton integral results from SLAC experiment E143, we find {Gamma}{sub 1}{sup p} - {Gamma}{sub 1}{sup n} = 0.160 {+-} 0.015 in agreement with the Bjorken sum rule prediction {Gamma}{sub 1}{sup p} - {Gamma}{sub 1}{sup p} 0.176 {+-} 0.008 at a Q{sup 2} value of 3 (GeV/c){sup 2} evaluated using {alpha}{sub s} 0.32 {+-} 0.05. (authors). 109 refs.

  19. Maris polarization in neutron-rich nuclei

    Directory of Open Access Journals (Sweden)

    Shubhchintak

    2018-03-01

    Full Text Available We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon–nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  20. Polarized-neutron-scattering study of the spin-wave excitations in the 3-k ordered phase of uranium antimonide.

    Science.gov (United States)

    Magnani, N; Caciuffo, R; Lander, G H; Hiess, A; Regnault, L-P

    2010-03-24

    The anisotropy of magnetic fluctuations propagating along the [1 1 0] direction in the ordered phase of uranium antimonide has been studied using polarized inelastic neutron scattering. The observed polarization behavior of the spin waves is a natural consequence of the longitudinal 3-k magnetic structure; together with recent results on the 3-k-transverse uranium dioxide, these findings establish this technique as an important tool to study complex magnetic arrangements. Selected details of the magnon excitation spectra of USb have also been reinvestigated, indicating the need to revise the currently accepted theoretical picture for this material.

  1. A Wide Spectrum Neutron Polarizer for a Pulsed Neutron Source

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.

    1994-01-01

    A wide spectrum neutron polarizer for a pulsed neutron source is considered. The polarizer is made in a form of a set of magnetized mirrors placed on a drum. Homogeneous rotation of the polarizer is synchronized with the power pulses of the neutron source. The polarizer may be utilized in a collimated neutron beam with cross section of the order of magnitude of 100 cm 2 within a wavelength from 2 up to 20 A on sources with a pulse repetition frequency up to 50 Hz. (author). 5 refs.; 3 figs

  2. Studies of the nucleon-nucleus and the nucleon-nucleon interactions using polarized neutron beams

    International Nuclear Information System (INIS)

    Walter, R.L.; Howell, C.R.; Tornow, W.

    1988-01-01

    The results o four scattering measurements using beams of polarized neutrons are described. Results for the analyzing power A y (θ) for elastic scattering of neutrons from protons and deuterons are compared to calculations based on the Paris and the Bonn nucleon-nucleon interactions. Deficiencies particularly in the Bonn model are indicated. A nucleon-nucleus potential is derived from σ(θ) and A y (θ) data for n + 28 Si and p + 28 Si and the Coulomb correction terms are derived according to two approaches. A Fourier-Bessel expansion is used to investigate the form factors of the terms of the n + 208 Pb potential which are necessary to describe σ(θ) and A y (θ) data from 6 to 10 MeV. The nature of the spin-orbit term is also presented. (author)

  3. Polarized neutron scattering study of the multiple order parameter system NdB4

    Science.gov (United States)

    Metoki, N.; Yamauchi, H.; Matsuda, M.; Fernandez-Baca, J. A.; Watanuki, R.; Hagihala, M.

    2018-05-01

    Neutron polarization analysis has been carried out in order to clarify the magnetic structures of multiple order parameter f -electron system NdB4. We confirmed the noncollinear "all-in all-out" structure (Γ4) of the in-plane moment, which is in good agreement with our previous neutron powder diffraction study. We found that the magnetic moment along the c -axis mc showed diagonally antiferromagnetic structure (Γ10), inconsistent with previously reported "vortex" structure (Γ2). The microscopic mixture of these two structures with q⃗0=(0 ,0 ,0 ) appears in phase II and remains stable in phases III and IV, where an incommensurate modulation coexists. The unusual magnetic ordering is phenomenologically understood via Landau theory with the primary order parameter Γ4 coupled with higher-order secondary order parameter Γ10. The magnetic moments were estimated to be 1.8 ±0.2 and 0.2 ±0.05 μB at T =7.5 K for Γ4 and Γ10, respectively. We also found a long-period incommensurate modulation of the q⃗1=(0 ,0 ,1 /2 ) antiferromagnetic structure of mc with the propagation q⃗s 1=(0.14 ,0.14 ,0.1 ) and q⃗s 2=(0.2 ,0 ,0.1 ) in phase III and IV, respectively. The amplitude of sinusoidal modulation was about mc=1.0 ±0.2 μB at T =1.5 K. The local (0 ,0 ,1 /2 ) structure consists of in-plane ferromagnetic and out-of-plane antiferromagnetic coupling of mc, opposite to the coexisting Γ10. The mc of Γ10 is significantly enhanced up to 0.6 μB at T =1.5 K, which is accompanied by the incommensurate modulations. The Landau phenomenological approach indicates that the higher-order magnetic and/or multipole interactions based on the pseudoquartet f -electron state play important roles.

  4. Magnetic materials research with polarized neutrons

    International Nuclear Information System (INIS)

    Hammer, J.; Rauch, H.; Badurek, G.

    1980-01-01

    In order to study the mechanisms of time dependent effects in magnetic materials with superparamagnetic or spinglass behaviour as well as in ferromagnetic materials a 'dynamic neutron depolarization' system has been developed as a beam hole experiment at the TRIGA Mark II Reactor in Vienna. In the course of this experiment an increasing or decreasing polarization can be observed as a consequence of the interaction between spins of the polarized neutron beam and the magnetic structure if the magnetic clusters in the sample are stimulated by a short magnetic pulse, lasting up to a few seconds. In accordance with numerical calculations and theoretical considerations we can draw conclusions from dynamics in the range of 10 ms to 1 h within magnetic materials which give us additional information that cannot be obtained from experiments used so far

  5. Polarized neutron reflectometry in high magnetic fields

    International Nuclear Information System (INIS)

    Fritzsche, H.

    2005-01-01

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe 2 /DyFe 2 multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada

  6. Polarized neutrons for Australian scientific research

    International Nuclear Information System (INIS)

    Kennedy, Shane J.

    2005-01-01

    Polarized neutron scattering has been a feature at ANSTO's HIFAR research reactor since the first polarization analysis (PA) spectrometer Longpol began operation over 30 years ago. Since that time, we have improved performance of Longpol and added new capabilities in several reincarnations of the instrument. Most of the polarized neutron experiments have been in the fields of magnetism and superconductivity, and most of that research has involved PA. Now as we plan our next generation neutron beam facility, at the Replacement Research Reactor (RRR), we intend to continue the tradition of PA but with a far broader scope in mind. Our new capabilities will combine PA and energy analysis with both cold and thermal neutron source spectra. We will also provide capabilities for research with polarized neutrons in small-angle neutron scattering and in neutron reflectometry. The discussion includes a brief historical account of the technical developments with a summary of past and present applications of polarized neutrons at HIFAR, and an outline of the polarized neutron capabilities that will be included in the first suite of instruments, which will begin operation at the new reactor in 2006

  7. Structure, magnetic properties, polarized neutron diffraction, and theoretical study of a copper(II) cubane.

    Science.gov (United States)

    Aronica, Christophe; Chumakov, Yurii; Jeanneau, Erwann; Luneau, Dominique; Neugebauer, Petr; Barra, Anne-Laure; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Tercero, Javier; Ruiz, Eliseo

    2008-01-01

    The paper reports the synthesis, X-ray and neutron diffraction crystal structures, magnetic properties, high field-high frequency EPR (HF-EPR), spin density and theoretical description of the tetranuclear CuII complex [Cu4L4] with cubane-like structure (LH2=1,1,1-trifluoro-7-hydroxy-4-methyl-5-aza-hept-3-en-2-one). The simulation of the magnetic behavior gives a predominant ferromagnetic interaction J1 (+30.5 cm(-1)) and a weak antiferromagnetic interaction J2 (-5.5 cm(-1)), which correspond to short and long Cu-Cu distances, respectively, as evidence from the crystal structure [see formulate in text]. It is in agreement with DFT calculations and with the saturation magnetization value of an S=2 ground spin state. HF-EPR measurements at low temperatures (5 to 30 K) provide evidence for a negative axial zero-field splitting parameter D (-0.25+/-0.01 cm(-1)) plus a small rhombic term E (0.025+/-0.001 cm(-1), E/D = 0.1). The experimental spin distribution from polarized neutron diffraction is mainly located in the basal plane of the CuII ion with a distortion of yz-type for one CuII ion. Delocalization on the ligand (L) is observed but to a smaller extent than expected from DFT calculations.

  8. Magnetic excitations and polarized neutrons

    International Nuclear Information System (INIS)

    Shirane, G.

    1985-01-01

    We review the historical development of polarized beam techniques for studies of condensed matter physics. In particular we describe, in some detail, the recent advance of the triple axis technique with polarization analysis. It is now possible to carry out quantitative characterization of magnetic cross sections S(Q,ω), in absolute units, for a wide range of energy and momentum transfers. We will discuss some examples of recent inelastic measurements on 3d ferromagnets and heavy Fermions. 35 refs., 11 figs., 2 tabs

  9. Orientation of nuclei excited by polarized neutrons

    International Nuclear Information System (INIS)

    Lifshits, E.P.

    1986-01-01

    Polarization and radiation angular distribution of oriented nuclei in inelastic scattering of polarized neutrons were investigated. Nucleus orientation in the final state was described by polarization density matrix (PDM). If PDM is known, angular distributions, linear and circular polarization of γ-quanta emitted by a nucleus can be determined. Analytical expression for PDM, conditions of its diagonalization in the case of direct nucleus excitation and excitation by the stage of compound nucleus were obtained. Orientation of 12 C nuclei in the excited state 4.439 MeV, 2 + at energy of incident neutrons in the laboratory system from 4.8 MeV (excitation threshold) upt to 9 MeV was calculated as an example. Neutrons in initial state are completely polarized along Z axis. Calculations showed that excitation proceeds mainly by the stage of compound nucleus formation and 12 C nucleus is highly polarized in excited state

  10. Neutron resonance spins of 159Tb from experiments with polarized neutrons and polarized nuclei

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Ivanenko, A.I.; Lason', L.; Mareev, Yu.D.; Ovchinnikov, O.N.; Pikel'ner, L.B.; Sharapov, Eh.I.

    1976-01-01

    Spins of 27 neutron resonances of 159 Tb with energies up to 114 eV have been measured using polarized neutrons and nuclei beams in the modernized time-of-flight spectrometer of the IBR-30 pulse reator. The direct measurements of the terbium resonances spins performed using polarized neutrons reaffirm the conclusion that there are no unstationary effects in the behaviour of 159 Tb neutron resonances in the energy range

  11. Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS

    Energy Technology Data Exchange (ETDEWEB)

    Zaliznyak, Igor [Brookhaven National Laboratory (BNL); Savici, Andrei T [ORNL; Garlea, Vasile O [ORNL; Winn, Barry L [ORNL; Schneelock, John [Brookhaven National Laboratory (BNL); Tranquada, John M. [Brookhaven National Laboratory (BNL); Gu, G. D. [Brookhaven National Laboratory (BNL); Wang, Aifeng [Brookhaven National Laboratory (BNL); Petrovic, C [Brookhaven National Laboratory (BNL)

    2017-01-01

    We describe some of the first polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. We discuss details of the instrument setup and the experimental procedures in the mode with the full polarization analysis. Examples of the polarized neutron diffraction and the polarized inelastic neutron data obtained on single crystal samples are presented.

  12. Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS

    OpenAIRE

    Zaliznyak, Igor A; Savici, Andrei T.; Garlea, V. Ovidiu; Winn, Barry; Filges, Uwe; Schneeloch, John; Tranquada, John M.; Gu, Genda; Wang, Aifeng; Petrovic, Cedomir

    2016-01-01

    We describe some of the first polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. We discuss details of the instrument setup and the experimental procedures in the mode with full polarization analysis. Examples of polarized neutron diffraction and polarized inelastic neutron data obtained on single crystal samples are presented.

  13. Fundamental research with polarized slow neutrons

    International Nuclear Information System (INIS)

    Krupchitsky, P.A.

    1987-01-01

    In the last twenty years polarized beams of slow neutrons have been used effectively in fundamental research in nuclear physics. This book gives a thorough introduction to these experimental methods including the most recent techniques of generating and analyzing polarized neutron beams. It clearly shows the close relationship between elementary particle physics and nuclear physics. The book not only addresses specialists but also those interested in the foundations of elementary particle and nuclear physics. With 42 figs

  14. Polarized neutron reflectometry on thin magnetic films

    International Nuclear Information System (INIS)

    Van Der Graaf, A.

    1997-01-01

    In order to be sensitive to magnetic scattering with X-rays very high intensities have to be used. This makes it necessary to use large installations like synchroton radiation sources providing high X-ray intensities. Polarized neutron experiments can be performed even at small reactors like the 2 MW reactor of IRI. In general polarized neutron reflectometry (PNR) is used to determine magnetization depth profiles, whereas X-ray reflectometry is used to study magnetic surfaces. Chapters 2 through 4 of this thesis are general chapters. The theory of neutron reflectometry is described in chapter 2, followed by a description of the ROG instrument (a time-of-flight reflectometer) in chapter 3, and chapter 4 deals with the data analysis. In the subsequent chapters PNR-experiments on different kinds of samples are discussed. First, experiments on a Co-Cr layer, a candidate to be used as perpendicular recording medium, are described in chapter 5. In chapter 6 it is shown that PNR can give information on metal evaporated videotapes, as presently available in every ordinary shop selling videotapes, and also on the writing process in these tapes. Chapter 7 deals with experiments on Fe/Si multilayers. The initial interest in such multilayers was to obtain information on magnetic coupling through a semiconductor. In chapter 8 PNR-experiments on spin-valve systems, that probably will be used as magnetic read head material, are described. Finally, chapter 9 gives some conclusions and recommendations for the future. 78 refs

  15. A polarized neutron study of the magnetization distribution in Co2FeSi

    International Nuclear Information System (INIS)

    Brown, P J; Kainuma, R; Kanomata, T; Okubo, A; Neumann, K-U; Umetsu, R Y; Ziebeck, K R A

    2013-01-01

    The magnetization distribution in Co 2 FeSi which has the largest moment per formula unit ∼6 μ B of all Heusler alloys, has been determined using polarized neutron diffraction. The experimentally determined magnetization has been integrated over spheres centred on the three sites of the L1 2 structure giving μ Fe = 3.10(3) μ B and μ Co = 1.43(2) μ B , results which are slightly lower than the moments in atomic spheres of similar radii obtained in recent LDA + U band structure calculations (Li et al 2010 Chin. Phys. B 19 097102). Approximately 50% of the magnetic carriers at the Fe sites were found to be in orbitals with e g symmetry. This was higher, ≃65%, at the Co sites. Both Fe and Co were found to have orbital moments that are larger than those predicted. Comparison with similar results obtained for related alloys suggests that there must be a finite density of states in both spin bands at the Fermi energy indicating that Co 2 FeSi is not a perfect half-metallic ferromagnet. (paper)

  16. A polarized neutron study of the magnetization distribution in Co₂FeSi.

    Science.gov (United States)

    Brown, P J; Kainuma, R; Kanomata, T; Neumann, K-U; Okubo, A; Umetsu, R Y; Ziebeck, K R A

    2013-05-22

    The magnetization distribution in Co2FeSi which has the largest moment per formula unit ∼6 μB of all Heusler alloys, has been determined using polarized neutron diffraction. The experimentally determined magnetization has been integrated over spheres centred on the three sites of the L12 structure giving μ Fe = 3.10(3) μB and μ Co = 1.43(2) μB, results which are slightly lower than the moments in atomic spheres of similar radii obtained in recent LDA + U band structure calculations (Li et al 2010 Chin. Phys. B 19 097102). Approximately 50% of the magnetic carriers at the Fe sites were found to be in orbitals with eg symmetry. This was higher, ≃65%, at the Co sites. Both Fe and Co were found to have orbital moments that are larger than those predicted. Comparison with similar results obtained for related alloys suggests that there must be a finite density of states in both spin bands at the Fermi energy indicating that Co2FeSi is not a perfect half-metallic ferromagnet.

  17. Neutron polarization measurements using the pulsed-polarized proton and deuteron beams at TUNL

    International Nuclear Information System (INIS)

    Walter, R.L.

    1981-01-01

    Nanosecond wide pulses of polarized protons or deuterons at a repetition rate of 4 MHz are now routinely available for studying interactions involving outgoing neutrons. Up to 90 nA of protons and 200 nA of deuterons have been observed on target. The authors' first experiments involved the determination of the analyzing power A /SUB y/ (UJ) for a few (→p,n) and (→d,n) reactions using conventional neutron time-of-flight detection. A major program for observing polarization effects in neutron elastic scattering has been initiated. The source of polarized neutrons for this program is the 2 H(→d,n→) 3 He reaction which yields a neutron beam having 90% of the polarization of the incident deuterons

  18. Instrumentation to handle thermal polarized neutron beams

    NARCIS (Netherlands)

    Kraan, W.H.

    2004-01-01

    In this thesis we investigate devices needed to handle the polarization of thermal neutron beams: Ï/2-flippers (to start/stop Larmor precession) and Ï-flippers (to reverse polarization/precession direction) and illustrate how these devices are used to investigate the properties of matter and of the

  19. Single crystal polarized neutron diffraction study of the magnetic structure of HoFeO3.

    Science.gov (United States)

    Chatterji, T; Stunault, A; Brown, P J

    2017-09-27

    Polarised neutron diffraction measurements have been made on HoFeO 3 single crystals magnetised in both the [0 0 1] and [1 0 0] directions (Pbnm setting). The polarisation dependencies of Bragg reflection intensities were measured both with a high field of [Formula: see text] T parallel to [0 0 1] at [Formula: see text] K and with the lower field [Formula: see text] T parallel to [1 0 0] at [Formula: see text] K. A Fourier projection of magnetization induced parallel to [0 0 1], made using the hk0 reflections measured in 9 T, indicates that almost all of it is due to alignment of Ho moments. Further analysis of the asymmetries of general reflections in these data showed that although, at 70 K, 9 T applied parallel to [0 0 1] hardly perturbs the antiferromagnetic order of the Fe sublattices, it induces significant antiferromagnetic order of the Ho sublattices in the [Formula: see text] plane, with the antiferromagnetic components of moment having the same order of magnitude as the induced ferromagnetic ones. Strong intensity asymmetries measured in the low temperature [Formula: see text] structure with a lower field, 0.5 T [Formula: see text] [1 0 0] allowed the variation of the ordered components of the Ho and Fe moments to be followed. Their absolute orientations, in the [Formula: see text] domain stabilised by the field were determined relative to the distorted perovskite structure. This relationship fixes the sign of the Dzyalshinski-Moriya (D-M) interaction which leads to the weak ferromagnetism. Our results indicate that the combination of strong y-axis anisotropy of the Ho moments and Ho-Fe exchange interactions breaks the centrosymmetry of the structure and could lead to ferroelectric polarization.

  20. Radiography and tomography with polarized neutrons

    International Nuclear Information System (INIS)

    Treimer, Wolfgang

    2014-01-01

    Neutron imaging became important when, besides providing impressive radiographic and tomographic images of various objects, physical, quantification of chemical, morphological or other parameters could be derived from 2D or 3D images. The spatial resolution of approximately 50 µm (and less) yields real space images of the bulk of specimens with more than some cm 3 in volume. Thus the physics or chemistry of structures in a sample can be compared with scattering functions obtained e.g. from neutron scattering. The advantages of using neutrons become more pronounced when the neutron spin comes into play. The interaction of neutrons with magnetism is unique due to their low attenuation by matter and because their spin is sensitive to magnetic fields. Magnetic fields, domains and quantum effects such as the Meissner effect and flux trapping can only be visualized and quantified in the bulk of matter by imaging with polarized neutrons. This additional experimental tool is gaining more and more importance. There is a large number of new fields that can be investigated by neutron imaging, not only in physics, but also in geology, archeology, cultural heritage, soil culture, applied material research, magnetism, etc. One of the top applications of polarized neutron imaging is the large field of superconductivity where the Meissner effect and flux pinning can be visualized and quantified. Here we will give a short summary of the results achieved by radiography and tomography with polarized neutrons. - Highlights: • Radiography and tomography with polarized neutrons yield new results concerning the suppressed Meissner effect and magnetic flux trapping. • Suppressed Meissner effect was observed in pure lead samples and niobium. • Trapped magnetic fields in cylindrical Pb samples are squeezed around the rod axis. • The shape and the amount of trapped fields could be determined and quantified

  1. Radiography and tomography with polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Wolfgang, E-mail: treimer@helmholtz-berlin.de [University of Applied Sciences, Beuth Hochschule für Technik Berlin, Department Mathematics Physics and Chemistry, Luxemburgerstr. 10, D-13353 Berlin (Germany); Helmholtz Zentrum für Materialien und Energie, Department G – GTOMO, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)

    2014-01-15

    Neutron imaging became important when, besides providing impressive radiographic and tomographic images of various objects, physical, quantification of chemical, morphological or other parameters could be derived from 2D or 3D images. The spatial resolution of approximately 50 µm (and less) yields real space images of the bulk of specimens with more than some cm{sup 3} in volume. Thus the physics or chemistry of structures in a sample can be compared with scattering functions obtained e.g. from neutron scattering. The advantages of using neutrons become more pronounced when the neutron spin comes into play. The interaction of neutrons with magnetism is unique due to their low attenuation by matter and because their spin is sensitive to magnetic fields. Magnetic fields, domains and quantum effects such as the Meissner effect and flux trapping can only be visualized and quantified in the bulk of matter by imaging with polarized neutrons. This additional experimental tool is gaining more and more importance. There is a large number of new fields that can be investigated by neutron imaging, not only in physics, but also in geology, archeology, cultural heritage, soil culture, applied material research, magnetism, etc. One of the top applications of polarized neutron imaging is the large field of superconductivity where the Meissner effect and flux pinning can be visualized and quantified. Here we will give a short summary of the results achieved by radiography and tomography with polarized neutrons. - Highlights: • Radiography and tomography with polarized neutrons yield new results concerning the suppressed Meissner effect and magnetic flux trapping. • Suppressed Meissner effect was observed in pure lead samples and niobium. • Trapped magnetic fields in cylindrical Pb samples are squeezed around the rod axis. • The shape and the amount of trapped fields could be determined and quantified.

  2. Polarization study

    International Nuclear Information System (INIS)

    Nurushev, S.B.

    1989-01-01

    Brief review is presented of the high energy polarization study including experimental data and the theoretical descriptions. The mostimportant proposals at the biggest accelerators and the crucial technical developments are also listed which may become a main-line of spin physics. 35 refs.; 10 figs.; 4 tabs

  3. Spin dynamics in polarized neutron interferometry

    International Nuclear Information System (INIS)

    Buchelt, R.J.

    2000-05-01

    Since its first implementation in 1974, perfect crystal neutron interferometry has become an extremely successful method applicable to a variety of research fields. Moreover, it proved as an illustrative and didactically valuable experiment for the demonstration of the fundamental principles of quantum mechanics, the neutron being an almost ideal probe for the detection of various effects, as it interacts by all four forces of nature. For instance, the first experimental verification of the 4-pi-periodicity of spinor wave functions was performed with perfect crystal neutron interferometry, and it remains the only method known which demonstrates the quantum mechanical wave-particle-duality of massive particles at a macroscopic separation of the coherent matter waves of several centimeters. A particular position is taken herein by polarized neutron interferometry, which as a collective term comprises all techniques and experiments which not only aim at the coherent splitting and macroscopic separation of neutron beams in the interferometer with the purpose of their separate treatment, but which aim to do so with explicit employment of the spin-magnetic properties of the neutron as a fermion. Remarkable aspects may arise, for example, if nuclear and magnetic potentials are concurrently applied to a partial beam of the interferometer: among other results, it is found that - in perfect agreement to the theoretical predictions - the neutron beam leaving the interferometer features non-zero polarization, even if the incident neutron beam, and hence either of the partial beams, is unpolarized. The main emphasis of the present work lies on the development of an appropriate formalism that describes the effect of simultaneous occurrence of nuclear and magnetic interaction on the emerging intensity and polarization for an arbitrary number of sequential magnetic regions, so-called domains. The confrontation with subtle theoretical problems was inevitable during the experimental

  4. Thermal compression modulus of polarized neutron matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.

    1990-05-01

    We applied the equation of state for pure polarized neutron matter at finite temperature, calculated previously, to calculate the compression modulus. The compression modulus of pure neutron matter at zero temperature is very large and reflects the stiffness of the equation of state. It has a little temperature dependence. Introducing the spin excess parameter in the equation of state calculations is important because it has a significant effect on the compression modulus. (author). 25 refs, 2 tabs

  5. Polarized neutron experiments and its application at KEK

    International Nuclear Information System (INIS)

    Takeda, Masayasu

    1998-01-01

    A polarized cold neutron spectrometer was installed at Japan National Laboratory for High Energy Synchrotron (KEK) for the study of mesoscopic magnetism. Some experiments performed by the spectrometer were reviewed. Neutron wave-length dependent depolarization method was applied to the reentrant spin glass Fe-Al alloy and the difference of the depolarization between zero-field cooling and filed cooling was observed. The lower critical field, H c1 , of a high Tc superconductor, YBCO, was determined from the wave-length dependence of the polarization of neutrons. In PdFe fine particles, the existence of the non-magnetic shell was found and the thickness of the shell was determined by using polarized neutron small angle scattering. Magnetic properties of the surface and interlayer boundaries were thrown light upon Fe/Cr multilayer thin films. (Y. Kazumata)

  6. Optimising neutron polarizers--measuring the flipping ratio and related quantities

    CERN Document Server

    Goossens, D J

    2002-01-01

    The continuing development of gaseous spin polarized sup 3 He transmission filters for use as neutron polarizers makes the choice of optimum thickness for these filters an important consideration. The 'quality factors' derived for the optimisation of transmission filters for particular measurements are general to all neutron polarizers. In this work optimisation conditions for neutron polarizers are derived and discussed for the family of studies related to measuring the flipping ratio from samples. The application of the optimisation conditions to sup 3 He transmission filters and other types of neutron polarizers is discussed. Absolute comparisons are made between the effectiveness of different types of polarizers for this sort of work.

  7. Advanced research capabilities for neutron science and technology: Neutron polarizers for neutron scattering

    International Nuclear Information System (INIS)

    Penttila, S.I.; Fitzsimmons, M.R.; Delheij, P.J.

    1998-01-01

    The authors describe work on the development of polarized gaseous 3 He cells, which are intended for use as neutron polarizers. Laser diode arrays polarize Rb vapor in a sample cell and the 3 He is polarized via collisions. They describe development and tests of such a system at LANSCE

  8. Grazing incidence polarized neutron scattering in reflection ...

    Indian Academy of Sciences (India)

    journal of. January 2012 physics pp. 1–58. Grazing incidence polarized ..... atomic distances, the neutron has an energy which is low compared to molecular binding ...... cores and that of the Co ions in the AF oxide coatings. ...... [32] C Leighton, M R Fitzsimmons, P Yashar, A Hoffmann, J Nogus, J Dura, C F Majkrzak and.

  9. Some applications of polarized inelastic neutron scattering

    Indian Academy of Sciences (India)

    A brief account of applications of polarized inelastic neutron scattering in condensed matter research is given. ... the itinerant antiferromagnet chromium we demonstrate that the dynamics of the longitudinal and transverse excitations are very different, resolving a long standing puzzle concerning the slope of their dispersion.

  10. Polarized neutron reflectometry on Co-Cr

    NARCIS (Netherlands)

    van der Graaf, A.; Frederikze, H.; de Haan, P.; Rekveldt, M.Th.; Lodder, J.C.

    1995-01-01

    Polarized neutron reflectivity of a Co---Cr film on silicon with the easy axis of magnetization perpendicular to the plane has been measured at in-plane magnetic fields of various magnitudes. The obtained data can be well described assuming a constant atomic density and a gradual increase of the

  11. Polarized neutron inelastic scattering experiments on spin dynamics

    International Nuclear Information System (INIS)

    Kakurai, Kazuhisa

    2016-01-01

    The principles of polarized neutron scattering are introduced and examples of polarized neutron inelastic scattering experiments on spin dynamics investigation are presented. These examples should demonstrate the importance of the polarized neutron utilization for the investigation of non-trivial magnetic ground and excited states in frustrated and low dimensional quantum spin systems. (author)

  12. Quantum mechanical aspects of dynamical neutron polarization

    International Nuclear Information System (INIS)

    Betz, T.; Badurek, G.; Jericha, E.

    2007-01-01

    Dynamic Neutron Polarization (DNP) is a concept which allows to achieve complete polarization of slow neutrons, virtually without any loss of intensity. There the neutrons pass through a combination of a static and a rotating magnetic field in resonance, like in a standard NMR apparatus. Depending on their initial spin state, they end up with different kinetic energies and therefore different velocity. In a succeeding magnetic precession field this distinction causes a different total precession angle. Tuning the field strength can lead to a final state where two original anti-parallel spin states are aligned parallel and hence to polarization. The goal of this work is to describe the quantum mechanical aspects of DNP and to work out the differences to the semi-classical treatment. We show by quantum mechanical means, that the concept works and DNP is feasible, indeed. Therefore, we have to take a closer look to the behavior of neutron wave functions in magnetic fields. In the first Section we consider a monochromatic continuous beam. The more realistic case of a pulsed, polychromatic beam requires a time-dependent field configuration and will be treated in the second Section. In particular the spatial separation of the spin up- and down-states is considered, because it causes an effect of polarization damping so that one cannot achieve a fully polarized final state. This effect is not predicted by the semi-classical treatment of DNP. However, this reduction of polarization is very small and can be neglected in realistic DNP-setups

  13. The new polarized neutron reflectometer in Juelich

    International Nuclear Information System (INIS)

    Ruecker, U.; Alefeld, B.; Bergs, W.; Kentzinger, E.; Brueckel, T.

    1999-01-01

    On the basis of the HADAS spectrometer in the guide hall of the Juelich research reactor FRJ-2 a polarized neutron reflectometer is build with a 2D-position sensitive detector system. The new spectrometer is optimized for reflectivity and diffuse magnetic scattering measurements with small incident angles on thin magnetic films with thicknesses in the nm range. The polarization analyzer covers the whole detector area, so that a range of 2.5 deg in the scattering angle can be measured simultaneously. The analyzer consists of a stack of supermirrors tilted against the scattering plane. In this reflection geometry, the momentum transfer resolution of the instrument is not reduced, but the sample height is limited to 17 mm. For the monochromator, polarizer and collimation different setups have been compared on the basis of Monte-Carlo calculations: a focusing elliptical supermirror monochromator, a cylindrical mirror, a focusing pyrolytic graphite double monochromator and a double monochromator with bent perfect Si crystals. (author)

  14. Polarizing beam-splitter device at a pulsed neutron source

    International Nuclear Information System (INIS)

    Itoh, Shinichi; Takeda, Masayasu.

    1996-01-01

    A polarizing beam-splitter device was designed using Fe/Si supermirrors in order to obtain two polarized neutron beam lines, from one unpolarized neutron beam line, with a practical beam size for investigating the properties of condensed matter. This device was mounted after a guide tube at a pulsed neutron source, and its performance was investigated. (author)

  15. The polarized neutron reflectivity and X-ray reflectivity studies of the magnetic profiles of epitaxial Ni80Fe20/Ru multilayers

    International Nuclear Information System (INIS)

    Su, H.-C.; Peir, J.-J.; Lee, C.-H.; Lin, M.-Z.; Wu, P.-T.; Huang, J.C.A.; Tun Zin

    2005-01-01

    The depth profiles of the epitaxial Ni 80 Fe 20 (1 1 1)/Ru(0 0 0 1) multilayers were studied by polarized neutron reflectivity and X-ray reflectivity. At the Ru thickness that the anti-ferromagnetic coupling was found, the magnetic moments between two Ni 80 Fe 20 interlayers show a biquadratic coupling effect with a double unit cell at low applied fields. A magnetic dead layer of about 0.3 nm was also found at the interface boundaries. The maximal polarization effect applied to the Ru layer is less than 0.03μ B

  16. Polarized neutron reflectivity studies of magnetic oxidic Fe3O4/NiO and Fe3O4/CoO multilayers

    NARCIS (Netherlands)

    Ball, A.R.; Fredrikze, H.; Lind, D.M.; Wolf, R.M.; Bloemen, P.J.H.; Rekveldt, M.Th.; Zaag, van der P.J.

    1996-01-01

    The magnetic properties of [1 0 0] oriented Fe3O4/NiO and Fe3O4/CoO multilayers, MBE-grown on MgO(0 0 1) substrates, have been studied by polarized neutron reflectometry. In both samples, the Fe3O4 layer exhibits a depth-dependent magnetic profile characterized by a reduction in the magnetization

  17. Ternary fission induced by polarized neutrons

    Directory of Open Access Journals (Sweden)

    Gönnenwein Friedrich

    2013-12-01

    Full Text Available Ternary fission of (e,e U- and Pu- isotopes induced by cold polarized neutrons discloses some new facets of the process. In the so-called ROT effect shifts in the angular distributions of ternary particles relative to the fission fragments show up. In the so-called TRI effect an asymmetry in the emission of ternary particles relative to a plane formed by the fragment momentum and the spin of the neutron appear. The two effects are shown to be linked to the components of angular momentum perpendicular and parallel to the fission axis at the saddle point of fission. Based on theoretical models the spectroscopic properties of the collective transitional states at the saddle point are inferred from experiment.

  18. Note: 4-bounce neutron polarizer for reflectometry applications

    Science.gov (United States)

    Nagy, B.; Merkel, D. G.; Jakab, L.; Füzi, J.; Veres, T.; Bottyán, L.

    2018-05-01

    A neutron polarizer using four successive reflections on m = 2.5 supermirrors was built and installed at the GINA neutron reflectometer at the Budapest Neutron Centre. This simple setup exhibits 99.6% polarizing efficiency with 80% transmitted intensity of the selected polarization state. Due to the geometry, the higher harmonics in the incident beam are filtered out, while the optical axis of the beam remains intact for easy mounting and dismounting the device in an existing experimental setup.

  19. Polarization of very cold neutron using a permanent magnet quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Tamaki, E-mail: tyosioka@post.kek.j [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Mishima, Kenji; Ino, Takashi; Taketani, Kaoru; Muto, Suguru; Morishima, Takahiro; Shimizu, Hirohiko M. [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Oku, Takayuki; Suzuki, Junichi; Shinohara, Takenao; Sakai, Kenji [Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Sato, Hiromi; Hirota, Katsuya; Otake, Yoshie [RIKEN, Saitama 351-0198 (Japan); Kitaguchi, Masaaki; Hino, Masahiro [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Seki, Yoshichika [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Iwashita, Yoshihisa; Yamada, Masako [Institute for Chemical Research, Kyoto University, Kyoto 611-0011 (Japan); Ichikawa, Masahiro [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2011-04-01

    For the future fundamental physics experiments by using cold neutrons, we are developing a device which can measure the neutron polarization degree by accuracy significantly below 10{sup -3}. A quadrupole magnet is one of the promising candidate to measure the neutron polarization degree by such extremely high precision. We have performed a polarization experiment by using the quadrupole magnets at the Very Cold Neutron (VCN) port of the PF-2 in the Institute Laue-Langevin (ILL). As a result, we obtained the polarization degree P with very high accuracy P=0.9994{+-}0.0001(stat.){+-}0.0003(syst.), which meet our requirement significantly.

  20. Polarized Neutron Study of Ni-Mn-Ga Alloys: Site-Specific Spin Density Affected by Martensitic Transformation.

    Science.gov (United States)

    Lázpita, P; Barandiarán, J M; Gutiérrez, J; Mondelli, C; Sozinov, A; Chernenko, V A

    2017-10-13

    Polarized neutron scattering has been used to obtain the magnetic moment at specific crystallographic sites of the austenitic and martensitic phases of two nonstoichiometric Ni-Mn-Ga single crystals with close composition. These alloys have been chosen because they exhibit different structures in the paramagnetic state and inverse positions of the respective martensitic transformation and Curie temperature. The diffraction analysis revealed a remarkable result: Despite the similar alloy composition, the magnetic moments of Mn are quite different for the two alloys at the same crystallographic position. Furthermore, such a difference enabled us to assess that the exchange coupling between Mn atoms switches from ferro- to antiferromagnetic at a distance between 2.92 and 3.32 Å in the martensite. These results are of great importance to guide first principles calculations that, up to now, have not been contrasted with experiments at the atomic level.

  1. Study of the in-plane magnetic structure of a layered system using polarized neutron scattering under grazing incidence geometry

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, R., E-mail: ryuji.maruyama@j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Ibaraki 319-1195 (Japan); Bigault, T.; Wildes, A.R.; Dewhurst, C.D. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble (France); Soyama, K. [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Ibaraki 319-1195 (Japan); Courtois, P. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble (France)

    2016-05-21

    The in-plane magnetic structure of a layered system with a polycrystalline grain size less than the ferromagnetic exchange length was investigated using polarized neutron off-specular scattering and grazing incidence small angle scattering measurements to gain insight into the mechanism that controls the magnetic properties which are different from the bulk. These complementary measurements with different length scales and the data analysis based on the distorted wave Born approximation revealed the lateral correlation on a length scale of sub- μm due to the fluctuating orientation of the magnetization in the layer. The obtained in-plane magnetic structure is consistent with the random anisotropy model, i.e. competition between the exchange interactions between neighboring spins and the local magnetocrystalline anisotropy.

  2. Effect of lattice distortion on uranium magnetic moments in U4Ru7Ge6 studied by polarized neutron diffraction

    Science.gov (United States)

    Vališka, Michal; Klicpera, Milan; Doležal, Petr; Fabelo, Oscar; Stunault, Anne; Diviš, Martin; Sechovský, Vladimír

    2018-03-01

    In a cubic ferromagnet, small spontaneous lattice distortions are expected below the Curie temperature, but the phenomenon is usually neglected. This study focuses on such an effect in the U4Ru7Ge6 compound. Based on DFT calculations, we propose a lattice distortion from the cubic I m -3 m space group to a lower, rhombohedral, symmetry described by the R -3 m space group. The strong spin-orbit coupling of the uranium ions plays an essential role in lowering the symmetry, giving rise to two different U sites (U1 and U2). Using polarized neutron diffraction in applied magnetic fields of 1 and 9 T in the ordered state (1.9 K ) and in the paramagnetic state (20 K ), we bring convincing experimental evidence of this splitting of the U sites, with different magnetic moments. The data have been analyzed both by maximum entropy calculations and by a direct fit in the dipolar approximation. In the ordered phase, the μL/μS ratio of the orbital and spin moments on the U2 site is remarkably lower than for the free U3 + or U4 + ion, which points to a strong hybridization of the U 5 f wave functions with the 4 d wave functions of the surrounding Ru. On the U1 site, the μL/μS ratio exhibits an unexpectedly low value: the orbital moment is almost quenched, like in metallic α -uranium. As a further evidence of the 5 f -4 d hybridization in the U4Ru7Ge6 system, we observe the absence of a magnetic moment on the Ru1 site, but a rather large induced moment on the Ru2 site, which is in closer coordination with both U positions. Very similar results are obtained at 20 K in the ferromagnetic regime induced by the magnetic field of 9 T . This shows that applying a strong magnetic field above the Curie temperature also leads to the splitting of the uranium sites, which further demonstrates the intimate coupling of the magnetic ordering and structural distortion. We propose that the difference between the magnetic moment on the U1 and U2 sites results from the strong spin

  3. GINA-A polarized neutron reflectometer at the Budapest Neutron Centre

    Energy Technology Data Exchange (ETDEWEB)

    Bottyan, L.; Merkel, D. G.; Nagy, B.; Sajti, Sz.; Deak, L.; Endroczi, G. [Wigner RCP, RMKI, H-1525 Budapest, P.O. Box 49 (Hungary); Fuezi, J. [Wigner RCP, SZFKI, H-1525 Budapest, P.O. Box 49 (Hungary); University of Pecs, Pollack Mihaly Faculty of Engineering and Information Technology, H-7602 Pecs, P.O. Box 219 (Hungary); Petrenko, A. V. [Frank Laboratory of Neutron Physics, JINR, Joliot-Curie 6, Dubna, 141980 (Russian Federation); Major, J. [Wigner RCP, RMKI, H-1525 Budapest, P.O. Box 49 (Hungary); Max-Planck-Institut fuer Intelligente Systeme (formerly Max-Planck-Institut fuer Metallforschung), Heisenbergstr. 3, D-70569 Stuttgart (Germany)

    2013-01-15

    The setup, capabilities, and operation parameters of the neutron reflectometer GINA, the recently installed 'Grazing Incidence Neutron Apparatus' at the Budapest Neutron Centre, are introduced. GINA, a dance-floor-type, constant-energy, angle-dispersive reflectometer is equipped with a 2D position-sensitive detector to study specular and off-specular scattering. Wavelength options between 3.2 and 5.7 A are available for unpolarized and polarized neutrons. Spin polarization and analysis are achieved by magnetized transmission supermirrors and radio-frequency adiabatic spin flippers. As a result of vertical focusing by a five-element pyrolytic graphite monochromator, the reflected intensity from a 20 Multiplication-Sign 20 mm{sup 2} sample has been doubled. GINA is dedicated to studies of magnetic films and heterostructures, but unpolarized options for non-magnetic films, membranes, and other surfaces are also provided. Shortly after its startup, reflectivity values as low as 3 Multiplication-Sign 10{sup -5} have been measured by the instrument. The instrument capabilities are demonstrated by a non-polarized and a polarized reflectivity experiment on a Si wafer and on a magnetic film of [{sup 62}Ni/{sup nat}Ni]{sub 5} isotope-periodic layer composition. The facility is now open for the international user community. Its further development is underway establishing new sample environment options and spin analysis of off-specularly scattered radiation as well as further decreasing the background.

  4. GINA--a polarized neutron reflectometer at the Budapest Neutron Centre.

    Science.gov (United States)

    Bottyán, L; Merkel, D G; Nagy, B; Füzi, J; Sajti, Sz; Deák, L; Endrőczi, G; Petrenko, A V; Major, J

    2013-01-01

    The setup, capabilities, and operation parameters of the neutron reflectometer GINA, the recently installed "Grazing Incidence Neutron Apparatus" at the Budapest Neutron Centre, are introduced. GINA, a dance-floor-type, constant-energy, angle-dispersive reflectometer is equipped with a 2D position-sensitive detector to study specular and off-specular scattering. Wavelength options between 3.2 and 5.7 Å are available for unpolarized and polarized neutrons. Spin polarization and analysis are achieved by magnetized transmission supermirrors and radio-frequency adiabatic spin flippers. As a result of vertical focusing by a five-element pyrolytic graphite monochromator, the reflected intensity from a 20 × 20 mm(2) sample has been doubled. GINA is dedicated to studies of magnetic films and heterostructures, but unpolarized options for non-magnetic films, membranes, and other surfaces are also provided. Shortly after its startup, reflectivity values as low as 3 × 10(-5) have been measured by the instrument. The instrument capabilities are demonstrated by a non-polarized and a polarized reflectivity experiment on a Si wafer and on a magnetic film of [(62)Ni/(nat)Ni](5) isotope-periodic layer composition. The facility is now open for the international user community. Its further development is underway establishing new sample environment options and spin analysis of off-specularly scattered radiation as well as further decreasing the background.

  5. Spin-polarized neutron matter at different orders of chiral effective field theory

    OpenAIRE

    Sammarruca, F.; Machleidt, R.; Kaiser, N.

    2015-01-01

    Spin-polarized neutron matter is studied using chiral two- and three-body forces. We focus, in particular, on predictions of the energy per particle in ferromagnetic neutron matter at different orders of chiral effective field theory and for different choices of the resolution scale. We discuss the convergence pattern of the predictions and their cutoff dependence. We explore to which extent fully polarized neutron matter behaves (nearly) like a free Fermi gas. We also consider the more gener...

  6. The polarized neutron reflectometer 'Reverans'

    Energy Technology Data Exchange (ETDEWEB)

    Radzhabov, A.K. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation)]. E-mail: akr@pnpi.spb.ru; Gordeev, G.P. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation); Lazebnik, I.M. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation); Axelrod, L.A. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation); Zabenkin, V.N. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation)

    2007-07-15

    The polarized neutron reflectometer 'Reverans' with a vertical plane of scattering is being installed at the VVR-M reactor (Gatchina, Russia). It will be used for research on phase boundaries, interfaces and free surfaces. Systems under study can be both magnetic and nonmagnetic ones. At present the installation of the reflectometer is at the final stage. The parameters and abilities of the reflectometer are presented.

  7. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  8. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  9. Neutron stars with spin polarized self-interacting dark matter

    OpenAIRE

    Rezaei, Zeinab

    2018-01-01

    Dark matter, one of the important portion of the universe, could affect the visible matter in neutron stars. An important physical feature of dark matter is due to the spin of dark matter particles. Here, applying the piecewise polytropic equation of state for the neutron star matter and the equation of state of spin polarized self-interacting dark matter, we investigate the structure of neutron stars which are influenced by the spin polarized self-interacting dark matter. The behavior of the...

  10. A spin-transport system for a longitudinally polarized epithermal neutron beam

    International Nuclear Information System (INIS)

    Crawford, B.E.; Bowman, J.D.; Penttilae, S.I.; Roberson, N.R.

    2001-01-01

    The TRIPLE (Time Reversal and Parity at Low Energies) collaboration uses a polarized epithermal neutron beam and a capture γ-ray detector to study parity violation in neutron-nucleus reactions. In order to preserve the spin polarization of the neutrons as they travel the 60-m path to the target, the beam pipes are wrapped with wire to produce a solenoidal magnetic field of about 10 G along the beam direction. The flanges and bellows between sections of the beam pipe cause gaps in the windings which in turn produce radial fields that can depolarize the neutron spins. A computer code has been developed that numerically evaluates the effect of these gaps on the polarization. A measurement of the neutron depolarization for neutrons in the actual spin-transport system agrees with a calculation of the neutron depolarization for the TRIPLE system. Features that will aid in designing similar spin-transport systems are discussed

  11. High-efficiency transmision neutron polarizer for high-resolution double crystal diffractometer

    International Nuclear Information System (INIS)

    Ioffe, A.; Krist, T.; Mezei, F.; Gordeev, G.; Ibrayev, B.

    1997-01-01

    An efficient transmission geometry neutron polarizer for the high-resolution double crystal diffractometer at HMI (λ=4.8 A) is described. A polarization of about 94% was achieved and the polarized neutron beam intensity amounts to 40% of the nonpolarized beam intensity. This opens up wide possibilities for the study of magnetic small-angle scattering for extremely small momentum transfer (Q∝10 -5 A -1 ). (orig.)

  12. Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.

    Science.gov (United States)

    Wood, Mary H; Welbourn, Rebecca J L; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M

    2015-06-30

    Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.

  13. Verification of possible asymmetry of polarization of thermal neutrons reflected by a mirror

    International Nuclear Information System (INIS)

    Okorokov, A.I.; Runov, V.V.; Gukasov, A.G.; Shchebetov, A.F.

