WorldWideScience

Sample records for polarized neutron beams

  1. Study and production of polarized monochromatic thermal neutron beams

    International Nuclear Information System (INIS)

    Beiln, H.

    1963-06-01

    Results obtained with a recently built neutron spectrometer producing monochromatic polarized neutron beams,in the energy rang (10 -3 - 10) eV and using a series of artificial (Co: 92 per cent - Fe: 8 per cent) monocrystal as polarizers and analysers, are given. A high precision method for cutting monocrystals is explained. A description of the installation itself as well as some results obtained with Fe 3 O 4 crystals are also given. Experimental result pertaining to various magnetic guide and 'spin flip' system, as required in the handling of such polarized neutron beams, are also discussed. (author) [fr

  2. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  3. Polarized neutron beam properties for measuring parity-violating spin rotation in liquid {sup 4}He

    Energy Technology Data Exchange (ETDEWEB)

    Micherdzinska, A.M., E-mail: amicherd@gwu.ed [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); George Washington University, Washington, DC 20052 (United States); Bass, C.D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Bass, T.D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Gan, K. [George Washington University, Washington, DC 20052 (United States); Luo, D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Markoff, D.M. [North Carolina Central University, Durham, NC 27707 (United States); Mumm, H.P.; Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Opper, A.K. [George Washington University, Washington, DC 20052 (United States); Sharapov, E.I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Snow, W.M. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Swanson, H.E. [University of Washington/CENPA, Seattle, WA 98195 (United States); Zhumabekova, V. [Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050038 Almaty (Kazakhstan)

    2011-03-01

    Measurements of parity-violating neutron spin rotation can provide insight into the poorly understood nucleon-nucleon weak interaction. Because the expected rotation angle per unit length is small (10{sup -7} rad/m), several properties of the polarized cold neutron beam phase space and the neutron optical elements of the polarimeter must be measured to quantify possible systematic effects. This paper presents (1) an analysis of a class of possible systematic uncertainties in neutron spin rotation measurements associated with the neutron polarimetry, and (2) measurements of the relevant neutron beam properties (intensity distribution, energy spectrum, and the product of the neutron beam polarization and the analyzing power as a function of the beam phase space properties) on the NG-6 cold neutron beam-line at the National Institute of Standards and Technology Center for Neutron Research. We conclude that the phase space nonuniformities of the polarimeter in this beam are small enough that a parity-violating neutron spin rotation measurement in n-{sup 4}He with systematic uncertainties at the 10{sup -7} rad/m level is possible.

  4. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    Energy Technology Data Exchange (ETDEWEB)

    Makhloufi, M., E-mail: makhloufi_8m@yahoo.fr [Centre de Recherche Nucléaire de Birine (Algeria); Salah, H. [Centre de Recherche Nucléaire d' Alger (Algeria)

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway. - Highlights: • Permit to evaluate the feasibility of a polarized neutron scattering instrument prior to its implementation. • Help to understand the origin of instrumental imperfections and offer an optimized set up configuration. • Provide the possibility to use the FeSi and CoCu supermirrors, designed to polarize spin up cold neutron, to polarize thermal neutron.

  5. A fan analyzer of neutron beam polarization on the spectrometer REMUR at the pulsed reactor IBR-2

    International Nuclear Information System (INIS)

    Ul'yanov, V.A.; Pusenkov, V.M.; Pleshanov, N.K.

    2004-01-01

    The new spectrometer of polarized neutrons REMUR has been created and put in operation at the Frank Laboratory of Neutron Physics (JINR, Dubna). The spectrometer is dedicated to investigations of multilayer structures and surfaces by registering the reflection of polarized neutrons and of the inhomogeneous state of solid matter by measuring the small-angle scattering of polarized neutrons. The spectrometer's working range of neutron wavelengths is 1.5-10 Angstroem. The spectrometer is equipped with a linear position-sensitive detector and a focused supermirror polarization analyzer (the fan-like polarization analyzer) with a solid angle of polarized neutron detection of 2.2·10 -4 rad. This paper describes the design and the principle of operation of the fan analyzer of neutron polarization together with the results of the fan tests on a polarized neutron beam

  6. Precision Polarization of Neutrons

    Science.gov (United States)

    Martin, Elise; Barron-Palos, Libertad; Couture, Aaron; Crawford, Christopher; Chupp, Tim; Danagoulian, Areg; Estes, Mary; Hona, Binita; Jones, Gordon; Klein, Andi; Penttila, Seppo; Sharma, Monisha; Wilburn, Scott

    2009-05-01

    Determining polarization of a cold neutron beam to high precision is required for the next generation neutron decay correlation experiments at the SNS, such as the proposed abBA and PANDA experiments. Precision polarimetry measurements were conducted at Los Alamos National Laboratory with the goal of determining the beam polarization to the level of 10-3 or better. The cold neutrons from FP12 were polarized using optically polarized ^3He gas as a spin filter, which has a highly spin-dependent absorption cross section. A second ^ 3He spin filter was used to analyze the neutron polarization after passing through a resonant RF spin rotator. A discussion of the experiment and results will be given.

  7. Study and production of polarized monochromatic thermal neutron beams; Etude et production de faisceaux monochromatiques polarises de neutrons lents

    Energy Technology Data Exchange (ETDEWEB)

    Beiln, H. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-06-15

    Results obtained with a recently built neutron spectrometer producing monochromatic polarized neutron beams,in the energy rang (10{sup -3} - 10) eV and using a series of artificial (Co: 92 per cent - Fe: 8 per cent) monocrystal as polarizers and analysers, are given. A high precision method for cutting monocrystals is explained. A description of the installation itself as well as some results obtained with Fe{sub 3}O{sub 4} crystals are also given. Experimental result pertaining to various magnetic guide and 'spin flip' system, as required in the handling of such polarized neutron beams, are also discussed. (author) [French] Nous donnons les resultats obtenus avec un spectrometre produisant des neutrons monochromatiques polarises d'energie comprise entre quelques milliemes d'electronvolts et quelques electronvotts qui utilise une serie de monocristaux artificiels de Co: 92 pour cent - Fe: 8 pour cent, comme polariseurs et analyseurs. Nous discutons egalement une methode de taille de monocristaux a tres haute precision. Le dispositif experimental ainsi que quelques resultats preliminaires obtenus avec des monocristaux de Fe{sub 3}O{sub 4} sont egalement donnes. Nous discutons egalement des resultats experimentaux obtenus avec differents systemes de guidage magnetique et de renversement du spin. (auteur)

  8. A polarizing neutron periscope for neutron imaging

    International Nuclear Information System (INIS)

    Schulz, Michael; Boeni, Peter; Calzada, Elbio; Muehlbauer, Martin; Neubauer, Andreas; Schillinger, Burkhard

    2009-01-01

    Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.

  9. A polarizing neutron periscope for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael [FRM II, Lichtenbergstr. 1, 85748 Garching (Germany); Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany)], E-mail: Michael.Schulz@frm2.tum.de; Boeni, Peter [Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany); Calzada, Elbio; Muehlbauer, Martin [FRM II, Lichtenbergstr. 1, 85748 Garching (Germany); Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany); Neubauer, Andreas [Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany); Schillinger, Burkhard [FRM II, Lichtenbergstr. 1, 85748 Garching (Germany); Technische Universitaet Muenchen, Physik Department E21, James Franck Strasse, 85748 Garching (Germany)

    2009-06-21

    Optical neutron polarizers like guides or benders destroy the collimation of a neutron beam due to multiple reflections or scattering. This makes them unsuitable for their use in polarized neutron radiography, because the beam collimation is essential to obtain high spatial resolution. We have developed a neutron polarizer based on the principle of an optical periscope with a zigzag double reflection on two parallel high-m supermirror polarizers. If the supermirrors are perfectly parallel and flat, the beam collimation is left unchanged by such a device. A first proof of concept version of this type of polarizer was built and tested. We expect to achieve a beam polarization of up to 99% with an improved version yet to be built.

  10. Imaging with Polarized Neutrons

    Directory of Open Access Journals (Sweden)

    Nikolay Kardjilov

    2018-01-01

    Full Text Available Owing to their zero charge, neutrons are able to pass through thick layers of matter (typically several centimeters while being sensitive to magnetic fields due to their intrinsic magnetic moment. Therefore, in addition to the conventional attenuation contrast image, the magnetic field inside and around a sample can be visualized by detecting changes of polarization in a transmitted beam. The method is based on the spatially resolved measurement of the cumulative precession angles of a collimated, polarized, monochromatic neutron beam that traverses a magnetic field or sample.

  11. Development of high-polarization Fe/Ge neutron polarizing supermirror: Possibility of fine-tuning of scattering length density in ion beam sputtering

    Science.gov (United States)

    Maruyama, R.; Yamazaki, D.; Akutsu, K.; Hanashima, T.; Miyata, N.; Aoki, H.; Takeda, M.; Soyama, K.

    2018-04-01

    The multilayer structure of Fe/Si and Fe/Ge systems fabricated by ion beam sputtering (IBS) was investigated using X-ray and polarized neutron reflectivity measurements and scanning transmission electron microscopy with energy-dispersive X-ray analysis. The obtained result revealed that the incorporation of sputtering gas particles (Ar) in the Ge layer gives rise to a marked reduction in the neutron scattering length density (SLD) and contributes to the SLD contrast between the Fe and Ge layers almost vanishing for spin-down neutrons. Bundesmann et al. (2015) have shown that the implantation of primary Ar ions backscattered at the target is responsible for the incorporation of Ar particles and that the fraction increases with increasing ion incidence angle and increasing polar emission angle. This leads to a possibility of fine-tuning of the SLD for the IBS, which is required to realize a high polarization efficiency of a neutron polarizing supermirror. Fe/Ge polarizing supermirror with m = 5 fabricated under the same condition showed a spin-up reflectivity of 0.70 at the critical momentum transfer. The polarization was higher than 0.985 for the qz range where the correction for the polarization inefficiencies of the beamline works properly. The result of the polarized neutron reflectivity measurement suggests that the "magnetically-dead" layers formed at both sides of the Fe layer, together with the SLD contrast, play a critical role in determining the polarization performance of a polarizing supermirror.

  12. POLARIZED NEUTRONS IN RHIC

    Energy Technology Data Exchange (ETDEWEB)

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  13. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  14. Polarized neutrons for Australian scientific research

    International Nuclear Information System (INIS)

    Kennedy, Shane J.

    2005-01-01

    Polarized neutron scattering has been a feature at ANSTO's HIFAR research reactor since the first polarization analysis (PA) spectrometer Longpol began operation over 30 years ago. Since that time, we have improved performance of Longpol and added new capabilities in several reincarnations of the instrument. Most of the polarized neutron experiments have been in the fields of magnetism and superconductivity, and most of that research has involved PA. Now as we plan our next generation neutron beam facility, at the Replacement Research Reactor (RRR), we intend to continue the tradition of PA but with a far broader scope in mind. Our new capabilities will combine PA and energy analysis with both cold and thermal neutron source spectra. We will also provide capabilities for research with polarized neutrons in small-angle neutron scattering and in neutron reflectometry. The discussion includes a brief historical account of the technical developments with a summary of past and present applications of polarized neutrons at HIFAR, and an outline of the polarized neutron capabilities that will be included in the first suite of instruments, which will begin operation at the new reactor in 2006

  15. Properties of the TRIUMF neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Gan, L. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Abegg, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada)]|[University of Alberta, Department of Physics, Edmonton, AB (Canada); Berdoz, A.R. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Birchall, J. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Campbell, J.R. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Davis, C.A. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics]|[TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada); Green, P.W. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada)]|[University of Alberta, Department of Physics, Edmonton, AB (Canada); Greeniaus, L.G. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada)]|[University of Alberta, Department of Physics, Edmonton, AB (Canada); Helmer, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada)]|[University of Alberta, Department of Physics, Edmonton, AB (Canada); Korkmaz, E. [University of Alberta, Department of Physics, Edmonton, AB (Canada); Lee, L. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Li, J. [University of Alberta, Department of Physics, Edmonton, AB (Canada); Miller, C.A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada)]|[University of Alberta, Department of Physics, Edmonton, AB (Canada); Opper, A.K. [University of Alberta, Department of Physics, Edmonton, AB (Canada); Page, S.A. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Ramsay, W.D. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Soukup, J. [University of Alberta, Department of Physics, Edmonton, AB (Canada); Van Oers, W.T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; Zhao, J. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics

    1995-11-01

    Properties of the TRIUMF neutron beam (4A/2) are presented and compared with a Monte Carlo prediction. The beam intensity profile, energy spectrum and polarization are predicted taking into account the beamline geometry, energy losses in the LD{sub 2} production target, the properties of the vector pd{yields} vector npp reaction, and the scattering of neutrons from the collimator walls. The results allow for improved corrections to systematic errors in a number of TRIUMF neutron experiments. (orig.).

  16. Properties of the TRIUMF neutron beam

    International Nuclear Information System (INIS)

    Gan, L.; Berdoz, A.R.; Green, P.W.; Greeniaus, L.G.; Helmer, R.; Korkmaz, E.; Lee, L.; Miller, C.A.; Opper, A.K.; Page, S.A.; Van Oers, W.T.H.; Zhao, J.

    1995-01-01

    Properties of the TRIUMF neutron beam (4A/2) are presented and compared with a Monte Carlo prediction. The beam intensity profile, energy spectrum and polarization are predicted taking into account the beamline geometry, energy losses in the LD 2 production target, the properties of the vector pd→ vector npp reaction, and the scattering of neutrons from the collimator walls. The results allow for improved corrections to systematic errors in a number of TRIUMF neutron experiments. (orig.)

  17. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  18. Polarized neutron radiography with a periscope

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael; Neubauer, Andreas; Muehlbauer, Martin; Schillinger, Burkhard; Pfleiderer, Christian; Boeni, Peter [Technische Universitaet Muenchen, Physik Department, E21, Garching (Germany); Calzada, Elbio, E-mail: michael.schulz@frm2.tum.d [Technische Universitaet Muenchen, Forschungsneutronenquelle Heinz Maier Leibnitz (FRM II), Garching (Germany)

    2010-01-01

    The interaction of the magnetic moment of the neutron with magnetic fields provides a powerful probe for spatially resolved magnetisation measurements in magnetic materials. We have tested a periscope as a new type of polarizer providing neutron beams with a high polarization and a low divergence. The observed inhomogeneity of the beam caused by the waviness of the glass substrates was quantified by means of Monte-Carlo simulations using the software package McStas. The results show that beams of high homogeneity can be produced if the waviness is reduced to below 1.0{center_dot}10{sup -5} rad. Finally, it is shown that radiography with polarized neutrons is a powerful method for measuring the spatially resolved magnetisation in optically float-zoned samples of the weak itinerant ferromagnet Ni{sub 3}Al, thereby aiding the identification of the appropriate growth parameters.

  19. Polarized neutron radiography with a periscope

    International Nuclear Information System (INIS)

    Schulz, Michael; Neubauer, Andreas; Muehlbauer, Martin; Schillinger, Burkhard; Pfleiderer, Christian; Boeni, Peter; Calzada, Elbio

    2010-01-01

    The interaction of the magnetic moment of the neutron with magnetic fields provides a powerful probe for spatially resolved magnetisation measurements in magnetic materials. We have tested a periscope as a new type of polarizer providing neutron beams with a high polarization and a low divergence. The observed inhomogeneity of the beam caused by the waviness of the glass substrates was quantified by means of Monte-Carlo simulations using the software package McStas. The results show that beams of high homogeneity can be produced if the waviness is reduced to below 1.0·10 -5 rad. Finally, it is shown that radiography with polarized neutrons is a powerful method for measuring the spatially resolved magnetisation in optically float-zoned samples of the weak itinerant ferromagnet Ni 3 Al, thereby aiding the identification of the appropriate growth parameters.

  20. Efficient polarization analysis for focusing neutron instruments

    Science.gov (United States)

    Stahn, Jochen; Glavic, Artur

    2017-06-01

    Polarized neutrons are a powerful probe to investigate magnetism in condensed matter on length scales from single atomic distances to micrometers. With the ongoing advancement of neutron optics, that allow to transport beams with increased divergence, the demands on neutron polarizes and analyzers have grown as well. The situation becomes especially challenging for new instruments at pulsed sources, where a large wavelength band needs to be polarized to make efficient use of the time structure of the beam. Here we present a polarization analysis concept for highly focused neutron beams that is based on transmission supermirrors that are bend in the shape of equiangular spirals. The method allows polarizations above 95% and good transmission, without negative impact on other beam characteristics. An example of a compact polarizing device already tested on the AMOR reflectometer is presented as well as the concept for the next generation implementation of the technique that will be installed on the Estia instrument being build for the European Spallation Source.

  1. Convergent beam neutron crystallography

    Science.gov (United States)

    Gibson, Walter M.; Schultz, Arthur J.; Richardson, James W.; Carpenter, John M.; Mildner, David F. R.; Chen-Mayer, Heather H.; Miller, M. E.; Maxey, E.; Prask, Henry J.; Gnaeupel-Herold, Thomas H.; Youngman, Russell

    2004-01-01

    Applications of neutron diffraction for small samples (small fiducial areas are limited by the available neutron flux density. Recent demonstrations of convergent beam electron and x-ray diffraction and focusing of cold (λ>1 Å) neutrons suggest the possibility to use convergent beam neutron diffraction for small sample crystallography. We have carried out a systematic study of diffraction of both monoenergetic and broad bandwidth neutrons at the NIST Research Reactor and at the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory. Combining convergent beams with time-of-flight Laue diffraction is particularly attractive for high efficiency small sample diffraction studies. We have studied single crystal and powder diffraction of neutrons with convergence angles as large as 15° and have observed diffracted peak intensity gains greater than 20. The convergent beam method (CBM) shows promise for crystallography on small samples of small to medium size molecules (potentially even for proteins), ultra-high pressure samples, and for mapping of strain and texture distributions in larger samples.

  2. Maris polarization in neutron-rich nuclei

    Science.gov (United States)

    Shubhchintak; Bertulani, C. A.; Aumann, T.

    2018-03-01

    We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  3. Time reversal invariance in polarized neutron decay

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, Eric G. [Harvard Univ., Cambridge, MA (United States)

    1994-03-01

    An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 x 10-4 or better. With higher neutron flux a statistical sensitivity of the order 3 x 10-5 is ultimately expected. The decay of free polarized neutrons (n → p + e + $\\bar{v}$e) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta (σn • pp x pe). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D.

  4. Time reversal invariance in polarized neutron decay

    International Nuclear Information System (INIS)

    Wasserman, E.G.

    1994-03-01

    An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 x 10 -4 or better. With higher neutron flux a statistical sensitivity of the order 3 x 10 -5 is ultimately expected. The decay of free polarized neutrons (n → p + e + bar v e ) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta (σ n · p p x p e ). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D

  5. High precision neutron polarization for PERC

    International Nuclear Information System (INIS)

    Klauser, C.

    2013-01-01

    The decay of the free neutron into a proton, an electron and an anti-electron neutrino offers a simple system to study the semi-leptonic weak decay. High precision measurements of angular correlation coefficients of this decay provide the opportunity to test the standard model on the low energy frontier. The Proton Electron Radiation Channel PERC is part of a new generation of expriments pushing the accuracy of such an angular correlation coefficient measurement towards 10 -4 . Past experiments have been limited to an accuracy of 10 -3 with uncertainties on the neutron polarization as one of the leading systematic errors. This thesis focuses on the development of a stable, highly precise neutron polarization for a large, divergent cold neutron beam. A diagnostic tool that provides polarization higher than 99.99 % and analyzes with an accuracy of 10 -4 , the Opaque Test Bench, is presented and validated. It consists of two highly opaque polarized helium cells. The Opaque Test Bench reveals depolarizing effects in polarizing supermirrors commonly used for polarization in neutron decay experiments. These effects are investigated in detail. They are due to imperfect lateral magnetization in supermirror layers and can be minimized by significantly increased magnetizing fields and low incidence angle and supermirror factor m. A subsequent test in the crossed (X-SM) geometry demonstrated polarizations up to 99.97% from supermirrors only, improving neutron polarization with supermirrors by an order of magnitude. The thesis also discusses other neutron optical components of the PERC beamline: Monte-Carlo simulations of the beamline under consideration of the primary guide are carried out. In addition, calculation shows that PERC would statistically profit from an installation at the European Spallation source. Furthermore, beamline components were tested. A radio-frequency spin flipper was confirmed to work with an efficiency higher than 0.9999. (author) [de

  6. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    Neve de Mevergnies, M.

    1977-01-01

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  7. Neutron beam measurement dosimetry

    International Nuclear Information System (INIS)

    Amaro, C.R.

    1995-01-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  8. Polarized electron beams at SLAC

    International Nuclear Information System (INIS)

    Moffeit, K.C.

    1992-11-01

    SLAC has successfully accelerated high energy polarized electrons for the Stanford Linear Collider and fixed polarized nuclear target experiments. The polarized electron beams at SLAC use a gallium arsenide (GaAlAs for E-142) photon emission source to provide the beam of polarized electrons with polarization of approximately 28% (41% for E-142). While the beam emittance is reduced in the damping ring for SLC operation a system of bend magnets and superconducting solenoids preserve and orient the spin direction for maximum longitudinal polarization at the collision point. The electron polarization is monitored with a Compton scattering polarimeter, and was typically 22% at the e+e- collision point for the 1992 run. Improvements are discussed to increase the source polarization and to reduce the depolarization effects between the source and the collision point

  9. The polarized platypus polarized neutron reflectometry made possible

    International Nuclear Information System (INIS)

    Saerbeck, Thomas

    2009-01-01

    Full text: The magnetic moment of the neutron, together with it's highly penetrating non destructive manner, make polarized neutron reflectometry an excellent tool to study magnetic phenomena across surfaces and interfaces of thin films. Unlike other magnetometry techniques which ordinarily yield only average magnetization values or, in case of probes with higher spatial resolution (e.g. electron microscopy or scanning tunnelling microscopy), show a high surface sensitivity, PNR together with magnetic x-ray scattering provides the ability to spatially resolve vector magnetization well beneath the surface [1] The ability to obtain vector magnetization profiles across interfaces and surfaces of thin films and multilayers offers the intriguing possibility to study systematically magnetic configurations and magnetic exchange interactions through intervening layers. In this paper we present the performance of the new polarization system installed on the time of flight neutron reflectometer PLATYPUS at ANSTO's Bragg Institute. The spin state of the neutrons is polarized and analysed by spatial separation of different neutron spin states using polarizing Fe/Si supermirrors before, and after the sample stage. The supermirrors have a large wavelength acceptance bandwidth of 3 A to 12 A. To control the desired spin direction of the incoming and reflected beam from the sample, two sets of RF spin flippers are installed. In the free space between the spin flippers and the sample stage the neutron spin direction is maintained by two sets of magnetic guide field coils. The new sample environment for studies of magnetic samples includes a 1 T electromagnet and a closed cycle refrigerator which gives access to a temperature range from 4K to 3 50 K .

  10. A white beam neutron spin splitter

    Energy Technology Data Exchange (ETDEWEB)

    Krist, T. [Hahn Meitner Institute, Berlin (Germany); Klose, F.; Felcher, G.P. [Argonne National Lab., IL (United States)

    1997-07-23

    The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co{sub 0.11} Fe{sub 0.89} supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 {angstrom}{sup -1}, whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths.

  11. Invited Article: Polarization ``Down Under'': The polarized time-of-flight neutron reflectometer PLATYPUS

    Science.gov (United States)

    Saerbeck, T.; Klose, F.; Le Brun, A. P.; Füzi, J.; Brule, A.; Nelson, A.; Holt, S. A.; James, M.

    2012-08-01

    This review presents the implementation and full characterization of the polarization equipment of the time-of-flight neutron reflectometer PLATYPUS at the Australian Nuclear Science and Technology Organisation (ANSTO). The functionality and efficiency of individual components are evaluated and found to maintain a high neutron beam polarization with a maximum of 99.3% through polarizing Fe/Si supermirrors. Neutron spin-flippers with efficiencies of 99.7% give full control over the incident and scattered neutron spin direction over the whole wavelength spectrum available in the instrument. The first scientific experiments illustrate data correction mechanisms for finite polarizations and reveal an extraordinarily high reproducibility for measuring magnetic thin film samples. The setup is now fully commissioned and available for users through the neutron beam proposal system of the Bragg Institute at ANSTO.

  12. Materials for neutron beam optimization for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo

    2001-01-01

    Several prospective materials (neutron filter/moderator, beam reflector, gamma ray shielding and beam collimator) were studied with a view to generating thermal and epithermal neutron beams suited for boron neutron capture therapy (BNCT). The beams are delivered from the thermal and thermalizing column exits situated on two opposite faces of a TRIGA-II type reactor. An investigation was performed with Monte Carlo calculations from a viewpoint of obtaining sufficiently intense thermal and epithermal neutron beams separately, and little adulterated both with neutrons of extraneous energy ranges and with gamma rays. High-density graphite (G) would be the most suitable material for thermal neutron beams as a neutron filter/moderator, and the combination of aluminum (Al) and aluminum fluoride (AlF 3 ) for epithermal neutron beams. The graphite would be also the most promising material for thermal neutron beams as a beam reflector while for epithermal neutron beams the choice would be lead fluoride (PbF 2 ). The PbF 2 would be also the most suitable material for epithermal neutron beams as a gamma ray shielding, and bismuth (Bi) for thermal neutron beam. The PbF 2 would be also the most useful material for epithermal neutron beam as a beam collimator while for thermal neutron beam the choice would be the graphite. The epithermal neutron beam for BNCT could be optimized with the progressive use of PbF 2 . (author)

  13. Non-uniform transmission of supermirror devices for neutron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Tong, X., E-mail: tongx@ornl.gov [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge 37831, TN (United States); Robertson, J.L. [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge 37831, TN (United States); Pynn, R. [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge 37831, TN (United States); Indiana University Center for the Exploration of Energy and Matter, Bloomington 47408, IN (United States)

    2014-12-21

    Polarizing supermirrors have been widely used in neutron scattering facilities where they have been employed as neutron spin filters to polarize neutron beams as well as analyze their polarization. In the past, the performance of polarizing supermirrors has been limited by their small acceptance angle, which made them less suitable for use at short wavelengths or with highly divergent beams. Recent advances in supermirror coatings have led to an array of devices designed to, at least partially, overcome this limitation. V-polarizers and multi-channel polarizers have been employed in several different types of neutron scattering instruments. However, our observations in the field where these types of polarizers are in use have raised concerns about their performance. In this paper, we report on detailed Monte-Carlo simulations performed on a multi-channel polarizer used on a prototype Spin-Echo Small Angle Neutron Scattering (SESANS) instrument to better understand its performance. Our results show that careful simulations of polarizers based on mirror reflection are needed to determine whether a particular design is suitable for SESANS applications.

  14. Neutron beams for therapy

    International Nuclear Information System (INIS)

    Kuplenikov, Eh.L.; Dovbnya, A.N.; Telegin, Yu.N.; Tsymbal, V.A.; Kandybej, S.S.

    2011-01-01

    It was given the analysis and generalization of the study results carried out during some decades in many world countries on application of thermal, epithermal and fast neutrons for neutron, gamma-neutron and neutron-capture therapy. The main attention is focused on the practical application possibility of the accumulated experience for the base creation for medical research and the cancer patients effective treatment.

  15. Polarization fluctuations in stationary light beams

    International Nuclear Information System (INIS)

    Shevchenko, A.; Setaelae, T.; Kaivola, M.; Friberg, A.T.; Royal Institute of Technology , Department of Microelectronics and Applied Physics; Sweden)

    2009-01-01

    For stationary beams the degree of polarization contains only limited information on time dependent polarization. Two approaches towards assessing a beams polarization dynamics, one based on Poincare and the other on Jones vector formalism, are described leading to the notion of polarization time. Specific examples of partially temporally coherent electromagnetic beams are discussed. (Author)

  16. Acceleration of polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian snakes are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  17. Tau physics with polarized beams

    Energy Technology Data Exchange (ETDEWEB)

    Daoudi, M.

    1995-11-01

    We present the first results on tau physics using polarized beams. These include measurements of the {tau} Michel parameters {xi} and {xi}{delta} and the {tau} neutrino helicity h{sub {nu}}. The measurements were performed using the SLD detector at the Stanford Linear Collider (SLC).

  18. History of the polarized beam

    Energy Technology Data Exchange (ETDEWEB)

    Parker, E F

    1979-01-01

    In 1973, the first high energy polarized proton beam was developed at the Argonne Zero Gradient Synchrotron (ZGS). It operated very successfully and productively until 1979 when the ZGS was shut down permanently. This report describes the development, characteristics, and operations of this facility.

  19. Experiments with Fermilab polarized proton and polarized antiproton beams

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the π degree production at high p perpendicular and in the Λ (Σ degree), π ± , π degree production at large x F , and Δσ L (pp, bar pp) measurements. 18 refs

  20. Generation of neutron standing waves at total reflection of polarized neutrons

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Nikitenko, Yu.V.; Kozhevnikov, S.V.; Radu, F.; Kruijs, R.; Rekveldt, M.Th.

    1999-01-01

    The regime of neutron standing waves at reflection of polarized thermal neutrons from the structure glass/Cu (1000 A Angstrom)/Ti (2000 A Angstrom)/Co (60 A Angstrom)/Ti (300 A Angstrom) in a magnetic field directed at an angle to the sample plane is realized. The intensity of neutrons with a particular spin projection on the external magnetic field direction appears to be a periodic function of the neutron wavelength and the glancing angle of the reflected beam. It is shown that the neutron standing wave regime can be a very sensitive method for the determination of changes in the spatial position of magnetic noncollinear layers. (author)

  1. Polarized neutron reflectometry at Dhruva reactor

    Indian Academy of Sciences (India)

    Abstract. Polarized neutron reflectometry (PNR) is an ideal non-destructive tool for chemical and magnetic characterization of thin films and multilayers. We have installed a position sensitive detector-based polarized neutron reflectometer at Dhruva reactor, Trombay. In this paper we will discuss the results obtained from this ...

  2. Uses of laser optical pumping to produce polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1983-01-01

    Laser optical pumping can be used to produce polarized alkali atom beams or polarized alkali vapor targets. Polarized alkali atom beams can be converted into polarized alkali ion beams, and polarized alkali vapor targets can be used to produce polarized H - or 3 He - ion beams. In this paper the authors discuss how the polarized alkali atom beams and polarized alkali vapor targets are used to produce polarized ion beams with emphasis on the production of polarized negative ion beams

  3. Layered magnets: polarized neutron reflection studies

    Energy Technology Data Exchange (ETDEWEB)

    Zabel, H.; Schreyer, A. [Ruhr-Univ. Bochum, Lehrstuhl fuer Experimentalphysik/Festkoerperphysik, Bochum (Germany)

    1996-11-01

    Neutron reflectivity measurements from extended surfaces, thin films and superlattices provide information on the chemical profile parallel to the film normal, including film thicknesses, average composition and interfacial roughness parameters. Reflectivity measurements with polarized neutrons are particularly powerful for analyzing the magnetic density profiles in thin films and superlattices in addition to chemical profiles. The basic theory of polarized neutron reflectivity is provided, followed by some examples and more recent applications concerning polarized neutron reflectivity studies from exchange coupled Fe/Cr superlattices. (author) 5 figs., 13 refs.

  4. Monte Carlo program for the cold neutron beam guide

    International Nuclear Information System (INIS)

    Yoshiki, H.

    1985-02-01

    A Monte Carlo program for the transport of cold neutrons through beam guides has been developed assuming that the neutrons follow the specular reflections. Cold neutron beam guides are normally used to transport cold neutrons (4 ∼ 10 Angstrom) to experimental equipments such as small angle scattering apparatus, TOF measuring devices, polarized neutron spectrometers, and ultra cold neutron generators, etc. The beam guide is about tens of meters in length and is composed from a meter long guide elements made up from four pieces of Ni coated rectangular optical glass. This report describes mathematics and algorithm employed in the Monte Carlo program together with the display of the results. The source program and input data listings are also attached. (Aoki, K.)

  5. Accelerating polarized beams in Tevatron

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-02-01

    In this paper, we will examine the totality of equipment, manpower and cost necessary to obtain a polarized proton beam in the Tevatron. We will not, however, be concerned with the acquisition and acceleration of polarized /bar p/ beams. Furthermore we will consider only a planar main ring without overpass, although it is expected that Siberian snake schemes could be made to apply equally well to non-planar machines. In addition to not wanting to tackle here the task of reformulating the theory for a non-planar closed orbit, we also anticipate that as part of the Tevatron upgrade the main ring will in the not too distant future, be replaced by a planar main injector situated in a separate tunnel. 4 refs., 11 figs., 1 tab

  6. Study of the nuclear structure far from stability: Coulomb excitation of neutron-rich Rb isotopes around N=60; Production of nuclear spin polarized beams using the tilted foils technique

    International Nuclear Information System (INIS)

    Sotty, C.

    2013-01-01

    The underlying structure in the region A ∼ 100, N ∼ 60 has been under intensive and extensive investigation, mainly by β-decay and γ-ray spectroscopy from fission processes. Around N ∼ 60, by adding just few neutrons, protons a rapid shape change occurs from spherical-like to well deformed g.s. shape. Shape coexistence has been observed in the Sr and Zr nuclei, and is expected to take place in the whole region. The mechanisms involved in the appearance of the deformation is not well understood. The interplay between down-sloping and up-sloping neutron Nilsson orbital is evoked as one of the main reasons for the sudden shape change. However, a clear identification of the active proton and neutron orbitals was still on-going. For that purpose, the neutron rich 93;95;97;99 Rb isotopes have been studied by Coulomb excitation at CERN (ISOLDE) using the REX-ISOLDE post-accelerator and the MINIBALL setup. The completely unknown structures of 97;99 Rb have been populated and observed. Prompt γ-ray coincidences of low-lying states have been observed and time-correlated in order to build level schemes. The associated transition strengths have been extracted with the GOSIA code. The observed matrix elements of the electromagnetic operator constituted new inputs of further theoretical calculations giving new insight on the involved orbitals. The sensitivity of such experiment can be increased using nuclear spin polarized radioactive ion beam. For that purpose the Tilted Foils Technique (TFT) of polarization has been investigated at CERN. This technique consists to spin polarize the ion beam, passing through thin foils tilted at an oblique angle with respect to the beam direction. The initially obtained atomic polarization is transferred to the nucleus by hyperfine interaction. This technique does not depend on the chemical nature of the element. Short lived nuclei can be polarized in-flight without any need to be stopped in a catcher. It opens up the possibility to

  7. Production of epithermal neutron beams for BNCT

    CERN Document Server

    Bisceglie, E; Colonna, N; Paticchio, V; Santorelli, P; Variale, V

    2002-01-01

    The use of boron neutron capture therapy (BNCT) for the treatment of deep-seated tumors requires neutron beams of suitable energy and intensity. Simulations indicate the optimal energy to reside in the epithermal region, in particular between 1 and 10 keV. Therapeutic neutron beams with high spectral purity in this energy range could be produced with accelerator-based neutron sources through a suitable neutron-producing reaction. Herein, we report on different solutions that have been investigated as possible sources of epithermal neutron beams for BNCT. The potential use of such sources for a hospital-based therapeutic facility is discussed.

  8. Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS

    Energy Technology Data Exchange (ETDEWEB)

    Zaliznyak, Igor [Brookhaven National Laboratory (BNL); Savici, Andrei T [ORNL; Garlea, Vasile O [ORNL; Winn, Barry L [ORNL; Schneelock, John [Brookhaven National Laboratory (BNL); Tranquada, John M. [Brookhaven National Laboratory (BNL); Gu, G. D. [Brookhaven National Laboratory (BNL); Wang, Aifeng [Brookhaven National Laboratory (BNL); Petrovic, C [Brookhaven National Laboratory (BNL)

    2017-01-01

    We describe some of the first polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. We discuss details of the instrument setup and the experimental procedures in the mode with the full polarization analysis. Examples of the polarized neutron diffraction and the polarized inelastic neutron data obtained on single crystal samples are presented.

  9. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    Energy Technology Data Exchange (ETDEWEB)

    Adeyemi, Adeleke H. [Hampton Univ., Hampton, VA (United States); et al.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  10. Measurement of the polarized neutron---polarized {sup 3}He total cross section

    Energy Technology Data Exchange (ETDEWEB)

    Keith, C.D.; Gould, C.R.; Haase, D.G.; Seely, M.L. [North Carolina State University, Raleigh, North Carolina 27695 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Huffman, P.R.; Roberson, N.R.; Tornow, W.; Wilburn, W.S. [Duke University, Durham, North Carolina 27708 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States)

    1995-05-10

    The first measurements of polarized neutron--polarized {sup 3}He scattering in the few MeV energy region are reported. The total cross section difference {Delta}{sigma}{sub {ital T}} for transversely polarized target and beam has been measured for neutron energies between 1.9 and 7.5 MeV. Comparison is made to predictions of {Delta}{sigma}{sub {ital T}} using various descriptions of the {sup 4}He continuum. A brute-force polarized target of solid {sup 3}He has been developed for these measurements. The target is 4.3{times}10{sup 22} atoms/cm{sup 2} thick and is polarized to 38% at 7 Telsa and 12 mK. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  11. Summary of the polarized beam working group

    International Nuclear Information System (INIS)

    Wienands, U.; Dyck, O. van.

    1989-05-01

    The polarized beam working group reviewed the AGS Bookster and TRIUMF KAON Factory facilities, heard an overview of the subject of siberian snakes, discussed internal polarized gas targets, and made recommendations for further study

  12. Polarized deuteron beam at the Dubna synchrophasotron

    International Nuclear Information System (INIS)

    Ershov, V.P.; Fimushkin, V.V.; Gai, G.I.

    1990-01-01

    The experimental equipment and setup used to accelerate a polarized deuteron beam at the Dubna synchrophasotron are briefly described. Basic characteristics of the cryogenic source of polarized deuterons POLARIS are presented. The results of measurements of the intensity of the accelerated beam, vector and tensor polarization at the output of the linac LU-20, inside the synchrophasotron ring and in the extracted beam are given. 16 refs.; 9 figs.; 3 tabs

  13. Study of materials properties by neutron beam applications

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Kim, H. J.; Kim, B. C.; Jun, B. C.; Lee, J. S.; Seong, B. S.; Shim, H. S.; Choi, B. H.; Ho, J. W.; Kang, S. K.; Kim, J. Y.; Park, D. K.; Kim, C. K.; Kim, C. J.; Cho, Y. S.

    1997-10-01

    Horizontal and vertical beam ports related works for neutron beam experimental facilities in HANARO has been done. And the preparation works of neutron spectrometers, design, manufacture and installation of the high resolution powder diffractometer, the four circle diffractometer, the polarized neutron spectrometer, the small angle neutron spectrometer and the position sensitive detector unit for residual stress measurement have been done. The status for each spectrometer are described. The development of neutron spectroscopy technique for the crystal structure analysis on YBa 2 Cu 3 O 7-x , U 3 Si, Pb(Yb,Nb)O 3 by neutron diffraction, the anisotropic properties of textured orthorhombic polycrystalline materials and the low temperature sample environment facility has been performed and neutron reflectometry has been reviewed. After the design and manufacture of neutron radiography facility, it has been installed at NR beam tube and its' performance evaluation has been done. The image processing technique for real time testing is under development. As for neutron transmutation doping, design of irradiation tube, estimation on neutron flux distribution and flux quality, and study of irradiation damage recovery under annealing have been tried. (author). 11 refs., 40 tabs., 86 figs.

  14. Radiography of weakly ferromagnetic metals with polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael; Calzada, Elbio; Muehlbauer, Martin; Schillinger, Burkhard [FRM II, Garching (Germany); E21, Physik Department TUM, Garching (Germany); Boeni, Peter; Neubauer, Andreas; Pfleiderer, Christian [E21, Physik Department TUM, Garching (Germany)

    2009-07-01

    The depolarization of a neutron beam passing through a ferromagnet crucially depends on the magnetic properties of the sample. Combining neutron depolarisation measurements with neutron radiography allows obtaining spatially resolved information about these properties. For measuring the depolarization, we have installed a longitudinal polarized beam setup at the ANTARES beamline consisting of {sup 3}He polarizers and flat coil spin flippers. With this setup we have performed radiography with polarized neutrons in the weak itinerant ferromagnets Pd{sub 1-x}Ni{sub x} in order to determine the spatial distribution of the Curie temperatures T{sub C} in the samples. The results show that the single crystals are rather inhomogeneous showing large variations in T{sub C}. The data allows firstly to cut out small crystals with improved homogeneity for neutron scattering experiments and secondly to provide feedback for improving the growth techniques for the crystals. In the future we hope to use the potential of this method to map out magnetic domains across large volume samples.

  15. Radiography and tomography with polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Wolfgang, E-mail: treimer@helmholtz-berlin.de [University of Applied Sciences, Beuth Hochschule für Technik Berlin, Department Mathematics Physics and Chemistry, Luxemburgerstr. 10, D-13353 Berlin (Germany); Helmholtz Zentrum für Materialien und Energie, Department G – GTOMO, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)

    2014-01-15

    Neutron imaging became important when, besides providing impressive radiographic and tomographic images of various objects, physical, quantification of chemical, morphological or other parameters could be derived from 2D or 3D images. The spatial resolution of approximately 50 µm (and less) yields real space images of the bulk of specimens with more than some cm{sup 3} in volume. Thus the physics or chemistry of structures in a sample can be compared with scattering functions obtained e.g. from neutron scattering. The advantages of using neutrons become more pronounced when the neutron spin comes into play. The interaction of neutrons with magnetism is unique due to their low attenuation by matter and because their spin is sensitive to magnetic fields. Magnetic fields, domains and quantum effects such as the Meissner effect and flux trapping can only be visualized and quantified in the bulk of matter by imaging with polarized neutrons. This additional experimental tool is gaining more and more importance. There is a large number of new fields that can be investigated by neutron imaging, not only in physics, but also in geology, archeology, cultural heritage, soil culture, applied material research, magnetism, etc. One of the top applications of polarized neutron imaging is the large field of superconductivity where the Meissner effect and flux pinning can be visualized and quantified. Here we will give a short summary of the results achieved by radiography and tomography with polarized neutrons. - Highlights: • Radiography and tomography with polarized neutrons yield new results concerning the suppressed Meissner effect and magnetic flux trapping. • Suppressed Meissner effect was observed in pure lead samples and niobium. • Trapped magnetic fields in cylindrical Pb samples are squeezed around the rod axis. • The shape and the amount of trapped fields could be determined and quantified.

  16. Neutron beam testing of triblades

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Sarah E [Los Alamos National Laboratory; Du Bois, Andrew J [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Rust, William N [Los Alamos National Laboratory; Du Bois, David H [Los Alamos National Laboratory; Modl, David G [Los Alamos National Laboratory; Quinn, Heather M [Los Alamos National Laboratory; Blanchard, Sean P [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV DEGLI STUDI DI PADOVA ITALY

    2010-12-16

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  17. Polarization in electron and proton beams

    International Nuclear Information System (INIS)

    Buon, J.

    1986-03-01

    One first introduces the concept of polarization for spin 1/2 particle beams and discusses properties of spin kinetics in a stationary magnetic field. Then the acceleration of polarized protons in synchrotrons is studied with emphasis on depolarization when resonances are crossed and on the cures for reducing it. Finally, transverse polarization of electrons in storage rings is discussed as an equilibrium between polarizing and depolarizing effects of synchrotron radiation. Means for obtaining longitudinal polarization are also treated

  18. Beam divergence correction method for neutron resonance spin echo spectroscope

    International Nuclear Information System (INIS)

    Maruyama, Ryuji; Tasaki, Seiji; Hino, Masahiro; Kitaguchi, Masaaki; Kawabata, Yuji; Ebisawa, Toru

    2005-01-01

    A beam divergence correction method for Neutron resonance spin echo (NRSE) spectroscope was proposed and the effectiveness is evaluated by simulation. When a beam divergence correction coil was introduced into NRSE spectroscope and the optimum magnetic field was given, the visibility of spin echo signal was recovered by controlling scattering of phase difference generated by beam divergence. The effectiveness of the correction method was proved by the above result. Principle of NRSE spectroscopy, decrease of spin polarization rate by beam divergence and its correction method, structure of divergence angle correction coil and the magnetic field calculation and result of simulation are described. (S.Y.)

  19. The polarization and beaming effect for GRBs

    OpenAIRE

    Cheng, K. S.; Fan, J. H.; Dai, Z. G.

    1999-01-01

    Both observations and theoretical models suggest that the emissions in gamma-ray bursts (GRBs) and the afterglows are beamed. We argue that the recent polarization measured in the afterglows gives further evidence of beaming in GRBs. In this approach, we adopted the polarization-magnitude relation of BL Lacertae objects to 4 GRBs with available polarization measurements and found that the data of the 4 GRBs are consistent with the relation of BL Lacertae objects. This result suggests that the...

  20. Neutron beam instruments for neutron science at HANARO

    International Nuclear Information System (INIS)

    Kim, Y.K.

    2009-01-01

    HANARO (Highly Advanced Neutron Application Reactor) came on line as the first criticality achieved in 1995. Since then a lot of experimental facilities for various utilizations have been gradually installed over the years up until now. Neutron science actually began with the neutron radiography facility completed in 1997. Thereafter, a series of thermal neutron beam instruments have been added and opened for the users. Some of them are high resolution power diffractometer, four circle diffractometer, small angle neutron spectrometer, and vertical-type reflectometer. The cold neutron research facility project was initiated in 2003, which envisions installation of cold neutron source, related systems, 5 neutron guides, and 7 instruments to satisfy the needs of cold neutron beam as the indispensable tool in NT, BT and other emerging technologies. Cold neutron guide building had been completed in October, 2008. Cold neutrons are planned to be produced later this year. Installations of neutron guides and associated instruments are to be finalized by the middle of 2010, ready for use. A 20 m detector vacuum tank and 20 m pre-sample flight path for 40 m SANS are already in place at the guide hall. Currently, there are about 450 users working with thermal neutron instruments. Once cold neutron instruments are available, we expect the number of users will double within next 3 years. (author)

  1. Accelerating and storing polarized hadron beams

    International Nuclear Information System (INIS)

    Teng, L.C.

    1990-10-01

    Polarization hadron experiments at high energies continue to generate surprises. Many questions remain unanswered or unanswerable within the frame work of QCD. These include such basic questions as to why at high energies the polarization analyzing power in pp elastic scattering remains high, why hyperons are produced with high polarizations etc. It is, therefore, interesting to investigate the possibilities of accelerating and storing polarized beams in high energy colliders. On the technical side the recent understanding and confirmation of the actions of partial and multiple Siberian snakes made it possible to contemplate accelerating and storing polarized hadron beams to multi-TeV energies. In this paper, we will examine the equipment, the operation and the procedure required to obtain colliding beams of polarized protons at TeV energies

  2. Neutron fan beam source for neutron radiography purpose

    International Nuclear Information System (INIS)

    Le Tourneur, P.; Bach, P.; Dance, W. E.

    1999-01-01

    The development of the DIANE neutron radiography system included a sealed-tube neutron generator for this purpose and the optimization of the system's neutron beam quality in terms of divergence and useful thermal neutron yield for each 14-MeV neutron produced. Following this development, the concept of a DIANE fan beam source is herewith introduced. The goal which drives this design is one of economy: by simply increasing the aperture dimension of a conventional DIANE beam in one plane of its collimator axis to a small-angle, fan-shaped output, the useful beam area for neutron radiography would be substantially increased. Thus with the same source, the throughput, or number of objects under examination at any given time, would be augmented significantly. Presented here are the design of this thermal neutron source and the initial Monte Carlo calculations. Taking into account the experience with the conventional DIANE neutron radiography system, these result are discussed and the potential of and interest in such a fan-beam source are explored

  3. Grazing incidence polarized neutron scattering in reflection ...

    Indian Academy of Sciences (India)

    During the year 1980, polarized neutron scattering technique came into being as an ana- lytic tool to measure the ... The discovery of antiferromagnetic coupling was critical to the discovery of GMR, pro- viding as it did ..... Here we consider the incident wave vector ki making an angle αi in the x–z plane while the scattered ...

  4. Some applications of polarized inelastic neutron scattering

    Indian Academy of Sciences (India)

    A brief account of applications of polarized inelastic neutron scattering in condensed matter research is given. ... the itinerant antiferromagnet chromium we demonstrate that the dynamics of the longitudinal and transverse excitations are very different, resolving a long standing puzzle concerning the slope of their dispersion.

  5. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  6. Polarized neutron reflectometry of magnetic nanostructures

    Science.gov (United States)

    Toperverg, B. P.

    2015-12-01

    Among a number of methods employed to characterize various types of magnetic nano-structures Polarized Neutron Reflectometry (PNR) is shown to be a unique tool providing a scope of quantitative information on magnetization arrangement over relevant scales. Deeply penetrating into materials neutron spins are able to resolve vectorial profile of magnetic induction with accuracy of a fraction of Oersted over a fraction of nano-meters. This property is exploited in measurements of specular PNR which hence constitutes the method of depth resolved vector magnetometry widely used to examine magnetic states in exchange coupled magnetic superlattices, exchange bias systems, spin valves, exchange springs, superconducting/ferromagnetic heterostructure, etc. Off-specular polarized neutron scattering (OS-PNS) measures the in-plane magnetization distribution over scales from hundreds of nanoto hundreds of micrometers providing, in combination with specular PNR, access to lateral long range fluctuations of the magnetization vector and magnetic domains in these systems. OSPNS is especially useful in studies of co-operative magnetization reversal processes in various films and multilayers laterally patterned into periodic arrays of stripes, or islands of various dimentions, shapes, internal structures, etc., representing an interest for e.g. spintronics. Smaller sizes of 10?100 nm are accessed with the method of Polarized Neutrons Grazing Incidence Small Angle Scattering (PN-GISAS), which in a combination with specular PNR and OS-PNS is used to study self-assembling of magnetic nano-particles on flat surfaces, while Polarized Neutron Grazing Incidence Diffraction (PN-GID) complete the scope of magnetic information over wide range of scales in 3D space. The review of recent results obtained employing the methods listed above is preceded by the detailed theoretical consideration and exemplified by new developments addressing with PNR fast magnetic kinetics in nano-systems.

  7. The optics of secondary polarized proton beams

    International Nuclear Information System (INIS)

    Carey, D.C.

    1990-05-01

    Polarized protons can be produced by the parity-violating decay of either lambda or sigma hyperons. A secondary bema of polarized protons can then be produced without the difficult procedure of accelerating polarized protons. The preservation of the polarization while the protons are being transmitted to a final focus places stringent limitations on the optics of the beam line. The equations of motion of a polarized particle in a magnetic field have been solved to first order for quadrupole and dipole magnets. The lowest order terms indicate that the polarization vector will be restored to its original direction upon passage through a magnetic system if the momentum vector is unaltered. Higher-order terms may be derived by an expansion in commutators of the rotation matrix and its longitudinal derivative. The higher-order polarization rotation terms then arise from the non-commutivity of the rotation matrices by large angles in three-dimensional space. 5 refs., 3 figs

  8. Polarized 3He Neutron Spin Filters at Oak Ridge National Laboratory

    Science.gov (United States)

    Jiang, C. Y.; Tong, X.; Brown, D. R.; Lee, W. T.; Ambaye, H.; Craig, J. W.; Crow, L.; Culbertson, H.; Goyette, R.; Graves-Brook, M. K.; Hagen, M. E.; Kadron, B.; Lauter, V.; McCollum, L. W.; Robertson, J. L.; Winn, B.; Vandegrift, A. E.

    The unique advantages of using polarized 3He as neutron spin filters, such as broadband and wide angular acceptance of neutron beams, have made it widely used in most neutron facilities. Over the last several years, we have developed a polarized 3He program to meet the increasing needs of 3He based neutron spin filters at the Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). At ORNL, polarized 3He is produced using Spin Exchange Optical Pumping (SEOP). We have constructed a 3He cell fabrication station to produce 3He cells of different pressures and dimensions. Two optical pumping stations have been built in the lab to perform ex situ pumping of 3He. A compact in situ3He analyzer has been constructed and installed for the Magnetism Reflectometer (MAGICS) at SNS. A novel polarized 3He filling station for the Hybrid Spectrometer (HYSPEC) at SNS is under development.

  9. Neutron beams: a new tool for industry

    International Nuclear Information System (INIS)

    Windsor, C.; Wright, C.

    1980-01-01

    The ability of neutron probes to penetrate substances gives industrial researchers a unique tool to investigate the inside of completed components or a large bulk of material. The quality control of material containing defects can be undertaken with neutron beams using one of the following methods; neutron radiography which reveals structural flaws of millimetre sizes, small angle scattering which picks out fluctuations in density and composition that are in the pico-to-nanometre size range (10 -12 - 10 -9 m), or neutron diffraction which shows up structures on the sub-nanometre scale of atomic spacings. The three techniques are considered and specific examples of their use described. (U.K.)

  10. Few-body experiments with polarized beams and polarized targets

    International Nuclear Information System (INIS)

    Simmons, J.E.

    1983-01-01

    A survey is presented concerning recent polarization experiments in the elastic p-d, p- 3 He, and p- 4 He systems. Mention is made of selected neutron experiments. The nominal energy range is 10 to 1000 MeV. Recent results and interpretations of the p-d system near 10 MeV are discussed. New experiments on the energy dependence of back angle p-d tensor polarization are discussed with respect to resolution of discrepancies and difficulty of theoretical interpretation. Progress is noted concerning multiple scattering interpretation of forward p-d deuteron polarization. Some new results are presented concerning the p- 3 He system and higher energy p- 4 He polarization experiments. 52 references

  11. Beam profiles for fast neutrons; and reply

    International Nuclear Information System (INIS)

    Bewley, D.K.; Parnell, C.J.; Bloch, P.

    1976-01-01

    The authors express surprise that Bloch et al. (Bloch, P.H., Hendry, G.O., Hilton, J.L., Quam, W.M., Reinhard, D.K., and Wilson, C., 1976, Phys. Med. Biol., Vol. 21, 450) justified a target size of 5.5 x 5.5 cm in a neutron generator by comparison with the profile given by a 2.5 MV X-ray generator. The penumbral width of this new neutron generator is more than twice that of a modern megavoltage X-ray machine, and larger than those of beams from standard 60 Co units, or of the Hammersmith Hospital cyclotron beam. The large target size of the neutron generator may have to be accepted as a necessary evil, but should not be considered satisfactory. In reply, one of the authors of the original note presents the results of calculations of beam profiles for 14 MeV neutron beams in a tissue-equivalent phantom, and suggests that the broader profiles are principally caused by the larger probability of side scatter, not by source size. The most fruitful approach to sharpening the neutron beam profile would seem to be to design a field flattening filter to increase relative dose near the edge inside the geometrically defined field. Calculations indicating that Bewley and Parnell have underestimated the penumbral widths of 60 Co beams are also presented. (U.K.)

  12. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  13. A variable partially polarizing beam splitter

    Science.gov (United States)

    Flórez, Jefferson; Carlson, Nathan J.; Nacke, Codey H.; Giner, Lambert; Lundeen, Jeff S.

    2018-02-01

    We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.

  14. Beam Characterization at the Neutron Radiography Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  15. Directed Neutron Beams From Inverse Kinematic Reactions

    Science.gov (United States)

    Vanhoy, J. R.; Guardala, N. A.; Glass, G. A.

    2011-06-01

    Kinematic focusing of an emitted fairly mono-energetic neutron beam by the use of inverse-kinematic reactions, i.e. where the projectile mass is greater than the target atom's mass, can provide for the utilization of a significant fraction of the fast neutron yield and also provide for a safer radiation environment. We examine the merit of various neutron production reactions and consider the practicalities of producing the primary beam using the suitable accelerator technologies. Preliminary progress at the NSWC-Carderock Positive Ion Accelerator Facility is described. Possible important applications for this type of neutron-based system can be both advanced medical imaging techniques and active "stand-off" interrogation of contraband items.

  16. Beam monitoring system for intense neutron source

    International Nuclear Information System (INIS)

    Tron, A.M.

    2001-01-01

    Monitoring system realizing novel principle of operation and allowing to register a two-dimensional beam current distribution within entire aperture (100...200 mm) of ion pipe for a time in nanosecond range has been designed and accomplished for beam control of the INR intense neutron source, for preventing thermo-mechanical damage of its first wall. Key unit of the system is monitor of two-dimensional beam current distribution, elements of which are high resistant to heating by the beam and to radiation off the source. The description of the system and monitor are presented. Implementation of the system for the future sources with more high intensities are discussed. (author)

  17. Cylindrically polarized Bessel–Gauss beams

    International Nuclear Information System (INIS)

    Madhi, Daena; Aiello, Andrea; Ornigotti, Marco

    2015-01-01

    We present a study of radially and azimuthally polarized Bessel–Gauss (BG) beams in both the paraxial and nonparaxial regime. We discuss the validity of the paraxial approximation and the form of the nonparaxial corrections for BG beams. We show that independently on the ratio between the Bessel aperture cone angle ϑ 0 and the Gaussian beam divergence θ 0 , the nonparaxial corrections are alway very small and therefore negligible. The explicit expressions for the nonparaxial vector electric field components are also reported. (paper)

  18. Measurements Of Spin Observables In Pseudoscalar-Meson Photo-Production Using Polarized Neutrons In Solid HD

    Energy Technology Data Exchange (ETDEWEB)

    Kageya, Tsuneo

    2014-01-01

    Psuedo-scalar meson photo production measurements have been carried out with longitudinally-polarized neutrons using the circularly and linearly polarized photon beams and the CLAS at Thomas Jefferson National Accelerator Facility (Jlab). The experiment aims to obtain a complete set of spin observables on an efficient neutron target. Preliminary E asymmetries for the exclusive reaction, gamma + n(p)--> pi- + p(p), selecting quasi free neutron kinematics are discussed.

  19. Accelerator Based Neutron Beams for Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  20. Nondestructive inspection using neutron beams

    International Nuclear Information System (INIS)

    2013-01-01

    Neutron-abased experimental techniques such as neutronography, diffraction, or composition and elemental analysis are well established. They have important advantages in the non-destructive analysis of materials, making them a suitable option for quality-control protocols in industrial production lines. In addition, they are highly complementary to other non-destructive techniques, particularly X-ray analysis. Examples of industrial use include studies of pipes and ducts, concrete, or aeronautical components. Notwithstanding the above, the high cost associated with the construction and operation of the requisite neutron facilities has been an important limiting factor for their widespread use by the industrial sector. In this brief contribution, we explore the emerging (and already demonstrated) possibility of using compact, proton-accelerator-based neutron sources. these novel sources can be built and ran at a cost as low as a few ME, making them a competitive option to the more intense spallation or fission-based facilities for industrial applications. (Author)

  1. Neutron spin filter based on optically polarized sup 3 He in a near-zero magnetic field

    CERN Document Server

    Skoy, V R; Sorokin, V N; Kolachevsky, N N; Sobelman, I I; Sermyagin, A V

    2003-01-01

    A test of polarization of sup 3 He nuclei via spin-exchange collisions with optically pumped rubidium atoms in an extremely low applied magnetic field was carried out. Permalloy magnetic shields were used to prevent a fast relaxation of sup 3 He polarization owing to the inhomogeneity of a surrounding magnetic field. The whole installation was placed at the neutron beam line of the IBR-30 facility, and used as a neutron spin filter. Thus, a prototype of new design of neutron polarizer was introduced. We intend to apply this experience for the full-scale KaTRIn facility to test the time reversal violation in neutron-nuclear reactions.

  2. Optimization of a solid state polarizing bender for cold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, V.R.; Washington, A.L.; Stonaha, P.; Ashkar, R.; Kaiser, H. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington IN (United States); Krist, T. [Helmholtz Zentrum Berlin, 14109 Berlin (Germany); Pynn, Roger [Center for the Exploration of Energy and Matter, Indiana University, Bloomington IN (United States); Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge TN (United States)

    2014-12-21

    We have designed a solid state bender to polarize cold neutrons for the Spin Echo Scattering Angle Measurement (SESAME) instrument at the Low Energy Neutron Source (LENS) at Indiana University. The design attempts to achieve high neutron polarization across a wide range of neutron wavelengths and divergence angles by optimizing the supermirror coating materials. The transmission and polarizing efficiency of the bender were modeled using the VITESS software, then measured at both continuous-wave and pulsed neutron sources. While the measured peak neutron transmission and polarization agree reasonably well with simulations, neither quantity has been successfully modeled for long wavelength neutrons. These results imply an insufficient understanding of the magnetic microstructure of the supermirror coatings used.

  3. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  4. Experiments with neutron-rich isomeric beams

    International Nuclear Information System (INIS)

    Rykaczewski, K.; Lewitowicz, M.; Pfuetzner, M.

    1998-01-01

    A review of experimental results obtained on microsecond-isomeric states in neutron-rich nuclei produced in fragmentation reactions and studied with SISSI-Alpha-LISE3 spectrometer system at GANIL Caen is given. The perspectives of experiments based on secondary reactions with isomeric beams are presented

  5. National facility for neutron beam research

    Indian Academy of Sciences (India)

    In this talk, the growth of neutron beam research (NBR) in India over the past five decades is traced beginning with research at Apsara. A range of problems in condensed matter physics could be studied at CIRUS, followed by sophisticated indegenous instrumentation and research at Dhruva. The talk ends with an overview ...

  6. Polarized proton beam for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  7. Other applications of neutron beams in material sciences

    International Nuclear Information System (INIS)

    Novion, C.H. de

    1997-01-01

    The various applications of neutron beams are reviewed. The different mechanisms involved in neutron interaction with matter are explained. We notice that generally neutron radiation effects are unfavorable but can be turned into efficient tools to add new structures or properties to materials, silicon doping is an example. The basis principles of neutron activation analysis and neutron radiography are described. (A.C.)

  8. Adiabatic/diabatic polarization beam splitter

    Energy Technology Data Exchange (ETDEWEB)

    DeRose, Christopher; Cai, Hong

    2017-09-12

    The various presented herein relate to an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic (TM) mode and diabatic for the transverse electric (TE) mode. The PBS comprises a through waveguide and a cross waveguide, wherein an electromagnetic beam comprising TE mode and TM mode components is applied to an input port of the through waveguide. The PBS can be utilized to separate the TE mode component from the TM mode component, wherein the TE mode component exits the PBS via an output port of the through waveguide, and the TM mode component exits the PBS via an output port of the cross waveguide. The PBS has a structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.

  9. Upgrading the AGS polarized beam facility

    International Nuclear Information System (INIS)

    Ratner, L.G.

    1991-01-01

    Although present techniques for crossing depolarizing resonances in circular accelerators work, they are very time-consuming to implement and were only able to provide about a 40% polarized beam at 22 GeV in the Alternating Gradient Synchrotron (AGS). We propose to install a partial ''Siberian Snake'' solenoid in the AGS to eliminate the need to correct imperfection resonances and to make other modifications in our intrinsic resonance correctors. This will allow us to reach an energy of 25 GeV with 70% polarization and will enable the AGS to be an efficient injector of polarized protons into the Relativistic Heavy Ion Collider (RHIC), as well as being able to carry on a fixed-target program with minimum set-up time. 3 refs., 5 figs., 1 tab

  10. Neutron stars with spin polarized self-interacting dark matter

    OpenAIRE

    Rezaei, Zeinab

    2018-01-01

    Dark matter, one of the important portion of the universe, could affect the visible matter in neutron stars. An important physical feature of dark matter is due to the spin of dark matter particles. Here, applying the piecewise polytropic equation of state for the neutron star matter and the equation of state of spin polarized self-interacting dark matter, we investigate the structure of neutron stars which are influenced by the spin polarized self-interacting dark matter. The behavior of the...

  11. Polarization of a stored electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1981-07-01

    Synchrotron radiation by a point charge is a familiar subject in classical electrodynamics. Perhaps less familiar are some quantum mechanical corrections to the classical results. Some of those quantum aspects of synchrotron radiation are described. One of the quantum effects leads to the expectation that electrons in a storage ring will polarize themselves to 92% - a surprisingly high value. A semi-classical derivation of the quantum effects is given. An effort has been made to minimize the need of using quantum mechanics. Results are put together to derive a final expression of beam polarization. Conditions under which the expected 92% polarization is destroyed are found and attributed to depolarization resonances. The various depolarization mechanisms are first illustrated by an idealized example and then systematically treated by a matrix formalism. It is shown that the strength of depolarization is specified by a key quantity called the spin chromaticity. Finally as an application of the obtained results, an estimate of the achievable level of beam polarization for two existing electron storage rings, SPEAR and PEP, is given.

  12. Recent tendency to neutron beam experiments

    International Nuclear Information System (INIS)

    Hamaguchi, Yoshikazu

    1979-01-01

    The application of neutron beam experiment to the study of reactor materials is described in this paper. In Japan, neutron beam experiments have been developed, using reactors JRR-2, JRR-3 and KUR-1. Most of experimental apparatuses in Japan are neutron diffraction systems and three-axis neutron spectrometers, similarly to those in U.S.A. and Canada. In Europe, cold neutron experiments have been developed. The most interesting experiment at present is the small angle scattering experiment. This technique can be applied to the other field than solid state physics. Nondestructive measurements for large samples can be made. Measurement while controlling outside conditions, and measurement for radioactive substances of considerable intensity are possible. Statistical mean values for larger volumes can be obtained as compared with electron microscope observation. Effects of multiple scattering are negligible. A non-destructive test of the properties of turbine blades was made at the GALILEO research reactor. The results were useful for the estimation of the residual life of the blades. Anomaly in the welded parts of pressure vessels for reactors can be detected by the small angle scattering method. The voids in irradiated samples were also observed by this technique. (Kato, T.)

  13. The first neutron beam hits EAR2

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    On 25 July 2014, about a year after construction work began, the Experimental Area 2 (EAR2) of CERN’s neutron facility n_TOF recorded its first beam. Unique in many aspects, EAR2 will start its rich programme of experimental physics this autumn.   The last part of the EAR2 beamline: the neutrons come from the underground target and reach the top of the beamline, where they hit the samples. Built about 20 metres above the neutron production target, EAR2 is in fact a bunker connected to the n_TOF underground facilities via a duct 80 cm in diameter, where the beamline is installed. The feet of the bunker support pillars are located on the concrete structure of the n_TOF tunnel and part of the structure lies above the old ISR building. A beam dump located on the roof of the building completes the structure. Neutrons are used by physicists to study neutron-induced reactions with applications in a number of fields, including nuclear waste transmutation, nuclear technology, nuclear astrop...

  14. Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.

    Science.gov (United States)

    Wood, Mary H; Welbourn, Rebecca J L; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M

    2015-06-30

    Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.

  15. Development of advanced neutron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Seong, B. S.; Lee, J. S.; Sim, C. M. (and others)

    2007-06-15

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility.

  16. Development of advanced neutron beam technology

    International Nuclear Information System (INIS)

    Seong, B. S.; Lee, J. S.; Sim, C. M.

    2007-06-01

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility

  17. Polarized 3He gas circulating technologies for neutron analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Watt, David W. [Xemed, LLC, Durham, NH (United States)

    2017-10-02

    We outline our project to develop a circulating polarized helium-3 system for developing of large, quasi-continuously operating neutron analyzers. The project consisted of four areas: 1) Development of robust external cavity narrowed diode laser output with spectral line width < 0.17 nm and power of 2000 W. 2) Development of large glass polarizing cells using cell surface treatments to obtain long relaxation lifetimes. 3) Refinements of the circulation system with an emphasis on gas purification and materials testing. 4) Design/fabrication of a new polarizer system. 5) Preliminary testing of the new polarizer. 1. Developed Robust High-Power Narrowed Laser The optical configuration of the laser was discussed in the proposal and will be reviewed in the body of this report. The external cavity is configured to mutually lock the wavelength of five 10-bar laser stacks. All the logistical milestones were been met and critical subsystems- laser stack manifold and power divider, external laser cavity, and output telescope- were assembled and tested at low power. Each individual bar is narrowed to ~0.05 nm; when combined the laser has a cumulative spectral width of 0.17 nm across the entire beam due to variations of the bars central wavelength by +/- 0.1 nm, which is similar to that of Volume Bragg Grating narrowed laser bars. This configuration eliminates the free-running “pedestal” that occurs in other external cavity diode lasers. The full-scale laser was completed in 2016 and was used in both the older and newer helium polarizers. This laser was operated at 75% power for periods of up to 8 hours. Once installed, the spectrum became slightly broader (~.25 nm) at full power; this is likely due to very slight misalignments that occurred during handling. 2. Developed the processes to create uniform sintered sol-gel coatings. Our work on cell development comprised: 1) Production of large GE180 cells and explore different means of cell preparation, and 2) Development of

  18. Off-specular polarized neutron reflectometry study of magnetic dots with a strong shape anisotropy

    CERN Document Server

    Temst, K; Moshchalkov, V V; Bruynseraede, Y; Fritzsche, H; Jonckheere, R

    2002-01-01

    We have measured the off-specular polarized neutron reflectivity of a regular array of rectangular magnetic polycrystalline Co dots, which were prepared by a combination of electron-beam lithography, molecular beam deposition, and lift-off processes. The dots have a length-to-width ratio of 4:1 imposing a strong shape anisotropy. The intensity of the off-specular satellite reflection was monitored as a function of the magnetic field applied parallel to the rows of dots and in the plane of the sample, allowing us to analyze the magnetization-reversal process using the four spin-polarized cross sections. (orig.)

  19. Development of polarized {sup 3}He filter for polarized neutron experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, K.; Sato, H.; Yoshimi, A.; Asahi, K. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Masuda, Y.; Muto, S.; Ishimoto, S.; Morimoto, K.

    1996-08-01

    A high-pressure polarized {sup 3}He gas cell, pumped with two diode lasers, has been developed at KEK for use as a polarizer and a spin analyzer for low energy neutrons. The polarization attained of {sup 3}He was determined through the measurement of the transmission of the unpolarized neutrons through the {sup 3}He cell. So far we obtained P{sub He}=18% at 10 atm and P{sub He}=12% at 20 atm. (author)

  20. Intermediate-energy neutron beams from reactors for NCT

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    This paper discusses ways that a beam of intermediate-energy neutrons might be extracted from a nuclear reactor. The challenge is to suppress the fast-neutron component and the gamma-ray component of the flux while leaving enough of the intermediate-energy neutrons in the beam to be able to perform neutron capture therapy in less than an hour exposure time. Moderators, filters, and reflectors are considered. 11 references, 7 figures, 3 tables

  1. Study of computerized tomography using neutron beam

    International Nuclear Information System (INIS)

    Pereira, W.W.

    1991-05-01

    This paper aims to demonstrate the advantages, shortcomings and complementaries of a tomography development using neutrons over the one employing gamma rays in the context of their applications to non destructive essays. A simulated experimental study was performed in order to compare the two aforementioned tomographic procedures as applied to some materials. These materials were chosen for their clear advantages and complementaries as, for instance, aluminium, iron, plastic and aluminium hydroxide. In this work two tomographic systems, are employed both with parallel beams. The first with a gamma radiation source (Caesium-137), with an energy of 662 KeV and an activity of 3,9 x 10 9 Bq (100 mCi) and the second one employing a neutron source, the Argonaut Reactor of the Instituto de Engenharia Nuclear, IEN/CNEN, from where the thermal neutron beam of about 10 5 n/(cm.s) was obtained. It is possible to conclude from the simulated and experimental results, by means of image analysis and distortion measurements, that for a given material the adequate radiation and its energy may be chosen so as to better characterize it. (author)

  2. Accelerating polarized beams at the AGS

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the presence of numerous depolarizing resonances. During acceleration, a depolarizing resonance is crossed whenever the spin precession frequency equals the frequency with which spin-perturbing magnetic fields are encountered. There are two main types of depolarizing resonances corresponding to the possible sources of such fields: imperfection resonances, which are driven by magnet errors and misalignments, and intrinsic resonances, driven by the focusing fields. The resonance conditions are usually expressed in terms of the spin tune ν s , which is defined as the number of spin precessions per revolution. For an ideal planar accelerator, where orbiting particles experience only the vertical guide field, the spin tune is equal to Gγ, where G = 1.7928 is the anomalous magnetic moment of the proton and γ is the relativistic Lorentz factor. The resonance condition for imperfection depolarizing resonances arise when ν s = Gγ = n, where n is an integer. Imperfection resonances are therefore separated by only 523 MeV energy steps. The condition for intrinsic resonances is ν s = Gγ = kP ± ν y , where k is an integer, ν y is the vertical betatron tune and P is the superperiodicity. For the AGS, P = 12 and ν y ∼ 8.8. For most of the time during the acceleration cycle, the precession direction, or stable spin direction, coincides with the main vertical magnetic field. Close to a resonance, the stable spin direction is perturbed away from the vertical direction by the resonance driving fields. When a polarized beam is accelerated through an isolated resonance, the final polarization can be calculated analytically

  3. Local magnetic structure determination using polarized neutron holography

    Science.gov (United States)

    Szakál, Alex; Markó, Márton; Cser, László

    2015-05-01

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems.

  4. Local magnetic structure determination using polarized neutron holography

    International Nuclear Information System (INIS)

    Szakál, Alex; Markó, Márton; Cser, László

    2015-01-01

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems

  5. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    International Nuclear Information System (INIS)

    Chen, W.C.; Gentile, T.R.; Ye, Q.; Kirchhoff, A.; Watson, S.M.; Rodriguez-Rivera, J.A.; Qiu, Y.; Broholm, C.

    2016-01-01

    Wide-angle polarization analysis with polarized 3 He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3 He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3 He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3 He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells. (paper)

  6. Measurement of deuteron beam polarization before and after acceleration

    Directory of Open Access Journals (Sweden)

    A Ramazani Moghaddam Arani

    2017-02-01

    Full Text Available Beam polarization measurement in scattering experiments with a high accuracy and the lowest possible cost is an important issue. In this regard, deuteron beam polarization was measured in the low-energy beam line easily with a relatively low cost procedure and in a very short time by Lamb Shift Polarimeter (LSP. Also, the beam polarization has been measured in high-energy beam line with BINA. In low-energy line, a polarized beam of deuterons delivered by POLIS was decelerated and focused on LSP detection system. Three resonances between 52mT and 63mT show the distribution of different spin states of polarized deuteron beam. In high-energy beam line, polarization can be measured employing BINA via the H(d,dp reaction. The asymmetry ratio, was obtained as a function of azimuthal angle, φ, for several polar scattering angles. Knowing values of the analyzing powers, the ratio has been used to extract the polarization results. The obtained results show that polarization of deuteron beam that is accelerated up to the energy of 130 MeV is almost the same before and after acceleration

  7. Polarization coupling of vector Bessel–Gaussian beams

    International Nuclear Information System (INIS)

    Takeuchi, Ryushi; Kozawa, Yuichi; Sato, Shunichi

    2013-01-01

    We report polarization coupling of radial and azimuthal electric field components of a vector light beam as predicted by the fact that the vector Helmholtz equation is expressed as coupled differential equations in cylindrical coordinates. To clearly observe the polarization variation of a beam as it propagates, higher order transverse modes of a vector Bessel–Gaussian beam were generated by a gain distribution modulation technique, which created a narrow ring-shaped gain region in a Nd:YVO 4 crystal. The polarization coupling was confirmed by the observation that the major polarization component of a vector Bessel–Gaussian beam alternates between radial and azimuthal components along with the propagation. (paper)

  8. Neutron capture therapy beams at the MIT Research Reactor

    International Nuclear Information System (INIS)

    Choi, J.R.; Clement, S.D.; Harling, O.K.; Zamenhof, R.G.

    1990-01-01

    Several neutron beams that could be used for neutron capture therapy at MITR-II are dosimetrically characterized and their suitability for the treatment of glioblastoma multiforme and other types of tumors are described. The types of neutron beams studied are: (1) those filtered by various thicknesses of cadmium, D2O, 6Li, and bismuth; and (2) epithermal beams achieved by filtration with aluminum, sulfur, cadmium, 6Li, and bismuth. Measured dose vs. depth data are presented in polyethylene phantom with references to what can be expected in brain. The results indicate that both types of neutron beams are useful for neutron capture therapy. The first type of neutron beams have good therapeutic advantage depths (approximately 5 cm) and excellent in-phantom ratios of therapeutic dose to background dose. Such beams would be useful for treating tumors located at relatively shallow depths in the brain. On the other hand, the second type of neutron beams have superior therapeutic advantage depths (greater than 6 cm) and good in-phantom therapeutic advantage ratios. Such beams, when used along with bilateral irradiation schemes, would be able to treat tumors at any depth in the brain. Numerical examples of what could be achieved with these beams, using RBEs, fractionated-dose delivery, unilateral, and bilateral irradiation are presented in the paper. Finally, additional plans for further neutron beam development at MITR-II are discussed

  9. Diting: A polarized time-of-flight neutron reflectometer at CMRR reactor in China

    Science.gov (United States)

    Li, Xinxi; Huang, Chaoqiang; Wang, Yan; Chen, Bo; Sun, Guang'ai; Liu, Yaoguang; Gong, Jian; Kang, Wu; Liu, Hangang

    2016-11-01

    A new time-of-flight neutron reflectometer with a polarization option is developed and tested at the Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, China. Its scattering geometry is horizontal. The constructed neutron reflectometer is a multipurpose instrument that can be used for the characterization of a stratified microstructure and hidden interfaces of solid thin films. Diting is designed for both magnetic and nonmagnetic multi-layer thin films. Spin polarization and analysis are achieved by transmission magnetized supermirrors. The sample unit is equipped with an electromagnet, which can provide a vertical magnetic field range of 0-1.2 tesla. The available neutron beam is a white beam with wavelength range of 0.15-1.25 nm, which can be cut into different wavelength resolution neutron pulses by a four-disk chopper. A two-dimensional position-sensitive detector is employed to count the specular and off-specular reflected neutron beam. A minimum reflectivity of 10-6 is measured on this instrument.

  10. Materials research with neutron beams from a research reactor

    International Nuclear Information System (INIS)

    Root, J.; Banks, D.

    2015-01-01

    Because of the unique ways that neutrons interact with matter, neutron beams from a research reactor can reveal knowledge about materials that cannot be obtained as easily with other scientific methods. Neutron beams are suitable for imaging methods (radiography or tomography), for scattering methods (diffraction, spectroscopy, and reflectometry) and for other possibilities. Neutron-beam methods are applied by students and researchers from academia, industry and government to support their materials research programs in several disciplines: physics, chemistry, materials science and life science. The arising knowledge about materials has been applied to advance technologies that appear in everyday life: transportation, communication, energy, environment and health. This paper illustrates the broad spectrum of materials research with neutron beams, by presenting examples from the Canadian Neutron Beam Centre at the NRU research reactor in Chalk River. (author)

  11. Neutron beam facilities at the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Kim, S.

    2003-01-01

    The exciting development for Australia is the construction of a modern state-of-the-art 20-MW Replacement Research Reactor which is currently under construction to replace the aging reactor (HIFAR) at ANSTO in 2006. To cater for advanced scientific applications, the replacement reactor will provide not only thermal neutron beams but also a modern cold-neutron source moderated by liquid deuterium at approximately -250 deg C, complete with provision for installation of a hot-neutron source at a later stage. The latest 'supermirror' guides will be used to transport the neutrons to the Reactor Hall and its adjoining Neutron Guide Hall where a suite of neutron beam instruments will be installed. These new facilities will expand and enhance ANSTO's capabilities and performance in neutron beam science compared with what is possible with the existing HIFAR facilities, and will make ANSTO/Australia competitive with the best neutron facilities in the world. Eight 'leading-edge' neutron beam instruments are planned for the Replacement Research Reactor when it goes critical in 2006, followed by more instruments by 2010 and beyond. Up to 18 neutron beam instruments can be accommodated at the Replacement Research Reactor, however, it has the capacity for further expansion, including potential for a second Neutron Guide Hall. The first batch of eight instruments has been carefully selected in conjunction with a user group representing various scientific interests in Australia. A team of scientists, engineers, drafting officers and technicians has been assembled to carry out the Neutron Beam Instrument Project to successful completion. Today, most of the planned instruments have conceptual designs and are now being engineered in detail prior to construction and procurement. A suite of ancillary equipment will also be provided to enable scientific experiments at different temperatures, pressures and magnetic fields. This paper describes the Neutron Beam Instrument Project and gives

  12. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  13. Neutron beam instrumentation at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Kennedy, S.

    2003-01-01

    Full text: ANSTO is building a nuclear reactor to replace the HIFAR research reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be used for both neutron beam research and radioisotope production. This reactor will provide Australian scientists with a modern powerful facility for condensed matter research and medical applications well into the 21 st century. A large liquid D 2 moderator will generate intense cold neutron beams that will be transported to a suite of neutron beam instruments in a neutron guide hall by supermirror neutron guides. The contract for construction of the reactor, irradiation facilities and neutron beam-lines, with the exception of the neutron beam instruments, was awarded to INVAP S.E. in July 2000. The neutron beam instruments are being developed by ANSTO in consultation with the Australian user community. Work on both fronts is progressing on schedule. The presentation will include a review the planned scientific and irradiation capabilities, a description of the facility and the key technologies employed to generate and transport the intense neutron beams and a status report on our progress to date

  14. Opportunities for neutron beam research at the OPAL reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane

    2015-01-01

    The OPAL nuclear research reactor, at Lucas Heights, is a modern 20 MW pool type reactor. OPAL is used for scientific research using neutron beams, radioisotope production (particularly for radiopharmaceuticals) and industrial irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After seven years in construction, the reactor and neutron beam facilities were commissioned in 2007. OPAL now has ten first rate neutron spectrometers in operation, including one radiography/tomography instrument, with three more in commissioning. The presentation will include an introduction to the OPAL neutron beam facility, including some discussion of our strategic objectives. It will also provide scientific highlights from our research selected to illustrate the potential for applications in materials science

  15. Dynamically polarized samples for neutron protein crystallography at the Spallation Neutron Source

    Science.gov (United States)

    Zhao, Jinkui; Pierce, Josh; Myles, Dean; Robertson, J. L.; Herwig, Kenneth W.; Standaert, Bob; Cuneo, Matt; Li, Le; Meilleur, Flora

    2016-09-01

    To prepare for the next generation neutron scattering instruments for the planned second target station at the Spallation Neutron Source (SNS) and to broaden the scientific impact of neutron protein crystallography at the Oak Ridge National Laboratory, we have recently ramped up our efforts to develop a dynamically polarized target for neutron protein crystallography at the SNS. Proteins contain a large amount of hydrogen which contributes to incoherent diffraction background and limits the sensitivity of neutron protein crystallography. This incoherent background can be suppressed by using polarized neutron diffraction, which in the same time also improves the coherent diffraction signal. Our plan is to develop a custom Dynamic Nuclear Polarization (DNP) setup tailored to neutron protein diffraction instruments. Protein crystals will be polarized at a magnetic field of 5 T and temperatures of below 1 K. After the dynamic polarization process, the sample will be brought to a frozen-spin mode in a 0.5 T holding field and at temperatures below 100 mK. In a parallel effort, we are also investigating various ways of incorporating polarization agents needed for DNP, such as site specific spin labels, into protein crystals.

  16. A new polarized neutron interferometry facility at the NCNR

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, C.B. [Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70188 (United States); Arif, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Cory, D.G. [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5 (Canada); Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Mineeva, T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Nsofini, J.; Sarenac, D. [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Williams, C.J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Huber, M.G., E-mail: michael.huber@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pushin, D.A., E-mail: dmitry.pushin@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)

    2016-03-21

    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  17. A polarized beam for the M-3 line

    International Nuclear Information System (INIS)

    Underwood, D.; Colton, E.; Halpern, H.

    1978-01-01

    A beamline is proposed for polarized protons to be built in the M-3 line of the Meson Laboratory utilizing lambda decays. This beamline would provide a clean source of polarized protons or an enriched beam of antiprotons or polarized antiprotons

  18. Neutron beam facilities at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, Shane; Robinson, Robert; Hunter, Brett

    2001-01-01

    Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with thermal neutron flux (unperturbed) of 4 x 10 14 n/cm 2 /sec and a liquid D 2 cold neutron source. Cold and thermal neutron beams for neutron beam research will be provided at the reactor face and in a large neutron guide hall. Supermirror neutron guides will transport cold and thermal neutrons to the guide hall. The reactor and the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP S.E. under contract. The neutron beam instruments will be developed by ANSTO, in consultation with the Australian user community. This status report includes a review the planned scientific capabilities, a description of the facility and a summary of progress to date. (author)

  19. Neutron beams implemented at nuclear research reactors for BNCT

    Science.gov (United States)

    Bavarnegin, E.; Kasesaz, Y.; Wagner, F. M.

    2017-05-01

    This paper presents a survey of neutron beams which were or are in use at 56 Nuclear Research Reactors (NRRs) in order to be used for BNCT, either for treatment or research purposes in aspects of various combinations of materials that were used in their Beam Shaping Assembly (BSA) design, use of fission converters and optimized beam parameters. All our knowledge about BNCT is indebted to researches that have been done in NRRs. The results of about 60 years research in BNCT and also the successes of this method in medical treatment of tumors show that, for the development of BNCT as a routine cancer therapy method, hospital-based neutron sources are needed. Achieving a physical data collection on BNCT neutron beams based on NRRs will be helpful for beam designers in developing a non-reactor based neutron beam.

  20. Functionalized liquid crystal polymers generate optical and polarization vortex beams

    Science.gov (United States)

    Sakamoto, Moritsugu; Nakamoto, Yuki; Tien, Tran Minh; Kawai, Kotaro; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2017-08-01

    In recent year, optical and polarization vortex (OV and PV) beams, which has phase and polarization singularities, have much-attracted attention in various research fields due to their unique physical properties. In this presentation, we report our attempts for the vortex beam generation based on the photo-alignment technique of functionalized liquid crystal polymers. The OV and PV beam generations are respectively demonstrated by using azo-dye-doped liquid crystal polymers and photocrosslinkable polymer liquid crystal. Our approaches realize highly functionalized vortex beam generators which are expected to evolve the photonics applications of vortex beams.

  1. The behavior of a type-II superconductor Nb in a magnetic field as investigated in polarized-neutron transmission experiments

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.

    1995-01-01

    The type-II superconducting polycrystal Nb was investigated on the SPN-1 polarized-neutron spectrometer at the high-intensity pulsed reactor IBR-2 at Dubna. In polarized-neutron transmission experiments the magnetic-field dependence of the neutron beam polarization was measured. Experiments were performed over a wide magnetic-field range from 0 to H c2 at a temperature of 4.8 K. A quasiperiodic variation of the neutron depolarization as a function of magnetic-field strength was observed. (orig.)

  2. Development and Applications of Residual Stress Measurements Using Neutron Beams

    OpenAIRE

    ABRIOLA S. A.; BALAGUROV A.; BASHIR J.; DAS A.; EDWARDS L.; GNAEUPEL-HEROLD T.; GOH B.; IONITA I.; MIKULA P.; OHMS Carsten; PELD N.; SCHNEIDER Rainer; SUTIARSO S.; TOROK G.; VENTER A.

    2012-01-01

    The deep penetration and selective absorption of neutrons make them a powerful tool in nondestructive testing of materials with large samples or objects. Residual stress formed in a material during manufacturing, welding, utilization or repairs can be measured by means of neutron diffraction. In fact, neutron diffraction is the only non-destructive testing method, which can facilitate 3-D mapping of residual stress in a bulk component. Stress measurement using neutron beams is a technique ...

  3. Cold guided beams of polar molecules

    International Nuclear Information System (INIS)

    Motsch, Michael

    2010-01-01

    This thesis reports on experiments characterizing cold guided beams of polar molecules which are produced by electrostatic velocity filtering. This filtering method exploits the interaction between the polar molecules and the electric field provided by an electrostatic quadrupole guide to extract efficiently the slow molecules from a thermal reservoir. For molecules with large and linear Stark shifts such as deuterated ammonia (ND 3 ) or formaldehyde (H 2 CO), fluxes of guided molecules of 10 10 -10 11 molecules/s are produced. The velocities of the molecules in these beams are in the range of 10-200 m/s and correspond to typical translational temperatures of a few Kelvin. The maximum velocity of the guided molecules depends on the Stark shift, the molecular mass, the geometry of the guide, and the applied electrode voltage. Although the source is operated in the near-effusive regime, the number density of the slowest molecules is sensitive to collisions. A theoretical model, taking into account this velocity-dependent collisional loss of molecules in the vicinity of the nozzle, reproduces the density of the guided molecules over a wide pressure range. A careful adjustment of pressure allows an increase in the total number of molecules, whilst yet minimizing losses due to collisions of the sought-for slow molecules. This is an important issue for future applications. Electrostatic velocity filtering is suited for different molecular species. This is demonstrated by producing cold guided beams of the water isotopologs H 2 O, D 2 O, and HDO. Although these are chemically similar, they show linear and quadratic Stark shifts, respectively, when exposed to external electric fields. As a result, the flux of HDO is larger by one order of magnitude, and the flux of the individual isotopologs shows a characteristic dependence on the guiding electric field. The internal-state distribution of guided molecules is studied with a newly developed diagnostic method: depletion

  4. The neutron beam users tape management system

    International Nuclear Information System (INIS)

    Lyall, B.; Johnson, M.W.