    1976-01-01

    Experiments with a polarizing neutron guide do not confirm the neutron polarization asymmetry observed previously by Berndorfer for neutrons traversing a polarizing neutron guide. In connection with the spin-orbit effects a verification is carried out on single reflection of neutrons by magnetic or nonmagnetic mirrors. With an accuracy of 10 -4 -10 -3 no polarization asymmetry is observed

  14. Optimum transmission for a 3He neutron polarizer

    International Nuclear Information System (INIS)

    Tasset, F.; Ressouche, E.

    1995-01-01

    Following recent achievements in polarizing gaseous 3 He targets by optical pumping at room temperature, polarized helium-3 is now the most promising polarizer for thermal and epithermal neutrons and should soon compete favorably with existing Heusler polarizing crystals. Because it is gaseous, a degree of freedom exists in such a filter: the pressure of the gas in the cell. This parameter allows a choice to be made in the filter design: for a given polarization of 3 He, one is able to increase the pressure, to favor neutron beam polarization, or to stay at relatively low pressure to favor the filter's transmission. In this paper, we discuss this point in the framework of a classical polarized neutron experiment, and we compare our more general results with the quality factor Q=P√(T), which is generally taken as standard for such a filter. (orig.)

  15. Neutron beam effects on spin-exchange-polarized 3He.

    Science.gov (United States)

    Sharma, M; Babcock, E; Andersen, K H; Barrón-Palos, L; Becker, M; Boag, S; Chen, W C; Chupp, T E; Danagoulian, A; Gentile, T R; Klein, A; Penttila, S; Petoukhov, A; Soldner, T; Tardiff, E R; Walker, T G; Wilburn, W S

    2008-08-22

    We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal spin-exchange-polarized 3He cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable 3He polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at Los Alamos Neutron Science Center and Institute Laue-Langevin. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as sqrt[phi_{n}], where phi_{n} is the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the concentration of electron-ion pairs but is much larger than expected from earlier work.

  16. Size effect in the spin glass magnetization of thin AuFe films as studied by polarized neutron reflectometry.

    Science.gov (United States)

    Saoudi, M; Fritzsche, H; Nieuwenhuys, G J; Hesselberth, M B S

    2008-02-08

    We used polarized neutron reflectometry to determine the temperature dependence of the magnetization of thin AuFe films with 3% Fe concentration. We performed the measurements in a large magnetic field of 6 T in a temperature range from 295 to 2 K. For the films in the thickness range from 500 to 20 nm we observed a Brillouin-type behavior from 295 K down to 50 K and a constant magnetization of about 0.9 micro(B) per Fe atom below 30 K. However, for the 10 nm thick film we observed a Brillouin-type behavior down to 20 K and a constant magnetization of about 1.3 micro(B) per Fe atom below 20 K. These experiments are the first to show a finite-size effect in the magnetization of single spin-glass films in large magnetic fields. Furthermore, the ability to measure the deviation from the paramagnetic behavior enables us to prove the existence of the spin-glass state where other methods relying on a cusp-type behavior fail.

  17. Dynamically Polarized Sample for Neutron Scattering At the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Pierce, Josh; Zhao, J. K.; Crabb, Don

    2009-01-01

    The recently constructed Spallation Neutron Source at the Oak Ridge National Laboratory is quickly becoming the world's leader in neutron scattering sciences. In addition to the world's most intense pulsed neutron source, we are continuously constructing state of the art neutron scattering instruments as well as sample environments to address today and tomorrow's challenges in materials research. The Dynamically Polarized Sample project at the SNS is aimed at taking maximum advantage of polarized neutron scattering from polarized samples, especially biological samples that are abundant in hydrogen. Polarized neutron scattering will allow us drastically increase the signal to noise ratio in experiments such as neutron protein crystallography. The DPS project is near completion and all key components have been tested. Here we report the current status of the project.

  18. Development of a medium energy polarized neutron facility

    International Nuclear Information System (INIS)

    Burzynski, S.; Gysin, C.; Henneck, R.; Jourdan, J.; Kohler, D.; Pickar, M.A.; Plattner, G.R.; Sick, I.; Berdoz, A.; Foroughi, F.; Nussbaum, Ch.; Stammbach, Th.

    1984-01-01

    By the end of 1983 the major construction work for the new polarized neutron source was completed. The source will provide an essentially monoenergetic beam of both polarized and unpolarized neutrons in the energy range from 20 MeV to 70 MeV. Intensities are expected to be approx. 2 x 10 5 neutrons/s.cm 2 per μA of incident proton beam. The polarization is expected to be approx. 0.2 and can be chosen to be either longitudinal or transverse. Protons from the Philips injector cyclotron are focussed onto a liquid deuterium target and produce neutrons via the 2 H(p,n)2p reaction at 0 0 . This process provides essentially monoenergetic neutrons of almost the same energy as the incoming protons. The zero production angle implies that the neutron polarization comes from the polarization of the proton beam only. This allows an easy and fast change of the neutron spin direction by selecting proton spin states in the polarized ion source (atomic beam type). (Auth.)

  19. Polarized (3) He Spin Filters for Slow Neutron Physics.

    Science.gov (United States)

    Gentile, T R; Chen, W C; Jones, G L; Babcock, E; Walker, T G

    2005-01-01

    Polarized (3)He spin filters are needed for a variety of experiments with slow neutrons. Their demonstrated utility for highly accurate determination of neutron polarization are critical to the next generation of betadecay correlation coefficient measurements. In addition, they are broadband devices that can polarize large area and high divergence neutron beams with little gamma-ray background, and allow for an additional spin-flip for systematic tests. These attributes are relevant to all neutron sources, but are particularly well-matched to time of flight analysis at spallation sources. There are several issues in the practical use of (3)He spin filters for slow neutron physics. Besides the essential goal of maximizing the (3)He polarization, we also seek to decrease the constraints on cell lifetimes and magnetic field homogeneity. In addition, cells with highly uniform gas thickness are required to produce the spatially uniform neutron polarization needed for beta-decay correlation coefficient experiments. We are currently employing spin-exchange (SE) and metastability-exchange (ME) optical pumping to polarize (3)He, but will focus on SE. We will discuss the recent demonstration of 75 % (3)He polarization, temperature-dependent relaxation mechanism of unknown origin, cell development, spectrally narrowed lasers, and hybrid spin-exchange optical pumping.

  20. Polarized neutron capture in polarized 59Co and 165Ho nuclei

    International Nuclear Information System (INIS)

    Bosman, J.J.

    1976-01-01

    Gamma spectroscopy on the reactions 59 Co(n,γ) 60 Co and 165 Ho(n,γ) 166 Ho with polarized neutrons and polarized targets enabled the assignment of spins to 36 levels in 60 Co and 15 levels in 166 Ho. Several of them had not been reported earlier. The techniques used to polarize neutron beams and targets and the gamma-spectroscopy are extensively discussed

  1. Development of polarized {sup 3}He filter for polarized neutron experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, K.; Sato, H.; Yoshimi, A.; Asahi, K. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Masuda, Y.; Muto, S.; Ishimoto, S.; Morimoto, K.

    1996-08-01

    A high-pressure polarized {sup 3}He gas cell, pumped with two diode lasers, has been developed at KEK for use as a polarizer and a spin analyzer for low energy neutrons. The polarization attained of {sup 3}He was determined through the measurement of the transmission of the unpolarized neutrons through the {sup 3}He cell. So far we obtained P{sub He}=18% at 10 atm and P{sub He}=12% at 20 atm. (author)

  2. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    Energy Technology Data Exchange (ETDEWEB)

    Makhloufi, M., E-mail: makhloufi_8m@yahoo.fr [Centre de Recherche Nucléaire de Birine (Algeria); Salah, H. [Centre de Recherche Nucléaire d' Alger (Algeria)

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway. - Highlights: • Permit to evaluate the feasibility of a polarized neutron scattering instrument prior to its implementation. • Help to understand the origin of instrumental imperfections and offer an optimized set up configuration. • Provide the possibility to use the FeSi and CoCu supermirrors, designed to polarize spin up cold neutron, to polarize thermal neutron.

  3. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    International Nuclear Information System (INIS)

    Makhloufi, M.; Salah, H.

    2017-01-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway. - Highlights: • Permit to evaluate the feasibility of a polarized neutron scattering instrument prior to its implementation. • Help to understand the origin of instrumental imperfections and offer an optimized set up configuration. • Provide the possibility to use the FeSi and CoCu supermirrors, designed to polarize spin up cold neutron, to polarize thermal neutron.

  4. Proposal of a wide-band mirror polarizer of slow neutrons at a pulsed neutron source

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.; Ostanevich, Yu.M.

    1992-01-01

    The new type wide-band mirror-based neutron polarizer to be operated at a pulsed neutron source is suggested. The idea is to use a movable polarizing mirror system, which, be the incoming beam monochromatized by the time-of-flight, would allow one to tune glancing angles in time so, that the total reflection condition is always fulfilled only for one of the two neutron spin eigenstates. Estimates show, that with the pulsed reactor IBR-2 such polarizer allows one to build a small-angle neutron scattering instrument capable to effectively use the wave-length band from 2 to 15 A. 9 refs.; 1 fig

  5. Theory of Inclusive Scattering of Polarized Electrons by Polarized $^{3}$He and the Neutron Form Factors

    OpenAIRE

    Atti, C. Ciofi degli; Pace, E.; Salmé, G.

    1993-01-01

    The theory of inclusive lepton scattering of polarized leptons by polarized J = 1/2 hadrons is presented and the origin of different expressions for the polarized nuclear response function appearing in the literature is explained. The sensitivity of the longitudinal asymmetry upon the neutron form factors is investigated.

  6. Scattering and depolarization of polarized neutrons in ferrofluids

    International Nuclear Information System (INIS)

    Balasoiu, M.; Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Y.V.

    1999-01-01

    On the SPN - 1 polarized neutron spectrometer at IBR -2 high - flux pulsed rector there were carried out preliminary measurements on transmission and polarization of a neutron beam passing through a magnetic colloidal system of Fe 3 O 4 particles in transformer oil and dodecane carriers. It was found that in the ferrofluids with magnetite particles exist, dependent on the particle volume concentration and the magnitude of the external magnetic field, effects of depolarization and nuclear - magnetic small angle scattering. (author)

  7. Local magnetic structure determination using polarized neutron holography

    International Nuclear Information System (INIS)

    Szakál, Alex; Markó, Márton; Cser, László

    2015-01-01

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems

  8. Invited article: polarization "down under": the polarized time-of-flight neutron reflectometer PLATYPUS.

    Science.gov (United States)

    Saerbeck, T; Klose, F; Le Brun, A P; Füzi, J; Brule, A; Nelson, A; Holt, S A; James, M

    2012-08-01

    This review presents the implementation and full characterization of the polarization equipment of the time-of-flight neutron reflectometer PLATYPUS at the Australian Nuclear Science and Technology Organisation (ANSTO). The functionality and efficiency of individual components are evaluated and found to maintain a high neutron beam polarization with a maximum of 99.3% through polarizing Fe/Si supermirrors. Neutron spin-flippers with efficiencies of 99.7% give full control over the incident and scattered neutron spin direction over the whole wavelength spectrum available in the instrument. The first scientific experiments illustrate data correction mechanisms for finite polarizations and reveal an extraordinarily high reproducibility for measuring magnetic thin film samples. The setup is now fully commissioned and available for users through the neutron beam proposal system of the Bragg Institute at ANSTO.

  9. Polarized neutron study of the magnetic mesostructure in (Pd sub 1 sub - sub x Fe sub x) sub 1 sub - sub y Mn sub y

    CERN Document Server

    Gordeev, G P; Lazebnik, I M; Zabenkin, V N; Wagner, V

    2002-01-01

    In PdFeMn alloys with different Fe-atom concentrations, the behaviour of both mean magnetization and neutron depolarization in the magnetization/demagnetization process was observed by three-dimensional analysis of neutron-beam polarization. Both magnetization and depolarization have a hysteresis loop for the same values of an applied field. Depolarization loops are sharply distinguished for different alloys. This gives evidence of different magnetic mesostructures in these alloys. (orig.)

  10. Polarized neutron study of the magnetic mesostructure in (Pd{sub 1-x}Fe{sub x}){sub 1-y}Mn{sub y}

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, G.P.; Axelrod, L.A.; Lazebnik, I.M.; Zabenkin, V.N. [Petersburg Nuclear Physics Institute, 188300, Gatchina (Russian Federation); Wagner, V. [Physikalisch-Technische Bundesanstalt, 38116, Braunschweig (Germany)

    2002-07-01

    In PdFeMn alloys with different Fe-atom concentrations, the behaviour of both mean magnetization and neutron depolarization in the magnetization/demagnetization process was observed by three-dimensional analysis of neutron-beam polarization. Both magnetization and depolarization have a hysteresis loop for the same values of an applied field. Depolarization loops are sharply distinguished for different alloys. This gives evidence of different magnetic mesostructures in these alloys. (orig.)

  11. Polarized neutron physics at P.S.I

    International Nuclear Information System (INIS)

    Gaillard, G.

    1990-01-01

    In this paper the characteristics of the recent polarized neutron facility using the existing unpolarized neutron beam line nE1 developed at PSI and of the future nAl beam line are given. The physics program which started in 1986 is presented

  12. Measurement of anisotropy constant in US with polarized neutrons

    DEFF Research Database (Denmark)

    Lander, G.H.; Brooks, M.S.S.; Lebech, B.

    1991-01-01

    than found in TbFe2 at 0 K. The method we have used is with polarized neutrons. Because the neutron interaction with the magnetic moment is vectorial in nature we can determine individually the magnitude and direction of the moment in an applied field. In many cases this method has advantages over...

  13. Dynamically polarized hydrogen target as a broadband, wavelength-independent thermal neutron spin polarizer

    International Nuclear Information System (INIS)

    Zhao Jinkui; Garamus, Vasil M.; Mueller, Wilhelm; Willumeit, Regine

    2005-01-01

    A hydrogen-rich sample with dynamically polarized hydrogen nuclei was tested as a wavelength-independent neutron transmission spin polarizer. The experiment used a modified setup of the dynamic nuclear polarization target station at the GKSS research center. The standard solvent sample at the GKSS DNP station was used. It is 2.8mm thick and consists of 43.4wt% water, 54.6wt% glycerol, and 2wt% of EHBA-Cr(v) complex. The wavelength of the incident neutrons for the transmission experiment was λ=8.1A with Δλ/λ=10%. The polarization of neutron beam after the target sample was analyzed with a supermirror analyzer. A neutron polarization of -52% was achieved at the hydrogen polarization of -69%. Further experiments will test the feasibility of other hydrogen-rich materials, such as methane, as the polarizer. A theoretical calculation shows that a polarized methane target would allow over 95% neutron polarizations with more than 30% transmission

  14. Higher harmonics suppression in Fe/Si polarizing neutron monochromators

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, D.G., E-mail: merkel.daniel@wigner.mta.hu [Wigner Research Centre for Physics, P.O. Box 49, H-1525, Budapest (Hungary); Nagy, B.; Sajti, Sz.; Szilágyi, E. [Wigner Research Centre for Physics, P.O. Box 49, H-1525, Budapest (Hungary); Kovács-Mezei, R. [Mirrotron Ltd. Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary); Bottyán, L. [Wigner Research Centre for Physics, P.O. Box 49, H-1525, Budapest (Hungary)

    2013-03-11

    The reflected neutron beam originating from a crystal monochromator contains higher order wavelength contributions. Multilayer mirror structures with various custom reflectivity curves including monochromatization and/or polarization of the neutron beam constitute a challenge in modern neutron optics. In this work, we present the study of three types of magnetron-sputtered Fe/Si layer structures with the purpose of higher harmonic suppression. First, an approximately sinusoidal profile was achieved directly by carefully controlling the evaporation parameters during sputtering that leads to first-Bragg-peak reflectivity and polarizing efficiency of R{sub c}=82% and P=97%, respectively. Second, a random, quasi-periodic distribution of the layer thicknesses was implemented, in which the layer structure of the structure was derived from a fit to a prescribed simulated spectrum. This solution resulted in R{sub c}=92% and P=88%. Third, a structure of Fe/Si layers with rounded scattering length profile was constructed starting with a step-like profile and applying 350 keV Ne{sup +} irradiation of 0, 0.5, 1.0, 2.7 and 27×10{sup 15}/cm{sup 2} fluence. Disregarding the highest fluence, the increasing fluence improved the monochromatization (decreasing the intensity of higher order reflections from a total of 11.1% to 2.2% and that of the first Bragg peak from 80% to 70%) and increased the polarizing efficiency from P=79% to 91%). In none of the above structures was a contrast matching agent added to the constituents.

  15. Polarized neutron spectrometer for inelastic experiments at J-PARC

    Directory of Open Access Journals (Sweden)

    Yokoo Tetsuya

    2015-01-01

    Full Text Available Construction of the newly developed polarization analysis neutron chopper spectrometer (POLANO commenced in the Japan Proton Accelerator Research Complex (J-PARC, Materials and Life Science Experimental Facility (MLF. The POLANO is a direct geometry chopper spectrometer with neutron polarization analysis capability. In the suite of inelastic spectrometers, six instruments are now in operation. POLANO will be the only spectrometer dedicated to polarization analysis experiments. The primary phase of the construction will be completed by 2014 with beam commissioning scheduled for 2015.

  16. Polarization of fast neutrons in VVR-M reactor

    International Nuclear Information System (INIS)

    Garusov, E.A.; Lifshits, E.P.; Petrov, Yu.V.

    1987-01-01

    Neutron polarization in the reactor leads to circular polarization of γ quanta emitted both in radiational capture of neutrons and in the transition of nuclei excited as a result of inelastic scattering to the ground state. This may be used to determine the polarization of reactor neutrons. The circular polarization of γ quanta at light-water and graphite targets at the center of the active zone of the VVR-M reactor at the B.P. Konstantinov Leningrad Institute of Nuclear Physics was recently measured. A simplified experimental scheme is shown. Fast neutrons leaving the active zone of the reactor were excited in the inelastic scattering at the target nuclei. The polarization of the γ quanta emitted by nuclei in transitions to the ground state was measured by a polarimeter positioned above the active zone. The reason for the circular polarization of γ quanta may also be nonconservation of P parity on account of weak interaction in the capture of a neutron by hydrogen

  17. Scalar Aharonov-Bohm effect with longitudinally polarized neutrons

    International Nuclear Information System (INIS)

    Allman, B. E.; Lee, W.-T.; Motrunich, O. I.; Werner, S. A.

    1999-01-01

    In the scalar Aharonov-Bohm effect, a charged particle (electron) interacts with the scalar electrostatic potential U in the field-free (i.e., force-free) region inside an electrostatic cylinder (Faraday cage). Using a perfect single-crystal neutron interferometer we have performed a ''dual'' scalar Aharonov-Bohm experiment by subjecting polarized thermal neutrons to a pulsed magnetic field. The pulsed magnetic field was spatially uniform, precluding any force on the neutrons. Aligning the direction of the pulsed magnetic field to the neutron magnetic moment also rules out any classical torque acting to change the neutron polarization. The observed phase shift is purely quantum mechanical in origin. A detailed description of the experiment, performed at the University of Missouri Research Reactor, and its interpretation is given in this paper. (c) 1999 The American Physical Society

  18. One directional polarized neutron reflectometry with optimized reference layer method

    International Nuclear Information System (INIS)

    Masoudi, S. Farhad; Jahromi, Saeed S.

    2012-01-01

    In the past decade, several neutron reflectometry methods for determining the modulus and phase of the complex reflection coefficient of an unknown multilayer thin film have been worked out among which the method of variation of surroundings and reference layers are of highest interest. These methods were later modified for measurement of the polarization of the reflected beam instead of the measurement of the intensities. In their new architecture, these methods not only suffered from the necessity of change of experimental setup but also another difficulty was added to their experimental implementations. This deficiency was related to the limitations of the technology of the neutron reflectometers that could only measure the polarization of the reflected neutrons in the same direction as the polarization of the incident beam. As the instruments are limited, the theory has to be optimized so that the experiment could be performed. In a recent work, we developed the method of variation of surroundings for one directional polarization analysis. In this new work, the method of reference layer with polarization analysis has been optimized to determine the phase and modulus of the unknown film with measurement of the polarization of the reflected neutrons in the same direction as the polarization of the incident beam.

  19. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    Science.gov (United States)

    Makhloufi, M.; Salah, H.

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway.

  20. Neutron spin echo: A new concept in polarized thermal neutron techniques

    International Nuclear Information System (INIS)

    Mezei, F.

    1980-01-01

    A simple method to change and keep track of neutron beam polarization non-parallel to the magnetic field is described. It makes possible the establishment of a new focusing effect we call neutron spin echo. The technique developed and tested experimentally can be applied in several novel ways, e.g. for neutron spin flipper of superior characteristics, for a very high resolution spectrometer for direct determination of the Fourier transform of the scattering function, for generalised polarization analysis and for the measurement of neutron particle properties with significantly improved precision. (orig.)

  1. Ferromagnetic interaction in an asymmetric end-to-end azido double-bridged copper(II) dinuclear complex: a combined structure, magnetic, polarized neutron diffraction and theoretical study.

    Science.gov (United States)

    Aronica, Christophe; Jeanneau, Erwann; El Moll, Hani; Luneau, Dominique; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Carvajal, Maria Angels; Robert, Vincent

    2007-01-01

    A new end-to-end azido double-bridged copper(II) complex [Cu(2)L(2)(N(3))2] (1) was synthesized and characterized (L=1,1,1-trifluoro-7-(dimethylamino)-4-methyl-5-aza-3-hepten-2-onato). Despite the rather long Cu-Cu distance (5.105(1) A), the magnetic interaction is ferromagnetic with J= +16 cm(-1) (H=-JS(1)S(2)), a value that has been confirmed by DFT and high-level correlated ab initio calculations. The spin distribution was studied by using the results from polarized neutron diffraction. This is the first such study on an end-to-end system. The experimental spin density was found to be localized mainly on the copper(II) ions, with a small degree of delocalization on the ligand (L) and terminal azido nitrogens. There was zero delocalization on the central nitrogen, in agreement with DFT calculations. Such a picture corresponds to an important contribution of the d(x2-y2) orbital and a small population of the d(z2) orbital, in agreement with our calculations. Based on a correlated wavefunction analysis, the ferromagnetic behavior results from a dominant double spin polarization contribution and vanishingly small ionic forms.

  2. Dynamically polarized samples for neutron protein crystallography at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Zhao, Jinkui; Pierce, Josh; Robertson, J. L.; Herwig, Kenneth W.; Myles, Dean; Cuneo, Matt; Li, Le; Meilleur, Flora; Standaert, Bob

    2016-01-01

    To prepare for the next generation neutron scattering instruments for the planned second target station at the Spallation Neutron Source (SNS) and to broaden the scientific impact of neutron protein crystallography at the Oak Ridge National Laboratory, we have recently ramped up our efforts to develop a dynamically polarized target for neutron protein crystallography at the SNS. Proteins contain a large amount of hydrogen which contributes to incoherent diffraction background and limits the sensitivity of neutron protein crystallography. This incoherent background can be suppressed by using polarized neutron diffraction, which in the same time also improves the coherent diffraction signal. Our plan is to develop a custom Dynamic Nuclear Polarization (DNP) setup tailored to neutron protein diffraction instruments. Protein crystals will be polarized at a magnetic field of 5 T and temperatures of below 1 K. After the dynamic polarization process, the sample will be brought to a frozen-spin mode in a 0.5 T holding field and at temperatures below 100 mK. In a parallel effort, we are also investigating various ways of incorporating polarization agents needed for DNP, such as site specific spin labels, into protein crystals. (paper)

  3. A new polarized neutron interferometry facility at the NCNR

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, C.B. [Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70188 (United States); Arif, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Cory, D.G. [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5 (Canada); Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Mineeva, T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Nsofini, J.; Sarenac, D. [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Williams, C.J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Huber, M.G., E-mail: michael.huber@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pushin, D.A., E-mail: dmitry.pushin@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)

    2016-03-21

    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  4. Generation of neutron standing waves at total reflection of polarized neutrons

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Nikitenko, Yu.V.; Kozhevnikov, S.V.; Radu, F.; Kruijs, R.; Rekveldt, M.Th.

    1999-01-01

    The regime of neutron standing waves at reflection of polarized thermal neutrons from the structure glass/Cu (1000 A Angstrom)/Ti (2000 A Angstrom)/Co (60 A Angstrom)/Ti (300 A Angstrom) in a magnetic field directed at an angle to the sample plane is realized. The intensity of neutrons with a particular spin projection on the external magnetic field direction appears to be a periodic function of the neutron wavelength and the glancing angle of the reflected beam. It is shown that the neutron standing wave regime can be a very sensitive method for the determination of changes in the spatial position of magnetic noncollinear layers. (author)

  5. Magnetic systems for wide-aperture neutron polarizers and analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Gilev, A.G. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Pleshanov, N.K., E-mail: pnk@pnpi.spb.ru [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Bazarov, B.A.; Bulkin, A.P.; Schebetov, A.F. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Syromyatnikov, V.G. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Physical Department, St. Petersburg State University, Ulyanovskaya, 1, Petrodvorets, St. Petersburg 198504 (Russian Federation); Tarnavich, V.V.; Ulyanov, V.A. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation)

    2016-10-11

    Requirements on the field uniformity in neutron polarizers are analyzed in view of the fact that neutron polarizing coatings have been improved during the past decade. The design of magnetic systems that meet new requirements is optimized by numerical simulations. Magnetic systems for wide-aperture multichannel polarizers and analyzers are represented, including (a) the polarizer to be built at channel 4-4′ of the reactor PIK (Gatchina, Russia) for high-flux experiments with a 100×150 mm{sup 2} beam of polarized cold neutrons; (b) the fan analyzer covering a 150×100 mm{sup 2} window of the detector at the Magnetism Reflectometer (SNS, ORNL, USA); (c) the polarizer and (d) the fan analyzer covering a 220×110 mm{sup 2} window of the detector at the reflectometer NERO, which is transferred to PNPI (Russia) from HZG (Germany). Deviations of the field from the vertical did not exceed 2°. The polarizing efficiency of the analyzer at the Magnetism Reflectometer reached 99%, a record level for wide-aperture supermirror analyzers.

  6. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  7. Critical magnetic scattering of polarized neutrons on iron

    International Nuclear Information System (INIS)

    Hetzelt, M.

    1975-01-01

    A new spectrometer has been built and tested. The instrument was designed particularly for small angle scattering of polarized neutrons whereby the degree of polarisation of the scattered neutrons can be measured. The use of polarizing neutron pipes as polarizer and analyser allows the performence with a very broad wavelength spectrum (2 A 7 n/cm 2 sec) with good collimation (Δ theta approximately 0.2 0 ). The instrument is applied for the measurement of the critical magnetic scattering of polarized neutrons on an iron single crystal. For this purpose a special oven with an appropriate magnetic field configuration and a high precision in temperature has been constructed. The measured intensity distributions are in good agreement with other experiments. The critical exponent of the correlation range xi results in 0.65 +- 0.06. Angle and temperature dependence of the scattered neutron polarisation could be determined with good precision. The measurements are partly in extreme contradiction to the only hitherto existing experiment of this kind of Drabkin et al, and to assumptions in the theoretical evaluation. This contradiction is shown to be caused by the influence of multiple scattering. (orig./HPOE) [de

  8. Pinpointing chiral structures with front-back polarized neutron reflectometry.

    Science.gov (United States)

    O'Donovan, K V; Borchers, J A; Majkrzak, C F; Hellwig, O; Fullerton, E E

    2002-02-11

    A new development in spin-polarized neutron reflectometry enables us to more fully characterize the nucleation and growth of buried domain walls in layered magnetic materials. We applied this technique to a thin-film exchange-spring magnet. After first measuring the reflectivity with the neutrons striking the front, we measure with the neutrons striking the back. Simultaneous fits are sensitive to the presence of spiral spin structures. The technique reveals previously unresolved features of field-dependent domain walls in exchange-spring systems and has sufficient generality to apply to a variety of magnetic systems.

  9. Inelastic magnetic scattering of polarized neutrons by a superconducting ring

    International Nuclear Information System (INIS)

    Agafonov, A. I.

    2011-01-01

    The inelastic scattering of cold neutrons by a ring leads to quantum jumps of a superconducting current which correspond to a decrease in the fluxoid quantum number by one or several units while the change in the ring energy is transferred to the kinetic energy of the scattered neutron. The scattering cross sections of transversely polarized neutrons have been calculated for a thin type-II superconductor ring, the thickness of which is smaller than the field penetration depth but larger than the electron mean free path.

  10. Study of magnetic thin films by polarized neutron reflectivity. Off-specular diffusion on periodical structures; Etude de couches minces magnetiques par reflectivite de neutrons polarises. Diffusion non speculaire sur des structures periodiques

    Energy Technology Data Exchange (ETDEWEB)

    Ott, F

    1998-11-26

    Theoretical (Zeeman energy effects) and experimental (beam polarisation problems) progress have been made in the understanding of polarized neutron reflectivity with polarisation analysis. It has been shown that modelization and numerical simulations makes it possible to avoid to have to systematically measure a full set of reflectivity curves for each field and temperature condition. It has been possible to determine a magnetic profile as a function of the field in a magnetic bilayer system by using only a few points in the reciprocal space. This technique allows to considerable reduce the experiment time. In single nickel layer systems, we have shown that it is possible to induce magnetic rotation inhomogeneities when these systems are subjects to deformation strains. The effect are related to magneto-elastic constants gradients. In trilayer systems, with a ME constant modulation, we have been able to induce large magnetic rotation gradients. A new magneto-optic technique to measure the magnetization direction without rotating the magnetic field has been developed. The field of neutron reflectivity has been extended to off-specular studies. It has been possible to account quantitatively of the off-specular diffusion on 2-D model systems (prepared by optical lithography). This new technique should make it possible in the future to determine magnetic structures with a in-depth as well as lateral resolution. (author)

  11. The spin-spin effect in the total neutron cross section of polarized neutrons on polarized 165Ho

    International Nuclear Information System (INIS)

    Fasoli, U.; Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.

    1978-01-01

    The spin-spin effect in the total neutron cross section of polarized neutrons on polarized 165 Ho has been measured in the energy interval 0.4 to 2.5 MeV, in perpendicular geometry. The results are consistent with zero effect. The spin-spin cross section sigmasub(ss) has been theoretically evaluated by a non-adiabatic coupled-channel calculation. From the comparison between the experimental and theoretical results a value Vsub(ss) = 9+-77 keV for the strength of the spin-spin potential has been obtained. Compound-nucleus effects do not seem to be relevant. (Auth.)

  12. Measurement of the polarized neutron---polarized 3He total cross section

    International Nuclear Information System (INIS)

    Keith, C.D.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Huffman, P.R.; Roberson, N.R.; Tornow, W.; Wilburn, W.S.

    1995-01-01

    The first measurements of polarized neutron--polarized 3 He scattering in the few MeV energy region are reported. The total cross section difference Δσ T for transversely polarized target and beam has been measured for neutron energies between 1.9 and 7.5 MeV. Comparison is made to predictions of Δσ T using various descriptions of the 4 He continuum. A brute-force polarized target of solid 3 He has been developed for these measurements. The target is 4.3x10 22 atoms/cm 2 thick and is polarized to 38% at 7 Telsa and 12 mK. copyright 1995 American Institute of Physics

  13. Proposal of a wide-band mirror polarizer of slow neutrons at a pulsed neutron source

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.; Ostanevich, Yu.M.

    1993-01-01

    The new type of wide-band mirror-based neutron polarizer, which is to be operated at a pulsed neutron source, is suggested. The idea is to use a movable polarizing mirror system, which, with the incoming beam monochromatized by the time-of-flight, would allow one to tune glancing angles in time so that the total reflection condition is always fulfilled only for one of the two neutron spin eigenstates. Estimates show that with the pulsed reactor IBR-2 such a polarizer allows one to build a small angle neutron scattering instrument capable of effectively using the wavelength band from 2 A with a rather high luminosity (time-averaged flux at sample position being up to 10 7 n/s/cm -2 ). (orig.)

  14. What are the mesoscopic magnetic inhomogeneities in the dilute PdFeMn alloy? Polarized neutron study

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, G.; Axelrod, L.; Zabenkin, V.; Lazebnik, I.; Grigoriev, S.; Wagner, V.; Eckerlebe, H

    2003-07-01

    The 3D analysis of neutron depolarization was carried out for different thermomagnetic treatment of the dilute PdFeMn alloy versus temperature and magnetic field applied in magnetizing/demagnetizing cycles. Both the macroscopic magnetization and the mean fluctuation of local magnetization behavior were subtracted from experimental data. A complicated behavior of the latter was observed. The hysteresis of local magnetization fluctuations is found out but that of macroscopic magnetization is practically absent. The effort to apply the simple model for the description of magnetic inhomogeneities was made in order to understand the mesostructure of this alloy.

  15. Polarized 3He Gas Circulating Technologies for Neutron Analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Watt, David [Xemed LLC, Durham, NH (United States); Hersman, Bill [Xemed LLC, Durham, NH (United States)

    2014-12-10

    We describe the development of an integrated system for quasi-continuous operation of a large volume neutron analyzer. The system consists of a non-magnetic diaphragm compressor, a prototype large volume helium polarizer, a surrogate neutron analyzer, a non-depolarizing gas storage reservoir, a non-ferrous valve manifold for handling gas distribution, a custom rubidium-vapor gas return purifier, and wire-wound transfer lines, all of which are immersed in a two-meter external magnetic field. Over the Phase II period we focused on three major tasks required for the successful deployment of these types of systems: 1) design and implementation of gas handling hardware, 2) automation for long-term operation, and 3) improvements in polarizer performance, specifically fabrication of aluminosilicate optical pumping cells. In this report we describe the design, implementation, and testing of the gas handling hardware. We describe improved polarizer performance resulting from improved cell materials and fabrication methods. These improvements yielded valved 8.5 liter cells with relaxation times greater than 12 hours. Pumping this cell with 1500W laser power with 1.25nm linewidth yielded peak polarizations of 60%, measured both inside and outside the polarizer. Fully narrowing this laser to 0.25nm, demonstrated separately on one stack of the four, would have allowed 70% polarization with this cell. We demonstrated the removal of 5 liters of polarized helium from the polarizer with no measured loss of polarization. We circulated the gas through a titanium-clad compressor with polarization loss below 3% per pass. We also prepared for the next phase of development by refining the design of the polarizer so that it can be engineer-certified for pressurized operation. The performance of our system far exceeds comparable efforts elsewhere.

  16. Interface alloying in multilayer thin films using polarized neutron reflectometry

    International Nuclear Information System (INIS)

    Basu, Saibal

    2013-01-01

    Polarized Neutron Reflectometry (PNR) is an excellent tool to probe magnetic depth profile in multilayer thin film samples. In case of multilayer films with alternating magnetic and non-magnetic layers, PNR can provide magnetic depth profile at the interfaces with better than nanometer resolution. Using PNR and Xray Reflectometry (XRR) together one can obtain chemical composition and magnetic structure, viz. magnetic moment density at interfaces in multilayer films. We have used these two techniques to obtain kinetics of alloy formation at the interfaces and the magnetic nature of the alloy at the interfaces in several important thin films with magnetic/non-magnetic bilayers. These include Ni/Ti, Ni/Al and Si/Ni pairs. Results obtained from these studies will be presented in this talk. (author)

  17. Anomalous scattering of neutrons in spin-polarized media

    International Nuclear Information System (INIS)

    Bashkin, E.P.

    1989-01-01

    A new exchange mechanism of inelastic scattering with spin flip for slow neutrons propagating through a spin-polarized medium is studied. The scattering is accompanied by emission or absorption of thermal fluctuations of the transverse magnetization of the medium; the weakly damped Larmor precession of nuclear spins in the external magnetic field plays the main role in these fluctuations. Under the conditions of giant opalescence the effect is enormous and the corresponding cross sections are significantly greater than the standard elastic scattering cross sections. Thus in the case of 29 Si↑ and 3 He↑ under typical experimental conditions the cross sections of these inelastic processes are of the order of 10 5 -10 6 b

  18. Test of sup 3 He-based neutron polarizers at NIST

    CERN Document Server

    Jones, G L; Thompson, A K; Chowdhuri, Z; Dewey, M S; Snow, W M; Wietfeldt, F E

    2000-01-01

    Neutron spin filters based on polarized sup 3 He are useful over a wide neutron energy range and have a large angular acceptance among other advantages. Two optical pumping methods, spin-exchange and metastability-exchange, can produce the volume of highly polarized sup 3 He gas required for such neutron spin filters. We report a test of polarizers based on each of these two methods on a new cold, monochromatic neutron beam line at the NIST Center for Neutron Research.

  19. Polarized 3He Neutron Spin Filters

    Energy Technology Data Exchange (ETDEWEB)

    Sno, William Michael [Indiana Univ., Bloomington, IN (United States)

    2016-01-12

    The goal of this grant to Indiana University and subcontractors at Hamilton College and Wisconsin and the associated Interagency Agreement with NIST was to extend the technique of polarized neutron scattering by the development and application of polarized 3He-based neutron spin filters. This effort was blessed with long-term support from the DOE Office of Science, which started in 2003 and continued until the end of a final no-cost extension of the last 3-year period of support in 2013. The steady support from the DOE Office of Science for this long-term development project was essential to its eventual success. Further 3He neutron spin filter development is now sited at NIST and ORNL.

  20. Long-Lifetime Low-Scatter Neutron Polarization Target

    International Nuclear Information System (INIS)

    Richardson, Jonathan M.

    2004-01-01

    Polarized neutrons scattering is an important technology for characterizing magnetic and other materials. Polarized helium three (P-3He) is a novel technology for creating polarized beams and, perhaps more importantly, for the analysis of polarization in highly divergent scattered beams. Analysis of scattered beams requires specialized targets with complex geometries to ensure accurate results. Special materials and handling procedures are required to give the targets a long useful lifetime. In most cases, the targets must be shielded from stray magnetic fields from nearby equipment. SRL has developed and demonstrated hybrid targets made from glass and aluminum. We have also developed and calibrated a low-field NMR system for measuring polarization lifetimes. We have demonstrated that our low-field system is able to measure NMR signals in the presence of conducting (metallic) cell elements. We have also demonstrated a non-magnetic valve that can be used to seal the cells. We feel that these accomplishments in Phase I are sufficient to ensure a successful Phase II program. The commercial market for this technology is solid. There are over nine neutron scattering centers in the US and Canada and over 22 abroad. Currently, the US plans to build a new $1.4B scattering facility called the Spallation Neutron Source (SNS). The technology developed in this project will allow SRL to supply targets to both existing and future facilities. SRL is also involved with the application of P-3He to medical imaging

  1. Neutron response study

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Fix, J.J.; Thorson, M.R.; Nichols, L.L.

    1981-01-01

    Neutron response of the albedo type dosimeter is strongly dependent on the energy of the incident neutrons as well as the moderating material on the backside of the dosimeter. This study characterizes the response of the Hanford dosimeter for a variety of neutron energies for both a water and Rando phantom (a simulated human body consisting of an actual human skeleton with plastic for body muscles and certain organs). The Hanford dosimeter response to neutrons of different energies is typical of albedo type dosimeters. An approximate two orders of magnitude difference in response is observed between neutron energies of 100 keV and 10 MeV. Methods were described to compensate for the difference in dosimeter response between a laboratory neutron spectrum and the different spectra encountered at various facilities in the field. Generally, substantial field support is necessary for accurate neutron dosimetry

  2. Investigation of propagation algorithms for ray-tracing simulation of polarized neutrons

    DEFF Research Database (Denmark)

    Bergbäck Knudsen, Erik; Tranum-Rømer, A.; Willendrup, Peter Kjær

    2014-01-01

    Ray-tracing of polarized neutrons faces a challenge when the neutron propagates through an inhomogeneous magnetic field. This affects simulations of novel instruments using encoding of energy or angle into the neutron spin. We here present a new implementation of propagation of polarized neutrons...

  3. Fan analyzer of neutron beam polarization on REMUR spectrometer at IBR-2 pulsed reactor

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.; Ul'yanov, V.A.; Pusenkov, V.M.; Kozhevnikov, S.V.; Jernenkov, K.N.; Pleshanov, N.K.; Peskov, B.G.; Petrenko, A.V.; Proglyado, V.V.; Syromyatnikov, V.G.; Schebetov, A.F.

    2006-01-01

    The new spectrometer of polarized neutrons REMUR has been created and put in operation in the Frank Laboratory of Neutron Physics (JINR, Dubna). The spectrometer is dedicated to investigations of multiplayer structures and surfaces by registering the reflection of polarized neutrons and of the inhomogeneous state of solid matter by measuring the small-angle scattering of polarized neutrons. The spectrometer's working range of neutron wavelengths is 1.5-10 A. The spectrometer is equipped with a linear position-sensitive detector and a focused supermirror polarization analyzer (fan-like polarization analyzer) with a solid angle of neutron detection of 2.2x10 -4 rad. This article describes the design and the principle of operation of the fan analyzer of neutron polarization together with the results of its tests on a polarized neutron beam

  4. Neutron emission study after muon capture by nuclei

    International Nuclear Information System (INIS)

    Bouyssy, Alain.

    1974-01-01

    Muon capture by nuclei, used in the beginning for checking the weak interaction, is now a method of investigation of nuclear structure. Study of spectrum, asymmetry and polarization of emitted neutrons after polarized muon capture has been done in three directions: weak coupling constants, final state interaction, nuclear wave functions. The neutron intensity and helicity are very dependent of the neutron - residual nucleus interaction, while the asymmetry is sensitive to the wave functions used for the proton. Moreover if the induced tensor coupling constant is different from zero the asymmetry is increased. Longitudinal polarization experiments, with those for neutron intensity, would be of great interest to give informations on neutron asymmetry [fr

  5. Polarized single crystal neutron diffraction study of the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x =0.024 )

    Science.gov (United States)

    Chatterji, T.; Stunault, A.; Brown, P. J.

    2018-02-01

    We have determined the temperature evolution of the spin and orbital moments in the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x = 0.024) by combining polarized and unpolarized single crystal neutron diffraction data. The sensitivity of the polarized neutron technique has allowed the moment values to be determined with a precision of ≈0.1 μB . Our results clearly demonstrate that, when magnetized by a field of 8 T, the spin and orbital moments in Sm1 -xGdxAl2 are oppositely directed, so that the net magnetization is very small. Below 60 K the contributions from spin and orbital motions are both about 2 μB , with that due to orbital motion being slightly larger than that due to spin. Between 60 and 65 K the contributions of each to the magnetization fall rapidly and change sign at Tcomp ≈67 K , above which the aligned moments recover but with the orbital magnetization still slightly higher than the spin one. These results imply that above Tcomp the small resultant magnetization of the Sm3 + ion is oppositely directed to the magnetizing field. It is suggested that this anomaly is due to polarization of conduction electron spin associated with the doping Gd3 + ions.

  6. Study by polarized muon

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu

    1977-01-01

    Experiments by using polarized muon beam are reported. The experiments were performed at Berkeley, U.S.A., and at Vancouver, Canada. The muon spin rotation is a useful method for the study of the spin polarization of conductive electrons in paramagnetic Pd metal. The muon Larmor frequency and the relaxation time can be obtained by measuring the time distribution of decay electrons of muon-electron process. The anomalous depolarization of negative muon spin rotation in the transitional metal was seen. The circular polarization of the negative muon X-ray was measured to make clear this phenomena. The experimental results show that the anomalous depolarization is caused at the 1-S-1/2 state. For the purpose to obtain the strong polarization of negative muon, a method of artificial polarization is proposed, and the test experiments are in progress. The study of the hyperfine structure of mu-mesic atoms is proposed. The muon capture rate was studied systematically. (Kato, T.)

  7. Measurement of neutron spectra for photonuclear reaction with linearly polarized photons

    Directory of Open Access Journals (Sweden)

    Kirihara Yoichi

    2017-01-01

    Full Text Available Spectra of neutrons produced by a photonuclear reaction from a 197Au target were measured using 16.95 MeV linearly and circularly polarized photon beams at NewSUBARU-BL01 using a time-of-flight method. The difference in the neutron spectra between the cases of a linearly and circularly polarized photon was measured. The difference in the neutron yield increased with the neutron energy and was approximately threefold at the maximum neutron energy. In a direction perpendicular to that of the linear polarization, the neutron yields decreased as the neutron energy increased.

  8. Precise determination of the degree of polarization of a cold neutron beam

    International Nuclear Information System (INIS)

    Nastoll, H.; Schreckenbach, K.; Baglin, C.; Bussiere, A.; Guillaud, J.P.; Kossakowski, R.; Liaud, P.

    1991-01-01

    A cold neutron beam at the ILL High Flux Reactor was used to produce highly polarized neutrons by means of a bent supermirror polarizer. A following current sheet spin flipper allowed the change of the neutron spin direction relative to the guiding magnetic fields. The degree of polarization of the beam was measured as a function of the neutron velocity in the range 300-1500 m/s achieving an accuracy of 0.2% at typically 98% polarization. Two spin flippers and the permutation of three supermirror polarizers as polarizer/analyzer were employed. (orig.)

  9. Dynamics in γ-Fe2O3 nanoparticles studied by time-of-flight polarized neutron scattering

    DEFF Research Database (Denmark)

    Kuhn, L.T.; Lefmann, K.; Klausen, S.N.

    2004-01-01

    The inelastic neutron-scattering signal from magnetic nanoparticles contains information on magnetic dynamics like superparamagnetic relaxation and collective magnetic excitations. Often another, very broad quasi-elastic component is observed in addition. We have studied this quasi-elastic neutron...... signal from 4 nm ferrimagnetic maghemite (gamma-Fe(2)O(3)) particles, and by means of time-of-flight polarised neutron scattering we have identified the source of (most of) this signal to be water adsorbed at the surface of the nanoparticles. A minor part of the signal has its origin in dynamics...

  10. np Elastic-scattering experiments with polarized neutron beams

    International Nuclear Information System (INIS)

    Chalmers, J.S.; Ditzler, W.R.; Hill, D.

    1985-01-01

    Measurements of the spin transfer parameters, K/sub NN/ and K/sub LL/, at 500, 650, and 800 MeV are presented for the reaction p-vector d → n-vector pp at 0 0 . The data are useful input to the NN data base and indicate that the quasi-free charge exchange (CEX) reaction is a useful mechanism for producing neutrons with at least 40% polarization at energies as low as 500 MeV. Measurements of np elastic scattering observables C/sub LL/ and C/sub SL/ covering 35 0 to 172 0 are performed using a polarized neutron beam at 500, 650, and 800 MeV. Preliminary results are presented. 3 refs., 6 figs

  11. Study of the nuclear structure far from stability: Coulomb excitation of neutron-rich Rb isotopes around N=60; Production of nuclear spin polarized beams using the tilted foils technique

    International Nuclear Information System (INIS)

    Sotty, C.