    1977-02-01

    Systems are described for dealing with data collected at the High Flux Reactor, Institut Laue-Langevin, Grenoble and brought on magnetic tape to the Neutron Beam Research Unit at the Rutherford Laboratory. The first system, named GNAT, was designed to archive the incoming 800 bpi tapes onto 6250 bpi tapes (to enable them to return to the ILL). The archiving program, besides choosing the archive tapes, keeping a record of the data sets archived, and writing the archive tape, should be able to cope with incoming tapes whose formats are somewhat different from the standard IBM format. The second system, named FONT, was designed to maintain a record of all the tapes in the NBRU's possession, their whereabouts and what data, if any, are on them. (U.K.)

  5. The conceptual calculation for the neutron beam device at Mark 1

    International Nuclear Information System (INIS)

    Jiang Xinbiao; Zhu Yangni; Gao Jijin; Li Yiguo; Ji Jinzhong

    2006-01-01

    The thermal neutron beam device, epithermal neutron beam device and test duct experiment device are designed by using Monte Carlo method at 30 kW Mark 1( -1). The compared calculation for transverse cross section dimension, moderator, reflector and others of neutron filter device are studied in this paper. The three optimized neutron beams including thermal neutron beam, epithermal neutron beam and the beam for measuring blood boron density, whose neutron flux density per reactor power are rather high, are also introduced. The results show that the BNCT neutron beam can be designed by using 30kW -1 reactor. (author)

  6. The neutron beam facility at the Australian replacement research reactor

    International Nuclear Information System (INIS)

    Hunter, B.; Kennedy, S.

    1999-01-01

    Full text: The Australian federal government gave ANSTO final approval to build a research reactor to replace HIFAR on August 25th 1999. The replacement reactor is to be a multipurpose reactor with a thermal neutron flux of 3 x 10 14 n.cm -2 .s -1 and having improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The replacement reactor will commence operation in 2005 and will cater for Australian scientific, industrial and medical needs well into the 21st century. The scientific capabilities of the neutron beams at the replacement reactor are being developed in consultation with representatives from academia, industry and government research laboratories to provide a facility for condensed matter research in physics, chemistry, materials science, life sciences, engineering and earth sciences. Cold, thermal and hot neutron sources are to be installed, and neutron guides will be used to position most of the neutron beam instruments in a neutron guide hall outside the reactor confinement building. Eight instruments are planned for 2005, with a further three to be developed by 2010. A conceptual layout for the neutron beam facility is presented including the location of the planned suite of neutron beam instruments. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by an accredited reactor builder in a turnkey contract. Tenders have been called for December 1999, with selection of contractor planned by June 2000. The neutron beam instruments will be developed by ANSTO and other contracted organisations in consultation with the user community and interested overseas scientists. The facility will be based, as far as possible, around a neutron guide hall that is be served by three thermal and three cold neutron guides. Efficient transportation of thermal and cold neutrons to the guide hall requires the use of modern super

  7. Upgrade for the epithermal neutron beam at NRI Rez

    International Nuclear Information System (INIS)

    Marek, M.; Flibor, S.; Viererbl, L.; Burian, J.; Rejchrt, J.; Klupak, V.; Gambarini, G.; Vanossi, E.

    2006-01-01

    The epithermal neutron beam facility designed for pre-clinical neutron capture therapy research has been operated at LVR-15 reactor for more than ten years. The construction of the beam filter has been recently modified especially for the shielding quality of the beam shutter to be improved. The parameters of the upgraded beam were calculated with the MCNP code and a new source term for the NCTPLAN treatment planning software was evaluated. The calculated source term was consequently scaled according to the results of measurements in the free beam and in the 50x50x25 cm 3 water phantom. (author)

  8. Silicon detectors for the n-TOF neutron beams monitoring

    CERN Document Server

    Cosentino, L.; Barbagallo, M.; Colonna, N.; Damone, L.; Pappalardo, A.; Piscopo, M.; Finocchiaro, P.

    2015-01-01

    During 2014 the second experimental area EAR2 was completed at the n-TOF neutron beam facility at CERN. As the neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target, the resulting neutron beam covers an enormous energy range, from thermal to several GeV. In this paper we describe two beam diagnostic devices, designed and built at INFN-LNS, both exploiting silicon detectors coupled with neutron converter foils containing 6Li. The first one is based on four silicon pads and allows to monitor the neutron beam flux as a function of the neutron energy. The second one, based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices have been ch...

  9. Investigation of Beam Emittance and Beam Transport Line Optics on Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew [Northern Illinois U.; Syphers, Michael [Fermilab

    2017-10-06

    Effects of beam emittance, energy spread, optical parameters and magnet misalignment on beam polarization through particle transport systems are investigated. Particular emphasis will be placed on the beam lines being used at Fermilab for the development of the muon beam for the Muon g-2 experiment, including comparisons with the natural polarization resulting from pion decay, and comments on the development of systematic correlations among phase space variables.

  10. Limitations on the accuracy of polarized-neutron diffractometry

    International Nuclear Information System (INIS)

    Moon, R.M.; Koehler, W.C.; Shull, C.G.

    1975-01-01

    The magnetic force on a neutron as it enters a high-field magnet can influence the results of polarized-neutron diffraction experiments. The position of the Bragg peak is slightly different for neutrons in the two spin states and the peak intensity is slightly different. The magnitudes of these effects are calculated and experimental evidence confirming the peak shift calculation is presented. Suggestions for experimental procedures to minimize these effects are presented. The discussion is directed toward experiments in which flipping-ratio accuracies approaching 5x10 -5 are desired. (Auth.)

  11. Polarization-beam-splitter-less integrated dual-polarization coherent receiver.

    Science.gov (United States)

    Alonso-Ramos, C; Reyes-Iglesias, P J; Ortega-Moñux, A; Pérez-Galacho, D; Halir, R; Molina-Fernández, I

    2014-08-01

    Conventional dual-polarization coherent receivers require polarization beam splitters for either the signal or the local oscillator path. This severely hinders monolithic integration, since integrated polarization splitting devices often exhibit stringent fabrication tolerances. Here we propose a dual-polarization monolithically integrated coherent receiver architecture that completely avoids the use of polarization splitting elements. Polarization management is instead achieved by adequately engineering the birefringence of the interconnecting waveguides. The resultant receiver is highly tolerant to fabrication deviations and thus offers a completely new route for monolithic integration of dual-polarization receivers without any type of active tuning.

  12. Spin-wave dynamics in Invar Fe65Ni35 studied by small-angle polarized neutron scattering

    NARCIS (Netherlands)

    Brück, E.H.; Grigoriev, S.V.; Deriglazov, V.V.; Okorokov, A.I.; Dijk van, N.H.; Klaasse, J.C.P.

    2002-01-01

    Abstract. Spin dynamics in Fe65Ni35 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below TC=485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping & were obtained by

  13. Grazing incidence polarized neutron scattering in reflection ...

    Indian Academy of Sciences (India)

    along with suppression of training effect in exchange coupled system was microscopically identified using neutron ..... reversal mechanism and suppression of training in an exchange-coupled system by Paul et al are worth ...... density functional calculations based on Korringa–Kohn–Rostoker–Coherent potential-.

  14. Polarized 3He Gas Circulating Technologies for Neutron Analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Watt, David [Xemed LLC, Durham, NH (United States); Hersman, Bill [Xemed LLC, Durham, NH (United States)

    2014-12-10

    We describe the development of an integrated system for quasi-continuous operation of a large volume neutron analyzer. The system consists of a non-magnetic diaphragm compressor, a prototype large volume helium polarizer, a surrogate neutron analyzer, a non-depolarizing gas storage reservoir, a non-ferrous valve manifold for handling gas distribution, a custom rubidium-vapor gas return purifier, and wire-wound transfer lines, all of which are immersed in a two-meter external magnetic field. Over the Phase II period we focused on three major tasks required for the successful deployment of these types of systems: 1) design and implementation of gas handling hardware, 2) automation for long-term operation, and 3) improvements in polarizer performance, specifically fabrication of aluminosilicate optical pumping cells. In this report we describe the design, implementation, and testing of the gas handling hardware. We describe improved polarizer performance resulting from improved cell materials and fabrication methods. These improvements yielded valved 8.5 liter cells with relaxation times greater than 12 hours. Pumping this cell with 1500W laser power with 1.25nm linewidth yielded peak polarizations of 60%, measured both inside and outside the polarizer. Fully narrowing this laser to 0.25nm, demonstrated separately on one stack of the four, would have allowed 70% polarization with this cell. We demonstrated the removal of 5 liters of polarized helium from the polarizer with no measured loss of polarization. We circulated the gas through a titanium-clad compressor with polarization loss below 3% per pass. We also prepared for the next phase of development by refining the design of the polarizer so that it can be engineer-certified for pressurized operation. The performance of our system far exceeds comparable efforts elsewhere.

  15. Coherence approach to neutron polarization propagation in instruments

    NARCIS (Netherlands)

    De Haan, V.O.; Van Well, A.A.; Plomp, J.

    2008-01-01

    The propagation of the mutual coherence function is a well known method to describe the effects of neutron’s propagation through scattering instruments. This method is extended with the description of the coherence matrix to account for neutron polarization effects and its propagation through an

  16. Dosimetric properties of the fast neutron therapy beams at TAMVEC

    International Nuclear Information System (INIS)

    Almond, P.R.; Smith, A.R.; Smathers, J.R.; Otte, V.A.

    1975-01-01

    In October 1972, M.D. Anderson Hospital and Tumor Institute of the University of Texas System Cancer Center initiated a clinical trial of fast neutron radiotherapy using the cyclotron at Texas A and M University. Initially, the study used neutrons produced by bombarding beryllium with 16 MeV deuterons, but since March, 1973, neutrons from 50 MeV deuterons have been used. The dosimetric properties of the 30 MeV beams have also been measured for comparison with the neutron beams from D-T generators. The three beams are compared in terms of dose rate, skin sparing, depth dose and field flatness. Isodose curves for treatment planning were generated using the decrement line method and compared to curves measured by a computer controlled isodose plotter. This system was also used to measure the isodose curves for wedge fields. Dosimetry checks on various patients were made using silicon diodes as in vivo fast neutron dosimeters

  17. Polarized 3He Neutron Spin Filters

    Energy Technology Data Exchange (ETDEWEB)

    Sno, William Michael [Indiana Univ., Bloomington, IN (United States)

    2016-01-12

    The goal of this grant to Indiana University and subcontractors at Hamilton College and Wisconsin and the associated Interagency Agreement with NIST was to extend the technique of polarized neutron scattering by the development and application of polarized 3He-based neutron spin filters. This effort was blessed with long-term support from the DOE Office of Science, which started in 2003 and continued until the end of a final no-cost extension of the last 3-year period of support in 2013. The steady support from the DOE Office of Science for this long-term development project was essential to its eventual success. Further 3He neutron spin filter development is now sited at NIST and ORNL.

  18. Beam splitting to improve target life in neutron generators

    International Nuclear Information System (INIS)

    Farrell, J.P.

    1976-01-01

    In a neutron generator in which a tritium-titanium target is bombarded by a deuterium ion beam, the target half-life is increased by separating the beam with a weak magnetic field to provide three separate beams of atomic, diatomic, and triatomic deuterium ions which all strike the target at different adjacent locations. Beam separation in this manner eliminates the problem of one type ion impairing the neutron generating efficiency of other type ions, thereby effecting more efficient utilization of the target material

  19. Polarizing a stored proton beam by spin-flip?

    Energy Technology Data Exchange (ETDEWEB)

    Oellers, Dieter Gerd Christian

    2010-04-15

    The present thesis discusses the extraction of the electron-proton spin-flip cross-section. The experimental setup, the data analysis and the results are pictured in detail. The proton is described by a QCD-based parton model. In leading twist three functions are needed. The quark distribution, the helicity distribution and the transversity distribution. While the first two are well-known, the transversity distribution is largely unknown. A self-sufficient measurement of the transversity is possible in double polarized proton-antiproton scattering. This rises the need of a polarized antiproton beam. So far spin filtering is the only tested method to produce a polarized proton beam, which may be capable to hold also for antiprotons. In-situ polarization build-up of a stored beam either by selective removal or by spin-flip of a spin-(1)/(2) beam is mathematically described. A high spin-flip cross-section would create an effective method to produce a polarized antiproton beam by polarized positrons. Prompted by conflicting calculations, a measurement of the spin-flip cross-section in low-energy electron-proton scattering was carried out. This experiment uses the electron beam of the electron cooler at COSY as an electron target. The depolarization of the stored proton beam is detected. An overview of the experiment is followed by detailed descriptions of the cycle setup, of the electron target and the ANKE silicon tracking telescopes acting as a beam polarimeter. Elastic protondeuteron scattering is the analyzing reaction. The event selection is depicted and the beam polarization is calculated. Upper limits of the two electron-proton spin-flip cross-sections {sigma} {sub parallel} and {sigma} {sub perpendicular} {sub to} are deduced using the likelihood method. (orig.)

  20. Neutron beam applications using low power research reactor Malaysia perspectives

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed; Azali Muhammad; Faridah Idris; Adnan Bokhari; Muhd Noor Yunus

    2003-01-01

    The TRIGA MARK II Research reactor at the Malaysian Institute for Nuclear Research (MINT) was commissioned in July 1982. Since then various works have been performed to utilise the neutrons produced from this steady state reactor. One area currently focussed on is the utilisation of neutron beam ports available at this 1MW reactor. Projects undertaken are the development and utilisation of the Neutron Radiography (myNR), Small Angle Neutron Scattering (mySANS) and Boron Neutron Capture Therapy (BNCT) - preliminary study. In order to implement active research programmes, a group comprised of researcher from research institutes and academic institutions, has formed: known as Malaysian Reactor Interest Group (MRIG). This paper describes the recent status the above neutron beam facilities and their application in industrial, health and material technology research and education. The related activities of MRIG are also highlighted. (author)

  1. High energy physics with polarized beams and targets. [65 papers

    Energy Technology Data Exchange (ETDEWEB)

    Marshak, M L [ed.

    1976-01-01

    Sixty-six papers are presented as a report on conference sessions held from August 23-27, 1976, at Argonne National Laboratory. Topics covered include: (1) strong interactions; (2) weak and electromagnetic interactions; (3) polarized beams; and (4) polarized targets. A separate abstract was prepared for each paper for ERDA Energy Research Abstracts (ERA) and for the INIS Atomindex. (PMA)

  2. Polarized neutron reflectometry at Dhruva reactor

    Indian Academy of Sciences (India)

    beam (divergence ~ few arc minutes) at the air–film interface of a thin film sam- ple. The specular reflection data is collected at grazing incidence to the sample ... 12 Å, averaged over the total number of interfaces. In the present multilayer, the intensity at the Bragg peak is about 70% of the total reflectivity plateau and the.

  3. Generation and propagation of radially polarized beams in optical fibers

    DEFF Research Database (Denmark)

    Ramachandran, Siddharth; Kristensen, P; Yan, M F

    2009-01-01

    Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even...

  4. Neutron beam line design of a white neutron source at CSNS

    Science.gov (United States)

    Jing, Hantao; Zhang, Liying; Tang, Jingyu; Ruan, Xichao; Ning, Changjun; Yu, Yongji; Wang, Pengcheng; Li, Qiang; Ren, Jie; Tang, Hongqing; Wang, Xiangqi

    2017-09-01

    China Spallation Neutron Source (CSNS), which is under construction, is a large scientific facility dedicated mainly for multi-disciplinary research on material characterization using neutron scattering techniques. The CSNS Phase-I accelerator will deliver a proton beam with an energy of 1.6 GeV and a pulse repetition rate of 25 Hz to a tungsten target, and the beam power is 100 kW. A white neutron source using the back-streaming neutrons through the incoming proton beam channel was proposed and is under construction. The back-streaming neutrons which are very intense and have good time structure are very suitable for nuclear data measurements. The white neutron source includes an 80-m neutron beam line, two experimental halls, and also six different types of spectrometers. The physics design of the beam line is presented in this paper, which includes beam optics and beam characterization simulations, with the emphasis on obtaining extremely low background. The first-batch experiments on nuclear data measurements are expected to be conducted in late 2017.

  5. Inverse design engineering of all-silicon polarization beam splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Sigmund, Ole

    2016-01-01

    Utilizing the inverse design engineering method of topology optimization, we have realized high-performing all-silicon ultra-compact polarization beam splitters. We show that the device footprint of the polarization beam splitter can be as compact as similar to 2 µm2 while performing experimentally...... with a polarization splitting loss lower than similar to 0.82 dB and an extinction ratio larger than similar to 15 dB in the C-band. We investigate the device performance as a function of the device length and find a lower length above which the performance only increases incrementally. Imposing a minimum feature...

  6. Polarization of a stored beam by spin-filtering

    Energy Technology Data Exchange (ETDEWEB)

    Augustyniak, W. [National Centre for Nuclear Research, 00681 Warsaw (Poland); Barion, L. [Universita di Ferrara and INFN, 44122 Ferrara (Italy); Barsov, S. [St. Petersburg Nuclear Physics Institute, 188350 Gatchina (Russian Federation); Bechstedt, U. [Institut fuer Kernphysik, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Juelich Center for Hadron Physics, 52425 Juelich (Germany); Benati, P.; Bertelli, S.; Carassiti, V. [Universita di Ferrara and INFN, 44122 Ferrara (Italy); Chiladze, D. [High Energy Physics Institute, Tbilisi State University, 0186 Tbilisi, Georgia (United States); Ciullo, G.; Contalbrigo, M.; Dalpiaz, P.F. [Universita di Ferrara and INFN, 44122 Ferrara (Italy); Dymov, S. [Physikalische Institute II, Universitaet Erlangen-Nuernberg, 91058 Erlangen (Germany); Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Engels, R. [Institut fuer Kernphysik, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Juelich Center for Hadron Physics, 52425 Juelich (Germany); Erwen, W. [Juelich Center for Hadron Physics, 52425 Juelich (Germany); Zentralinstitut fuer Elektronik, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Fiorini, M. [Universita di Ferrara and INFN, 44122 Ferrara (Italy); and others

    2012-11-15

    The PAX Collaboration has successfully performed a spin-filtering experiment with protons at the COSY-ring. The measurement allowed the determination of the spin-dependent polarizing cross section, that compares well with the theoretical prediction from the nucleon-nucleon potential. The test confirms that spin-filtering can be adopted as a method to polarize a stored beam and that the present interpretation of the mechanism in terms of the proton-proton interaction is correct. The outcome of the experiment is of utmost importance in view of the possible application of the method to polarize a beam of stored antiprotons.

  7. Data processing workflow for time of flight polarized neutrons inelastic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Savici, Andrei T [ORNL; Zaliznyak, Igor [Brookhaven National Laboratory (BNL); Garlea, Vasile O [ORNL; Winn, Barry L [ORNL

    2017-01-01

    We discuss the data processing workflow for polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. The effects of the focusing Heusler crystal polarizer and the wide-angle supermirror transmission polarization analyzer are added to the data processing flow of the non-polarized case. The implementation is done using the Mantid software package.

  8. Ultra-small-angle scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Jericha, E.; Badurek, G.; Trinker, M.

    2007-01-01

    Ultra-small-angle neutron scattering (USANS) has been established as an effective technique for the study of structures in the micrometre range in recent years. Consequentially this method has been extended to magnetic structures of corresponding size. We present the instrument arrangement and first experimental results. The instrument itself is a double crystal diffractometer in Bonse-Hart configuration which takes advantage of the narrow angular width of the perfect crystal reflection to obtain an extremely high angular resolution of the scattering vector. The neutrons are loss-free polarized by permanent magnetic prisms located between the monochromator crystal and the sample. Neutrons with opposite polarization are separated to a large extent and their different scattering behaviour may be studied in a single measurement without additional manipulation of the neutron spin. In this manner we are able to separate the magnetic and nuclear contribution to the scattering. We present first exemplifying measurements on ferromagnetic rods and wires, and on soft-magnetic ribbons. Related experiments were performed at the USANS facility of the TRIGA reactor at the Vienna University of Technology and at the combined neutron interferometer/USANS instrument S18 at the ILL, Grenoble

  9. Ultra-small-angle scattering with polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Jericha, E. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria)]. E-mail: jericha@ati.ac.at; Badurek, G. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Trinker, M. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria)

    2007-07-15

    Ultra-small-angle neutron scattering (USANS) has been established as an effective technique for the study of structures in the micrometre range in recent years. Consequentially this method has been extended to magnetic structures of corresponding size. We present the instrument arrangement and first experimental results. The instrument itself is a double crystal diffractometer in Bonse-Hart configuration which takes advantage of the narrow angular width of the perfect crystal reflection to obtain an extremely high angular resolution of the scattering vector. The neutrons are loss-free polarized by permanent magnetic prisms located between the monochromator crystal and the sample. Neutrons with opposite polarization are separated to a large extent and their different scattering behaviour may be studied in a single measurement without additional manipulation of the neutron spin. In this manner we are able to separate the magnetic and nuclear contribution to the scattering. We present first exemplifying measurements on ferromagnetic rods and wires, and on soft-magnetic ribbons. Related experiments were performed at the USANS facility of the TRIGA reactor at the Vienna University of Technology and at the combined neutron interferometer/USANS instrument S18 at the ILL, Grenoble.

  10. Characteristics of neutron beam for prompt gamma neutron activation analysis diffracted by pyrolytic graphite monochromator

    International Nuclear Information System (INIS)

    Jun, Byung-Jin; Seong, Baek-Seok; Kim, Myung-Seop; Byun, Soo-Hyun; Choi, Hee-Dong

    1999-01-01

    As a method to obtain high thermal neutron flux with low background for a prompt gamma neutron activation analysis (PGAA) system which will be constructed at HANARO, a 30 MW research reactor in Korea Atomic Energy Research Institute, diffraction of a spare white beam before any filtering is adopted. The PGAA system will use a thermal neutron beam diffracted vertically by pyrolytic graphite (PG) crystals with the mosaic spread of 0.8 degree at near the surface of reactor biological shield. The ratio of diffracted beam flux to white beam is determined by the integrated reflectivity of the monochromator. To estimated neutron flux after diffraction, convolution of the incident beam divergence and crystal mosaicity is simulated using the Monte Carlo method. If the beam is focussed by the bent PGs, the expected flux at the sample position is about 3 x 10 8 n/cm 2 -s which is about 4% of white beam flux. The characteristics of neutron beam diffracted by the PG are investigated experimentally to confirm the neuron flux and its profile at the PGAA system. The comparative experiment is performed in the CN horizontal beam line of HANARO. Diffracted spectra with the Bragg angles of 22.5 and 45 degree are measured by using time-of-flight spectrometer and fluxes before and after diffraction are determined by gold-wire activation. The theoretical estimation agrees with the experimental verification with in 20%. (author)

  11. Time-of-Flight Polarized Neutron Reflectometry on PLATYPUS: Status and Future Developments

    Science.gov (United States)

    Saerbeck, T.; Cortie, D. L.; Brück, S.; Bertinshaw, J.; Holt, S. A.; Nelson, A.; James, M.; Lee, W. T.; Klose, F.

    Time-of-flight (ToF) polarized neutron reflectometry enables the detailed investigation of depth-resolved magnetic structures in thin film and multilayer magnetic systems. The general advantage of the time-of-flight mode of operation over monochromatic instruments is a decoupling of spectral shape and polarization of the neutron beam with variable resolution. Thus, a wide Q-range can be investigated using a single angle of incidence, with resolution and flux well-adjusted to the experimental requirement. Our paper reviews the current status of the polarization equipment of the ToF reflectometer PLATYPUS and presents first results obtained on stratified Ni80Fe20/α-Fe2O3 films, revealing the distribution of magnetic moments in an exchange bias system. An outlook on the future development of the PLATYPUS polarization system towards the implementation of a polarized 3He cell is presented and discussed with respect to the efficiency and high Q-coverage up to 1 Å-1 and 0.15 Å-1 in the vertical and lateral momentum transfer, respectively.

  12. The Spallation Neutron Source Beam Commissioning and Initial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Stuart [Argonne National Lab. (ANL), Argonne, IL (United States); Aleksandrov, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Assadi, Saeed [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bartoski, Dirk [University of Texas, Houston, TX (United States). Anderson Cancer Center; Blokland, Willem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Casagrande, F. [Michigan State Univ., East Lansing, MI (United States); Campisi, I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chu, C. [Michigan State Univ., East Lansing, MI (United States); Cousineau, Sarah M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crofford, Mark T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Danilov, Viatcheslav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deibele, Craig E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dodson, George W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feshenko, A. [Inst. for Nuclear Research (INR), Moscow (Russian Federation); Galambos, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Han, Baoxi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hardek, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holmes, Jeffrey A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Howell, Matthew P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jeon, D. [Inst. for Basic Science, Daejeon (Korea); Kang, Yoon W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kasemir, Kay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kravchuk, L. [Institute for Nuclear Research (INR), Moscow (Russian Federation); Long, Cary D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamy, T. [McManamy Consulting, Inc., Middlesex, MA (United States); Pelaia, II, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Piller, Chip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Plum, Michael A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pogge, James R. [Tennessee Technological Univ., Cookeville, TN (United States); Purcell, John David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shea, T. [European Spallation Source, Lund (Sweden); Shishlo, Andrei P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sibley, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stockli, Martin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stout, D. [Michigan State Univ., East Lansing, MI (United States); Tanke, E. [European Spallation Source, Lund (Sweden); Welton, Robert F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Y. [Michigan State Univ., East Lansing, MI (United States); Zhukov, Alexander P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  13. Development of a Boron Neutron Capture Enhanced Fast Neutron Therapy Beam

    Energy Technology Data Exchange (ETDEWEB)

    Sweezy, Jeremy Ed [Georgia Tech

    2002-01-01

    The combination of fast neutron therapy and boron neutron capture therapy is currently under investigation at several fast neutron therapy centers worldwide. This treatment method, termed boron neutron capture enhanced fast neutron therapy (BNCEFNT) utilizes a boron containing drug to selectively increase the dose to the target tumor. BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiforme. A neutron therapy beam for boron neutron capture enhanced fast neutron therapy has been developed for the existing Fermilab Neutron Therapy Facility. This beam produces a significant dose enhancement due to the the boron neutron capture reaction. The beam was developed by designing a filter and collimator system using the Monte Carlo radiation transport code, MCNPX. The MCNPX code was benchmarked against depth-dose measurements of the standard treatment beam. The new BNCEFNT beam is filtered with 18.3-cm of low carbon steel and is collimated with steel. Measurements of the dose enhancement of the new BNCEFNT beam were performed with paired tissue equivalent ion chambers. One of the ion chambers has boron incorporated in the wall of the chamber to measure the dose due to boron neutron capture. The measured boron dose enhancement of the BNCEFNT beam is (16.3 ± 2.6)% per 100-ppm 10B for a 20-cm diameter beam and (10.0 ± 1.6)% per 100-ppm 10B for a 10-cm diameter beam. The dose rate of the new beam is reduced to 4.4% of the dose rate of the standard treatment beam. xxi A conceptual design that overcomes the reduced dose rate is also presented. This design uses a tungsten collimator placed near the patient, with a 1.5-cm tungsten filter just upstream of the collimator. Using graphite moderation of neutrons around the patient a percent dose enhancement of 15% can be attained with good collimation, for field sizes as small as 5 × 5 cm2 , and without a reduction in dose rate.

  14. Thermal neutron beam modification studies using an isotope based neutron radiography facility

    International Nuclear Information System (INIS)

    Baheti, G.L.; Khatri, P.K.; Meghwal, L.R.; Meena, V.L.

    1996-01-01

    Neutron radiography has established itself as one of the advanced NDT technique. Isotope based facilities are being developed to make the technique available for inplant use. Quality of neutron radiograph obtained is a function of beam parameters like flux, Cd ratio and neutron to gamma ratio, scattered neutrons etc. These parameters can be modified using design features of the facility. Effect of modifications in these parameters on final image quality has been studied and were found to be useful in meeting the widely varying radiographic requirements, particularly through an isotope based facility. These modifications can also overcome some of the inherent limitations of isotope based neutron radiography facilities. (author)

  15. UCN Source at an External Beam of Thermal Neutrons

    Directory of Open Access Journals (Sweden)

    E. V. Lychagin

    2015-01-01

    Full Text Available We propose a new method for production of ultracold neutrons (UCNs in superfluid helium. The principal idea consists in installing a helium UCN source into an external beam of thermal or cold neutrons and in surrounding this source with a solid methane moderator/reflector cooled down to ~4 K. The moderator plays the role of an external source of cold neutrons needed to produce UCNs. The flux of accumulated neutrons could exceed the flux of incident neutrons due to their numerous reflections from methane; also the source size could be significantly larger than the incident beam diameter. We provide preliminary calculations of cooling of neutrons. These calculations show that such a source being installed at an intense source of thermal or cold neutrons like the ILL or PIK reactor or the ESS spallation source could provide the UCN density 105 cm−3, the production rate 107 UCN/s−1. Main advantages of such an UCN source include its low radiative and thermal load, relatively low cost, and convenient accessibility for any maintenance. We have carried out an experiment on cooling of thermal neutrons in a methane cavity. The data confirm the results of our calculations of the spectrum and flux of neutrons in the methane cavity.

  16. The Spin Structure of the Neutron Determined Using a Polarized He-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, H

    2004-01-06

    Described is a study of the internal spin structure of the neutron performed by measuring the asymmetry in spin-dependent deep inelastic scattering of polarized electrons from nuclear polarized {sup 3}He. Stanford Linear Accelerator experiment E142's sample of 400 million scattering events collected at beam energies between 19 and 26 GeV led to the most precise measurement of a nucleon spin structure function to date. The {sup 3}He target represents a major advance in polarized target technology, using the technique of spin exchange with optically pumped rubidium vapor to produce a typical {sup 3}He nuclear polarization of 34% in a 30cm long target cell with a gas density of 2.3 x 10{sup 20} cm{sup -3}. The target polarization was measured to {+-}7% using an Adiabatic Fast Passage NMR system calibrated with the thermal equilibrium polarization of the protons in a sample of water. The relatively high polarization and target thickness were the result of the development of large volume glass target cells which had inherent nuclear spin relaxation times for the {sup 3}He gas of as long as 70 hours. A target cell production procedure is presented which focuses on special glass blowing techniques to minimize surface interactions with the {sup 3}He nuclei and careful gas purification and vacuum system procedures to reduce relaxation inducing impurities.

  17. Nuclear spin polarized alkali beams (Na, Li): Optical pumping with electro-optically modulated laser beam

    International Nuclear Information System (INIS)

    Reich, H.; Jaensch, H.J.

    1990-01-01

    An improvement of the Heidelberg source for polarized heavy ions (PSI) is described. To produce a nuclear spin polarized atomic Na beam an electro-optically modulated laser beam has been used for optical pumping. An electro-optic modulator (EOM) was constructed with a bandwidth of 1.8 GHz. Without a spin separating Stern-Gerlach magnet it is now possible to prepare a Na atomic beam in one single hyperfine magnetic substate. Thus the beam figure of merit (polarization 2 x intensity of the beam) has been improved by a factor of 4 as compared to the previous setup. Experiences with the new system collected from several beam times are discussed. (orig.)

  18. The polarized neutron reflectometer 'Reverans'

    Energy Technology Data Exchange (ETDEWEB)

    Radzhabov, A.K. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation)]. E-mail: akr@pnpi.spb.ru; Gordeev, G.P. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation); Lazebnik, I.M. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation); Axelrod, L.A. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation); Zabenkin, V.N. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation)

    2007-07-15

    The polarized neutron reflectometer 'Reverans' with a vertical plane of scattering is being installed at the VVR-M reactor (Gatchina, Russia). It will be used for research on phase boundaries, interfaces and free surfaces. Systems under study can be both magnetic and nonmagnetic ones. At present the installation of the reflectometer is at the final stage. The parameters and abilities of the reflectometer are presented.

  19. Neutron beam facilities at the replacement research reactor

    International Nuclear Information System (INIS)

    Kennedy, S.

    1999-01-01

    Full text: On September 3rd 1997 the Australian Federal Government announced their decision to replace the HIFAR research reactor by 2005. The proposed reactor will be a multipurpose reactor with improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The neutron beam facilities are intended to cater for Australian scientific needs well into the 21st century. In the first stage of planning the neutron Beam Facilities at the replacement reactor, a Consultative Group was formed (BFCG) to determine the scientific capabilities of the new facility. Members of the group were drawn from academia, industry and government research laboratories. The BFCG submitted their report in April 1998, outlining the scientific priorities to be addressed. Cold and hot neutron sources are to be included, and cold and thermal neutron guides will be used to position most of the instruments in a neutron guide hall outside the reactor confinement building. In 2005 it is planned to have eight instruments installed with a further three to be developed by 2010, and seven spare instrument positions for development of new instruments over the life of the reactor. A beam facilities technical group (BFTG) was then formed to prepare the engineering specifications for the tendering process. The group consisted of some members of the BFCG, several scientists and engineers from ANSTO, and scientists from leading neutron scattering centres in Europe, USA and Japan. The BFTG looked in detail at the key components of the facility such as the thermal, cold and hot neutron sources, neutron collimators, neutron beam guides and overall requirements for the neutron guide hall. The report of the BFTG, completed in August 1998, was incorporated into the draft specifications for the reactor project, which were distributed to potential reactor vendors. An assessment of the first stage of reactor vendor submissions was completed in

  20. Beam Instrumentation for the Spallation Neutron Source Ring

    International Nuclear Information System (INIS)

    Witkover, R. L.; Cameron, P. R.; Shea, T. J.; Connolly, R. C.; Kesselman, M.

    1999-01-01

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10 -4 . A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring

  1. Operation of the AGS polarized beam

    International Nuclear Information System (INIS)

    Ahrens, L.A.

    1988-01-01

    A polarized proton physics run took place during January, 1988, at the Brookhaven AGS. It is the purpose of this paper to review the tune-up period preceding that run. This was the third such run at the AGS; the others occurred in June of 1984 and February of 1986. Some comparisons will be drawn among these. A thorough review of the history and hardware associated with the acceleration of polarized protons at the AGS can be found in the proceedings of the last meeting of this group at Protvino and will not be repeated here. 2 refs., 6 figs., 1 tab

  2. Novel optics for conditioning neutron beams. II Focussing neutrons with a 'lobster-eye' optic

    International Nuclear Information System (INIS)

    Allman, B.E.; Cimmino, A.; Griffin, S.L.; Klein, A.G.; Nugent, K.A.

    1998-01-01

    Square-channel capillary, or 'Lobster-eye' arrays have been shown to be the optimum geometry for array optics. This configuration leads to a novel class of conditioning devices for X-ray and neutron beams. We present the first results of the focussing of neutrons with a Pb glass square-channel array. (authors)

  3. Development of the RRR cold neutron beam facility

    International Nuclear Information System (INIS)

    Lovotti, Osvaldo; Masriera, Nestor; Lecot, Carlos; Hergenreder, Daniel

    2002-01-01

    This paper describes some general design issues on the neutron beam facilities (cold neutron source and neutron beam transport system) of the Replacement Research Reactor (RRR) for the Australian Nuclear Science and Technology Organisation (ANSTO). The description covers different aspect of the design: the requirements that lead to an innovative design, the overall design itself, the definition of a technical approach in order to develop the necessary design solutions, and finally the organizational framework by which international expertise from five different institutions is integrated. From the technical viewpoint, the RRR-CNS is a liquid Deuterium (LD2) moderator, sub-cooled to ensure maximum moderation efficiency, flowing within a closed natural circulation thermosyphon loop. The thermosyphon is surrounded by a zirconium alloy CNS vacuum containment that provides thermal insulation and a multiple barriers scheme to prevent Deuterium from mixing with water or air. Consistent with international practice, this vessel is designed to withstand any hypothetical energy reaction should Deuterium and air mix in its interior. The 'cold' neutrons are then taken by the NBTS and transported by the neutron guide system into the reactor beam hall and neutron guide hall, where neutron scattering instruments are located. From the management viewpoint, the adopted distributed scheme is successful to manage the complex interfacing between highly specialized technologies, allowing a smooth integration within the project. (author)

  4. National facility for neutron beam research

    Indian Academy of Sciences (India)

    When CIRUS (a medium flux, natural U, heavy water moderated, light water cooled reactor; max rated thermal power 40 MW, max central thermal neutron flux ∼6×1013 neutrons/cm2/s) got commissioned in 1960, trained manpower was available for effective utilisation of this reactor, to initiate large-scale programmes.

  5. The tagged photon beam polarization of the jet target experiment

    International Nuclear Information System (INIS)

    Bianchi, N.; Muccifora, V.

    1989-01-01

    The applicability of the residual electron selection method to the tagging method of the jet target laboratory has been studied. With this end in view the behaviour of the polarized bremsstrahlung cross section in the range considered has been analysed, while the polarization increase by means of the RES has been evaluated. The vertical conditions of the focusing of the tagging spectrometer as a function of energy have been determined. Finally the gamma beam density and the tagging efficiency have been calculated

  6. Studies of polarized beam acceleration and Siberian Snakes

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1992-01-01

    We studied depolarization mechanisms of polarized proton acceleration in high energy accelerators with snakes and found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune of imperfection resonances, each snake resonance splits into two. Thus the available betatron tune space becomes smaller. Some constraints on polarized beam colliders were also examined

  7. The SLAC Polarized Electron Source and Beam for E-158

    Energy Technology Data Exchange (ETDEWEB)

    Humensky, Thomas B

    2003-01-16

    SLAC E-158 is making the first measurement of parity violation in Moeller scattering. E-158 measures the right-left cross-section asymmetry, A{sub LR}, in the scattering of a 45-GeV polarized electron beam off unpolarized electrons in a liquid hydrogen target. E-158 plans to measure the expected Standard Model asymmetry of {approx} 10{sup -7} to an accuracy of better than 10{sup -8}. This paper discusses the performance of the SLAC polarized electron source and beam during E-158's first physics run in April/May 2002.

  8. Radiative capture of polarized neutrons by aluminium and manganese nuclei

    International Nuclear Information System (INIS)

    1979-01-01

    This investigation treats the angular dependence of the intensity and of the circular polarization of gamma-radiation, that is emitted after capture of polarized neutrons by polarized and unpolarized targets. Interference effects between the (n,γ)-reaction amplitudes with different channel spin are discussed and angular distribution coefficients are calculated in case mixing of dipole and quadrupole radiation occurs. It is indicated how the influence of p-wave capture may be taken into account. The nuclear orientation experiments on aluminium yield the values of the angular distribution coefficients of primary and secondary gamma-ray transitions and by a chi 2 -analysis five spin values are assigned uniquely and several α-values are determined. The nuclear orientation experiments on manganese lead to α-values and unique spin assigments for thirteen nuclear states in 56 Mn. (Auth.)

  9. A single-beam deuteron compact accelerator for neutron generation

    International Nuclear Information System (INIS)

    Araujo, Wagner Leite; Campos, Tarcisio Passos Ribeiro de

    2011-01-01

    Portable neutron generators are devices composed by small size accelerators that produce neutrons through fusion between hydrogen isotopes. These reactions are characterized by appreciable cross section at energies at the tens of keV, which enables device portability. The project baselines follow the same physical and engineering principles of any other particle accelerators. The generator consists of a gas reservoir, apparatus for ion production, few electrodes to accelerate and focus the ion beam, and a metal hydride target where fusion reactions occur. Neutron generator applications include geophysical measurements, indus- trial process control, environmental, research, nation's security and mechanical structure analysis.This article presents a design of a compact accelerator for d-d neutron generators, describing the physical theory applied to the deuteron extraction system, and simulating the ion beam transport in the accelerator. (author)

  10. Intermediate-energy neutron beam for NCT at MURR

    International Nuclear Information System (INIS)

    Brugger, R.M.; Less, T.J.; Passmore, G.G.

    1986-01-01

    The University of Missouri Research Reactor (MURR) is one of the high-flux reactors in the USA and it can be used to produce an intense beam of intermediate-energy neutrons for neutron capture therapy. Two methods are being evaluated at MURR to produce such a beam. The first uses a moderator of Al 2 O 3 replacing part of the graphite and water on one side of the core of the reactor to produce a source of predominantly intermediate-energy neutrons. The second method is a filter of 238 U between the core and the patient position to pass only intermediate-energy neutrons. The results of these evaluations are presented in this paper along with an outline of the other resources at the University of Missouri-Columbia that are available to support an NCT program. 4 references, 7 figures, 1 table

  11. Multi detector input and function generator for polarized neutron experiments

    International Nuclear Information System (INIS)

    De Blois, J.; Beunes, A.J.H.; Ende, P. v.d.; Osterholt, E.A.; Rekveldt, M.T.; Schipper, M.N.; Velthuis, S.G.E. te

    1998-01-01

    In this paper a VME module is described for static or stroboscopic measurements with a neutron scattering instrument, consisting essentially of a series of up to 64 3 He neutron detectors around a sample environment. Each detector is provided with an amplifier and a discriminator to separate the neutrons from noise. To reduce the wiring, the discriminator outputs are connected to the module by coding boxes. Two 16-inputs to one-output coding boxes generate serial output codes on a fiber optic connection. This basically fast connection reduces the dead time introduced by the coding, and the influence of environmental noise. With stroboscopic measurements a periodic function is used to affect the sample surrounded by a field coil. Each detected neutron is labeled with a data label containing the detector number and the time of detection with respect to a time reference. The data time base can be programmed on a linear or a nonlinear scale. An external source or an attribute of the periodic function may generate the time reference pulse. A 12-bit DAC connected to the output of an 8 K, 16-bits memory, where the pattern of the current has been stored before, generates the function. The function memory is scanned by the programmable function time base. Attributes are set by the four remaining bits of the memory. One separate detector input connects a monitor detector in the neutron beam with a 32-bit counter/timer that provides measuring on a preset count, preset time or preset frame. (orig.)

  12. Micro structural evaluation technique of steel using neutron beam

    International Nuclear Information System (INIS)

    Nakamichi, Haruo; Sato, Kaoru; Sueyoshi, Hitoshi

    2016-01-01

    Structural analysis using Neutrons is a very unique technique for its strong penetration ability through steels. Numerous evaluation techniques are available at present, and JFE Steel has been adapting the technique through participating in research activities such as in the Iron and Steel Institute of Japan. This paper introduces some results including precipitation evaluation using a small angle scattering, residual strain estimation through diffractions, and in-situ transformation observation by time-of-flight methods of neutron beams diffraction. (author)

  13. Dosimetric characteristics of the thermal neutron beam facility for neutron capture therapy at Hanaro reactor

    International Nuclear Information System (INIS)

    Lee, Dong Han; Suh, Soheigh; Ji, Young Hoon

    2006-01-01

    The thermal neutron beam facility utilizing a typical tangential beam port for Neutron Capture Therapy was installed at the Hanaro, 30 MW multi-purpose research reactor. In order to determine the different dose components in phantoms irradiated with a mixed thermal neutron beam and gamma-ray for clinical applications, various techniques were applied including the use of activation foils, TLDs and ionization chambers. The water phantom was utilized in the measurement. The results of the measurement were compared with MCNP4B calculations. The thermal neutron fluxes were 1.02E9 and 6.07E8/cm 2 ·s at 10 and 20 mm depth in water, respectively. The gamma-ray dose rate was 5.10 Gy/hr at 20 mm depth in water. The result of this study can be used as basic data for subsequent BNCT clinical application. (author)

  14. Water imaging in living plant by nondestructive neutron beam analysis

    International Nuclear Information System (INIS)

    Nakanishi, M. Tomoko

    1998-01-01

    Analysis of biological activity in intact cells or tissues is essential to understand many life processes. Techniques for these in vivo measurements have not been well developed. We present here a nondestructive method to image water in living plants using a neutron beam. This technique provides the highest resolution for water in tissue yet obtainable. With high specificity to water, this neutron beam technique images water movement in seeds or in roots imbedded in soil, as well as in wood and meristems during development. The resolution of the image attainable now is about 15um. We also describe how this new technique will allow new investigations in the field of plant research. (author)

  15. Floppy disc units for data collection from neutron beam experiments

    International Nuclear Information System (INIS)

    Hall, J.W.

    1976-02-01

    The replacement of paper tape output facilities on neutron beam equipment on DIDO and PLUTO reactors by floppy discs will improve reliability and provide a more manageable data storage medium. The cost of floppy disc drives is about the same as a tape punch and printer and less than other devices such as a magnetic tape. Suitable floppy disc controllers are not at present available and a unit was designed as a directly pluggable replacement for paper tape punches. This design was taken as the basis in the development of a prototype unit for use in neutron beam equipment. The circuit operation for this prototype unit is described. (author)

  16. Investigation of propagation algorithms for ray-tracing simulation of polarized neutrons

    DEFF Research Database (Denmark)

    Bergbäck Knudsen, Erik; Tranum-Rømer, A.; Willendrup, Peter Kjær

    2014-01-01

    Ray-tracing of polarized neutrons faces a challenge when the neutron propagates through an inhomogeneous magnetic field. This affects simulations of novel instruments using encoding of energy or angle into the neutron spin. We here present a new implementation of propagation of polarized neutrons...... within the McStas simulation package and show that it outperforms the de-facto standard method implemented in the NISP package by Seeger and Daemen. We include simulation of a simplified model of a spin-echo instrument, including a simple virtual experiment.......Ray-tracing of polarized neutrons faces a challenge when the neutron propagates through an inhomogeneous magnetic field. This affects simulations of novel instruments using encoding of energy or angle into the neutron spin. We here present a new implementation of propagation of polarized neutrons...