    2013-01-01

    The underlying structure in the region A ∼ 100, N ∼ 60 has been under intensive and extensive investigation, mainly by β-decay and γ-ray spectroscopy from fission processes. Around N ∼ 60, by adding just few neutrons, protons a rapid shape change occurs from spherical-like to well deformed g.s. shape. Shape coexistence has been observed in the Sr and Zr nuclei, and is expected to take place in the whole region. The mechanisms involved in the appearance of the deformation is not well understood. The interplay between down-sloping and up-sloping neutron Nilsson orbital is evoked as one of the main reasons for the sudden shape change. However, a clear identification of the active proton and neutron orbitals was still on-going. For that purpose, the neutron rich 93;95;97;99 Rb isotopes have been studied by Coulomb excitation at CERN (ISOLDE) using the REX-ISOLDE post-accelerator and the MINIBALL setup. The completely unknown structures of 97;99 Rb have been populated and observed. Prompt γ-ray coincidences of low-lying states have been observed and time-correlated in order to build level schemes. The associated transition strengths have been extracted with the GOSIA code. The observed matrix elements of the electromagnetic operator constituted new inputs of further theoretical calculations giving new insight on the involved orbitals. The sensitivity of such experiment can be increased using nuclear spin polarized radioactive ion beam. For that purpose the Tilted Foils Technique (TFT) of polarization has been investigated at CERN. This technique consists to spin polarize the ion beam, passing through thin foils tilted at an oblique angle with respect to the beam direction. The initially obtained atomic polarization is transferred to the nucleus by hyperfine interaction. This technique does not depend on the chemical nature of the element. Short lived nuclei can be polarized in-flight without any need to be stopped in a catcher. It opens up the possibility to

  12. Application of off-specular polarized neutron reflectometry to measurements on an array of mesoscopic ferromagnetic disks

    International Nuclear Information System (INIS)

    Temst, K.; Van Bael, M. J.; Fritzsche, H.

    2001-01-01

    Using off-specular polarized neutron reflectometry with neutron spin analysis, we determined the magnetic properties of a large array of in-plane magnetized ferromagnetic Co disks. Resonant peaks are clearly observed in the off-specular reflectivity, due to the lateral periodicity of the disk array. Using polarized neutrons, the intensity of the resonant peak in the off-specular reflectivity is studied as a function of the magnetic field applied in the sample plane. Spin analysis of the reflected neutrons reveals the magnetization reversal and saturation within the disks. copyright 2001 American Institute of Physics

  13. Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yeon; Lee, Jeong Soo

    2008-02-15

    This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.

  14. Time-of-flight and vector polarization analysis for diffuse neutron scattering

    International Nuclear Information System (INIS)

    Schweika, W.

    2003-01-01

    The potential of pulsed neutron sources for diffuse scattering including time-of-flight (TOF) and polarization analysis is discussed in comparison to the capabilities of the present instrument diffuse neutron scattering at the research center Juelich. We present first results of a new method for full polarization analysis using precessing neutron polarization. A proposal is made for a new type of instrument at pulsed sources, which allows for vector polarization analysis in TOF instruments with multi-detectors

  15. Relativistic polarized neutrons at the Laboratory of High Energy Physics, JINR

    International Nuclear Information System (INIS)

    Kirillov, A.; Komolov, L.; Kovalenko, A.; Matyushevskij, E.; Nomofilov, A.; Rukoyatkin, P.; Sharov, V.; Starikov, A.; Strunov, L.; Svetov, A.

    1996-01-01

    Using slowly extracted polarized deuterons, available at the accelerator facility of the Laboratory of High Energy Physics, JINR, polarized quasi-monochromatic neutrons with momenta from 1.1 to 4.5 GeV/c have been generated. Depending on momentum, from 10 4 to 10 6 polarized neutrons per accelerator cycle were produced. At present, the polarized neutrons are mainly intended for measuring the (n vec, p vec) total cross section differences. 6 refs., 2 figs

  16. The scattering of polarized neutrons from statically polarized solid {sup 3}He

    Energy Technology Data Exchange (ETDEWEB)

    Haase, D.G.; Keith, C.D.; Gould, C.R.; Seely, M.L. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Huffman, P.R.; Roberson, N.R.; Tornow, W.; Wilburn, W.S. [Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)]|[Duke University, Durham, NC 27708-0308 (United States)

    1998-01-11

    We have constructed a 0.4 mole solid {sup 3}He target, cryogenically polarized at 12 mK in a field of 7 T. The 0.04 atoms/b target reached a polarization of 38% in 35 h. Such a target may be applied to any experiment which is tolerant of the large ambient magnetic field and which produces target heating of less than a microwatt. High energy neutron and photon scattering experiments meet these requirements. The target`s figure of merit for neutron transmission measurement exceeds that of polarized gas targets by greater than 35. At the Triangle Universities Nuclear Laboratory we have used the target to measure the total cross section differences {Delta}{sigma}{sub T} and {Delta}{sigma}{sub L} for incident polarized neutrons of energies 2-8 MeV. The cross section difference is sensitive to the excited state structure of the n-{sup 3}He system. The results have been compared to a recent R-matrix analysis of A=4 scattering and reaction data, and provide support for the {sup 4}He level scheme derived from that analysis. (orig.). 11 refs.

  17. Application of Zeeman spatial beam-splitting in polarized neutron reflectometry

    OpenAIRE

    Kozhevnikov, S. V.; Ignatovich, V. K.; Radu, F.

    2017-01-01

    Neutron Zeeman spatial beam-splitting is considered at reflection from magnetically noncollinear films. Two applications of Zeeman beam-splitting phenomenon in polarized neutron reflectometry are discussed. One is the construction of polarizing devices with high polarizing efficiency. Another one is the investigations of magnetically noncollinear films with low spin-flip probability. Experimental results are presented for illustration.

  18. Electronic interaction in an outer-sphere mixed-valence double salt: a polarized neutron diffraction study of K(3)(MnO(4))(2).

    Science.gov (United States)

    Cannon, Roderick D; Jayasooriya, Upali A; Tilford, Claire; Anson, Christopher E; Sowrey, Frank E; Rosseinsky, David R; Stride, John A; Tasset, Francis; Ressouche, Eric; White, Ross P; Ballou, Rafik

    2004-11-01

    The mixed-valence double salt K(3)(MnO(4))(2) crystallizes in space group P2(1)/m with Z = 2. The manganese centers Mn1 and Mn2 constitute discrete "permanganate", [Mn(VII)O(4)](-), and "manganate", [Mn(VI)O(4)](2-), ions, respectively. There is a spin-ordering transition to an antiferromagnetic state at ca. T = 5 K. The spin-density distribution in the paramagnetic phase at T = 10 K has been determined by polarized neutron diffraction, confirming that unpaired spin is largely confined to the nominal manganate ion Mn2. Through use of both Fourier refinement and maximum entropy methods, the spin on Mn1 is estimated as 1.75 +/- 1% of one unpaired electron with an upper limit of 2.5%.

  19. Current activities and plans for polarized neutron instruments of the JSNS/J-PARC project

    International Nuclear Information System (INIS)

    Furusaka, M.

    2005-01-01

    Neutron polarization is one of the key technologies for the next generation megawatt-class pulsed spallation neutron sources, such as SNS in the US and the JSNS in Japan. To polarize or analyze neutron spin, several techniques are under development in Japan: a small d-spacing magnetic multilayer mirror, spin exchange type He-3 filter and a dynamical proton polarizer. Several application techniques related to polarized neutrons are also under development, such as, a microwave-induced optical nuclear polarization technique, which allows us to polarize protons in naphtalene doped with pentacene at 77 K; neutron focusing-SANS instrument utilizing a focusing magnet; a Drabkin spin-filter instrument that has two filters in series for neutron-pulse shaping

  20. CuGeO3 and CuO by respectively elastic and inelastic polarized neutrons

    International Nuclear Information System (INIS)

    Ain, M.; Regnault, L.P.; Lorenzo, J.; Dhalenne, G.; Revcolevschi, A.

    2005-01-01

    Polarization analysis permitted to verify very promptly that the plane of the helix in the incommensurate phase of CuO was not (a*,c*) as first proposed but another one containing without equivoque the b*-axis.Inelastic polarization analysis under applied magnetic field permitted to study the triplet magnon-like mode of spin-Peierls CuGeO 3 . This mode splits in three, as expected. Intensities of inelastic neutron scattering measurements with polarization analysis have been collected in both spin-flip and nonspin-flip channels. This Zeeman splitting revealed that two out of the three processes are purely spin-flip excitations, while the third undisplaced one is a nonspin-flip process in which the neutron conserves its spin orientation

  1. Polarized neutron reflectivity studies on epitaxial BiFeO3/La0.7Sr0.3MnO3 heterostructure integrated with Si (100

    Directory of Open Access Journals (Sweden)

    S. R. Singamaneni

    2018-05-01

    Full Text Available This work reports polarized neutron reflectivity (PNR measurements performed using the Magnetism Reflectometer at Oak Ridge National Laboratory on epitaxial BiFeO3(BFO/La0.7Sr0.3MnO3(LSMO/SrTiO3(STO/MgO/TiN heterostructure deposited on Si (100 substrates. By measuring the angular dependence of neutrons reflected from the sample, PNR can provide insights on interface magnetic spin structure, chemical composition and magnetic depth profiles with a nanometer resolution. Our first analysis of nuclear scattering length density (NSLD and magnetic scattering length density (MSLD depth profiles measured at 4 K have successfully reproduced most of the expected features of this heterostructure, such as the NSLD for the Si, TiN, MgO, STO, LSMO layers and remanent magnetization (2.28μB/Mn of bulk LSMO. However, the SLD of the BFO is decreased by about 30% from the expected value. When 5 V was applied across the BFO/LSMO interface, we found that the magnetic moment of the LSMO layer could be varied by about 15-20% at 6 K. Several mechanisms such as redistribution of oxygen vacancies, interface strain, charge screening and valence state change at the interface could be at play. Work is in progress to gain an improved in-depth understanding of these effects using MOKE and STEM-Z interface specific measurements.

  2. Polarized neutron reflectivity studies on epitaxial BiFeO3/La0.7Sr0.3MnO3 heterostructure integrated with Si (100)

    Science.gov (United States)

    Singamaneni, S. R.; Prater, J. T.; Glavic, A.; Lauter, V.; Narayan, J.

    2018-05-01

    This work reports polarized neutron reflectivity (PNR) measurements performed using the Magnetism Reflectometer at Oak Ridge National Laboratory on epitaxial BiFeO3(BFO)/La0.7Sr0.3MnO3(LSMO)/SrTiO3(STO)/MgO/TiN heterostructure deposited on Si (100) substrates. By measuring the angular dependence of neutrons reflected from the sample, PNR can provide insights on interface magnetic spin structure, chemical composition and magnetic depth profiles with a nanometer resolution. Our first analysis of nuclear scattering length density (NSLD) and magnetic scattering length density (MSLD) depth profiles measured at 4 K have successfully reproduced most of the expected features of this heterostructure, such as the NSLD for the Si, TiN, MgO, STO, LSMO layers and remanent magnetization (2.28μB/Mn) of bulk LSMO. However, the SLD of the BFO is decreased by about 30% from the expected value. When 5 V was applied across the BFO/LSMO interface, we found that the magnetic moment of the LSMO layer could be varied by about 15-20% at 6 K. Several mechanisms such as redistribution of oxygen vacancies, interface strain, charge screening and valence state change at the interface could be at play. Work is in progress to gain an improved in-depth understanding of these effects using MOKE and STEM-Z interface specific measurements.

  3. Polarized 3He gas circulating technologies for neutron analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Watt, David W. [Xemed, LLC, Durham, NH (United States)

    2017-10-02

    We outline our project to develop a circulating polarized helium-3 system for developing of large, quasi-continuously operating neutron analyzers. The project consisted of four areas: 1) Development of robust external cavity narrowed diode laser output with spectral line width < 0.17 nm and power of 2000 W. 2) Development of large glass polarizing cells using cell surface treatments to obtain long relaxation lifetimes. 3) Refinements of the circulation system with an emphasis on gas purification and materials testing. 4) Design/fabrication of a new polarizer system. 5) Preliminary testing of the new polarizer. 1. Developed Robust High-Power Narrowed Laser The optical configuration of the laser was discussed in the proposal and will be reviewed in the body of this report. The external cavity is configured to mutually lock the wavelength of five 10-bar laser stacks. All the logistical milestones were been met and critical subsystems- laser stack manifold and power divider, external laser cavity, and output telescope- were assembled and tested at low power. Each individual bar is narrowed to ~0.05 nm; when combined the laser has a cumulative spectral width of 0.17 nm across the entire beam due to variations of the bars central wavelength by +/- 0.1 nm, which is similar to that of Volume Bragg Grating narrowed laser bars. This configuration eliminates the free-running “pedestal” that occurs in other external cavity diode lasers. The full-scale laser was completed in 2016 and was used in both the older and newer helium polarizers. This laser was operated at 75% power for periods of up to 8 hours. Once installed, the spectrum became slightly broader (~.25 nm) at full power; this is likely due to very slight misalignments that occurred during handling. 2. Developed the processes to create uniform sintered sol-gel coatings. Our work on cell development comprised: 1) Production of large GE180 cells and explore different means of cell preparation, and 2) Development of

  4. Anomalous neutron scattering in nuclear-polarized media

    International Nuclear Information System (INIS)

    Bashkin, E.P.

    1989-01-01

    A novel inelastic scattering exchange mechanism involving spin flip is considered for slow neutrons moving through a nuclear-polarized medium. The scattering is accompanied by the emission or absorption of thermal fluctuations of the transverse magnetization of the medium. The main role in the fluctuations is played by weakly decaying Larmor precession of the nuclear spins in an external magnetic field. Under 'giant opalescence' conditions the effect is enormous and the respective cross sections exceed significantly those for ordinary elastic scattering. Thus, for 29 Si and 3 He in typical experimental conditions the cross sections for the inelastic processes are of the order of 10 5 -10 6 barn

  5. A method for the accurate determination of the polarization of a neutron beam using a polarized 3He spin filter

    International Nuclear Information System (INIS)

    Greene, G.L.; Thompson, A.K.; Dewey, M.S.

    1995-01-01

    A new method for the accurate determination of the degree of polarization of a neutron beam which has been polarized by transmission through a spin polarized 3 He cell is given. The method does not require the use of an analyzer or spin flipper nor does it require an accurate independent determination of the 3 He polarization. The method provides a continuous on-line determination of the neutron polarization. The method may be of use in the accurate determination of correlation coefficients in neutron beta decay which provide a test of the standard model for the electroweak interaction. The method may also provide an accurate procedure for the calibration of polarized 3 He targets used in medium and high energy scattering experiments. ((orig.))

  6. Neutron multimonochromator-bipolarizer based on magnetic multilayer Fe/Co and new scheme for the total neutron polarization analysis

    International Nuclear Information System (INIS)

    Syromyatnikov, V.G.; Zaw Lin, Kyaw

    2017-01-01

    In this paper, we present a new neutron-optical element, Neutron Multimonochromator-Bipolarizer (NMB). It consists of a multimultilayer structure made of 12 periodic multilayer Fe/Co magnetic nanostructures whose period increases with distance from the substrate. Results are presented of calculations of the reflection coefficients from the NMB. We propose a new scheme of the total neutron polarization analysis for the time-of-flight method in the reflectometry. In this scheme, double NMB is used as a polarizer and there is no spin-flipper before the sample. NMB can be used in polarized neutron reflectometry, in SESANS, and for research of low-angle and inelastic scattering of polarized neutrons. (paper)

  7. Fabrication of a Polarizing Neutron Supermirror and Development of its applied Devices

    International Nuclear Information System (INIS)

    Cho, Sang Jin; Ryu, Ji Myoungi; Kim, Sangwon

    2013-02-01

    Based on the project of neutron guide development, which started in 2005, KAERI has possessed the techniques such as supermirror coating, guide element assembly, guide alignment, special tool development and guide element assembly, guide alignment, special tool development and guide maintenance. With help of multilayer coating technique from supermirror fabrication, a project called 'Development of a Polarizing Supermirror and its applied devices' started early 2011. To begin with, most used coating materials were investigated, and for using polarized beam, G-TS located at CG1 beam line (Guide Test Station: Reflectometer) was modified with adding spin flipper, polarizer, analyzer and magnetic sample holder developed by KAERI. By studying crystallization and oxidation of the FeCo alloy to minimize the layer roughness and magnetization of a magnetic layer to determine minimal magnetic field, the neutron polarizing supermirrors have been developed, which show a average reflectivity of 90% and a polarization of 95% for M=2 and a average reflectivity of 80% and a polarization of 95% for M=2.6

  8. Size-dependent magnetic transitions in CoFe0.1Cr1.9O4 nanoparticles studied by magnetic and neutron-polarization analysis.

    Science.gov (United States)

    Kumar, D; Galivarapu, J K; Banerjee, A; Nemkovski, K S; Su, Y; Rath, Chandana

    2016-04-29

    Multiferroic, CoCr2O4 bulk material undergoes successive magnetic transitions such as a paramagnetic to collinear and non-collinear ferrimagnetic state at the Curie temperature (TC) and spiral ordering temperature (TS) respectively and finally to a lock-in-transition temperature (Tl). In this paper, the rich sequence of magnetic transitions in CoCr2O4 after mixing the octahedral site with 10% of iron are investigated by varying the size of the particle from 10 to 50 nm. With the increasing size, while the TC increases from 110 to 119 K which is higher than the TC (95 K) of pure CoCr2O4, the TS remains unaffected. In addition, a compensation of magnetization at 34 K and a lock-in transition at 10 K are also monitored in 50 nm particles. Further, we have examined the magnetic-ordering temperatures through neutron scattering using a polarized neutron beam along three orthogonal directions after separating the magnetic scattering from nuclear-coherent and spin-incoherent contributions. While a sharp long-range ferrimagnetic ordering down to 110 K and a short-range spiral ordering down to 50 K are obtained in 50 nm particles, in 10 nm particles, the para to ferrimagnetic transition is found to be continuous and spiral ordering is diffused in nature. Frequency-dependent ac susceptibility (χ) data fitted with different phenomenological models such as the Neel-Arrhenius, Vogel-Fulcher and power law, while ruling out the canonical spin-glass, cluster-glass and interacting superparamagnetism, reveal that both particles show spin-glass behavior with a higher relaxation time in 10 nm particles than in 50 nm. The smaller spin flip time in 50 nm particles confirms that spin dynamics does not slow down on approaching the glass transition temperature (Tg).

  9. Investigation of CoFeV/TiZr multilayer by polarized neutron reflectometry

    International Nuclear Information System (INIS)

    Chen Bo; Li Xinxi; Huang Chaoqiang

    2007-06-01

    The interracial structures of CoFeV/TiZr multilayer play an important role in performance of polarizing supermirrors. Aiming to requirement, CoFeV/ TiZr layered samples with different structures were prepared. Specular reflection of polarized neutrons was employed to study the depth profile of scattering length, density, thickness and roughness of CoFeV/TiZr multilayer and magnetically dead layers. The result shows that the roughness in CoFeV/ TiZr multilayer can be described with roughness increase law and the thickness of magnetically dead layers is about 0.5 nm. The producing technology of the multilayer reaches the requirements. (authors)

  10. Small-angle neutron polarization for the 2H(d vector,n vector)3He reaction near Esub(d) = 8MeV

    International Nuclear Information System (INIS)

    Tornow, W.; Woye, W.; Mack, G.

    1981-01-01

    Considerable improvement in the quality of analyzing power experiments performed with polarized fast neutrons has been achieved during the last few years by using neutrons from the polarization transfer reaction 2 H(d vector,n vector) 3 He at a reaction angle of theta = 0 0 . To compromise in these experiments between intensity problems and finite geometry corrections, it is desirable in some instances to subtend a full-width angle Δtheta of 20 0 (lab) centered about theta = 0 0 . In order to investigate the suitability of this reaction as a source of polarized neutrons for cases where the scatterer is close to the neutron source, the neutron polarization of the reaction 2 H(d vector,n vector) 3 He has been studied with Δtheta of about 3 0 in 3 0 steps out to theta = 20 0 (lab). An incident deuteron energy near 8 MeV was chosen to yield outgoing neutrons at 11.0 MeV, a typical energy for neutron analyzing power experiments. It is found that the effective neutron polarization, a combination of the two polarizations measured when the direction of the deuteron polarization is inverted or flipped at the polarized ion source, is large and nearly constant for angles between theta = 0 0 and theta = 10 0 (lab). (orig.)

  11. Investigation of Fe3O4 Colloid Behaviour in a Magnetic Field by Polarized Neutron Transmission

    International Nuclear Information System (INIS)

    Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1994-01-01

    Experiments were conducted to measure the dependence of neutron polarization following their transmission through a magnetic colloid on the concentration of magnetic particles, magnetic field strength and wavelength of neutrons. In a magnetic field up to 500 Oe the precession of the neutron polarization is seen. Comparison of the experimental data and theory is made and colloid magnetization is determined. The measurement was carried out with the SPN-1 polarized neutron spectrometer at the high-flux pulsed reactor IBR-2 in Dubna. 7 refs., 2 figs

  12. The polarized neutron small-angle scattering instrument at BENSC Berlin

    International Nuclear Information System (INIS)

    Keller, T.; Krist, T.; Danzig, A.; Keiderling, U.; Mezei, F.; Wiedenmann, A.

    2000-01-01

    A polarized neutron beam has been installed at the small-angle neutron-scattering instrument V4 at BENSC Berlin. The main component of this new option is a 1.8 m long cavity transmission polarizer. The advantages of this device compared to the conventional bender polarizers are: (i) high transmission (35% of unpolarized beam at λ=6 A); (ii) the polarization is better than 93% in the wavelength band 4 A 3 O 4 particles embedded in a glass matrix) are presented and compared to a measurement with unpolarized neutrons

  13. Realization of a broad band neutron spin filter with compressed, polarized 3He gas

    International Nuclear Information System (INIS)

    Surkau, R.; Otten, E.W.; Steiner, M.; Tasset, F.; Trautmann, N.

    1997-01-01

    The strongly spin dependent absorption of neutrons in nuclear spin polarized 3 -2pt vector He opens the possibility to polarize beams of thermal and epithermal neutrons. An effective 3 He neutron spin filter (NSF) requires high 3 He nuclear polarization as well as a filter thickness corresponding to a gas amount of the order of 1 bar l. We realized such a filter using direct optical pumping of metastable 3 He * atoms in a 3 He plasma at 1 mbar. Metastable exchange scattering transfers the angular momentum to the whole ensemble of 3 He atoms. At present 3 x 10 18 3 He-atoms/s are polarized up to 64%. Subsequent polarization preserving compression by a two stage compressor system enables to prepare NSF cells of about 300 cm 3 volume with 3 bar of polarized 3 He within 2 h. 3 He polarizations up to 53% were measured in a cell with a filter length of about 15 cm. By this cell a thermal neutron beam from the Mainz TRIGA reactor was polarized. A wavelength selective polarization analysis by means of Bragg scattering revealed a neutron polarization of 84% at a total transmission of 12% for a neutron wavelength of 1 A. (orig.)

  14. A fan analyzer of neutron beam polarization on the spectrometer REMUR at the pulsed reactor IBR-2

    International Nuclear Information System (INIS)

    Ul'yanov, V.A.; Pusenkov, V.M.; Pleshanov, N.K.

    2004-01-01

    The new spectrometer of polarized neutrons REMUR has been created and put in operation at the Frank Laboratory of Neutron Physics (JINR, Dubna). The spectrometer is dedicated to investigations of multilayer structures and surfaces by registering the reflection of polarized neutrons and of the inhomogeneous state of solid matter by measuring the small-angle scattering of polarized neutrons. The spectrometer's working range of neutron wavelengths is 1.5-10 Angstroem. The spectrometer is equipped with a linear position-sensitive detector and a focused supermirror polarization analyzer (the fan-like polarization analyzer) with a solid angle of polarized neutron detection of 2.2·10 -4 rad. This paper describes the design and the principle of operation of the fan analyzer of neutron polarization together with the results of the fan tests on a polarized neutron beam

  15. The polarization of MeV neutrons elastically scattered from 4He

    International Nuclear Information System (INIS)

    Bond, J.E.; Firk, F.W.K.

    1976-01-01

    The analyzing power of 4 He for neutron elastic scattering has been measured at four angles between 20 0 and 80 0 (lab) throughout the energy range 1.5-6.0 MeV using a double-scattering method. The intense flux of polarized neutrons was generated via the reactions Pb(γ, n)→ 12 C(n, n(pol.) 12 C, and the magnitude of the polarization of the neutron beam measured absolutely in a separate double-scattering experiment. Neutron energies were determined with a nanosecond time-of-flight spectrometer, and the generalized neutron spin-precession method was used to minimize systematic uncertainties. (Auth.)

  16. Neutron polarizing Fe-Al supermirror on a Si crystal substrate and its applications for thermal and cold neutrons

    International Nuclear Information System (INIS)

    Syromyatnikov, V.G.; Shchebetov, A.F.; Soroko, Z.N.

    1994-01-01

    Experimental data are presented for an Fe-Al neutron polarizing supermirror on a Si crystal substrate with an antireflecting Cd layer. The polarizing efficiency of this supermirror is P≥qslant0.8 for the range of glancing angles θ/λ=0.25-1.7 /nm and P≥qslant0.95 for θ/λ=0.34-1.7 /nm. Some applications of this supermirror for thermal and cold neutrons are considered. ((orig.))

  17. The Spin Structure of the Neutron Determined Using a Polarized He-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, H

    2004-01-06

    Described is a study of the internal spin structure of the neutron performed by measuring the asymmetry in spin-dependent deep inelastic scattering of polarized electrons from nuclear polarized {sup 3}He. Stanford Linear Accelerator experiment E142's sample of 400 million scattering events collected at beam energies between 19 and 26 GeV led to the most precise measurement of a nucleon spin structure function to date. The {sup 3}He target represents a major advance in polarized target technology, using the technique of spin exchange with optically pumped rubidium vapor to produce a typical {sup 3}He nuclear polarization of 34% in a 30cm long target cell with a gas density of 2.3 x 10{sup 20} cm{sup -3}. The target polarization was measured to {+-}7% using an Adiabatic Fast Passage NMR system calibrated with the thermal equilibrium polarization of the protons in a sample of water. The relatively high polarization and target thickness were the result of the development of large volume glass target cells which had inherent nuclear spin relaxation times for the {sup 3}He gas of as long as 70 hours. A target cell production procedure is presented which focuses on special glass blowing techniques to minimize surface interactions with the {sup 3}He nuclei and careful gas purification and vacuum system procedures to reduce relaxation inducing impurities.

  18. In situ polarized 3He system for the Magnetism Reflectometer at the Spallation Neutron Source.

    Science.gov (United States)

    Tong, X; Jiang, C Y; Lauter, V; Ambaye, H; Brown, D; Crow, L; Gentile, T R; Goyette, R; Lee, W T; Parizzi, A; Robertson, J L

    2012-07-01

    We report on the in situ polarized (3)He neutron polarization analyzer developed for the time-of-flight Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Using the spin exchange optical pumping method, we achieved a (3)He polarization of 76% ± 1% and maintained it for the entire three-day duration of the test experiment. Based on transmission measurements with unpolarized neutrons, we show that the average analyzing efficiency of the (3)He system is 98% for the neutron wavelength band of 2-5 Å. Using a highly polarized incident neutron beam produced by a supermirror bender polarizer, we obtained a flipping ratio of >100 with a transmission of 25% for polarized neutrons, averaged over the wavelength band of 2-5 Å. After the cell was depolarized for transmission measurements, it was reproducibly polarized and this performance was maintained for three weeks. A high quality polarization analysis experiment was performed on a reference sample of Fe/Cr multilayer with strong spin-flip off-specular scattering. Using a combination of the position sensitive detector, time-of-flight method, and the excellent parameters of the (3)He cell, the polarization analysis of the two-dimensional maps of reflected, refracted, and off-specular scattered intensity above and below the horizon were obtained, simultaneously.

  19. Long distance propagation of a polarized neutron beam in zero magnetic field

    International Nuclear Information System (INIS)

    Schmidt, U.; Bitter, T.; El-Muzeini, P.

    1992-01-01

    A beam of fully polarized cold neutrons was transported through a zero magnetic field region of 70 m length without loss of polarization. The purpose of this exercise was twofold: Firstly, to demonstrate that the new zero-field neutron spin-echo method will work also for very long neutron flight paths; secondly, to prove in the most direct way that the neutron free-flight region of the ILL neutron-antineutron oscillation experiment was indeed sufficiently field-free ('quasifree condition') by using the neutrons themselves as a magnetometer. To this purpose the residual magnetic field integrals in the long 'zero-field' region were measured with a conventional neutron spin-echo method. The overall spin precession angle of the neutrons during their flight through the long zero-field region was found to be less than 2 0 . (orig.)

  20. Development of ultracold neutron detectors and a polarization analyzing system for the measurement of the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Rogel, Gwendal

    2009-01-01

    This thesis was performed in the context of a project aiming to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute. Two aspects have been studied: The detection and the polarization analysis of ultracold neutrons. Three types of detectors have been tested at the Institut Laue-Langevin (ILL): The Cascade-U (GEM technology), the "3He gas detector and "6Li-doped glass scintillators (GS family). Their detection efficiency and their background sensitivity have been measured. The GS10 scintillator is competitive with the "3He gas detector under the conditions realized with the EDM spectrometer. A GS3/GS20 scintillator stack has enabled to improve the neutron/gamma discrimination. It has been found 20% less efficient than the "3He gas detector under the EDM spectrometer. The Cascade-U detector has been observed to be 20% less efficient than a 500 microns thick GS10 glass as confirmed by simulations. A new system for simultaneous spin analysis is presented. It consists of two independent detection systems (arms) which are each made of an adiabatic spin flipper, a spin analyzer, and a detector. The arms detect opposite spin components, allowing the simultaneous counting of both neutron spin orientations. A prototype mounted in horizontal configuration has been tested at ILL. The analyzing power of both arms has been measured to be 80%. The transmission of the system without spin analyzers has been found to be 50%. (author) [fr

  1. New POLDI - project of reincarnation of a polarized neutron diffractometer at the reactor PIK

    Science.gov (United States)

    Zobkalo, I.; Gavrilov, S.; Matveev, V.; Fenske, J.

    2017-06-01

    The project of a considerable modernization of the polarized neutron diffractometer POLDI is discussed. It assumes the adoption of POLDI to a broader range of magnetic investigations such as determination of magnetic structures, detailed investigation of complex magnetic structures, studies of magnetic domains, study of the magnetization density maps, magnetic form-factor particularities, local susceptibility, etc. The flexible construction should permit to use either spherical neutron polarimetry technique or flipping ratio technique. Different types of polarization system were analyzed. Original focusing fan-like bender is proposed as polarizer unit. Our simulations give evidence that for the wavelength range 1.3 - 3 Å and with suitable size, such a device can give much better efficiency than 3He cells, which are often in use. The higher flux at the sample position of a factor of at least 3.3, with lower divergence and good polarization degree from 98% (1.3 Å) to above 94% (3 Å) makes the bender set-up favorable over the layout with a 3He-cell.

  2. Development of accurate techniques for controlling polarization of a long wavelength neutron beam in very low magnetic fields. I

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Ebisawa, Toru; Tasaki, Seiji; Akiyoshi, Tsunekazu; Eguchi, Yoshiaki; Hino, Masahiro; Achiwa, Norio.

    1995-01-01

    The purpose of our study is to develop accurate techniques for controlling polarization of a long wavelength neutron beam and to make a thin-film dynamical spin-flip device operated in magnetizing fields less than 100 gauss and in a shorter switching time up to 20 kHz. The device would work as a chopper for a polarized neutron beam and as a magnetic switching device for a multilayer neutron interferometer. We have started to develop multilayer polarizing mirrors functioning under magnetizing fields less than 100 gauss. The multilayers of Permalloy-Ge and Fe-Ge have been produced using the evaporation method under magnetizing fields of about 100 gauss parallel to the Si-wafer substrate surface. The hysteresis loop for in-plane magnetization of the multilayers were measured to discuss their feasibilities for the polarizing device functioning under very low magnetizing fields. The polarizing efficiencies of Fe-Ge and Permalloy-Ge multilayers were 95 % and 91 % with reflectivities of 50 % and 66 % respectively under magnetizing fields of 80 gauss. The report also discusses problems in applying these multilayer polarizing mirrors to ultracold neutrons. (author)

  3. Neutron polarizing set-up of the Sofia IRT research reactor

    International Nuclear Information System (INIS)

    Krezhov, K.; Mikhajlova, V.; Okorokov, A.

    1990-01-01

    Neutron polarizing set-up of one of the horizontal beam tubes of the IRT-200 research reactor of the Bulgarian Institute of Nuclear Research and Nuclear Energy is presented. Neutron mirrors are extensively used in an effort to compensate the moderate reactor beam intensity by the high reflected intensity and wide-band transmittance of the mirror neutron guides. Time-to-flight technique using a slotted neutron absorbing chopper with a horizontal rotation axis has been applied to obtain the exit neutron spectra. Beam polarization and flipping ratios have been determined. Cadmium ratio in the polarized beam has been found almost 10 4 and the average polarization has been measured to be higher than 96%. 3 figs, 3 refs

  4. Test of parity and time reversal invariance with low energy polarized neutrons

    International Nuclear Information System (INIS)

    Masaike, Akira

    1996-01-01

    Measurements of helicity asymmetries in slow neutron reactions on nuclei have been performed by transmission and capture γ-ray detection. Large enhancements of parity-violation effects have been observed on p-wave resonances of various medium and heavy nuclei. The weak matrix elements in hadron reactions have been deduced from these experimental results. Neutron spin precession near the p-wave resonance has been measured. In recent years violation of time reversal invariance is being searched for in the neutron reactions in which large enhancements of the parity violation effects have been observed. The measurement of the term σ n ·(k n x I) in a neutron reaction using polarized neutrons and a polarized target is an example of the test of T-violation. Polarizations of the neutron and lanthanum nucleus for these experiments are also presented. (author)

  5. Polarized Elastic Fast-Neutron Scattering off {sup 12}C in the Lower MeV-Range. I. Experimental Part

    Energy Technology Data Exchange (ETDEWEB)

    Aspelund, O

    1967-05-15

    Practical as well as more fundamental interest in low-energy n-{sup 12}C elastic scattering motivated the execution of comprehensive polarization studies between 1.062 and 2.243 MeV. Seven complete polarization angular distributions were obtained from experimental finite-geometry left-right ratios at each energy observed at six or seven laboratory scattering angles between 30 and 129 deg, using polarized fast-neutrons emitted at {theta}{sub i} 50 (lab. syst.) from the {sup 7}Li(p, n) {sup 7}Be-reaction. Proper corrections were applied for finite geometry and polarized multiple-scattering effects as well as for the presence of the first-excited state group of fast-neutrons in the incident beams. The magnitude of the polarization effects are sufficiently large to ensure the potentialities of {sup 12}C as an acceptable fast-neutron polarization analyser in the energy range under consideration. Furthermore, on the basis of the above-mentioned polarization data as well as on the basis of total and differential scattering cross section data available in current literature reliable phase shifts were determined. These phase shifts are only in partial agreement with the ones of Wills, Jr. et al. , and in definite disagreement with the extrapolated phases of Meier, Scherrer, and Trumpy. Their energy variations will be predicted in the theoretical part of this contribution.

  6. Neutron diffraction studies of thin film multilayer structures

    International Nuclear Information System (INIS)

    Majkrzak, C.F.

    1985-01-01

    The application of neutron diffraction methods to the study of the microscopic chemical and magnetic structures of thin film multilayers is reviewed. Multilayer diffraction phenomena are described in general and in particular for the case in which one of the materials of a bilayer is ferromagnetic and the neutron beam polarized. Recent neutron diffraction measurements performed on some interesting multilayer systems are discussed. 70 refs., 5 figs

  7. Search for sp-interference effect in emission of prompt neutrons of sup 2 sup 3 sup 5 U fission by thermal polarized neutrons

    CERN Document Server

    Danilyan, G V; Pavlov, V S; Fedorov, A V

    2001-01-01

    The results of the experiment for the search of the sp-interference effect in the distribution of the prompt neutrons of the sup 2 sup 3 sup 5 U fission by thermal polarized neutrons are presented. The experiment is carried out on the polarized neutrons beam of the MIFI reactor. The scheme of the installation and the flight time spectrum are presented

  8. Metastability-exchange optical pumping of 3He for neutron polarizers

    International Nuclear Information System (INIS)

    Gentile, T.R.; Thompson, A.K.; Snow, W.M.

    1995-01-01

    Research is underway at NIST and IU to develop neutron polarizers that are based on polarized 3 He. Such polarizers rely on the strong spin dependence of the cross section for neutron capture by polarized 3 He. Two methods can produce the high density of polarized 3 He gas (10 19 -10 20 cm -3 ) required for an effective neutron polarizer: spin-exchange optical pumping, which is performed directly at high pressure (1-10 bar), and metastability-exchange optical pumping, in which the gas is polarized at low pressure (1 mbar) and then compressed. While we are pursuing both methods, progress in the metastable method will be discussed. The features of the metastable method are the high rate at which the gas can be polarized and the inherent separation of the optical pumping and target cells. In a landmark achievement, researchers at the Univ. of Mainz have developed a piston compressor that can fill a 130 cm 3 cell to a pressure of 7 bar of 45% polarized 3 He gas in 2 hours. We plan to develop a compressor and test it at the NIST Cold Neutron Research Facility. We have constructed a metastable-pumping apparatus at NIST and have obtained 76% polarization with a pumping rate of 1.2 x 10 18 atoms/sec in a 0.4 mbar, 270 cm 3 cell

  9. Neutron scattering studies on frustrated magnets

    International Nuclear Information System (INIS)

    Arima, Taka-hisa

    2013-01-01

    A lot of frustrated magnetic systems exhibit a nontrivial magnetic order, such as long-wavelength modulation, noncollinear, or noncoplanar order. The nontrivial order may pave the way for the novel magnetic function of matter. Neutron studies are necessary to determine the magnetic structures in the frustrated magnetic systems. In particular, spin-polarized neutron scattering is a useful technique for the investigation of the novel physical properties relevant to the nontrivial spin arrangement. Here some neutron studies on a multiferroic perovskite manganese oxide system are demonstrated as a typical case. The frustrated magnetic systems may also a playground of novel types of local magnetic excitations, which behave like particles in contrast to the magnetic waves. It is becoming a good challenge to study such particle-type magnetic excitations relevant to the magnetic frustration. (author)

  10. Atmospheres and spectra of strongly magnetized neutron stars - II. The effect of vacuum polarization

    Science.gov (United States)

    Ho, Wynn C. G.; Lai, Dong

    2003-01-01

    We study the effect of vacuum polarization on the atmosphere structure and radiation spectra of neutron stars with surface magnetic fields B= 1014-1015 G, as appropriate for magnetars. Vacuum polarization modifies the dielectric property of the medium and gives rise to a resonance feature in the opacity; this feature is narrow and occurs at a photon energy that depends on the plasma density. Vacuum polarization can also induce resonant conversion of photon modes via a mechanism analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism for neutrino oscillation. We construct atmosphere models in radiative equilibrium with an effective temperature of a few ×106 K by solving the full radiative transfer equations for both polarization modes in a fully ionized hydrogen plasma. We discuss the subtleties in treating the vacuum polarization effects in the atmosphere models and present approximate solutions to the radiative transfer problem which bracket the true answer. We show from both analytic considerations and numerical calculations that vacuum polarization produces a broad depression in the X-ray flux at high energies (a few keV <~E<~ a few tens of keV) as compared to models without vacuum polarization; this arises from the density dependence of the vacuum resonance feature and the large density gradient present in the atmosphere. Thus the vacuum polarization effect softens the high-energy tail of the thermal spectrum, although the atmospheric emission is still harder than the blackbody spectrum because of the non-grey opacities. We also show that the depression of continuum flux strongly suppresses the equivalent width of the ion cyclotron line and therefore makes the line more difficult to observe.

  11. Simultaneous polarized neutron reflectometry and anisotropic magnetoresistance measurements.

    Science.gov (United States)

    Demeter, J; Teichert, A; Kiefer, K; Wallacher, D; Ryll, H; Menéndez, E; Paramanik, D; Steitz, R; Van Haesendonck, C; Vantomme, A; Temst, K

    2011-03-01

    A novel experimental facility to carry out simultaneous polarized neutron reflectometry (PNR) and anisotropic magnetoresistance (AMR) measurements is presented. Performing both techniques at the same time increases their strength considerably. The proof of concept of this method is demonstrated on a CoO/Co bilayer exchange bias system. Although information on the same phenomena, such as the coercivity or the reversal mechanism, can be separately obtained from either of these techniques, the simultaneous application optimizes the consistency between both. In this way, possible differences in experimental conditions, such as applied magnetic field amplitude and orientation, sample temperature, magnetic history, etc., can be ruled out. Consequently, only differences in the fundamental sensitivities of the techniques can cause discrepancies in the interpretation between the two. The almost instantaneous information obtained from AMR can be used to reveal time-dependent effects during the PNR acquisition. Moreover, the information inferred from the AMR measurements can be used for optimizing the experimental conditions for the PNR measurements in a more efficient way than with the PNR measurements alone.

  12. Interaction of polarized neutrons with polarized La nuclei and the structure of the cross section at energies up to 20 eV

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Mareev, Yu.D.; Novitskii, V.V.; Pikel'ner, L.B.; Skoi, V.R.

    1994-01-01

    Properties of lanthanum are investigated in an experiment on the interaction of polarized neutrons with polarized La nuclei. The total cross section for lanthanum is measured for neutron energies ranging from 0.4 to 10 eV. It is shown that one strong level below the neutron binding energy is sufficient for obtaining a good description of the lanthanum cross section in this energy range. The results on the cross section for the interaction of polarized projectiles on a polarized target confirm this conclusion. The spin of the 138 La neutron resonance at 3.0 eV is found to be J = 11 / 2 . 13 refs., 3 figs

  13. Spin filtering neutrons with a proton target dynamically polarized using photo-excited triplet states

    International Nuclear Information System (INIS)

    Haag, M.; Brandt, B. van den; Eichhorn, T.R.; Hautle, P.; Wenckebach, W.Th.

    2012-01-01

    In a test of principle a neutron spin filter has been built, which is based on dynamic nuclear polarization (DNP) using photo-excited triplet states. This DNP method has advantages over classical concepts as the requirements for cryogenic equipment and magnets are much relaxed: the spin filter is operated in a field of 0.3 T at a temperature of about 100 K and has performed reliably over periods of several weeks. The neutron beam was also used to analyze the polarization of the target employed as a spin filter. We obtained an independent measurement of the proton spin polarization of ∼0.13 in good agreement with the value determined with NMR. Moreover, the neutron beam was used to measure the proton spin polarization as a function of position in the naphthalene sample. The polarization was found to be homogeneous, even at low laser power, in contradiction to existing models describing the photo-excitation process.

  14. The polarized neutron spectrometer REMUR at the pulsed reactor IBR-2

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Zhernenkov, K.N.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.; Lauter, H.J.; Lauter-Pasyuk, V.

    2004-01-01

    At the Laboratory of Neutron Physics (JINR, Dubna) the new polarized neutron spectrometer REMUR has been constructed and commissioned. The spectrometer REMUR is dedicated to investigations of multilayers and surfaces by polarized neutron reflection and of the inhomogeneous state of solids by diffuse small-angle polarized neutron scattering. The spectrometer operates in the neutron wavelength interval 1-10 Angstroem. In the reflectometry mode it allows one to complete polarization analysis and neutron position-sensitive detection within the solid angle of scattering 2.2·10 -4 rad. The spectrometer ensures good statistics of the reflectometric data in the scattering wave vector interval 3·10 -3 - 5·10 -1 Angstroem -1 . In the small-angle scattering mode the spectrometer allows the investigation of neutron scattering processes without spin-flip over the detector's neutron registration solid angle interval from 4·10 -3 to 10 -1 rad and the scattering wave vector interval from 0.006-0.15 to 0.03-0.7 Angstroem -1 , respectively

  15. Experimental physics with polarized protons, neutrons and deuterons

    CERN Document Server

    Lehar, František; Wilkin, Colin

    2015-01-01

    The monograph gives a comprehensive overview of the diverse aspects of the experimental study of polarization phenomena in nucleon-nucleon and nucleon-deuteron collisions. The special nature of this volume is that it is based on the original physics results and knowledge gained by one of the authors (F. Lehar), who was a respected researcher in the field for nearly fifty years. The results of these experiments provide valuable information on the spin dependence of the forces acting between nucleons in atomic nuclei, of which all matter is ultimately composed. The fundamental importance of the results means that the subject will remain topical for years to come. The book is designed for teachers and students of natural sciences, espe - cially those with interests in nuclear and particle physics, as well as for ex - perimental physicists who are investigating polarization phenomena using accelerators of charged particles. The writing of the book was initiated by F. Lehar who was the driving force beh...

  16. Novel type of neutron polarization analysis using the multianalyzer-equipment of the three-axes spectrometer PUMA

    Science.gov (United States)

    Schwesig, Steffen; Maity, Avishek; Sobolev, Oleg; Ziegler, Fabian; Eckold, Götz

    2018-01-01

    The combination of polarization analysis and multianalyzer system available at the three axes spectrometer PUMA@FRM II allows the simultaneous determination of both spin states of the scattered neutrons and the absolute value of the polarization. The present paper describes the technical details along with the basic formalism used for the precise calibration. Moreover, the performance of this method is illustrated by several test experiments including first polarized inelastic studies of the magnetic excitations of CuO in the multiferroic and the uniaxial antiferromagnetic phases.

  17. Investigation of the paramagnetic phase of bcc iron using polarized neutron scattering

    International Nuclear Information System (INIS)

    Wicksted, J.P.; Shirane, G.; Steinsvoll, O.

    1983-01-01

    Recent neutron scattering experiments on Ni and Fe (4%-Si) above T/sub c/ have demonstrated that a simple paramagnetic scattering function S(Qω) proportional to 1/(kappa 1 2 + q 2 ).GAMMA/(GAMMA 2 + ω 2 ) can explain the persistent spin wave ridges previously reported by Lynn and Mook. We present our new polarized beam results on pure Fe and describe in some detail the special problems associated with the unpolarized beam studies of magnetic cross sections at high temperatures

  18. Measurement of neutrino and proton asymmetry in the decay of polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, M.

    2007-05-09

    The Standard Model of Particle Physics is in excellent agreement with all experimental results. However, it is not believed to be the most fundamental theory. It requires, for example, too many free parameters and is not able to explain the existence of effects such as parity-violation or CP-violation. Thus measurements have to be performed to probe the Standard Model and to search for ''new physics''. An ideal laboratory for this is the decay of the free polarized neutron. In this thesis, we present measurements of the neutrino asymmetry B and the proton asymmetry C in neutron decay. These coefficients describe the correlation between neutron spin and momentum of the respective particle, and provide detailed information on the structure of the underlying theory. The experiment was performed using the electron spectrometer PERKEO II installed at the Institut Laue-Langevin (ILL). It was equipped with a combined electron-proton detector to reconstruct the neutrino in a coincidence measurement. The uncertainty of our neutrino asymmetry result, B=0.9802(50), is comparable to the present best measurement, and, for the first time ever, we obtained a precise value for the proton asymmetry, C=-0.2377(36). Both results are used to analyze neutron decay for hints on ''Physics beyond the Standard Model'' by studying possible admixtures of right-handed currents and of scalar and tensor couplings to the interaction. (orig.)

  19. Measurement of neutrino and proton asymmetry in the decay of polarized neutrons

    International Nuclear Information System (INIS)

    Schumann, M.

    2007-01-01

    The Standard Model of Particle Physics is in excellent agreement with all experimental results. However, it is not believed to be the most fundamental theory. It requires, for example, too many free parameters and is not able to explain the existence of effects such as parity-violation or CP-violation. Thus measurements have to be performed to probe the Standard Model and to search for ''new physics''. An ideal laboratory for this is the decay of the free polarized neutron. In this thesis, we present measurements of the neutrino asymmetry B and the proton asymmetry C in neutron decay. These coefficients describe the correlation between neutron spin and momentum of the respective particle, and provide detailed information on the structure of the underlying theory. The experiment was performed using the electron spectrometer PERKEO II installed at the Institut Laue-Langevin (ILL). It was equipped with a combined electron-proton detector to reconstruct the neutrino in a coincidence measurement. The uncertainty of our neutrino asymmetry result, B=0.9802(50), is comparable to the present best measurement, and, for the first time ever, we obtained a precise value for the proton asymmetry, C=-0.2377(36). Both results are used to analyze neutron decay for hints on ''Physics beyond the Standard Model'' by studying possible admixtures of right-handed currents and of scalar and tensor couplings to the interaction. (orig.)

  20. The High-Energy Polarization-Limiting Radius of Neutron Star Magnetospheres 1, Slowly Rotating Neutron Stars

    CERN Document Server

    Heyl, J S; Lloyd, D; CERN. Geneva; Heyl, Jeremy S.; Shaviv, Nir J.; Lloyd, Don

    2003-01-01

    In the presence of strong magnetic fields, the vacuum becomes a birefringent medium. We show that this QED effect decouples the polarization modes of photons leaving the NS surface. Both the total intensity and the intensity in each of the two modes is preserved along a ray's path through the neutron-star magnetosphere. We analyze the consequences that this effect has on aligning the observed polarization vectors across the image of the stellar surface to generate large net polarizations. Counter to previous predictions, we show that the thermal radiation of NSs should be highly polarized even in the optical. When detected, this polarization will be the first demonstration of vacuum birefringence. It could be used as a tool to prove the high magnetic field nature of AXPs and it could also be used to constrain physical NS parameters, such as $R/M$, to which the net polarization is sensitive.

  1. A Gamma Polarimeter for Neutron Polarization Measurement in a Liquid Deuterium Target for Parity Violation in Polarized Neutron Capture on Deuterium.

    Science.gov (United States)

    Komives, A; Sint, A K; Bowers, M; Snow, M

    2005-01-01

    A measurement of the parity-violating gamma asymmetry in n-D capture would yield information on N-N parity violation independent of the n-p system. Since cold neutrons will depolarize in a liquid deuterium target in which the scattering cross section is much larger than the absorption cross section, it will be necessary to quantify the loss of polarization before capture. One way to do this is to use the large circular polarization of the gamma from n-D capture and analyze the circular polarization of the gamma in a gamma polarimeter. We describe the design of this polarimeter.

  2. THE METHODS OF PRODUCING AND ANALYZING POLARIZED NEUTRON BEAMS FOR HYSPEC AT THE SNS

    International Nuclear Information System (INIS)

    SHAPIRO, S.M.; PASSELL, L.; ZALIZNYAK, A.; GHOSH, V.J.; LEONHARDT, W.L.; HAGEN, M.E.

    2005-01-01

    The Hybrid Spectrometer (HYSPEC), under construction at the SNS on beam line 14B, is the only inelastic scattering instrument designed to enable polarization of the incident and the scattered neutron beams. A Heusler monochromator will replace the graphite crystal for producing polarized neutrons. In the scattered beam it is planned to use a collimator--multi-channel supermirror bender array to analyze the polarization of the scattered beam over the final energy range from 5-20 meV. Other methods of polarization analysis under consideration such as transmission filters using He 3 , Sm, and polarized protons are considered. Their performance is estimated and a comparison of the various methods of polarization is made

  3. Basis for calculating cross sections for nuclear magnetic resonance spin-modulated polarized neutron scattering.

    Science.gov (United States)

    Kotlarchyk, Michael; Thurston, George M

    2016-12-28

    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

  4. LAP-ND: a new instrument for vector polarization analysis and neutron depolarization measurements at FRJ-2

    International Nuclear Information System (INIS)

    Ioffe, Alexander; Bussmann, Klaus; Dohmen, Ludwig; Axelrod, Leonid; Gordeev, Gennadi; Brueckel, Thomas

    2004-01-01

    The method of vector analysis of the neutron polarization allows for the determination of both the magnitude and the direction of the magnetization vector in the sample. A directional distribution of the magnetization in a sample results in a spread of the direction of the polarization vector in space and thus in the depolarization of the incident beam. A new neutron depolarization set up is installed at the research reactor FRJ-2 of the Forschungszentrum Juelich. The main feature of the set up is the use of rather long wavelength, λ=(4-6.5) A, neutrons thus allowing for a significant increase in the sensitivity of depolarization measurements. The set up uses a non-cryogenic zero-field sample chamber with the residual magnetic field of about 1 mG. It will be used for the determination of the sample magnetization at mesoscopic and macroscopic levels and for the study of magnetic phase transitions, magnetic nanostructures, magnetic glasses, etc

  5. LAP-ND: a new instrument for vector polarization analysis and neutron depolarization measurements at FRJ-2

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, Alexander; Bussmann, Klaus; Dohmen, Ludwig; Axelrod, Leonid; Gordeev, Gennadi; Brueckel, Thomas

    2004-07-15

    The method of vector analysis of the neutron polarization allows for the determination of both the magnitude and the direction of the magnetization vector in the sample. A directional distribution of the magnetization in a sample results in a spread of the direction of the polarization vector in space and thus in the depolarization of the incident beam. A new neutron depolarization set up is installed at the research reactor FRJ-2 of the Forschungszentrum Juelich. The main feature of the set up is the use of rather long wavelength, {lambda}=(4-6.5) A, neutrons thus allowing for a significant increase in the sensitivity of depolarization measurements. The set up uses a non-cryogenic zero-field sample chamber with the residual magnetic field of about 1 mG. It will be used for the determination of the sample magnetization at mesoscopic and macroscopic levels and for the study of magnetic phase transitions, magnetic nanostructures, magnetic glasses, etc.

  6. Thermal neutron source study

    International Nuclear Information System (INIS)

    Holden, T.M.

    1983-05-01

    The value of intense neutron beams for condensed matter research is discussed with emphasis on the complementary nature of steady state and pulsed neutron sources. A large body of information on neutron sources, both existing and planned, is then summarized under four major headings: fission reactors, electron accelerators with heavy metal targets, pulsed spallation sources and 'steady state' spallation sources. Although the cost of a spallation source is expected to exceed that of a fission reactor of the same flux by a factor of two, there are significant advantages for a spallation device such as the proposed Electronuclear Materials Test Facility (EMTF)

  7. Scattering of 14.2 MeV polarized neutrons from 12C

    International Nuclear Information System (INIS)

    Casparis, R.; Leemann, B.Th.; Preiswerk, M.; Rudin, H.; Wagner, R.; Zupranski, P.

    1976-01-01

    Polarized 14.2 MeV neutrons with a polarization of approximately 50% were produced in the 3 H(d(pol),n(pol)) 4 He reaction using vector polarized deuterons from an 'atomic beam' source of polarized ions. The angular distributions of the analyzing power in the elastic and inelastic (Q = -4.43 MeV) scattering of neutrons from carbon have been measured at ten angles in the range from 22 0 to 152 0 c.m. A time-of-flight technique was used to separate elastically and inelastically scattered neutrons. The results have been compared with theoretical calculations obtained with the DWBA and the coupled channels method. (Auth.)

  8. High flux polarized neutrons triple-axis spectrometer: 2T (LLB-Saclay)

    International Nuclear Information System (INIS)

    Bourges, Ph.; Hennion, B.; Sidis, Y.; Boutrouille, Ph.; Baroni, P.

    1999-01-01

    A description of the performance of the newly designed thermal beam triple-axis spectrometer, 2T at LLB (Saclay) is given. The beam tube will be increased to 50 x 120 mm 2 (HxV) before the monochromator. A gain of about a factor 2 on the neutron flux at the monitor position is expected after this operation, scheduled on April/May 1999. Polarized neutrons beam option will be installed on this triple axis. The polarization is obtained using high quality heusler crystals recently grown at ILL. The size of both heusler monochromator and analyzer have been chosen to fully cover the beam size. The monochromator (analyzer) will be equipped with a vertical (horizontal) curvature. The flux of the polarized beam on the detector is then expected to be 5 times better than IN20 at ILL (best existing polarized neutrons triple-axis on thermal beam) with incident energy upto 75 MeV. (author)

  9. A new method for the measurement of the polarization characteristics of ferromagnetic films on ultracold neutrons

    International Nuclear Information System (INIS)

    Taran, Yu.V.

    1985-01-01

    A new method has been developed for measuring the polarization characteristics of ferromagnetic films on ultracold neutrons (UCN) by single-, double- and triple-transmission of UCN beam through one and the same film. To realize the method an installation has been proposed consisting of the two UCN storage traps connected with a mirror neutron guide. An investigated film is placed in the slit in the middle of the neutron guide. On both sides of the film a spin-flipper is installed bottle is equiped with three neutron values which permit filling in the bottle with UCN and allow oneto let UCN out to the neutron guide or detector. The neutrons once let out from one bottle into the neutron guide are caught by the other. The film can be moved out of the neutron guide or rotated. By manipulating with spin-flippers and the film one may take the integral polarization parameters of the film: transmission, polarizing and analysing efficiencies, so-called S-factor, which is the fourth independent linear combination of the elements of the square 2x2 transmission matrix of the film. The measurement parameters help to restore the film transmission matrix. Then a comparison is drawn with the theoretical models of UCN depolarization on transmission through a ferromagnetic film

  10. A novel method to assay special nuclear materials by measuring prompt neutrons from polarized photofission

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J.M., E-mail: mueller@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States); Ahmed, M.W. [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States); Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707 (United States); Weller, H.R. [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States)

    2014-08-01

    A novel method of measuring the enrichment of special nuclear material is presented. Recent photofission measurements using a linearly polarized γ-ray beam were performed on samples of {sup 232}Th, {sup 233,235,238}U, {sup 237}Np, and {sup 239,240}Pu. Prompt neutron polarization asymmetries, defined to be the difference in the prompt neutron yields parallel and perpendicular to the plane of beam polarization divided by their sum, were measured. It was discovered that the prompt neutron polarization asymmetries differed significantly depending on the sample. Prompt neutrons from photofission of even–even (non-fissile) targets had significant polarization asymmetries (∼0.2 to 0.5), while those from odd-A (generally fissile) targets had polarization asymmetries close to zero. This difference in the polarization asymmetries could be exploited to measure the fissile versus non-fissile content of special nuclear materials, and potentially to detect the presence of fissile material during active interrogation. The proposed technique, its expected performance, and its potential applicability are discussed.

  11. A novel method to assay special nuclear materials by measuring prompt neutrons from polarized photofission

    International Nuclear Information System (INIS)

    Mueller, J.M.; Ahmed, M.W.; Weller, H.R.

    2014-01-01

    A novel method of measuring the enrichment of special nuclear material is presented. Recent photofission measurements using a linearly polarized γ-ray beam were performed on samples of 232 Th, 233,235,238 U, 237 Np, and 239,240 Pu. Prompt neutron polarization asymmetries, defined to be the difference in the prompt neutron yields parallel and perpendicular to the plane of beam polarization divided by their sum, were measured. It was discovered that the prompt neutron polarization asymmetries differed significantly depending on the sample. Prompt neutrons from photofission of even–even (non-fissile) targets had significant polarization asymmetries (∼0.2 to 0.5), while those from odd-A (generally fissile) targets had polarization asymmetries close to zero. This difference in the polarization asymmetries could be exploited to measure the fissile versus non-fissile content of special nuclear materials, and potentially to detect the presence of fissile material during active interrogation. The proposed technique, its expected performance, and its potential applicability are discussed

  12. Study on the P-odd asymmetry of longitudinally polarized neutron transmission in 117Sn, 233Th, 239Pu isotopes and natural mixture of Cl and Pb isotopes

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Ermakov, O.N.; Karpikhin, I.L.; Krupchitskij, P.A.; Kuznetsov, Yu.Eh.; Perepelitsa, V.F.; Petrushin, V.I.

    1983-01-01

    The results of measurements of P-odd helicity dependence of the total cross-section a=(σsub(tot)sup(+)-σsub(tot)sup(-))/(σsub(tot)sup(+)+σsub(tot)sup(-)) for thermal neutrons on several targets are presented. The result for 117 Sn is a=(11.2+-2.6)x10 -6 . The upper limits for a in the region of several units of 10 -6 are obtained for 232 Th, 239 Pu, Cl (natural) and Pb (natural)

  13. Neutron scattering studies in the actinide region

    International Nuclear Information System (INIS)

    Kegel, G.H.R.; Egan, J.J.

    1993-09-01

    This report discusses the following topics: Prompt fission neutron energy spectra for 235 U and 239 Pu; Two-parameter measurement of nuclear lifetimes; ''Black'' neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in 197 Au; Elastic and inelastic scattering studies in 239 Pu; and neutron induced defects in silicon dioxide MOS structures

  14. Weak magnetism of Aurivillius-type multiferroic thin films probed by polarized neutron reflectivity

    Science.gov (United States)

    Zhai, Xiaofang; Grutter, Alexander J.; Yun, Yu; Cui, Zhangzhang; Lu, Yalin

    2018-04-01

    Unambiguous magnetic characterization of room-temperature multiferroic materials remains challenging due in part to the difficulty of distinguishing their very weak ferromagnetism from magnetic impurity phases and other contaminants. In this study, we used polarized neutron reflectivity to probe the magnetization of B i6FeCoT i3O18 and LaB i5FeCoT i3O18 in their epitaxial thin films while eliminating a variety of impurity contributions. Our results show that LaB i5FeCoT i3O18 exhibits a magnetization of about 0.016 ±0.027 μB/Fe -Co pair at room temperature, while the B i6FeCoT i3O18 thin film only exhibits a weak magnetic moment below room temperature, with a saturation magnetization of 0.049 ±0.015 μB/Fe -Co pair at 50 K. This polarized-neutron-reflectivity study places an upper magnetization limit on the matrix material of the magnetically doped Aurivillius oxides and helps to clarify the true mechanism behind the room-temperature magnetic performance.

  15. A Study of Polarization in Hyperon Production Processes

    Energy Technology Data Exchange (ETDEWEB)

    Woods, David McDill [Minnesota U.

    1995-01-01

    The polarization of $\\Xi^-$ and $\\Omega^-$ hyperons produced from both polarized and unpolarized neutral particle beams has been studied. The unpolarized neutral beam production studies are the first measurements made using this production technique. The neutral beam consisted of neutrons, $\\Lambda^0$s, $\\Xi^0$s, $K^0$s, and photons. No polarization was observed in the sample of 1.4 x $10^7 \\Xi^-$s produced by an unpolarized neutral beam. For n-s produced by an unpolarized neutral beam, a sample of 1.7 x $10^5$ events with an average momentum of 394. GeV/c had a polarization of +0.044 $\\pm$ 0.008 and a sample of 5 x 104 events with an average momentum of 304. GeV /c had a polarization of +0.036 $\\pm$ 0.015. The polarization of 7.1 x $10^5 \\Xi^- s$ produced by a polarized neutral beam was -0.118±0.004 at an average momentum of 393. GeV/c. 1.8 x $10^4 \\Omega^- s$ produced by the polarized neutral beam had a polarization of -0.069 $\\pm$ 0.023 at an average momentum of 394. GeV /c. The measurements for production from a polarized neutral beam are in agreement with a previous measurement.

  16. Neutron response study using PADC

    International Nuclear Information System (INIS)

    El-Badry, B.A; Hegazy, T.M; Morsy, A.A.; Zaki, M.F.

    2007-01-01

    The results of an experimental work aimed at improving the performances of the Cr-39 nuclear track detector for neutron dosimetry applications. So, a set of Cr-39 plastic detectors was exposed to 252 Cf neutron source, which has the emission rate of 0.68 x 10 8 s ( -1), and neutron dose equivalent rate 1m apart from the source is equal to 3.8 mrem/h. The detection of fast neutrons performed with Cr-39 detector foils, subsequent chemical etching and evaluation of the etched tracks by an automatic track counting system was studied. It is found that the track density grows with the increase of neutron dose and etching time. These results. are compared with previous work. It is found that there is a matching and good agreement with their investigations

  17. Recent on-beam tests of wide angle neutron polarization analysis with a 3He spin filter: Magic PASTIS on V20 at HZB

    Science.gov (United States)

    Babcock, E.; Salhi, Z.; Gainov, R.; Woracek, R.; Soltner, H.; Pistel, P.; Beule, F.; Bussmann, K.; Heynen, A.; Kämmerling, H.; Suxdorf, F.; Strobl, M.; Russina, M.; Voigt, J.; Ioffe, A.

    2017-06-01

    A complete XYZ polarization analysis solution is under development for the new thermal time of flight spectrometer TOPAS [1], to be operated in the coming east neutron guide hall at the MLZ. Polarization Analysis Studies on a Thermal Inelastic Spectrometer, commonly called PASTIS [2], is based on polarized 3He neutron spin filters and an XYZ field configuration for the sample environment and a polarization-preserving neutron guide field. The complete system was designed to provide adiabatic transport of the neutron polarization to the sample position while maintaining the homogeneity of the XYZ field. This system has now been tested on the polarized time-of-flight ESS test beam line V20 at HZB [3]. Down to the minimum wavelength of 1.6 Å on the instrument, the magnetic configuration worked ideally for neutron spin transport while giving full experimental freedom to change between the X, Y or Z field configuration. The 3He cell used was polarized at the 3He lab of the JCNS at the MLZ in Garching and transported to HZB in Berlin via car showing that such a transport is indeed feasible for such experiments. We present results of this test and the next steps forward.

  18. Neutron wave optics studied with ultracold neutrons

    International Nuclear Information System (INIS)

    Steyerl, A.

    1984-01-01

    The author discusses experiments demonstrating or utilizing the wave properties of neutrons with wavelengths of about 100 nm. In particular the 'UCN gravity diffractometer' and the gravity spectrometer NESSIE (Neutronen-Schwerkraft-Spectrometrie) are illustrated. (Auth.)

  19. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  20. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  1. Measurement of Angular Correlations in the Decay of Polarized Neutrons

    DEFF Research Database (Denmark)

    Christensen, Carl Jørgen; Krohn, V.E.; Ringo, G.R.

    1970-01-01

    The electron-momentum-neutron-spin correlation coefficient was found to be A=-0.115±0.008, and the antineutrino-momentum-neutron-spin correlation coefficient was found to be B=1.00±0.05. The value of A leads to |GA/GV|=1.26±0.02 for the ratio of Gamow-Teller-to-Fermi coupling constants in β decay...

  2. Investigation of TbMn2O5 by polarized neutron diffraction.

    Science.gov (United States)

    Zobkalo, I A; Gavrilov, S V; Sazonov, A; Hutanu, V

    2018-05-23

    In order to make a new approach to the elucidation of the microscopic mechanisms of multiferroicity in the RMn 2 O 5 family, experiments with different methods of polarized neutrons scattering were performed on a TbMn 2 O 5 single crystal. We employed three different techniques of polarized neutron diffraction without the analysis after scattering, the XYZ-polarization analysis, and technique of spherical neutron polarimetry (SNP). Measurements with SNP were undertaken both with and without external electric field. A characteristic difference in the population of 'right' and 'left' helix domains in all magnetically ordered phases of TbMn 2 O 5 , was observed. This difference can be controlled by an external electric field in the field-cooled mode. The analysis of the results gives an evidence that antisymmetric Dzyaloshinsky-Moria exchange is effective in all the magnetic phases in TbMn 2 O 5 .

  3. Polarized neutron diffraction - a tool for testing extinction models: application to yttrium iron garnet

    International Nuclear Information System (INIS)

    Bonnet, M.; Delapalme, A.; Becker, P.

    1976-01-01

    This paper shows that polarized neutron experiments, which do not depend on any scale factor, are very dependent on extinction and provide original tests for extinction models. Moon, Koehler, Cable and Child (1972) have formulated the problem and proposed a first-order solution applicable only when the extinction is small. In the first part, some analytical derivations of secondary extinction corrections are discussed, using the formalism of Becker and Coppens (1974). In the second part, the main principles governing polarized neutron diffraction are briefly reviewed, with a special discussion of extinction problems. The method is then applied to the case of yttrium iron garnet (YIG). This experiment shows the technique of polarized neutrons to be very powerful for testing extinction models and for deciding whether the crystal behaves dynamically or kinematically (following Kato's criterion). (Auth.)

  4. Investigation of TbMn2O5 by polarized neutron diffraction

    Science.gov (United States)

    Zobkalo, I. A.; Gavrilov, S. V.; Sazonov, A.; Hutanu, V.

    2018-05-01

    In order to make a new approach to the elucidation of the microscopic mechanisms of multiferroicity in the RMn2O5 family, experiments with different methods of polarized neutrons scattering were performed on a TbMn2O5 single crystal. We employed three different techniques of polarized neutron diffraction without the analysis after scattering, the XYZ-polarization analysis, and technique of spherical neutron polarimetry (SNP). Measurements with SNP were undertaken both with and without external electric field. A characteristic difference in the population of ‘right’ and ‘left’ helix domains in all magnetically ordered phases of TbMn2O5, was observed. This difference can be controlled by an external electric field in the field-cooled mode. The analysis of the results gives an evidence that antisymmetric Dzyaloshinsky-Moria exchange is effective in all the magnetic phases in TbMn2O5.

  5. Spin-polarized states in neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2009-01-01

    Spin-polarized states in neutron matter in strong magnetic fields up to 10 18 G are considered in the model with the Skyrme effective interaction. By analyzing the self-consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin-polarization parameter as a function of density corresponds to the negative spin polarization when the majority of neutron spins are oriented opposite to the direction of the magnetic field. Besides, beginning from some threshold density dependent on magnetic field strength, the self-consistent equations also have two other branches of solutions for the spin-polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to that of the thermodynamically preferable branch. As a consequence, in a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state in the high-density region in neutron matter, which, under decreasing density, at some threshold density changes to a thermodynamically stable state with the negative spin polarization.

  6. Neutron scattering investigation on low-dimensional, quantum and frustrated magnetism and utilization of neutron polarization analysis. My first encounter with neutron research

    International Nuclear Information System (INIS)

    Kakurai, Kazuhisa

    2013-01-01

    My first encounter with neutron scattering research on low-dimensional magnetism at the Hahn-Meitner Institut under the supervision of Prof. H. Dachs and Prof. M. Steiner, were it all began, is accounted for. The polarized neutron analysis research on low-dimensional magnetism at the Institut Laue Langevin under the supervision of Dr. R. Pynn is also reported. I would like to dedicate this article to late Prof. H. Dachs expressing may deepest gratitude for his warm guidance during the early period of my neutron science carrier. (author)

  7. Magnetic compound refractive lens for focusing and polarizing cold neutron beams

    International Nuclear Information System (INIS)

    Littrell, K. C.; Velthuis, S. G. E. te; Felcher, G. P.; Park, S.; Kirby, B. J.; Fitzsimmons, M. R.

    2007-01-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given

  8. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    Science.gov (United States)

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given.

  9. Neutron spectroscopy for confinement studies

    International Nuclear Information System (INIS)

    Zorn, R.

    2010-01-01

    Neutron spectroscopy is an important method for the study of microscopic dynamics because it captures the spatial as well as the temporal aspects of the atomic or molecular motion. In this article techniques will be presented which are of special importance for the study of confined systems. Many of these are based on the fact that neutron scattering is isotope-dependent. Possible sources of systematic errors in measurements of confined systems will be pointed out. (author)

  10. Neutron scattering studies of modulated magnetic structures

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Soerensen, Steen

    1999-08-01

    This report describes investigations of the magnetic systems DyFe{sub 4}Al{sub 8} and MnSi by neutron scattering and in the former case also by X-ray magnetic resonant scattering. The report is divided into three parts: An introduction to the technique of neutron scattering with special emphasis on the relation between the scattering cross section and the correlations between the scattering entities of the sample. The theoretical framework of neutron scattering experiments using polarized beam technique is outlined. The second part describes neutron and X-ray scattering investigation of the magnetic structures of DyFe{sub 4}Al{sub 8}. The Fe sublattice of the compound order at 180 K in a cycloidal structure in the basal plane of the bct crystal structure. At 25 K the ordering of the Dy sublattice shows up. By the element specific technique of X-ray resonant magnetic scattering, the basal plane cycloidal structure was also found for the Dy sublattice. The work also includes neutron scattering studies of DyFe{sub 4}Al{sub 8} in magnetic fields up to 5 T applied along a <110> direction. The modulated structure at the Dy sublattice is quenched by a field lower than 1 T, whereas modulation is present at the Fe sublattice even when the 5 T field is applied. In the third part of the report, results from three small angle neutron experiments on MnSi are presented. At ambient pressure, a MnSi is known to form a helical spin density wave at temperature below 29 K. The application of 4.5 kbar pressure intended as hydrostatic decreased the Neel temperature to 25 K and changed the orientation of the modulation vector. To understand this reorientation within the current theoretical framework, anisotropic deformation of the sample crystal must be present. The development of magnetic critical scattering with an isotropic distribution of intensity has been studied at a level of detail higher than that of work found in the literature. Finally the potential of a novel polarization

  11. Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

    Science.gov (United States)

    Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.

    2018-04-01

    The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.

  12. Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-08-01

    To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.

  13. An Electromagnet for Precession of the Polarization of Fast-Neutrons

    International Nuclear Information System (INIS)

    Aspesund, O.; Bjorkman, J.; Trumpy, G.

    1965-05-01

    The advantages of using a transverse magnetic field for precessing the polarization of fast-neutrons are discussed. Design details of a powerful electromagnet supplying a transverse field of approximately 20 kGauss are given. Precession characteristics for polarized fast neutrons obtained at 50 deg (lab. syst.) from the Li 7 (p, n) Be 7 reaction are reported, using elastic scattering at 42 deg (lab. syst.) off natural carbon as an analyser. Correlation of the precession data with theoretical predictions presented elsewhere is made, and good agreement is found

  14. An Electromagnet for Precession of the Polarization of Fast-Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Aspesund, O; Bjorkman, J; Trumpy, G

    1965-05-15

    The advantages of using a transverse magnetic field for precessing the polarization of fast-neutrons are discussed. Design details of a powerful electromagnet supplying a transverse field of approximately 20 kGauss are given. Precession characteristics for polarized fast neutrons obtained at 50 deg (lab. syst.) from the Li{sup 7} (p, n) Be{sup 7} reaction are reported, using elastic scattering at 42 deg (lab. syst.) off natural carbon as an analyser. Correlation of the precession data with theoretical predictions presented elsewhere is made, and good agreement is found.

  15. Parity non-conservation in the capture of polarized thermal neutrons

    DEFF Research Database (Denmark)

    Warming, Inge Elisabeth

    1969-01-01

    The asymmetry in the intensity of γ-radiation following the capture of polarized thermal neutrons in 113Cd has been measured with Ge(Li) detectors. The result, A = (−0.6±1.8)×10−4, like that previously reported [1], gives no evidence for a non-zero effect.......The asymmetry in the intensity of γ-radiation following the capture of polarized thermal neutrons in 113Cd has been measured with Ge(Li) detectors. The result, A = (−0.6±1.8)×10−4, like that previously reported [1], gives no evidence for a non-zero effect....

  16. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    International Nuclear Information System (INIS)

    Chen, W.C.; Gentile, T.R.; Ye, Q.; Kirchhoff, A.; Watson, S.M.; Rodriguez-Rivera, J.A.; Qiu, Y.; Broholm, C.

    2016-01-01

    Wide-angle polarization analysis with polarized 3 He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3 He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3 He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3 He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells. (paper)

  17. Multi detector input and function generator for polarized neutron experiments

    International Nuclear Information System (INIS)

    De Blois, J.; Beunes, A.J.H.; Ende, P. v.d.; Osterholt, E.A.; Rekveldt, M.T.; Schipper, M.N.; Velthuis, S.G.E. te

    1998-01-01

    In this paper a VME module is described for static or stroboscopic measurements with a neutron scattering instrument, consisting essentially of a series of up to 64 3 He neutron detectors around a sample environment. Each detector is provided with an amplifier and a discriminator to separate the neutrons from noise. To reduce the wiring, the discriminator outputs are connected to the module by coding boxes. Two 16-inputs to one-output coding boxes generate serial output codes on a fiber optic connection. This basically fast connection reduces the dead time introduced by the coding, and the influence of environmental noise. With stroboscopic measurements a periodic function is used to affect the sample surrounded by a field coil. Each detected neutron is labeled with a data label containing the detector number and the time of detection with respect to a time reference. The data time base can be programmed on a linear or a nonlinear scale. An external source or an attribute of the periodic function may generate the time reference pulse. A 12-bit DAC connected to the output of an 8 K, 16-bits memory, where the pattern of the current has been stored before, generates the function. The function memory is scanned by the programmable function time base. Attributes are set by the four remaining bits of the memory. One separate detector input connects a monitor detector in the neutron beam with a 32-bit counter/timer that provides measuring on a preset count, preset time or preset frame. (orig.)

  18. Study on neutron irradiation behavior of beryllium as neutron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)

  19. Time reversal in polarized neutron decay: the emiT experiment

    CERN Document Server

    Jones, G L; Anaya, J M; Bowles, T J; Chupp, T E; Coulter, K P; Dewey, M S; Freedman, S J; Fujikawa, B K; García, A; Greene, G L; Hwang, S R; Lising, L J; Mumm, H P; Nico, J S; Robertson, R G H; Steiger, T D; Teasdale, W A; Thompson, A K; Wasserman, E G; Wietfeldt, F E; Wilkerson, J F

    2000-01-01

    The standard electro-weak model predicts negligible violation of time-reversal invariance in light quark processes. We report on an experimental test of time-reversal invariance in the beta decay of polarized neutrons as a search for physics beyond the standard model. The emiT collaboration has measured the time-reversal-violating triple-correlation in neutron beta decay between the neutron spin, electron momentum, and neutrino momentum often referred to as the D coefficient. The first run of the experiment produced 14 million events which are currently being analyzed. However, a second run with improved detectors should provide greater statistical precision and reduced systematic uncertainties.

  20. Development in LIYaF of the method of polarized thermal neutron beam production by mirror reflection

    International Nuclear Information System (INIS)

    Borovikova, N.V.; Bulkin, A.P.; Gukasov, A.G.

    1980-01-01

    Main stages of development of polarizing neutron guide equipment in LIYaF of the USSR Academy of Sciences are described. To carry out experiments on solid-state physics constructed was a working mock-up of a polarizing neutron guide having 1570 mm length of a mirror channel. Successful application of polarizing mirrors to the working mock-up permitted to develop and fabricate five-meter polarizing neutron guide with output flux equal to 1.5x10 7 neutr/cm 2 xs. The following stage of development of polarizing neutron guides was the construction of four-meter neutron guide at the WWR-M reactor with output flux equal to the highest possible. Improvement of optical sections geometry made it possible to produce integral flux of 6.0x10 7 neutr/cm 2 xs in this neutron guide at 15 MW reactor power. The results obtained testify to prospects of the mirror method for polarization of thermal neutrons of a wave length lambda >= A. Neutron guides-polarizators permit to produce high fluxes of polarized thermal neutrons in the wide interval of wave length [ru

  1. Small-angle neutron polarization for the /sup 2/H(d vector,n vector)/sup 3/He reaction near Esub(d) = 8MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W.; Woye, W.; Mack, G. (Tuebingen Univ. (Germany, F.R.). Physikalisches Inst.); Walter, R.L.; Floyd, C.E.; Guss, P.P.; Byrd, R.C. (Duke Univ., Durham, NC (USA). Dept. of Physics; Triangle Universities Nuclear Lab., Durham, NC (USA))

    1981-12-15

    Considerable improvement in the quality of analyzing power experiments performed with polarized fast neutrons has been achieved during the last few years by using neutrons from the polarization transfer reaction /sup 2/H(d vector,n vector)/sup 3/He at a reaction angle of theta = 0/sup 0/. To compromise in these experiments between intensity problems and finite geometry corrections, it is desirable in some instances to subtend a full-width angle ..delta..theta of 20/sup 0/ (lab) centered about theta = 0/sup 0/. In order to investigate the suitability of this reaction as a source of polarized neutrons for cases where the scatterer is close to the neutron source, the neutron polarization of the reaction /sup 2/H(d vector,n vector)/sup 3/He has been studied with ..delta..theta of about 3/sup 0/ in 3/sup 0/ steps out to theta = 20/sup 0/ (lab). An incident deuteron energy near 8 MeV was chosen to yield outgoing neutrons at 11.0 MeV, a typical energy for neutron analyzing power experiments. It is found that the effective neutron polarization, a combination of the two polarizations measured when the direction of the deuteron polarization is inverted or flipped at the polarized ion source, is large and nearly constant for angles between theta = 0/sup 0/ and theta = 10/sup 0/ (lab).

  2. Development of a neutron-polarizing device based on a quadrupole magnet and its application to a focusing SANS instrument

    International Nuclear Information System (INIS)

    Oku, Takayuki

    2009-01-01

    We have investigated suitable magnetic field distribution to polarize neutrons based only on the electromagnetic interaction between a neutron magnetic moment and magnetic field, and found out a quadrupole field was the most suitable among simple multipole fields. Then we constructed a quadrupole magnet with a Halbach magnetic circuit as the neutron polarizing device. A cold neutron polarizing experiment of the quadrupole magnet was performed at the beamline C3-1-2-1 (NOP) of JRR-3 at JAEA. By passing through the aperture of the quadrupole magnet, positive and negative polarity neutrons are accelerated in opposite directions and spatially separated. Therefore, we extracted the one-spin component and analyzed its polarization degree. As a result very high neutron polarization degree P=0.9993±0.0025 was obtained. Then the quadrupole magnet was installed into the polarized neutron focusing geometry SANS instrument SANS-J-II of JRR-3. The instrument performance was enhanced by about 10 times compared with the case with the magnetic supermirror as the neutron polarizing device. The details are shown and discussed. (author)

  3. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    International Nuclear Information System (INIS)

    Smith, T

    2003-01-01

    This thesis describes a precision measurement of the neutron spin dependent structure function, g 1 n (x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a 3 He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized 3 He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the 3 He polarization. The fraction of events which originated in the 3 He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure 3 He reference cell in place of the polarized 3 He target. The spin dependent structure function g 1 n (z) was measured in the Bjorken x range of 0.014 2 of 5 (GeV/c) 2 . One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g 1 n (x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g 1 n (x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g 1 n (x) to low x. The precision of the measurement made by the E154 collaboration at SLAC puts a tighter

  4. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T

    2003-11-05

    This thesis describes a precision measurement of the neutron spin dependent structure function, g{sub 1}{sup n}(x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a {sup 3}He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized {sup 3}He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the {sup 3}He polarization. The fraction of events which originated in the {sup 3}He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure {sup 3}He reference cell in place of the polarized {sup 3}He target. The spin dependent structure function g{sub 1}{sup n}(z) was measured in the Bjorken x range of 0.014 < x < 0.7 with an average Q{sup 2} of 5 (GeV/c){sup 2}. One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g{sub 1}{sup n}(x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g{sub 1}{sup n}(x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g

  5. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A. [Adelphi Technology, Inc., 2003 East Bayshore Rd., Redwood City, California 94063 (United States); Pantell, R. H.; Feinstein, J. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B. [Davis McClellan Nuclear Radiation Center, University of California, McClellan, California 95652 (United States)

    2010-01-15

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  6. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator.

    Science.gov (United States)

    Cremer, J T; Williams, D L; Fuller, M J; Gary, C K; Piestrup, M A; Pantell, R H; Feinstein, J; Flocchini, R G; Boussoufi, M; Egbert, H P; Kloh, M D; Walker, R B

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  7. Neutron spin filter based on optically polarized sup 3 He in a near-zero magnetic field

    CERN Document Server

    Skoy, V R; Sorokin, V N; Kolachevsky, N N; Sobelman, I I; Sermyagin, A V

    2003-01-01

    A test of polarization of sup 3 He nuclei via spin-exchange collisions with optically pumped rubidium atoms in an extremely low applied magnetic field was carried out. Permalloy magnetic shields were used to prevent a fast relaxation of sup 3 He polarization owing to the inhomogeneity of a surrounding magnetic field. The whole installation was placed at the neutron beam line of the IBR-30 facility, and used as a neutron spin filter. Thus, a prototype of new design of neutron polarizer was introduced. We intend to apply this experience for the full-scale KaTRIn facility to test the time reversal violation in neutron-nuclear reactions.

  8. Development of a compact in situ polarized ³He neutron spin filter at Oak Ridge National Laboratory.

    Science.gov (United States)

    Jiang, C Y; Tong, X; Brown, D R; Chi, S; Christianson, A D; Kadron, B J; Robertson, J L; Winn, B L

    2014-07-01

    We constructed a compact in situ polarized (3)He neutron spin filter based on spin-exchange optical pumping which is capable of continuous pumping of the (3)He gas while the system is in place in the neutron beam on an instrument. The compact size and light weight of the system simplifies its utilization on various neutron instruments. The system has been successfully tested as a neutron polarizer on the triple-axis spectrometer (HB3) and the hybrid spectrometer (HYSPEC) at Oak Ridge National Laboratory. Over 70% (3)He polarization was achieved and maintained during the test experiments. Over 90% neutron polarization and an average of 25% transmission for neutrons of 14.7 meV and 15 meV was also obtained.

  9. Development of a compact in situ polarized 3He neutron spin filter at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Jiang, C. Y.; Tong, X.; Brown, D. R.; Kadron, B. J.; Robertson, J. L.; Chi, S.; Christianson, A. D.; Winn, B. L.

    2014-01-01

    We constructed a compact in situ polarized 3 He neutron spin filter based on spin-exchange optical pumping which is capable of continuous pumping of the 3 He gas while the system is in place in the neutron beam on an instrument. The compact size and light weight of the system simplifies its utilization on various neutron instruments. The system has been successfully tested as a neutron polarizer on the triple-axis spectrometer (HB3) and the hybrid spectrometer (HYSPEC) at Oak Ridge National Laboratory. Over 70% 3 He polarization was achieved and maintained during the test experiments. Over 90% neutron polarization and an average of 25% transmission for neutrons of 14.7 meV and 15 meV was also obtained

  10. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  11. Multiple scattering effects in fast neutron polarization experiments using high-pressure helium-xenon gas scintillators as analyzers

    International Nuclear Information System (INIS)

    Tornow, W.; Mertens, G.

    1977-01-01

    In order to study multiple scattering effects both in the gas and particularly in the solid materials of high-pressure gas scintillators, two asymmetry experiments have been performed by scattering of 15.6 MeV polarized neutrons from helium contained in stainless steel vessels of different wall thicknesses. A monte Carlo computer code taking into account the polarization dependence of the differential scattering cross sections has been written to simulate the experiments and to calculate corrections for multiple scattering on helium, xenon and the gas containment materials. Besides the asymmetries for the various scattering processes involved, the code yields time-of-flight spectra of the scattered neutrons and pulse height spectra of the helium recoil nuclei in the gas scintillator. The agreement between experimental results and Monte Carlo calculations is satisfactory. (Auth.)

  12. Asymmetry in ternary fission induced by polarized neutrons and fission mechanism

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Gennenvajn, F.; Dzhessinger, P.; Mutterer, M.; Petrov, G.A.

    2003-01-01

    The results of measuring the P-odd, P-even (right-left) and T-odd asymmetries of the charged particles emission in the double and ternary fission, induced by the polarized neutrons, are considered. It is shown, what kind of information on the mechanism of the ternary nuclear fission may be obtained from the theoretical analysis of these data [ru

  13. (Anti)-ferromagnetic coupling in Fe/Si multilayers from polarized neutron reflectomy

    NARCIS (Netherlands)

    Fredrikze, H.; Graaf, van der A; Valkier, M.; Kohlhepp, J.T.; Broeder, den F.J.A.

    1997-01-01

    Polarized neutron reflectometry data on Fe/Si multilayers are interpreted using strongly depth-dependent magnetization in the Fe layers. This behaviour is ascribed to a depth-dependent mixture of ferromagnetic and anti-ferromagnetic coupled regions in the sample.

  14. Spin density measurement of water-bridged Co-dimer using polarized neutrons

    DEFF Research Database (Denmark)

    Damgaard-Møller, Emil; Overgaard, Jacob; Chilton, Nick

    present an experimentally determined spin density using polarized neutron diffraction in a simple water-bridged cobalt dimer [Co2(H2O)(piv)4(Hpiv)2(py)2] which is known to have a small ferromagnetic coupling between the spin centers. Visualizing the SDD could get us one step further in understanding...

  15. Experimental study on reactivity measurement in thermal reactor by polarity correlation method

    International Nuclear Information System (INIS)

    Yasuda, Hideshi

    1977-11-01

    Experimental study on the polarity correlation method for measuring the reactivity of a thermal reactor, especially the one possessing long prompt neutron lifetime such as graphite on heavy water moderated core, is reported. The techniques of reactor kinetics experiment are briefly reviewed, which are classified in two groups, one characterized by artificial disturbance to a reactor and the other by natural fluctuation inherent in a reactor. The fluctuation phenomena of neutron count rate are explained using F. de Hoffman's stochastic method, and correlation functions for the neutron count rate fluctuation are shown. The experimental results by polarity correlation method applied to the β/l measurements in both graphite-moderated SHE core and light water-moderated JMTRC and JRR-4 cores, and also to the measurement of SHE shut down reactivity margin are presented. The measured values were in good agreement with those by a pulsed neutron method in the reactivity range from critical to -12 dollars. The conditional polarity correlation experiments in SHE at -20 cent and -100 cent are demonstrated. The prompt neutron decay constants agreed with those obtained by the polarity correlation experiments. The results of experiments measuring large negative reactivity of -52 dollars of SHE by pulsed neutron, rod drop and source multiplication methods are given. Also it is concluded that the polarity and conditional polarity correlation methods are sufficiently applicable to noise analysis of a low power thermal reactor with long prompt neutron lifetime. (Nakai, Y.)

  16. Observation of nonadditive mixed-state phases with polarized neutrons.

    Science.gov (United States)

    Klepp, Jürgen; Sponar, Stephan; Filipp, Stefan; Lettner, Matthias; Badurek, Gerald; Hasegawa, Yuji

    2008-10-10

    In a neutron polarimetry experiment the mixed-state relative phases between spin eigenstates are determined from the maxima and minima of measured intensity oscillations. We consider evolutions leading to purely geometric, purely dynamical, and combined phases. It is experimentally demonstrated that the sum of the individually determined geometric and dynamical phases is not equal to the associated total phase which is obtained from a single measurement, unless the system is in a pure state.

  17. T-odd angular correlations in the emission of prompt gamma rays and neutrons in nuclear fission induced by polarized neutrons

    International Nuclear Information System (INIS)

    Danilyan, G. V.; Klenke, J.; Krakhotin, V. A.; Kopach, Yu. N.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2011-01-01

    Study of the T-odd three-vector correlation in the emission of prompt neutrons from 235 U fission by polarized cold neutrons has been continued at the facility MEPHISTO of the FRM II reactor (Technical University of Munich). The sought correlation was not found within experimental error of 2.3 × 10 −5 . The upper limit for the asymmetry coefficient has been set to vertical bar D n vertical bar −5 at 99% confidence level, whereas for ternary fission correlation coefficient D α = (170±20) × 10 −5 . This limit casts doubt on a model that explains the three-vector correlation in ternary fission by the Coriolis mechanism. At the same time, five-vector correlation in the emission of prompt fission neutrons has been measured, which describes the rotation of the fissioning nucleus at the moment it breaks (ROT effect). At the angle 22.5° to the fission axis, the correlation coefficient was found to be (1.57 ± 0.20) × 10 −4 , while at the angle of 67.5° it is zero within the experimental uncertainty. The existence of ROT effect in the emission of prompt fission neutrons can be explained by the anisotropy of neutron emission in the rest frame of the fragment (fission fragments are aligned with respect to the axis of deformation of the fissioning nucleus), similar to the mechanism of ROT effect in the emission of prompt γ-rays.

  18. Measurement of the transverse polarization of electrons emitted in free-neutron decay.

    Science.gov (United States)

    Kozela, A; Ban, G; Białek, A; Bodek, K; Gorel, P; Kirch, K; Kistryn, St; Kuźniak, M; Naviliat-Cuncic, O; Pulut, J; Severijns, N; Stephan, E; Zejma, J

    2009-05-01

    Both components of the transverse polarization of electrons (sigmaT1, sigmaT2) emitted in the beta-decay of polarized, free neutrons have been measured. The T-odd, P-odd correlation coefficient quantifying sigmaT2, perpendicular to the neutron polarization and electron momentum, was found to be R=0.008+/-0.015+/-0.005. This value is consistent with time reversal invariance and significantly improves limits on the relative strength of imaginary scalar couplings in the weak interaction. The value obtained for the correlation coefficient associated with sigmaT1, N=0.056+/-0.011+/-0.005, agrees with the Standard Model expectation, providing an important sensitivity test of the experimental setup.

  19. Kinetic energy spectrum and polarization of neutrons from the reaction 12C(p,n)X at 590 MeV

    International Nuclear Information System (INIS)

    Arnold, J.

    1998-01-01

    The kinetic energy spectrum and the polarization of the PSI neutron beam produced in the reaction 12 C(p,n)X at 0 with 590 MeV polarized protons were investigated. A strong energy dependence of the neutron beam polarization is observed which was not expected at the time the neutron beam was built. (orig.)