  17. Proportional counter measurements in neutron therapy beams

    International Nuclear Information System (INIS)

    Menzel, H.G.

    1984-01-01

    Dosimetry for clinical neutron therapy requires a characterization of radiation quality in addition to the specification of absorbed dose. Generally, a very simple approach has been adopted which consists in separating total absorbed dose into neutron and photon fractions. This is explained by the requirement of clinical dosimetry to apply methods suitable for routine measurements, by the lack of generally accepted improved alternatives, and by the fact that radiation quality is only one of several problems in neutron therapy not sufficiently solved. Spectra measured with low-pressure tissue-equivalent proportional counters (experimental microdosimetry) provide a detailed description of the physical properties of the radiation field at neutron therapy facilities. These descriptions are suitable for explaining the influence of different parameters (collimation, field size, phantom) on radiation quality. Although the physical properties of the radiation field as described by the measured microdosimetric distributions and quantities are not the only properties relevant for radiation effects, in general there are reasons to believe that they provide a suitable radiation quality characterization for the limited range of applications in neutron therapy. (author)

  18. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  19. Scattering of linearly polarized Bessel beams by dielectric spheres

    Science.gov (United States)

    Shoorian, Hamed

    2017-09-01

    The scattering of a Linearly Polarized Bessel Beam (LPBB) by an isotropic and homogenous dielectric sphere is investigated. Using analytical relation between the cylindrical and the spherical vector wave functions, all the closed- form analytical expressions, in terms of spherical wave-functions expansions, are derived for the scattered field. It is shown that in the case of conical angle of incident Bessel beam is equal to zero, the Linearly Polarized Bessel Beam becomes a plane wave and its scattering coefficients become the same as the expansion coefficients of plane wave in Mie theory. The transverse Cartesian and spherical components of the electric field, scattered by a sphere are shown in the z-plane for different cases, moreover the intensity of the incident Bessel beam and the effects of its conical angle on the scattered field and the field inside the sphere are investigated. To quantitatively study the scattering phenomenon and the variations of the fields inside and outside of the sphere, the scattering and absorption efficiencies are obtained for the scattering of the linearly-polarized Bessel beam, and are compared with those of the plane wave scattering.

  20. Magnetization distribution in paramagnetic CoO: a polarized neutron diffraction study

    CERN Document Server

    Kernavanois, N; Brown, P J; Henry, J Y; Lelievre-Berna, E

    2003-01-01

    Unpolarized and polarized neutron diffraction by a single crystal have been used to study the magnetization distribution in the paramagnetic phase of cobalt oxide CoO. Highly accurate magnetic structure factors have been measured using the classical polarized beam method. A detailed description of the magnetization distribution is presented. The magnetization around the cobalt site has a radial distribution which is contracted by approx = 5% with respect to that of the free ion and a symmetry which approximates more closely to e sub g than to the form t sub 2 sub g sup 5 /e sub g sup 2 expected for the Co sup 2 sup + 3d sup 7 configuration. A significant magnetization, corresponding to some 8% of the total moment, is found at the oxygen site.

  1. Pulsed Cs beam development for the BNL polarized H- source

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1983-01-01

    A pulsed Cs + beam has been developed for use on a polarized H - source. Cesium ion production is by surface ionization using a porous tungsten ionizer. While satisfactory current pulses (5 to 10 mA greater than or equal to 0.5 ms) can be obtained, the pulse shapes are a sensitive function of the ionizer temperature and Cs surface coverage. The beam optical requirements are stringent, and the optics have been studied experimentally for both Cs + and Cs 0 beams. Computer calculations are in good agreement with the observed results. The present source has delivered 2.6 mA of Cs + through the interaction region of the polarized ion source, and as much as 2.0 particle mA of Cs 0 . A new source is being built which is designed to give 15 mA through the interaction region

  2. LAP-ND: a new instrument for vector polarization analysis and neutron depolarization measurements at FRJ-2

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, Alexander; Bussmann, Klaus; Dohmen, Ludwig; Axelrod, Leonid; Gordeev, Gennadi; Brueckel, Thomas

    2004-07-15

    The method of vector analysis of the neutron polarization allows for the determination of both the magnitude and the direction of the magnetization vector in the sample. A directional distribution of the magnetization in a sample results in a spread of the direction of the polarization vector in space and thus in the depolarization of the incident beam. A new neutron depolarization set up is installed at the research reactor FRJ-2 of the Forschungszentrum Juelich. The main feature of the set up is the use of rather long wavelength, {lambda}=(4-6.5) A, neutrons thus allowing for a significant increase in the sensitivity of depolarization measurements. The set up uses a non-cryogenic zero-field sample chamber with the residual magnetic field of about 1 mG. It will be used for the determination of the sample magnetization at mesoscopic and macroscopic levels and for the study of magnetic phase transitions, magnetic nanostructures, magnetic glasses, etc.

  3. The Precision Measurement of the Neutron Spin Structure Function Using Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X

    2004-01-05

    Using a 48.6 GeV polarized electron beam scattering off a polarized {sup 3}He target at Stanford Linear Accelerator Centre (SLAC), they measured the neutron spin structure function g{sub 1}{sup n} over kinematic(x) ranging 0.014 < x <0.7 and 1 < Q{sup 2} < 17GeV{sup 2}. The measurement gave the integral result over the neutron spin structure function {integral}{sub 0.014}{sup 0.7} g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.004(stat) {+-} 0.005(syst) at an average Q{sup 2} = 5GeV{sup 2}. Along with the proton results from SLAC E143 experiment (0.03 < x) and SMC experiment (0.014 < x < 0.03), they find the Bjorken sum rule appears to be largely saturated by the data integrated down to x of 0.014. However, they observe relatively large values for g{sub 1}{sup n} at low x. The result calls into question the usual methods (Regge theory) for extrapolating to x = 0 to find the full neutron integral {integral}{sub 0}{sup t} g{sub 1}{sup n}(x) dx, needed for testing the Quark-Parton Model (QMP).

  4. Fusion reaction using low energy neutron-excess nucleus beam

    International Nuclear Information System (INIS)

    Fukuda, Tomokazu

    1994-01-01

    The present state and the plan of the experiment of measuring the fusion reaction near barriers by using neutron-excess nucleus beam, which has been advanced at RIKEN are reported. One of the purposes of this experiment is the feasibility investigation of the fusion reaction by using neutron-excess nuclei, which is indispensable for synthesizing superheavy elements. It is intended to systematically explore some enhancing mechanism in the neutron-excess nuclei which are unfavorable in beam intensity. This research can become the good means to prove the dynamic behavior of the neutrons on the surfaces of nuclei in reaction. The fusion reaction of 27 Al + Au was measured by using the stable nucleus beam of 27 Al, and the results are shown. In order to know the low energy fusion reaction of 11 Li and 11 Be which are typical halo nuclei, the identification by characteristic α ray of composite nuclei is carried out in 7,9,11 Li + 209 Bi and 9,10,11 Be + 208 Pb. A new detector having high performance, New MUSIC, is being developed. As the experiment by using this detector, the efficient measurement of the fusion reaction by using heavy neutron-excess nuclei up to Ni is considered. An example of 8 Li + α → 11 B + n reaction for celestial body physics is mentioned. (K.I.)

  5. A Transparent Detector for n_TOF Neutron Beam Monitoring

    CERN Document Server

    Andriamonje, S; Vlachoudis, V; Guerrero, C; Schillebeeckx, P; Losito, R; Sarmento, R; Calviani, M; Giganon, A; Gunsing, F; Berthoumieux, E; Siegler, P; Kadi, Y

    2011-01-01

    In order to obtain high precision cross-section measurements using the time-of-flight technique, it is important to know with good accuracy the neutron fluence at the measuring station. The detector dedicated to these measurements should be placed upstream of the detectors used for capture and fission cross-section measurements. The main requirement is to reduce the material of the detector as much as possible, in order to minimize the perturbation of the neutron beam and, especially, the background produced by the device itself. According to these considerations, a new neutron detector equipped with a small-mass device based on MicroMegas ``Micro-bulk{''} technology has been developed as a monitoring detector for the CERN n\\_TOF neutron beam. A description of the different characteristics of tins innovative concept of transparent detector for neutron beam monitoring is presented. The result obtained in the commissioning of the new spallation target of the n\\_TOF facility at CERN is shown, compared with simul...

  6. Reactions with fast radioactive beams of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Aumann, T.

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like 11 Li and 12 Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  7. Reactions with fast radioactive beams of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  8. Steel research using neutron beam techniques. In-situ neutron diffraction, small-angle neutron scattering and residual stress analysis

    International Nuclear Information System (INIS)

    Sueyoshi, Hitoshi; Ishikawa, Nobuyuki; Yamada, Katsumi; Sato, Kaoru; Nakagaito, Tatsuya; Matsuda, Hiroshi; Arakaki, Yu; Tomota, Yo

    2014-01-01

    Recently, the neutron beam techniques have been applied for steel researches and industrial applications. In particular, the neutron diffraction is a powerful non-destructive method that can analyze phase transformation and residual stress inside the steel. The small-angle neutron scattering is also an effective method for the quantitative evaluation of microstructures inside the steel. In this study, in-situ neutron diffraction measurements during tensile test and heat treatment were conducted in order to investigate the deformation and transformation behaviors of TRIP steels. The small-angle neutron scattering measurements of TRIP steels were also conducted. Then, the neutron diffraction analysis was conducted on the high strength steel weld joint in order to investigate the effect of the residual stress distribution on the weld cracking. (author)

  9. New experimental set up for the determination of the ratio gA/gV from a cold neutron beam

    International Nuclear Information System (INIS)

    Avenier, Michel.

    1976-01-01

    A new experimental set up is being developed for an improved measurement of the electron momentum-neutron spin angular correlation coefficient A, in polarized free neutron beta decay, in order to determine with a greater accuracy the ratio gA/gV of the coupling constants of the weak interaction. With the institut Laue-Langevin high flux beam facilities it seems unnecessary to register the electrons in coincidence with the recoil protons as in previous experiments. Two beta counters will be symetrically placed about the beam and, by flipping periodically the beam polarization and defining the geometry of the experiment such as to minimize the backscattering, the accuracy of the measurement could be better than 5% which would correspond to an accuracy of [fr

  10. QCD tests with SLD and polarized beams

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, M.G. [Univ. of Massachusetts, Amherst, MA (United States)

    1994-12-01

    The author presents a measurement of the strong coupling {alpha}{sub s} derived from multijet rates using data collected by the SLD experiment at SLAC and find that {alpha}{sub s}(M{sub Z}{sup 2}) = 0.118 {+-} 0.002(stat.) {+-} 0.003(syst.) {+-} 0.010(theory). He presents tests of the flavor independence of strong interactions via preliminary measurements of the ratios {alpha}{sub s}(b)/{alpha}{sub s}(udsc) and {alpha}{sub s}(uds)/{alpha}{sub s}(bc). In addition, the group has measured the difference in charged particle multiplicity between Z{sup 0} {yields} b{bar b} and Z{sup 0} {yields} u{bar u}, d{bar d}, s{bar s} events, and find that it supports the prediction of perturbative QCD that the multiplicity difference be independent of center-of-mass energy. Finally, the group has made a preliminary study of jet polarization using the jet handedness technique.

  11. Tailoring beams for small-angle neutron diffractometers

    International Nuclear Information System (INIS)

    Crawford, R.K.; Carpenter, J.M.

    1988-01-01

    Small-angle neutron scattering instruments can be built to use either steady-state or time-of-flight techniques, although only the latter are practical at pulsed neutron sources. The techniques used to provide beams of suitable quality, wavelength range and angular collimation are considered in detail for steady-state and time-of-flight instruments at reactor neutron sources, and for time-of-flight instruments at pulsed neutron sources. For both instrument types a cold neutron source provides a definite advantage. Most, but not all, steady-state instruments use long flight paths, which can be shown to provide conditions which are optimum in many ways. However, frame-overlap considerations force the use of a short flight path for time-of-flight instruments, and this in turn forces these instruments to use different collimation and beam-quality techniques from those that are usually used for steady-state instruments. Although adequate techniques now exist for building short-flight-path small-angle neutron scattering instruments, some of these short-path techniques are still developing, and can be expected to improve in the future. At present the time-of-flight instruments are more difficult to build and use, but for many experiments this difficulty is more than compensated by the large wave-vector range covered in a single measurement with such instruments. (orig.)

  12. Absolute calibration of a cold and thermal neutron detector using monochromatic neutron beam

    Science.gov (United States)

    Choi, Jin Ha; Cude-Woods, Christopher; Ito, Takeyasu; Young, Albert

    2017-09-01

    Time of flight spectra for cold neutrons exiting the moderator volume of the LANSCE UCN source has been obtained using a commercial neutron scintillator, EJ-426, coupled to a Hamamatsu R1355. The absolute efficiency for this detector system was determined using a 37.4 meV (monochromatic) neutron beam from the Neutron Powder Diffraction Facility (NPDF) at North Carolina State University's PULSTAR reactor. We measured the absolute neutron flux at the NPDF through thin foil activation and explored threshold effects through analysis of the measured pulse height distribution for effectively pure neutron signals from the NPDF beam. Non-uniformity of the flux profile across the detector and the detection efficiency as a function of the point of incidence of neutrons on the scintillator was explored using a X-Y translation system to perform scans using either fixed or movable apertures. The results are generally consistent with our expectations for this system, and provide a quantitative assessment of the sensitivity of this system to cold and thermal neutrons. This project was funded by the National Science Foundation and the Department of Energy.

  13. Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams

    CSIR Research Space (South Africa)

    Milione, G

    2015-02-01

    Full Text Available We experimentally measured the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams. Radially and azimuthally polarized vector Bessel beams were experimentally generated via a digital version of Durnin's method...

  14. Polarimetric neutron scattering

    International Nuclear Information System (INIS)

    Tasset, F.

    2001-01-01

    Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)

  15. POLARIZED BEAMS: 2 - Partial Siberian Snake rescues polarized protons at Brookhaven

    International Nuclear Information System (INIS)

    Huang, Haixin

    1994-01-01

    To boost the level of beam polarization (spin orientation), a partial 'Siberian Snake' was recently used to overcome imperfection depolarizing resonances in the Brookhaven Alternating Gradient Synchrotron (AGS). This 9-degree spin rotator recently permitted acceleration with no noticeable polarization loss. The intrinsic AGS depolarizing resonances (which degrade the polarization content) had been eliminated by betatron tune jumps, but the imperfection resonances were compensated by means of harmonic orbit corrections. However, at high energies these orbit corrections are difficult and tedious and a Siberian Snake became an attractive alternative

  16. Construction of the Neutron Beam Facility at Australia's OPAL Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, J.S.

    2005-01-01

    Full text: Australia's new research reactor, OPAL, has been designed for high quality neutron beam science and radioisotope production. It has a capacity for eighteen neutron beam instruments to be located at the reactor face and in a neutron guide hall. The new neutron beam facility features a 20 litre liquid deuterium cold neutron source and supermirror neutron reflecting guides for intense cold and thermal neutron beams. Nine neutron beam instruments are under development, of which seven are scheduled for completion in early 2007. The project is approaching the hot-commissioning stage, where criticality will be demonstrated. Installation of the neutron beam transport system and neutron beam instruments in the neutron guide hall and at the reactor face is underway, and the path to completion of this project is relatively clear. The lecture will outline Australia's aspirations for neutron science at the OPAL reactor, and describe the neutron beam facility under construction. The status of this project and a forecast of the program to completion, including commissioning and commencement of routine operation in 2007 will also be discussed. This project is the culmination of almost a decade of effort. We now eagerly anticipate catapulting Australia's neutron beam science capability to meet the best in the world today. (author)

  17. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Kastenber, W.E.; Karni, Y.; Regev, D.; Verbeke, J.M.; Leung, K.N.; Chivers, D.; Guess, S.; Kim, L.; Waldron, W.; Zhu, Y.

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  18. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    CERN Document Server

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  19. About possibilities of obtaining focused beams of thermal neutrons of radionuclide source

    International Nuclear Information System (INIS)

    Aripov, G.A.; Kurbanov, B.I.; Sulaymanov, N.T.; Ergashev, A.

    2004-01-01

    Full text: In the last years significant progress is achieved in development of neutron focusing methods (concentrating neutrons in a given direction and a small area). In this, main attention is given to focusing of neutron beams of reactor, particularly cold neutrons and their applications. [1,2]. However, isotope sources also let obtain intensive neutron beams and solve quite important (tasks) problems (e.g. neutron capture therapy for malignant tumors) [3], and an actual problems is focusing of neutrons. We developed a device on the basis of californium source of neutrons, allowing to obtain focused (preliminarily) beam of thermal neutrons with the aid of respective choice of moderators, reflectors and geometry of their disposition. Here, fast neutrons and gamma rays in the beam are minimized. With the aid of the model we developed on the basis of Monte-Carlo method, it is possible to modify aforementioned device and dynamics of output neutrons in wide energy range and analyze ways of optimization of neutron beams of isotope sources with different neutron outputs. Device of preliminary focusing of thermal neutrons can serve as a basis for further focus of neutrons using micro- and nano-capillar systems. It is known that, capillary systems performed with certain technology can form beam of thermal neutrons increasing its density by more than two orders of magnitude and effectively divert beams up to 20 o with length of system 15 cm

  20. Neutron beam utilization at the TRIGA Mark II reactor Vienna

    International Nuclear Information System (INIS)

    Villa, M.; Boeck, H.; Ismail, S.; Koerner, S.; Baron, M.; Hainbuchner, M.; Badurek, G.; Buchelt, R.J.

    1999-01-01

    A review is given about the research activities around the 250 kw TRIGA reactor Vienna, which are adequate to other neutron sources of comparable or bigger size. The topics selected for presentation range from neutron radiography, materials irradiation, neutron small-angle scattering, neutron activation analysis, neutron polarization to neutron interferometry. It is the aim of this presentation to stimulate programs for more efficient use around TRIGA research reactors with neutron flux densities of 1013 cm-2a-1 at the center of the reactor core. We briefly describe the experimental facilities installed at the 250 kw TRIGA reactor of the Austrian Universities in Vienna and present a great part of the current research activities performed with them. We believe that most of the techniques and experiments presented here are adequate for implementation to other reactors of similar or even higher power. Those technologies which require extremely specialized know-how not generally available at every research Inst.e will not be treated here or are just mentioned without any further details.(author)

  1. Proceedings of the 5. symposium on neutron dosimetry. Beam dosimetry

    International Nuclear Information System (INIS)

    Schraube, H.; Burger, G.; Booz, J.

    1985-01-01

    Proceedings of the fifth symposium on neutron dosimetry, organized at Neuherberg, 17-21 September 1984, by the Commission of the European Communities and the GSF Neuherberg, with the co-sponsorship of the US Department of Energy, Office of Health and Environmental Research. The proceedings deal with research on concepts, instruments and methods in radiological protection for neutrons and mixed neutron-gamma fields, including the generation, collection and evaluation of new dosimetric data, the derivation of relevant radiation protection quantitites, and the harmonization of experimental methods and instrumentation by intercomparison programmes. Besides radiation protection monitoring, the proceedings also report on the improvement of neutron beam dosimetry in the fields of radiobiology and radiation therapy

  2. Physics with Ultracold and Thermal Neutron Beams

    International Nuclear Information System (INIS)

    None

    2004-01-01

    The final report is broken into 5 segments, reflecting research conclusions reached during specific time periods: 1991-1997, 1997-1999, 1999-2000, 2000-2001, and 2001-2002. The first part of the work reported was carried out at the 2 Mw research reactor of the Rhode Island Nuclaer Science Center (RJNSC). Chosen for study was the slow phase separation in mixtures of oil and water in the presence of a surfactant, and the structural features of an oil layer during the slow build-up from the gas phase. The results of these measurements, as well as studies of the capillary wave properties of oil/surfactant/water interfaces are described. The second part of the work was performed at the neutron reflection facilities of the Intennse Pulsed Neutron Source at Argonne and of the NBSR reactor at NIST. At Argonne, the uniaxial magnetic order of an Fe/CR superlattice was investigated, while the experiments at NIST studied the swelling behavior of ordered thin films of diblock copolymers when they were exposed to solvent vapors. The third part of the work was concerned with the storage properties of ultracold neturons in a trap. New experiments on spectral evolution during storage, using the UCN source of the Institut Laue-Langevin were able to be run. Subsequent periods focussed on the ultracold neutrons work, spin valve multilayer systems, and pseudo-partial wetting

  3. Polarized neutron reflectivity and scattering studies of magnetic heterostructures

    Science.gov (United States)

    Zabel, H.; Theis-Bröhl, K.

    2003-02-01

    The current interest in the magnetism of ultrathin films and multilayers is driven by their manifold applications in the magneto-and spin-electronic areas, for instance as magnetic field sensors or as information storage devices. In this regard, there is a large interest in exploring spin structures and spin disorder at the interface of magnetic heterostructures, to investigate magnetic domains in thin films and superlattices, and to understand remagnetization processes of various laterally shaped magnetic nanostructures. Traditionally neutron scattering has played a dominant role in the determination of spin structures, phase transitions and magnetic excitations in bulk materials. Today, its potential for the investigation of thin magnetic films has to be redefined. Polarized neutron reflectivity (PNR) at small wavevectors can provide precise information on the magnetic field distribution parallel to the film plane and on layer resolved magnetization vectors. In addition, PNR is not only sensitive to structural interface roughness but also to the magnetic roughness. Furthermore, magnetic hysteresis measurements from polarized small angle Bragg reflections allows us to filter out correlation effects during magnetization reversals of magnetic stripes and islands. An overview is provided on most recent PNR investigations of magnetic heterostructures.

  4. Polarized neutron reflectivity and scattering studies of magnetic heterostructures

    International Nuclear Information System (INIS)

    Zabel, H; Theis-Broehl, K

    2003-01-01

    The current interest in the magnetism of ultrathin films and multilayers is driven by their manifold applications in the magneto-and spin-electronic areas, for instance as magnetic field sensors or as information storage devices. In this regard, there is a large interest in exploring spin structures and spin disorder at the interface of magnetic heterostructures, to investigate magnetic domains in thin films and superlattices, and to understand remagnetization processes of various laterally shaped magnetic nanostructures. Traditionally neutron scattering has played a dominant role in the determination of spin structures, phase transitions and magnetic excitations in bulk materials. Today, its potential for the investigation of thin magnetic films has to be redefined. Polarized neutron reflectivity (PNR) at small wavevectors can provide precise information on the magnetic field distribution parallel to the film plane and on layer resolved magnetization vectors. In addition, PNR is not only sensitive to structural interface roughness but also to the magnetic roughness. Furthermore, magnetic hysteresis measurements from polarized small angle Bragg reflections allows us to filter out correlation effects during magnetization reversals of magnetic stripes and islands. An overview is provided on most recent PNR investigations of magnetic heterostructures

  5. Neutron emission in neutral beam heated KSTAR plasmas and its application to neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jong-Gu, E-mail: jgkwak@nfri.re.kr; Kim, H.S.; Cheon, M.S.; Oh, S.T.; Lee, Y.S.; Terzolo, L.

    2016-11-01

    Highlights: • We measured the neutron emission from KSTAR plasmas quantitatively. • We confirmed that neutron emission is coming from neutral beam-plasma interactions. • The feasibility study shows that the fast neutron from KSTAR could be used for fast neutron radiography. - Abstract: The main mission of Korea Superconducting Tokamak Advanced Research (KSTAR) program is exploring the physics and technologies of high performance steady state Tokamak operation that are essential for ITER and fusion reactor. Since the successful first operation in 2008, the plasma performance is enhanced and duration of H-mode is extended to around 50 s which corresponds to a few times of current diffusion time and surpassing the current conventional Tokamak operation. In addition to long-pulse operation, the operational boundary of the H-mode discharge is further extended over MHD no-wall limit(β{sub N} ∼ 4) transiently and higher stored energy region is obtained by increased total heating power (∼6 MW) and plasma current (I{sub p} up to 1 MA for ∼10 s). Heating system consists of various mixtures (NB, ECH, LHCD, ICRF) but the major horse heating resource is the neutral beam(NB) of 100 keV with 4.5 MW and most of experiments are conducted with NB. So there is a lot of production of fast neutrons coming from via D(d,n){sup 3}He reaction and it is found that most of neutrons are coming from deuterium beam plasma interaction. Nominal neutron yield and the area of beam port is about 10{sup 13}–10{sup 14}/s and 1 m{sup 2} at the closest access position of the sample respectively and neutron emission could be modulated for application to the neutron radiography by varying NB power. This work reports on the results of quantitative analysis of neutron emission measurements and results are discussed in terms of beam-plasma interaction and plasma confinement. It also includes the feasibility study of neutron radiography using KSTAR.

  6. 3D-Printed Beam Splitter for Polar Neutral Molecules

    Science.gov (United States)

    Gordon, Sean D. S.; Osterwalder, Andreas

    2017-04-01

    We describe a macroscopic beam splitter for polar neutral molecules. A complex electrode structure is required for the beam splitter which would be very difficult to produce with traditional manufacturing methods. Instead, we make use of a nascent manufacturing technique: 3D printing of a plastic piece, followed by electroplating. This fabrication method opens a plethora of avenues for research, since 3D printing imposes practically no limitations on possible shapes, and the plating produces chemically robust, conductive construction elements with an almost free choice of surface material. It has the added advantage of dramatically reduced production cost and time. Our beam splitter is an electrostatic hexapole guide that smoothly transforms into two bent quadrupoles. We demonstrate the correct functioning of this device by separating a supersonic molecular beam of ND3 into two correlated fractions. It is shown that this device can be used to implement experiments with differential detection wherein one of the fractions serves as a probe and the other as a reference. Reverse operation would allow the merging of two beams of polar neutral molecules.

  7. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    International Nuclear Information System (INIS)

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 10 8 n/cm 2 · s. The fast neutron and gamma radiation KERMA factors are 10 x 10 -11 cGy·cm 2 /n epi and 20 x 10 -11 cGy·cm 2 /n epi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power

  8. Optically pumped polarized alkali atomic beams and targets

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1984-01-01

    The optical pumping of 23 Na and 6 Li atomic beams is discussed. Experiments on the optical pumping of 23 Na atomic beams using either a single mode dye laser followed by a double passed acousto-optic modulator or a multimode dye laser are reported. The optical pumping of a 23 Na vapor target for use in a polarized H - ion source is discussed. Results on the use of viton as a wall coating with a long relaxation time are reported. 31 references, 6 figures, 3 tables

  9. Spin-polarization of an electro-static positron beam

    International Nuclear Information System (INIS)

    Kawasuso, A.; Maekawa, M.

    2008-01-01

    We constructed an electro-static positron beam apparatus. We fabricated a simple spin-polarimeter composed of a permanent magnet with a surface magnetic field of 0.65 T and an iron pole piece. The longitudinal spin-polarization of the positron beam was determined to be 0.3 by analyzing the magnetic field dependence of the Doppler broadening of annihilation radiation from a fused silica specimen. The effect of spin rotation was examined using an iron poly-crystal and a simple E x B filter

  10. Setup for polarized neutron imaging using in situ3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline.

    Science.gov (United States)

    Dhiman, I; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X; Jiang, C Y; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3 He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe 3 Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3 He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  11. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline

    Science.gov (United States)

    Dhiman, I.; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X.; Jiang, C. Y.; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe3Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  12. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Geoffrey L [ORNL; Snow, William M [ORNL; Dewey, M. [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Gilliam, D [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Nico, Jeffrey S [ORNL; Coakley, K [National Institute of Standards and Technology (NIST), Boulder; Yue, A [University of Tennessee, Knoxville (UTK); Laptev, A [Los Alamos National Laboratory (LANL); Wietfeldt, F [Tulane University

    2009-01-01

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  13. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Science.gov (United States)

    Dewey, M.; Coakley, K.; Gilliam, D.; Greene, G.; Laptev, A.; Nico, J.; Snow, W.; Wietfeldt, F.; Yue, A.

    2009-12-01

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  14. Prospects for a new cold neutron beam measurement of the neutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, M., E-mail: mdewey@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Coakley, K., E-mail: kevin.coakley@nist.go [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Gilliam, D., E-mail: david.gilliam@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Greene, G., E-mail: greenegl@ornl.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Lab, Building 6010, Oak Ridge, TN 37831 (United States); Laptev, A., E-mail: alaptev@nist.go [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nico, J., E-mail: jnico@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Snow, W., E-mail: wsnow@indiana.ed [Indiana University/IUCF, Bloomington, IN 47408 (United States); Wietfeldt, F., E-mail: few@tulane.ed [Tulane University, New Orleans, LA 70118 (United States); Yue, A., E-mail: ayue@nist.go [Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States)

    2009-12-11

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  15. Geant4 simulations of NIST beam neutron lifetime experiment

    Science.gov (United States)

    Valete, Daniel; Crawford, Bret; BL2 Collaboration Collaboration

    2017-09-01

    A free neutron is unstable and its decay is described by the Standard Model as the transformation of a down quark into an up quark through the weak interaction. Precise measurements of the neutron lifetime test the validity of the theory of the weak interaction and provide useful information for the predictions of the theory of Big Bang nucleosynthesis of the primordial helium abundance in the universe and the number of different types of light neutrinos Nν. The predominant experimental methods for determination of the neutron lifetime are commonly called `beam' and `bottle' methods, and the most recent uses of each method do not agree with each other within their stated uncertainties. An improved experiment of the beam technique, which uses magnetic and electric fields to trap and guide the decay protons of a beam of cold neutrons to a detector, is in progress at the National Institute of Standards and Technology, Gaithersburg, MD with a precision goal of 0.1. I acknowledge the support of the Cross-Diciplinary Institute at Gettysburg College.

  16. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    Science.gov (United States)

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Status report of the program on neutron beam utilization at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Vuong Huu Tan

    1996-08-01

    The thermal reactor is an intense source not only of thermal neutron, but also intermediate as well as fast neutrons. Using the filtered neutron beam technique at steady state atomic reactor allows receiving the neutrons in the intermediate energy region with the most available intense flux at present. In the near time at the Dalat reactor the filtered neutron beam technique has been applied. Utilization of the filtered neutron beams in basic and applied researches has been a important activity of the Dalat Nuclear Research Institute (DNRI). This report presents some relevant characteristics of the filtered neutron beams and their utilization in nuclear data measurements, neutron capture gamma ray spectroscopy, neutron radiography, neutron dose calibration and other applications. (author). 3 refs, 2 figs

  18. Polarized neutron study of the magnetic mesostructure in (Pd{sub 1-x}Fe{sub x}){sub 1-y}Mn{sub y}

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, G.P.; Axelrod, L.A.; Lazebnik, I.M.; Zabenkin, V.N. [Petersburg Nuclear Physics Institute, 188300, Gatchina (Russian Federation); Wagner, V. [Physikalisch-Technische Bundesanstalt, 38116, Braunschweig (Germany)

    2002-07-01

    In PdFeMn alloys with different Fe-atom concentrations, the behaviour of both mean magnetization and neutron depolarization in the magnetization/demagnetization process was observed by three-dimensional analysis of neutron-beam polarization. Both magnetization and depolarization have a hysteresis loop for the same values of an applied field. Depolarization loops are sharply distinguished for different alloys. This gives evidence of different magnetic mesostructures in these alloys. (orig.)

  19. Polarized neutron study of the magnetic mesostructure in (Pd sub 1 sub - sub x Fe sub x) sub 1 sub - sub y Mn sub y

    CERN Document Server

    Gordeev, G P; Lazebnik, I M; Zabenkin, V N; Wagner, V

    2002-01-01

    In PdFeMn alloys with different Fe-atom concentrations, the behaviour of both mean magnetization and neutron depolarization in the magnetization/demagnetization process was observed by three-dimensional analysis of neutron-beam polarization. Both magnetization and depolarization have a hysteresis loop for the same values of an applied field. Depolarization loops are sharply distinguished for different alloys. This gives evidence of different magnetic mesostructures in these alloys. (orig.)

  20. Monitoring elastic strain and damage by neutron and synchrotron beams

    International Nuclear Information System (INIS)

    Withers, P.J.

    2001-01-01

    Large-scale neutron and synchrotron X-ray facilities have been providing important information for physicists and chemists for many decades. Increasingly, materials engineers are finding that they can also provide them with important information non-destructively. Highly penetrating neutron and X-ray synchrotron beams provide the materials engineer with a means of obtaining information about the state of stress and damage deep within materials. In this paper the principles underlying the elastic strain measurement and damage characterization techniques are introduced. (orig.)

  1. Characterization of the n_TOF EAR-2 neutron beam

    Directory of Open Access Journals (Sweden)

    Chen Y.H.

    2017-01-01

    Full Text Available The experimental area 2 (EAR-2 at CERNs neutron time-of-flight facility (n_TOF, which is operational since 2014, is designed and built as a short-distance complement to the experimental area 1 (EAR-1. The Parallel Plate Avalanche Counter (PPAC monitor experiment was performed to characterize the beam pro↓le and the shape of the neutron 'ux at EAR-2. The prompt γ-flash which is used for calibrating the time-of-flight at EAR-1 is not seen by PPAC at EAR-2, shedding light on the physical origin of this γ-flash.

  2. Characterization of the n_TOF EAR-2 neutron beam

    Science.gov (United States)

    Chen, Y. H.; Tassan-Got, L.; Audouin, L.; Le Naour, C.; Durán, I.; Casarejos, E.; Aberle, O.; Andrzejewski, J.; Bécares, V.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chiaveri, E.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Furman, V.; Göbel, K.; Gómez-Hornillos, M. B.; García, A. R.; Gawlik, A.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heftrich, T.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Meo, S. Lo; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, J. I.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    The experimental area 2 (EAR-2) at CERNs neutron time-of-flight facility (n_TOF), which is operational since 2014, is designed and built as a short-distance complement to the experimental area 1 (EAR-1). The Parallel Plate Avalanche Counter (PPAC) monitor experiment was performed to characterize the beam pro↓le and the shape of the neutron 'ux at EAR-2. The prompt γ-flash which is used for calibrating the time-of-flight at EAR-1 is not seen by PPAC at EAR-2, shedding light on the physical origin of this γ-flash.

  3. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect

    International Nuclear Information System (INIS)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.

    2006-01-01

    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρ s ) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach

  4. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect

    Science.gov (United States)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.

    2006-09-01

    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρs) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach.

  5. High-energy polarized proton beams a modern view

    CERN Document Server

    Hoffstaetter, Georg Heinz

    2006-01-01

    This monograph begins with a review of the basic equations of spin motion in particle accelerators. It then reviews how polarized protons can be accelerated to several tens of GeV using as examples the preaccelerators of HERA, a 6.3 km long cyclic accelerator at DESY / Hamburg. Such techniques have already been used at the AGS of BNL / New York, to accelerate polarized protons to 25 GeV. But for acceleration to energies of several hundred GeV as in RHIC, TEVATRON, HERA, LHC, or a VLHC, new problems can occur which can lead to a significantly diminished beam polarization. For these high energies, it is necessary to look in more detail at the spin motion, and for that the invariant spin field has proved to be a useful tool. This is already widely used for the description of high-energy electron beams that become polarized by the emission of spin-flip synchrotron radiation. It is shown that this field gives rise to an adiabatic invariant of spin-orbit motion and that it defines the maximum time average polarizat...

  6. Spin dependence studies with the ZGS polarized proton beam

    International Nuclear Information System (INIS)

    Wicklund, A.B.

    1977-01-01

    Selected results are summarized of recent measurements using a polarized proton beam at the Argonne ZGS. The polarized target asymmetry and the beam-target spin correlation are measured in pp→pp at 6 and 12 GeV/c. Asymmetry is slowly varying with energy while spin correlation increases considerably from 6 to 12 GeV/c. The polarized parameters in pp→pp and pn→pn elastic scattering are compared. The data show that pp and pn polarizations tend to approach mirror symmetry as the energy increases. The effective mass spectrometer has been used to study the pp→pπ + n, pn→pπ - p reactions from 2 to 6 GeV/c. For small -t values (-t 2 ) these reactions are dominated by π exchange. At large -t values other mechanisms besides π-exchange become important. The 3-body diffraction dissociation reactions have been measured at 6 GeV/c with hydrogen and deuterium targets. The reactions are pp→pπ + π - (p); pd→pπ + π - (p+n). Comparison of hydrogen and deuterium cross section reveals a considerable coherent contribution of deuterium, which has an approximately 20% larger cross section per nucleon than hydrogen

  7. Nondestructive water imaging by neutron beam analysis in living plants

    International Nuclear Information System (INIS)

    Nakanishi, T.M.; Matsubayashi, M.

    1997-01-01

    Analysis of biological activity in intact cells or tissues is essential to understand many life processes. Techniques for these in vivo measurements have not been well developed. We present here a nondestructive method to image water in living plants using a neutron beam. This technique provides the highest resolution for water in tissue yet obtainable. With high specificity to water, this neutron beam technique images water movement in seeds or in roots imbedded in soil, as well as in wood and meristems during development. The resolution of the image attainable now is about 15 μm. We also describe how this new technique will allow new investigations in the field of plant research. (author)

  8. Physics at the new CERN neutron beam line

    CERN Document Server

    Guerrero, C

    2014-01-01

    A new neutron beam line (n_TOF EAR - 2) is being built at CERN within the n_TOF facility. Compared to the existing 185 meters long time - of - flight beam line, the new one (which will operate in parallel) will feature a shorter flight of 20 meters, providing a 2 7 times more intense neutron flux extending from thermal to 300 MeV. The scientific program is now bein g discussed and the first detailed proposals will be refereed by February 2014. This contribution is devoted to present and discuss the expected performance of the facility, briefly, and the details of some of the first measureme nts foreseen for 2014 and 2015.

  9. Beam-transport optimization for cold-neutron spectrometer

    Directory of Open Access Journals (Sweden)

    Nakajima Kenji

    2015-01-01

    Full Text Available We report the design of the beam-transport system (especially the vertical geometry for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  10. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.

    Science.gov (United States)

    Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2012-02-01

    The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  11. 4{pi} Neutron detection with low-intensity radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Del Zoppo, A. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy)], E-mail: delzoppo@lns.infn.it; Figuera, P. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Musumarra, A. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, I95123 Catania (Italy); Colonna, N. [INFN-Sezione di Bari, Via Orabona 4, I70126, Bari (Italy); Alba, R.; Bonomo, C. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Cherubini, S. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, I95123 Catania (Italy); Cosentino, L.; Di Pietro, A. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Gulino, M. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, I95123 Catania (Italy); La Cognata, M. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Lamia, L. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, I95123 Catania (Italy); Pellegriti, M.G.; Pizzone, R.G. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Rolfs, C. [Institut fur Physik mit Ionenstrahlen, Ruhr-Universitaet Bochum, Bochum (Germany); Romano, S.; Spitaleri, C. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, I95123 Catania (Italy); Tudisco, S. [INFN-Laboratori Nazionali del Sud, Via S.Sofia 62, I95123 Catania (Italy)] (and others)

    2007-11-01

    The feasibility of inclusive neutron production measurements in reactions induced by low-intensity radioactive beams using a 4{pi} thermalization counter is studied. The time response of the detector is investigated experimentally by a technique that results in an enhanced sensitivity to weak components with long capture times. Complementary Monte Carlo simulations are presented. The capture time response is found to be independent on the neutron energy above 0.1 MeV. The capability of the capture time information in the unambiguous identification of neutron signals correlated to the projectile arrival on the target even in the presence of an intense background contamination is shown. As an application case, the {sup 8}Li({sup 4}He,n){sup 11}B reaction at the Big-Bang temperature is commented.

  12. Neutron detection with low-intensity radioactive beams

    Science.gov (United States)

    Del Zoppo, A.; Figuera, P.; Musumarra, A.; Colonna, N.; Alba, R.; Bonomo, C.; Cherubini, S.; Cosentino, L.; Di Pietro, A.; Gulino, M.; La Cognata, M.; Lamia, L.; Pellegriti, M. G.; Pizzone, R. G.; Rolfs, C.; Romano, S.; Spitaleri, C.; Tudisco, S.; Tumino, A.

    2007-11-01

    The feasibility of inclusive neutron production measurements in reactions induced by low-intensity radioactive beams using a 4π thermalization counter is studied. The time response of the detector is investigated experimentally by a technique that results in an enhanced sensitivity to weak components with long capture times. Complementary Monte Carlo simulations are presented. The capture time response is found to be independent on the neutron energy above 0.1 MeV. The capability of the capture time information in the unambiguous identification of neutron signals correlated to the projectile arrival on the target even in the presence of an intense background contamination is shown. As an application case, the 8Li( 4He,n) 11B reaction at the Big-Bang temperature is commented.

  13. Neutron detection with low-intensity radioactive beams

    International Nuclear Information System (INIS)

    Del Zoppo, A.; Figuera, P.; Musumarra, A.; Colonna, N.; Alba, R.; Bonomo, C.; Cherubini, S.; Cosentino, L.; Di Pietro, A.; Gulino, M.; La Cognata, M.; Lamia, L.; Pellegriti, M.G.; Pizzone, R.G.; Rolfs, C.; Romano, S.; Spitaleri, C.; Tudisco, S.

    2007-01-01

    The feasibility of inclusive neutron production measurements in reactions induced by low-intensity radioactive beams using a 4π thermalization counter is studied. The time response of the detector is investigated experimentally by a technique that results in an enhanced sensitivity to weak components with long capture times. Complementary Monte Carlo simulations are presented. The capture time response is found to be independent on the neutron energy above 0.1 MeV. The capability of the capture time information in the unambiguous identification of neutron signals correlated to the projectile arrival on the target even in the presence of an intense background contamination is shown. As an application case, the 8 Li( 4 He,n) 11 B reaction at the Big-Bang temperature is commented

  14. Expanding options in radiation oncology: neutron beam therapy

    International Nuclear Information System (INIS)

    Cohen, L.

    1982-01-01

    Twelve years experience with neutron beam therapy in Britain, the USA, Europe and Japan shows that local control is achievable in late-stage epidermoid cancer somewhat more frequently than with conventional radiotherapy. Tumours reputed to be radioresistant (salivary gland, bladder, rectosigmoid, melanoma, bone and soft-tissue sarcomas) have proved to be particularly responsive to neutrons. Pilot studies in brain and pancreatic tumours suggest promising new approaches to management of cancer in these sites. The availability of neutron therapy in the clinical environment opens new prospects for irradiation of 'radioresistant' tumours, permits more conservative cancer surgery, expands the use of elective chemotherapy and provides a wider range of options for cancer patients. (author)

  15. Interface alloying in multilayer thin films using polarized neutron reflectometry

    International Nuclear Information System (INIS)

    Basu, Saibal

    2013-01-01

    Polarized Neutron Reflectometry (PNR) is an excellent tool to probe magnetic depth profile in multilayer thin film samples. In case of multilayer films with alternating magnetic and non-magnetic layers, PNR can provide magnetic depth profile at the interfaces with better than nanometer resolution. Using PNR and Xray Reflectometry (XRR) together one can obtain chemical composition and magnetic structure, viz. magnetic moment density at interfaces in multilayer films. We have used these two techniques to obtain kinetics of alloy formation at the interfaces and the magnetic nature of the alloy at the interfaces in several important thin films with magnetic/non-magnetic bilayers. These include Ni/Ti, Ni/Al and Si/Ni pairs. Results obtained from these studies will be presented in this talk. (author)

  16. Evaluation of JRR-4 neutron beam using tumor cells

    International Nuclear Information System (INIS)

    Yamamoto, Kazuyoshi; Kumada, Hiroaki; Torii, Yoshiya; Kishi, Toshiaki; Horiguchi, Yoji

    2001-03-01

    For preparation of irradiation plan of boron-neutron capture therapy (BNCT), not only the physical dose is important, but also weighted factors or RBE are also necessary on the evaluation of the effect on the organism. Physical dose calculated by dose evaluation system (JCDS : JAERI Computational Dosimetry System) must appropriately carry out the weighting by various cells like tumor, central nerve, glia, and the vascular in proportion to JRR-4 each irradiation mode. In-vitro biological experiment which used 9L gliosarcoma and C6 glioma in the head water phantom was carried out in order to evaluate these effect. Neutron beam characteristics of JRR-4 were also evaluated from the functions of survival fraction of these cells. As a result of the evaluation, it became clear that the dose evaluation calculated from physical dose of the boron and nitrogen carried out in traditional BNCT of Japan using thermal neutron is applicable for thermal and epi-thermal mixed neutron beam. (author)

  17. Measurement of spin observables using a storage ring with polarized beam and polarized internal gas target

    International Nuclear Information System (INIS)

    Lee, K.; Miller, M.A.; Smith, A.; Hansen, J.; Bloch, C.; van den Brand, J.F.J.; Bulten, H.J.; Ent, R.; Goodman, C.D.; Jacobs, W.W.; Jones, C.E.; Korsch, W.; Leuschner, M.; Lorenzon, W.; Marchlenski, D.; Meyer, H.O.; Milner, R.G.; Neal, J.S.; Pancella, P.V.; Pate, S.F.; Pitts, W.K.; von Przewoski, B.; Rinckel, T.; Sowinski, J.; Sperisen, F.; Sugarbaker, E.; Tschalaer, C.; Unal, O.; Zhou, Z.

    1993-01-01

    We report the first measurement of analyzing powers and spin correlation parameters using a storage ring with both beam and internal target polarized. Spin observables were measured for elastic scattering of 45 and 198 MeV protons from polarized 3 He nuclei in a new laser-pumped internal gas target at the Indiana University Cyclotron Facility Cooler Ring. Scattered protons and recoil 3 He nuclei were detected in coincidence with large acceptance plastic scintillators and silicon detectors. The internal-target technique demonstrated in this experiment has broad applicability to the measurement of spin-dependent scattering in nuclear and particle physics

  18. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line.

    Science.gov (United States)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser

    2016-01-01

    Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Different dose components have been measured in a head phantom which has been designed and constructed for BNCT purpose in TRR. Different in-phantom beam quality factors have also been determined. This study demonstrates that the TRR BNCT beam line has potential for treatment of superficial tumors.

  19. Measurement of anisotropy constant in US with polarized neutrons

    DEFF Research Database (Denmark)

    Lander, G.H.; Brooks, M.S.S.; Lebech, B.

    1991-01-01

    than found in TbFe2 at 0 K. The method we have used is with polarized neutrons. Because the neutron interaction with the magnetic moment is vectorial in nature we can determine individually the magnitude and direction of the moment in an applied field. In many cases this method has advantages over......Uranium compounds can have an anisotropy that is considerably greater than that found in rare‐earth compounds. Early estimates of K1 in ferromagnetic US (Tc = 178 K), for example, were that K1 ≳ 108 erg/cm3. We have re‐examined this cubic material and determined K1 in the range of reduced moment (μ....../μ0) from 0.1 magnitude. The highest measured K1 is 2 × 108 erg/cm3 at (μ/μ0) = 0.7, but an extrapolation, which we anticipate on arguments of symmetry, to (μ/μ0)=1, (T=0 K) gives K1 ∼ 1010 erg/cm3, some 20 times more...

  20. Pin cushion plasmonic device for polarization beam splitting, focusing, and beam position estimation.

    Science.gov (United States)

    Lerman, Gilad M; Levy, Uriel

    2013-03-13

    Great hopes rest on surface plasmon polaritons' (SPPs) potential to bring new functionalities and applications into various branches of optics. In this paper, we demonstrate a pin cushion structure capable of coupling light from free space into SPPs, split them based on the polarization content of the illuminating beam of light, and focus them into small spots. We also show that for a circularly or randomly polarized light, four focal spots will be generated at the center of each quarter circle comprising the pin cushion device. Furthermore, following the relation between the relative intensity of the obtained four focal spots and the relative position of the illuminating beam with respect to the structure, we propose and demonstrate the potential use of our structure as a miniaturized plasmonic version of the well-known four quadrant detector. Additional potential applications may vary from multichannel microscopy and multioptical traps to real time beam tracking systems.

  1. Measuring polarization dependent dispersion of non-polarizing beam splitter cubes with spectrally resolved white light interferometry

    Science.gov (United States)

    Csonti, K.; Hanyecz, V.; Mészáros, G.; Kovács, A. P.

    2017-06-01

    In this work we have measured the group-delay dispersion of an empty Michelson interferometer for s- and p-polarized light beams applying two different non-polarizing beam splitter cubes. The interference pattern appearing at the output of the interferometer was resolved with two different spectrometers. It was found that the group-delay dispersion of the empty interferometer depended on the polarization directions in case of both beam splitter cubes. The results were checked by inserting a glass plate in the sample arm of the interferometer and similar difference was obtained for the two polarization directions. These results show that to reach high precision, linearly polarized white light beam should be used and the residual dispersion of the empty interferometer should be measured at both polarization directions.

  2. Small-angle neutron scattering investigations of magnetic nanostructures and interfaces using polarized neutrons

    Science.gov (United States)

    Wiedenmann, Albrecht

    2001-03-01

    Using polarized neutrons, the relative contrasts for small-angle scattering are strongly modified which allows a precise evaluation of magnetization, density and composition profiles at surfaces and interfaces of nanoscaled materials. In Co ferrofluids, the magnetic core behaves as a non-interacting single domain. The core is encapsulated by a shell of surfactant molecules which was found to be impenetrable for the solvent. In soft magnetic Fe-Si-B-(Nb,Cu) and Fe-Nb-B alloys, the presence of a weak magnetic interface between ferromagnetic nanocrystals and amorphous matrix has been demonstrated which breaks the exchange interactions.

  3. Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD Core and Addition of New Fuel Elements

    Directory of Open Access Journals (Sweden)

    Aaron E. Craft

    2016-02-01

    Full Text Available The neutron radiography reactor (NRAD is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D = 125 is 5.96 × 106 n/cm2/s with a 2σ standard error of 2.90 × 105 n/cm2/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

  4. The HB-2D Polarized Neutron Development Beamline at the High Flux Isotope Reactor

    Science.gov (United States)

    Crow, Lowell; Hamilton, WA; Zhao, JK; Robertson, JL

    2016-09-01

    The Polarized Neutron Development beamline, recently commissioned at the HB-2D position on the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, provides a tool for development and testing of polarizers, polarized neutron devices, and prototyping of polarized neutron techniques. With available monochromators including pyrolytic graphite and polarizing enriched Fe-57 (Si), the instrument has operated at 4.25 and 2.6 Å wavelengths, using crystal, supermirror, or He-3 polarizers and analyzers in various configurations. The Neutron Optics and Development Team has used the beamline for testing of He-3 polarizers for use at other HFIR and Spallation Neutron Source (SNS) instruments, as well as a variety of flipper devices. Recently, we have acquired new supermirror polarizers which have improved the instrument performance. The team and collaborators also have continuing demonstration experiments of spin-echo focusing techniques, and plans to conduct polarized diffraction measurements. The beamline is also used to support a growing use of polarization techniques at present and future instruments at SNS and HFIR.

  5. Development of a monoenergetic neutron beam (Theoretical aspects, experimental developments and applications)

    International Nuclear Information System (INIS)

    Varela G, A.

    2003-01-01

    By the use of a neutron time of flight system at the Tandem Accelerator of the National Nuclear Research Institute; with neutrons provided by means of the 2 H(d, n) 3 He we intend to use the associated particle technique in order to have monoenergetic neutrons. This neutron beam will be used both in basic and applied research. (Author)

  6. Design, construction and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choopan Dastjerdi, M.H., E-mail: mdastjerdi@aeoi.org.ir [Reactor Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khalafi, H.; Kasesaz, Y.; Mirvakili, S.M.; Emami, J.; Ghods, H.; Ezzati, A. [Reactor Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of)

    2016-05-11

    To obtain a thermal neutron beam for neutron radiography applications, a neutron collimator has been designed and implemented at the Tehran Research Reactor (TRR). TRR is a 5 MW open pool light water moderated reactor with seven beam tubes. The neutron collimator is implemented in the E beam tube of the TRR. The design of the neutron collimator was performed using MCNPX Monte Carlo code. In this work, polycrystalline bismuth and graphite have been used as a gamma filter and an illuminator, respectively. The L/D parameter of the facility was chosen in the range of 150–250. The thermal neutron flux at the image plane can be varied from 2.26×10{sup 6} to 6.5×10{sup 6} n cm{sup −2} s{sup −1}. Characterization of the beam was performed by ASTM standard IQI and foil activation technique to determine the quality of neutron beam. The results show that the obtained neutron beam has a good quality for neutron radiography applications.

  7. Consequences of trapped beam ions of the analysis of neutron emission data

    International Nuclear Information System (INIS)

    Loughlin, M.J.; Hone, M.; Jarvis, O.N.; Laundy, B.; Sadler, G.; Belle, P. van

    1989-01-01

    Neutron energy spectra have been measured during D o neutral beam heating of deuterium plasmas. The thermonuclear to beam-plasma neutron production ratios are deduced. For a non-radial spectrometer line-of-sight, the trapped beam-ion fraction must be considered. (author) 5 refs., 4 figs

  8. ISOL Beams of Neutron-Rich Oxygen Isotopes

    CERN Document Server

    Köster, U; Bergmann, U; Catherall, R; Cederkäll, J; Dillmann, I; Dubois, M; Durantel, F; Fraile-Prieto, L M; Franchoo, S; Gaubert, G; Gaudefroy, L; Hallmann, O; Huet-Equilbec, C; Jacquot, B; Jardin, P; Kratz, K L; Lecesne, N; Leroy, R; López, A; Maunoury, L; Pacquet, J Y; Pfeiffer, B; Saint-Laurent, M G; Stodel, C; Villari, A C C; Weissman, L

    2005-01-01

    ISOL beams of $19-22^$O were produced at ISOLDE and GANIL. At ISOLDE the neutron-rich oxygen isotopes are produced by 1.4GeV proton-induced reactionsin a UC_X/graphite target. The target is connected via a water-cooled transfer line (to retain all non-volatile isobars) to an ISOLDE type FEBIAD ion source wherethe released CO is dominantly ionized as CO^+, $^19-22$O beams were also produced at SPIRAL (GANIL). A 77.5 MeV/nucleon $^36$S beam was fragmented in a thick graphite target, coupled by a cold tranfer tube to an ECR ion source which ionizes the released CO dominantly as O^+ and CO+.

  9. Super-resolution longitudinally polarized light needle achieved by tightly focusing radially polarized beams

    Science.gov (United States)

    Shi, Chang-kun; Nie, Zhong-quan; Tian, Yan-ting; Liu, Chao; Zhao, Yong-chuang; Jia, Bao-hua

    2018-01-01

    Based on the vector diffraction theory, a super-resolution longitudinally polarized optical needle with ultra-long depth of focus ( DOF) is generated by tightly focusing a radially polarized beam that is modulated by a self-designed ternary hybrid (phase/amplitude) filter (THF). Both the phase and the amplitude patterns of THF are judiciously optimized by the versatile particle swarm optimization (PSO) searching algorithm. For the focusing configuration with a combination of a high numerical aperture ( NA) and the optimized sine-shaped THFs, an optical needle with the full width at half maximum ( FWHM) of 0.414λ and the DOF of 7.58λ is accessed, which corresponds to an aspect ratio of 18.3. The demonstrated longitudinally polarized super-resolution light needle with high aspect ratio opens up broad applications in high-density optical data storage, nano-photolithography, super-resolution imaging and high-efficiency particle trapping.

  10. A Micromegas Detector for Neutron Beam Imaging at the n_TOF Facility at CERN

    CERN Document Server

    Belloni, F; Berthoumieux, E; Calviani, M; Chiaveri, E; Colonna, N; Giomataris, Y; Guerrero, C; Gunsing, F; Iguaz, F J; Kebbiri, M; Pancin, J; Papaevangelou, T; Tsinganis, A; Vlachoudis, V; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Corté-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Marítnez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A J M; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T J; Žugec, P

    2014-01-01

    Micromegas (Micro-MEsh Gaseous Structure) detectors are gas detectors consisting of a stack of one ionization and one proportional chamber. A micromesh separates the two communicating regions, where two different electric fields establish respectively a charge drift and a charge multiplication regime. The n\\_TOF facility at CERN provides a white neutron beam (from thermal up to GeV neutrons) for neutron induced cross section measurements. These measurements need a perfect knowlodge of the incident neutron beam, in particular regarding its spatial profile. A position sensitive micromegas detector equipped with a B-10 based neutron/charged particle converter has been extensively used at the n\\_TOF facility for characterizing the neutron beam profile and extracting the beam interception factor for samples of different size. The boron converter allowed to scan the energy region of interest for neutron induced capture reactions as a function of the neutron energy, determined by the time of flight. Experimental ...

  11. Particle confinement by a radially polarized laser Bessel beam

    Science.gov (United States)

    Laredo, Gilad; Kimura, Wayne D.; Schächter, Levi

    2017-03-01

    The stable trajectory of a charged particle in an external guiding field is an essential condition for its acceleration or for forcing it to generate radiation. Examples of possible guiding devices include a solenoidal magnetic field or permanent periodic magnet in klystrons, a wiggler in free-electron lasers, the lattice of any accelerator, and finally the crystal lattice for the case of channeling radiation. We demonstrate that the trajectory of a point-charge in a radially polarized laser Bessel beam may be stable similarly to the case of a positron that bounces back and forth in the potential well generated by two adjacent atomic planes. While in the case of channeling radiation, the transverse motion is controlled by a harmonic oscillator equation, for a Bessel beam the transverse motion is controlled by the Mathieu equation. Some characteristics of the motion are presented.

  12. Komar fluxes of circularly polarized light beams and cylindrical metrics

    Science.gov (United States)

    Lynden-Bell, D.; Bičák, J.

    2017-11-01

    The mass per unit length of a cylindrical system can be found from its external metric as can its angular momentum. Can the fluxes of energy, momentum, and angular momentum along the cylinder also be so found? We derive the metric of a beam of circularly polarized electromagnetic radiation from the Einstein-Maxwell equations. We show how the uniform plane wave solutions miss the angular momentum carried by the wave. We study the energy, momentum, angular momentum, and their fluxes along the cylinder both for this beam and in general. The three Killing vectors of any stationary cylindrical system give three Komar flux vectors which in turn give six conserved fluxes. We elucidate Komar's mysterious factor 2 by evaluating Komar integrals for systems that have no trace to their stress tensors. The Tolman-Komar formula gives twice the energy for such systems which also have twice the gravity. For other cylindrical systems their formula gives correct results.

  13. ACCELERATION OF POLARIZED BEAMS USING MULTIPLE STRONG PARTIAL SIBERIAN SNAKES

    International Nuclear Information System (INIS)

    ROSER, T.; AHRENS, L.; BAI, M.

    2004-01-01

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult since depolarizing spin resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions. Using a 20-30% partial Siberian snake both imperfection and intrinsic resonances can be overcome. Such a strong partial Siberian snake was designed for the Brookhaven AGS using a dual pitch helical superconducting dipole. Multiple strong partial snakes are also discussed for spin matching at beam injection and extraction

  14. Beam polarization during a Siberian snake turn-on

    International Nuclear Information System (INIS)

    Anferov, Vladimir A.

    1999-01-01

    Installing Siberian snakes in a circular proton accelerator allows one to overcome all spin depolarizing resonances even at very high energies. However, Siberian snake application at low energies is technically rather difficult. Turning snake on at some energy during acceleration would allow using Siberian snakes even in rings with low injection energies. It is shown that the beam polarization would be preserved during the snake ramp, provided that the snake is turned on in more than ten turns, and the energy is set near a half-integer Gγ

  15. NSPEC - A neutron spectrum code for beam-heated fusion plasmas

    International Nuclear Information System (INIS)

    Scheffel, J.

    1983-06-01

    A 3-dimensional computer code is described, which computes neutron spectra due to beam heating of fusion plasmas. Three types of interactions are considered; thermonuclear of plasma-plasma, beam-plasma and beam-beam interactions. Beam deposition is modelled by the NFREYA code. The applied steady state beam distribution as a function of pitch angle and velocity contains the effects of energy diffusion, friction, angular scattering, charge exchange, electric field and source pitch angle distribution. The neutron spectra, generated by Monte-Carlo methods, are computed with respect to given lines of sight. This enables the code to be used for neutron diagnostics. (author)

  16. Characteristics of the IR neutron beam in Hanaro and the recent development for its use in dynamic neutron radiography

    International Nuclear Information System (INIS)

    Lim, I.C.; Lee, B.C.; Kobayashi, H.; Sim, C.M.; Kim, M.S.; Lee, C.H.; Jun, B.J.; Watanabe, S.; Satoh, M.

    2004-01-01

    In HANARO, a BNCT facility was built at its IR beam port which can be used for neutron radiography as well. The values of important parameters for neutron radiography such as neutron flux, the L/D ratio and the effective energy of IR beam were obtained. The neutron flux was estimated theoretically by using an MCNP computer code simulation and was also obtained by using gold wire activation method. The L/D ratio was obtained by using the geometrical information for IR beam port as well as by using the Kobayashi's L/D device. The effective energy was measured by using the Kobayashi's BQI 1001. These evaluation of beam characteristics shows that the BNCT facility of HANARO is excellent for the dynamic neutron radiography. (orig.)

  17. Neutron beam-line shield design for the protein crystallography instrument at the Lujan Center

    International Nuclear Information System (INIS)

    Russell, G.J.; Pitcher, E.J.; Muhrer, G.; Ferguson, P.D.

    2001-01-01

    We have developed a very useful methodology for calculating absolute total (neutron plus gamma-ray) dose equivalent rates for use in the design of neutron beam line shields at a spallation neutron source. We have applied this technique to the design of beam line shields for several new materials science instruments being built at the Manuel Lujan Jr. Neutron Scattering Center. These instruments have a variety of collimation systems and different beam line shielding issues. We show here some specific beam line shield designs for the Protein Crystallography Instrument. (author)

  18. Hamiltonian chaos in a nonlinear polarized optical beam

    International Nuclear Information System (INIS)

    David, D.; Holm, D.D.; Tratnik, M.V.

    1990-01-01

    This lecture concerns the applications of ideas about temporal complexity in Hamiltonian systems to the dynamics of an optical laser beam with arbitrary polarization propagating as a travelling wave in a medium with cubically nonlinear polarizability. The authors use methods from the theory of Hamiltonian systems with symmetry to study the geometry of phase space for this optical problem, transforming from C 2 to S 3 x S 1 , first, and then to S 2 x (J,θ) is a symplectic action-angle pair. The bifurcations of the phase portraits of the Hamiltonian motion on S 2 are classified and displayed graphically. These bifurcations take place when either J (the beam intensity) or the optical parameters of the medium are varied. After this bifurcation analysis has shown the existence of various saddle connections on S 2 , the Melnikov method is used to demonstrate analytically that the travelling-wave dynamics of polarized optical laser pulse develops chaotic behavior in the form of Smale horseshoes when propagating through spatially periodic perturbations in the optical parameters of the medium. 23 refs., 7 figs

  19. Polarized beams at the ZGS and the AGS

    International Nuclear Information System (INIS)

    Ratner, L.G.

    1989-01-01

    I have had, and still do, a feeling of deja Vu as I have gone through the development of the polarized beam at the AGS. There were many similarities both scientifically and sociologically, and of course, some significant differences between the AGS and the ZGS. We traded the 12 GeV ZGS for the 28 GeV AGS, we traded Ron Martin for Derek Lowenstein, but having the lowest energy, high energy machine did not change. Paraphrasing some remarks of Bob Sachs, the AGS replaced the ZGS as the tail of the dog, and it appears that now the tail loppers are again on the loose. You will probably see them again somewhere in the world using body english to help polarize a beam. Basically, I would like to describe a little of the progression of events and the hardware in both accelerators that allowed Kent and his colleagues to do a great deal of very interesting spin physics. 6 refs., 30 figs

  20. Determination of the total neutron cross section using average energy shift method for filtered neutron beam

    Directory of Open Access Journals (Sweden)

    О. О. Gritzay

    2016-12-01

    Full Text Available Development of the technique for determination of the total neutron cross sections from the measurements of sample transmission by filtered neutrons, scattered on hydrogen is described. One of the methods of the transmission determination TH52Cr from the measurements of 52Cr sample, using average energy shift method for filtered neutron beam is presented. Using two methods of the experimental data processing, one of which is presented in this paper (another in [1], there is presented a set of transmissions, obtained for different samples and for different measurement angles. Two methods are fundamentally different; therefore, we can consider the obtained processing results, using these methods as independent. In future, obtained set of transmissions is planned to be used for determination of the parameters E0, Гn and R/ of the resonance 52Cr at the energy of 50 keV.

  1. Beam dynamics simulation of the Spallation Neutron Source linear accelerator

    International Nuclear Information System (INIS)

    Takeda, H.; Billen, J.H.; Bhatia, T.S.

    1998-01-01

    The accelerating structure for Spallation Neutron Source (SNS) consists of a radio-frequency-quadrupole-linac (RFQ), a drift-tube-linac (DTL), a coupled-cavity-drift-tube-linac (CCDTL), and a coupled-cavity-linac (CCL). The linac is operated at room temperature. The authors discuss the detailed design of linac which accelerates an H - pulsed beam coming out from RFQ at 2.5 MeV to 1000 MeV. They show a detailed transition from 402.5 MHz DTL with a 4 βλ structure to a CCDTL operated at 805 MHz with a 12 βλ structure. After a discussion of overall feature of the linac, they present an end-to-end particle simulation using the new version of the PARMILA code for a beam starting from the RFQ entrance through the rest of the linac. At 1000 MeV, the beam is transported to a storage ring. The storage ring requires a large (±500-keV) energy spread. This is accomplished by operating the rf-phase in the last section of the linac so the particles are at the unstable fixed point of the separatrix. They present zero-current phase advance, beam size, and beam emittance along the entire linac

  2. Dehydration process of fish analyzed by neutron beam imaging

    International Nuclear Information System (INIS)

    Tanoi, K.; Hamada, Y.; Seyama, S.; Saito, T.; Iikura, H.; Nakanishi, T.M.

    2009-01-01

    Since regulation of water content of the dried fish is an important factor for the quality of the fish, water-losing process during drying (squid and Japanese horse mackerel) was analyzed through neutron beam imaging. The neutron image showed that around the shoulder of mackerel, there was a part where water content was liable to maintain high during drying. To analyze water-losing process more in detail, spatial image was produced. From the images, it was clearly indicated that the decrease of water content was regulated around the shoulder part. It was suggested that to prevent deterioration around the shoulder part of the dried fish is an important factor to keep quality of the dried fish in the storage.

  3. Multi-beam neutron guide system at IRI, Delft

    International Nuclear Information System (INIS)

    Well, A.A. van; Gibcus, H.P.M.; Gommers, R.M.; Haan, V.O. de; Labohm, F.; Verkooijen, A.H.M.

    2001-01-01

    One of the main facilities of the Interfaculty Reactor Institute (IRI) at the Delft University of Technology is the swimming-pool type research reactor HOR. In 1963 it was critical for the first time. The power raised from 100 kW in 1963 to 500 kW in 1965. In 1968, forced cooling was introduced. From that time on, the reactor is operated at 2 MW, 5 days per week. The reactor comprises a variety of irradiation facilities, used among others for radioisotope production and neutron activation analysis. It is equipped with six horizontal radial beam tubes, originally used for neutron-scattering experiments. Throughout the years, the research activities have grown steadily, both in the development of new techniques and in applying these techniques in new research areas. (orig.)

  4. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jr., Thomas Dean [Univ. of Virginia, Charlottesville, VA (United States)

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 108 n/cm2 • s. The fast neutron and gamma radiation KERMA factors are 10 x 10-11cGy•cm2/nepi and 20 x 10-11 cGy•cm2/nepi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power.

  5. Effect of light source parameters on the polarization properties of the beam

    Science.gov (United States)

    Liu, Dan; Liu, Yan; Jiang, Hui-lin; Liu, Zhi; Zhou, Xin; Fang, Hanhan

    2013-08-01

    Polarized laser has been widely used in free space optical communication, laser radar, and laser ranging system because of its advantages of good performance in recent years. The changes of laser polarization properties in the process of transmission in atmospheric turbulence have a certain impact on the system performance. The paper research on the rule of polarization properties changes of Gauss Schell model beam in turbulent conditions. And analysis the main factors to affect the polarization properties by numerical simulation using MATLAB software tools. The factors mainly including: initial polarization, coherence coefficient, spot size and the intensity of the atmospheric turbulent. The simulation results show that, the degree of polarization will converge to the initial polarization when the beam propagation in turbulent conditions. The degrees of polarization change to different value when initial polarization of beam is different in a short distance. And, the degrees of polarization converge to the initial polarization after long distance. Beam coherence coefficient bigger, the degree of polarization and change range increases bigger. The change of polarization more slowly for spot size is bigger. The change of polarization change is faster for longer wavelength. The conclusion of the study indicated that the light source parameters effect the changes of polarization properties under turbulent conditions. The research provides theory basis for the polarization properties of the laser propagation, and it will plays a significant role in optical communication and target recognition.

  6. Polarization sensitive beam bending using a spatially variant photonic crystal

    Science.gov (United States)

    Digaum, Jennefir L.; Pazos, Javier; Rumpf, Raymond; Chiles, Jeff; Fathpour, Sasan; Thomas, Jeremy N.; Kuebler, Stephen M.

    2015-02-01

    A spatially-variant photonic crystal (SVPC) that can control the spatial propagation of electromagnetic waves in three dimensions with high polarization sensitivity was fabricated and characterized. The geometric attributes of the SVPC lattice were spatially varied to make use of the directional phenomena of self-collimation to tightly bend an unguided beam coherently through a 90 degree angle. Both the lattice spacing and the fill factor of the SVPC were maintained to be nearly constant throughout the structure. A finite-difference frequency-domain computational method confirms that the SVPC can self-collimate and bend light without significant diffuse scatter caused by the bend. The SVPC was fabricated using multi-photon direct laser writing in the photo-polymer SU-8. Mid-infrared light having a vacuum wavelength of λ0 = 2.94 μm was used to experimentally characterize the SVPCs by scanning the sides of the structure with optical fibers and measuring the intensity of light emanating from each face. Results show that the SVPC is capable of directing power flow of one polarization through a 90-degree turn, confirming the self-collimating and polarization selective light-guiding properties of the structures.

  7. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  8. Design of back-streaming white neutron beam line at CSNS.

    Science.gov (United States)

    Zhang, L Y; Jing, H T; Tang, J Y; Li, Q; Ruan, X C; Ren, J; Ning, C J; Yu, Y J; Tan, Z X; Wang, P C; He, Y C; Wang, X Q

    2018-02-01

    A white neutron beam line using back-streaming neutrons from the spallation target is under construction at China Spallation Neutron Source (CSNS). Different spectrometers, to be installed in the so-called Back-n beam line for nuclear data measurements, are also being developed in phases. The physical design of the beam line is carried out with the help of a complicated collimation system and a sophisticated neutron dump, taking the overview of the neutron beam characteristics into account. This includes energy spectrum, flux and time structure, the optimizations of neutron beam spots and in-hall background. The wide neutron energy range of 1eV-100MeV is excellent for supporting different applications, especially nuclear data measurements. At Endstation#2, which is about 80m away from the target, the main properties of the beam line include neutron flux of 10 6 n/cm 2 /s, time resolution of a few per mille over nearly the entire energy range, and in-hall background of about 0.01/cm 2 /s for both neutron and gamma. With its first commission in late 2017, Back-n will not only be the first high-performance white neutron source in China, but also one of the best white neutron sources in the world. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Study of magnetic thin films by polarized neutron reflectivity. Off-specular diffusion on periodical structures

    International Nuclear Information System (INIS)

    Ott, F.

    1998-01-01

    Theoretical (Zeeman energy effects) and experimental (beam polarisation problems) progress have been made in the understanding of polarized neutron reflectivity with polarisation analysis. It has been shown that modelization and numerical simulations makes it possible to avoid to have to systematically measure a full set of reflectivity curves for each field and temperature condition. It has been possible to determine a magnetic profile as a function of the field in a magnetic bilayer system by using only a few points in the reciprocal space. This technique allows to considerable reduce the experiment time. In single nickel layer systems, we have shown that it is possible to induce magnetic rotation inhomogeneities when these systems are subjects to deformation strains. The effect are related to magneto-elastic constants gradients. In trilayer systems, with a ME constant modulation, we have been able to induce large magnetic rotation gradients. A new magneto-optic technique to measure the magnetization direction without rotating the magnetic field has been developed. The field of neutron reflectivity has been extended to off-specular studies. It has been possible to account quantitatively of the off-specular diffusion on 2-D model systems (prepared by optical lithography). This new technique should make it possible in the future to determine magnetic structures with a in-depth as well as lateral resolution. (author)

  10. Development and Applications of Residual Stress Measurements Using Neutron Beams

    International Nuclear Information System (INIS)

    2014-01-01

    The deep penetration and selective absorption of neutrons make them a powerful tool for the non-destructive testing of large samples of material or large objects. Residual stress that is formed in a material during manufacturing, welding, utilization or repair can be measured by means of neutron diffraction. In fact, neutron diffraction is the only non-destructive testing method which can facilitate three dimensional mapping of residual stress in a bulk component. Stress measurement using neutron beams is a technique that enables this kind of high quality non-destructive investigation, and provides insight into the material strain and stress state deep within engineering components and structures under various conditions representative of those which might be experienced in service. Such studies are of importance to improve the quality of industrial components in production and to optimize design criteria in applications. Anisotropies in macroscopic properties such as thermal and electrical conductivities, for instance of fuel elements, and mechanical properties of materials depend on the textures developed during their preparation or thermal treatment. Such textures also can be studied using neutron diffraction techniques. There is currently substantial scientific and industrial demand for high quality non-destructive residual stress measurements, and the continuing competitive drive to optimize performance and minimize weight in many applications indicates that this demand will continue to grow. As such, the neutron diffraction technique is an increasingly important tool for mechanical and materials engineering in the search for improved manufacturing processes to reduce stress and distortion. Considering this trend, and in accordance with its purpose of promoting the peaceful use of nuclear applications, in 2006-2009 the IAEA organized a Coordinated Research Project on the Development and Application of the Techniques of Residual Stress Measurements in Materials

  11. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T

    2003-11-05

    This thesis describes a precision measurement of the neutron spin dependent structure function, g{sub 1}{sup n}(x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a {sup 3}He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized {sup 3}He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the {sup 3}He polarization. The fraction of events which originated in the {sup 3}He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure {sup 3}He reference cell in place of the polarized {sup 3}He target. The spin dependent structure function g{sub 1}{sup n}(z) was measured in the Bjorken x range of 0.014 < x < 0.7 with an average Q{sup 2} of 5 (GeV/c){sup 2}. One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g{sub 1}{sup n}(x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g{sub 1}{sup n}(x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g

  12. Realization of beam polarization at the linear collider and its application to EW processes

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Sollova, F.

    2006-07-15

    The use of beam polarization at the future ILC e{sup +}e{sup -} linear collider will benefit the physics program significantly. This thesis explores three aspects of beam polarization: the application of beam polarization to the study of electroweak processes, the precise measurement of the beam polarization, and finally, the production of polarized positrons at a test beam experiment. In the first part of the thesis the importance of beam polarization at the future ILC is exhibited: the benefits of employing transverse beam polarization (in both beams) for the measurement of triple gauge boson couplings (TGCs) in the W-pair production process are studied. The sensitivity to anomalous TGC values is compared for the cases of transverse and longitudinal beam polarization at a center of mass energy of 500 GeV. Due to the suppressed contribution of the t-channel {nu} exchange, the sensitivity is higher for longitudinal polarization. For some physics analyses the usual polarimetry techniques do not provide the required accuracy for the measurement of the beam polarization (around 0.25% with Compton polarimetry). The second part of the thesis deals with a complementary method to measure the beam polarization employing physics data acquired with two polarization modes. The process of single-W production is chosen due to its high cross section. The expected precision for 500 fb{sup -1} and W{yields}{mu}{nu} decays only, is {delta}P{sub e{sup -}}/P{sub e{sup -}}=0.26% and {delta}P{sub e{sup +}}/P{sub e{sup +}}=0.33%, which can be further improved by employing additional W-decay channels. The first results of an attempt to produce polarized positrons at the E-166 experiment are shown in the last part of the thesis. The E-166 experiment, located at the Final Focus Test Beam at SLAC's LINAC employs a helical undulator to induce the emission of circularly polarized gamma rays by the beam electrons. These gamma rays are converted into longitudinally polarized electron

  13. The polarized neutron spectrometer REMUR at the pulsed reactor IBR-2

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Zhernenkov, K.N.; Kozhevnikov, S.V.; Nikitenko, Yu.V.; Petrenko, A.V.; Lauter, H.J.; Lauter-Pasyuk, V.

    2004-01-01

    At the Laboratory of Neutron Physics (JINR, Dubna) the new polarized neutron spectrometer REMUR has been constructed and commissioned. The spectrometer REMUR is dedicated to investigations of multilayers and surfaces by polarized neutron reflection and of the inhomogeneous state of solids by diffuse small-angle polarized neutron scattering. The spectrometer operates in the neutron wavelength interval 1-10 Angstroem. In the reflectometry mode it allows one to complete polarization analysis and neutron position-sensitive detection within the solid angle of scattering 2.2·10 -4 rad. The spectrometer ensures good statistics of the reflectometric data in the scattering wave vector interval 3·10 -3 - 5·10 -1 Angstroem -1 . In the small-angle scattering mode the spectrometer allows the investigation of neutron scattering processes without spin-flip over the detector's neutron registration solid angle interval from 4·10 -3 to 10 -1 rad and the scattering wave vector interval from 0.006-0.15 to 0.03-0.7 Angstroem -1 , respectively

  14. First measurement of the electric formfactor of the neutron in the exclusive quasielastic scattering of polarized electrons from polarized 3He

    International Nuclear Information System (INIS)

    Meyerhoff, M.; Eyl, D.; Frey, A.; Andresen, H.G.; Annand, J.R.M.; Aulenbacher, K.; Becker, J.; Blume-Werry, J.; Dombo, T.; Drescher, P.; Ducret, J.E.; Fischer, H.; Grabmayr, P.; Hall, S.; Hartmann, P.; Hehl, T.; Heil, W.; Hoffmann, J.; Kellie, J.D.; Klein, F.; Leduc, M.; Moeller, H.; Nachtigall, C.; Ostrick, M.; Otten, E.W.; Owens, R.O.; Pluetzer, S.; Reichert, E.; Rohe, D.; Schaefer, M.; Schearer, L.D.; Schmieden, H.; Steffens, K.; Surkau, R.; Walcher, T.

    1995-01-01

    A first measurement of the asymmetry in quasielastic scattering of longitudinally polarized electrons from a polarized 3 He gas target in coincidence with the knocked out neutron is reported. This measurement was made feasible by the cw beam of the 855 meV Mainz Microtron MAMI. It allows a determination of the electric formfactor of the neutron G n E independent of binding effects to first order. At bar Q 2 =0.31 (GeV/c) 2 two asymmetries bar A parallel (rvec S He parallel rvec q) and bar A perpendicular (rvec S He perpendicular rvec q) have been measured giving bar A parallel =(-7.40±0.73%) and bar A perpendicular =(0.89±0.30)%. The ratio bar A perpendicular /bar A parallel is independent of the absolute value of the electron and target polarization and yields G n E =0.035±0.012±0.005. copyright 1995 American Institute of Physics

  15. Physical and microdosimetric studies of neutron beams used in radiobiology

    International Nuclear Information System (INIS)

    Lavigne, Bernard.

    1978-10-01

    Microdosimetry is concerned with the energy imparted in microscopic regions irradiated with different radiations. The energy imparted is subject to random fluctuations. The probability distribution may be estimated by measurements or by computing code. The results obtained with a tissue-equivalent proportional counter of Rossi type are compared with those obtained by means of the computer code of DENNIS and EDWARDS. Beams of monoenergetic neutrons of 0.68 MeV, 2.18 MeV, 3.53 MeV, 5.5 MeV and 14.18 MeV, and fission neutrons were used. The computer code requires that neutron spectrum and W, the mean energy expanded in a gas per ion pair formed are determined. The first part of the report thus describes: -spectrometric measurements done with a NE 213 scintillator; -W measurements with a chamber operating alternately as ionization chamber and proportional counter. Results are given for H + , He + , C + , N + and O + ions in argon and tissue-equivalent gas in the energy range 25 keV - 500 keV [fr

  16. Development of neutron beam facilities for the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Kennedy, S.J.

    2002-01-01

    Full text: Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the replacement research reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with four times the neutron flux of HIFAR, a cold neutron source and large neutron guide hall. Cold and thermal neutrons will be transported to the neutron beam instruments with modern supermirror guides. INVAP SE has been contracted to build the reactor and associated infrastructure, with the exception of the neutron beam instruments. With conceptual design complete, detailed engineering is well advanced and site preparation has commenced. ANSTO is developing an initial suite of eight neutron beam instruments in close consultation with the Australian user community. Design of six of the neutron beam instruments is progressing well. The presentation will include a review the planned scientific capabilities, a description of the neutron beam facility and a status report on progress to date on the instrument development program

  17. Neutron spectrum and flux of the cold neutron beam port (C2-3) in JRR-3M

    International Nuclear Information System (INIS)

    Kawabata, Yuji; Ebisawa, Toru; Tasaki, Seiji; Suzuki, Masatoshi; Soyama, Kazuhiko

    2000-03-01

    Neutron beam research in JRR-3M has been promoted and novel experiments using quite very low energy neutrons are proposed in these days. To cope with these new demands, the neutron spectrum and the flux at the end of the cold neutron beam (C2-3) were measured. Both of the time of flight method and the θ -2 θ method were used to measure the spectrum in the very long wavelength range until 4.5 nm. It showed the possibility of the very low energy neutron application. The neutron flux was also measured by the gold foil activation method and it is 2.3x10 8 n/cm 2 /s. These measured results shows the agreements with the results of the commissioning test of JRR-3M about 10 years ago. The aged deterioration of the cold guide tube is not found out. (author)

  18. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R. E.; Maruyama, T.; Miller, R. H.; Wang, J. W.; Zhou, F.

    2007-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of ≥200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while ≥500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  19. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R.E.; Maruyama, T.; Miller, R.H.; Wang, J.W.; Zhou, F.; SLAC

    2006-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of (ge)200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while (ge)500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  20. The High-Energy Polarization-Limiting Radius of Neutron Star Magnetospheres 1, Slowly Rotating Neutron Stars

    CERN Document Server

    Heyl, J S; Lloyd, D; CERN. Geneva; Heyl, Jeremy S.; Shaviv, Nir J.; Lloyd, Don

    2003-01-01

    In the presence of strong magnetic fields, the vacuum becomes a birefringent medium. We show that this QED effect decouples the polarization modes of photons leaving the NS surface. Both the total intensity and the intensity in each of the two modes is preserved along a ray's path through the neutron-star magnetosphere. We analyze the consequences that this effect has on aligning the observed polarization vectors across the image of the stellar surface to generate large net polarizations. Counter to previous predictions, we show that the thermal radiation of NSs should be highly polarized even in the optical. When detected, this polarization will be the first demonstration of vacuum birefringence. It could be used as a tool to prove the high magnetic field nature of AXPs and it could also be used to constrain physical NS parameters, such as $R/M$, to which the net polarization is sensitive.

  1. The design of the electronic system on neutron beam monitor based on GEM

    International Nuclear Information System (INIS)

    Zuo Min; Zhuang Bao'an; Zhao Yubin; Chen Shaojia; Wang Na; Zhang Hongyu; Zhao Jingwei

    2012-01-01

    The Neutron Beam Monitor - a GEM based system used to monitor the neutron beams in real time - is introduced. The electronic parts are described in details, including the principles of the circuit, the system structure, the design of the Daughterboard and the logic and algorithm of the FPGA on the Monitor board. The test results are also given out in the final. (authors)

  2. Role of IUC-DAEF in promoting neutron beam research in India

    Indian Academy of Sciences (India)

    Mumbai Centre of IUC-DAEF promotes and supports the use of neutron facilities at Dhruva reactor by the university scientists. To augment the existing neutron scattering facilities, IUC-DAEF has developed a neutron beam line at Dhruva reactor. The present paper gives a brief survey of the activities and achievements of ...

  3. Beam broadening of polar molecules and clusters in deflection experiments.

    Science.gov (United States)

    Bulthuis, J; Kresin, V V

    2012-01-07

    A beam of rotating dipolar particles (molecules or clusters) will broaden when passed through an electric or magnetic field gradient region. This broadening, which is a common experimental observable, can be expressed in terms of the variance of the distribution of the resulting polarization orientation (the direction cosine). Here, the broadening for symmetric-top and linear rotors is discussed. These two types of rotors have qualitatively different low-field orientation distribution functions, but behave similarly in a strong field. While analytical expressions for the polarization variance can be derived from first-order perturbation theory, for experimental guidance it is important to identify the applicability and limitations of these expressions, and the general dependence of the broadening on the experimental parameters. For this purpose, the analytical results are compared with the full diagonalization of the rotational Stark-effect matrices. Conveniently for experimental estimations, it is found that for symmetric tops, the dependence of the broadening parameter on the rotational constant, the axial ratio, and the field strength remains similar to the analytical expression even outside of the perturbative regime. Also, it is observed that the shape envelope, the centroid, and the width of the orientation distribution function for a symmetric top are quite insensitive to the value of its rotational constant (except at low rotational temperatures).

  4. Measurement and simulation for a complementary imaging with the neutron and X-ray beams

    Directory of Open Access Journals (Sweden)

    Hara Kaoru Y.

    2017-01-01

    Full Text Available By using a composite source system, we measured radiographs of the thermal neutron and keV X-ray in the 45-MeV electron linear accelerator facility at Hokkaido University. The source system provides the alternative beam of neutron and X-ray by switching the production target onto the electron beam axis. In the measurement to demonstrate a complementary imaging, the detector based on a vacuum-tube type neutron color image intensifier was applied to the both beams for dual-purpose. On the other hand, for reducing background in a neutron transmission spectrum, test measurements using a gadolinium-type neutron grid were performed with a cold neutron source at Hokkaido University. In addition, the simulations of the neutron and X-ray transmissions for various substances were performed using the PHITS code. A data analysis procedure for estimating the substance of sample was investigated through the simulations.

  5. Measurement and simulation for a complementary imaging with the neutron and X-ray beams

    Science.gov (United States)

    Hara, Kaoru Y.; Sato, Hirotaka; Kamiyama, Takashi; Shinohara, Takenao

    2017-09-01

    By using a composite source system, we measured radiographs of the thermal neutron and keV X-ray in the 45-MeV electron linear accelerator facility at Hokkaido University. The source system provides the alternative beam of neutron and X-ray by switching the production target onto the electron beam axis. In the measurement to demonstrate a complementary imaging, the detector based on a vacuum-tube type neutron color image intensifier was applied to the both beams for dual-purpose. On the other hand, for reducing background in a neutron transmission spectrum, test measurements using a gadolinium-type neutron grid were performed with a cold neutron source at Hokkaido University. In addition, the simulations of the neutron and X-ray transmissions for various substances were performed using the PHITS code. A data analysis procedure for estimating the substance of sample was investigated through the simulations.

  6. Polarized neutron tomography of Ni{sub 3}Al and Fe{sub 2}TiSn

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Andreas; Schulz, Michael; Pfleiderer, Christian; Boeni, Peter [Physik Department E21, Technische Universitaet Muenchen, Garching (Germany); Koehler, Anke; Wizent, Nadja; Behr, Guenther [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung Dresden (Germany)

    2009-07-01

    The transition metal compounds Ni{sub 3}Al and Fe{sub 2}TiSn are weakly ferromagnetic metals, for which the magnetic properties are extremely sensitive to composition. We have attempted the growth of polycrystalline and single-crystal rods of these compounds with an UHV compatible image furnace. The polycrystalline starting material as well as the floating-zoned rods have been characterized by means of conventional bulk properties and EDX. As a new method we have additionally carried out polarized neutron tomography. The depolarization of the neutron beam proves to be extremely sensitive to tiny variations of the ferromagnetic transition temperature, thus providing key information on the metallurgical phase diagram and the ideal growth conditions. The possible implications of our observations for the nature of quantum criticality in these compounds are discussed.

  7. The Polarized Neutron Spectrometer REMUR at the Pulsed Reactor IBR-2

    CERN Document Server

    Aksenov, V L; Kozhevnikov, S V; Lauter, H; Lauter-Pasyuk, V; Nikitenko, Yu V; Petrenko, A V

    2004-01-01

    A new polarized neutron spectrometer REMUR has been constructed and commissioned. The spectrometer REMUR is dedicated to investigations of multilayers and surfaces by polarized neutron reflection and of the inhomogeneous state of solids by diffuse small-angle polarized neutron scattering. The spectrometer operates in the neutron wavelength interval 1\\div 10 A. In the reflectometry mode it allows one to complete polarization analysis and neutron position-sensitive detection within the solid angle of scattering 2.2\\cdot 10^{-4} rad. The spectrometer ensures good statistics of the reflectometric data in the scattering wave vector interval 3\\cdot 10^{-3}\\div 5\\cdot 10^{-1} A^{-1}. In the small-angle scattering mode the spectrometer allows the investigation of neutron scattering processes without spin-flip over the detector's neutron registration solid angle interval from 4\\cdot 1-^{-3} to 10^{-1} rad and the scattering wave vector interval from 0.006\\div 0.15 to 0.03\\div 0.7 A^{-1}, respectively.