  20. Laser - Polarized HE-3 Target Used for a Precision Measurement of the Neutron Spin Structure

    Energy Technology Data Exchange (ETDEWEB)

    Romalis, M

    2003-11-05

    This thesis describes a precision measurement of the deep inelastic neutron spin structure function g{sub 1}{sup n}(x). The main motivation for the experiment is a test of the Bjorken sum rule. Because of smaller statistical errors and broader kinematic coverage than in previous experiments, we are able to study in detail the behavior of the spin structure function g{sub 1}{sup n}(x) for low values of the Bjorken scaling variable x. We find that it has a strongly divergent behavior, in contradiction to the naive predictions of the Regge theory. This calls into question the methods commonly used for extrapolation of g{sub 1}{sup n}(x) to x = 0. The difference between the proton and the neutron spin structure functions is less divergent at low x, so a test of the Bjorken sum rule is possible. We confirm the sum rule with an accuracy of 8%. The experiment was performed at SLAC using a 50 GeV polarized electron beam and a polarized {sup 3}He target. In this thesis the polarized target is described in detail. We used the technique of Rb optical pumping and Rb-He spin exchange to polarize the {sup 3}He. Because of a novel mechanical design our target had the smallest dilution ever achieved for a high density gas target. Since this is a precision measurement, particular efforts were made to reduce the systematic errors due to the uncertainty in the target parameters. Most important parameters were measured by more than one method. We implemented novel techniques for measuring the thickness of the glass windows of the target, the {sup 3}He density, and the polarization. In particular, one of the methods for measuring the gas density relied on the broadening of the Rb optical absorption lines by collisions with {sup 3}He atoms. The calibration of this technique resulted in the most precise measurements of the pressure broadening parameters for {sup 3}He as well as several other gases, which are described in an Appendix. The polarization of the {sup 3}He was also measured by

  1. Neutron diffraction studies of glasses

    International Nuclear Information System (INIS)

    Wright, A.C.

    1987-01-01

    A survey is given of the application of neutron diffraction to structural studies of oxide and halide glasses. As with crystalline materials, neutron and X-ray diffraction are the major structural probes for glasses and other amorphous solids, particularly in respect of intermediate range order. The glasses discussed mostly have structures which are dominated by a network in which the bonding is predominantly covalent. The examples discussed demonstrate the power of the neutron diffraction technique in the investigation of the structures of inorganic glasses. The best modern diffraction experiments are capable of providing accurate data with high real space resolution, which if used correctly, are an extremely fine filter for the various structural models proposed in the literature. 42 refs

  2. The intense neutron generator study

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W B

    1966-07-01

    The study has confirmed that a beam of 65 mA of protons at 1000 MeV, striking a molten lead-bismuth target surrounded by heavy water moderator, would give the desired flux of 10{sup 16} thermal neutrons per cm{sup 2} per second to provide intense beams of neutrons and also to produce radioisotopes. The proton beam passing through a thin auxiliary target would also produce beams of mesons. The design and construction of the ion source, injector, accelerator, target and auxiliaries present challenging technical problems. Moreover, continued development for improved life and economy promises to be rewarding. The high neutron intensity is sought for research in solid and liquid state physics and also for nuclear physics. Participation by universities and industry, both in development and use, is expected to be extensive. (author)

  3. The intense neutron generator study

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1966-01-01

    The study has confirmed that a beam of 65 mA of protons at 1000 MeV, striking a molten lead-bismuth target surrounded by heavy water moderator, would give the desired flux of 10 16 thermal neutrons per cm 2 per second to provide intense beams of neutrons and also to produce radioisotopes. The proton beam passing through a thin auxiliary target would also produce beams of mesons. The design and construction of the ion source, injector, accelerator, target and auxiliaries present challenging technical problems. Moreover, continued development for improved life and economy promises to be rewarding. The high neutron intensity is sought for research in solid and liquid state physics and also for nuclear physics. Participation by universities and industry, both in development and use, is expected to be extensive. (author)

  4. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline.

    Science.gov (United States)

    Dhiman, I; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X; Jiang, C Y; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3 He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe 3 Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3 He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  5. Magnetic particles studied with neutron depolarization and small-angle neutron scattering

    International Nuclear Information System (INIS)

    Rosman, R.

    1991-01-01

    Materials containing magnetic single-domain particles, referred to as 'particulate media', have been studied using neutron depolarization (ND) and small-angle neutron scattering (SANS). In a ND experiment the polarization vector of a polarized neutron beam is analyzed after transmission through a magnetic medium. Such an analysis in general yields the correlation length of variations in magnetic induction along the neutron path (denoted 'magnetic correlation length'), mean orientation of these variations and mean magnetic induction. In a SANS experiment, information about nuclear and magnetic inhomogeneities in the medium is derived from the broadening of a generally unpolarized neutron beam due to scattering by these inhomogeneities. Spatial and magnetic microstructure of a variety of particulate media have been studied using ND and/or SANS, by determination of the magnetic or nuclear correlation length in these media in various magnetic states. This thesis deals with the ND theory and its application to particulate media. ND and SANS experiments on a variety of particulate media are discussed. (author). 178 refs., 97 figs., 8 tabs

  6. Neutron angular distribution in (γ, n reactions with linearly polarized γ-ray beam generated by laser Compton scattering

    Directory of Open Access Journals (Sweden)

    K. Horikawa

    2014-10-01

    Full Text Available In 1957, Agodi predicted that the neutron angular distribution in (γ, n reactions with a 100% linearly polarized γ-ray beam for dipole excitation should be anisotropic and universally described by the simple function of a+b⋅cos⁡(2ϕ at the polar angle θ=90°, where ϕ is the azimuthal angle. However, this prediction has not been experimentally confirmed in over half a century. We have verified experimentally this angular distribution in the (γ, n reaction for 197Au, 127I, and natural Cu targets using linearly polarized laser Compton scattering γ-rays. The result suggests that the (γ→, n reaction is a novel tool to study nuclear physics in the giant dipole resonance region.

  7. Evidence for anisotropic polar nanoregions in relaxor Pb(Mg1/3Nb2/3)O3: A neutron study of the elastic constants and anomalous TA phonon damping in PMN

    Science.gov (United States)

    Stock, C.; Gehring, P. M.; Hiraka, H.; Swainson, I.; Xu, Guangyong; Ye, Z.-G.; Luo, H.; Li, J.-F.; Viehland, D.

    2012-09-01

    We use neutron inelastic scattering to characterize the acoustic phonons in the relaxor Pb(Mg1/3Nb2/3)O3 (PMN) and demonstrate the presence of a highly anisotropic damping mechanism that is directly related to short-range polar correlations. For a large range of temperatures above Tc˜210 K, where dynamic, short-range polar correlations are present, acoustic phonons propagating along [11¯0] and polarized along [110] (TA2 phonons) are overdamped and softened across most of the Brillouin zone. By contrast, acoustic phonons propagating along [100] and polarized along [001] (TA1 phonons) are overdamped and softened for a more limited range of wave vectors q. The anisotropy and temperature dependence of the acoustic phonon energy linewidth Γ are directly correlated with neutron diffuse scattering cross section, indicating that polar nanoregions are the cause of the anomalous behavior. The damping and softening vanish for q→0, i.e., for long-wavelength acoustic phonons near the zone center, which supports the notion that the anomalous damping is a result of the coupling between the relaxational component of the diffuse scattering and the harmonic TA phonons. Therefore, these effects are not due to large changes in the elastic constants with temperature because the elastic constants correspond to the long-wavelength limit. We compare the elastic constants we measure to those from Brillouin scattering experiments and to values reported for pure PbTiO3. We show that while the values of C44 are quite similar, those for C11 and C12 are significantly less in PMN and result in a softening of (C11-C12) over PbTiO3. The elastic constants also show an increased elastic anisotropy [2C44/(C11-C12)] in PMN versus that in PbTiO3. These results are suggestive of an instability to TA2 acoustic fluctuations in PMN and other relaxor ferroelectrics. We discuss our results in the context of the current debate over the “waterfall” effect and show that they are inconsistent with

  8. The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling.

    Science.gov (United States)

    Temleitner, László; Pusztai, László; Schweika, Werner

    2007-08-22

    The coherent static structure factor of water has been investigated by polarized neutron diffraction. Polarization analysis allows us to separate the huge incoherent scattering background from hydrogen and to obtain high quality data of the coherent scattering from four different mixtures of liquid H(2)O and D(2)O. The information obtained by the variation of the scattering contrast confines the configurational space of water and is used by the reverse Monte Carlo technique to model the total structure factors. Structural characteristics have been calculated directly from the resulting sets of particle coordinates. Consistency with existing partial pair correlation functions, derived without the application of polarized neutrons, was checked by incorporating them into our reverse Monte Carlo calculations. We also performed Monte Carlo simulations of a hard sphere system, which provides an accurate estimate of the information content of the measured data. It is shown that the present combination of polarized neutron scattering and reverse Monte Carlo structural modelling is a promising approach towards a detailed understanding of the microscopic structure of water.

  9. The 9Be(d,n)10B reaction as a source of polarized neutrons from a low energy accelerator

    International Nuclear Information System (INIS)

    Bains, B.S.; Galloway, R.B.

    1977-01-01

    The 9 Be(d,n) 10 B reaction leading to the ground state of 10 B is found to provide a neutron beam with a polarization of 0.35 +- 0.06 at a reaction angle of 45 0 to a 400 keV deuteron beam. The suitability of such a polarized 4.5 MeV neutron beam for elastic scattering experiments is discussed. The polarization of the neutrons leading to the first excited state of 10 B is found to be - 0.08 +- 0.07 under the same conditions. (Auth.)

  10. Proton and neutron polarized targets for nucleon-nucleon experiments at SATURNE II

    International Nuclear Information System (INIS)

    Ball, J.; Combet, M.; Sans, J.L.; Benda, B.; Chaumette, P.; Deregel, J.; Durand, G.; Dzyubak, A.P.; Gaudron, C.; Lehar, F.; Janout, Z.; Khachaturov, B.A.

    1996-01-01

    A SATURNE polarized target has been used for nucleon-nucleon elastic scattering and transmission experiments for 15 years. The polarized proton target is a 70 cm 3 cartridge loaded with Pentanol-2. For polarized neutron target, two cartridges loaded with 6 LiD and 6 LiH are set in the refrigerator and can be quickly inserted in the beam. First experiments using 6 Li products in quasielastic pp or pn analyzing power measurements are compared with the same observables measured in a free nucleon-nucleon scattering using polarized proton targets. Angular distribution as a function of a kinematically conjugate angle and coplanarity in nucleon-nucleon scattering is shown for different targets. (author)

  11. Few-body physics investigated through polarized neutron experiments in A /le/ 3 systems at TUNL

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W.; Howell, C.R.; Walter, R.L.

    1989-04-01

    Accurate polarization data obtained with neutrons below 20 MeV in the A /le/ 3 systems provide important new information on details of the nucleon-nucleon (NN) interaction. The two-nucleon and three-nucleon data favor the Paris potential over the new Bonn (OBEPQ) potential. However, one of the realistic potential models describes the elastic neutron-deuteron analyzing power satisfactorily. Charge independence breaking in the /sup 3/P NN interactions and/or three-body force effects must be considered. (orig.).

  12. Few-body physics investigated through polarized neutron experiments in A ≤ 3 systems at TUNL

    International Nuclear Information System (INIS)

    Tornow, W.; Howell, C.R.; Walter, R.L.

    1989-01-01

    Accurate polarization data obtained with neutrons below 20 MeV in the A ≤ 3 systems provide important new information on details of the nucleon-nucleon (NN) interaction. The two-nucleon and three-nucleon data favor the Paris potential over the new Bonn (OBEPQ) potential. However, one of the realistic potential models describes the elastic neutron-deuteron analyzing power satisfactorily. Charge independence breaking in the 3 P NN interactions and/or three-body force effects must be considered. (orig.)

  13. Study of Jupiter polarization properties

    International Nuclear Information System (INIS)

    Bolkvadze, O.R.

    1980-01-01

    Investigations into polarization properties of the Jupiter reflected light were carried on at the Abastumani astrophysical observatory in 1967, 1968 and 1969 in the four spectral ranges: 4000, 4800, 5400 and 6600 A deg. Data on light polarization in different parts of the Jupiter visible disk are given. Curves of dependence of the planet light polarization degree on a phase angle are plotted. It is shown that in the central part of the visible planet disk the polarization degree is low. Atmosphere is in a stable state in this part of Jupiter. Mean radius of particles of a cloud layer is equal to 0.26μ, and optical thickness of overcloud atmosphere tau=0.05. Height of transition boundary of the cloud layer into overcloud gas atmosphere changes from year to year at the edges of the equatorial zone. Optical thickness of overcloud atmosphere changes also with changing height of a transient layer. The polar Jupiter regions possess a high degree of polarization which depends on a latitude. Polarization increases monotonously with the latitude and over polar regions accepts a maximum value [ru

  14. Search for Time Reversal Violation in Neutron Decay: A Measurement of the Transverse Polarization of Electrons

    International Nuclear Information System (INIS)

    Bodek, K.; Kaczmarek, A.; Kistryn, St.; Kuzniak, M.; Zejma, J.; Pulut, J.; Kirch, K.; Bialek, A.; Kozela, A.; Ban, G.; Naviliat-Cuncic, O.; Gorel, P.; Beck, M.; Lindroth, A.; Severijns, N.; Stephan, E.; Czarnecki, A.

    2006-01-01

    A non-zero value of the R-correlation coefficient due to the e - polarization component, perpendicular to the plane spanned by the spin of the decaying neutron and the electron momentum, would signal a violation of time reversal symmetry and thus physics beyond the Standard Model. The value of the N-correlation coefficient, given by the transverse e - polarization component within that plane, is expected to be finite. The measurement of N serves as an important systematic check of the apparatus for the R-measurement. The first phase of data taking has been completed. Preliminary results from a limited data sample show no deviations from the Standard Model predictions

  15. New polarizing guide for neutron wavelengths above 2.5 A

    Energy Technology Data Exchange (ETDEWEB)

    Krist, Th; Pappas, C; Teichert, A; Fehr, C; Clemens, D; Steichele, E; Mezei, F, E-mail: krist@helmholtz-berlin.de

    2010-11-01

    We present a new polarizing system built for the relocated wide angle Neutron Spin Echo instrument SPAN. The new instruments at the second Guide Hall of BENSC and the relocation of SPAN to this hall of BENSC required a new beam extraction system and a new polarizer for SPAN, which replaced the old beam splitter produced in 1994 with FeCo-Si supermirrors with m=2. The new polarizer uses Fe-Si supermirrors, which do not run the risk to become activated as the old FeCo-Si supermirrors and was designed to deliver a polarized beam for wavelengths above 2.5 A. The final polarizing cavity has a length of 9 m with a cross section of 60 mm x 100 mm. Si wafers coated on both sides with m=2.5 Fe-Si polarizing supermirrors are glued into the guide at an angle of 0.38{sup 0} to the walls. The guide was installed during the second half year of 2006 and the first tests in early 2007 revealed excellent polarization efficiency over the whole wavelength range of the spectrometer of 2.5 A to 9 A, amounting to above 95% at 4.5 A.

  16. Neutron beam studies

    International Nuclear Information System (INIS)

    Willis, B.T.M.; Apps, M.E.

    1979-01-01

    The report is in sections, entitled: metallurgy; reactor fuels; defect solid state and interatomic forces; surface studies; colloid, polymer and biological studies; glasses; energy-related materials; solid state physics and crystallography; instrumentation and experimental technique. (U.K.)

  17. Spin dynamics above the Curie temperature studied by neutron scattering

    International Nuclear Information System (INIS)

    Steinsvoll, O.; Riste, T.

    1986-01-01

    Neutron scattering can in principle give information about magnetic fluctuations over the entire atomic space and time domain. The weakness of the neutron-matter interaction renders this information undistorted by the neutron probe, but at the same time puts intensity limitations on the method. A considerable number of studies on the magnetism of 3d metals have been performed at some of the larger reactor laboratories. In the regions of overlap the experimental results from the different laboratories are consistent, but the interpretations are along different lines. Among the controversial issues are itinerancy versus localization, the degree of order above T C . In our talk we shall give an introduction to the neutron scattering method, including some of the sophisticated polarized beam methods. In the rest of the talk we shall review recent experimental results and some of the theoretical models used in their interpretation. (orig.)

  18. Neutron xyz - polarization analysis at a time-of-flight instrument

    Energy Technology Data Exchange (ETDEWEB)

    Ehlers, Georg [ORNL; Stewart, John Ross [ISIS Facility, Rutherford Appleton Laboratory; Andersen, Ken [ESS

    2015-01-01

    When implementing a dedicated polarization analysis setup at a neutron time-of-flight instrument with a large area detector, one faces enormous challenges. Nevertheless, significant progress has been made towards this goal over the last few years. This paper addresses systematic limitations of the traditional method that is used to make these measurements, and a possible strategy to overcome these limitations. This will be important, for diffraction as well as inelastic experiments, where the scattering occurs mostly out-of-plane.

  19. Polarized neutron reflectivity from monolayers of self-assembled magnetic nanoparticles.

    Science.gov (United States)

    Mishra, D; Petracic, O; Devishvili, A; Theis-Bröhl, K; Toperverg, B P; Zabel, H

    2015-04-10

    We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.

  20. Measurement of the weak nucleon-nucleon interaction by polarized cold neutron capture on protons

    Directory of Open Access Journals (Sweden)

    Alarcon R.

    2014-03-01

    Full Text Available The NPDGamma Experiment at the Spallation Neutron Source at Oak Ridge National Laboratory is measuring the parity-odd correlation between the neutron spin and the direction of the emitted photon in the capture of polarized cold neutrons on protons. A parity violating asymmetry from this process is directly related to the strength of the hadronic weak interaction between nucleons. The experiment was run first with heavier nuclear targets to check systematic effects, false asymmetries, and backgrounds. Since early 2012 the experiment has been collecting data with a 16-liter liquid parahydrogen target. Data taking will continue through 2013 until statistics for a 10−8 asymmetry measurement are expected. The experiment performance will be discussed as well as the status of the asymmetry measurements.

  1. Advanced Neutron Source enrichment study

    International Nuclear Information System (INIS)

    Bari, R.A.; Ludewig, H.; Weeks, J.R.

    1996-01-01

    A study has been performed of the impact on performance of using low-enriched uranium (20% 235 U) or medium-enriched uranium (35% 235 U) as an alternative fuel for the Advanced Neutron Source, which was initially designed to use uranium enriched to 93% 235 U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology

  2. SuperADAM: upgraded polarized neutron reflectometer at the Institut Laue-Langevin.

    Science.gov (United States)

    Devishvili, A; Zhernenkov, K; Dennison, A J C; Toperverg, B P; Wolff, M; Hjörvarsson, B; Zabel, H

    2013-02-01

    A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 × 10(4) n cm(-2) s(-1) with monochromatization Δλ∕λ = 0.7% and angular divergence Δα = 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzers or a (3)He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.

  3. Spin exchange optical pumping based polarized 3He filling station for the Hybrid Spectrometer at the Spallation Neutron Source.

    Science.gov (United States)

    Jiang, C Y; Tong, X; Brown, D R; Culbertson, H; Graves-Brook, M K; Hagen, M E; Kadron, B; Lee, W T; Robertson, J L; Winn, B

    2013-06-01

    The Hybrid Spectrometer (HYSPEC) is a new direct geometry spectrometer at the Spallation Neutron Source at the Oak Ridge National Laboratory. This instrument is equipped with polarization analysis capability with 60° horizontal and 15° vertical detector coverages. In order to provide wide angle polarization analysis for this instrument, we have designed and built a novel polarized (3)He filling station based on the spin exchange optical pumping method. It is designed to supply polarized (3)He gas to HYSPEC as a neutron polarization analyzer. In addition, the station can optimize the (3)He pressure with respect to the scattered neutron energies. The depolarized (3)He gas in the analyzer can be transferred back to the station to be repolarized. We have constructed the prototype filling station. Preliminary tests have been carried out demonstrating the feasibility of the filling station. Here, we report on the design, construction, and the preliminary results of the prototype filling station.

  4. Neutron scattering studies in the actinide region

    International Nuclear Information System (INIS)

    Beghian, L.E.; Kegel, G.H.R.

    1991-08-01

    During the report period we have investigated the following areas: Neutron elastic and inelastic scattering measurements on 14 N, 181 Ta, 232 Th, 238 U and 239 Pu; Prompt fission spectra for 232 Th, 235 U, 238 U and 239 Pu; Theoretical studies of neutron scattering; Neutron filters; New detector systems; and Upgrading of neutron target assembly, data acquisition system, and accelerator/beam-line apparatus

  5. Recent development in magnetic neutron scattering studies

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1993-01-01

    Neutron scattering results contain many new concepts in modern magnetism. We review here the most recent neutron magnetic scattering studies from so called '214' copper oxide lamellar materials, because a number of important developments in magnetism are condensed in this novel subject. We show that neutron scattering has played crucial role in our understanding of modern magnetism. (author)

  6. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S I; Yang, J; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameters taken from early and current works on transport coefficients of dense matter. It is found that the effect of viscosity is crucial for the lifetime of magneto-torsion vibrations but it does not appreciably affect the periods of this seismic mode which fall in the realm of periods of pulsed emission of soft gamma-ray repeaters and anomalous x-ray pulsars - young super-magnetized neutron stars, radiating, according to the magnetar model, at the expense of the magnetic energy release. Finally, we present arguments that the long periodic pulsed emission of these stars in a quiescent regime of radiation can be interpreted as a manifestation of weakly damped seismic magneto-torsion vibrations exhibiting the field induced spin polarization of baryon matter

  7. Neutron activation studies on JET

    International Nuclear Information System (INIS)

    Loughlin, M.J.; Forrest, R.A.; Edwards, J.E.G.

    2001-01-01

    Extensive neutron transport calculations have been performed to determine the neutron spectrum at a number of points throughout the JET torus hall. The model has been bench-marked against a set of foil activation measurements which were activated during an experimental campaign with deuterium/tritium plasmas. The model can predict the neutron activation of the foils on the torus hall walls to within a factor of three for reactions with little sensitivity to thermal neutrons. The use of scandium foils with and without a cadmium thermal neutron absorber was a useful monitor of the thermal neutron flux. Conclusions regarding the usefulness of other foils for benchmarking the calculations are also given

  8. Electro-responsivity of ionic liquid boundary layers in a polar solvent revealed by neutron reflectance

    Science.gov (United States)

    Pilkington, Georgia A.; Harris, Kathryn; Bergendal, Erik; Reddy, Akepati Bhaskar; Palsson, Gunnar K.; Vorobiev, Alexei; Antzutkin, Oleg. N.; Glavatskih, Sergei; Rutland, Mark W.

    2018-05-01

    Using neutron reflectivity, the electro-responsive structuring of the non-halogenated ionic liquid (IL) trihexyl(tetradecyl)phosphonium-bis(mandelato)borate, [P6,6,6,14][BMB], has been studied at a gold electrode surface in a polar solvent. For a 20% w/w IL mixture, contrast matched to the gold surface, distinct Kiessig fringes were observed for all potentials studied, indicative of a boundary layer of different composition to that of the bulk IL-solvent mixture. With applied potential, the amplitudes of the fringes from the gold-boundary layer interface varied systematically. These changes are attributable to the differing ratios of cations and anions in the boundary layer, leading to a greater or diminished contrast with the gold electrode, depending on the individual ion scattering length densities. Such electro-responsive changes were also evident in the reflectivities measured for the pure IL and a less concentrated (5% w/w) IL-solvent mixture at the same applied potentials, but gave rise to less pronounced changes. These measurements, therefore, demonstrate the enhanced sensitivity achieved by contrast matching the bulk solution and that the structure of the IL boundary layers formed in mixtures is strongly influenced by the bulk concentration. Together these results represent an important step in characterising IL boundary layers in IL-solvent mixtures and provide clear evidence of electro-responsive structuring of IL ions in their solutions with applied potential.

  9. Polarization study of spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Ward-Thompson, D

    1987-01-01

    Optical polarimetry results are presented for four spiral galaxies: NGC 5194 (M51), NGC 1068, NGC 4565 and NGC 4594 (M104). M51 and NGC 1068 show spiral polarization patterns interpreted as indicating a spiral magnetic field in each case. NGC 4565 and M104 show polarizations in their dust lanes which are parallel to their galactic planes, and which are interpreted in terms of a magnetic field in the plane of each. It is hypothesized that the observed magnetic fields may be linked to galactic shocks. A discussion of the origin of galactic magnetic fields concludes that there is not evidence that necessitates a primordial magnetic field.

  10. Magnetic anisotropy and magnetoresistance in Co-based multilayers: a polarised neutron reflectivity study

    International Nuclear Information System (INIS)

    Yusuf, S.M.

    2000-01-01

    We have studied giant magnetoresistance (GMR) and anisotropic magnetoresistance (AMR) effects by carrying out magnetization, magnetoresistance and polarized neutron reflectivity measurements on epitaxial Co/Re multilayers. Polarized neutron reflectivity study with polarization analysis gives a direct way to sense the direction of sublattice magnetization and coupling between magnetic layers. The evolution of magnetic structure as a function of the strength and direction of the applied magnetic field has been studied. The AMR effect observed in magnetoresistance study has been explained in the light of observed magnetic structure. (author)

  11. Development and optimisation of a ultracold neutron polarizing system in the framework of a new measurement of the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Pierre, Edgard

    2012-01-01

    The work presented in this thesis has been performed within the framework of an experiment located at the Paul Scherrer Institut (PSI) and dedicated to the measurement of the neutron electric dipole moment (nEDM). The expected sensitivity is 10"-"2"7 e cm at the end of 2013. The experiment requires a polarized ultracold neutron (UCN) beam. A new polarizing system, a spin transport device and a spin reversal system have been developed for this purpose. Their study is detailed in this thesis. These systems are currently installed on the experiment. Thanks to magnetic field mappings done on the spectrometer, to magnetic field simulations using the Radia and Maentouch programs and also to Monte-Carlo simulations using the Geant4 software, the efficiency of the device has been calculated. The measured efficiency is 88.5±0.3%, which is slightly less than the expected value of 95%. Furthermore, this preliminary data taken in October 2011 allows the determination of some fundamental parameters of the experiment such as the filling, storage and longitudinal depolarization time constants of the spectrometer. These parameters are promising for the continuation of the experiment. (author) [fr

  12. Neutron Diffraction Studies of Nuclear Magnetic Ordering in Copper

    DEFF Research Database (Denmark)

    Jyrkkiö, T.A.; Huiku, M.T.; Siemensmeyer, K.

    1989-01-01

    for measurements in the ordered state; both our calculations and the experiments yield 1 nW beam heating. Polarized neutron experiments show that the scattered intensities from the strong fcc reflections are severely reduced by extinction. This makes the sample not very suitable for further studies with polarized...... to depend strongly on the external magnetic field between zero and the critical fieldB c=0.25 mT, indicating the existence of at least two antiferromagnetic phases. The results are compared to previous measurements of the magnetic susceptibility. Theoretical calculations do not provide a full explanation...

  13. The Precision Measurement of the Neutron Spin Structure Function Using Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X

    2004-01-05

    Using a 48.6 GeV polarized electron beam scattering off a polarized {sup 3}He target at Stanford Linear Accelerator Centre (SLAC), they measured the neutron spin structure function g{sub 1}{sup n} over kinematic(x) ranging 0.014 < x <0.7 and 1 < Q{sup 2} < 17GeV{sup 2}. The measurement gave the integral result over the neutron spin structure function {integral}{sub 0.014}{sup 0.7} g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.004(stat) {+-} 0.005(syst) at an average Q{sup 2} = 5GeV{sup 2}. Along with the proton results from SLAC E143 experiment (0.03 < x) and SMC experiment (0.014 < x < 0.03), they find the Bjorken sum rule appears to be largely saturated by the data integrated down to x of 0.014. However, they observe relatively large values for g{sub 1}{sup n} at low x. The result calls into question the usual methods (Regge theory) for extrapolating to x = 0 to find the full neutron integral {integral}{sub 0}{sup t} g{sub 1}{sup n}(x) dx, needed for testing the Quark-Parton Model (QMP).

  14. A new instrumental set-up for polarized neutron scattering experiments

    International Nuclear Information System (INIS)

    Schmidt, Wolfgang; Ohl, Michael

    2005-01-01

    Neutron scattering with polarization analysis is a powerful tool to determine magnetic structures and excitations. A common setup is to mount the sample at the center of a Helmholtz-type coil which can provide a magnetic field of any direction at the sample position and also a guide field along the neutron flight paths around the sample. Recent experiments showed quite a high demand for measurements at low momentum transfers. For the corresponding low scattering angles air scattering gives rise to a very large background. For this reason we have extended the standard setup to a combination of a large vacuum tank surrounded by electrical coils. The vacuum tank eliminates the air scattering and we can use the polarization analysis down to the lowest accessible momentum transfers. The coils themselves also show some new features: In contrary to the classic (symmetric) coil distribution we use an asymmetric setup which gives the advantage of a larger scattering window. Due to a more sophisticated current distribution this modified coil arrangement needs not to be rotated for different scattering conditions. The whole set-up will soon be available at IN12, a cold neutrons three-axis spectrometer operated by FZ Juelich in collaboration with CEA Grenoble as a CRG-B instrument at the Institut Laue Langevin in Grenoble

  15. Extension of the VITESS polarized neutron suite towards the use of imported magnetic field distributions

    International Nuclear Information System (INIS)

    Manoshin, S; Rubtsov, A; Bodnarchuk, V; Mattauch, S; Ioffe, A

    2014-01-01

    Latest developments of the polarized neutron suite in the VITESS simulation package allowed for simulations of time-dependent spin handling devices (e.g. radio-frequency (RF) flippers, adiabatic gradient RF-flippers) and the instrumentation built upon them (NRSE, SESANS, MIEZE, etc.). However, till now the magnetic field distribution in such devices have been considered as 'ideal' (sinusoidal, triangular or rectangular), when the main practical interest is in the use of arbitrary magnetic field distributions (either obtained by the field mapping or by FEM calculations) that may significantly influence the performance of real polarized neutron instruments and is the key issue in the practical use of the simulation packages. Here we describe modified VITESS modules opening the possibility to load the magnetic field 3-dimensional space map from an external source (file). Such a map can be either obtained by direct measurements or calculated by dedicated FEM programs (such as ANSYS, MagNet, Maxwell or similar). The successful use of these new modules is demonstrated by a very good agreement of neutron polarimetric experiments with performance of the spin turner with rotating magnetic field and an adiabatic gradient RF-flipper simulated by VITESS using calculated 3-dimensional field maps (using MagNet) and magnetic field mapping, respectively.

  16. Workshop on the next plan for the study of 'physics of fast neutron reactions and measurements'

    International Nuclear Information System (INIS)

    1985-03-01

    A work shop titled ''Physics of fast neutron reaction and measurements'' was held on 25 December 1984, where discussions were made on the new approach and techniques for neutron measurements. The possibilities of experimental tests with AVF cyclotron was also discussed. The followings are the list of papers presented at the work shop (all papers are written in Japanese except for the abstracts). (1) Monoenergetic neutron beam in Tohoku Cyclotron. (2) Spin-dependent response probed in (p,n) and (n,p) reactions. (3) Measurement of D(n,p) 2n reaction and instrumentation for (n,x) reactions in the 40 - 80 MeV region. (4) Two comments related to the neutron reaction. (5) High energy neutron production facilities in the world and a possibility of neutron induced reaction experiments at RCNP. (6) A neutron counter by detection of recoil protons with solid state detectors and development of neutron source by heavy ions. (7) The measurement of neutrons with the recoil detector. (8) Polarization transfer measurements (Py, Dss, Ds 1 , · · ·) with fast neutron beams. (9) Neutron elastic scattering. (10) Neutron capture gamma reaction and effective charge. (11) Comparison between neutron and charged particle induced reactions. (12) Study of giant resonances by fast neutrons. (Aoki, K.)

  17. Measurement of the Spin Structure Function of the Neutron G1(N) from Deep Inelastic Scattering of Polarized Electrons from Polarized Neutrons in He-3

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J

    2004-01-06

    Polarized electrons of energies 19.42, 22.67, and 25.5 GeV were scattered off a polarized {sup 3}He target at SLAC's End Station A to measure the spin asymmetry of the neutron. From this asymmetry, the spin dependent structure function g{sub 1}{sup n}(x) was determined over a range in x from 0.03 to 0.6 with an average Q{sup 2} of 2 (GeV/C){sup 2}. The value of the integral of g{sub 1}{sup n} over x is {integral}g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.009. The results were interpreted in the frame work of the Quark Parton Model (QPM) and used to test the Ellis-Jaffe and Bjorken sum rules. The value of the integral is 2.6 standard deviations from the Ellis-Jaffe prediction while the Bjorken sum rule was found to be in agreement with this data and proton data from SMC and E-143.

  18. Fundamental symmetry studies at Los Alamos using epithermal neutrons

    International Nuclear Information System (INIS)

    Bowman, C.D.; Bowman, J.D.; Yuan, V.W.

    1988-01-01

    Fundamental symmetry studies using intense polarized beams of epithermal neutrons are underway at the LANSCE facility of the Los Alamos National Laboratory. Three classes of symmetry experiments can be explored: parity violation, and time reversal invariance violation for both parity-violating and parity-conserved observables. The experimental apparatus is described and performance illustrated with examples of recent measurements. Possible improvements in the facilities and prospective experiments are discussed. 15 refs., 10 figs

  19. Low-angle polarized neutron and X-ray scattering from magnetic nanolayers and nanostructures

    CERN Document Server

    Paul, Amitesh

    2017-01-01

    This research monograph presents the latest results related to the characterization of low dimensional systems. Low-angle polarized neutron scattering and X-ray scattering at grazing incidence are used as the two main techniques to explore various physical phenomena of these systems. Special focus is put on systems like thin film transition metal and rare-earth layers, oxide heterostructures, hybrid systems, self-assembled nanostructures and self-diffusion.  Readers will gain in-depth knowledge about the usage of specular scattering and off-specular scattering techniques. Investigation of in-plane and out-of-plane structures and magnetism with vector magnetometric information is illustrated comprehensively. The book caters to a wide audience working in the field of nano-dimensional magnetic systems and the neutron and X-ray reflectometry community in particular.

  20. The status of polarization studies at HERA

    International Nuclear Information System (INIS)

    Boege, M.

    1993-01-01

    In August 1992 a vertical electron beam polarization of nearly 60% at 26.7 GeV (spin tune=60.5) was obtained at HERA. This was achieved by optimizing the energy and orbit tunes and by applying harmonic corrections to the closed orbit. The polarization level was reproducible from fill to fill and the calibration of the Compton polarimeter was confirmed by measuring the polarization build up curve. The polarization measurements were made with currents of one to two milliamps. Much higher currents are expected for the 1993 luminosity run (∼ 30 mA were obtained in May 1993). The high polarization level was reproduced at high current. Further polarization studies in parallel with e-p operation are planned. In 1993/94 a pair of spin rotators will be installed in the East straight section so that longitudinal polarization is available at the East interaction point. Simulations with the spin tracking program SITROS are in qualitative agreement with the measurements. Calculations with SITROS show that longitudinal polarizations of up to 50% could then still be achieved

  1. A neutron scattering study on the antiferromagnet in an exchange biased systems

    Energy Technology Data Exchange (ETDEWEB)

    Solina, Danica; Lott, Dieter; Fenske, Jochen; Schreyer, Andreas [Institute of Materials Research, GKSS Research Centre, Geesthacht (Germany); Schmidt, Wolfgang [Institut-Laue-Langevin, Grenoble (France); Wu, Yu-Chang; Lai, Chih-Huang [Department of Materials Science and Engineering, National Tsing Hua University, HsinChu (China)

    2008-07-01

    The magnetic structure of single crystal antiferromagnetic PtMn that biases CoFe has been studied using neutron scattering. Polarized neutron reflection (PNR) was used to determine the switching behaviour of the ferromagnetic layer and polarized neutron diffraction (PND) to probe the magnetic configuration of the anti-ferromagnetic layer. PNR suggests a combination of rotation and domain formation. Changes were observed in the PND patterns taken at points around the hysteresis loop. The diffraction data has been simulated with a 'twisting' of part of the anti-ferromagnetic layer as the ferromagnetic layer changes.

  2. Elastic scattering of polarized neutrons by 3He at low energy

    International Nuclear Information System (INIS)

    Drigo, L.; Tornielli, G.; Zannoni, G.

    1982-01-01

    Elastic scattering by 3 He for 1.67, 2.43, 3.0, 3.4 and 7.8 MeV neutron beams of known polarization was measured at seven angles from 25 0 to 155 0 using a high pressure gas scintillation counter. The geometrical and multiple scattering effects were accounted for by the Monte Carlo technique. The corrected results were compared with previous experimental data and with the existing predictions based on microscopic calculations and phenomenological analyses. (author)

  3. Bounds on Time Reversal Violation From Polarized Neutron Capture With Unpolarized Targets.

    Science.gov (United States)

    Davis, E D; Gould, C R; Mitchell, G E; Sharapov, E I

    2005-01-01

    We have analyzed constraints on parity-odd time-reversal noninvariant interactions derived from measurements of the energy dependence of parity-violating polarized neutron capture on unpolarized targets. As previous authors found, a perturbation in energy dependence due to a parity (P)-odd time (T)-odd interaction is present. However, the perturbation competes with T-even terms which can obscure the T-odd signature. We estimate the magnitudes of these competing terms and suggest strategies for a practicable experiment.

  4. Double Polarized Neutron-Proton Scattering and Meson-Exchange Nucleon-Nucleon Potential Models

    International Nuclear Information System (INIS)

    Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Penttilae, S.I.; Hoffmann, G.W.

    1999-01-01

    We report on polarized beam - polarized target measurements of the spin-dependent neutron-proton total cross-section differences in longitudinal and transverse geometries (Δσ L and Δσ T , respectively) between E n =5 and 20MeV. Single-parameter phase-shift analyses were performed to extract the phase-shift mixing parameter var-epsilon 1 , which characterizes the strength of the nucleon-nucleon tensor interaction at low energies. Consistent with the trend of previous determinations at E n =25 and 50MeV, our values for var-epsilon 1 imply a stronger tensor force than predicted by meson-exchange nucleon-nucleon potential models and nucleon-nucleon phase-shift analyses. copyright 1999 The American Physical Society

  5. Circular polarization of γ-quanta radiated in the capture of polarized neutrons by protons and the quark compound bag model

    International Nuclear Information System (INIS)

    Grach, I.L.; Shmatkov, M.Zh.

    1983-01-01

    The circular polarization Psub(γ) of γ-quanta radiated in the capture of polarized neutrons by protons is calculated The contribution of the M1 and E2 radiation of nucleons to Psub(γ) is found using the accurate wave functions of the continuous spectrum. The contribution of the six-quark bag to the polarization Psub(γ) is determined. The value of Psub(γ) is related to the admixture of the 6q-bag in the deuteron. Experimental value of Psub(γ) corresponds to small (< or approximately 0.7%) admixture of the bag

  6. Separation and correlation of structural and magnetic roughness in a Ni thin film by polarized off-specular neutron reflectometry.

    Science.gov (United States)

    Singh, Surendra; Basu, Saibal

    2009-02-04

    Diffuse (off-specular) neutron and x-ray reflectometry has been used extensively for the determination of interface morphology in solids and liquids. For neutrons, a novel possibility is off-specular reflectometry with polarized neutrons to determine the morphology of a magnetic interface. There have been few such attempts due to the lower brilliance of neutron sources, though magnetic interaction of neutrons with atomic magnetic moments is much easier to comprehend and easily tractable theoretically. We have obtained a simple and physically meaningful expression, under the Born approximation, for analyzing polarized diffuse (off-specular) neutron reflectivity (PDNR) data. For the first time PDNR data from a Ni film have been analyzed and separate chemical and magnetic morphologies have been quantified. Also specular polarized neutron reflectivity measurements have been carried out to measure the magnetic moment density profile of the Ni film. The fit to PDNR data results in a longer correlation length for in-plane magnetic roughness than for chemical (structural) roughness. The magnetic interface is smoother than the chemical interface.

  7. Gas target neutron generator studies

    International Nuclear Information System (INIS)

    Chatoorgoon, V.

    1978-01-01

    The need for an intense neutron source for the study of radiation damage on materials has resulted in the proposal of various solid, liquid, and gas targets. Among the gas targets proposed have been the transonic gas target, two types of hypersonic gas target, and the subsonic gas target (SGT). It has been suggested that heat deposition in a subsonic channel might create a gas density step which would constitute an attractive gas target type. The first part of the present study examines this aspect of the SGT and shows that gas density gradients are indeed formed by heat deposition in subsonic flow. The variation of beam voltage, gas density, gas pressure, and gas temperature within the channel have been calculated as functions of the system parameters: beam voltage, beam current, channel diameter, stagnation tank temperature and pressure. The analysis is applicable to any beam particle and target gas. For the case of T + on D 2 , which is relevant to the fusion application, the 14 MeV neutron profiles are presented as a function of system parameters. It is found that the SGT is compatible with concentrated intense source operation. The possibility of instability was investigated in detail using a non-linear analysis which made it possible to follow the complete time development of the SGT. It was found that the SGT is stable against all small perturbations and certain types of large perturbations. It appears that the SGT is the most advantageous type of gas target, operating at a lower mass flow and less severe stagnation tank conditions than the other types. The second part of the thesis examines a problem associated with the straight hypersonic target, the deuterium spill into the tritium port. The regime of practical operation for this target is established. (auth)

  8. Refraction of polarized neutrons on the boundary in thick magnetic film FeAlSi

    Energy Technology Data Exchange (ETDEWEB)

    Aksenov, V L; Kozhevnikov, S V; Nikitenko, Yu V [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Frank Lab. of Neutron Physics

    1999-07-01

    Complete text of publication follows. Refraction of polarized neutrons in multilayer structure FeAlSi(20 mkm)/Cr(0.05 mkm)/CaTiO{sub 3}(1000 mkm) has been investigated. An external magnetic field was applied under an angle to the sample surface. Refraction on themagnetic boundaries of two types has been investigated. First type is the boundary vacuum-magnetic film. Second type is magnetic film - non-magnetic substrate CaTiO{sub 3} (thin non-magnetic Cr layer doesn't refract the beam). On the boundary there are spin-flip and beam-splitting. Four spatial splitted beams were observed for different spin transitions on each type of the boundary: '+-', '++', '-+' and '--'. From the experimental values of the glancing angles of refracted beam the following parameters has been derives: the nuclear potentials of the magnetic film and the non-magnetic substrate, the magnitude and the direction of a magnetic induction in the magnetic film. It has been shown that the method of refractometry of polarized neutrons can be used for investigation of thick (about mkm) magnetic films. (author)

  9. Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity

    International Nuclear Information System (INIS)

    Mishra, D; Benitez, M J; Petracic, O; Badini Confalonieri, G A; Szary, P; Brüssing, F; Devishvili, A; Toperverg, B P; Zabel, H; Theis-Bröhl, K; Vorobiev, A; Konovalov, O; Paulus, M; Sternemann, C

    2012-01-01

    We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole–dipole interaction is rather strong, dominating the collective magnetic properties at room temperature. (paper)

  10. Accretion dynamics and polarized x-ray emission of magnetized neutron stars

    International Nuclear Information System (INIS)

    Arons, J.

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such as star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-rays from the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40% at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of ''photon bubbles,'' regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scales. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined

  11. Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity.

    Science.gov (United States)

    Mishra, D; Benitez, M J; Petracic, O; Badini Confalonieri, G A; Szary, P; Brüssing, F; Theis-Bröhl, K; Devishvili, A; Vorobiev, A; Konovalov, O; Paulus, M; Sternemann, C; Toperverg, B P; Zabel, H

    2012-02-10

    We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole-dipole interaction is rather strong, dominating the collective magnetic properties at room temperature.

  12. Accretion dynamics and polarized X-ray emission of magnetized neutron stars

    Science.gov (United States)

    Arons, Jonathan

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such a star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-raysfrom the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40 percent at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of 'photon bubbles', regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scale. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined.

  13. End-compensated magnetostatic cavity for polarized 3He neutron spin filters.

    Science.gov (United States)

    McIver, J W; Erwin, R; Chen, W C; Gentile, T R

    2009-06-01

    We have expanded upon the "Magic Box" concept, a coil driven magnetic parallel plate capacitor constructed out of mu-metal, by introducing compensation sections at the ends of the box that are tuned to limit end-effects similar to those of short solenoids. This ability has reduced the length of the magic box design without sacrificing any loss in field homogeneity, making the device far more applicable to the often space limited neutron beam line. The appeal of the design beyond affording longer polarized 3He lifetimes is that it provides a vertical guide field, which facilitates neutron spin transport for typical polarized beam experiments. We have constructed two end-compensated magic boxes of dimensions 28.4 x 40 x 15 cm3 (length x width x height) with measured, normalized volume-averaged transverse field gradients ranging from 3.3 x 10(-4) to 6.3 x 10(-4) cm(-1) for cell sizes ranging from 8.1 x 6.0 to 12.0 x 7.9 cm2 (diameter x length), respectively.

  14. Target system neutronics study for NXGENS

    International Nuclear Information System (INIS)

    Willis, C.; Muhrer, G.

    2007-01-01

    The Materials Test Station (MTS) [E. Pitcher, G. Muhrer, H. Trellue, Neutronics Assessment of the LANSCE Materials Test Station as an Irradiation Facility for the JIMO Space Reactor, LA-CP-04-0903.], a spallation target station, planned for construction at the Los Alamos Neutron Science Center (LANSCE), will provide the opportunity to test the prototype of a long-pulse spallation source neutron scattering instrument (NXGENS). In this paper, we present the target-moderator neutronics optimization study that was performed in support of NXGENS

  15. [Intermediate energy studies of polarization transfer, polarized deuteron scattering, and (p,π+-) reactions: Rapporteur's report

    International Nuclear Information System (INIS)

    Moss, J.M.

    1985-01-01

    An overview of intermediate energy (80 to 1000 MeV) study contributions to the International Polarization Symposium in Osaka, Japan, August 1985 is presented in this report. Contributions fall into three categories: polarization transfer, polarized deuteron scattering and polarized (p,π +- ) reactions

  16. Further comments on the effects of vacuum birefringence on the polarization of X-rays emitted from magnetic neutron stars

    Science.gov (United States)

    Chanan, G. A.; Novick, R.; Silver, E. H.

    1979-01-01

    The birefringence of the vacuum in the presence of strong (of the order of 1 teragauss) magnetic fields will in general affect the polarization of X-rays propagating through these fields. Two of the four Stokes parameters will vary so rapidly with wavelength as to be 'washed out' and unobservable, but the remaining two parameters will be unaffected. These results show that one conclusion of an earlier work is incorrect: Polarized X-ray emission from the surface of a magnetic neutron star will not in general be completely depolarized by the effects of vacuum birefringence. In particular, this birefringence has no effect on the linear polarization of cyclotron emission from the poles of magnetic neutron stars, and a similar result holds for synchrotron emission. More general cases of the propagation of polarized X-rays in magnetic fields are also discussed.

  17. Photoproduction of η mesons from the neutron: Cross sections and double polarization observable E

    Energy Technology Data Exchange (ETDEWEB)

    Witthauer, L.; Dieterle, M.; Challand, T.; Kaeser, A.; Keshelashvili, I.; Krusche, B.; Rostomyan, T.; Walford, N.K.; Werthmueller, D. [University of Basel, Department of Physics, Basel (Switzerland); Afzal, F.; Beck, R.; Boese, S.; Funke, C.; Gottschall, M.; Gruener, M.; Hammann, C.; Hartmann, J.; Hoffmeister, P.; Honisch, C.; Kaiser, D.; Kalinowsky, H.; Kalischewski, F.; Klassen, P.; Koop, K.; Lang, M.; Mahlberg, P.; Mueller, J.; Muellers, J.; Piontek, D.; Schmidt, C.; Seifen, T.; Sokhoyan, V.; Spieker, K.; Thiel, A.; Thoma, U.; Urban, M.; Pee, H. van; Walther, D.; Wendel, C.; Winnebeck, A. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn, Bonn (Germany); Anisovich, A.V.; Bayadilov, D.; Nikonov, V.; Sarantsev, A. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn, Bonn (Germany); Petersburg Nuclear Physics Institute, National Research Centre ' ' Kurchatov Institute' ' , Gatchina (Russian Federation); Bantes, B.; Dutz, H.; Eberhardt, H.; Elsner, D.; Ewald, R.; Fornet-Ponse, K.; Frommberger, F.; Goertz, S.; Hammann, D.; Hannappel, J.; Hillert, W.; Jude, T.; Kammer, S.; Kleber, V.; Klein, F.; Schmieden, H. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Bichow, M.; Meyer, W.; Reicherz, G. [Ruhr-Universitaet Bochum, Institut fuer Experimentalphysik I, Bochum (Germany); Brinkmann, K.T.; Gutz, E. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn, Bonn (Germany); Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Crede, V. [Florida State University, Department of Physics, Tallahassee, FL (United States); Friedrich, S.; Makonyi, K.; Metag, V.; Nanova, M. [Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Gridnev, A.; Lopatin, I. [Petersburg Nuclear Physics Institute, National Research Centre ' ' Kurchatov Institute' ' , Gatchina (Russian Federation); Wilson, A. [Helmholtz-Institut fuer Strahlen- und Kernphysik der Universitaet Bonn, Bonn (Germany); Florida State University, Department of Physics, Tallahassee, FL (United States); Collaboration: The CBELSA/TAPS Collaboration

    2017-03-15

    Results from measurements of the photoproduction of η mesons from quasifree protons and neutrons are summarized. The experiments were performed with the CBELSA/TAPS detector at the electron accelerator ELSA in Bonn using the η → 3π{sup 0} → 6γ decay. A liquid deuterium target was used for the measurement of total cross sections and angular distributions. The results confirm earlier measurements from Bonn and the MAMI facility in Mainz about the existence of a narrow structure in the excitation function of γn → nη. The current angular distributions show a forward-backward asymmetry, which was previously not seen, but was predicted by model calculations including an additional narrow P{sub 11} state. Furthermore, data obtained with a longitudinally polarized, deuterated butanol target and a circularly polarized photon beam were analyzed to determine the double polarization observable E. Both data sets together were also used to extract the helicity-dependent cross sections σ{sub 1/2} and σ{sub 3/2}. The narrow structure in the excitation function of γn → nη appears associated with the helicity-1/2 component of the reaction. (orig.)

  18. Preclinical studies on gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Akine, Yasuyuki

    1994-01-01

    Gadolinium neutron capture therapy is based on radiations (photons and electrons) produced in the tumor by a nuclear reaction between gadolinium and lower-energy neutrons. Studies with Chinese hamster cells have shown that the radiation effect resulting from gadolinium neutron capture reactions is mostly of low LET and that released electrons are the significant component in the over-all dose. Biological dosimetry revealed that the dose does not seem to increase in proportion to the gadolinium concentration, leading to a conclusion that there is a range of gadolinium concentrations most efficient for gadolinium neutron capture therapy. The in vivo studies with transplantable tumors in mice and rabbits have revealed that close contact between gadolinium and the cell is not necessarily required for cell inactivation and that gadolinium delivery selective to tumors is crucial. The results show that the potential of gadolinium neutron capture therapy as a therapeutic modality appears very promising. (author)

  19. Simulation and optimization of a new focusing polarizing bender for the diffuse neutrons scattering spectrometer DNS at MLZ

    International Nuclear Information System (INIS)

    Nemkovski, K; Ioffe, A; Su, Y; Babcock, E; Schweika, W; Brückel, Th

    2017-01-01

    We present the concept and the results of the simulations of a new polarizer for the diffuse neutron scattering spectrometer DNS at MLZ. The concept of the polarizer is based on the idea of a bender made from the stack of the silicon wafers with a double-side supermirror polarizing coating and absorbing spacers in between. Owing to its compact design, such a system provides more free space for the arrangement of other instrument components. To reduce activation of the polarizer in the high intensity neutron beam of the DNS spectrometer we plan to use the Fe/Si supermirrors instead of currently used FeCoV/Ti:N ones. Using the VITESS simulation package we have performed simulations for horizontally focusing polarizing benders with different geometries in the combination with the double-focusing crystal monochromator of DNS. Neutron transmission and polarization efficiency as well as the effects of the focusing for convergent conventional C-benders and S-benders have been analyzed both for wedge-like and plane-parallel convergent geometries of the channels. The results of these simulations and the advantages/disadvantages of the various configurations are discussed. (paper)

  20. Simulation and optimization of a new focusing polarizing bender for the diffuse neutrons scattering spectrometer DNS at MLZ

    Science.gov (United States)

    Nemkovski, K.; Ioffe, A.; Su, Y.; Babcock, E.; Schweika, W.; Brückel, Th

    2017-06-01

    We present the concept and the results of the simulations of a new polarizer for the diffuse neutron scattering spectrometer DNS at MLZ. The concept of the polarizer is based on the idea of a bender made from the stack of the silicon wafers with a double-side supermirror polarizing coating and absorbing spacers in between. Owing to its compact design, such a system provides more free space for the arrangement of other instrument components. To reduce activation of the polarizer in the high intensity neutron beam of the DNS spectrometer we plan to use the Fe/Si supermirrors instead of currently used FeCoV/Ti:N ones. Using the VITESS simulation package we have performed simulations for horizontally focusing polarizing benders with different geometries in the combination with the double-focusing crystal monochromator of DNS. Neutron transmission and polarization efficiency as well as the effects of the focusing for convergent conventional C-benders and S-benders have been analyzed both for wedge-like and plane-parallel convergent geometries of the channels. The results of these simulations and the advantages/disadvantages of the various configurations are discussed.

  1. The behavior of a type-II superconductor Nb in a magnetic field as investigated in polarized-neutron transmission experiments

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1995-01-01

    The type-II superconducting polycrystal Nb was investigated on the SPN-1 polarized-neutron spectrometer at the high-intensity pulsed reactor IBR-2 at Dubna. In polarized-neutron transmission experiments the magnetic-field dependence of the neutron beam polarization was measured. Experiments were performed over a wide magnetic-field range from 0 to H c2 at a temperature of 4.8 K. A quasiperiodic variation of the neutron depolarization as a function of magnetic-field strength was observed. (orig.)

  2. Polarization observables of the d-vector p-vector → p-vector d reaction and one-neutron-exchange approximation

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Syamtomov, A.I.; Perdrisat, C.F.; Punjabi, V.

    1994-01-01

    The polarization observables in the elastic scattering of polarized deuterons on a polarized hydrogen target, with measurement of the recoil proton polarization, are considered. The observables are calculated in the one-neutron exchange approximation, for the special case of backward scattering (Θ c.m = 180 degree). Several new relations between polarization observables of the reaction are derived within the framework of this approximation. (author). 20 refs., 3 figs

  3. Probing the magnetic profile of diluted magnetic semiconductors using polarized neutron reflectivity.

    Science.gov (United States)

    Luo, X; Tseng, L T; Lee, W T; Tan, T T; Bao, N N; Liu, R; Ding, J; Li, S; Lauter, V; Yi, J B

    2017-07-24

    Room temperature ferromagnetism has been observed in the Cu doped ZnO films deposited under an oxygen partial pressure of 10 -3 and 10 -5 torr on Pt (200 nm)/Ti (45 nm)/Si (001) substrates using pulsed laser deposition. Due to the deposition at relatively high temperature (873 K), Cu and Ti atoms diffuse to the surface and interface, which significantly affects the magnetic properties. Depth sensitive polarized neutron reflectometry method provides the details of the composition and magnetization profiles and shows that an accumulation of Cu on the surface leads to an increase in the magnetization near the surface. Our results reveal that the presence of the copper at Zn sites induces ferromagnetism at room temperature, confirming intrinsic ferromagnetism.

  4. Experimental study of time-reversal invariance in neutron-nucleus interactions

    International Nuclear Information System (INIS)

    Shaparov, E.I.; Shimizu, H.M.

    1996-01-01

    Experimental approaches for the test of time-reversal invariance in neutron-nucleus interactions are reviewed. Possible transmission experiments with polarized neutron beams and polarized or aligned targets are discussed as well as neutron capture experiments with unpolarized resonance neutrons. 102 refs., 13 figs., 3 tabs

  5. Ising versus XY anisotropy in frustrated R(2)Ti(2)O(7) compounds as "Seen" by Polarized Neutrons.

    Science.gov (United States)

    Cao, H; Gukasov, A; Mirebeau, I; Bonville, P; Decorse, C; Dhalenne, G

    2009-07-31

    We studied the field induced magnetic order in R(2)Ti(2)O(7) pyrochlore compounds with either uniaxial (R=Ho, Tb) or planar (R=Er, Yb) anisotropy, by polarized neutron diffraction. The determination of the local susceptibility tensor {chi(parallel to),chi(perpendicular)} provides a universal description of the field induced structures in the paramagnetic phase (2-270 K), whatever the field value (1-7 T) and direction. Comparison of the thermal variations of chi(parallel to) and chi(perpendicular) with calculations using the rare earth crystal field shows that exchange and dipolar interactions must be taken into account. We determine the molecular field tensor in each case and show that it can be strongly anisotropic.

  6. Study of neutron spectrometers for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kaellne, Jan

    2005-11-15

    A review is presented of the developments in the field of neutron emission spectrometry (NES) which is of relevance for identifying the role of NES diagnostics on ITER and selecting suitable instrumentation. Neutron spectrometers will be part of the ITER neutron diagnostic complement and this study makes a special effort to examine which performance characteristics the spectrometers should possess to provide the best burning plasma diagnostic information together with neutron cameras and neutron yield monitors. The performance of NES diagnostics is coupled to how much interface space can be provided which has lead to an interest to find compact instruments and their NES capabilities. This study assesses all known spectrometer types of potential interest for ITER and makes a ranking of their performance (as demonstrated or projected), which, in turn, are compared with ITER measurement requirements as a reference; the ratio of diagnostic performance to interface cost for different spectrometers is also discussed for different spectrometer types. The overall result of the study is an assessment of which diagnostic functions neutron measurements can provide in burning plasma fusion experiments on ITER and the role that NES can play depending on the category of instrument installed. Of special note is the result that much higher quality diagnostic information can be obtained from neutron measurements with total yield monitors, profile flux cameras and spectrometers when the synergy in the data is considered in the analysis and interpretation.

  7. Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields.

    Science.gov (United States)

    Maranville, Brian B; Kirby, Brian J; Grutter, Alexander J; Kienzle, Paul A; Majkrzak, Charles F; Liu, Yaohua; Dennis, Cindi L

    2016-08-01

    The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample, however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.

  8. Shape coexistence in the N=19 neutron-rich nucleus 31Mg explored by β–γ spectroscopy of spin-polarized 31Na

    Directory of Open Access Journals (Sweden)

    H. Nishibata

    2017-04-01

    Full Text Available The structure of excited states in the neutron-rich nucleus 31Mg, which is in the region of the “island of inversion” associated with the neutron magic number N=20, is studied by β–γ spectroscopy of spin-polarized 31Na. Among the 31Mg levels below the one neutron separation energy of 2.3 MeV, the spin values of all five positive-parity levels are unambiguously determined by observing the anisotropic β decay. Two rotational bands with Kπ=1/2+ and 1/2− are proposed based on the spins and energies of the levels. Comparison on a level-by-level basis is performed between the experimental results and theoretical calculations by the antisymmetrized molecular dynamics (AMD plus generator coordinate method (GCM. It is found that various nuclear structures coexist in the low excitation energy region in 31Mg.

  9. Neutron scattering studies of solid electrolytes

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1976-01-01

    The role which neutron scattering can play in determining the nature of the disorder and the conducting mechanism in the solid electrolytes is discussed. First, some of the general formalism for elastic and inelastic neutron scattering is reviewed, and the quantities which can be measured are pointed out. Then the application of neutron scattering to the studies of three different problems is examined; the anion disorder in the fluorite system, the dynamical behavior in beta-alumina, and the cation diffusion in αAgI are discussed. 8 figures

  10. Neutron radiation damage studies on silicon detectors

    International Nuclear Information System (INIS)

    Li, Zheng; Chen, W.; Kraner, H.W.

    1990-10-01

    Effects of neutron radiation on electrical properties of Si detectors have been studied. At high neutron fluence (Φ n ≥ 10 12 n/cm 2 ), C-V characteristics of detectors with high resistivities (ρ ≥ 1 kΩ-cm) become frequency dependent. A two-trap level model describing this frequency dependent effect is proposed. Room temperature anneal of neutron damaged (at LN 2 temperature) detectors shows three anneal stages, while only two anneal stages were observed in elevated temperature anneal. 19 refs., 14 figs

  11. Study of neutron fields around an intense neutron generator.

    Science.gov (United States)

    Kicka, L; Machrafi, R; Miller, A

    2017-12-01

    Neutron fields in the vicinity of the newly built neutron facility, at the University of Ontario Institute of Technology (UOIT), have been investigated in a series of Monte Carlo simulations and measurements. The facility hosts a P-385 neutron generator based on a deuterium-deuterium fusion reaction. The neutron fluence at different locations around the neutron generator facility has been simulated using MCNPX 2.7E Monte Carlo particle transport program. To characterize neutron fields, three neutron sources were modeled with distributions corresponding to different incident deuteron energies of 90kV, 110kV, and 130kV. Measurements have been carried out to determine the dose rate at locations adjacent to the generator using bubble detectors (BDs). The neutron intensity was evaluated and the total dose rates corresponding to different applied acceleration potentials were estimated at various locations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Studies in precise neutron optics at JAERI

    International Nuclear Information System (INIS)

    Tomimitsu, Hiroshi

    1994-01-01

    Studies in the field of so-called 'Precise Neutron Optics' at JAERI were reported, since the beginning of 1970. It started with the photographic detection of the 'Pendellusung Fringes' in a wedge-shaped Si crystal, promoted by Prof.K.Kohra. Neutron diffraction topography was also tried and used for the 'direct' observation of the substructure in a Cu-5%Ge single crystal, carried out by the present author. So-called 'VSANS' (Very Small Angle Neutron Scattering) was also tried, with the angular resolution better than 0.1 sec. of arc, for the structural observation of several kinds of 'amorphous' materials, such as neutron-irradiated silica glasses, Pb-containing glasses and several ribbon-shaped amorphous alloys, carried out by Dr.K.Doi. Recently with the co-operation with Prof.S.Kikuta's group, some interferometric experiments were tried, such as the detection of the double-refraction phenomenon of the neutron in the magnetic materials, carried out by Dr.S.Nakatani. The apparatus for precise neutron optics and topography (PNO) was constructed at the JRR-3M in JAERI in 1992, which was just properly made for the studies in the present thema. With the PNO, the characterization of Ni-Ti multilayer mirror for the interferometer with the cold/ ultra-cold neutrons was carried out, the results being reported in the other article of this symposium by Dr.H.Funahashi. Through the test use of the PNO with the neutron interferometry, carried out by Dr.Y.Hasegawa, it was revealed that the PNO is the best facility in the world for the neutron interferometry; with the datas of the count ratio upto 20 cps and the contrast more than 40%. Dr.K.Aizawa is now refining the VSANS-technique on the PNO, for the precise observation of the precipitation behaviour of high density small particles such as metatic alloy-system. (author)

  13. Neutron skin studies of medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Thiel M.

    2014-06-01

    Full Text Available The recent PREX experiment at JLab has demonstrated the sensitivity of parity violating electron scattering to the neutron density, meanwhile outlining its major experimental challenges. On the other side, intermediate energy photons are an ideal probe for studying the properties of strongly interacting matter from the nuclear scale down to the sub-nuclear components of the nucleus. Among others coherent pion photoproduction can provide information on the existence and nature of neutron skins in nuclei. The simultaneous combination of different techniques allows a systematic determination across the periodic table thus benchmarking modern calculation. Recently a systematic investigation of the latter method has been exploited at MAMI (Mainz. At MESA the same setup as in the measurement of the weak mixing angle can be used to determine the parity-violating asymmetry for polarized electrons scattered on heavy nuclei with a 1% resolution. Status and prospects of the projects are presented.

  14. Observation of spatial splitting of a polarized neutron beam as it is refracted on the interface of two magnetically non-collinear media

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Fredrikze, H.; Rekveldt, M.Th.; Schreiber, J.

    1998-01-01

    In the conducted experimental investigation of neutron refraction on the interface of two magnetically non-collinear media spatial splitting of a polarized neutron beam was observed. The beam of neutrons initially in the spin state '+' or '-' splits into two beams of neutrons in the states '+' and '-'. All four split beams have different spatial positions. The reported phenomenon has been observed for the first time

  15. Neutron generator (HIRRAC) and dosimetry study.

    Science.gov (United States)

    Endo, S; Hoshi, M; Takada, J; Tauchi, H; Matsuura, S; Takeoka, S; Kitagawa, K; Suga, S; Komatsu, K

    1999-12-01

    Dosimetry studies have been made for neutrons from a neutron generator at Hiroshima University (HIRRAC) which is designed for radiobiological research. Neutrons in an energy range from 0.07 to 2.7 MeV are available for biological irradiations. The produced neutron energies were measured and evaluated by a 3He-gas proportional counter. Energy spread was made certain to be small enough for radiobiological studies. Dose evaluations were performed by two different methods, namely use of tissue equivalent paired ionization chambers and activation of method with indium foils. Moreover, energy deposition spectra in small targets of tissue equivalent materials, so-called lineal energy spectrum, were also measured and are discussed. Specifications for biological irradiation are presented in terms of monoenergetic beam conditions, dose rates and deposited energy spectra.

  16. Study of a transportable neutron radiography system

    International Nuclear Information System (INIS)

    Souza, S.N.A. de.

    1991-05-01

    This work presents a study a transportable neutron radiography system for a 185 GBq 241 Am-Be (α, η) source with a neutron yield roughly 1,25 x 10 7 n/s. Studies about moderation, collimation and shielding are showed. In these studies, a calculation using Transport Theory was carried out by means of transport codes ANISN and DOT (3.5). Objectives were: to obtain a maximum and more homogeneous thermal neutron flux in the collimator outlet to the image plain, and an adequate radiation shielding to attend radiological protection rules. With the presented collimator, it was possible to obtain for the thermal neutron flux, at the collimator outlet and next to the image plain, a L/D ratio of 14, for neutron fluxes up to 4,09 x 10 2 n.cm -2 .s -1 . Considering the low intensity of the source, it is a good value. Studies have also been carried out for L/D ratios of 22 and 30, giving thermal neutron fluxes at the image plain of 1,27 x 10 2 n.cm -2 .s -1 and 2,65 x 10 2 n.cm -2 .s -1 , respectively. (author). 30 refs, 39 figs, 9 tabs

  17. Study of neutron-deficient Sn isotopes

    International Nuclear Information System (INIS)

    Auger, G.

    1982-05-01

    The formation of neutron deficient nuclei by heavy ion reactions is investigated. The experimental technique is presented, and the results obtained concerning Sn et In isotopes reported: first excited states of 106 Sn, high spin states in 107 Sn and 107 In; Yrast levels of 106 Sn, 107 Sn, 108 Sn; study of neutron deficient Sn and In isotopes formed by the desintegration of the compound nucleus 112 Xe. All these results are discussed [fr

  18. Neutron Scattering studies of magnetic molecular magnets

    International Nuclear Information System (INIS)

    Chaboussant, G.

    2009-01-01

    This work deals with inelastic neutron scattering studies of magnetic molecular magnets and focuses on their magnetic properties at low temperature and low energies. Several molecular magnets (Mn 12 , V 15 , Ni 12 , Mn 4 , etc.) are reviewed. Inelastic neutron scattering is shown to be a perfectly suited spectroscopy tool to -a) probe magnetic energy levels in such systems and -b) provide key information to understand the quantum tunnel effect of the magnetization in molecular spin clusters. (author)

  19. The spin chirality in MnSi single crystal probed by small angle scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Okorokov, A.I.; Grigoriev, S.V.; Chetverikov, Yu.O.; Georgii, R.; Boeni, P.; Eckerlebe, H.; Pranzas, K.; Roessli, B.

    2004-01-01

    The weak itinerant ferromagnet MnSi orders with a left-handed helical spin structure below T C =29 K. The helicity with a vector m=[S 1 xS 2 ]/S 2 along the crystallographic axis [1 1 1] is realized by an antisymmetric Dzyaloshinski-Moriya interaction. The small angle diffraction study with polarized neutrons on a single MnSi crystal was performed within the temperature range from 10 K to T C and the magnetic field B from 1 to 350 mT. The single crystal was oriented in such a way that two axes [1 1 1] and [1 1 -1] were set in a plane perpendicular to the incident beam. Four major diffraction peaks at ±q 1 and ±q 2 along the axes and four minor peaks at q=±q 1 ±q 2 were observed. The intensity I p =I(+P 0 )+I(-P 0 ), the polarization P p =[I(+P 0 )-I(-P 0 )]/I p and the position q p of the peaks were measured as a function of the temperature and the magnetic field. From intensity of the peaks the chiral critical exponent is obtained as β=0.47±0.04

  20. Proton polarization above 70% by DNP using photo-excited triplet states, a first step towards a broadband neutron spin filter

    International Nuclear Information System (INIS)

    Eichhorn, T.R.; Niketic, N.; Brandt, B. van den; Filges, U.; Panzner, T.; Rantsiou, E.; Wenckebach, W.Th.; Hautle, P.

    2014-01-01

    The use of polarized protons as neutron spin filter is an attractive alternative to the well established neutron polarization techniques, as the large, spin-dependent neutron scattering cross-section for protons is useful up to the sub-MeV region. Employing optically excited triplet states for the dynamic nuclear polarization (DNP) of the protons relieves the stringent requirements of classical DNP schemes, i.e low temperatures and strong magnetic fields, making technically simpler systems with open geometries possible. Using triplet DNP a record polarization of 71% has been achieved in a pentacene doped naphthalene single crystal at a field of 0.36 T using a simple helium flow cryostat for cooling. Furthermore, by placing the polarized crystal in a neutron optics focus and de-focus scheme, the actual sample cross-section could be increased by a factor 35 corresponding to an effective spin filter cross-section of 18×18mm 2

  1. Proton polarization above 70% by DNP using photo-excited triplet states, a first step towards a broadband neutron spin filter

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, T.R. [Laboratory for Developments and Methods (LDM), Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Niketic, N.; Brandt, B. van den; Filges, U.; Panzner, T.; Rantsiou, E.; Wenckebach, W.Th. [Laboratory for Developments and Methods (LDM), Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Hautle, P., E-mail: patrick.hautle@psi.ch [Laboratory for Developments and Methods (LDM), Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2014-08-01

    The use of polarized protons as neutron spin filter is an attractive alternative to the well established neutron polarization techniques, as the large, spin-dependent neutron scattering cross-section for protons is useful up to the sub-MeV region. Employing optically excited triplet states for the dynamic nuclear polarization (DNP) of the protons relieves the stringent requirements of classical DNP schemes, i.e low temperatures and strong magnetic fields, making technically simpler systems with open geometries possible. Using triplet DNP a record polarization of 71% has been achieved in a pentacene doped naphthalene single crystal at a field of 0.36 T using a simple helium flow cryostat for cooling. Furthermore, by placing the polarized crystal in a neutron optics focus and de-focus scheme, the actual sample cross-section could be increased by a factor 35 corresponding to an effective spin filter cross-section of 18×18mm{sup 2}.

  2. HYSPEC: A crystal time-of-flight hybrid spectrometer for the spallation neutron source with polarization capabilities

    International Nuclear Information System (INIS)

    Shapiro, S.M.; Zaliznyak, I.A.; Passell, L.; Ghosh, V.J.; Leonhardt, W.J.; Hagen, M.E.

    2006-01-01

    The hybrid spectrometer (HYSPEC) is a unique direct geometry inelastic scattering instrument under construction at the spallation neutron source (SNS). It combines the intensity enhancement features of focusing Bragg crystals with time-of-flight energy analysis. It will be located at beam-line 14B, which views a coupled liquid hydrogen moderator. A neutron beam from the moderator will travel along a curved guide, through a Fermi chopper and will then be focused onto a sample in an external building, 39 m from the source. In this configuration the intensity at the sample position is more than an order of magnitude larger than for other planned inelastic instrument. A movable detector bank 4.5 m from the sample will cover an angular range of 60 deg. in the horizontal plane and 15 deg. in the vertical direction. An important feature of HYSPEC is the ability to do neutron polarization analysis experiments. A Heusler crystal, which polarizes the neutron beam, can be used as the focusing crystal and a series of bender analyzers will analyze the polarization of the scattered beam

  3. Spatial anisotropy of neutrons emitted from the 56Fe(γ ,n )55Fe reaction with a linearly polarized γ -ray beam

    Science.gov (United States)

    Hayakawa, T.; Shizuma, T.; Miyamoto, S.; Amano, S.; Takemoto, A.; Yamaguchi, M.; Horikawa, K.; Akimune, H.; Chiba, S.; Ogata, K.; Fujiwara, M.

    2016-04-01

    We have measured the azimuthal anisotropy of neutrons emitted from the 56Fe(γ ,n )55Fe reaction with a linearly polarized γ -ray beam generated by laser Compton scattering at NewSUBARU. Neutron yields at the polar angle of 90∘ have been measured as a function of the azimuthal angle ϕ between the detector and the linear polarization plane of the γ -ray beam. The azimuthal anisotropy of neutrons measured at ϕ =0∘ , 10∘, 25∘, 45∘, 60∘, 70∘, and 90∘ has been well reproduced using a theoretically predicted function of a +b cos(2 ϕ ) .

  4. Magnetic structures: neutron diffraction studies

    International Nuclear Information System (INIS)

    Bouree-Vigneron, F.

    1990-01-01

    Neutron diffraction is often an unequivocal method for determining magnetic structures. Here we present some typical examples, stressing the sequence through experiments, data analysis, interpretation and modelisation. Two series of compounds are chosen: Tb Ni 2 Ge 2 and RBe 13 (R = Gd, Tb, Dy, Ho, Er). Depending on the nature of the elements, the magnetic structures produced can be commensurate, incommensurate or even show a transition between two such phases as a function of temperature. A model, taking magnetic exchange and anisotropy into account, will be presented in the case of commensurate-incommensurate magnetic transitions in RBe 13

  5. Study on neutron activation analysis

    International Nuclear Information System (INIS)

    Chung, Yong Sam; Cho, Seung Yeon

    1993-01-01

    Environmental samples were analyzed quantitatively by neutron activation analysis using high resolution γ-ray spectrometry. The accuracy and precision of the method were checked by the analysis of reference materials, Urban Particulate Matter (NBS SRM 1648) and Coalfly ash (NBS SRM 1633a). Airborne particulates collected for 6 months with low volume air sampler at the outer area of Seoul were analyzed as the start of full scale airborne particulates research. We analyzed 19 trace elements from the samples and the NAA method was confirmed to be utilized for environmental pollution research. (Author)

  6. Polarization of positronium in amorphous polar polymers: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Consolati, G., E-mail: giovanni.consolati@polimi.it; Quasso, F. [Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa, 34, Milano 20156 (Italy)

    2013-11-28

    The features of positronium in an amorphous copolymer (polyvinyl acetate-crotonic acid) in a range of temperatures including the glass transition were investigated by means of positron annihilation lifetime spectroscopy. In particular, para-positronium lifetime was found to be longer than in a vacuum and to decrease with the temperature. This was attributed to the electron density at the positron (contact density), which is lower than in vacuo due to the presence of polar groups in the copolymer. A three quantum yield experiment confirmed the lifetime results.

  7. Hydrogen dynamics in Na3AlH6: A combined density functional theory and quasielastic neutron scattering study

    DEFF Research Database (Denmark)

    Zsigmond, G.; Manoshin, S.; Lieutenant, K.

    2007-01-01

    Handling of polarization became very important in simulations of neutron scattering. One of the very comprehensive and open-source neutron simulation package, VITESS, has been intensely involved in polarized neutron simulations. Several examples will be shown here. Another similar package NISP also...... contains polarization tools. McStas has implemented an initial set of routines handling polarization, as our examples will also show....

  8. First measurement of the electric formfactor of the neutron in the exclusive quasielastic scattering of polarized electrons from polarized 3He

    International Nuclear Information System (INIS)

    Meyerhoff, M.; Eyl, D.; Frey, A.; Andresen, H.G.; Annand, J.R.M.; Aulenbacher, K.; Becker, J.; Blume-Werry, J.; Dombo, T.; Drescher, P.; Ducret, J.E.; Fischer, H.; Grabmayr, P.; Hall, S.; Hartmann, P.; Hehl, T.; Heil, W.; Hoffmann, J.; Kellie, J.D.; Klein, F.; Leduc, M.; Moeller, H.; Nachtigall, C.; Ostrick, M.; Otten, E.W.; Owens, R.O.; Pluetzer, S.; Reichert, E.; Rohe, D.; Schaefer, M.; Schearer, L.D.; Schmieden, H.; Steffens, K.; Surkau, R.; Walcher, T.

    1995-01-01

    A first measurement of the asymmetry in quasielastic scattering of longitudinally polarized electrons from a polarized 3 He gas target in coincidence with the knocked out neutron is reported. This measurement was made feasible by the cw beam of the 855 meV Mainz Microtron MAMI. It allows a determination of the electric formfactor of the neutron G n E independent of binding effects to first order. At bar Q 2 =0.31 (GeV/c) 2 two asymmetries bar A parallel (rvec S He parallel rvec q) and bar A perpendicular (rvec S He perpendicular rvec q) have been measured giving bar A parallel =(-7.40±0.73%) and bar A perpendicular =(0.89±0.30)%. The ratio bar A perpendicular /bar A parallel is independent of the absolute value of the electron and target polarization and yields G n E =0.035±0.012±0.005. copyright 1995 American Institute of Physics

  9. Neutron-scattering studies of chromatin

    International Nuclear Information System (INIS)

    Bradbury, E.M.; Baldwin, J.P.; Carpenter, B.G.; Hjelm, R.P.; Hancock, R.; Ibel, K.

    1976-01-01

    It is clear that a knowledge of the basic molecular structure of chromatin is a prerequisite for any progress toward an understanding of chromosome organization. With a two-component system, protein and nucleic acid, neutrons have a particularly powerful application to studies of the spatial arrangements of these components because of the ability, by contrast matching with H 2 O-D 2 O mixtures, to obtain neutron-scattering data on the individual components. With this approach it has been shown that the neutron diffraction of chromatin is consistent with a ''beads on a string'' model in which the bead consists of a protein core with DNA coiled on the outside. However, because chromatin is a gel and gives limited structural data, confirmation of such a model requires extension of the neutron studies by deuteration of specific chromatin components and the isolation of chromatin subunits. Although these studies are not complete, the neutron results so far obtained support the subunit model described above

  10. Design of the polar neutron-imaging aperture for use at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fatherley, V. E., E-mail: vef@lanl.gov; Martinez, J. I.; Merrill, F. E.; Oertel, J. A.; Schmidt, D. W.; Volegov, P. L.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barker, D. A.; Fittinghoff, D. N.; Hibbard, R. L. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States)

    2016-11-15

    The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and the final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm × 15 mm × 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 μm and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 μm square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF.

  11. Observation of a reorientation of the holmium moments in HoAl2 with polarized neutron diffraction

    International Nuclear Information System (INIS)

    Barbara, B.; Boucherle, J.X.; Rossignol, M.F.; Schweizer, J.

    1976-01-01

    Magnetization measurements performed on a single crystal of HoAl 2 show that the easy axis of magnetization is [110] at low temperature and suggest near 20 0 K a rotation of the easy direction of magnetization. This rotation has been strikingly demonstrated by polarized neutron diffraction experiments including measurements of intensities with both spin states and of depolarization through the sample. This result allows the interpretation of the magnetic properties of HoAl 2 in terms of crystal field

  12. The investigation of Fe-Mn-based alloys with shape memory effect by small-angle scattering of polarized neutrons

    International Nuclear Information System (INIS)

    Kopitsa, G.P.; Runov, V.V.; Grigoriev, S.V.; Bliznuk, V.V.; Gavriljuk, V.G.; Glavatska, N.I.

    2003-01-01

    The small-angle polarized neutron scattering (SAPNS) technique has been used to study a nuclear and magnetic homogeneity in the distribution of both substituent (Si, Cr, Ni) and interstitial (C, N) alloying elements on the mesoscopic range in Fe-Mn-based alloys with shape memory effect (SME). The four groups of alloys with various basic compositions: FeMn 18 (wt%), FeMn 20 Si 6 , FeMn 20 Cr 9 N 0.2 and FeMn 17 Cr 9 Ni 4 Si 6 were investigated. It was found that the small-angle scattering of neutrons and depolarization on these alloys are very small altogether. The scattering did not exceed 1.5% from the incident beam and depolarization ∼2% for all samples. It means that these alloys are well nuclear and magnetically homogeneous on the scale of 10-1000 A. However, the difference in the homogeneity depending on the compositions still takes place. Thus, the adding of Si in FeMn 18 and FeMn 20 Cr 9 N 0.2 alloys improves the homogeneity pronouncedly. At once, the effect of the doping by C or N atoms on the homogeneity in FeMn 20 Si 6 and FeMn 17 Cr 9 Ni 4 Si 6 alloys is multivalued and depend on the presence of substitutional atoms (Ni and Cr). The capability of SAPNS as a method for the study of mesoscopic homogeneity in materials with SME and testing of the quality of their preparation is discussed

  13. A proposed experiment for studying the direct neutron-neutron interaction

    International Nuclear Information System (INIS)

    Hassan Fikry, A.R.; Maayouf, R.M.A.

    1979-01-01

    An experiment for studying the direct neutron-neutron interaction is suggested. The experiment is based on the combined use of an accelerator, e.g., an electron linear accelerator, together with a mobile pulsed reactor; or using a pulsed beam reactor together with a mobile neutron generator

  14. A Measurement of the neutron electric form factor at very large momentum transfer using polaried electrions scattering from a polarized helium-3 target

    Energy Technology Data Exchange (ETDEWEB)

    Kelleher, Aidan [College of William and Mary, Williamsburg, VA (United States)

    2010-02-01

    Knowledge of the electric and magnetic elastic form factors of the nucleon is essential for an understanding of nucleon structure. Of the form factors, the electric form factor of the neutron has been measured over the smallest range in Q2 and with the lowest precision. Jefferson Lab experiment 02-013 used a novel new polarized 3 He target to nearly double the range of momentum transfer in which the neutron form factor has been studied and to measure it with much higher precision. Polarized electrons were scattered off this target, and both the scattered electron and neutron were detected. Gn E was measured to be 0.0242 ± 0.0020(stat) ± 0.0061(sys) and 0.0247 ± 0.0029(stat) ± 0.0031(sys) at Q2 = 1.7 and 2.5 GeV2 , respectively.

  15. Neutron scattering studies of Mn12-acetate

    International Nuclear Information System (INIS)

    Robinson, R.A.

    2000-01-01

    Full text: The S=10 magnetic molecule Mn 12 -acetate, which crystallises into a tetragonal crystal structure, has attracted substantial recent attention by virtue of its low temperature bulk magnetic properties, which give evidence for resonant quantum tunnelling of the magnetisation. We report a full neutron crystal structure including positions of all protons/deuterons, including the solvated water and acetic acid, a polarised-neutron study of the real space magnetisation, which confirms a simple magnetic-structure model for the molecule, albeit with reduced Mn moments, and inelastic neutron scattering data containing both the excitations within the 21-fold degenerate S=10 manifold, and those from S=10 to the S=9 manifolds. Both manifolds are split by uniaxial magnetic anisotropy, and we report coefficients for 2nd and 4th-order terms in the magnetic Hamiltonian

  16. Finite-Geometry and Polarized Multiple-Scattering Corrections of Experimental Fast- Neutron Polarization Data by Means of Monte Carlo Methods

    Energy Technology Data Exchange (ETDEWEB)

    Aspelund, O; Gustafsson, B

    1967-05-15

    After an introductory discussion of various methods for correction of experimental left-right ratios for polarized multiple-scattering and finite-geometry effects necessary and sufficient formulas for consistent tracking of polarization effects in successive scattering orders are derived. The simplifying assumptions are then made that the scattering is purely elastic and nuclear, and that in the description of the kinematics of the arbitrary Scattering {mu}, only one triple-parameter - the so-called spin rotation parameter {beta}{sup ({mu})} - is required. Based upon these formulas a general discussion of the importance of the correct inclusion of polarization effects in any scattering order is presented. Special attention is then paid to the question of depolarization of an already polarized beam. Subsequently, the afore-mentioned formulas are incorporated in the comprehensive Monte Carlo program MULTPOL, which has been designed so as to correctly account for finite-geometry effects in the sense that both the scattering sample and the detectors (both having cylindrical shapes) are objects of finite dimensions located at finite distances from each other and from the source of polarized fast-neutrons. A special feature of MULTPOL is the application of the method of correlated sampling for reduction of the standard deviations .of the results of the simulated experiment. Typical data of performance of MULTPOL have been obtained by the application of this program to the correction of experimental polarization data observed in n + '{sup 12}C elastic scattering between 1 and 2 MeV. Finally, in the concluding remarks the possible modification of MULTPOL to other experimental geometries is briefly discussed.

  17. Neutron-scattering studies of magnetic superconductors

    International Nuclear Information System (INIS)

    Sinha, S.K.; Crabtree, G.W.; Hinks, D.G.; Mook, H.A.; Pringle, O.A.

    1982-01-01

    Results obtained in the last few years obtained by neutron diffraction on the nature of the magnetic ordering in magnetic superconductors are reviewed. Emphasis is given to studies of the complex intermediate phase in ferromagnetic superconductors where both superconductivity and ferromagnetism appear to coexist

  18. NEUTRON-SCATTERING STUDY OF DCN

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Pawley, G. S.

    1979-01-01

    Phonons in deuterium cyanide have been measured by neutron coherent inelastic scattering. The main subject of study was the transverse acoustic mode in the (110) direction polarised along (110) which is associated with the first-order structural phase transition at 160K. Measurements have shown...

  19. A study on the utilization of hyper-thermal neutrons for neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kanda, Keiji

    1993-01-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum of a Maxwellian distribution of a higher temperature than the room temperature of 300 K, was studied in order to improve the thermal neutron flux distribution at the deeper part in a living body for neutron capture therapy. Simulation calculations were carried out using MCNP-V3 in order to confirm the characteristics of hyper-thermal neutrons, i.e., (1) depth dependence of neutron energy spectrum, and (2) depth distribution of the reaction rate in a water phantom for materials with 1/v neutron absorption. It is confirmed that the hyper-thermal neutron irradiation can improve the thermal neutron flux distribution in the deeper and wider area in a living body compared with the thermal neutron irradiation. Practically, by the incidence of the hyper-thermal neutrons with a 3000 K Maxwellian distribution, the thermal neutron flux at 5 cm depth can be given about four times larger than by the incidence of the thermal neutrons of 300 K. (author)

  20. Study of material science by neutron scattering

    International Nuclear Information System (INIS)

    Kim, H.J.; Yoon, B.K.; Cheon, B.C.; Lee, C.Y.; Kim, C.S.

    1980-01-01

    To develop accurate methods of texture measurement in metallic materials by neutron diffraction, (100),(200),(111) and (310) pole figures have been measured for the oriented silicon steel sheet, and currently study of correction methods for neutron absorption and extinction effects are in progress. For quantitative analysis of texture of polycrystalline material with a cubic structure, a software has been developed to calculate inverse pole figures for arbitrary direction specified in the speciman as well as pole figures for arbitrary chosen crystallographic planes from three experimental pole figures. This work is to be extended for the calculation of three dimensional orientation distribution function and for the evaluation of errors in the quantitative analysis of texture. Work is also for the study of N-H...O hydrogen bond in amino acid by observing molecular motions using neutron inelastic scattering. Measurement of neutron inelastic scattering spectrum of L-Serine is completed at 100 0 K and over the energy transfer range of 20-150 meV. (KAERI INIS Section)

  1. A study of television imaging system for fast neutron radiography

    International Nuclear Information System (INIS)

    Yoshii, Koji

    1992-01-01

    The neutron radiography with fast neutron beam is a very useful imaging technique for thicker objects, especially those composed of hydrogen-rich materials which are sometimes difficult to image by thermal neutron radiography. The fast neutron radiography has not been studied so much as the thermal neutron radiography. The fast neutron radiography has been studied at the fast neutron source reactor 'Yayoi' of the University of Tokyo built in Tokai-mura. The average neutron energy of the Yayoi is about 1 MeV, and the peak neutron flux at the core center is 0.8 x 10 12 at the maximum operating power of 2 kW. In the experiment on fast neutron radiography, a CR39 nuclear track detector has been used successfully. But in the Yayoi radiography procedure, about 24 hours were required for obtaining an imaging result. To get a prompt imaging result and a real-time imaging result, it is necessary to develop a fast neutron television system, and in this paper, a new fast neutron TV system is proposed. The main difference is the converter material sensitive to fast neutrons. The study on the fast neutron TV system was carried out by using the Baby Cyclotron of Japan Steel Works, and the good images were realized. (K.I.)

  2. A preliminary neutron crystallographic study of thaumatin

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Susana C. M. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); Blakeley, Matthew P. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Leal, Ricardo M. F. [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Mitchell, Edward P. [EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom); ESRF, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble (France); Forsyth, V. Trevor, E-mail: tforsyth@ill.fr [ILL-EMBL Deuteration Laboratory, Partnership for Structural Biology, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); EPSAM and ISTM, Keele University, Staffordshire ST5 5BG (United Kingdom)

    2008-05-01

    Preliminary neutron crystallographic data from the sweet protein thaumatin have been recorded using the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results illustrate the feasibility of a full neutron structural analysis aimed at further understanding the molecular basis of the perception of sweet taste. Such an analysis will exploit the use of perdeuterated thaumatin. A preliminary neutron crystallographic study of the sweet protein thaumatin is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the gel-acupuncture method. Data were collected to a resolution of 2 Å on the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, the distribution of charge on the protein surface and localized water in the structure. This information will be of interest for understanding the specificity of thaumatin–receptor interactions and will contribute to further understanding of the molecular mechanisms underlying the perception of taste.

  3. Conceptual design, neutronic and radioprotection study of a fast neutron irradiation station at SINQ

    International Nuclear Information System (INIS)

    Zanini, L.; Baluc, N.; Simone, A. De; Eichler, R.; Joray, S.; Manfrin, E.; Pouchon, M.; Rabaioli, S.; Schumann, D.; Welte, J.; Zhernosekov, K.

    2011-12-01

    This comprehensive, illustrated report by the Paul Scherrer Institute PSI in Switzerland documents the proposals concerning the conceptual design, neutronic and radioprotection study of a fast neutron irradiation station at the PSI's Swiss Spallation Neutron Source SINQ facility. The need for fast neutron irradiation is discussed and the possibility of using SINQ as a fast neutron irradiation facility is considered. The production of isotopes, tracers and medical isotopes is discussed, as are fission and fusion reactor technologies. The characteristics of the neutron spectrum in SINQ are discussed. The neutronic and radioprotection calculations for an irradiation station at SINQ are looked at in detail and extensive examples of work done and results obtained are presented and discussed. Radioprotection issues are also looked at. Further contributions in the report cover the hot/cold irradiation station in the SINQ target. An appendix provides detailed drawings of the facility's pneumatic delivery system

  4. Neutron scattering studies of the actinides

    International Nuclear Information System (INIS)

    Lander, G.H.

    1979-01-01

    The electronic structure of actinide materials presents a unique example of the interplay between localized and band electrons. Together with a variety of other techniques, especially magnetization and the Mossbauer effect, neutron studies have helped us to understand the systematics of many actinide compounds that order magnetically. A direct consequence of the localization of 5f electrons is the spin-orbit coupling and subsequent spin-lattice interaction that often leads to strongly anisotropic behavior. The unusual phase transition in UO 2 , for example, arises from interactions between quadrupole moments. On the other hand, in the monopnictides and monochalcogenides, the anisotropy is more difficult to understand, but probably involves an interaction between actinide and anion wave functions. A variety of neutron experiments, including form-factor studies, critical scattering and measurements of the elementary excitations have now been performed, and the conceptual picture emerging from these studies will be discussed

  5. Annual report on neutron scattering studies in JAERI

    International Nuclear Information System (INIS)

    Sato, Masatoshi; Nishi, Masakazu; Fujishita, Hideshi; Iizumi, Masashi

    1982-07-01

    Neutron scattering studies carried out from September 1979 to August 1981 by Division of Physics, JAERI, and universities with JRR-2 and -3 neutron beam facilities are described: 61 summary reports, and a list of publications. (author)

  6. Studies and modeling of cold neutron sources

    International Nuclear Information System (INIS)

    Campioni, G.

    2004-11-01

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources

  7. Recent Neutronic Optimization Studies at the SNS

    International Nuclear Information System (INIS)

    Murphy, B.D.; Ferguson, P.D.

    2002-01-01

    Recent design considerations at the Spallation Neutron Source have led to significant changes in the target station design, including changing the outer lead reflector to stainless steel and adding structural elements to aid heat transfer. In light of the design evolution, basic design decisions, including the moderator positions, were re-evaluated. With the proton beam energy of 1.0 GeV and a beam power of 2 MW, moderator positions were originally selected to optimize the performance of the upstream moderators, although some penalty was accepted in order to enhance the overall performance of the mixed coupled and decoupled moderators in the SNS target system. The work presented in this paper details sensitivity studies of selected moderator positions as a function of neutron energy. A possible change in proton beam energy, to 1.3 GeV while maintaining a beam power of 2 MW, is also studied in terms of moderator position. (authors)

  8. Emission polarization study on quartz and calcite.

    Science.gov (United States)

    Vincent, R. K.

    1972-01-01

    Calculation of the spectral emission polarization of quartz and calcite polished plates for observation angles of 20 and 70 deg by the substitution of complex index of refraction values for each mineral into Fresnel's equations. The emission polarization is shown to be quite wavelength-dependent, demonstrating that selected narrow or medium-width spectral bands exhibit a significantly higher percentage of polarization than a broad spectral band for these two minerals. Field measurements with a broadband infrared radiometer yield polarizations on the order of 2% for a coarse-grained granite rock and beach sand (both quartz-rich). This implies that a more sensitive detector with a selected medium-width filter may be capable of measuring emission polarization accurately enough to make this parameter useful as a remote sensing tool for discrimination among rocks on the basis of texture.

  9. DNA hydration studied by neutron fiber diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J. [Keele Univ. (United Kingdom)] [and others

    1994-12-31

    The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix.