  8. A Study on Optimized Neutron Beam Generation by Analysis of Neutron Angular Distribution from 7Li(p,n)7Be Reaction for Accelerator-Based BNCT

    International Nuclear Information System (INIS)

    Kim, Kyung O

    2008-02-01

    Perpendicular neutrons (i.e., solid angle bin of 50-150 .deg. ) among ones generated from 7 Li(p,n) 7 Be reaction, which are focused on the relative low energy regions, was used to produce optimized epithermal neutron beam for Accelerator-based BNCT. By this time, most of the studies for generating the therapeutic neutron beam have used the neutrons emitted to the collinear with the incoming proton. However, it is very difficult to produce the high quantity of epithermal neutrons due to the relative high energy neutrons to be used. In this study, it was found that perpendicular neutrons (solid angle 50-150 .deg. ) include about two times as many neutrons in the energy range of 100 - 300 keV as the existing studies. In particular, epithermal neutron beam from the dual beam port assembly was simulated by MCNPX: this assembly was designed for using the neutrons in optimized neutron angle bin (solid angle 50-150 .deg. ). As the results of the IAEA recommendations for all parameters, and moderation length could be reduced. The advantage depth (AD) and dose rate in the mathematical phantom are calculated to evaluate the dosimetric characterization of the designed epithermal neutron beams. It was recognized that the tumor positioned at the maximum depth of 70 mm from skin could be treated, and tumor at 60 mm depth is approximately taken with only a treatment of a few minutes by using the beam from the dual beam port assembly. It is therefore expected that the neutrons emitted into the solid angle bin of 50 - 150 .deg. from 7 Li(p,n) 7 Be reaction are very effective to produce epithermal neutron beam for BNCT. The new dual beam port assembly which is possible to generate the therapeutic neutron beam satisfies with the IAEA recommendations at each beam port and can be used for reference study of epithermal neutron beam design

  9. Accurate measurement of the electron beam polarization in JLab Hall A using Compton polarimetry

    International Nuclear Information System (INIS)

    Escoffier, S.; Bertin, P.Y.; Brossard, M.; Burtin, E.; Cavata, C.; Colombel, N.; Jager, C.W. de; Delbart, A.; Lhuillier, D.; Marie, F.; Mitchell, J.; Neyret, D.; Pussieux, T.

    2005-01-01

    A major advance in accurate electron beam polarization measurement has been achieved at Jlab Hall A with a Compton polarimeter based on a Fabry-Perot cavity photon beam amplifier. At an electron energy of 4.6GeV and a beam current of 40μA, a total relative uncertainty of 1.5% is typically achieved within 40min of data taking. Under the same conditions monitoring of the polarization is accurate at a level of 1%. These unprecedented results make Compton polarimetry an essential tool for modern parity-violation experiments, which require very accurate electron beam polarization measurements

  10. Upgrades of the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hungyuan B.; Brugger, R.M.; Rorer, D.C.

    1994-12-31

    The first epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR) was installed in 1988 and produced a neutron beam that was satisfactory for the development of NCT with epithermal neutrons. This beam was used routinely until 1992 when the beam was upgraded by rearranging fuel elements in the reactor core to achieve a 50% increase in usable flux. Next, after computer modeling studies, it was proposed that the Al and Al{sub 2}O{sub 3} moderator material in the shutter that produced the epithermal neutrons could be rearranged to enhance the beam further. However, this modification was not started because a better option appeared, namely to use fission plates to move the source of fission neutrons closer to the moderator and the patient irradiation position to achieve more efficient moderation and production of epithermal neutrons. A fission plate converter (FPC) source has been designed recently and, to test the concept, implementation of this upgrade has started. The predicted beam parameters will be 12 x 10{sup 9} n{sub epi}/cm{sup 2}sec accompanying with doses from fast neutrons and gamma rays per epithermal neutron of 2.8 x 10{sup -11} and < 1 x 10{sup -11} cGycm{sup 2}/n, respectively, and a current-to-flux ratio of epithermal neutrons of 0.78. This conversion could be completed by late 1996.

  11. Polarized Electron Beams for Nuclear Physics at the MIT Bates Accelerator Center

    CERN Document Server

    Farkhondeh, Manouchehr; Franklin, Wilbur; Ihloff, Ernie; McAllister, Brian; Milner, Richard; North, William; Tschalär, C; Tsentalovich, Evgeni; Wang, Defa; Wang, Dong; Wang, Fuhua; Zolfaghari, Abbasali; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    The MIT Bates Accelerator Center is delivering highly polarized electron beams to its South Hall Ring for use in Nuclear Physics Experiments. Circulating electron currents in excess of 200 mA with polarization of 70% are scattered from a highly polarized, but very thin atomic beam source deuterium target. At the electron source a compact diode laser creates photoemission of quasi-CW mA pulses of polarized electrons at low duty factors from a strained GaAs photocathode. Refurbished RF transmitters provide power to the 2856 MHz linac, accelerating the beam to 850 MeV in two passes before injection into the South Hall Ring. In the ring a Siberian snake serves to maintain a high degree of longitudinal polarization at the BLAST scattering target. A Compton laser back-scattering polarimeter measures the electron beam polarization with a statistical acuracy of 6% every 15 minutes.

  12. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    International Nuclear Information System (INIS)

    Ellison, C.L.; Fuchs, J.

    2010-01-01

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  13. Investigation on the neutron beam characteristics for boron neutron capture therapy with 3D and 2D transport calculations

    International Nuclear Information System (INIS)

    Kodeli, I.; Diop, C.M.; Nimal, J.C.

    1994-01-01

    In the framework of future Boron Neutron Capture Therapy (BNCT) experiments, where cells and animals irradiations are planned at the research reactor of Strasbourg University, the feasibility to obtain a suitable epithermal neutron beam is investigated. The neutron fluence and spectra calculations in the reactor are performed using the 3D Monte Carlo code TRIPOLI-3 and the 2D SN code TWODANT. The preliminary analysis of Al 2 O 3 and Al-Al 2 O 3 filters configurations are carried out in an attempt to optimize the flux characteristics in the beam tube facility. 7 figs., 7 refs

  14. Spin observables in charged pion photo-production from polarized neutrons in solid HD at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Kageya, Tsuneo [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ho, Dao [Carnegie Mellon Univ., Pittsburgh, PA (United States); Peng, Peng [Univ. of Virginia, Charlottesville, VA (United States); Klein, Franz [George Washington Univ., Washington, DC (United States); Sandorfi, Andrew M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Schumacher, Reinhard A. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2018-04-01

    E asymmetries have been extracted from double-polarizationexperiments in Hall-B of the Thomas Jefferson National Accelerator Facility (JLab). Results have been obtained from the E06-101 (g14) experiment, using circularly polarized photon beams, longitudinally polarized Deuterons in solid HD targets, and the CEBAF Large Acceptance Spectrometer (CLAS). The results cover a range inW from 1.48 to 2.32 GeV. Three independent analyses, using distinctly different methods, have been combined to obtain the final values, which have been published recently. Partial wave analyses (PWA), which have had to rely on a sparse neutron data base, havebeen significantly changed with the inclusion of these g14 asymmetries.

  15. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  16. Determination of the neutron energy and spatial distributions of the neutron beam from the TSR-II in the large beam shield

    International Nuclear Information System (INIS)

    Clifford, C.E.; Muckenthaler, F.J.

    1976-01-01

    The TSR-II reactor of the ORNL Tower Shielding Facility has recently been relocated within a new, fixed shield. A principal feature of the new shield is a beam port of considerably larger area than that of its predecessor. The usable neutron flux has thereby been increased by a factor of approximately 200. The bare beam neutron spectrum behind the new shield has been experimentally determined over the energy range from 0.8 to 16 MeV. A high level of fission product gamma ray background prevented measurement of bare beam spectra below 0.8 MeV, however neutron spectra in the energy range from 8 keV to 1.4 MeV were obtained for two simple, calculable shielding configurations. Also measured in the present work were weighted integral flux distributions and fast neutron dose rates

  17. Application and outlook of the pulsed neutron beam at J-PARC (3). Introduction of high-pressure science and surface/interface analysis at J-PARC

    International Nuclear Information System (INIS)

    Hattori, Takanori; Akutsu, Kazuhiro; Suzuki, Junichi

    2015-01-01

    At the MLF (Materials and Life Science Experimental Facility) of J-PARC (Japan Proton Accelerator Research Complex), eighteen neutron beam lines equipped with experimental apparatus are in operation and deliver the world highest intensity pulsed neutron beam for fundamental sciences such as solid state physics, materials science, life science, elementary particle physics, nuclear science, and for industrial applications. We introduce studies using an ultra-high pressure neutron diffractometer 'PLANET' for the structure analysis under high-pressure surroundings and a polarized neutron reflectometer 'SHARAKU' for the analysis of surface/interface structure with scales ranging from nano- to submicron-meter. We also introduce briefly all the apparatus for neuron experiments at the MLF. (J.P.N.)

  18. Laser - Polarized HE-3 Target Used for a Precision Measurement of the Neutron Spin Structure

    Energy Technology Data Exchange (ETDEWEB)

    Romalis, M

    2003-11-05

    This thesis describes a precision measurement of the deep inelastic neutron spin structure function g{sub 1}{sup n}(x). The main motivation for the experiment is a test of the Bjorken sum rule. Because of smaller statistical errors and broader kinematic coverage than in previous experiments, we are able to study in detail the behavior of the spin structure function g{sub 1}{sup n}(x) for low values of the Bjorken scaling variable x. We find that it has a strongly divergent behavior, in contradiction to the naive predictions of the Regge theory. This calls into question the methods commonly used for extrapolation of g{sub 1}{sup n}(x) to x = 0. The difference between the proton and the neutron spin structure functions is less divergent at low x, so a test of the Bjorken sum rule is possible. We confirm the sum rule with an accuracy of 8%. The experiment was performed at SLAC using a 50 GeV polarized electron beam and a polarized {sup 3}He target. In this thesis the polarized target is described in detail. We used the technique of Rb optical pumping and Rb-He spin exchange to polarize the {sup 3}He. Because of a novel mechanical design our target had the smallest dilution ever achieved for a high density gas target. Since this is a precision measurement, particular efforts were made to reduce the systematic errors due to the uncertainty in the target parameters. Most important parameters were measured by more than one method. We implemented novel techniques for measuring the thickness of the glass windows of the target, the {sup 3}He density, and the polarization. In particular, one of the methods for measuring the gas density relied on the broadening of the Rb optical absorption lines by collisions with {sup 3}He atoms. The calibration of this technique resulted in the most precise measurements of the pressure broadening parameters for {sup 3}He as well as several other gases, which are described in an Appendix. The polarization of the {sup 3}He was also measured by

  19. The application of the neutron beam to radiotherapy

    International Nuclear Information System (INIS)

    King, K.

    1980-01-01

    The article discusses neutron interactions, neutron sources and damage to cells caused by neutrons and lists the disadvantages of using neutrons in cancer therapy. The only advantage of neutrons over x-rays is that they can destroy hypoxic cells, an advantage which may offset the disadvantages

  20. Neutron Flux Measurement Produced by BNCT Target using Proton Beam

    International Nuclear Information System (INIS)

    Ha, Jang Ho; Kim, Yong Kyun; Chai, Jong Seo; Kim, Jong Kyung

    2005-01-01

    We are investigating neutron production target system performance for boron captured neutron therapy (BNCT). The epithermal neutron is useful for this therapy and in present study we performed a simple method to measure neutron flux and energy, which are important for the accurate cancer therapy. The simple method and result of neutron flux and energy measurement experiment are presented

  1. The design and performance of the FNAL high-energy polarized beam facility

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki.

    1989-01-01

    We describe a new polarized-proton and -antiproton beam with 185-GeV/c momentum in the Fermilab MP beam line which is currently operational. The design uses the parity-conserving decay of lambda and antilambda hyperons to produce polarized protons and antiprotons, respectively. A beam-transport system minimizes depolarization effects and uses a set of 12 dipole magnets that rotate the beam-particle spin direction. A beam-tagging system determines the momentum and polarization of individual beam particles, allowing a selection of particles in definite intervals at momentum and polarization. We measured polarization of the beam by using two types of polarimeters, which verified the determination of polarization by a beam-particle tagging system. Two of these processes are the inverse-Primakoff effect and the Coulomb-nuclear interference (CNI) in elastic proton-proton scattering. Another experiment measured the π 0 production asymmetry of large-x F values; this process may now be used as an on-line beam polarimeter. 9 refs., 9 figs

  2. Neutron beam facilities at Australia's replacement research reactor

    International Nuclear Information System (INIS)

    Robinson, R.A.

    2003-01-01

    Full text: The 20-MW Australian Replacement Research Reactor represents possibly the greatest single research infrastructure investment in Australia's history. Construction of the facility has commenced, following award of the construction contract in July 2000, and the construction licence in April 2002. The project includes a large state-of-the-art liquid deuterium cold-neutron source and supermirror guides feeding a large modern guide hall, in which most of the instruments are placed. Alongside the guide hall, there is good provision of laboratory, office and space for support activities. While the facility has 'space' for up to 18 instruments, the project has funding for an initial set of 8 instruments, which will be ready when the reactor is fully operational in January 2006. Instrument performance will be competitive with the best research-reactor facilities anywhere, and our goal is to be in the top 3 such facilities worldwide. Staff to lead the design effort and man these instruments have been hired on the international market from leading overseas facilities, and from within Australia, and 6 out of 8 instruments have been specified and costed. At present the instrumentation project carries ∼15% contingency. An extensive dialogue has taken place with the domestic user community and our international peers, via various means including a series of workshops over the last 2 years covering all 8 instruments, emerging areas of application like biology and the earth sciences, and computing infrastructure for the instruments. In December 2002, ANSTO formed the Bragg Institute, with the intent of nurturing strong external partnerships, and covering all aspects of neutron and X-ray scattering, including research using synchrotron radiation. I will discuss the present status and predicted performance of the neutron-beam facilities at the Replacement Reactor, and the opportunities that all of this presents for scientific research in Australia, with particular

  3. Wide-angle polarization analysis with 3He for neutron scattering instrumentation at the JCNS

    Science.gov (United States)

    Ioffe, A.; Babcock, E.; Pipich, V.; Radulescu, A.

    2011-06-01

    Polarization analysis is an important technique for polarized neutron scattering as it allows one to obtain the full information about the vector magnetization in the sample that is critically important for detailed understanding of physical properties of molecular magnets, new superconductors, spin electronic and magnetic nanostructures, as well as the self-organization of magnetic nanostructures. In the simplified 1-dimensional version polarization analysis allows for the separation of coherent and incoherent scattering, making it a potentially important technique for studies of non-deuterated biological objects that themselves produce unavoidable background. We compare some of the major considerations between two different methods for the polarization analysis - supermirror based analyzers and polarized 3He neutron spin filters and point out when the latter is beneficial from the point of view of our neutron experiments and instrumentation. We will also discuss some specific requirements to such neutron spin filters and summarize the classes of instrumentation where they will be applied at the JCNS. Finally we will describe a successful application for small-angle neutron scattering from a biological sample.

  4. Wide-angle polarization analysis with 3He for neutron scattering instrumentation at the JCNS

    International Nuclear Information System (INIS)

    Ioffe, A; Babcock, E; Pipich, V; Radulescu, A

    2011-01-01

    Polarization analysis is an important technique for polarized neutron scattering as it allows one to obtain the full information about the vector magnetization in the sample that is critically important for detailed understanding of physical properties of molecular magnets, new superconductors, spin electronic and magnetic nanostructures, as well as the self-organization of magnetic nanostructures. In the simplified 1-dimensional version polarization analysis allows for the separation of coherent and incoherent scattering, making it a potentially important technique for studies of non-deuterated biological objects that themselves produce unavoidable background. We compare some of the major considerations between two different methods for the polarization analysis - supermirror based analyzers and polarized 3 He neutron spin filters and point out when the latter is beneficial from the point of view of our neutron experiments and instrumentation. We will also discuss some specific requirements to such neutron spin filters and summarize the classes of instrumentation where they will be applied at the JCNS. Finally we will describe a successful application for small-angle neutron scattering from a biological sample.

  5. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    Science.gov (United States)

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5). 2010 Elsevier Ltd. All rights reserved.

  6. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.

    Science.gov (United States)

    Heo, Seunguk; Yoo, Seunghoon; Song, Yongkeun; Kim, Eunho; Shin, Jaeik; Han, Soorim; Jung, Wongyun; Nam, Sanghee; Lee, Rena; Lee, Kitae; Cho, Sungho

    2017-07-01

    A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12-0.18 and 0.0067-0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Analysis of neutron production in passively scattered ion-beam therapy

    International Nuclear Information System (INIS)

    Heo, Seunguk; Yoo, Seunghoon; Song, Yongkeun; Kim, Eunho; Shin, Jaeik; Han, Soorim; Wongyun Jung; Nam, Sanghee; Lee, Rena; Lee, Kitae; Cho, Sungho

    2017-01-01

    A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12 0.18 and 0.0067 0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety. (authors)

  8. Theoretical model of a polarization diffractive elements for the light beams conversion holographic formation in PDLCs

    Science.gov (United States)

    Sharangovich, Sergey N.; Semkin, Artem O.

    2017-12-01

    In this work a theoretical model of the holographic formation of the polarization diffractive optical elements for the transformation of Gaussian light beams into Bessel-like ones in polymer-dispersed liquid crystals (PDLC) is developed. The model is based on solving the equations of photo-induced Fredericks transition processes for polarization diffractive elements formation by orthogonally polarized light beams with inhomogeneous amplitude and phase profiles. The results of numerical simulation of the material's dielectric tensor changing due to the structure's formation process are presented for various recording beams' polarization states. Based on the results of numerical simulation, the ability to form the diffractive optical elements for light beams transformation by the polarization holography methods is shown.

  9. Generation of cylindrically polarized vector vortex beams with digital micromirror device

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Lei; Liu, Weiwei; Wang, Meng; Zhong, Mincheng; Wang, Ziqiang; Li, Yinmei, E-mail: liyinmei@ustc.edu.cn [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Ren, Yuxuan [National Center for Protein Sciences Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 201210 (China)

    2014-11-14

    We propose a novel technique to directly transform a linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns. Full high-quality control of amplitude and phase is implemented via a Digital Micro-mirror Device (DMD) binary holography for generating Laguerre-Gaussian, Bessel-Gaussian, and helical Mathieu–Gaussian modes, while a radial polarization converter (S-waveplate) is employed to effectively convert the optical vortices into cylindrically polarized vortex beams. Additionally, the generated vector-vortex beams maintain their polarization symmetry after arbitrary polarization manipulation. Due to the high frame rates of DMD, rapid switching among a series of vector modes carrying different orbital angular momenta paves the way for optical microscopy, trapping, and communication.

  10. Dual circularly polarized broadside beam antenna based on metasurfaces

    Science.gov (United States)

    Tellechea, A.; Caminita, F.; Martini, E.; Ederra, I.; Teniente, J.; Iriarte, J. C.; Gonzalo, R.; Maci, S.

    2018-02-01

    Design details of a Ku band metasurface (MTS) antenna with dual circularly polarized (CP) broadside radiation is shown in this work. By means of the surface impedance tensor modulation, synchronized propagation of two transversal magnetic (TM) and transverse electric (TE) surface waves (SWs) is ensured in the structure, which contribute to the radiation in broadside direction by the generation of a CP leaky wave. The structure is implemented by elliptical subwavelength metallic elements with a cross-shaped aperture in the center, printed on top of a thin substrate with high permittivity (AD1000 with a thickness of λ0/17). For the experimental validation, the MTS prototype has been excited employing an orthomode transducer composed by a metallic stepped septum inside an air-filled waveguide. Two orthogonal TE11 modes excited with ±90° phase shift in the feed couple with the TM and TE SWs supported by the MTS and generate RHCP or LHCP broadside beam. Experimental results are compared with the simulation predictions. Finally, conclusions are drawn.

  11. The CERN n_TOF Facility: Neutron Beams Performances for Cross Section Measurements

    CERN Document Server

    Chiaveri, E; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Hernández-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Lampoudis, C; Langer, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Roman, F; Rubbia, C; Sabaté-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T; Žugec, P

    2014-01-01

    This paper presents the characteristics of the existing CERN n\\_TOF neutron beam facility (n\\_TOF-EAR1 with a flight path of 185 meters) and the future one (n\\_TOF EAR-2 with a flight path of 19 meters), which will operate in parallel from Summer 2014. The new neutron beam will provide a 25 times higher neutron flux delivered in 10 times shorter neutron pulses, thus offering more powerful capabilities for measuring small mass, low cross section and/or high activity samples.

  12. Can Neutron Beam Components and Radiographic Image Quality be determined by the Use of Beam Purity and Sensitivity Indicators?

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    radiography f a c i l i t i e s of the European Community. The direct, transfer and track-etch methods using different f i lm recording materials were used. Neutron beam components were calculated from film density measurements under the beam purity indicators and radiographic image quality was assessed......In the Euratom Neutron Radiography Working Group Test Program beam purity and s e n s i t i v i t y indicators, as prescribed by the ASTM E 545-81 were used together with the NRWG beam purity i n d i c a t o r - f u e l and c a l i b r a t i o n fuel pin. They were radiographed together at neutron...

  13. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal

    International Nuclear Information System (INIS)

    Chen Xi-Yao; Lin Gui-Min; Li Jun-Jun; Xu Xiao-Fu; Jiang Jun-Zhen; Qiang Ze-Xuan; Qiu Yi-Shen; Li Hui

    2012-01-01

    A polarization beam splitter based on a self-collimation Michelson interferometer (SMI) in a hole-type silicon photonic crystal is proposed and numerically demonstrated. Utilizing the polarization dependence of the transmission spectra of the SMI and polarization peak matching method, the SMI can work as a polarization beam splitter (PBS) by selecting an appropriate path length difference in the structure. Based on its novel polarization beam splitting mechanics, the polarization extinction ratios (PERs) for TM and TE modes are as high as 18.4 dB and 24.3 dB, respectively. Since its dimensions are only several operating wavelengths, the PBS may have practical applications in photonic integrated circuits. (fundamental areas of phenomenology(including applications))

  14. Measurement of Angular Correlations in the Decay of Polarized Neutrons

    DEFF Research Database (Denmark)

    Christensen, Carl Jørgen; Krohn, V.E.; Ringo, G.R.

    1970-01-01

    The electron-momentum-neutron-spin correlation coefficient was found to be A=-0.115±0.008, and the antineutrino-momentum-neutron-spin correlation coefficient was found to be B=1.00±0.05. The value of A leads to |GA/GV|=1.26±0.02 for the ratio of Gamow-Teller-to-Fermi coupling constants in β decay...

  15. Magnetic nanostructures studied by polarized small angle neutron scattering

    International Nuclear Information System (INIS)

    Wiedenmann, Albrecht; Kammel, Martin; Heinemann, Andre

    2005-01-01

    Small Angle Neutron Scattering using polarised neutrons is introduced as a contrast variation technique for magnetic systems. The potential of this technique is illustrated on diluted Ferrofluids. Composition, magnetization and size distributions of magnetic core-shell composite particles and magnetic aggregates could be precisely evaluated beside non-magnetic micelles and free surfactants of similar sizes. Structure factors have been extracted which revealed a local pseudo-crystalline ordering of the magnetic particles induced by magnetic fields

  16. Development and optimisation of a ultracold neutron polarizing system in the framework of a new measurement of the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Pierre, Edgard

    2012-01-01

    The work presented in this thesis has been performed within the framework of an experiment located at the Paul Scherrer Institut (PSI) and dedicated to the measurement of the neutron electric dipole moment (nEDM). The expected sensitivity is 10 -27 e cm at the end of 2013. The experiment requires a polarized ultracold neutron (UCN) beam. A new polarizing system, a spin transport device and a spin reversal system have been developed for this purpose. Their study is detailed in this thesis. These systems are currently installed on the experiment. Thanks to magnetic field mappings done on the spectrometer, to magnetic field simulations using the Radia and Maentouch programs and also to Monte-Carlo simulations using the Geant4 software, the efficiency of the device has been calculated. The measured efficiency is 88.5±0.3%, which is slightly less than the expected value of 95%. Furthermore, this preliminary data taken in October 2011 allows the determination of some fundamental parameters of the experiment such as the filling, storage and longitudinal depolarization time constants of the spectrometer. These parameters are promising for the continuation of the experiment. (author) [fr

  17. Polarized neutron diffraction - a tool for testing extinction models: application to yttrium iron garnet

    International Nuclear Information System (INIS)

    Bonnet, M.; Delapalme, A.; Becker, P.

    1976-01-01

    This paper shows that polarized neutron experiments, which do not depend on any scale factor, are very dependent on extinction and provide original tests for extinction models. Moon, Koehler, Cable and Child (1972) have formulated the problem and proposed a first-order solution applicable only when the extinction is small. In the first part, some analytical derivations of secondary extinction corrections are discussed, using the formalism of Becker and Coppens (1974). In the second part, the main principles governing polarized neutron diffraction are briefly reviewed, with a special discussion of extinction problems. The method is then applied to the case of yttrium iron garnet (YIG). This experiment shows the technique of polarized neutrons to be very powerful for testing extinction models and for deciding whether the crystal behaves dynamically or kinematically (following Kato's criterion). (Auth.)

  18. Fundamental studies for the proton polarization technique in neutron protein crystallography

    International Nuclear Information System (INIS)

    Tanaka, Ichiro; Kusaka, Katsuhiro; Chatake, Toshiyuki; Niimura, Nobuo

    2013-01-01

    Fundamental trials to realise the proton polarization technique for detecting hydrogen with higher sensitivity in neutron protein crystallography are described. The isotope effect in conventional neutron protein crystallography (NPC) can be eliminated by the proton polarization technique (ppt). Furthermore, the ppt can improve detection sensitivity of hydrogen (relative neutron scattering length of hydrogen) by approximately eight times in comparison with conventional NPC. Several technical difficulties, however, should be overcome in order to perform the ppt. In this paper, two fundamental studies to realise ppt are presented: preliminary trials using high-pressure flash freezing has shown the advantage of making bulk water amorphous without destroying the single crystal; and X-ray diffraction and liquid-chromatography/mass-spectrometry analyses of standard proteins after introducing radical molecules into protein crystals have shown that radical molecules could be distributed non-specifically around proteins, which is essential for better proton polarization

  19. Investigation of TbMn2O5 by polarized neutron diffraction.

    Science.gov (United States)

    Zobkalo, Igor Aleksandrovich; Gavrilov, Sergei; Sazonov, Andrew; Hutanu, Vladimir

    2018-04-13

    In order to make a new approach to the elucidation of the microscopic mechanisms of multiferroicity in RMn2O5 family, experiments with different methods of polarized neutrons scattering were performed on a TbMn2O5 single crystal. We employed three different techniques of polarized neutron diffraction: without the analysis after scattering, the XYZ-polarization analysis, and technique of spherical neutron polarimetry (SNP). Measurements with SNP were undertaken both with and without external electric field. A characteristic difference in the population of "right" and "left" helix domains in all magnetically ordered phases of TbMn2O5, was observed. This difference can be controlled by an external electric field in the field-cooled mode. The analysis of the results gives an evidence that antisymmetric Dzyaloshinsky-Moria exchange is effective in all the magnetic phases in TbMn2O5. © 2018 IOP Publishing Ltd.

  20. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Buecherl, T. [Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Zou, Y., E-mail: zouyubin@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Guo, Z. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China)

    2011-09-21

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  1. Development of a monoenergetic neutron beam (Theoretical aspects, experimental developments and applications); Desarrollo de un haz de neutrones monoenergeticos (Aspectos teoricos, desarrollos experimentales y aplicaciones)

    Energy Technology Data Exchange (ETDEWEB)

    Varela G, A

    2003-07-01

    By the use of a neutron time of flight system at the Tandem Accelerator of the National Nuclear Research Institute; with neutrons provided by means of the {sup 2} H(d, n) {sup 3} He we intend to use the associated particle technique in order to have monoenergetic neutrons. This neutron beam will be used both in basic and applied research. (Author)

  2. Optical pulling force on a magneto-dielectric Rayleigh sphere in Bessel tractor polarized beams

    International Nuclear Information System (INIS)

    Mitri, F.G.; Li, R.X.; Yang, R.P.; Guo, L.X.; Ding, C.Y.

    2016-01-01

    The optical radiation force induced by Bessel (vortex) beams on a magneto-dielectric subwavelength sphere is investigated with particular emphasis on the beam polarization and order l (or topological charge). The analysis is focused on identifying the regions and some of the conditions to achieve retrograde motion of the sphere centered on the axis of wave propagation of the incident beam, or shifted off-axially. Exact non-paraxial analytical solutions are established, and computations for linear, circular, radial, azimuthal and mixed polarizations of the individual plane wave components forming the Bessel (vortex) beams by means of the angular spectrum decomposition method (ASDM) illustrate the theory with particular emphasis on the tractor (i.e. reversal) behavior of the force. This effect results in the pulling of the magneto-dielectric sphere against the forward linear momentum density flux associated with the incoming waves. Should some conditions related to the choice of the beam parameters as well as the permittivity and permeability of the sphere be met, the optical force vanishes and reverses sign. Moreover, the beam polarization is shown to affect differently the axial negative pulling force for either the zeroth- or the first-order Bessel beam. When the sphere is centered on the beam′s axis, the axial force component is always negative for the zeroth-order Bessel beam except for the radial and azimuthal polarization configurations. Nonetheless, for the first-order Bessel beam, the axial force is negative for the radial polarization case only. Additional tractor beam effects arise when the sphere departs from the center of the beam. It is also demonstrated that the tractor beam effect arises from the force component originating from the cross-interaction between the electric and magnetic dipoles. Potential applications are in particle manipulation, optical levitation, tractor beam tweezers, and other emergent technologies using polarized Bessel beams on

  3. Sharper focal spot formed by higher-order radially polarized laser beams.

    Science.gov (United States)

    Kozawa, Yuichi; Sato, Shunichi

    2007-06-01

    The intensity distributions near the focal point for radially polarized laser beams including higher-order transverse modes are calculated based on vector diffraction theory. For higher-order radially polarized mode beams as well as a fundamental mode (R-TEM01*) beam, the strong longitudinal component forms a sharper spot at the focal point under a high-NA focusing condition. In particular, double-ring-shaped radially polarized mode (R-TEM11*) beams can effectively reduce the focal spot size because of destructive interference between the inner and the outer rings with pi phase shift. Compared with an R-TEM01* beam focusing in a limit of NA=1, the full width at half-maximum values of the focal spot for an R-TEM11* beam are decreased by 13.6% for the longitudinal component and 25.8% for the total intensity.

  4. Ab initio calculations versus polarized neutron diffraction for the spin density of free radicals

    CERN Document Server

    Ressouche, E

    2003-01-01

    The determination of the magnetization distribution using polarized neutron diffraction has played a key role during the last twenty years in the field of molecular magnetism. This distribution can also be obtained by first principle ab initio calculations. Such calculations always rely on approximations and the question that arises is to know whether the obtained results are reliable enough to represent accurately the properties of these molecules. The comparison between polarized neutron experimental results and ab initio calculations has turned to provide stringent tests for these methods. In the resent article a comparison between experimental and theoretical results is made and is illustrated by examples based on magnetic free radicals. (author)

  5. Radiation protection commissioning of neutron beam instruments at the OPAL research reactor

    International Nuclear Information System (INIS)

    Parkes, Alison; Saratsopoulos, John; Deura, Michael; Kenny, Pat

    2008-01-01

    The neutron beam facilities at the 20 MW OPAL Research Reactor were commissioned in 2007 and 2008. The initial suite of eight neutron beam instruments on two thermal neutron guides, two cold neutron guides and one thermal beam port located at the reactor face, together with their associated shielding were progressively installed and commissioned according to their individual project plans. Radiation surveys were systematically conducted as reactor power was raised in a step-wise manner to 20 MW in order to validate instrument shielding design and performance. The performance of each neutron guide was assessed by neutron energy spectrum and flux measurements. The activation of beam line components, decay times assessments and access procedures for Bragg Institute beam instrument scientists were established. The multiple configurations for each instrument and the influence of operating more than one instrument or beamline simultaneously were also tested. Areas of interest were the shielding around the secondary shutters, guide shield and bunker shield interfaces and monochromator doors. The shielding performance, safety interlock checks, improvements, radiation exposures and related radiation protection challenges are discussed. This paper discusses the health physics experience of commissioning the OPAL Research Reactor neutron beam facilities and describes health physics results, actions taken and lessons learned during commissioning. (author)

  6. Progress in neutron beam development at the HFR Petten (feasibility study for a BNCT facility)

    International Nuclear Information System (INIS)

    Constantine, G.; Moss, R.L.; Watkins, P.R.D.; Perks, C.A.; Delafield, H.J.; Ross, D.; Voorbraak, W.P.; Paardekooper, A.; Freudenreich, W.E.; Stecher-Rasmussen, F.

    1990-08-01

    Boron Neutron Capture Therapy, using intermediate energy neutrons to achieve the deep penetration essential for treating brain tumours, can be implemented with a filtered reactor neutron beam. This is designed to minimize the mean energy of the neutrons to keep proton recoil damage to the scalp within normal tissue tolerance limits whilst delivering the required thermal neutron fluence to the tumour over a reasonably short period. This can only be realized in conjunction with a high power density reactor. At the Joint Research Centre Petten an optimized neutron filter is currently being built for installation into the HB11 beam tube of the High Flux Reactor HFR. Part of the development leading to this design has been an extensive study of broad spectrum, filtered beam performance on the HB7 beam tube facility. A wide range of calculations was performed using the Monte Carlo code, MCPN, supported by validation experiments in which several filter configuration incorporating aluminium, sulphur, liquid argon, titanium and cadmium were installed for low power measurements of the neutron fluence rate, neutron spectra and beam gamma-ray contamination. The measurements were carried out within a successful European collaboration. Evaluations were made of the reactor core edge and unfiltered beam spectra, for comparison with MCNP calculations. Multi-foil activation methods and also gamma dose determination in the filtered beam using thermo-luminescent detectors were performed by the ECN. The Harwell/ Birmingham University collaborators undertook the neutron spectrum measurements in the filtered beam. proton recoil spectrometry was used above 30 keV, combined with a multi-sphere and BF 3 chamber response modification technique. Subsequent spectrum adjustment was carried out with the SENSAK code. The agreement between the calculated and measured spectra has given confidence in the reactor and filter modelling methods used to design the HB11 therapy facility. (author). 12 refs

  7. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    Science.gov (United States)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  8. Dosimetry of clinical neutron and proton beams: An overview of recommendations

    International Nuclear Information System (INIS)

    Vynckier, S.

    2004-01-01

    Neutron therapy beams are obtained by accelerating protons or deuterons on Beryllium. These neutron therapy beams present comparable dosimetric characteristics as those for photon beams obtained with linear accelerators; for instance, the penetration of a p(65) + Be neutron beam is comparable with the penetration of an 8 MV photon beam. In order to be competitive with conventional photon beam therapy, the dosimetric characteristics of the neutron beam should therefore not deviate too much from the photon beam characteristics. This paper presents a brief summary of the neutron beams used in radiotherapy. The dosimetry of the clinical neutron beams is described. Finally, recent and future developments in the field of physics for neutron therapy is mentioned. In the last two decades, a considerable number of centres have established radiotherapy treatment facilities using proton beams with energies between 50 and 250 MeV. Clinical applications require a relatively uniform dose to be delivered to the volume to be treated, and for this purpose the proton beam has to be spread out, both laterally and in depth. The technique is called 'beam modulation' and creates a region of high dose uniformity referred to as the 'spread-out Bragg peak'. Meanwhile, reference dosimetry in these beams had to catch up with photon and electron beams for which a much longer tradition of dosimetry exists. Proton beam dosimetry can be performed using different types of dosemeters, such as calorimeters, Faraday cups, track detectors and ionisation chambers. National standard dosimetry laboratories will, however, not provide a standard for the dosimetry of proton beams. To achieve uniformity on an international level, the use of an ionisation chamber should be considered. This paper reviews and summarises the basic principles and recommendations for the absorbed dose determination in a proton beam, utilising ionisation chambers calibrated in terms of absorbed dose to water. These recommendations

  9. Application of pixel-cell detector technology for Advanced Neutron Beam Monitors

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Daniel M. [ORDELA, Inc., Oak Ridge, TN (United States)

    2011-01-11

    Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors with a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and

  10. Spin-polarized radioactive isotope beam produced by tilted-foil technique

    International Nuclear Information System (INIS)

    Hirayama, Yoshikazu; Mihara, Mototsugu; Watanabe, Yutaka; Jeong, Sun-Chan; Miyatake, Hiroari; Momota, Sadao; Hashimoto, Takashi; Imai, Nobuaki; Matsuta, Kensaku; Ishiyama, Hironobu; Ichikawa, Shin-ichi; Ishii, Tetsuro; Izumikawa, Takuji; Katayama, Ichiro; Kawakami, Hirokane; Kawamura, Hirokazu; Nishinaka, Ichiro; Nishio, Katsuhisa; Makii, Hiroyuki; Mitsuoka, Shin-ichi

    2013-01-01

    Highlights: • Detail study for tilted foil technique. • New equation for estimating nuclear polarization dependence on the beam energy. • Production of nuclear polarization for heaviest nucleus 123 In in ground state. -- Abstract: The tilted-foil method for producing spin-polarized radioactive isotope beams has been studied using the re-accelerated radioactive 8 Li and 123 In beams produced at Tokai Radioactive Ion Accelerator Complex (TRIAC) facility. We successfully produced polarization in a 8 Li beam of 7.3(5)% using thin polystyrene foils (4.2 μg/cm 2 ). The systematic study of the nuclear polarization as a function of the number of foils and beam energy has been performed, confirming the features of the tilted-foil technique experimentally. After the study, a spin-polarized radioactive 123 In beam, which is the heaviest ever polarized in its ground state by this method, has been successfully generated by the tilted-foil method, for the nuclear spectroscopy around the doubly magic nucleus 132 Sn

  11. Overview on neutron beam industry-focused strategic research in Malaysia

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed; Razali Kassim; Abdul Jalil Abdul Hamid; Azali Muhammad; Muhammad Rawi Mohd Zain; Azhar Azmi

    2002-01-01

    The TRIGA MARK II research reactor (RTP) at the Malaysian Institute for Nuclear Technology Research (MINT) was commissioned in July 1982. RTP is a 1 MW steady state reactor which being used for reactor training and research related to neutron. Since then various works have been performed to utilise the neutrons produced from this steady state reactor. Projects undertaken are the development and utilization of the neutron radiography (myNR) and small angle neutron scattering (mySANS) facilities. This poster highlights the recent status the above neutron beam facilities and their application in materials science and technology research and education. (Author)

  12. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    International Nuclear Information System (INIS)

    Alba, R; Cosentino, G; Zoppo, A Del; Pietro, A Di; Figuera, P; Finocchiaro, P; Maiolino, C; Santonocito, D; Schillaci, M; Barbagallo, M; Colonna, N; Boccaccio, P; Esposito, J; Celentano, A; Osipenko, M; Ricco, G; Ripani, M; Viberti, C M; Kostyukov, A

    2013-01-01

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  13. Time reversal in polarized neutron decay: the emiT experiment

    CERN Document Server

    Jones, G L; Anaya, J M; Bowles, T J; Chupp, T E; Coulter, K P; Dewey, M S; Freedman, S J; Fujikawa, B K; García, A; Greene, G L; Hwang, S R; Lising, L J; Mumm, H P; Nico, J S; Robertson, R G H; Steiger, T D; Teasdale, W A; Thompson, A K; Wasserman, E G; Wietfeldt, F E; Wilkerson, J F

    2000-01-01

    The standard electro-weak model predicts negligible violation of time-reversal invariance in light quark processes. We report on an experimental test of time-reversal invariance in the beta decay of polarized neutrons as a search for physics beyond the standard model. The emiT collaboration has measured the time-reversal-violating triple-correlation in neutron beta decay between the neutron spin, electron momentum, and neutrino momentum often referred to as the D coefficient. The first run of the experiment produced 14 million events which are currently being analyzed. However, a second run with improved detectors should provide greater statistical precision and reduced systematic uncertainties.

  14. Influence of an absorbing sublayer on polarizing property of magnetic neutron mirrors

    International Nuclear Information System (INIS)

    Korneev, D.A.; Pasyuk, V.V.; Petrenko, A.V.

    1991-01-01

    Measurements of the neutron reflectivity profile from absorbing thin film mirrors deposited onto glass substrates are presented and the results compared with theoretical predictions. The spectral dependence of the scattering length of natural Gd and GdTi alloy has been determined for the first time for the thermal neutron energy range. The unstable behavior of the neutron scattering length of Gd and consequently the principle impossibility of its compensation in a wide interval of neutron wavelengths is the reason of the strong decreasing of the polarizing properties of neutron guides with ferromagnetic mirrors. The possibility is discussed of producing a new absorbing sublayers with an important decrease of reflection in the neutron wavelength range from 1 to 10 A. The neutron reflectivity was analyzed for absorbing thin BTi, BV and CdV alloys on glass substrates. The calculated reflectivity as a function of neutron wavelength was optimized for concentration and layer thickness. Fist experimental data have been performed at the Laboratory of Neutron Physics (Joint Institute for Nuclear Research, Dubna) and are presented. (author). 7 refs, 7 figs

  15. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    International Nuclear Information System (INIS)

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A.; Pantell, R. H.; Feinstein, J.; Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B.

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  16. Study of low energy neutron beam formation based on GEANT4 simulations

    Science.gov (United States)

    Avagyan, R.; Avetisyan, R.; Ivanyan, V.; Kerobyan, I.

    2017-07-01

    The possibility of obtaining thermal/epithermal energy neutron beams using external protons from cyclotron C18/18 is studied based on GEANT4 simulations. This study will be the basis of the Beam Shaped Assembly (BSA) development for future Boron Neutron Capture Therapy (BNCT). Proton induced reactions on 9Be target are considered as a neutron source, and dependence of neutron yield on target thickness is investigated. The problem of reducing the ratio of gamma to neutron yields by inserting a lead sheet after the beryllium target is studied as well. By GEANT4 modeling the optimal thicknesses of 9Be target and lead absorber are determined and the design characteristics of beam shaping assembly, including the materials and thicknesses of reflector and moderator are considered.

  17. Measurement of Relative Biological Effectiveness (RBE) for the Radiation Beam from Neutron Source Reactor YAYOI -Comparisons with Cyclotron Neutron and 60Co Gamma Ray-

    OpenAIRE

    HIROAKI, WAKABAYASHI; SHOZO, SUZUKI; AKIRA, ITO; Nuclear Engineering Research Laboratory, Faculty of Engineering, the University of Tokyo; Institute of Medical Science, the University of Tokyo; Institute of Medical Science, the University of Tokyo

    1983-01-01

    Radiation biology and/or therapy research and development for a research reactor beam need specific RBEs of neutrons as well as of specific reactions. RBEs for reactor beams measured in situ condition are interesting because actual radiation effects on each biological system are different depending on detailed conditions of irradiation. A small powered research reactor (Fast Neutron Source Reactor: YAYOI) was examined here as a neutron beam source for obtaining survival curves in a manner usu...

  18. Neutron spectroscopy measurements and modeling of neutral beam heating fast ion dynamics

    International Nuclear Information System (INIS)

    Hellesen, C; Sunden, E Andersson; Conroy, S; Ericsson, G; Johnson, M Gatu; Hjalmarsson, A; Kaellne, J; Ronchi, E; Sjoestrand, H; Weiszflog, M; Albergante, M; Ballabio, L; Gorini, G; Tardocchi, M; Giacomelli, L; Jenkins, I; Voitsekhovitch, I

    2010-01-01

    The energy spectrum of the neutron emission from beam-target reactions in fusion plasmas at the Joint European Torus (JET) has been investigated. Different beam energies as well as injection angles were used. Both measurements and simulations of the energy spectrum were done. The measurements were made with the time-of-flight spectrometer TOFOR. Simulations of the neutron spectrum were based on first-principle calculations of neutral beam deposition profiles and the fast ion slowing down in the plasma using the code NUBEAM, which is a module of the TRANSP package. The shape of the neutron energy spectrum was seen to vary significantly depending on the energy of the beams as well as the injection angle and the deposition profile in the plasma. Cross validations of the measured and modeled neutron energy spectra were made, showing a good agreement for all investigated scenarios.

  19. A Novel In-Beam Delayed Neutron Counting Technique for Characterization of Special Nuclear Materials

    Science.gov (United States)

    Bentoumi, G.; Rogge, R. B.; Andrews, M. T.; Corcoran, E. C.; Dimayuga, I.; Kelly, D. G.; Li, L.; Sur, B.

    2016-12-01

    A delayed neutron counting (DNC) system, where the sample to be analyzed remains stationary in a thermal neutron beam outside of the reactor, has been developed at the National Research Universal (NRU) reactor of the Canadian Nuclear Laboratories (CNL) at Chalk River. The new in-beam DNC is a novel approach for non-destructive characterization of special nuclear materials (SNM) that could enable identification and quantification of fissile isotopes within a large and shielded sample. Despite the orders of magnitude reduction in neutron flux, the in-beam DNC method can be as informative as the conventional in-core DNC for most cases while offering practical advantages and mitigated risk when dealing with large radioactive samples of unknown origin. This paper addresses (1) the qualification of in-beam DNC using a monochromatic thermal neutron beam in conjunction with a proven counting apparatus designed originally for in-core DNC, and (2) application of in-beam DNC to an examination of large sealed capsules containing unknown radioactive materials. Initial results showed that the in-beam DNC setup permits non-destructive analysis of bulky and gamma shielded samples. The method does not lend itself to trace analysis, and at best could only reveal the presence of a few milligrams of 235U via the assay of in-beam DNC total counts. Through analysis of DNC count rates, the technique could be used in combination with other neutron or gamma techniques to quantify isotopes present within samples.

  20. Generating, Separating and Polarizing Terahertz Vortex Beams via Liquid Crystals with Gradient-Rotation Directors

    Directory of Open Access Journals (Sweden)

    Shi-Jun Ge

    2017-10-01

    Full Text Available Liquid crystal (LC is a promising candidate for terahertz (THz devices. Recently, LC has been introduced to generate THz vortex beams. However, the efficiency is intensely dependent on the incident wavelength, and the transformed THz vortex beam is usually mixed with the residual component. Thus, a separating process is indispensable. Here, we introduce a gradient blazed phase, and propose a THz LC forked polarization grating that can simultaneously generate and separate pure THz vortices with opposite circular polarization. The specific LC gradient-rotation directors are implemented by a photoalignment technique. The generated THz vortex beams are characterized with a THz imaging system, verifying features of polarization controllability. This work may pave a practical road towards generating, separating and polarizing THz vortex beams, and may prompt applications in THz communications, sensing and imaging.

  1. A new 2D-micromegas detector for neutron beam diagnostic at n_TOF

    CERN Document Server

    Andriamonje, S; Vlachoudis, V; Guerrero, C; Losito, R; Calviani, M; Gunsing, F; Colonna, N; Papaevangelou, T; Berthoumieux, E; Weiss, C; Kadi, Y

    2011-01-01

    A novel detector for 2D neutron beam diagnostic has been jointly developed by CERN and CEA in the framework of the n\\_TOF Collaboration for investigation of the neutron beam spatial characteristics, namely position and profile as a function of the neutron energy. The detector is based on the already established MicroMegas ``Bulk{''} technology and has been evolved from the one used for the CAST (CERN Axion Solar Telescope) experiment but equipped with an appropriate neutron/charged particle converter for neutron detection. The experimental results obtained in the 2009 commissioning run of the n\\_TOF facility and a comparison with simulations performed by means of FLUKA code are given, together with future perspectives and possible applications for this original type of neutron detector.

  2. Polarized Ion Beams in Figure-8 Rings of JLab's MEIC

    Energy Technology Data Exchange (ETDEWEB)

    Derbenev, Yaroslav; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong; Kondratenko, Anatoliy; Kondratenko, M A; Filatov, Yury

    2014-07-01

    The Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is designed to provide high polarization of both colliding beams. One of the unique features of JLab's MEIC is figure-8 shape of its rings. It allows preservation and control of polarization of all ion species including small-anomalous-magnetic-moment deuterons during their acceleration and storage. The figure-8 design conceptually expands the capability of obtaining polarized high-energy beams in comparison to conventional designs because of its property of having no preferred periodic spin direction. This allows one to control effectively the beam polarization by means of magnetic insertions with small field integrals. We present a complete scheme for preserving the ion polarization during all stages of acceleration and its control in the collider's experimental straights.

  3. Measurement of angle-correlated differential (n,2n) reaction cross section with pencil-beam DV neutron source

    International Nuclear Information System (INIS)

    Takaki, S.; Kondo, K.; Shido, S.; Miyamaru, H.; Murata, I.; Ochiai, Kentaro; Nishitani, Takeo

    2006-01-01

    Angle-correlated differential cross-section for 9 Be(n,2n) reaction has been measured with the coincidence detection technique and a pencil-beam DT neutron source at FNS, JAEA. Energy spectra of two emitted neutrons were obtained for azimuthal and polar direction independently. It was made clear from the experiment that there are noise signals caused by inter-detector scattering. The ratio of the inter-detector scattering components in the detected signals was estimated by MCNP calculation to correct the measured result. By considering the inter-detector scattering components, the total 9 Be(n,2n) reaction cross-section agreed with the evaluated nuclear data within the experimental error. (author)

  4. Second-harmonic generation in shear wave beams with different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  5. Parametric study of uniformly polarized stochastic electromagnetic beam and its imaging

    International Nuclear Information System (INIS)

    Du Xinyue; Zhao Daomu

    2009-01-01

    A parametric study is performed in investigating the stochastic electromagnetic beam generated by a uniformly polarized electromagnetic Gaussian Schell-model source and passing through ABCD optical systems. Through theoretical analysis, the requirement is derived that the uniformly polarized electromagnetic field can be obtained at the output plane of the imaging optical system. Furthermore, the general imaging formula of the stochastic electromagnetic beam is derived. Numerical examples are also presented to illustrate the application.

  6. A large angle cold neutron bender using sequential garland reflections for pulsed neutron source

    International Nuclear Information System (INIS)

    Ebisawa, T.; Tasaki, S.; Soyama, K.; Suzuki, J.

    2001-01-01

    We discuss a basic structure and performance of a new cold neutron bender using sequential garland reflections, in order to bend a neutron beam with large divergence by large angle. Using this bender for a pulsed neutron source we could not only avoid the frame overlap for cold neutrons but also install a plural spectrometers at a cold guide and obtain polarized neutron beams if necessary. (author)

  7. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    International Nuclear Information System (INIS)

    Verbeke, Jerome M.

    1999-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only

  8. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  9. Anti-Lambda Polarization in High Energy pp Collisions withPolarized Beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qing-hua; Liang, Zuo-tang; Sichtermann, Ernst

    2005-11-06

    We study the polarization of the anti-Lambda particle in polarized high energy pp collisions at large transverse momenta. The anti-Lambda polarization is found to be sensitive to the polarization of the anti-strange sea of the nucleon. We make predictions using different parameterizations of the polarized quark distribution functions. The results show that the measurement of longitudinal anti-Lambda polarization can distinguish different parameterizations, and that similar measurements in the transversely polarized case can give some insights into the transversity distribution of the anti-strange sea of nucleon.

  10. Measurement of stray neutron doses inside the treatment room from a proton pencil beam scanning system

    Czech Academy of Sciences Publication Activity Database

    Mojzeszek, N.; Farah, J.; Klodowska, M.; Ploc, Ondřej; Stolarczyk, L.; Waligorski, M. P. R.; Olko, P.

    2017-01-01

    Roč. 34, č. 2 (2017), s. 80-84 ISSN 1120-1797 Institutional support: RVO:61389005 Keywords : secondary neutrons * proton therapy * pencil beam scanning systtems * out-of-field doses * stray neutron doses * TEPC Subject RIV: FP - Other Medical Disciplines OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 1.990, year: 2016

  11. Voluminous D2 source for intense cold neutron beam production at the ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Batkov, K.; Mezei, F.

    2014-01-01

    the target for the complementary needs of certain fundamental physics experiments. To facilitate experiments depending on the total number of neutrons in a sizable beam, the option of a voluminous D2 moderator, in a large cross-section extraction guide is discussed and its neutronic performance is assessed....

  12. Single-crystal filters for attenuating epithermal neutrons and gamma rays in reactor beams

    DEFF Research Database (Denmark)

    Rustad, B.M.; Als-Nielsen, Jens Aage; Bahnsen, A.

    1965-01-01

    Cross section of representative samples of bismuth and quartz were measured at room and liquid nitrogen temperatures over neutron energy range of 0.0007 to 2.0 ev to obtain data for design of single-crystal 32-cm bismuth filters for attenuating fast neutrons and γ-rays in reactor beams; filters may...

  13. Corrections in the gold foil activation method for determination of neutron beam density

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1967-01-01

    A finite foil thickness and deviation in the cross section from the 1ν law imply corrections in the determination of neutron beam densities by means of foil activation. These corrections, which depend on the neutron velocity distribution, have been examined in general and are given in a specific...

  14. Measurement of neutron spectra in a silicon filtered neutron beam using stilbene detectors at the LVR-15 research reactor.

    Science.gov (United States)

    Košťál, Michal; Šoltés, Jaroslav; Viererbl, Ladislav; Matěj, Zdeněk; Cvachovec, František; Rypar, Vojtěch; Losa, Evžen

    2017-10-01

    A well-defined neutron spectrum is an essential tool for calibration and tests of spectrometry and dosimetry detectors, and evaluation methods for spectra processing. Many of the nowadays used neutron standards are calibrated against a fission spectrum which has a rather smooth energy dependence. In recent time, at the LVR-15 research reactor in Rez, an alternative approach was tested for the needs of fast neutron spectrometry detector calibration. This process comprises detector tests in a neutron beam, filtered by one meter of single-crystalline silicon, which contains several significant peaks in the fast neutron energy range. Tests in such neutron field can possibly reveal specific problems in the deconvolution matrix of the detection system, which may stay hidden in fields with a smooth structure and can provide a tool for a proper energy calibration. Test with several stilbene scintillator crystals in two different beam configurations supplemented by Monte-Carlo transport calculations have been carried out. The results have shown a high level of agreement between the experimental data and simulation, proving thus the accuracy of used deconvolution matrix. The chosen approach can, thus, provide a well-defined neutron reference field with a peaked structure for further tests of spectra evaluation methods and scintillation detector energy calibration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Spin density measurement of water-bridged Co-dimer using polarized neutrons

    DEFF Research Database (Denmark)

    Damgaard-Møller, Emil; Overgaard, Jacob; Chilton, Nick

    present an experimentally determined spin density using polarized neutron diffraction in a simple water-bridged cobalt dimer [Co2(H2O)(piv)4(Hpiv)2(py)2] which is known to have a small ferromagnetic coupling between the spin centers. Visualizing the SDD could get us one step further in understanding...

  16. Inverse beta decay of arbitrarily polarized neutrons in a magnetic field

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 5. Inverse beta decay of arbitrarily polarized neutrons in a magnetic field. Kaushik Bhattacharya Palash B Pal. Research Articles Volume 62 Issue 5 May 2004 pp 1041-1058. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Relativistic theory of inverse beta-decay of polarized neutron in ...

    Indian Academy of Sciences (India)

    The relativistic theory of the inverse beta-decay of polarized neutron, + → + -, in strong magnetic field is developed. For the proton wave function we use the exact solution of the Dirac equation in the magnetic filed that enables us to account exactly for effects of the proton momentum quantization in the magnetic ...

  18. Anomalous spin distribution in the superconducting ferromagnet UCoGe studied by polarized neutron diffraction

    NARCIS (Netherlands)

    Prokeš, K.; de Visser, A.; Huang, Y.K.; Fåk, B.; Ressouche, E.

    2010-01-01

    We report a polarized neutron-diffraction study conducted to reveal the nature of the weak ferromagnetic moment in the superconducting ferromagnet UCoGe. We find that the ordered moment in the normal phase in low magnetic fields (B∥c) is predominantly located at the U atom and has a magnitude of

  19. Asymmetry in ternary fission induced by polarized neutrons and fission mechanism

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Gennenvajn, F.; Dzhessinger, P.; Mutterer, M.; Petrov, G.A.

    2003-01-01

    The results of measuring the P-odd, P-even (right-left) and T-odd asymmetries of the charged particles emission in the double and ternary fission, induced by the polarized neutrons, are considered. It is shown, what kind of information on the mechanism of the ternary nuclear fission may be obtained from the theoretical analysis of these data [ru

  20. Non-perturbative calculation of equilibrium polarization of stored electron beams

    International Nuclear Information System (INIS)

    Yokoya, Kaoru.

    1992-05-01

    Stored electron/positron beams polarize spontaneously owing to the spin-flip synchrotron radiation. In the existing computer codes, the degree of the equilibrium polarization has been calculated using perturbation expansions in terms of the orbital oscillation amplitudes. In this paper a new numerical method is presented which does not employ the perturbation expansion. (author)

  1. Measurements of thermal- and slow-neutron dose distributions in ordinary concrete shield using a reactor neutron beam of different energy ranges

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, R.M.; Makarious, A.S.; El-Kolaly, M.A.; Afifi, Y.A.

    1980-01-01

    Experimental studies on the distribution and attenuation of thermal and slow neutron doses in ordinary concrete shield have been carried-out. A collimated beam of reactor neutrons emitted from one of the horizontal channels of the ET-RR-1 reactor was used. Measurements were performed using, a direct beam, cadmium filtered beam and boron carbide filtered beam. The neutron doses were measured using thermolumin-escent Li/sub 2/B/sub 4/O/sub 7/ detectors. The measured data have been analyzed and a group of attenuation curves were given for beams of reactor neutrons of different energy. These curves show that cadmium and boron carbide filters tend to decrease the neutron doses specially at the beginning of penetration. The data were transformed to that which would be obtained using neutron sources of different geometries.

  2. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam.

    Science.gov (United States)

    Guo, Lina; Chen, Yahong; Liu, Xianlong; Liu, Lin; Cai, Yangjian

    2016-06-27

    Partially coherent radially polarized (PCRP) beam was introduced and generated in recent years. In this paper, we investigate the statistical properties of a PCRP beam embedded with a vortex phase (i.e., PCRP vortex beam). We derive the analytical formula for the cross-spectral density matrix of a PCRP vortex beam propagating through a paraxial ABCD optical system and analyze the statistical properties of a PCRP vortex beam focused by a thin lens. It is found that the statistical properties of a PCRP vortex beam on propagation are much different from those of a PCRP beam. The vortex phase induces not only the rotation of the beam spot, but also the changes of the beam shape, the degree of polarization and the state of polarization. We also find that the vortex phase plays a role of resisting the coherence-induced degradation of the intensity distribution and the coherence-induced depolarization. Furthermore, we report experimental generation of a PCRP vortex beam for the first time. Our results will be useful for trapping and rotating particles, free-space optical communications and detection of phase object.

  3. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    Science.gov (United States)

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  4. Probing space–time structure of new physics with polarized beams ...

    Indian Academy of Sciences (India)

    Abstract. At the international linear collider large beam polarization of both the elec- tron and positron beams will enhance the signature of physics due to interactions that are beyond the standard model. Here we review our recently obtained results on a general model-independent method of determining for an arbitary ...

  5. System for producing high-resolution polarized and unpolarized beams with a tandem accelerator

    International Nuclear Information System (INIS)

    Westerfeldt, C.R.; Bilpuch, E.G.; Bleck, M.E.; Outlaw, D.A.; Wells, W.K.; Wilkerson, J.F.; Clegg, T.B.

    1983-01-01

    A tandem accelerator beam energy stabilizer, which utilizes an optically coupled fast feedback loop to the accelerator terminal stripper, is described. Emphasis is placed on the components of the feedback system and on the application of this system to production of high energy-resolution beams. This system produces beam energy spreads ranging from 450 to 600 eV FWHM for 2 to 16 MeV unpolarized protons. Polarized beam energy spreads range from 550 to 700 eV FWHM, for the same beam energy range

  6. Deep inelastic scattering of polarized electrons by polarized 3 He and the study of the neutron spin structure

    International Nuclear Information System (INIS)

    Arnold, R.G.; Bosted, P.E.; Dunne, J.; Fellbaum, J.; Keppel, C.; Rock, S.E.; Spengos, M.; Szalata, Z.M.; White, J.L.; Breton, V.; Fonvieille, H.; Roblin, Y.; Shapiro, G.; Hughes, E.W.; Borel, H.; Lombard-Nelsen, R.M.; Marroncle, J.; Morgenstern, J.; Staley, F.; Terrien, Y.; Anthony, P.L.; Dietrich, F.S.; Chupp, T.E.; Smith, T.; Thompson, A.K.; Kuhn, S.E.; Cates, G.D.; Middleton, H.; Newbury, N.R.; Anthony, P.L.; Gearhart, R.; Hughes, E.W.; Maruyama, T.; Meyer, W.; Petratos, G.G.; Pitthan, R.; Rokni, S.H.; Stuart, L.M.; White, J.L.; Woods, M.; Young, C.C.; Erbacher, R.; Kawall, D.; Kuhn, S.E.; Meziani, Z.E.; Holmes, R.; Souder, P.A.; Xu, J.; Meziani, Z.E.; Band, H.R.; Johnson, J.R.; Maruyama, T.; Prepost, R.; Zapala, G.

    1996-01-01

    The neutron longitudinal and transverse asymmetries A 1 n and A 2 n have been extracted from deep inelastic scattering of polarized electrons by a polarized 3 He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions g 1 n (x, Q 2 ) and g 2 n (x, Q 2 ) over the range 0.03 2 of 2 (GeV/c) 2 . The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function g 1 n (x, Q 2 ) is small and negative within the range of our measurement, yielding an integral ∫ 0.03 0.6 g 1 n (x)dx - 0.028 ± 0.006 (stat) ± 0.006 (syst). Assuming Regge behavior at low x, we extract Γ 1 n ∫ 0 1 g 1 n (x)dx = - 0.031 ± 0.006 (stat) ± 0.009 (syst). Combined with previous proton integral results from SLAC experiment E143, we find Γ 1 p - Γ 1 n = 0.160 ± 0.015 in agreement with the Bjorken sum rule prediction Γ 1 p - Γ 1 p 0.176 ± 0.008 at a Q 2 value of 3 (GeV/c) 2 evaluated using α s 0.32 ± 0.05. (authors)

  7. Neutron and alpha particle energy spectrum and angular distribution effects from beam--plasma D-T fusion

    International Nuclear Information System (INIS)

    Lessor, D.L.

    1975-04-01

    The following five topics are discussed: (1) origin of energy spread in fusion neutrons, (2) magnitude of neutron energy spread from beam--plasma fusions, (3) techniques for calculation of fusion product particle spectra, (4) neutron spectra from fusion in isotropic plasmas, and (5) calculation of fusion neutron energy and angle distributions. (U.S.)

  8. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosunen, A

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?){sup water} {sub air}, in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in {sup 60}Co gamma beams. In photon beam dosimetry (S I ?){sup water} {sub air} can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation

  9. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    International Nuclear Information System (INIS)

    Kosunen, A.

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?) water air , in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in 60 Co gamma beams. In photon beam dosimetry (S I ?) water air can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation). To improve the accuracy

  10. Experimental study of time-reversal invariance in neutron-nucleus interactions

    International Nuclear Information System (INIS)

    Shaparov, E.I.; Shimizu, H.M.

    1996-01-01

    Experimental approaches for the test of time-reversal invariance in neutron-nucleus interactions are reviewed. Possible transmission experiments with polarized neutron beams and polarized or aligned targets are discussed as well as neutron capture experiments with unpolarized resonance neutrons. 102 refs., 13 figs., 3 tabs

  11. Beam-Loss Driven Design Optimization for the Spallation Neutron Source (SNS) Ring

    International Nuclear Information System (INIS)

    Wei, J.

    1999-01-01

    This paper summarizes three-state design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.)

  12. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, M., E-mail: osipenko@ge.infn.it [INFN, sezione di Genova, 16146 Genova (Italy); Ripani, M. [INFN, sezione di Genova, 16146 Genova (Italy); Alba, R. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Ricco, G. [INFN, sezione di Genova, 16146 Genova (Italy); Schillaci, M. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Barbagallo, M. [INFN, sezione di Bari, 70126 Bari (Italy); Boccaccio, P. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Celentano, A. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy); Colonna, N. [INFN, sezione di Bari, 70126 Bari (Italy); Cosentino, L.; Del Zoppo, A.; Di Pietro, A. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Esposito, J. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Figuera, P.; Finocchiaro, P. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Kostyukov, A. [Moscow State University, Moscow 119992 (Russian Federation); Maiolino, C.; Santonocito, D.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Viberti, C.M. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy)

    2013-09-21

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a {sup 3}He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60–70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed.

  13. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    Science.gov (United States)

    Osipenko, M.; Ripani, M.; Alba, R.; Ricco, G.; Schillaci, M.; Barbagallo, M.; Boccaccio, P.; Celentano, A.; Colonna, N.; Cosentino, L.; Del Zoppo, A.; Di Pietro, A.; Esposito, J.; Figuera, P.; Finocchiaro, P.; Kostyukov, A.; Maiolino, C.; Santonocito, D.; Scuderi, V.; Viberti, C. M.

    2013-09-01

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a 3He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10 MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60-70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed.

  14. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    International Nuclear Information System (INIS)

    Osipenko, M.; Ripani, M.; Alba, R.; Ricco, G.; Schillaci, M.; Barbagallo, M.; Boccaccio, P.; Celentano, A.; Colonna, N.; Cosentino, L.; Del Zoppo, A.; Di Pietro, A.; Esposito, J.; Figuera, P.; Finocchiaro, P.; Kostyukov, A.; Maiolino, C.; Santonocito, D.; Scuderi, V.; Viberti, C.M.

    2013-01-01

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a 3 He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60–70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed

  15. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill

    2017-10-25

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  16. System for detecting neutrons in the harsh radiation environment of a relativistic electron beam

    International Nuclear Information System (INIS)

    Kruse, L.W.

    1978-06-01

    Newly developed detectors and procedures allow measurement of neutron yield and energy in the harsh radiation environment of a relativistic electron beam source. A new photomultiplier tube design and special gating methods provide the basis for novel time-of-flight and total-yield detectors. The technique of activation analysis is expanded to provide a neutron energy spectrometer. There is a demonstrated potential in the use of the integrated system as a valuable diagnostic tool to study particle-beam fusion, intense ion-beam interactions, and pulsed neutron sources for simulating weapons effects. A physical lower limit of 10 8 neutrons into 4π is established for accurate and meaningful measurements in the REB environment

  17. Nuclear spin polarized alkali beams (Li and Na): Production and acceleration

    International Nuclear Information System (INIS)

    Jaensch, H.; Becker, K.; Blatt, K.; Leucker, H.; Fick, D.

    1987-01-01

    Recent improvements of the Heidelberg source for polarized heavy ions (PSI) are described. By means of optical pumping in combination with the existing multipole separation magnet the beam figure of merit (polarization 2 x intensity) was doubled. 7 Li and 23 Na atomic beams can now be produced in pure hyperfine magnetic substates. Fast switching of the polarization is achieved by an adiabatic medium field transition. The hyperfine magnetic substate population is determined by laser-induced fluorescence spectroscopy. In routine operation atomic beams with nuclear polarization p α ≥0.85 (α=z, zz) are obtained. The acceleration of polarized 23 Na - ions by a 12 MV tandem accelerator introduces a new problem: the energy at the terminal stripper foil is not sufficient to produce a usable yield of naked ions. For partially stripped ions hyperfine interaction of the remaining electrons with the nuclear spin reduces the nuclear polarization. Using in addition the Heidelberg postaccelerator 23 Na 9+ beams of energies between 49 and 184 MeV were obtained with an alignment on target of P zz ≅0.45. 7 Li beams have also been accelerated up to 45 MeV with an alignment of P zz =0.69. (orig.)

  18. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Aguilar, F.; Paredes, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Rivera M, T., E-mail: fermineutron@yahoo.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2013-10-15

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a {sup 6}Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  19. Spin polarized solid target as a prospective tool for radioactive ion beam physics

    Science.gov (United States)

    Urrego-Blanco, J. P.; van den Brandt, B.; Bunyatova, E. I.; Galindo-Uribarri, A.; Hautle, P.; Konter, J. A.

    2005-12-01

    Spin polarized probes are used in a wide range of experiments in nuclear physics including the determination of spin structure functions and tests of fundamental symmetries. At low energies, light stable polarized beams have been used for spectroscopic purposes. We propose to extend these types of experiments to nuclei far from stability by using radioactive ion beams (RIBs) and polarized targets. Towards this goal we intend to develop a solid polarized proton and/or deuterium target in the thickness range between 20 μm and 100 μm based on a scintillating (active) polymeric foil. Such a target would be a useful tool in the determination of excitation functions in resonant reactions, in studies of one-nucleon transfer reactions using RIBs as well as in probing the matter density of atomic nuclei. If scintillating, it could also help remove the background associated with the scattering of the radioactive beam.

  20. Spin polarized solid target as a prospective tool for radioactive ion beam physics

    Energy Technology Data Exchange (ETDEWEB)

    Urrego-Blanco, J.P. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6371 (United States); Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Brandt, B. van den [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Bunyatova, E.I. [Joint Institute for Nuclear Research, Dubna, Head P.O. Box 79, 101000 Moscow (Russian Federation); Galindo-Uribarri, A. [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6371 (United States)]. E-mail: uribarri@mail.phy.ornl.gov; Hautle, P. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Konter, J.A. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2005-12-15

    Spin polarized probes are used in a wide range of experiments in nuclear physics including the determination of spin structure functions and tests of fundamental symmetries. At low energies, light stable polarized beams have been used for spectroscopic purposes. We propose to extend these types of experiments to nuclei far from stability by using radioactive ion beams (RIBs) and polarized targets. Towards this goal we intend to develop a solid polarized proton and/or deuterium target in the thickness range between 20 {mu}m and 100 {mu}m based on a scintillating (active) polymeric foil. Such a target would be a useful tool in the determination of excitation functions in resonant reactions, in studies of one-nucleon transfer reactions using RIBs as well as in probing the matter density of atomic nuclei. If scintillating, it could also help remove the background associated with the scattering of the radioactive beam.

  1. Experimental generation of tripartite polarization entangled states of bright optical beams

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liang; Liu, Yanhong; Deng, Ruijie [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 (China); Yan, Zhihui; Jia, Xiaojun, E-mail: jiaxj@sxu.edu.cn; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006 (China)

    2016-04-18

    The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an optical beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.

  2. Experimental generation of tripartite polarization entangled states of bright optical beams

    Science.gov (United States)

    Wu, Liang; Yan, Zhihui; Liu, Yanhong; Deng, Ruijie; Jia, Xiaojun; Xie, Changde; Peng, Kunchi

    2016-04-01

    The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an optical beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.

  3. Fusion between heavy neutron-rich nuclei using radioactive and stable ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Shapira, D.; Liang, J.F.; Gross, C.J.; Beene, J.R.; Varner, R.L.; Galindo U, A.; Gomez del Campo, J.; Mueller, P.E.; Stracener, D. W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Amro, H.; Kolata, J.J. [Physics Department, University of Notre Dame, Notre Dame, IN 46556 (United States); Bierman, J.D. [Physics Department AD-51, Gonzaga Universiy, Spokane, WA 99258-0051 (United States); Caraley, A.L. [Department of Physics, State University of New York at Oswego, Oswego, NY 13126 (United States); Chavez L, E.; Ortiz, M.E. [lFUNAM, 04510 Mexico D.F. (Mexico); Jones, K.L. [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08856 (United States); Loveland, W.; Sprunger, P.H.; Vinodkumar, A.M. [Department of Chemistry, Oregon State University, Corvallis, OR 97331 (United States)

    2007-12-15

    Evaporation residues (ERs) and fission products were measured following bombardment of {sup 64}Ni with radioactive Sn and Te neutron rich isotopes. The experimental setup was tailored to measurements with low intensity radioactive beams and the data obtained show the obvious enhancement of ER production (survival) with the addition of neutrons to the fused system. A calculation of nucleus-nucleus capture within a WKB formalism incorporating neutron transfer in a two step approach was performed. Using global potentials in our calculations we attempted to predict trends as well as account for measured capture cross sections of collisions between heavy nuclei with large neutron excess. (Author)

  4. Experimental physics with polarized protons, neutrons and deuterons

    CERN Document Server

    Lehar, František; Wilkin, Colin

    2015-01-01

    The monograph gives a comprehensive overview of the diverse aspects of the experimental study of polarization phenomena in nucleon-nucleon and nucleon-deuteron collisions. The special nature of this volume is that it is based on the original physics results and knowledge gained by one of the authors (F. Lehar), who was a respected researcher in the field for nearly fifty years. The results of these experiments provide valuable information on the spin dependence of the forces acting between nucleons in atomic nuclei, of which all matter is ultimately composed. The fundamental importance of the results means that the subject will remain topical for years to come. The book is designed for teachers and students of natural sciences, espe - cially those with interests in nuclear and particle physics, as well as for ex - perimental physicists who are investigating polarization phenomena using accelerators of charged particles. The writing of the book was initiated by F. Lehar who was the driving force beh...

  5. Corrections in the gold foil activation method for determination of neutron beam density

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1967-01-01

    A finite foil thickness and deviation in the cross section from the 1ν law imply corrections in the determination of neutron beam densities by means of foil activation. These corrections, which depend on the neutron velocity distribution, have been examined in general and are given in a specific...... example for a reactor beam transmitted through a 30 cm Bi filter. The effective cross section differs 0.5% from the capture cross section at 2200 m/s. For a 20 mg/cm2 Au foil the correction for beam attenuation and hardening through the foil is 0.7% and the activity correction is 1.5%....

  6. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  7. In-phantom spectra and dose distributions from a high-energy neutron therapy beam

    Energy Technology Data Exchange (ETDEWEB)

    Benck, S. E-mail: benck@fynu.ucl.ac.be; D' Errico, F.; Denis, J.-M.; Meulders, J.-P.; Nath, R.; Pitcher, E.J

    2002-01-01

    In radiotherapy with external beams, healthy tissues surrounding the target volumes are inevitably irradiated. In the case of neutron therapy, the estimation of dose to the organs surrounding the target volume is particularly challenging, because of the varying contributions from primary and secondary neutrons and photons of different energies. The neutron doses to tissues surrounding the target volume at the Louvain-la-Neuve (LLN) facility were investigated in this work. At LLN, primary neutrons have a broad spectrum with a mean energy of about 30 MeV. The transport of a 10x10 cm{sup 2} beam through a water phantom was simulated by means of the Monte Carlo code MCNPX. Distributions of energy-differential values of neutron fluence, kerma and kerma equivalent were estimated at different locations in a water phantom. The evolution of neutron dose and dose equivalent inside the phantom was deduced. Measurements of absorbed dose and of dose equivalent were then carried out in a water phantom using an ionization chamber and superheated drop detectors (SDDs). On the beam axis, the calculations agreed well with the ionization chamber data, but disagreed significantly from the SDD data due to the detector's under-response to neutrons above 20 MeV. Off the beam axis, the calculated absorbed doses were significantly lower than the ionization chamber readings, since gamma fields were not accounted for. The calculated data are doses from neutron-induced charge particles, and these agreed with the values measured by the photon-insensitive SDDs. When exposed to the degraded spectra off the beam axis, the SDD offered reliable estimates of the neutron dose equivalent.

  8. Vectorial field propagation through high NA objectives using polarized Gaussian beam decomposition

    Science.gov (United States)

    Worku, N.; Gross, H.

    2017-08-01

    Scalar fields can be propagated through non-paraxial systems using the Gaussian beam decomposition method. However, for high NA objectives, this scalar treatment is not sufficient to correctly describe the electromagnetic fields inside the focal region due to high ray bendings, which result in a significant change in the polarization state of light. To model these vectorial effects, the Gaussian beam decomposition method has to be extended to include the polarization state of light. In this work we have combined it with the three dimensional polarization ray tracing in order to propagate vectorial fields through high NA optical systems. During the Gaussian beam decomposition, the polarization state of each individual beamlet is represented by a polarization vector [𝐸𝑥, 𝐸𝑦, 𝐸𝑧 ] associated with its central ray. Individual Gaussian beams are then propagated through the system using the complex ray tracing method. The effect of the optical system on the polarization state of each beam is computed by applying the three dimensional polarization ray tracing of the corresponding central rays. Finally the individual beams are superposed coherently in the plane of interest resulting in the complete vectorial field. We apply the proposed method to compute the vectorial field inside the focal region of a high NA microscope objective lens and compare our result to the vectorial Debye integral method. We find that the Gaussian beam decomposition method overcomes serious limitations of algorithms relying on Fourier transforms, i.e. the field sampling requirements are less critical in high NA focusing and in the presence of large aberrations. However, sharp edges in the amplitude profile are difficult to handle as they should be replaced with smooth Gaussian edge.

  9. Three-dimensional polarization marked multiple-QR code encryption by optimizing a single vectorial beam

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Hua, Binbin; Wang, Zhisong

    2015-10-01

    We demonstrate the feasibility of three dimensional (3D) polarization multiplexing by optimizing a single vectorial beam using a multiple-signal window multiple-plane (MSW-MP) phase retrieval algorithm. Original messages represented with multiple quick response (QR) codes are first partitioned into a series of subblocks. Then, each subblock is marked with a specific polarization state and randomly distributed in 3D space with both longitudinal and transversal adjustable freedoms. A generalized 3D polarization mapping protocol is established to generate a 3D polarization key. Finally, multiple-QR code is encrypted into one phase only mask and one polarization only mask based on the modified Gerchberg-Saxton (GS) algorithm. We take the polarization mask as the cyphertext and the phase only mask as additional dimension of key. Only when both the phase key and 3D polarization key are correct, original messages can be recovered. We verify our proposal with both simulation and experiment evidences.

  10. Evaluation of biological characteristics of neutron beam generated from MC50 cyclotron

    International Nuclear Information System (INIS)

    Eom, Keun Yong; Wu, Hong Gyun; Park, Hye Jin; Huh, Soon Nyung; Ye, Sung Joon; Lee, Dong Han; Park, Suk Won

    2006-01-01

    To evaluate biological characteristics of neutron beam generated by MC50 cyclotron located in the Korea Institute of Radiological and Medical Sciences (KIRAMS). The neutron beams generated with 15 mm Beryllium target hit by 35 MeV proton beam was used and dosimetry data was measured before in-vitro study. We irradiated 0, 1, 2, 3, 4 and 5 Gy of neutron beam to EMT-6 cell line and surviving fraction (SF) was measured. The SF curve was also examined at the same dose when applying lead shielding to avoid gamma ray component. In the X-ray experiment, SF curve was obtained after irradiation of 0, 2, 5, 10 and 15 Gy. The neutron beams have 84% of neutron and 16% of gamma component at the depth of 2 cm with the field size of 26 x 26 cm 2 , beam current 20 μ A, and dose rate of 9.25 cGy/min. The SF curve from X-ray, when fitted to linear-quadratic (LQ) model, had 0.611 as α / β ratio (α = 0.0204, β = 0.0334, R 2 = 0.999, respectively). The SF curve from neutron beam had shoulders at low dose area and fitted well to LQ model with the value of R 2 exceeding 0.99 in all experiments. The mean value of alpha and beta were -0.315 (range, -0.25 4 ∼ -0.360) and 0.247 (0.220 ∼ 0.262), respectively. The addition of lead shielding resulted in no straightening of SF curve and shoulders in low dose area still existed. The RBE of neutron beam was in range of 2.07 ∼ 2.19 with SF = 0.1 and 2.21 ∼ 2.35 with SF = 0.01, respectively. The neutron beam from MC50 cyclotron has significant amount of gamma component and this may have contributed to form the shoulder of survival curve. The RBE of neutron beam-generated by MC50 was about 2.2

  11. On the polarized beam acceleration in medium energy synchrotrons

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1992-01-01

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined

  12. Compact LCOS–SLM Based Polarization Pattern Beam Generator

    OpenAIRE

    Zheng, Xuejie; Lizana Tutusaus, Ángel; Peinado, Alba; Ramírez, Claudio; Martínez, Jose L.; Márquez, Andrés; Moreno Soriano, Ignacio; Campos Coloma, Juan

    2015-01-01

    In this paper, a compact optical system for generating arbitrary spatial light polarization patterns is demonstrated. The system uses a single high-resolution liquid crystal (LC) on silicon (LCOS) spatial light modulator. A specialized optical mount is designed and fabricated using a 3D printer, in order to build a compact dual optical architecture, where two different phase patterns are encoded on two adjacent halves of the LCOS screen, with a polarization transformation in between. The fina...

  13. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  14. High-energy in-beam neutron measurements of metal-based shielding for accelerator-driven spallation neutron sources

    Science.gov (United States)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Björgvinsdóttir, H.; Kokai, Z.; Bentley, P. M.

    2016-05-01

    Metal-based shielding plays an important role in the attenuation of harmful and unwanted radiation at an accelerator-driven spallation neutron source. At the European Spallation Source, currently under construction in Lund, Sweden, metal-based materials are planned to be used extensively as neutron guide substrates in addition to other shielding structures around neutron guides. The usage of metal-based materials in the vicinity of neutron guides however requires careful consideration in order to minimize potential background effects in a neutron instrument at the facility. Therefore, we have carried out a combined study involving high-energy neutron measurements and Monte Carlo simulations of metal-based shielding, both to validate the simulation methodology and also to investigate the benefits and drawbacks of different metal-based solutions. The measurements were carried out at The Svedberg Laboratory in Uppsala, Sweden, using a 174.1 MeV neutron beam and various thicknesses of aluminum-, iron-, and copper-based shielding blocks. The results were compared to geant4 simulations and revealed excellent agreement. Our combined study highlights the particular situations where one type of metal-based solution may be preferred over another.

  15. Intense γ-ray generation for a polarized positron beam in a linear collider

    Directory of Open Access Journals (Sweden)

    Y. Miyahara

    2001-12-01

    Full Text Available γ-ray generation by Compton backscattering in an optical lens series with periodic focal points is considered to produce a polarized positron beam for a linear collider. The lens series is composed of 20 unit cells with a length of 210 mm. Each lens has a hole to pass an electron beam with an energy of 5.8 GeV and the generated γ rays. It is shown by diffraction analysis that laser beam loss in the series is very small, and the beam size is periodically reduced to 26 μm. Electron beam size is reduced to 34 μm in a superconducting solenoid with a field of 15 T. To get a required γ-ray yield of 7×10^{15} γ/s, only one circularly polarized CO_{2} laser source with a power of 24 kW is needed.

  16. Efficient, High Brightness Sources of Polarized Neutrons and Photons and Their Uses

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, James E.

    2000-05-18

    There are many applications that could benefit from an easily accessible source of monochromatic, high brightness, polarized gammas and neutrons. A compact and comparatively inexpensive system is discussed based on a low-energy, electron storage ring with undulators that is expected to provide 10{sup 11} epithermal n/s and 10{sup 15} {gamma}/s. This method could provide a more efficient, cleaner way to produce epithermal neutrons than conventional means. Technical innovations that make it feasible are described together with some fundamental and practical applications that also take advantage of developments in the field of high power lasers.

  17. Structural integrity assessment based on the HFR Petten neutron beam facilities

    International Nuclear Information System (INIS)

    Ohms, C.; Youtsos, A.G.; Idsert, P. van den

    2002-01-01

    Neutrons are becoming recognized as a valuable tool for structural-integrity assessment of industrial components and advanced materials development. Microstructure, texture and residual stress analyses are commonly performed by neutron diffraction and a joint CEN/ISO Pre-Standard for residual stress analysis is under development. Furthermore neutrons provide for defects analyses, i.e. precipitations, voids, pores and cracks, through small-angle neutron scattering (SANS) or radiography. At the High Flux Reactor, 12 beam tubes have been installed for the extraction of thermal neutrons for such applications. Two of them are equipped with neutron diffractometers for residual stress and structure determination and have been extensively used in the past. Several other facilities are currently being reactivated and upgraded. These include the SANS and radiography facilities as well as a powder diffractometer. This paper summarizes the main characteristics and current status of these facilities as well as recently investigated applications. (orig.)

  18. Structural integrity assessment based on the HFR Petten neutron beam facilities

    Science.gov (United States)

    Ohms, C.; Youtsos, A. G.; van den Idsert, P.

    Neutrons are becoming recognized as a valuable tool for structural-integrity assessment of industrial components and advanced materials development. Microstructure, texture and residual stress analyses are commonly performed by neutron diffraction and a joint CEN/ISO Pre-Standard for residual stress analysis is under development. Furthermore neutrons provide for defects analyses, i.e. precipitations, voids, pores and cracks, through small-angle neutron scattering (SANS) or radiography. At the High Flux Reactor, 12 beam tubes have been installed for the extraction of thermal neutrons for such applications. Two of them are equipped with neutron diffractometers for residual stress and structure determination and have been extensively used in the past. Several other facilities are currently being reactivated and upgraded. These include the SANS and radiography facilities as well as a powder diffractometer. This paper summarizes the main characteristics and current status of these facilities as well as recently investigated applications.

  19. Structural integrity assessment based on the HFR Petten neutron beam facilities

    CERN Document Server

    Ohms, C; Idsert, P V D

    2002-01-01

    Neutrons are becoming recognized as a valuable tool for structural-integrity assessment of industrial components and advanced materials development. Microstructure, texture and residual stress analyses are commonly performed by neutron diffraction and a joint CEN/ISO Pre-Standard for residual stress analysis is under development. Furthermore neutrons provide for defects analyses, i.e. precipitations, voids, pores and cracks, through small-angle neutron scattering (SANS) or radiography. At the High Flux Reactor, 12 beam tubes have been installed for the extraction of thermal neutrons for such applications. Two of them are equipped with neutron diffractometers for residual stress and structure determination and have been extensively used in the past. Several other facilities are currently being reactivated and upgraded. These include the SANS and radiography facilities as well as a powder diffractometer. This paper summarizes the main characteristics and current status of these facilities as well as recently in...

  20. Neutron Beam Utilization At The TRIGA Mark II Reactor Vienna

    International Nuclear Information System (INIS)

    Villa, M.; Boeck, H.; Buchelt, R.J.; Koerner, S.; Rauch, H.

    2008-01-01

    A review is given about the research activities around the 250 kW TRIGA reactor Vienna, which are adequate to other neutron sources of comparable or bigger size. The topics selected for presentation range from neutron radiography, materials irradiation, neutron small-angle scattering, neutron activation analysis, neutron polarisation to neutron interferometry. It is the aim of this presentation to stimulate programs for more efficient use around TRIGA research reactors with neutron flux densities of 10 13 cm -2 s -1 at the centre of the reactor core. One briefly describes the experimental facilities installed at the 250 kW TRIGA reactor of the Austrian Universities in Vienna and presented a great part of the current research activities performed with them. Most of the techniques and experiments presented are adequate for implementation to other reactors of similar or even higher power. Those technologies which require extremely specialized know-how not generally available at every research institute are not treated here or are just mentioned without any further details. It is common knowledge that due to the relatively low neutron fluxes of such reactors one of the most important applications of neutron scattering on condensed matter, namely the study of atomic and molecular dynamics of solids and liquids, a priori must remain out of consideration. However, this does not mean that it is in general impossible to develop new or to improve existing techniques for such experiments at TRIGA research reactors. In fact such developing work has always been a crucial point of the research efforts in the variety of fields of applied and fundamental neutron physics. On the other hand, a small reactor facility is optimally suited to perform neutron activation analysis due to the rather short transfer distances of the sample into the reactor core. (authors)

  1. Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Vivien E. [Blaise Pascal Univ., Aubiere (France)

    2013-10-01

    The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, having both a polarized beam and a highly efficient polarized target is essential. For the target, this means high polarization and high relative density of polarized material. A Hydrogen Deuteride (HD) target that presents both such characteristics has been developed first at Brookhaven National Lab (BNL) and brought to the Hall B of Jefferson Lab in 2008. The HD target has been shown to work successfully under a high intensity photon beam (BNL and Jefferson Lab). However, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the target was tested for the first time in its frozen spin mode under an electron beam at Jefferson Lab in 2012 during the g14 experiment. This dissertation presents the principles and usage procedures of this HD target. The polarimetry of this target with Nuclear Magnetic Resonance (NMR) during the electron beam tests is also discussed. In addition, this dissertation also describes another way to perform target polarimetry with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.

  2. Construction and characterization of a spin polarized helium ion beam for surface electronic structure studies

    International Nuclear Information System (INIS)

    Harrison, A.R.