  10. DNA hydration studied by neutron fiber diffraction

    International Nuclear Information System (INIS)

    Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J.

    1994-01-01

    The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix

  11. Studies on optical pumping cells (OPC) to polarize 3He

    International Nuclear Information System (INIS)

    Hutanu, V.; Rupp, A.

    2004-01-01

    The technique applied at HMI to obtain nuclear-spin-polarized 3 He, used in neutron spin filters (NSFs), is metastability-exchange optical pumping. To prepare efficient NSF, one must highly polarize 3 He nuclei in the optical pumping volume (OPV) and reduce the polarization losses during the compression phase. Great progress has been achieved in reducing of depolarization due to the recent development of both, large polarization preserving piston compressors and long relaxation time filter cells. It is even more important to significantly enhance the 3 He polarization rate during optical pumping in order to increase NSF efficiency. Different cells materials were tested, such as Duran and quartz glass. In order to use the laser light more efficiently and to decrease the risk of 3 He depolarization due to unfavorable reflections, antireflection (AR) coatings were used on cell windows made of quartz glass. They were compared with the ones without coating, made of quartz, Duran and BK7 glass. The comparison of various techniques to mount the windows such as blowing, gluing or molecular diffusion was also conducted. It indicated that the molecular diffusion is the most suitable technique because of a better purity of the gas in the cell and the preservation of the optical flatness of the windows. Cells, for practical reasons each entirely made from the same material (Duran, Quartz glass) with windows mounted using this method, showed the best polarization performance

  12. Wines: water inelastic neutron scattering experimental study

    International Nuclear Information System (INIS)

    Risch, P.; Ait Abderrahim, H.; D'hondt, P.; Malabu, E.

    1997-01-01

    An intercomparison of calculated fast neutron flux (E > 1 MeV) traverse through a very thick water zone obtained using both S N , (DORT) and Monte-Carlo (TRIPOLI and MCBEND) codes in combination with different cross-sections libraries (based on ENDF/B-III, IV, V and VI), showed small discrepancies either between S N , and Monte-Carlo results or even between S N , or Monte-Carlo results when we consider different cross-sections libraries except for S N , calculation when using P 0 , cross-sections. In order to validate our calculations we looked for experimental data. Unfortunately no experiment, dedicated for the fast neutron transport in large thickness of water, was found in the literature. Therefore SCK-CEN and EDF decided to launch the WINES experiment which is dedicated to study this phenomenon. WINES sands for Water Inelastic Neutron scattering Experimental Study. The aim of this experiment is to provide-experimental data for validation of neutron transport codes and nuclear cross-sections libraries used for LWR surveillance dosimetry analysis. The experimental device is made of 1 m 3 cubic plexiglass container filled with demineralized water. At one face of this cube, a 235 U neutron fission source system is screwed. The source device is made of a 235 U (93 % weight enriched) 18.55 x 16 cm 2 plate cladded with aluminium which is inserted in neutron beam emerging from the graphite gas-cooled BR1 reactor. Fission chambers ( 238 U(n,f), 232 Th(n,f), 237 Np(n,f) and 235 U(n,f)) are used to measure the flux traverses on the central axis of the water cube perpendicular to the fission sources. In this paper we will compare the experimental data to the calculated results using the S N , transport code DORT with the P 3 , ELXSIR library, based on ENDF/B-V, and the P 7 -BUGLE-93 library, based on ENDF/B-VI as well as the Monte-Carlo transport code TRIPOLI with a cross-section library based on ENDF/B IV and ENDF/B-VI. (authors)

  13. Neutron reflectivity studies of ionomer blends

    CERN Document Server

    Gabrys, B J; Bucknall, D G; Vesely, D; Braiewa, R; Weiss, R A

    2002-01-01

    Preliminary results are presented of a neutron reflectivity study of the interfacial width between lithium- and zinc-sulphonated deuterated polystyrene with polycarbonate (PC). Both systems are partially miscible and exhibit an upper critical solution temperature behaviour. The interdiffusion in these systems was measured by annealing at a temperature above the glass-transition temperature of both polymers. The interfacial profiles obtained for these systems were described by symmetric Gaussian interfaces. No significant diffusion was observed. (orig.)

  14. Neutron scattering study of dilute supercritical solutions

    International Nuclear Information System (INIS)

    Cochran, H.D.; Wignall, G.D.; Shah, V.M.; Londono, J.D.; Bienkowski, P.R.

    1994-01-01

    Dilute solutions in supercritical solvents exhibit interesting microstructures that are related to their dramatic macroscopic behavior. In typical attractive solutions, solutes are believed to be surrounded by clusters of solvent molecules, and solute molecules are believed to congregate in the vicinity of one another. Repulsive solutions, on the other hand, exhibit a local region of reduced solvent density around the solute with solute-solute congregation. Such microstructures influence solubility, partial molar volume, reaction kinetics, and many other properties. We have undertaken to observe these interesting microstructures directly by neutron scattering experiments on dilute noble gas systems including Ar. The three partial structure factors for such systems and the corresponding pair correlation functions can be determined by using the isotope substitution technique. The systems studied are uniquely suited for our objectives because of the large coherent neutron scattering length of the isotope 36 Ar and because of the accurate potential energy functions that are available for use in molecular simulations and theoretical calculations to be compared with the scattering results. We will describe our experiment, the unique apparatus we have built for it, and the neutron scattering results from our initial allocations of beam time. We will also describe planned scattering experiments to follow those with noble gases, including study of long-chain molecules in supercritical solvents. Such studies will involve hydrocarbon mixtures with and without deuteration to provide contrast

  15. Electronic state of PuCoGa5 and NpCoGa5 as probed by polarized neutrons.

    Science.gov (United States)

    Hiess, A; Stunault, A; Colineau, E; Rebizant, J; Wastin, F; Caciuffo, R; Lander, G H

    2008-02-22

    By using single crystals and polarized neutrons, we have measured the orbital and spin components of the microscopic magnetization in the paramagnetic state of NpCoGa(5) and PuCoGa(5). The microscopic magnetization of NpCoGa(5) agrees with that observed in bulk susceptibility measurements and the magnetic moment has spin and orbital contributions as expected for intermediate coupling. In contrast, for PuCoGa(5), which is a superconductor with a high transition temperature, the microscopic magnetization in the paramagnetic state is small, temperature-independent, and significantly below the value found with bulk techniques at low temperatures. The orbital moment dominates the magnetization.

  16. Analytic scattering kernels for neutron thermalization studies

    International Nuclear Information System (INIS)

    Sears, V.F.

    1990-01-01

    Current plans call for the inclusion of a liquid hydrogen or deuterium cold source in the NRU replacement vessel. This report is part of an ongoing study of neutron thermalization in such a cold source. Here, we develop a simple analytical model for the scattering kernel of monatomic and diatomic liquids. We also present the results of extensive numerical calculations based on this model for liquid hydrogen, liquid deuterium, and mixtures of the two. These calculations demonstrate the dependence of the scattering kernel on the incident and scattered-neutron energies, the behavior near rotational thresholds, the dependence on the centre-of-mass pair correlations, the dependence on the ortho concentration, and the dependence on the deuterium concentration in H 2 /D 2 mixtures. The total scattering cross sections are also calculated and compared with available experimental results

  17. Leggett's noncontextual model studied with neutrons

    International Nuclear Information System (INIS)

    Durstberger-Rennhofer, K.; Sponar, S.; Badurek, G.; Hasegawa, Y.; Schmitzer, C.; Bartosik, H.; Klepp, J.

    2011-01-01

    Full text: It is a long-lasting debate whether nature can be described by deterministic hidden variable theories (HVT) underlying quantum mechanics (QM). Bell inequalities for local HVT as well as the Kochen- Specker theorem for non-contextual models stress the conflict between these alternative theories and QM. Leggett showed that even nonlocal hidden variable models are incompatible with quantum predictions. Neutron interferometry and polarimetry are very proper tools to analyse the behaviour of single neutron systems, where entanglement is created between different degrees of freedom (e.g., spin/ path, spin/energy) and thus quantum contextuality can be studied. We report the first experimental test of a contextual model of quantum mechanics a la Leggett, which deals with definiteness of measurement results before the measurements. The results show a discrepancy between our model and quantum mechanics of more than 7 standard deviations and confirm quantum indefiniteness under the contextual condition. (author)

  18. Spin observables in charged pion photo-production from polarized neutrons in solid HD at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Kageya, Tsuneo [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ho, Dao [Carnegie Mellon Univ., Pittsburgh, PA (United States); Peng, Peng [Univ. of Virginia, Charlottesville, VA (United States); Klein, Franz [George Washington Univ., Washington, DC (United States); Sandorfi, Andrew M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Schumacher, Reinhard A. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2018-04-01

    E asymmetries have been extracted from double-polarizationexperiments in Hall-B of the Thomas Jefferson National Accelerator Facility (JLab). Results have been obtained from the E06-101 (g14) experiment, using circularly polarized photon beams, longitudinally polarized Deuterons in solid HD targets, and the CEBAF Large Acceptance Spectrometer (CLAS). The results cover a range inW from 1.48 to 2.32 GeV. Three independent analyses, using distinctly different methods, have been combined to obtain the final values, which have been published recently. Partial wave analyses (PWA), which have had to rely on a sparse neutron data base, havebeen significantly changed with the inclusion of these g14 asymmetries.

  19. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium-Beryllium source

    Energy Technology Data Exchange (ETDEWEB)

    Didi, Abdessamad; Dadouch, Ahmed; Tajmouati, Jaouad; Bekkouri, Hassane [Advanced Technology and Integration System, Dept. of Physics, Faculty of Science Dhar Mehraz, University Sidi Mohamed Ben Abdellah, Fez (Morocco); Jai, Otman [Laboratory of Radiation and Nuclear Systems, Dept. of Physics, Faculty of Sciences, Tetouan (Morocco)

    2017-06-15

    Americium–beryllium (Am-Be; n, γ) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci), yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources) experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  20. Considerations for boron neutron capture therapy studies

    International Nuclear Information System (INIS)

    Faria Gaspar, P. de.

    1994-01-01

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps

  1. Studies on neutron detection with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Khouri, M.C.; Vilela, E.C.; Andrade, C. de.

    1993-03-01

    The detection of thermal and fast neutrons was studied. For thermal neutrons, alpha sensitive plastic was used in order to register the products of nuclear reactions taking place in boron and /or lithium converters. Fast neutrons produce recoil tracks within the detector. In the present case, CR-39 and Makrofol E were used. Chemical and electrochemical etching processes were used for thermal and fast neutron detectors, respectively. (F.E.). 6 refs, 4 figs, 6 tabs

  2. Study of scattering in bi-dimensional neutron radiographic images

    International Nuclear Information System (INIS)

    Oliveira, K.A.M. de; Crispim, V.R.; Silva, F.C.

    2009-01-01

    The effect of neutron scattering frequently causes distortions in neutron radiographic images and, thus, reduces the quality. In this project, a type of filter, comprised of cadmium (a neutron absorber), was used in the form of a grid to correct this effect. This device generated image data in the discrete shadow bands of the absorber, components relative to neutron scattering on the test object and surroundings. Scattering image data processing, together with the original neutron radiographic image, resulted in a corrected image with improved edge delineation and, thus, greater definition in the neutron radiographic image of the test object. The objective of this study is to propose a theoretical/experimental methodology that is capable of eliminating the components relative to neutron scattering in neutron radiographic images, coming from the material that composes the test object and the materials that compose the surrounding area. (author)

  3. Comparison study on in-core neutron detector for online neutron flux mapping of research and power reactor

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Mohd Idris Taib; Izhar Abu Husin; Nurfarhana Ayuni

    2010-01-01

    This paper presents the comparison study on In-Core neutron detector using for online flux mapping of Research and Power reactor. Technical description of in-core neutron also taken into consideration to identify the different characterization of neutron detector and describe on Self Power neutron detector (SPND) for online neutron flux mapping. Able to provide information on the neutron flux distribution and understand how in-core neutron detector are being used in nuclear power plant including to enable to state the principles of neutron detector. (author)

  4. Study on the dose distribution of the mixed field with thermal and epi-thermal neutrons for neutron capture therapy

    International Nuclear Information System (INIS)

    Kobayashi, Tooru; Sakurai, Yoshinori; Kanda, Keiji

    1994-01-01

    Simulation calculations using DOT 3.5 were carried out in order to confirm the characteristics of depth-dependent dose distribution in water phantom dependent on incident neutron energy. The epithermal neutrons mixed to thermal neutron field is effective improving the thermal neutron depth-dose distribution for neutron capture therapy. A feasibility study on the neutron energy spectrum shifter was performed using ANISN-JR for the KUR Heavy Water Facility. The design of the neutron spectrum shifter is feasible, without reducing the performance as a thermal neutron irradiation field. (author)

  5. Creation of polarized ultracold neutrons and observation of Ramsey resonance for electric dipole moment measurement

    Energy Technology Data Exchange (ETDEWEB)

    Matsuta, K., E-mail: matsuta@vg.phys.sci.osaka-u.ac.jp [Osaka University, Department of Physics (Japan); Masuda, Y. [High Energy Accelerator Research Organization (KEK) (Japan); Hatanaka, K. [Osaka University, RCNP (Japan); Jeong, S. C.; Kawasaki, S. [High Energy Accelerator Research Organization (KEK) (Japan); Matsumiya, R. [Osaka University, RCNP (Japan); Mihara, M. [Osaka University, Department of Physics (Japan); Watanabe, Y. [High Energy Accelerator Research Organization (KEK) (Japan); Nishimura, D. [Tokyo University of Science, Department of Physics (Japan); Morita, Y. [Osaka University, Department of Physics (Japan); Asahi, K. [Tokyo Institute of Technology (Japan); Adachi, T. [High Energy Accelerator Research Organization (KEK) (Japan); Martin, J. [University of Winnipeg, Department of Physics (Canada); Konaka, A.; Miller, A. [TRIUMF (Canada); Bidinosti, C.; Dawson, T. [University of Winnipeg, Department of Physics (Canada); Lee, L.; Davis, C.; Ramsay, D. [TRIUMF (Canada); and others

    2013-05-15

    Polarized UCNs have been created by selecting only one spin state passing through a magnetized Fe foil. Typical degree of polarization was about 90 %. The polarization relaxation time in the prototype Ramsey cell was T{sub 1} =1100{sup +800}{sub -400} s. Clear Ramsey resonance spectra have been observed for two precession time settings, t{sub c} = 100 ms and 30 s. The transverse relaxation time T{sub 2} was about 50 s.

  6. The differential cross section and polarization for the elastic scattering of 2.9 MeV neutrons by Fe, Cu, I, Hg and Pb

    International Nuclear Information System (INIS)

    Galloway, R.B.; Waheed, A.

    1979-01-01

    Simultaneous measurements are presented of the angular dependence of polarization due to elastic scattering and of the elastic differential cross section for 2.9 MeV neutrons. The angular range covered is 20 0 to 160 0 for samples of Fe, Cu, I, Hg and Pb. The measurements are compared with the results of combining optical model and Hauser-Feshbach calculations. The optical model calculations were performed using 'global fit' parameters as well as with parameters suggested previously for the particular nuclei. The Hauser-Feshbach calculations were performed both with and without the level width fluctuation correction. It is clear that the calculations made without the level width fluctuation correction provide a better fit to the data for Fe, Cu, I and Hg and only for Pb does inclusion of the level width fluctuation correction provide a better fit. These optical model parameter sets are shown not to be very successful in fitting both differential cross-section and polarization data. The results of searches for the parameters which give the best fit for the data are presented. These parameter sets are compared with one another and with the results of 8 and 11 MeV neutron scattering studies for trends in the variation of the parameters. (Auth.)

  7. TOF neutron diffraction study of archaeological ceramics

    International Nuclear Information System (INIS)

    Kockelmann, W.; Kirfel, A.

    1999-01-01

    Complete text of publication follows. The time-of flight (TOF) neutron diffractometer ROTAX [1] at ISIS has been used for identification and quantitative phase analysis of archaeological pottery. Neutron diffraction yields mineral phase fractions which, in parallel with information obtained from other archaeometric examination techniques, can provide a fingerprint that can be used to identify provenance and reconstruct methods of manufacturing of an archaeological ceramic product. Phase fractions obtained from a 13th century Rhenish stoneware jar compare well with those obtained from a powder sample prepared from the same fragment. This indicates that reliable results can be obtained by illuminating a large piece or even an intact ceramic object making TOF neutron diffraction a truly non-destructive examination technique. In comparison to X-ray diffraction, information from the bulk sample rather than from surface regions is obtained. ROTAX allows for a simple experimental set-up, free of sample movements. Programmes of archaeological study on ROTAX involve Russian samples (Upper-Volga culture, 5000-2000 BC), Greek pottery, (Agora/Athens, 500-300 BC), and medieval German earthenware and stoneware ceramics (Siegburg waster heap, 13-15th century). (author)

  8. Study of computerized tomography using neutron beam

    International Nuclear Information System (INIS)

    Pereira, W.W.

    1991-05-01

    This paper aims to demonstrate the advantages, shortcomings and complementaries of a tomography development using neutrons over the one employing gamma rays in the context of their applications to non destructive essays. A simulated experimental study was performed in order to compare the two aforementioned tomographic procedures as applied to some materials. These materials were chosen for their clear advantages and complementaries as, for instance, aluminium, iron, plastic and aluminium hydroxide. In this work two tomographic systems, are employed both with parallel beams. The first with a gamma radiation source (Caesium-137), with an energy of 662 KeV and an activity of 3,9 x 10 9 Bq (100 mCi) and the second one employing a neutron source, the Argonaut Reactor of the Instituto de Engenharia Nuclear, IEN/CNEN, from where the thermal neutron beam of about 10 5 n/(cm.s) was obtained. It is possible to conclude from the simulated and experimental results, by means of image analysis and distortion measurements, that for a given material the adequate radiation and its energy may be chosen so as to better characterize it. (author)

  9. Diffuse neutron scattering study of metallic interstitial solid solutions

    International Nuclear Information System (INIS)

    Barberis, P.

    1991-10-01

    We studied two interstitial solid solutions (Ni-C(1at%) and Nb-O(2at%) and two stabilized zirconia (ZrO2-CaO(13.6mol%) and ZrO2-Y2O3(9.6mol%) by elastic diffuse neutron scattering. We used polarized neutron scattering in the case of the ferromagnetic Ni-based sample, in order to determine the magnetic perturbation induced by the C atoms. Measurements were made on single crystals in the Laboratoire Leon Brillouin (CEA-CNRS, Saclay, France). An original algorithm to deconvolve time-of-flight spectra improved the separation between elastically and inelastically scattered intensities. In the case of metallic solutions, we used a simple non-linear model, assuming that interstitials are isolated and located in octahedral sites. Results are: - in both compounds, nearest neighbours are widely displaced away from the interstitial, while next nearest neighbours come slightly closer. - the large magnetic perturbation induced by carbon in Nickel decreases with increasing distance on the three first neighbour shells and is in good agreement with the total magnetization variation. - no chemical order between solute atoms could be evidenced. Stabilized zirconia exhibit a strong correlation between chemical order and the large displacements around vacancies and dopants. (Author). 132 refs., 38 figs., 13 tabs

  10. Study of the RP-10 reactor neutron beam applied to the neutron radiography

    International Nuclear Information System (INIS)

    Zegarra, Manuel; Lopez, Alcides

    2013-01-01

    We have studied the RP-10 reactor radial neutron beam No. 3, which is used for neutron radiographies, by comparing radiograph's with and without the inner duct, and neutron flux determination with in flakes along the external duct, being the presence of photons creating signals at comparable levels of neutron effects, which reduce the quality of the analysis, values around 10 6 and 10 4 n/cm 2 s for thermal and epithermal flux were obtained respectively. It is recommended evaluate the design of the internal duct which presents strong photon emission. (authors).

  11. Improvement of the polarized neutron interferometer setup demonstrating violation of a Bell-like inequality

    Energy Technology Data Exchange (ETDEWEB)

    Geppert, H., E-mail: hgeppert@ati.ac.at [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Denkmayr, T.; Sponar, S. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Lemmel, H. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Institut Laue Langevin, 38000 Grenoble (France); Hasegawa, Y. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria)

    2014-11-01

    For precise measurements with polarised neutrons high efficient spin-manipulation is required. We developed several neutron optical elements suitable for a new sophisticated setup, i.e., DC spin-turners and Larmor-accelerators which diminish thermal disturbances and depolarisation considerably. The gain in performance is exploited demonstrating violation of a Bell-like inequality for a spin-path entangled single-neutron state. The obtained value of S=2.365(13), which is much higher than previous measurements by neutron interferometry, is 28σ above the limit of S=2 predicted by contextual hidden variable theories. The new setup is more flexible referring to state preparation and analysis, therefore new, more precise measurements can be carried out.

  12. Improvement of the polarized neutron interferometer setup demonstrating violation of a Bell-like inequality.

    Science.gov (United States)

    Geppert, H; Denkmayr, T; Sponar, S; Lemmel, H; Hasegawa, Y

    2014-11-01

    For precise measurements with polarised neutrons high efficient spin-manipulation is required. We developed several neutron optical elements suitable for a new sophisticated setup, i.e., DC spin-turners and Larmor-accelerators which diminish thermal disturbances and depolarisation considerably. The gain in performance is exploited demonstrating violation of a Bell-like inequality for a spin-path entangled single-neutron state. The obtained value of [Formula: see text], which is much higher than previous measurements by neutron interferometry, is [Formula: see text] above the limit of S =2 predicted by contextual hidden variable theories. The new setup is more flexible referring to state preparation and analysis, therefore new, more precise measurements can be carried out.

  13. Measurement of the ROT effect in the neutron induced fission of 235U in the 0.3 eV resonance at a hot source of polarized neutrons

    Science.gov (United States)

    Kopatch, Yuri; Novitsky, Vadim; Ahmadov, Gadir; Gagarsky, Alexei; Berikov, Daniyar; Danilyan, Gevorg; Hutanu, Vladimir; Klenke, Jens; Masalovich, Sergey

    2018-03-01

    The TRI and ROT asymmetries in fission of heavy nuclei have been extensively studied during more than a decade. The effects were first discovered in the ternary fission in a series of experiments performed at the ILL reactor (Grenoble) by a collaboration of Russian and European institutes, and were carefully measured for a number of fissioning nuclei. Later on, the ROT effect has been observed in the emission of prompt gamma rays and neutrons in fission of 235U and 233U, although its value was an order of magnitude smaller than in the α-particle emission from ternary fission. All experiments performed so far are done with cold polarized neutrons, what assumes a mixture of several spin states, the weights of these states being not well known. The present paper describes the first attempt to get "clean" data by performing the measurement of gamma and neutron asymmetries in an isolated resonance of 235U at the POLI instrument of the FRM2 reactor in Garching.

  14. Measurement of the ROT effect in the neutron induced fission of 235U in the 0.3 eV resonance at a hot source of polarized neutrons

    Directory of Open Access Journals (Sweden)

    Kopatch Yuri

    2018-01-01

    Full Text Available The TRI and ROT asymmetries in fission of heavy nuclei have been extensively studied during more than a decade. The effects were first discovered in the ternary fission in a series of experiments performed at the ILL reactor (Grenoble by a collaboration of Russian and European institutes, and were carefully measured for a number of fissioning nuclei. Later on, the ROT effect has been observed in the emission of prompt gamma rays and neutrons in fission of 235U and 233U, although its value was an order of magnitude smaller than in the α-particle emission from ternary fission. All experiments performed so far are done with cold polarized neutrons, what assumes a mixture of several spin states, the weights of these states being not well known. The present paper describes the first attempt to get “clean” data by performing the measurement of gamma and neutron asymmetries in an isolated resonance of 235U at the POLI instrument of the FRM2 reactor in Garching.

  15. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    International Nuclear Information System (INIS)

    Bhattacharya, Debarati; Basu, Saibal; Singh, Surendra; Roy, Sumalay; Dev, Bhupendra Nath

    2012-01-01

    Highlights: ► Room temperature diffusion in Si/Ni/Si trilayer detected through complementary x-ray and polarized neutron reflectometry. ► Analyses of XPNR data generated the construction of the layered structure in terms of physical parameters along with alloy layers created by diffusion. ► Scattering length density information from XPNR provided quantitative assessment of the stoichiometry of alloys formed at the Si/Ni and Ni/Si interfaces. - Abstract: Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni–Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  16. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debarati, E-mail: debarati@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Basu, Saibal; Singh, Surendra [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Roy, Sumalay; Dev, Bhupendra Nath [Department of Materials Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032 (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Room temperature diffusion in Si/Ni/Si trilayer detected through complementary x-ray and polarized neutron reflectometry. Black-Right-Pointing-Pointer Analyses of XPNR data generated the construction of the layered structure in terms of physical parameters along with alloy layers created by diffusion. Black-Right-Pointing-Pointer Scattering length density information from XPNR provided quantitative assessment of the stoichiometry of alloys formed at the Si/Ni and Ni/Si interfaces. - Abstract: Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni-Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  17. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments

    Directory of Open Access Journals (Sweden)

    Maxime Deutsch

    2014-05-01

    Full Text Available Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

  18. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments.

    Science.gov (United States)

    Deutsch, Maxime; Gillon, Béatrice; Claiser, Nicolas; Gillet, Jean-Michel; Lecomte, Claude; Souhassou, Mohamed

    2014-05-01

    Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density) and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT) calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

  19. Zeolite function studied by neutron diffraction

    International Nuclear Information System (INIS)

    Newsam, J.M.

    1988-01-01

    Some recent figures relating to industrial uses of zeolites are summarized. Recent advances in the application of neutron diffraction to zeolite science are overviewed, with particular emphasis on powder diffraction (PND) results. Single crystal neutron diffraction studies of some 17 hydrated natural and synthetic zeolites have now appeared and they provide a consistent picture of zeolite-water interactions. Complete PND studies of hydrated synthetic ABW- and SOD-framework zeolites have also been reported. Other PND studies have explored the structural consequences of non-framework cation exchange, of framework modification by dealumination, and of framework cation substitution. Relatively simple zeolite-hydrocarbon sorbate complexes that have been studied include benzene in zeolite Y, and benzene and pyridine in zeolite L. Areas that are well poised for further development include further extensions to lower symmetry systems, the use of PND data for zeolite structure solution, studies at elevated temperatures and pressures, and further studies of zeolite sorbate complexes. (author) 68 refs., 7 figs

  20. Search for a nonzero triple-correlation coefficient and new experimental limit on T invariance in polarized-neutron beta decay

    International Nuclear Information System (INIS)

    Steinberg, R.I.; Liaud, P.; Vignon, B.; Hughes, V.W.

    1976-01-01

    A detailed description of an experimental test of time-reversal invariance in the β decay of the polarized free neutron is presented. The experiment consists of a measurement of the triple-correlation coefficient D between the neutron polarization vector and the electron and antineutrino momentum vectors. A nonzero value for this coefficient would imply T violation, since final-state interactions and other corrections may be neglected at the present level of precision. The experiment was performed using a cold-neutron beam at the High Flux Reactor of the Institut Laue-Langevin, Grenoble. A polarizing neutron guide tube yielded a beam intensity of 10 9 neutrons/sec with a polarization of 70%. Our result, based upon observation of approximately 6 x 10 6 decays, is D = (-1.1 +- 1.7) x 10 -3 , consistent with time-reversal invariance in the ΔS = 0 weak interaction. In terms of the relative phase angle between axial-vector and vector coupling constants, the result may be expressed as phi = 180.14 +- 0.22 0

  1. A polarized solid {sup 3}He target for neutron transmission experiments

    Energy Technology Data Exchange (ETDEWEB)

    Keith, C.D. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Gould, C.R. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Haase, D.G. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Huffman, P.R. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Roberson, N.R. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Seely, M.L. [North Carolina State Univ., Raleigh, NC (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Wilburn, W.S. [Duke University, Durham, NC 27708-0308 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    1995-04-01

    We describe the construction and operation of a solid {sup 3}He polarized nuclear target which we have used for measurements of the spin dependence of the n-{sup 3}He interaction at MeV energies. The target, which contains 0.4 mole of {sup 3}He was polarized to 38% at 12 mK in a field of 7 T. The target is suitable for nuclear physics measurements which are insensitive to the large magnetic field and produce beam heating of tenths of microwatts.We discuss refinements and paths to improved solid {sup 3}He targets at higher polarizations and lower fields. ((orig.)).

  2. Non-destructive studies of fuel pellets by neutron resonance absorption radiography and thermal neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California, Berkeley, CA 94720 (United States); Vogel, S.C.; Mocko, M.; Bourke, M.A.M.; Yuan, V.; Nelson, R.O.; Brown, D.W. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2013-09-15

    Many isotopes in nuclear materials exhibit strong peaks in neutron absorption cross sections in the epithermal energy range (1–1000 eV). These peaks (often referred to as resonances) occur at energies specific to particular isotopes, providing a means of isotope identification and concentration measurements. The high penetration of epithermal neutrons through most materials is very useful for studies where samples consist of heavy-Z elements opaque to X-rays and sometimes to thermal neutrons as well. The characterization of nuclear fuel elements in their cladding can benefit from the development of high resolution neutron resonance absorption imaging (NRAI), enabled by recently developed spatially-resolved neutron time-of-flight detectors. In this technique the neutron transmission of the sample is measured as a function of spatial location and of neutron energy. In the region of the spectra that borders the resonance energy for a particular isotope, the reduction in transmission can be used to acquire an image revealing the 2-dimensional distribution of that isotope within the sample. Provided that the energy of each transmitted neutron is measured by the neutron detector used and the irradiated sample possesses neutron absorption resonances, then isotope-specific location maps can be acquired simultaneously for several isotopes. This can be done even in the case where samples are opaque or have very similar transmission for thermal neutrons and X-rays or where only low concentrations of particular isotopes are present (<0.1 atom% in some cases). Ultimately, such radiographs of isotope location can be utilized to measure isotope concentration, and can even be combined to produce three-dimensional distributions using tomographic methods. In this paper we present the proof-of-principle of NRAI and transmission Bragg edge imaging performed at Flight Path 5 (FP5) at the LANSCE pulsed, moderated neutron source of Los Alamos National Laboratory. A set of urania mockup

  3. An experimental facility for studying delayed neutron emission

    International Nuclear Information System (INIS)

    Dermendzhiev, E.; Nazarov, V.M.; Pavlov, S.S.; Ruskov, Iv.; Zamyatin, Yu.S.

    1993-01-01

    A new experimental facility for studying delayed neutron emission has been designed and tested. A method based on utilization of the Dubna IBR-2 pulsed reactor, has been proposed and realized for periodical irradiation of targets composed of fissionable isotopes. Such a powerful pulsed neutron source in combination with a slow neutron chopper synchronized with the reactor bursts makes possible variation of the exposure duration and effective suppression of the fast neutron background due to delay neutrons emitted from the reactor core. Detection of delayed neutrons from the target is carried out by a high-efficiency multicounter neutron detector with a near-4π geometry. Some test measurements and results are briefly described. Possible use of the facility for other tasks is also discussed. 14 refs.; 14 figs

  4. Study of a nTHGEM-based thermal neutron detector

    Science.gov (United States)

    Li, Ke; Zhou, Jian-Rong; Wang, Xiao-Dong; Xiong, Tao; Zhang, Ying; Xie, Yu-Guang; Zhou, Liang; Xu, Hong; Yang, Gui-An; Wang, Yan-Feng; Wang, Yan; Wu, Jin-Jie; Sun, Zhi-Jia; Hu, Bi-Tao

    2016-07-01

    With new generation neutron sources, traditional neutron detectors cannot satisfy the demands of the applications, especially under high flux. Furthermore, facing the global crisis in 3He gas supply, research on new types of neutron detector as an alternative to 3He is a research hotspot in the field of particle detection. GEM (Gaseous Electron Multiplier) neutron detectors have high counting rate, good spatial and time resolution, and could be one future direction of the development of neutron detectors. In this paper, the physical process of neutron detection is simulated with Geant4 code, studying the relations between thermal conversion efficiency, boron thickness and number of boron layers. Due to the special characteristics of neutron detection, we have developed a novel type of special ceramic nTHGEM (neutron THick GEM) for neutron detection. The performance of the nTHGEM working in different Ar/CO2 mixtures is presented, including measurements of the gain and the count rate plateau using a copper target X-ray source. A detector with a single nTHGEM has been tested for 2-D imaging using a 252Cf neutron source. The key parameters of the performance of the nTHGEM detector have been obtained, providing necessary experimental data as a reference for further research on this detector. Supported by National Natural Science Foundation of China (11127508, 11175199, 11205253, 11405191), Key Laboratory of Neutron Physics, CAEP (2013DB06, 2013BB04) and CAS (YZ201512)

  5. BNL feasibility studies of spallation neutron sources

    International Nuclear Information System (INIS)

    Lee, Y.Y.; Ruggiero, A.G.; Van Steenbergen, A.; Weng, W.T.

    1995-01-01

    This paper is the summary of conceptual design studies of a 5 MW Pulsed Spallation Neutron Source (PSNS) conducted by an interdepartmental study group at Brookhaven National Laboratory. The study was made of two periods. First, a scenario based on the use of a 600 MeV Linac followed by two fast-cycling 3.6 GeV Synchrotrons was investigated. Then, in a subsequent period, the attention of the study was directed toward an Accumulator scenario with two options: (1) a 1.25 GeV normal conducting Linac followed by two Accumulator Rings, and (2) a 2.4 GeV superconducting Linac followed by a single Accumulator Ring. The study did not make any reference to a specific site

  6. Neutron capture studies of {sup 206}Pb at a cold neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Schillebeeckx, P.; Kopecky, S.; Quetel, C.R.; Tresl, I.; Wynants, R. [Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Geel (Belgium); Belgya, T.; Szentmiklosi, L. [Institute for Energy Security and Environmental Safety, Centre for Energy Research, Budapest (Hungary); Borella, A. [Institute for Reference Materials and Measurements, European Commission, Joint Research Centre, Geel (Belgium); SCK CEN, Mol (Belgium); Mengoni, A. [Nuclear Data Section, International Atomic Energy Agency (IAEA), Wagramerstrasse 5, PO Box 100, Vienna (Austria); Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile (ENEA), Bologna (Italy)

    2013-11-15

    Gamma-ray transitions following neutron capture in {sup 206}Pb have been studied at the cold neutron beam facility of the Budapest Neutron Centre using a metallic sample enriched in {sup 206}Pb and a natural lead nitrate powder pellet. The measurements were performed using a coaxial HPGe detector with Compton suppression. The observed {gamma} -rays have been incorporated into a decay scheme for neutron capture in {sup 206}Pb. Partial capture cross sections for {sup 206}Pb(n, {gamma}) at thermal energy have been derived relative to the cross section for the 1884 keV transition after neutron capture in {sup 14}N. From the average crossing sum a total thermal neutron capture cross section of 29{sup +2}{sub -1} mb was derived for the {sup 206}Pb(n, {gamma}) reaction. The thermal neutron capture cross section for {sup 206}Pb has been compared with contributions due to both direct capture and distant unbound s-wave resonances. From the same measurements a thermal neutron-induced capture cross section of (649 {+-} 14) mb was determined for the {sup 207}Pb(n, {gamma}) reaction. (orig.)

  7. An experiment to measure lambda=G sub A /G sub V from a combination of angular correlation coefficients in the beta decay of polarized neutrons

    CERN Document Server

    Kuznetsov, I A; Serebrov, A P; Solovei, V A; Stepanenko, I V; Vasilev, A V; Mostovoy, Y A; Zimmer, O; Yerozolimsky, B G; Dewey, M S; Wietfeldt, F E

    2000-01-01

    A technique is described which allows us to measure the ratio lambda=G sub A /G sub V of the weak axial-vector and vector coupling constants in neutron decay without any measurement of the neutron beam polarization. lambda is determined from a combination of the parity-odd angular correlations sigma-> centre dot p-> sub e and sigma-> centre dot p-> subnu between the neutron spin sigma-> and the electron momentum p-> sub e and the anti-neutrino momentum p-> subnu, respectively, both of which are measured in a single experiment using the same neutron beam. A description of the experiment and the results of the first run at the cold neutron beam facility at the Institut Laue-Langevin are presented.

  8. Neutronic study of the two french heavy water reactors

    International Nuclear Information System (INIS)

    Horowitz, J.

    1955-01-01

    The two french reactors - the reactor of Chatillon, named Zoe, and the reactor of Saclay - P2 - were the object of detailed neutronic studies which the main ideas are exposed in this report. These studies were mostly done by the Department of the Reactor Studies (D.E.P.). We have thus studied the distribution of neutronic fluxes; the factors influencing reactivity; the link between reactivity and divergence with the formula of Nordheim; the mean time life of neutrons; neutron spectra s of P2; the xenon effect; or the effect of the different adjustments of the plates and controls bar. (M.B.) [fr

  9. Small-angle neutron scattering technique in liquid crystal studies

    International Nuclear Information System (INIS)

    Shahidan Radiman

    2005-01-01

    The following topics discussed: general principles of SAS (Small-angle Neutron Scattering), liquid crystals, nanoparticle templating on liquid crystals, examples of SAS results, prospects of this studies

  10. Lambda polarization feasibility study at BM@N

    Directory of Open Access Journals (Sweden)

    Suvarieva Dilyna

    2017-01-01

    In this analysis, the possibility to measure at BM@N the polarization of the lightest strange hyperon Λ is studied in Monte Carlo event samples produced with the DCM-QGSM generator. It is shown that the detector will allow to measure Λ polarization with a precision required to check the model predictions.

  11. Feasibility study on using imaging plates to estimate thermal neutron fluence in neutron-gamma mixed fields

    International Nuclear Information System (INIS)

    Fujibuchi, T.; Tanabe, Y.; Sakae, T.; Terunuma, T.; Isobe, T.; Kawamura, H.; Yasuoka, K.; Matsumoto, T.; Harano, H.; Nishiyama, J.; Masuda, A.; Nohtomi, A.

    2011-01-01

    In current radiotherapy, neutrons are produced in a photonuclear reaction when incident photon energy is higher than the threshold. In the present study, a method of discriminating the neutron component was investigated using an imaging plate (IP) in the neutron-gamma-ray mixed field. Two types of IP were used: a conventional IP for beta- and gamma rays, and an IP doped with Gd for detecting neutrons. IPs were irradiated in the mixed field, and the photo-stimulated luminescence (PSL) intensity of the thermal neutron component was discriminated using an expression proposed herein. The PSL intensity of the thermal neutron component was proportional to thermal neutron fluence. When additional irradiation of photons was added to constant neutron irradiation, the PSL intensity of the thermal neutron component was not affected. The uncertainty of PSL intensities was approximately 11.4 %. This method provides a simple and effective means of discriminating the neutron component in a mixed field. (authors)

  12. Neutrons scattering studies in the actinide region

    International Nuclear Information System (INIS)

    Kegel, G.H.R.; Egan, J.J.

    1992-09-01

    During the report period were investigated the following areas: prompt fission neutron energy spectra measurements; neutron elastic and inelastic scattering from 239 Pu; neutron scattering in 181 Ta and 197 Au; response of a 235 U fission chamber near reaction thresholds; two-parameter data acquisition system; ''black'' neutron detector; investigation of neutron-induced defects in silicon dioxide; and multiple scattering corrections. Four Ph.D. dissertations and one M.S. thesis were completed during the report period. Publications consisted of three journal articles, four conference papers in proceedings, and eleven abstracts of presentations at scientific meetings. There are currently four Ph.D. and one M.S. candidates working on dissertations directly associated with the project. In addition, three other Ph.D. candidates are working on dissertations involving other aspects of neutron physics in this laboratory

  13. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering

    Czech Academy of Sciences Publication Activity Database

    Kohagen, Miriam; Mason, Philip E.; Jungwirth, Pavel

    2016-01-01

    Roč. 120, č. 8 (2016), s. 1454-1460 ISSN 1520-6106 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : molecular dynamics * neutron scattering * agueous sodium chloride Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.177, year: 2016

  14. Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy.

    Science.gov (United States)

    Afach, S; Ayres, N J; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Daum, M; Fertl, M; Franke, B; Griffith, W C; Grujić, Z D; Harris, P G; Heil, W; Hélaine, V; Kasprzak, M; Kermaidic, Y; Kirch, K; Knowles, P; Koch, H-C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Musgrave, M; Naviliat-Cuncic, O; Pendlebury, J M; Piegsa, F M; Pignol, G; Plonka-Spehr, C; Prashanth, P N; Quéméner, G; Rawlik, M; Rebreyend, D; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severijns, N; Thorne, J A; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zenner, J; Zsigmond, G

    2015-10-16

    We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1  μT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1  pT/cm. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.

  15. The measurement of g1n polarized structure of the neutron by the E154 experiment at SLAC

    International Nuclear Information System (INIS)

    Incerti, Sebastien

    1998-01-01

    This thesis presents the precision measurement of the neutron polarized structure g 1 n performed by the E154 collaboration at the Standford Linear Accelerator Center, USA, in autumn 1995, using a 48.3 GeV polarized electron beam scattered off a polarized Helium 3 target. The scattered electrons were detected using two spectrometer arms, covering the deep inelastic scattering range: 0.0134 2 2 2 at an average value of Q 2 = 5 GeV 2 . Two electromagnetic calorimeters have been designed by the LPC in Clermont-Ferrand and the SphN-CEA in Saclay to measure the scattered electron energy and to eject the contaminating hadron background using, a cellular automaton and a neural network, widely described in this thesis. The analysis performed in Clermont-Ferrand and presented in this document led us to the integral on the measurement region of g 1 n equaling: - 0.34 ± 0.003 STAT ± 0.004 SYST ± 0.001 EVOL at Q 2 = 5 GeV 2 , where our data have been evolved to Q 2 = 5 GeV 2 using the next-to-leading order DGLAP evolution equations and a world parametrization of the polarized parton distributions. The Ellis and Jaffe sum rule is clearly violated. Using different low x extrapolations, our integral is compatible with the Bjorken sum rule. The quark contribution to the nucleon spin is ΔΣ = 29 ± 6 % in the M S-bar scheme and ΔΣ = 37 ± 7% in the AB scheme, at Q 2 = 5 GeV 2 . The gluon contribution seems to be positive and within the range: 0 < ΔG < 2. (author)

  16. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    Science.gov (United States)

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  17. Studies for improvement of WWER-440 neutron fluence determination

    International Nuclear Information System (INIS)

    Ilieva, Kr.; Belousov, S.; Apostolov, T.

    2001-01-01

    For assessment of radiation embrittlement and prediction of reactor vessel lifetime with reasonable conservatism a 'best estimated' neutron fluence is necessary. New studies purposed to improve the fluence determination are presented: 1) study on the reliability of multigroup presentation of the neutron cross sections, and 2) impact of negative gradient of reactor power in the periphery assemblies on the neutron fluence evaluation. The results of these studies are base for improvement of neutron fluence determination methodology applied by the INRNE, BAS at Kozloduy NPP. (author)

  18. Neutron streaming studies along JET shielding penetrations

    Science.gov (United States)

    Stamatelatos, Ion E.; Vasilopoulou, Theodora; Batistoni, Paola; Obryk, Barbara; Popovichev, Sergey; Naish, Jonathan

    2017-09-01

    Neutronic benchmark experiments are carried out at JET aiming to assess the neutronic codes and data used in ITER analysis. Among other activities, experiments are performed in order to validate neutron streaming simulations along long penetrations in the JET shielding configuration. In this work, neutron streaming calculations along the JET personnel entrance maze are presented. Simulations were performed using the MCNP code for Deuterium-Deuterium and Deuterium- Tritium plasma sources. The results of the simulations were compared against experimental data obtained using thermoluminescence detectors and activation foils.

  19. Polarization Studies for the eRHIC Electron Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, Eliana [Fermilab; Tepikian, S. [Brookhaven

    2018-04-01

    A hadron/lepton collider with polarized beams has been under consideration by the scientific community since some years, in the U.S. and Europe. Among the various proposals, those by JLAB and BNL with polarized electron and proton beams are currently under closer study in the U.S. Experimenters call for the simultaneous storage of electron bunches with both spin helicity. In the BNL based Ring-Ring design, electrons are stored at top energy in a ring to be accommodated in the existing RHIC tunnel. The transversely polarized electron beam is injected into the storage ring at variable energies, between 5 and 18 GeV. Polarization is brought into the longitudinal direction at the IP by a couple of spin rotators. In this paper results of first studies of the attainable beam polarization level and lifetime in the storage ring at 18 GeV are presented.

  20. Biological Studies with Laser-Polarized ^129Xe

    Science.gov (United States)

    Tseng, C. H.; Oteiza, E. R.; Wong, G. A.; Walsworth, R. L.; Albert, M. S.; Nascimben, L.; Peled, S.; Sakai, K.; Jolesz, F. A.

    1996-05-01

    We have studied several biological systems using laser-polarized ^129Xe. In certain tissues magnetic resonance imaging (MRI) using inhaled laser-polarized noble gases may provide images superior to those from conventional proton MRI. High resolution laser-polarized ^3He images of air spaces in the human lung were recently obtained by the Princeton/Duke group. However, ^3He is not very soluble in tissue. Therefore, we are using laser polarized ^129Xe (tissue-soluble), with the long term goal of biomedical functional imaging. We have investigated multi-echo and multi-excitation magnetic resonance detection schemes to exploit the highly non-thermal ^129Xe magnetization produced by the laser polarization technique. We have inhalated live rats with laser-polarized ^129Xe gas and measured three distinct ^129Xe tissue resonances that last 20 to 40 sec. As a demonstration, we obtained a laser polarized ^129Xe image of the human oral cavity. Currently we are measuring the polarization lifetime of ^129Xe dissolved in human blood, the biological transporting medium. These studies and other recent developments will be reported.

  1. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    Barre, F.

    1983-06-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matrices. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  2. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    Barre, F.

    1984-02-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matricies. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  3. Neutron and gamma-ray toxicity studies

    International Nuclear Information System (INIS)

    Ainsworth, E.J.

    1975-01-01

    Results are reported from studies on the late effects of irradiation on large populations of mice. The effectiveness of neutron and gamma radiation for production of neoplastic and non-neoplastic diseases and life shortening is compared. Basic studies of cellular and functional indices of radiation injury, which provide the opportunity for fundamental new contributions to the understanding of late radiation effects in the vascular, immune, and hematopoietic systems are also reported. Both structural and functional changes in the vasculature have been observed during the second year after irradiation. The structural changes in the pinna include collapse of arteries, arterioles, and some veins along with alterations in the smooth musculature and accumulation of significant fibrosis. Late ultrastructural changes observed in myofibrils involve the endoplasmic reticulum and mitochondria. Cardiac muscle also showed alteration in the size and number of mitochondria, and fibrosis development within 7 days of irradiation. (U.S.)

  4. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    Science.gov (United States)

    Bhattacharya, Debarati; Basu, Saibal; Singh, Surendra; Roy, Sumalay; Dev, Bhupendra Nath

    2012-12-01

    Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni-Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  5. Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data.

    Science.gov (United States)

    Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed

    2012-11-01

    New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

  6. Polarized Neutron Diffraction to Probe Local Magnetic Anisotropy of a Low-Spin Fe(III) Complex.

    Science.gov (United States)

    Ridier, Karl; Mondal, Abhishake; Boilleau, Corentin; Cador, Olivier; Gillon, Béatrice; Chaboussant, Grégory; Le Guennic, Boris; Costuas, Karine; Lescouëzec, Rodrigue

    2016-03-14

    We have determined by polarized neutron diffraction (PND) the low-temperature molecular magnetic susceptibility tensor of the anisotropic low-spin complex PPh4 [Fe(III) (Tp)(CN)3]⋅H2O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo-axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the Fe(III) ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear-cut way to establish magneto-structural correlations in paramagnetic molecular complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    International Nuclear Information System (INIS)

    Wehring, B.W.; Uenlue, K.

    1995-01-01

    Funds were received for the first year of a three year DOE Nuclear Engineering Research Grant, ''Study of Neutron Focusing at the Texas Cold Neutron Source'' (FGO2-92ER75711). The purpose of this three year study was to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility was also to be designed, setup, and tested under the three year project. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which we wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, we obtained gains of 3 to 5 for the neutron flux averaged over an area of 1 x 1 cm

  8. Measuring and acquisition unit of the polarized neutron spectrometer SPN-1; Izmeritel`no0nakopitel`nyj modul` spektrometra na polyarizovannykh nejtronakh SPI-1

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, V V; Korneev, D A; Litvinenko, E I; Lyapin, D I

    1996-12-31

    SPN-1 polarized neutron time-of-flight spectrometer operates on IBR-2 reactor in JINR LNF. It is used to investigate into micromagnetism in ferromagnetics and superconductors as well as to investigate into mono and multilayer magnetic and superconducting thin films. 14 refs.; 3 figs.

  9. Energy dependence of the asymmetry-violated space parity of fragment emission from the 239PU fission by slow polarized neutrons

    International Nuclear Information System (INIS)

    Val'skij, G.V.; Zvezdkina, T.K.; Nikolaev, D.V.; Petrova, V.I.; Petrov, G.A.; Petukhov, A.K.; Pleva, Yu.S.; Tyukavin, V.A.

    1982-01-01

    Asymmetry violating parity in the fragment emission from fission of 239 Pu induced by polarized neutrons at six energy points in the interval 0.01 <= E <0.3 eV was measured. The results providing with an evidence in favour of the hypothesis that the asymmetry is independent on energy are discussed in view of the existing theoretical picture

  10. Study of neutron radiation effects on MOS structures

    International Nuclear Information System (INIS)

    Vaidya, Sangeeta J.

    2003-01-01

    We have studied charge trapping in the oxide and generation of interface states due to neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization and interface damage and it is significant under biased irradiation conditions. One of the important features of this work is that neutron irradiation was carried out in a nuclear reactor (swimming pool type) itself in contrast to the earlier reported work which used separate neutron sources for similar studies. To simulate real life situations, all our devices were biased during irradiation. In our belief, both of these facts gave credence to our observed experimental results. (author)

  11. Applications of neutron scattering to the study of magnetic materials

    International Nuclear Information System (INIS)

    Koehler, W.C.

    1976-01-01

    The types of interactions that neutrons undergo with condensed matter are reviewed and those properties of neutrons that make them an ideal probe for the study of magnetism on a microscopic scale are discussed. Following a very brief survey of experimental methods, a few illustrative examples of specific investigations are described in sufficient detail to illustrate the power of the techniques. Views as to the future directions that may be taken by neutron scattering are presented

  12. Studies of neutron irradiation effects at IPNS-REF

    International Nuclear Information System (INIS)

    Kirk, M.A.

    1983-09-01

    Neutron irradiation effects studies at the Radiation Effects Facility (REF) at the Intense Pulsed Neutron Source (IPNS) located at Argonne National Laboratory (ANL) are reviewed. A brief history of the development of this user facility is followed by an overview of the scientific program. Experiments unique to a spallation neutron source are covered in more detail. Future direction of research at this facility is suggested

  13. Synthesis and study of neutron-rich nuclides

    International Nuclear Information System (INIS)

    Luo Yixiao

    1995-01-01

    During the past few years our understanding of the decay properties and nuclear structure has been extended in a systematic fashion for the neutron-rich nuclei. This review will first sketch the production and identification of the neutron-rich nuclei throughout the whole mass region, and will then discuss the impressive progress in the studies of the exotic decay properties and nuclear structure of neutron-rich nuclei. Their astrophysical implications will also be outlined

  14. Use of ultracold neutrons for condensed-matter studies

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1997-05-01

    Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples.

  15. Use of ultracold neutrons for condensed-matter studies

    International Nuclear Information System (INIS)

    Michaudon, A.

    1997-05-01

    Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples

  16. Radiochemical studies of neutron deficient actinide isotopes

    International Nuclear Information System (INIS)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, 242 Bk, was produced with a cross-section of approximately 10 μb in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, αxn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,αxn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z 1 + Z 2 = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,αxn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of 228 Pu, 230 Pu, 232 Cm, or 238 Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes

  17. Radiochemical studies of neutron deficient actinide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, /sup 242/Bk, was produced with a cross-section of approximately 10 ..mu..b in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, ..cap alpha..xn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,..cap alpha..xn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z/sub 1/ + Z/sub 2/ = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,..cap alpha..xn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of /sup 228/Pu, /sup 230/Pu, /sup 232/Cm, or /sup 238/Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes.

  18. Polarized neutron determination of the magnetic excitations in YBa2Cu3O7

    DEFF Research Database (Denmark)

    Mook, H.A.; Yethiraj, M.; Aeppli, G.

    1993-01-01

    Polarization analysis has been used to identify the magnetic excitations in YBa2Cu3O7. The dominant feature in the spectra is a peak at the (pi,pi) reciprocal lattice position and centered at 41 meV. The behavior of the peak is shown to change dramatically at T(c), so that the magnetic excitations...

  19. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    International Nuclear Information System (INIS)

    Overbury, Steven H.; Coates, Leighton; Herwig, Kenneth W.; Kidder, Michelle

    2011-01-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  20. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Overbury, Steven {Steve} H [ORNL; Coates, Leighton [ORNL; Herwig, Kenneth W [ORNL; Kidder, Michelle [ORNL

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  1. Nuclear Dependence of the Transverse-Single-Spin Asymmetry for Forward Neutron Production in Polarized p +A Collisions at √{sN N}=200 GeV

    Science.gov (United States)

    Aidala, C.; Akiba, Y.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Asano, H.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bagoly, A.; Bandara, N. S.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Blau, D. S.; Boer, M.; Bok, J. S.; Brooks, M. L.; Bryslawskyj, J.; Bumazhnov, V.; Butler, C.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Citron, Z.; Connors, M.; Cronin, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dion, A.; Dixit, D.; Do, J. H.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukuda, Y.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; He, X.; Hemmick, T. K.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Imai, K.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Ji, Z.; Jiang, X.; Johnson, B. M.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kang, J. H.; Kapukchyan, D.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Khachatryan, V.; Khanzadeev, A.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, M.; Kim, M. H.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kline, P.; Koblesky, T.; Kotov, D.; Kudo, S.; Kurita, K.; Kwon, Y.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, S.; Leitch, M. J.; Leung, Y. H.; Lewis, N. A.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Lökös, S.; Lovasz, K.; Lynch, D.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Mendoza, M.; Metzger, W. J.; Mignerey, A. C.; Mihalik, D. E.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Murakami, T.; Murata, J.; Nagai, K.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, M.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Radzevich, P. V.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richford, D.; Rinn, T.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Runchey, J.; Safonov, A. S.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skoby, M. J.; Slunečka, M.; Smith, K. L.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takeda, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Towell, C. L.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vazquez-Carson, S.; Velkovska, J.; Virius, M.; Vrba, V.; Vukman, N.; Wang, X. R.; Wang, Z.; Watanabe, Y.; Watanabe, Y. S.; Wong, C. P.; Woody, C. L.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yoo, J. H.; Yoon, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zou, L.; Phenix Collaboration

    2018-01-01

    During 2015, the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized p +p collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in p +p collisions predicts only a moderate atomic-mass-number (A ) dependence. In contrast, the asymmetries observed at RHIC in p +A collisions showed a surprisingly strong A dependence in inclusive forward neutron production. The observed asymmetry in p +Al collisions is much smaller, while the asymmetry in p +Au collisions is a factor of 3 larger in absolute value and of opposite sign. The interplay of different neutron production mechanisms is discussed as a possible explanation of the observed A dependence.

  2. Material and device studies for the development of ultra-violet light emitting diodes (UV-LEDS) along polar, non-polar and semi-polar directions

    Science.gov (United States)

    Chandrasekaran, Ramya

    Over the past few years, significant effort was dedicated to the development of ultraviolet light emitting diodes (UV-LEDs) for a variety of applications. Such applications include chemical and biological detection, water purification and solid-state lighting. III-Nitride LEDs based on multiple quantum wells (MQWs) grown along the conventional [0001] (polar) direction suffer from the quantum confined Stark effect (QCSE), due to the existence of strong electric fields that arise from spontaneous and piezoelectric polarization. Thus, there is strong motivation to develop MQW-based III-nitride LED structures grown along non-polar and semi-polar directions. The goal of this dissertation is to develop UV-LEDs along the [0001] polar and [11 2¯ 0] non-polar directions by the method of Molecular Beam Epitaxy (MBE). The polar and non-polar LEDs were grown on the C-plane and R-plane sapphire substrates respectively. This work is a combination of materials science studies related to the nucleation, growth and n- and p-type doping of III-nitride films on these two substrates, as well as device studies related to fabrication and characterization of UV-LEDs. It was observed that the crystallographic orientation of the III-nitride films grown on R-plane sapphire depends strongly on the kinetic conditions of growth of the Aluminum Nitride (AIN) buffer. Specifically, growth of the AIN buffer under group III-rich conditions leads to nitride films having the (11 2¯ 0) non polar planes parallel to the sapphire surface, while growth of the buffer under nitrogen rich conditions leads to nitride films with the (11 2¯ 6) semi-polar planes parallel to the sapphire surface. The electron concentration and mobility for the films grown along the polar, non-polar and semi-polar directions were investigated. P-type doping of Gallium Nitride (GaN) films grown on the nonpolar (11 2¯ 0) plane do not suffer from polarity inversion and thus the material was doped p-type with a hole concentration

  3. Study of a Loop Heat Pipe Using Neutron Radiography

    International Nuclear Information System (INIS)

    C. Thomas Conroy; A. A. El-Ganayni; David R. Riley; John M. Cimbala; Jack S. Brenizer, Jr.; Abel Po-Ya Chuang; Shane Hanna

    2001-01-01

    An explanation is given of what a loop heat pipe (LHP) is, and how it works. It is then shown that neutron imaging (both real time neutron radioscopy and single exposure neutron radiography) is an effective experimental tool for the study of LHPs. Specifically, neutron imaging has helped to identify and correct a cooling water distribution problem in the condenser, and has enabled visualization of two-phase flow (liquid and vapor) in various components of the LHP. In addition, partial wick dry-out, a phenomenon of great importance in the effective operation of LHPs, has been identified with neutron imaging. It is anticipated that neutron radioscopy and radiography will greatly contribute to our understanding of LHP operation, and will lead to improvement of LHP modeling and design

  4. A neutron scattering study of DCN

    International Nuclear Information System (INIS)

    Mackenzie, G.A.; Pawley, G.S.

    1979-01-01

    Phonons in deuterium cyanide have been measured by neutron coherent inelastic scattering. The main subject of study was the transverse acoustic mode in the (110) direction polarised along (110) which is associated with the first-order structural phase transition at 160 K. Measurements have shown that the frequency decreases by about 25% between about 225 and 160 K as the transition temperature is approached. The other acoustic modes observable in the a*b* scattering plane have been measured and show no anomalous temperature dependence. Optic modes were unobservable because of the small size of the single-crystal sample which gave insufficient scattered intensity. Apart from the 'soft' mode, the measured frequencies are in good agreement with lattice dynamics calculations. (author)

  5. Experimental study on a cold neutron source of solid methylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Utsuro, M; Sugimoto, M; Fujita, Y [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1975-10-01

    An experimental study to produce cold neutrons with low temperature solid mesitylene as cold moderator in liquid helium and liquid nitrogen cryostats is reported. Measured cold neutron spectra by using an electron linac and time-of-flight method shows that this material is a better cold moderator than light water ice, giving the cold neutron output not so much inferior to that of solid methane in the temperature range above about 20 K and in the neutron energy region above about 1 MeV.

  6. Neutron Skins and Neutron Stars

    OpenAIRE

    Piekarewicz, J.

    2013-01-01

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ("PREX") at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in 208Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron be...

  7. Study on polarities of methylphenylpolysiloxanes in gas chromatography

    International Nuclear Information System (INIS)

    Pias Barbeira, J. B.; Gasco Sanchez, L.

    1975-01-01

    When studying the correlations between molecular structure and retention parameters in alcohols, alcohol benzoyl derivatives and carbonyl 2,4-dinitrophe nyl hydrazones some anomalies probably due to polarities of methylphenylpolysiloxane stationary phases have been observed. (Author) 31 refs

  8. Study on Neutron Generation by Using Modified Prototype D-D Neutron Generator

    International Nuclear Information System (INIS)

    Kim, In-Jung; Kim, Suk-Kwon; Park, Chang-Su; Jung, Nam-Suk; Jung, Hwa-Dong; Chung, Kyoung-Jae; Hwang, Yong-Seok; Choi, H. D.

    2006-01-01

    The effects of Ti target thickness and deuteron beam energy on neutron generation in the modified prototype DD neutron generator were studied. Three kinds of Ti targets with the thickness of 10 μm, 40 μm and 1 mm were used. Deuteron beam energy was varied from 45 keV to 65 keV. The effects of target thickness and deuteron beam energy were evaluated for every set of experimental run and the results were discussed

  9. Polarization Study for NLC Positron Source Using EGS4

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C

    2000-09-20

    SLAC is exploring a polarized positron source to study new physics for the NLC project. The positron source envisioned in this paper consists of a polarized electron source, a 50-MeV electron accelerator, a thin target less-than-or-equal-to 0.2 radiation length for positron production, and a capture system for high-energy, small angular divergence positrons. The EGS4 code was used to study the yield, energy spectra, emission-angle distribution, and the mean polarization of the positrons emanating from W-Re and Ti targets hit by longitudinally polarized electron and photon beams. To account for polarization within the EGS4 code a method devised by Flottmann was used, which takes into account polarization transfer for pair production, bremsstrahlung, and Compton interactions. A mean polarization of 0.85 for positrons with energies greater than 25 MeV was obtained. Most of the high-energy positrons were emitted within a forward angle of 20 degrees. The yield of positrons above 25 MeV per incident photon was 0.034, which was about 70 times higher than that obtained with an electron beam.

  10. Studies of neutron emission from relativistic nuclear interactions

    CERN Document Server

    Guo, S L; Wang, Y L; Guo, H Y; Sá Ben-Hao; Zheng, Y M; Brandt, R; Vater, P; Wan, J S; Ochs, M; Kulakov, B A; Sosnin, A N; Krivopustov, M I; Butsev, V S; Bradnova, V

    1999-01-01

    Studies were carried out on the yields and spatial distributions of secondary neutrons produced in the relativistic nuclear interactions of 1.5 GeV to 14.4 GeV projectiles p, d and alpha-particles with targets Pb and U/Pb. CR-39 track detectors were used to measure the neutrons. It shows that: (1) Secondary neutrons are produced in the whole length of Pb or U targets having a thickness of 20 cm. The neutron intensities produced by proton bombardments are reduced along the proton beam direction in the targets. The higher the energy of protons, the lower the reduction rate of the neutrons. The reduction rate of neutrons in U target is higher than in Pb target for the same energy of protons. (2) The radial intensities of neutrons decrease as the distance increases from the target central line. (3) The neutron yield in U target by proton bombardments is approx 55% higher than in Pb target. (4) The ratio of neutron yield by 14.4 GeV alpha to 7.3 GeV d bombardment in Pb target is 1.74+-0.20.

  11. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  12. Double polarized neutron-proton scattering and nucleon-nucleon tensor force: An alternative analysis

    International Nuclear Information System (INIS)

    Tornow, W.; Gould, C.R.; Haase, D.G.; Walston, J.R.; Raichle, B.W.

    2002-01-01

    Previous neutron-proton total cross-section difference measurements Δσ L and Δσ T between E n =7.43 and 17.1 MeV have been analyzed in a new way that reduces experimental systematic uncertainties. The results obtained for the 3 S 1 - 3 D 1 mixing parameter ε 1 are very similar to the published values, substantiating the previous conclusion that the nucleon-nucleon tensor force at low energies is stronger than predicted by the Nijmegen partial-wave analysis and, therefore, by all the recent high-precision nucleon-nucleon potential models as well

  13. Study of calculated and measured time dependent delayed neutron yields

    International Nuclear Information System (INIS)

    Waldo, R.W.

    1980-05-01

    Time-dependent delayed neutron emission is of interest in reactor design, reactor dynamics, and nuclear physics studies. The delayed neutrons from neutron-induced fission of 232 U, 237 Np, 238 Pu, 241 Am, /sup 242m/Am, 245 Cm, and 249 Cf were studied for the first time. The delayed neutron emission from 232 Th, 233 U, 235 U, 238 U, 239 Pu, 241 Pu, and 242 Pu were measured as well. The data were used to develop an empirical expression for the total delayed neutron yield. The expression gives accurate results for a large variety of nuclides from 232 Th to 252 Cf. The data measuring the decay of delayed neutrons with time were used to derive another empirical expression predicting the delayed neutron emission with time. It was found that nuclides with similar mass-to-charge ratios have similar decay patterns. Thus the relative decay pattern of one nuclide can be established by any measured nuclide with a similar mass-to-charge ratio. A simple fission product yield model was developed and applied to delayed neutron precursors. It accurately predicts observed yield and decay characteristics. In conclusion, it is possible to not only estimate the total delayed neutron yield for a given nuclide but the time-dependent nature of the delayed neutrons as well. Reactors utilizing recycled fuel or burning actinides are likely to have inventories of fissioning nuclides that have not been studied until now. The delayed neutrons from these nuclides can now be incorporated so that their influence on the stability and control of reactors can be delineated. 8 figures, 39 tables

  14. Some neutronic studies on flux-trap type moderator

    International Nuclear Information System (INIS)

    Kiyanagi, Y.; Watanabe, N.

    1991-01-01

    The neutronic performance of a flux-trap type moderator was studied by computer simulation in connection with the KENS-II target-moderator system. It was confirmed that this system can provide 1.3-1.4 times higher neutron intensity than a traditional wing-geometry moderator system. (author)

  15. A design study on hyper-thermal neutron irradiation field for neutron capture therapy at Kyoto University Reactor

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2000-01-01

    A study about the installation of a hyper-thermal neutron converter to a clinical collimator was performed, as a series of the design study on a hyper-thermal neutron irradiation field at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. From the parametric-surveys by Monte Carlo calculation, it was confirmed that the practical irradiation field of hyper-thermal neutrons would be feasible by the modifications of the clinical collimator and the bismuth-layer structure. (author)

  16. Studies of neutron dissociation at Fermilab energies

    International Nuclear Information System (INIS)

    Ferbel, T.

    1975-01-01

    The latest results obtained in a continuing investigation of neutron dissociation in (pπ - ) systems in neutron--nucleus collisions between 50 and 300 GeV/c are summarized. The nuclear coherent dissociation data are discussed first; then new measurements of total cross sections of neutrons on nuclei in the Fermilab momentum range are presented; finally, neutron dissociation using a hydrogen target is considered, and the hydrogen data are compared with expectations from simple Deck models. A substantial correlation was observed between the mass and the t of the system produced. The spin structure of the pπ - amplitudes at low mass was described surprisingly well by the simple Deck mechanism. The t-channel helicity amplitudes contained comparable contributions from flip and nonflip terms, and the states produced were not restricted to those expected on the basis of the Morrison rule. (19 figures, 2 tables) (U.S.)

  17. Spectroscopic Study of the Polar BS Tri

    Science.gov (United States)

    Borisov, N. V.; Gabdeev, M. M.; Shimansky, V. V.; Katysheva, N. A.; Shugarov, S. Yu.

    2015-11-01

    We have analyzed the spectra of the cataclysmic variable BS Tri taken in September 2011 and August 2012 with the 6-m BTA SAO RAS telescope. The object's spectra exhibit a flat continuum with superimposed strong hydrogen Balmer, neutral and ionized helium emission lines. Our analysis of the line profiles has shown that they consist of several components that are formed in the accretion structure and on the irradiated red dwarf surface. The measured radial velocities of one of the components of the line forming in a spot on the red dwarf surface have allowed the parameters of the system to be estimated: M 1 = 0.75 ± 0.02 M ⊙, M 2 = 0.16 ± 0.01 M ⊙, q = 0.21 ± 0.02, and R L2 = 0.18 ± 0.02 R ⊙. The Doppler maps constructed from the emission lines show no disk accretion, defining the system as a polar.

  18. Neutron and gamma-ray toxicity studies

    International Nuclear Information System (INIS)

    Ainsworth, E.J.

    1975-01-01

    The focus of the program is on late effects of neutron and gamma radiation and assessment of risk. Principal research activities are in two complementary areas: life-span experiments with large populations of laboratory mice to compare the effectiveness of single or protracted doses of neutron or gamma radiation for life shortening due to cancer and other debilitating noncancerous diseases; and basic research on cellular injury and recovery for the evaluation of potential contributions of latent injury in the mouse circulatory, immune, and hematopoietic systems to life shortening, and for the comparison of late radiation effects in proliferating tissues. The data are used to test existing models and to formulate new models for prediction of radiation hazards and the relative biological effectiveness (RBE) of fission neutrons, particularly at low radiation doses. The neutron dose-response curve is nonlinear, with the life shortening effect decreasing from 3-4 day/rad to 1 day/rad with increasing dose over the range of 20-240 rad. Clearly, linear extrapolations from high neutron doses to estimate life shortening at low doses would underestimate risk; the underestimation is even greater when the enhancement of life shortening produced by fractionated neutron exposure, described previously by us, is also considered. These results from single neutron doses deviate from predictions of total dose dependency based on the predictive model of Kellerer and Rossi. The shape of the gamma radiation dose-response curve is linear over the range of 90 to 788 rad; linear dose-response curves for gamma radiation have been described previously by others, but a quadratic function has been considered by some to be most applicable

  19. Development of ultracold neutron detectors and a polarization analyzing system for the measurement of the neutron electric dipole moment; Developpement de detecteurs de neutrons ultra-froids et d'un systeme d'analyse de polarisation pour la mesure du moment electrique dipolaire du neutron

    Energy Technology Data Exchange (ETDEWEB)

    Rogel, Gwendal

    2009-10-29

    This thesis was performed in the context of a project aiming to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute. Two aspects have been studied: The detection and the polarization analysis of ultracold neutrons. Three types of detectors have been tested at the Institut Laue-Langevin (ILL): The Cascade-U (GEM technology), the {sup 3}He gas detector and {sup 6}Li-doped glass scintillators (GS family). Their detection efficiency and their background sensitivity have been measured. The GS10 scintillator is competitive with the {sup 3}He gas detector under the conditions realized with the EDM spectrometer. A GS3/GS20 scintillator stack has enabled to improve the neutron/gamma discrimination. It has been found 20% less efficient than the {sup 3}He gas detector under the EDM spectrometer. The Cascade-U detector has been observed to be 20% less efficient than a 500 microns thick GS10 glass as confirmed by simulations. A new system for simultaneous spin analysis is presented. It consists of two independent detection systems (arms) which are each made of an adiabatic spin flipper, a spin analyzer, and a detector. The arms detect opposite spin components, allowing the simultaneous counting of both neutron spin orientations. A prototype mounted in horizontal configuration has been tested at ILL. The analyzing power of both arms has been measured to be 80%. The transmission of the system without spin analyzers has been found to be 50%. (author) [French] Cette these s'inscrit dans un nouveau projet de mesure du moment dipolaire electrique (EDM) du neutron a l'institut Paul Scherrer. Deux aspects ont ete etudies ici: la detection et l'analyse de polarisation de neutrons ultra-froids. Trois types de detecteurs ont ete testes a l'Institut Laue-Langevin (ILL): le Cascade-U (technologie GEM), le compteur a gaz {sup 3}He et des scintillateurs dopes au {sup 6}Li (type GS). Leur efficacite de detection ainsi que leur sensibilite au bruit de fond ont

  20. Errors and corrections in the separation of spin-flip and non-spin-flip thermal neutron scattering using the polarization analysis technique

    International Nuclear Information System (INIS)

    Williams, W.G.

    1975-01-01

    The use of the polarization analysis technique to separate spin-flip from non-spin-flip thermal neutron scattering is especially important in determining magnetic scattering cross-sections. In order to identify a spin-flip ratio in the scattering with a particular scattering process, it is necessary to correct the experimentally observed 'flipping-ratio' to allow for the efficiencies of the vital instrument components (polarizers and spin-flippers), as well as multiple scattering effects in the sample. Analytical expressions for these corections are presented and their magnitudes in typical cases estimated. The errors in measurement depend strongly on the uncertainties in the calibration of the efficiencies of the polarizers and the spin-flipper. The final section is devoted to a discussion of polarization analysis instruments

  1. Contrast variation by dynamic nuclear polarization and time-of-flight small-angle neutron scattering. I. Application to industrial multi-component nanocomposites1

    Science.gov (United States)

    Noda, Yohei; Koizumi, Satoshi; Masui, Tomomi; Mashita, Ryo; Kishimoto, Hiroyuki; Yamaguchi, Daisuke; Kumada, Takayuki; Takata, Shin-ichi; Ohishi, Kazuki; Suzuki, Jun-ichi

    2016-01-01

    Dynamic nuclear polarization (DNP) at low temperature (1.2 K) and high magnetic field (3.3 T) was applied to a contrast variation study in small-angle neutron scattering (SANS) focusing on industrial rubber materials. By varying the scattering contrast by DNP, time-of-flight SANS profiles were obtained at the pulsed neutron source of the Japan Proton Accelerator Research Complex (J-PARC). The concentration of a small organic molecule, (2,2,6,6-tetramethylpiperidine-1-yl)oxy (TEMPO), was carefully controlled by a doping method using vapour sorption into the rubber specimens. With the assistance of microwave irradiation (94 GHz), almost full polarization of the paramagnetic electronic spin of TEMPO was transferred to the spin state of hydrogen (protons) in the rubber materials to obtain a high proton spin polarization (P H). The following samples were prepared: (i) a binary mixture of styrene–butadiene random copolymer (SBR) with silica particles (SBR/SP); and (ii) a ternary mixture of SBR with silica and carbon black particles (SBR/SP/CP). For the binary mixture (SBR/SP), the intensity of SANS significantly increased or decreased while keeping its q dependence for P H = −35% or P H = 40%, respectively. The q behaviour of SANS for the SBR/SP mixture can be reproduced using the form factor of a spherical particle. The intensity at low q (∼0.01 Å−1) varied as a quadratic function of P H and indicated a minimum value at P H = 30%, which can be explained by the scattering contrast between SP and SBR. The scattering intensity at high q (∼0.3 Å−1) decreased with increasing P H, which is attributed to the incoherent scattering from hydrogen. For the ternary mixture (SBR/SP/CP), the q behaviour of SANS was varied by changing P H. At P H = −35%, the scattering maxima originating from the form factor of SP prevailed, whereas at P H = 29% and P H = 38%, the scattering maxima disappeared. After decomposition of the total SANS according to inverse matrix

  2. A pulsed source neutron reflectometer for surface studies

    International Nuclear Information System (INIS)

    Penfold, J.; Williams, W.G.

    1985-05-01

    A design for a neutron reflectometer for surface studies to be constructed at the SNS is presented. Examples of its use to study problems in surface chemistry, surface magnetism and low dimensional structures are highlighted. (author)

  3. Neutron scattering study of yttrium iron garnet

    Science.gov (United States)

    Shamoto, Shin-ichi; Ito, Takashi U.; Onishi, Hiroaki; Yamauchi, Hiroki; Inamura, Yasuhiro; Matsuura, Masato; Akatsu, Mitsuhiro; Kodama, Katsuaki; Nakao, Akiko; Moyoshi, Taketo; Munakata, Koji; Ohhara, Takashi; Nakamura, Mitsutaka; Ohira-Kawamura, Seiko; Nemoto, Yuichi; Shibata, Kaoru

    2018-02-01

    The nuclear and magnetic structure and full magnon dispersions of yttrium iron garnet Y3Fe5O12 have been studied using neutron scattering. The refined nuclear structure is distorted to a trigonal space group of R 3 ¯ . The highest-energy dispersion extends up to 86 meV. The observed dispersions are reproduced by a simple model with three nearest-neighbor-exchange integrals between 16 a (octahedral) and 24 d (tetrahedral) sites, Ja a, Ja d, and Jd d, which are estimated to be 0.00 ±0.05 , -2.90 ±0.07 , and -0.35 ±0.08 meV, respectively. The lowest-energy dispersion below 14 meV exhibits a quadratic dispersion as expected from ferromagnetic magnons. The imaginary part of q -integrated dynamical spin susceptibility χ″(E ) exhibits a square-root energy dependence at low energies. The magnon density of state is estimated from χ″(E ) obtained on an absolute scale. The value is consistent with the single chirality mode for the magnon branch expected theoretically.

  4. Neutronic studies of a 233U breeder

    International Nuclear Information System (INIS)

    Hansen, L.F.; Maniscalco, J.A.

    1978-09-01

    Neutronic calculations have been carried out to design a laser fusion driven hybrid blanket which maximizes 233 U production per unit of thermal energy (>1 kg/MW/sub T/-year) with acceptable fusion energy multiplication (M/sub F/ approx. 4). Two hybrid blankets, a thorium and a uranium--thorium blanket, are discussed in detail and their performance is evaluated by incorporating them into an existing hybrid design (the LLL/Bechtel design). The performance of these two blankets is discussed in terms of their energy multiplication, tritium breeding and fissile fuel production. The neutronic calculations have been done for two neutron libraries, the ENDF/B-IV and the ENDL with differences no larger than 10% in the results. An estimate is given of the number of equivalent thermal power fission reactors (LWR, HWR, SSCR, and HTGR) that these fusion breeders can fuel

  5. Study of an individual neutron dosimeter

    International Nuclear Information System (INIS)

    Debeauvais, M.; Tripier, J.

    1976-01-01

    A dosimeter using Kodak LR 115 cellulose nitrate as detecting material was designed. It serves to determine 3 neutron energy ranges. The 6 Li(n,α)t reaction is used for the thermal region, the sensitivity being 0.2mrads to 1 rad for neutron energies between thermal and 0.05eV. The same reaction defines the 0.05eV to 1000eV energy range but the detection system is placed inside a cadmium screen; the sensitivity is 0.2 to 500rads. Finally above 1MeV the neutron reactions used are those on the detector components themselves, i.e. elastic collisions and (nα) reactions on carbon, nitrogen and oxygen nuclei. Detection is possible between 0.7 and 700 rads [fr

  6. Kartini Research Reactor prospective studies for neutron scattering application

    International Nuclear Information System (INIS)

    Widarto

    1999-01-01

    The Kartini Research Reactor (KRR) is located in Yogyakarta Nuclear Research Center, Yogyakarta - Indonesia. The reactor is operated for 100 kW thermal power used for research, experiments and training of nuclear technology. There are 4 beam ports and 1 column thermal are available at the reactor. Those beam ports have thermal neutron flux around 10 7 n/cm 2 s each other and used for sub critical assembly, neutron radiography studies and Neutron Activation Analysis (NAA). Design of neutron collimator has been done for piercing radial beam port and the calculation result of collimated neutron flux is around 10 9 n/cm 2 s. This paper describes experiment facilities and parameters of the Kartini research reactor, and further more the prospective studies for neutron scattering application. The purpose of this paper is to optimize in utilization of the beam ports facilities and enhance the manpower specialty. The special characteristic of the beam ports and preliminary studies, pre activities regarding with neutron scattering studies for KKR is presented. (author)

  7. Studies of neutron measurement methods for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Beimer, K.H.

    1986-03-01

    This thesis comprises several studies mainly devoted to neutron measurement systems for plasma diagnostics at JET (Joint European Torus). An in situ calibration of the U-235 fission chamber detectors located at JET is presented. These detectors are used for measuring the neutron yield from the thermonuclear reactions in the plasma. The energy spectrum of the neutrons from the reactions D(d,n) 3 He has been studied by means of a 3 He spectrometer. Especially, it was found that by measuring the width of the full energy peak in the response spectrum of the 3 He-spectrometer, the deuterium distribution in the deuterium targets used can be estimated. In order to measure different neutron energies it is necessary to obtain a detailed knowledge of the response of the spectrometer. Therefore, the response function to monoenergetic neutrons in the energy range 130-3030 keV was experimentally determined. Some work has been related to a design study of a 14 MeV spectrometer for neutron diagnostics. It is a combined proton-recoil and time-of-flight spectrometer for high resolution measurements. The main parts of it are the collimator, the scattering foil, and the detectors for the recoil protons and the scattered neutrons. The influence of proton straggling in the foil on the resolution and efficiency of the spectrometer has been studied. Furthermore, a three dimensional Monte Carlo code has been written and used for the design of the collimator. (author)

  8. Low temperature and neutron physics studies

    International Nuclear Information System (INIS)

    Shull, C.G.

    1989-01-01

    A search for a novel coupling interaction between the Pendelloesung periodicity which is formed in a diffracting crystal and the Larmor precession of neutrons in a magnetic field has been carried out. This interaction is expected to exhibit a resonant behavior when the two spatial periodicities become matched upon scanning the magnetic field being applied to the crystal. Observations on a diffracting, perfect crystal of silicon with neutrons of wavelength 1 Angstrom show the expected resonant action but some discrepancy between the observed magnitude of the resonance effects remains for interpretation. 16 refs

  9. COSY Juelich - a cooler synchrotron for unpolarized and polarized medium-energy studies

    International Nuclear Information System (INIS)

    Seyfarth, H.

    2001-01-01

    Full text: The Forschungszentrum Juelich (Research Center Juelich) is one of the sixteen national research institutions in the 'Hermann von Helmholtz Association of German Research Centers'. It is dedicated to fundamental and applied research and development which can be summarized under five priorities: (i) structure of matter and materials research, (ii) information technology, (iii) life sciences, (iv) environment precaution research, and (v) energy technology. As one of the institutes within (i). the Institut fur Kernphysik (Institute for Nuclear Research) operates the COSY cooler synchrotron which allows to accelerate unpolarized and polarized protons and deuterons to the maximum momentum of 3450 MeV/c (2640 MeV and 2050 MeV kinetic energy for protons and deuterons, respectively). At low energy electron cooling can be used for beam preparation, whereas stochastic cooling can be applied to the accelerated beam. In the first years of operation since 1993 the experiments have been performed with the unpolarized proton beam. Since 1997 the polarized proton beam is available with increasing intensity and a typical degree of polarization of about 75 % up to the maximum beam energy. In 2000 the first unpolarized deuteron beam could be accelerated and stored at the maximum energy. Four target places exist for the internal experiments PISA. EDDA, COSY-II, and ANKE which use the circulating beam with thin solid strip or fiber targets and gas targets. The four experiments TOF, MOMO, GEM, NESSI, and JESSICA are using external beams. The programs of the experiments JESSICA (Juelich Experimental Spallation Setup in the COSY Area), NESSI (Neutron Scintillator and Silicon), and PISA (Proton Induced Spallation) aim at the measurement of data needed or the design of the target station of the planned European Spallation neutron Source (ESS). The set-up of PISA is replacing the earlier experiment COSY-13 which successfully completed its investigations on the production of

  10. Magnetism and magnetic materials probed with neutron scattering

    International Nuclear Information System (INIS)

    Velthuis, S.G.E. te; Pappas, C.

    2014-01-01

    Neutron scattering techniques are becoming increasingly accessible to a broader range of scientific communities, in part due to the onset of next-generation, high-power spallation sources, high-performance, sophisticated instruments and data analysis tools. These technical advances also advantageously impact research into magnetism and magnetic materials, where neutrons play a major role. In this Current Perspective series, the achievements and future prospects of elastic and inelastic neutron scattering, polarized neutron reflectometry, small angle neutron scattering, and neutron imaging, are highlighted as they apply to research into magnetic frustration, superconductivity and magnetism at the nanoscale. - Highlights: • Introduction to Current Perspective series titled Magnetism and Magnetic Materials probed with Neutron Scattering. • Elastic and inelastic neutron scattering in systems with magnetic frustration and superconductivity. • Small angle neutron scattering and polarized neutron reflectometry in studying magnetism at the nanoscale. • Imaging of magnetic fields and domains

  11. Magnetism and magnetic materials probed with neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Velthuis, S.G.E. te, E-mail: tevelthuis@anl.gov [Materials Science Division, Argonne National Laboratory, 9700 S Cass Ave, Argonne, IL 60439 (United States); Pappas, C. [Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, NL-2629JB Delft (Netherlands)

    2014-01-15

    Neutron scattering techniques are becoming increasingly accessible to a broader range of scientific communities, in part due to the onset of next-generation, high-power spallation sources, high-performance, sophisticated instruments and data analysis tools. These technical advances also advantageously impact research into magnetism and magnetic materials, where neutrons play a major role. In this Current Perspective series, the achievements and future prospects of elastic and inelastic neutron scattering, polarized neutron reflectometry, small angle neutron scattering, and neutron imaging, are highlighted as they apply to research into magnetic frustration, superconductivity and magnetism at the nanoscale. - Highlights: • Introduction to Current Perspective series titled Magnetism and Magnetic Materials probed with Neutron Scattering. • Elastic and inelastic neutron scattering in systems with magnetic frustration and superconductivity. • Small angle neutron scattering and polarized neutron reflectometry in studying magnetism at the nanoscale. • Imaging of magnetic fields and domains.

  12. Studies of the neutron spin structure at Jefferson Lab

    International Nuclear Information System (INIS)

    Korsch, W.

    2003-01-01

    The polarized 3 He program of Hall A at Jefferson Lab will be described. Results on the generalized Gerasimov-Drell-Hearn integral for the neutron in a Q 2 range between 0.02 GeV 2 /c 2 2 2 /c 2 will be presented. Preliminary results of the virtual photon asymmetry A 1 n (x,Q 2 ) and the spin structure function g 2 n (x,Q 2 ) at large values of Bjorken x and low Q 2 , respectively, will be discussed. (orig.)

  13. Development of new methods for studying nanostructures using neutron scattering

    International Nuclear Information System (INIS)

    Pynn, Roger

    2016-01-01

    The goal of this project was to develop improved instrumentation for studying the microscopic structures of materials using neutron scattering. Neutron scattering has a number of advantages for studying material structure but suffers from the well-known disadvantage that neutrons' ability to resolve structural details is usually limited by the strength of available neutron sources. We aimed to overcome this disadvantage using a new experimental technique, called Spin Echo Scattering Angle Encoding (SESAME) that makes use of the neutron's magnetism. Our goal was to show that this innovation will allow the country to make better use of the significant investment it has recently made in a new neutron source at Oak Ridge National Laboratory (ORNL) and will lead to increases in scientific knowledge that contribute to the Nation's technological infrastructure and ability to develop advanced materials and technologies. We were successful in demonstrating the technical effectiveness of the new method and established a baseline of knowledge that has allowed ORNL to start a project to implement the method on one of its neutron beam lines.

  14. Reactivity studies on the advanced neutron source

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Redmond, E.L. II; Fletcher, C.D.

    1990-01-01

    An Advanced Neutron Source (ANS) with a peak thermal neutron flux of about 8.5 x 10 19 m -2 s -1 is being designed for condensed matter physics, materials science, isotope production, and fundamental physics research. The ANS is a new reactor-based research facility being planned by Oak Ridge National Laboratory (ORNL) to meet the need for an intense steady-state source of neutrons. The design effort is currently in the conceptual phase. A reference reactor design has been selected in order to examine the safety, performance, and costs associated with this one design. The ANS Project has an established, documented safety philosophy, and safety-related design criteria are currently being established. The purpose of this paper is to present analyses of safety aspects of the reference reactor design that are related to core reactivity events. These analyses include control rod worth, shutdown rod worth, heavy water voiding, neutron beam tube flooding, light water ingress, and single fuel element criticality. Understanding these safety aspects will allow us to make design modifications that improve the reactor safety and achieve the safety related design criteria. 8 refs., 3 tabs

  15. Neutron-proton bremsstrahlung studies using the white neutron source at the LAMPF/WNR

    International Nuclear Information System (INIS)

    Wender, S.A.; Nelson, R.O.; Schillaci, M.E.; Blann, M.

    1990-01-01

    Nucleon-nucleon bremsstrahlung is a few-body radiative process that provides insight into several areas of nuclear physics. It is one of the simplest systems for studying the off-shell behavior of the nucleon-nucleon potential. The physics involved in neutron-proton bremsstrahlung (NPB) is significantly different from that of proton-proton bremsstrahlung (PPB). In particular, NPB cross sections are much larger than PPB cross sections because NPB allows E1 radiation, and the contribution to the cross section from the meson exchange currents has been calculated to be as large as the contributions from external radiation. To date there have been essentially four NPB experiments. These measurements have covered only a small part of the available phase space. A major experimental problem in performing these measurements has been the lack of a suitable intense, high-energy neutron beam. We are planning a measurement of the NPB cross section using the white neutron source at the WNR target area at the LAMPF accelerator. We plant to implement the experiment in three phases. In this first state, we shall measure inclusive hard-photon production using a multi-element gamma-ray telescope that is insensitive to neutrons. In the second phase, we shall measure the bremsstrahlung gamma-rays in coincidence with recoil protons. In the last phase, we shall detect the scattered neutrons in coincidence with the recoil protons and gamma rays. 8 refs., 6 figs

  16. Simulations to study the static polarization limit for RHIC lattice

    Science.gov (United States)

    Duan, Zhe; Qin, Qing

    2016-01-01

    A study of spin dynamics based on simulations with the Polymorphic Tracking Code (PTC) is reported, exploring the dependence of the static polarization limit on various beam parameters and lattice settings for a practical RHIC lattice. It is shown that the behavior of the static polarization limit is dominantly affected by the vertical motion, while the effect of beam-beam interaction is small. In addition, the “nonresonant beam polarization” observed and studied in the lattice-independent model is also observed in this lattice-dependent model. Therefore, this simulation study gives insights of polarization evolution at fixed beam energies, that are not available in simple spin tracking. Supported by the U.S. Department of Energy (DE-AC02-98CH10886), Hundred-Talent Program (Chinese Academy of Sciences), and National Natural Science Foundation of China (11105164)

  17. Polarized Neutron Diffraction as a Tool for Mapping Molecular Magnetic Anisotropy: Local Susceptibility Tensors in Co(II) Complexes.

    Science.gov (United States)

    Ridier, Karl; Gillon, Béatrice; Gukasov, Arsen; Chaboussant, Grégory; Cousson, Alain; Luneau, Dominique; Borta, Ana; Jacquot, Jean-François; Checa, Ruben; Chiba, Yukako; Sakiyama, Hiroshi; Mikuriya, Masahiro

    2016-01-11

    Polarized neutron diffraction (PND) experiments were carried out at low temperature to characterize with high precision the local magnetic anisotropy in two paramagnetic high-spin cobalt(II) complexes, namely [Co(II) (dmf)6 ](BPh4 )2 (1) and [Co(II) 2 (sym-hmp)2 ](BPh4 )2 (2), in which dmf=N,N-dimethylformamide; sym-hmp=2,6-bis[(2-hydroxyethyl)methylaminomethyl]-4-methylphenolate, and BPh4 (-) =tetraphenylborate. This allowed a unique and direct determination of the local magnetic susceptibility tensor on each individual Co(II) site. In compound 1, this approach reveals the correlation between the single-ion easy magnetization direction and a trigonal elongation axis of the Co(II) coordination octahedron. In exchange-coupled dimer 2, the determination of the individual Co(II) magnetic susceptibility tensors provides a clear outlook of how the local magnetic properties on both Co(II) sites deviate from the single-ion behavior because of antiferromagnetic exchange coupling. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Theoretical and experimental study of multilayers interferential reflectors for neutrons: SUPERMIRRORS

    International Nuclear Information System (INIS)

    Maaza, M.

    1991-10-01

    The aim of this study was the realization of (Ni-Ti) supermirror neutron guides which have good performances both optically and morphologically. To achieve this, we closed in gradually to evaluate better fundamental and technological problems. In the beginning, the study was oriented towards decoupling the effects of the different defects in the (Ni-Ti) multilayer and to tackle them one by one. In the first part, we present the classical neutrons guides and their limits and compare them with the supermirror guides and their advantages. Next, we describe the neutron optics formalism in analogy with electromagnetic classical optics, in particular X ray radiation. We have essentially employed the Grazing Angle Neutron Reflectometry technique for the investigation of our samples. These experimental results have been complemented by those of other surface investigation techniques: -optical, magnetic, electronic and ionic ones. The results were in almost overall agreement. More precisely, the neutron reflectivity profiles were treated by using the Abeles matrix formalism for an electromagnetic wave in S polarized state. In the third time, we present the whole of the experimental results obtained. The combination of the latter two effects (hydrogenation of titanium and carburation of nickel) which has not yet been achieved constitutes a direct continuation of this work. This could improve even further both the neutron reflectivity and the critical angle by coupling Mezei-Dagleish and Hayter-Mook stacks. A simulation has shown that a stack of this type consists of 15 bilayers (Ni x C-TiH 2 ) has the same reflectivity as a stack of 60 bilayers (Ni-Ti). (author)

  19. Trojan Horse Method for neutrons-induced reaction studies

    Science.gov (United States)

    Gulino, M.; Asfin Collaboration

    2017-09-01

    Neutron-induced reactions play an important role in nuclear astrophysics in several scenario, such as primordial Big Bang Nucleosynthesis, Inhomogeneous Big Bang Nucleosynthesis, heavy-element production during the weak component of the s-process, explosive stellar nucleosynthesis. To overcome the experimental problems arising from the production of a neutron beam, the possibility to use the Trojan Horse Method to study neutron-induced reactions has been investigated. The application is of particular interest for reactions involving radioactive nuclei having short lifetime.

  20. Study on the transmission efficiency of curved neutron guide

    International Nuclear Information System (INIS)

    Wang Hongli; Zhang Li; Guo Liping; Yang Tonghua; Zhao Zhixiang

    2004-01-01

    Monte-Carlo simulation program NGT2002 is used to study the transmission efficiency of curved neutron guide from character wavelength, film reflectivity, film material, geometry adjustment error, gap between guides and guide fabricate error, the authors get the transmission efficiency curves of the Ni, supper mirror curved neutron guides, also we have a discuss of how to choose the curved neutron guide's character wavelength. By the simulation results, the authors determine the proper film reflectivity value, guide horizontal geometry adjustment error range, optimized gap value between guide elements and guide width fabricate geometry error range. (authors)