    1982-01-01

    Ion neutralization and metastable de-excitation spectroscopy, INS and MDS, allow detailed analysis of the surface electronic configuration of metals. The orthodox application of these spectroscopies may be enhanced by electronic spin polarization of the probe beams. For this reason, a spin polarized helium ion beam has been constructed. The electronic spin of helium metastables created within an rf discharge may be spacially aligned by optically pumping the atoms. Subsequent collisions between metastables produce helium ions which retain the orientation of the electronic spin. Extracted ion polarization, although not directly measurable, may be estimated from extracted electron polarization, metastable polarization, pumping radiation absorption and current modulation measurements. Ions extracted from the optically pumped discharge exhibit an estimated polarization of about ten per cent at a beam current of a few tenths of a microampere. Extraction of helium ions from the discharge requires that the ions have a high kinetic energy. However, to avoid undesirable kinetic electron ejection from the target surface, the ions must be decelerated. Examination of various deceleration configurations, in paticular exponential and linear deceleration fields, and experimental observation indicate that a linear decelerating field produces the best low energy beam to the target surface

  3. The polarized H and D atomic beam source for ANKE at COSY-Jülich

    Energy Technology Data Exchange (ETDEWEB)

    Mikirtychyants, M., E-mail: m.mikirtychyants@fz-juelich.de [Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich (Germany); High Energy Physics Department, St.Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Engels, R. [Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich (Germany); Grigoryev, K. [Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich (Germany); High Energy Physics Department, St.Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Kleines, H. [Zentrallabor für Elektronik, Forschungszentrum Jülich, 52425 Jülich (Germany); Kravtsov, P. [High Energy Physics Department, St.Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Lorenz, S. [Physikalisches Institut, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen (Germany); Nekipelov, M. [Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich (Germany); High Energy Physics Department, St.Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Nelyubin, V. [High Energy Physics Department, St.Petersburg Nuclear Physics Institute, 188300 Gatchina (Russian Federation); Rathmann, F.; Sarkadi, J. [Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich (Germany); and others

    2013-09-01

    A polarized atomic beam source was developed for the polarized internal storage-cell gas target at the magnet spectrometer ANKE of COSY-Jülich. The intensities of the beams injected into the storage cell, measured with a compression tube, are 7.5×10{sup 16} hydrogen atoms/s (two hyperfine states) and 3.9×10{sup 16} deuterium atoms/s (three hyperfine states). For the hydrogen beam the achieved vector polarizations are p{sub z}≈±0.92. For the deuterium beam, the obtained combinations of vector and tensor (p{sub zz}) polarizations are p{sub z}≈±0.90 (with a constant p{sub zz}≈+0.86), and p{sub zz}=+0.90 or p{sub zz}=−1.71 (both with vanishing p{sub z}). The paper includes a detailed technical description of the apparatus and of the investigations performed during the development. This source has been very successfully used for single and double polarization measurements at ANKE as well as for studies of the polarization of recombining hydrogen molecules.

  4. A slow neutron polarimeter for the measurement of parity-odd neutron rotary power

    Energy Technology Data Exchange (ETDEWEB)

    Snow, W. M.; Anderson, E.; Bass, T. D.; Dawkins, J. M.; Fry, J.; Haddock, C.; Horton, J. C.; Luo, D.; Micherdzinska, A. M.; Walbridge, S. B. [Indiana University and Center for the Exploration of Energy and Matter, 2401 Milo B. Sampson Lane, Bloomington, Indiana 47408 (United States); Barrón-Palos, L.; Maldonado-Velázquez, M. [Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, D.F. 04510, México (Mexico); Bass, C. D. [LeMoyne College, 1419 Salt Springs Road, Syracuse, New York 13214 (United States); Crawford, B. E. [Gettysburg College, 300 North Washington Street, Gettysburg, Pennsylvania 17325 (United States); Crawford, C. [University of Kentucky, 177 Chem.-Phys. Building, 505 Rose Street, Lexington, Kentucky 40506-0055 (United States); Esposito, D. [University of Dayton, 300 College Park, Dayton, Ohio 45469 (United States); Gardiner, H. [Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Gan, K. [The George Washington University, 2121 I Street N.W., Washington, District of Columbia 20052 (United States); Heckel, B. R.; Swanson, H. E., E-mail: swanson@npl.washington.edu [University of Washington/Center for Experimental Nuclear Physics and Astrophysics, Box 354290, Seattle, Washington 98195 (United States); and others

    2015-05-15

    We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10{sup −7} rad/m.

  5. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons

    International Nuclear Information System (INIS)

    Lau, Ch.

    2000-01-01

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons

  6. Investigation of beam self-polarization in the future e+e− circular collider

    CERN Document Server

    AUTHOR|(CDS)2075800

    2016-10-24

    The use of resonant depolarization has been suggested for precise beam energy measurements (better than 100 keV) in the eþe− Future Circular Collider (FCC-eþe−) for Z and WW physics at 45 and 80 GeV beam energy respectively. Longitudinal beam polarization would benefit the Z peak physics program; however it is not essential and therefore it will be not investigated here. In this paper the possibility of selfpolarized leptons is considered. Preliminary results of simulations in presence of quadrupole misalignments and beam position monitors (BPMs) errors for a simplified FCC-eþe− ring are presented.

  7. Ion beam characteristics of the controlatron/zetatron family of the gas filled neutron tubes

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.S.; Shope, L.A.; O' Neal, M.L.; Boers, J.E.; Bickes, R.W. Jr.

    1981-03-01

    A gas filled tube used to produce a neutron flux with the D(T,He/sup 4/)n reaction is described. Deuterium and tritium ions generated in a reflex discharge are extracted and accelerated to 100 keV by means of an accelerator electrode onto a deutero-tritide target electrode. The electrodes are designed to focus the ion beam onto the target. Total tube currents consisting of extracted ions, unsuppressed secondary electrons, and ions generated by interactions with the background gas are typically 100 mA. The characteristics of the extracted ion beam are discussed. Accelerating voltages greater than 50 kV are required to focus the beam through the accelerator aperture for configurations that give beams with the proper energy density onto the target. The perveance of the beam is discussed. Maximum perveance values are 2 to 20 nanopervs. Tube focusing and neutron production characteristics are described.

  8. Improved penetration from spectral hardening of reactor produced epithermal neutron beams using 6Li filtration

    International Nuclear Information System (INIS)

    Binns, P.J.; Riley, K.J.; Kiger, W.S. III; Harling, O.K.

    2006-01-01

    The use of an optional 6 Li-filter in a clinical epithermal neutron beam was studied using Monte Carlo calculations of the fission converter beam (FCB) and radiation transport through an ellipsoidal water phantom. The design premise was to produce a beam with the highest possible advantage depth (AD) while also maximizing the advantage depth dose rate (ADDR) and advantage ratio (AR). This was achieved by spectral modification using a 6 Li-filter 8 mm thick that preferentially removes neutrons of the lowest energies in the epithermal range. Predicted gains in beam performance were confirmed by measurement and are greater for smaller field sizes. An increase of 6 mm in the AD to 9.9 cm with a concomitant loss in beam intensity of 52% was realized with the 12 cm diameter field. (author)

  9. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering.

    Science.gov (United States)

    Kohagen, Miriam; Mason, Philip E; Jungwirth, Pavel

    2016-03-03

    Modeled ions, described by nonpolarizable force fields, can suffer from unphysical ion pairing and clustering in aqueous solutions well below their solubility limit. The electronic continuum correction takes electronic polarization effects of the solvent into account in an effective way by scaling the charges on the ions, resulting in a much better description of the ionic behavior. Here, we present parameters for the sodium ion consistent with this effective polarizability approach and in agreement with experimental data from neutron scattering, which could be used for simulations of complex aqueous systems where polarization effects are important.

  10. Search for Time Reversal Violation in Neutron Decay: A Measurement of the Transverse Polarization of Electrons

    International Nuclear Information System (INIS)

    Bodek, K.; Kaczmarek, A.; Kistryn, St.; Kuzniak, M.; Zejma, J.; Pulut, J.; Kirch, K.; Bialek, A.; Kozela, A.; Ban, G.; Naviliat-Cuncic, O.; Gorel, P.; Beck, M.; Lindroth, A.; Severijns, N.; Stephan, E.; Czarnecki, A.

    2006-01-01

    A non-zero value of the R-correlation coefficient due to the e - polarization component, perpendicular to the plane spanned by the spin of the decaying neutron and the electron momentum, would signal a violation of time reversal symmetry and thus physics beyond the Standard Model. The value of the N-correlation coefficient, given by the transverse e - polarization component within that plane, is expected to be finite. The measurement of N serves as an important systematic check of the apparatus for the R-measurement. The first phase of data taking has been completed. Preliminary results from a limited data sample show no deviations from the Standard Model predictions

  11. Quasielastic nucleon scattering using polarized beams and targets

    International Nuclear Information System (INIS)

    Haeusser, O.

    1990-07-01

    Inelastic scattering of polarized intermediate energy nucleons to continuum nuclear states is discussed with emphasis on recent results. Spin momentum correlations of protons in polarized targets of 3 He were observed for the first time. Complete spin observables in (p,p') show effects of the nuclear spin-isospin response and of an NN interaction modified by the nuclear medium. A comparison of Gamow Teller and isovector M1 giant resonance strengths in the sd shell provides evidence for large meson exchange current effects in the M1. (Author) (37 refs., 2 tabs., 9 figs.)

  12. Polarized neutron powder diffraction studies of antiferromagnetic order in bulk and nanoparticle NiO

    DEFF Research Database (Denmark)

    Brok, Erik; Lefmann, Kim; Deen, Pascale P.

    2015-01-01

    In many materials it remains a challenge to reveal the nature of magnetic correlations, including antiferromagnetism and spin disorder. Revealing the spin structure in magnetic nanoparticles is further complicated by the large incoherent neutron scattering cross section from water adsorbed...... surface contribution to the magnetic anisotropy. Here we explore the potential use of polarized neutron diffraction to reveal the magnetic structure in NiO bulk and nanoparticle powders by applying the XYZ-polarization analysis method. Our investigations address in particular the spin orientation in bulk...... at the particle surfaces and by the broadening of diffraction peaks due to the finite crystallite size. Moreover, the spin structure in magnetic nanoparticles may deviate significantly from that of the corresponding bulk material because of the low-symmetry surroundings of surface atoms and the large relative...

  13. Fundamental studies for the proton polarization technique in neutron protein crystallography.

    Science.gov (United States)

    Tanaka, Ichiro; Kusaka, Katsuhiro; Chatake, Toshiyuki; Niimura, Nobuo

    2013-11-01

    The isotope effect in conventional neutron protein crystallography (NPC) can be eliminated by the proton polarization technique (ppt). Furthermore, the ppt can improve detection sensitivity of hydrogen (relative neutron scattering length of hydrogen) by approximately eight times in comparison with conventional NPC. Several technical difficulties, however, should be overcome in order to perform the ppt. In this paper, two fundamental studies to realise ppt are presented: preliminary trials using high-pressure flash freezing has shown the advantage of making bulk water amorphous without destroying the single crystal; and X-ray diffraction and liquid-chromatography/mass-spectrometry analyses of standard proteins after introducing radical molecules into protein crystals have shown that radical molecules could be distributed non-specifically around proteins, which is essential for better proton polarization.

  14. Thomson scattering of polarized photons in an intense laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  15. Prompt gamma-ray analysis using cold and thermal guided neutron beams

    International Nuclear Information System (INIS)

    Yonezawa, C.; Magara, M.; Hoshi, M.; Tachikawa, E.; Sawahata, H.; Ito, Y.

    1995-01-01

    A permanent and stand-alone neutron-induced prompt γ-ray analysis (PGA) system, usable at both cold and thermal neutron beam guides of JRR-3M has been constructed. The characteristics of the system, including neutron beam and γ-ray spectrometer were measured. Owing to the absence of fast neutrons and the low γ-ray background, analytical sensitivities and detection limits better than those in other PGA systems have been achieved. Analytical results of ten elements in Standard Reference Material of Coal Fly Ash agreed well with those obtained by other methods. Isotopic analysis of Ni and its application to accurate and precise determination of Ni by stable isotope dilution method were performed. (author) 14 refs.; 4 figs.; 1 tab

  16. Optimization of cold neutron beam extraction at ESS

    DEFF Research Database (Denmark)

    Schönfeldt, Troels; Batkov, K.; Klinkby, Esben Bryndt

    from which the moderator is viewed. This study does not only show changes in both cold and thermal neutron flux, depending on extraction position, but also shows that there are significant differences in the wavelength spectrum and origin of neutrons depending on the angel of view.......The present study takes its origin in the baseline design of European Spallation Source where a cold and a thermal moderator are situated next to each other enabling bispectral extraction. The study aims at mapping the differences in various neutron distributions depending on the angle and position...

  17. In vitro biological effectiveness of JRR-4 epithermal neutron beam. Experiment under free air beam and in water phantom. Cooperative research

    CERN Document Server

    Yamamoto, T; Horiguchi, Y; Kishi, T; Kumada, H; Matsumura, A; Nose, T; Torii, Y; Yamamoto, K

    2002-01-01

    The surviving curve and the biological effectiveness factor of dose components generated in boron neutron capture therapy (BNCT) were separately determined in neutron beams at Japan Research Reactor No.4. Surviving fraction of V79 Chinese hamster cell with or without sup 1 sup 0 B was obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal neutron beam (TNB-2), which were used or planned to use for BNCT clinical trial. The cell killing effect of these neutron beams with or without the presence of sup 1 sup 0 B depended highly on the neutron beam used, according to the epithermal and fast neutron content in the beam. The biological effectiveness factor values of the boron capture reaction for ENB, TNB-1 and TNB-2 were 3.99+-0.24, 3.04+-0.19 and 1.43+-0.08, respectively. The biological effectiveness factor values of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50+-0.32, 2.34+-0.30 and 2.17+-0.28 for EN...

  18. The measurement of g1n polarized structure of the neutron by the E154 experiment at SLAC

    International Nuclear Information System (INIS)

    Incerti, Sebastien

    1998-01-01

    This thesis presents the precision measurement of the neutron polarized structure g 1 n performed by the E154 collaboration at the Standford Linear Accelerator Center, USA, in autumn 1995, using a 48.3 GeV polarized electron beam scattered off a polarized Helium 3 target. The scattered electrons were detected using two spectrometer arms, covering the deep inelastic scattering range: 0.0134 2 2 2 at an average value of Q 2 = 5 GeV 2 . Two electromagnetic calorimeters have been designed by the LPC in Clermont-Ferrand and the SphN-CEA in Saclay to measure the scattered electron energy and to eject the contaminating hadron background using, a cellular automaton and a neural network, widely described in this thesis. The analysis performed in Clermont-Ferrand and presented in this document led us to the integral on the measurement region of g 1 n equaling: - 0.34 ± 0.003 STAT ± 0.004 SYST ± 0.001 EVOL at Q 2 = 5 GeV 2 , where our data have been evolved to Q 2 = 5 GeV 2 using the next-to-leading order DGLAP evolution equations and a world parametrization of the polarized parton distributions. The Ellis and Jaffe sum rule is clearly violated. Using different low x extrapolations, our integral is compatible with the Bjorken sum rule. The quark contribution to the nucleon spin is ΔΣ = 29 ± 6 % in the M S-bar scheme and ΔΣ = 37 ± 7% in the AB scheme, at Q 2 = 5 GeV 2 . The gluon contribution seems to be positive and within the range: 0 < ΔG < 2. (author)

  19. GLE and Sub-GLE Redefinition in the Light of High-Altitude Polar Neutron Monitors

    Science.gov (United States)

    Poluianov, S. V.; Usoskin, I. G.; Mishev, A. L.; Shea, M. A.; Smart, D. F.

    2017-11-01

    The conventional definition of ground-level enhancement (GLE) events requires a detection of solar energetic particles (SEP) by at least two differently located neutron monitors. Some places are exceptionally well suitable for ground-based detection of SEP - high-elevation polar regions with negligible geomagnetic and reduced atmospheric energy/rigidity cutoffs. At present, there are two neutron-monitor stations in such locations on the Antarctic plateau: SOPO/SOPB (at Amundsen-Scott station, 2835 m elevation), and DOMC/DOMB (at Concordia station, 3233 m elevation). Since 2015, when the DOMC/DOMB station started continuous operation, a relatively weak SEP event that was not detected by sea-level neutron-monitor stations was registered by both SOPO/SOPB and DOMC/DOMB, and it was accordingly classified as a GLE. This would lead to a distortion of the homogeneity of the historic GLE list and the corresponding statistics. To address this issue, we propose to modify the GLE definition so that it maintains the homogeneity: A GLE event is registered when there are near-time coincident and statistically significant enhancements of the count rates of at least two differently located neutron monitors, including at least one neutron monitor near sea level and a corresponding enhancement in the proton flux measured by a space-borne instrument(s). Relatively weak SEP events registered only by high-altitude polar neutron monitors, but with no response from cosmic-ray stations at sea level, can be classified as sub-GLEs.

  20. Use of Neutron Beams for Materials Research Relevant to the Nuclear Energy Sector

    International Nuclear Information System (INIS)

    2015-10-01

    Nuclear technologies such as fission and fusion reactors, including associated waste storage and disposal, rely on the availability of not only nuclear fuels but also advanced structural materials. In 2010–2013, the IAEA organized and implemented the Coordinated Research Project (CRP) on Development, Characterization and Testing of Materials of Relevance to Nuclear Energy Sector Using Neutron Beams. A total of 19 institutions from 18 Member States (Argentina, Australia, Brazil, China, Czech Republic, France, Germany, Hungary, Indonesia, Italy, Japan, Netherlands, Republic of Korea, Romania, Russian Federation (two institutions), South Africa, Switzerland and United States of America) cooperated with the main objective to address the use of various neutron beam techniques for characterization, testing and qualification of materials and components produced or under development for applications in the nuclear energy sector. This CRP aimed to bring stakeholders and end users of research reactors and accelerator based neutron sources together for the enhanced use of available facilities and development of new infrastructures for applied materials research. Work envisioned under this CRP was related to the optimization and validation of neutron beam techniques, including facility and instrument modifications/optimizations as well as improved data acquisition, processing and analysis systems. Particular emphasis was placed on variable environments during material characterization and testing as required by some applications such as intensive irradiation load, high temperature and high pressure conditions, and the presence of strong magnetic fields. Targeted neutron beam techniques were neutron diffraction, small angle neutron scattering and digital neutron radiography/tomography. This publication is a compilation of the main results and findings of the CRP, and the CD-ROM accompanying this publication contains 19 reports with additional relevant technical details

  1. Use of Neutron Beams for Materials Research Relevant to the Nuclear Energy Sector. Annex: Individual Reports

    International Nuclear Information System (INIS)

    2015-10-01

    Nuclear technologies such as fission and fusion reactors, including associated waste storage and disposal, rely on the availability of not only nuclear fuels but also advanced structural materials. In 2010–2013, the IAEA organized and implemented the Coordinated Research Project (CRP) on Development, Characterization and Testing of Materials of Relevance to Nuclear Energy Sector Using Neutron Beams. A total of 19 institutions from 18 Member States (Argentina, Australia, Brazil, China, Czech Republic, France, Germany, Hungary, Indonesia, Italy, Japan, Netherlands, Republic of Korea, Romania, Russian Federation (two institutions), South Africa, Switzerland and United States of America) cooperated with the main objective to address the use of various neutron beam techniques for characterization, testing and qualification of materials and components produced or under development for applications in the nuclear energy sector. This CRP aimed to bring stakeholders and end users of research reactors and accelerator based neutron sources together for the enhanced use of available facilities and development of new infrastructures for applied materials research. Work envisioned under this CRP was related to the optimization and validation of neutron beam techniques, including facility and instrument modifications/optimizations as well as improved data acquisition, processing and analysis systems. Particular emphasis was placed on variable environments during material characterization and testing as required by some applications such as intensive irradiation load, high temperature and high pressure conditions, and the presence of strong magnetic fields. Targeted neutron beam techniques were neutron diffraction, small angle neutron scattering and digital neutron radiography/tomography. The publication IAEA-TECDOC-1773 is a compilation of the main results and findings of the CRP, and this CD-ROM accompanying the publication contains 19 reports with additional relevant

  2. Study of very neutron-rich nuclei produced by means of a 48Ca beam

    International Nuclear Information System (INIS)

    Lewitowicz, M.; Artukh, A.G.

    1991-01-01

    The results of experiments with a 48 Ca beam performed at GANIL are presented and discussed. More than 30 very neutron-rich isotopes were identified or studied for the first time. The evidence for particle-unstable character of the 26 O isotope is reported. Half-life measurements for light neutron rich nuclei are compared with different theoretical predictions. (author) 14 refs.; 6 figs.; 1 tab

  3. Moisture imaging of a camphor tree by neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tomoko M. [Tokyo Univ. (Japan). Graduate School of Agricultural and Life Sciences; Karakama, Isamu; Sakura, Tsuguo; Matsubayashi, Masashi

    1998-05-01

    Moisture distribution of a camphor tree was presented. A 23 year old camphor tree was downed at university forest and a wood disk, about 1 cm in width, was lumbered out from the breast height of the tree. The wood disk as well as a newly developing branch of the tree were irradiated with thermal neutrons at an atomic reactor installed at Japan Atomic Energy Research Institute. The total flux of thermal neutron was 3.0 x 10{sup 9} n/cm{sup 2}. Water specific images of the disk and a branch were presented with high resolution, which was estimated to be about 16 {mu}m. In the case of wood disk, moisture decreasing manner while drying was also shown through neutron image. Neutron images showed that the moisture decreasing rate in sapwood was similar to that of heartwood. (author)

  4. Experimental generation of tripartite polarization entangled states of bright optical beams

    OpenAIRE

    Wu, Liang; Yan, Zhihui; Liu, Yanhong; Deng, Ruijie; Jia, Xiaojun; Xie, Changde; Peng, Kunchi

    2017-01-01

    The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite en...

  5. Construction of the spin-polarized slow positron beam with the RI source

    Energy Technology Data Exchange (ETDEWEB)

    Nakajyo, Terunobu; Tashiro, Mutsumi; Kanazawa, Ikuzo [Tokyo Gakugei Univ., Koganei (Japan); Komori, Fumio; Murata, Yoshimasa; Ito, Yasuo

    1997-03-01

    The electrostatic slow-positron beam is constructed by using {sup 22}Na source. We design the electrostatic lens, the system of the detector, and the Wien filter for the experiment`s system of the spin-polarized slow positron beam. The reemitted spin-polarized slow-positron spectroscopy is proposed for studying magnetic thin films and magnetic multilayers. We calculated the depolarized positron fractions in the Fe thin film Fe(10nm)/Cu(substrate) and the multilayers Cu(1nm)/Fe(10nm)/Cu(substrate). (author)

  6. Squids, snakes, and polarimeters: A new technique for measuring the magnetic moments of polarized beams

    International Nuclear Information System (INIS)

    Cameron, P.R.; Luccio, A.U.; Shea, T.J.; Tsoupas, N.; Goldberg, D.A.

    1997-01-01

    Effective polarimetry at high energies in hadron and lepton synchrotrons has been a long-standing and difficult problem. In synchrotrons with polarized beams it is possible to cause the direction of the polarization vector of a given bunch to alternate at a frequency which is some subharmonic of the rotation frequency. This can result in the presence of lines in the beam spectrum which are due only to the magnetic moment of the beam and which are well removed from the various lines due to the charge of the beam. The magnitude of these lines can be calculated from first principles. They are many orders of magnitude weaker than the Schottky signals. Measurement of the magnitude of one of these lines would be an absolute measurement of beam polarization. For measuring magnetic field, the Superconducting Quantum Interference Device, or squid, is about five orders of magnitude more sensitive than any other transducer. Using a squid, such a measurement might be accomplished with the proper combination of shielding, pickup loop design, and filtering. The resulting instrument would be fast, non-destructive, and comparatively cheap. In addition, techniques developed in the creation of such an instrument could be used to measure the Schottky spectrum in unprecedented detail. We present specifics of a polarimeter design for the Relativistic Heavy Ion Collider (RHIC) and briefly discuss the possibility of using this technique to measure polarization at high-energy electron machines like LEP and HERA. copyright 1997 American Institute of Physics

  7. Deuteron beam interaction with lithium jet in a neutron source test facility

    International Nuclear Information System (INIS)

    Hassanein, A.

    1996-01-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium-lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (≥14 MeV) neutrons required to simulate a fusion environment via the Li (d,n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities. (orig.)

  8. Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

    Directory of Open Access Journals (Sweden)

    Virginijus Barzda

    2013-09-01

    Full Text Available Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red, which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  9. Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams.

    Science.gov (United States)

    Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus

    2013-09-09

    Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  10. Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

    Science.gov (United States)

    Samim, Masood; Sandkuijl, Daaf; Tretyakov, Ian; Cisek, Richard; Barzda, Virginijus

    2013-01-01

    Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red), which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures. PMID:24022688

  11. Vacuum laser acceleration using a radially polarized CO sub 2 laser beam

    CERN Document Server

    Liu, Y; He, P

    1999-01-01

    Utilizing the high-power, radially polarized CO sub 2 laser and high-quality electron beam at the Brookhaven Accelerator Test Facility, a vacuum laser acceleration scheme is proposed. In this scheme, optics configuration is simple, a small focused beam spot size can be easily maintained, and optical damage becomes less important. At least 0.5 GeV/m acceleration gradient is achievable by 1 TW laser power.

  12. Imaging of water in living plant using neutron beam and positron emitting nuclides

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.

    2001-01-01

    Analysis of biological activity in intact cells or tissues is essential to understand many life processes. Techniques for these in vivo measurements have not been well developed. We present here a nondestructive method to image water in living plants using a neutron beam as well as positron emitting nuclides. With high specificity to water, neutron beam technique images water movement in seeds or in roots imbedded in soil, as well as in wood and meristems during development. To know real-time water movement, positron emitting nuclides, 18 F or 15 O was produced by a cyclotron. We present how water uptake activity was shown using these these nuclides. (author)

  13. Compact D-D Neutron Source-Driven Subcritical Multiplier and Beam-Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Ganda, Francesco; Vujic, Jasmina; Greenspan, Ehud; Leung, Ka-Ngo

    2010-01-01

    This work assesses the feasibility of using a small, safe, and inexpensive keff 0.98 subcritical fission assembly [subcritical neutron multiplier (SCM)] to amplify the treatment neutron beam intensity attainable from a compact deuterium-deuterium (D-D) fusion neutron source delivering [approximately]1012 n/s. The objective is to reduce the treatment time for deep-seated brain tumors to [approximately]1 h. The paper describes the optimal SCM design and two optimal beam-shaping assemblies (BSAs) - one designed to maximize the dose rate and the other designed to maximize the total dose that can be delivered to a deep-seated tumor. The neutron beam intensity amplification achieved with the optimized SCM and BSA results in an increase in the treatment dose rate by a factor of 18: from 0.56 Gy/h without the SCM to 10.1 Gy/h. The entire SCM is encased in an aluminum structure. The total amount of 20% enriched uranium required for the SCM is 8.5 kg, and the cost (not including fabrication) is estimated to be less than $60,000. The SCM power level is estimated at 400 W when driven by a 1012 n/s D-D neutron source. This translates into consumption of only [approximately]0.6% of the initially loaded 235U atoms during 50 years of continuous operation and implies that the SCM could operate continuously for the entire lifetime of the facility without refueling. Cooling the SCM does not pose a challenge; it may be accomplished by natural circulation as the maximum heat flux is only 0.034 W/cm2.

  14. Initial Experimental Verification of the Neutron Beam Modeling for the LBNL BNCT Facility

    International Nuclear Information System (INIS)

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; McDonald, R.J.; Smith, A.R.; Stone, N.A.; Vuji, J.

    1999-01-01

    In preparation for future clinical BNCT trials, neutron production via the 7Li(p,n) reaction as well as subsequent moderation to produce epithermal neutrons have been studied. Proper design of a moderator and filter assembly is crucial in producing an optimal epithermal neutron spectrum for brain tumor treatments. Based on in-phantom figures-of-merit,desirable assemblies have been identified. Experiments were performed at the Lawrence Berkeley National Laboratory's 88-inch cyclotron to characterize epithermal neutron beams created using several microampere of 2.5 MeV protons on a lithium target. The neutron moderating assembly consisted of Al/AlF3 and Teflon, with a lead reflector to produce an epithermal spectrum strongly peaked at 10-20 keV. The thermal neutron fluence was measured as a function of depth in a cubic lucite head phantom by neutron activation in gold foils. Portions of the neutron spectrum were measured by in-air activation of six cadmium-covered materials (Au, Mn, In, Cu, Co, W) with high epithermal neutron absorption resonances. The results are reasonably reproduced in Monte Carlo computational models, confirming their validity

  15. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S I; Yang, J; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameters taken from early and current works on transport coefficients of dense matter. It is found that the effect of viscosity is crucial for the lifetime of magneto-torsion vibrations but it does not appreciably affect the periods of this seismic mode which fall in the realm of periods of pulsed emission of soft gamma-ray repeaters and anomalous x-ray pulsars - young super-magnetized neutron stars, radiating, according to the magnetar model, at the expense of the magnetic energy release. Finally, we present arguments that the long periodic pulsed emission of these stars in a quiescent regime of radiation can be interpreted as a manifestation of weakly damped seismic magneto-torsion vibrations exhibiting the field induced spin polarization of baryon matter

  16. Radiation damage in silicon due to albedo neutrons emitted from hadronic beam dumps (Fe and U)

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Bishop, B.L.

    1987-01-01

    Calculations have been carried out to determine the level of radiation damage that can be expected from albedo neutrons when 1- and 5-GeV negative pions are incident on iron and uranium beam dumps. The calculated damage data are presented in several ways including neutron fluence above 0.111 MeV, 1 MeV equivalent neutron fluence, damage energy deposition, and DPA or displacements per atom. Details are presented as to the method of calculation. 14 refs., 1 fig., 1 tab

  17. New POLDI - project of reincarnation of a polarized neutron diffractometer at the reactor PIK

    Science.gov (United States)

    Zobkalo, I.; Gavrilov, S.; Matveev, V.; Fenske, J.

    2017-06-01

    The project of a considerable modernization of the polarized neutron diffractometer POLDI is discussed. It assumes the adoption of POLDI to a broader range of magnetic investigations such as determination of magnetic structures, detailed investigation of complex magnetic structures, studies of magnetic domains, study of the magnetization density maps, magnetic form-factor particularities, local susceptibility, etc. The flexible construction should permit to use either spherical neutron polarimetry technique or flipping ratio technique. Different types of polarization system were analyzed. Original focusing fan-like bender is proposed as polarizer unit. Our simulations give evidence that for the wavelength range 1.3 - 3 Å and with suitable size, such a device can give much better efficiency than 3He cells, which are often in use. The higher flux at the sample position of a factor of at least 3.3, with lower divergence and good polarization degree from 98% (1.3 Å) to above 94% (3 Å) makes the bender set-up favorable over the layout with a 3He-cell.

  18. Prospects for a new cold neutron beam measurement of theneutron lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, M. [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Gilliam, D [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Coakley, K [National Institute of Standards and Technology (NIST), Boulder; Greene, G [University of Tennessee, Knoxville (UTK); Yue, A [University of Tennessee, Knoxville (UTK); Greene, G [Oak Ridge National Laboratory (ORNL); Laptev, A [Los Alamos National Laboratory (LANL); Snow, W [Indiana University Cyclotron Facility, Bloomington, IN; Wietfeldt, F [Tulane University

    2009-01-01

    In the most accurate cold neutron beam determination of the neutron lifetime based on the absolute counting of decay protons, the largest uncertainty was attributed to the absolute determination of the capture flux of the cold neutron beam. Currently an experimental effort is underway at the National Institute of Standards and Technology (NIST) that will significantly reduce this contribution to the uncertainty in the lifetime determination. The next largest source of uncertainty is the determination of the absolute count rate of decay protons, which contributes to the experimental uncertainty approximately at the 1 s level. Experience with the recent neutron radiative decay experiment, which used the neutron lifetime apparatus, has provided valuable insights into ways to reduce other uncertainties. In addition, the cold neutron fluence rate at NIST is presently 1.5 times greater than in the 2003 measurement, and there is the prospect for a significantly higher rate with the new guide hall expansion. This paper discusses an approach for achieving a determination of the neutron lifetime with an accuracy of approximately 1 s.

  19. Propagation of Polarization Modulated Beams Through a Turbulent Atmosphere

    Science.gov (United States)

    2014-11-24

    multipole expansion (Fiutak, 1963), in which the semiclassical Kramers- Heisenberg dispersion equation is demonstrated to be identical with the...are a pair of complex scalar fields considered to be dual, as there exists in 3D a duality between a vector basis which is contravariant...does not provide necessarily a relation of to , which are dual in the strong sense. Fig 6.2.1.A shows a continuous beam in 3D constructed

  20. A multi-satellite study of accelerated ionospheric ion beams above the polar cap

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2006-07-01

    Full Text Available This paper presents a study of nearly field-aligned outflowing ion beams observed on the Cluster satellites over the polar cap. Data are taken at geocentric radial distances of the order of 5–9 RE. The distinction is made between ion beams originating from the polar cusp/cleft and beams accelerated almost along the magnetic field line passing by the spacecraft. Polar cusp beams are characterized by nearly field-aligned proton and oxygen ions with an energy ratio EO+ / EH+, of the order of 3 to 4, due to the ion energy repartition inside the source and to the latitudinal extension of the source. Rapid variations in the outflowing ion energy are linked with pulses/modifications of the convection electric field. Cluster data allow one to show that these perturbations of the convection velocity and the associated ion structures propagate at the convection velocity. In contrast, polar cap local ion beams are characterized by field-aligned proton and oxygen ions with similar energies. These beams show the typical inverted V structures usually observed in the auroral zone and are associated with a quasi-static converging electric field indicative of a field-aligned electric field. The field-aligned potential drop fits well the ion energy profile. The simultaneous observation of precipitating electrons and upflowing ions of similar energies at the Cluster orbit indicates that the spacecraft are crossing the mid-altitude part of the acceleration region. In the polar cap, the parallel electric field can thus extend to altitudes higher than 5 Earth radii. A detailed analysis of the distribution functions shows that the ions are heated during their parallel acceleration and that energy is exchanged between H+ and O+. Furthermore, intense electrostatic waves are observed simultaneously. These observations could be due to an ion-ion two-stream instability.

  1. Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements. Annex: Individual Reports

    International Nuclear Information System (INIS)

    2014-07-01

    The recent advances in the development of nuclear science and technology, demonstrating the globally growing economy, require highly accurate, powerful simulations and precise analysis of the experimental results. Confidence in these results is still determined by the accuracy of the atomic and nuclear input data. For studying material response, neutron beams produced from accelerators and research reactors in broad energy spectra are reliable and indispensable tools to obtain high accuracy experimental results for neutron induced reactions. The IAEA supports the accomplishment of high precision nuclear data using nuclear facilities in particular, based on particle accelerators and research reactors around the world. Such data are essential for numerous applications in various industries and research institutions, including the safety and economical operation of nuclear power plants, future fusion reactors, nuclear medicine and non-destructive testing technologies. The IAEA organized and coordinated the technical meeting Use of Neutron Beams for High Precision Nuclear Data Measurements, in Budapest, Hungary, 10–14 December 2012. The meeting was attended by participants from 25 Member States and three international organizations — the European Organization for Nuclear Research (CERN), the Joint Research Centre (JRC) and the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (OECD/NEA). The objectives of the meeting were to provide a forum to exchange existing know-how and to share the practical experiences of neutron beam facilities and associated instrumentation, with regard to the measurement of high precision nuclear data using both accelerators and research reactors. Furthermore, the present status and future developments of worldwide accelerator and research reactor based neutron beam facilities were discussed. This publication is a summary of the technical meeting and additional materials supplied by the international

  2. Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements

    International Nuclear Information System (INIS)

    2014-07-01

    The recent advances in the development of nuclear science and technology, demonstrating the globally growing economy, require highly accurate, powerful simulations and precise analysis of the experimental results. Confidence in these results is still determined by the accuracy of the atomic and nuclear input data. For studying material response, neutron beams produced from accelerators and research reactors in broad energy spectra are reliable and indispensable tools to obtain high accuracy experimental results for neutron induced reactions. The IAEA supports the accomplishment of high precision nuclear data using nuclear facilities in particular, based on particle accelerators and research reactors around the world. Such data are essential for numerous applications in various industries and research institutions, including the safety and economical operation of nuclear power plants, future fusion reactors, nuclear medicine and non-destructive testing technologies. The IAEA organized and coordinated the technical meeting Use of Neutron Beams for High Precision Nuclear Data Measurements, in Budapest, Hungary, 10–14 December 2012. The meeting was attended by participants from 25 Member States and three international organizations — the European Organization for Nuclear Research (CERN), the Joint Research Centre (JRC) and the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (OECD/NEA). The objectives of the meeting were to provide a forum to exchange existing know-how and to share the practical experiences of neutron beam facilities and associated instrumentation, with regard to the measurement of high precision nuclear data using both accelerators and research reactors. Furthermore, the present status and future developments of worldwide accelerator and research reactor based neutron beam facilities were discussed. This publication is a summary of the technical meeting and additional materials supplied by the international

  3. SU-F-BRE-11: Neutron Measurements Around the Varian TrueBeam Linac

    International Nuclear Information System (INIS)

    Maglieri, R; Seuntjens, J; Kildea, J; Liang, L; DeBlois, F; Evans, M; Licea, A; Dubeau, J; Witharana, S

    2014-01-01

    Purpose: With the emergence of flattening filter free (FFF) photon beams, several authors have noted many advantages to their use. One such advantage is the decrease in neutron production by photonuclear reactions in the linac head. In the present work we investigate the reduction in neutrons from a Varian TrueBeam linac using the Nested Neutron Spectrometer (NNS, Detec). The neutron spectrum, total fluence and source strength were measured and compared for 10 MV with and without flattening filter and the effect of moderation by the room and maze was studied for the 15 MV beam. Methods: The NNS, similar to traditional Bonner sphere detectors but operated in current mode, was used to measure the neutron fluence and spectrum. The NNS was validated for use in high dose rate environments using Monte Carlo simulations and calibrated at NIST and NRC Canada. Measurements were performed at several positions within the treatment room and maze with the linac jaws closed to maximize neutron production. Results: The measurements showed a total fluence reduction between 35-40% in the room and maze when the flattening filter was removed. The neutron source strength Qn was calculated from in-room fluence measurements and was found to be 0.042 × 10 2 n/Gy, 0.026 × 10 2 n/Gy and 0.59 × 101 2 n/Gy for the 10 MV, the 10 MV FFF and 15 MV beams, respectively. We measured ambient equivalent doses of 11 mSv/hr, 7 mSv/hr and 218 mSv/hr for the 10 MV, 10 MV FFF and 15 MV by the head. Conclusion: Our measurements revealed a decrease in total fluence, neutron source strength and equivalent dose of approximately 35-40% across the treatment room for the FFF compared to FF modes. This demonstrates, as expected, that the flattening filter is a major component of the neutron production for the TrueBeam. The authors greatly acknowledge support form the Canadian Nuclear Commission and the Natural Sciences and Engineering Research Council of Canada through the CREATE program. Co-authors Dubeau

  4. Efficient generation of high beam-quality attosecond pulse with polarization-gating Bessel-Gauss beam from highly-ionized media.

    Science.gov (United States)

    Li, Yang; Zhang, Qingbin; Hong, Weiyi; Wang, Shaoyi; Wang, Zhe; Lu, Peixiang

    2012-07-02

    Single attosecond pulse generation with polarization gating Bessel-Gauss beam in relatively strongly-ionized media is investigated. The results show that Bessel-Gauss beam has the ability to suppress the spatial plasma dispersion effects caused by high density of free electrons, thus the laser field can maintain its spatial profile through highly-ionized medium. This indicates the use of Bessel-Gauss beam has advantages over Gaussian beam in high harmonic generation under high ionization conditions. In our scheme, significant improvement of spatiotemporal properties of harmonics is achieved and an isolated attosecond pulse with high beam quality is filtered out using polarization gating.

  5. Cross-field injection of a charged, polarized, ion-electron beam

    International Nuclear Information System (INIS)

    Hamilton, G.W.

    1976-01-01

    An early idea for fueling a controlled fusion device had been the injection of a polarized mixture of ions and electrons across a magnetic field and into the device. Now, the beam intensity (several kA/cm 2 ) required for this technique is available from pulsed ion diodes. Remaining feasibility questions involve beam optics and trapping. The most obvious advantage over neutral-beam injection is avoidance of the need to produce high-energy atoms. Therefore, the technique will compete best at ion energies above 100 keV. The method appears feasible for pulsed startup of mirror machines, but not for steady-state injection into a plasma

  6. Novel neutralized-beam intense neutron source for fusion technology development

    International Nuclear Information System (INIS)

    Osher, J.E.; Perkins, L.J.

    1983-01-01

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D 0 and T 0 beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T 0 + T + space-charge-neutralized beam incident on either a LiD or gas D 2 target with calculated 14-MeV neutron yields of 2 x 10 15 /s, 7 x 10 15 /s, or 1.6 x 10 16 /s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm 2

  7. Influence of Polarization of the Incident Beam on Integrated Intensities in X-Ray Energy-Dispersive Diffractometry

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Buras, B.; Jensen, T.

    1978-01-01

    Polarization measurements of the primary X-ray beam produced by thick copper and tungsten anodes are reported and formulas derived for integrated intensities of Bragg reflections in energy-dispersive diffractometry with the polarization of the primary beam taken into account. It was found...

  8. Diversity and Multiplexing Technologies by 3D Beams in Polarized Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Xin Su

    2016-01-01

    Full Text Available Massive multiple input, multiple output (M-MIMO technologies have been proposed to scale up data rates reaching gigabits per second in the forthcoming 5G mobile communications systems. However, one of crucial constraints is a dimension in space to implement the M-MIMO. To cope with the space constraint and to utilize more flexibility in 3D beamforming (3D-BF, we propose antenna polarization in M-MIMO systems. In this paper, we design a polarized M-MIMO (PM-MIMO system associated with 3D-BF applications, where the system architectures for diversity and multiplexing technologies achieved by polarized 3D beams are provided. Different from the conventional 3D-BF achieved by planar M-MIMO technology to control the downtilted beam in a vertical domain, the proposed PM-MIMO realizes 3D-BF via the linear combination of polarized beams. In addition, an effective array selection scheme is proposed to optimize the beam-width and to enhance system performance by the exploration of diversity and multiplexing gains; and a blind channel estimation (BCE approach is also proposed to avoid pilot contamination in PM-MIMO. Based on the Long Term Evolution-Advanced (LTE-A specification, the simulation results finally confirm the validity of our proposals.

  9. Measurement of the $\\beta$-asymmetry parameter in $^{35}$Ar decay with a laser polarized beam

    CERN Multimedia

    With this proposal we request beam time for the first two phases of a project that aims at measuring the $\\beta$-asymmetry parameter of the mirror $\\beta$-decay branch in $^{35}$Ar using an optically polarized Ar atom beam. The final goal of the experiment is to measure this parameter to a precision of 0.5%. This will allow the most precise determination of the V$_{ud}$ quark mixing matrix element from all the mirror transitions with an absolute uncertainty of 0.0007. The proposal will be presented in phases and we ask here 11 shifts (7 on-line + 4 off-line) for phase 1 and 15 shifts (6 on-line and 9 off-line) for phase 2. Phase 1 aims at establishing the optimal laser polarization scheme as well as the best implantation host for maintaining the polarization. Phase 2 aims at enhancing the beam polarization by removing the unpolarized part of the beam using re-ionization.

  10. Modeling of polarization phenomena due to RF sheaths and electron beams in magnetized plasma

    International Nuclear Information System (INIS)

    Faudot, E.

    2005-01-01

    This work investigates the problematic of hot spots induced by accelerated particle fluxes in tokamaks. It is shown that the polarization due to sheaths in the edge plasma in which an electron beam at a high level of energy is injected, can reach several hundreds volts and thus extend the deposition area. The notion of obstructed sheath is introduced and explains the acceleration of energy deposition by the decreasing of the sheath potential. Then, a 2-dimensional fluid modeling of flux tubes in front of ICRF antennae allows us to calculate the rectified potentials taking into account RF polarization currents transverse to magnetic field lines. The 2-dimensional fluid code designed validates the analytical results which show that the DC rectified potential is 50% greater with polarization currents than without. Finally, the simultaneous application of an electron beam and a RF potential reveals that the potentials due to each phenomenon are additives when RF potential is much greater than beam polarization. The density depletion of polarized flux tubes in 2-dimensional PIC (particles in cells) simulations is characterized but not yet explained. (author)

  11. In the wonderland of ultra-parallel neutron beams

    Indian Academy of Sciences (India)

    -Hart proposal to attain a sharp, nearly rectangular profile by Bragg reflecting neutrons multiply from a channel-cut single crystal, was realized in its totality three and a half decades later by achieving the corresponding Darwin reflection curves ...

  12. Collimator optimization studies for the new MIT epithermal neutron beam

    International Nuclear Information System (INIS)

    Riley, K.J.; Ali, S.J.; Harling, O.K.

    2000-01-01

    A patient collimator has been designed for the epithermal neutron facility now being commissioned at MIT. Collimator performance both in and out of field was evaluated using the Monte Carlo code MCNP. A two piece design that can accommodate different circular field sizes will be manufactured using a composite lead, epoxy, boron and lithium mixture. (author)

  13. Calorimetric dosimetry in neutron and charged particle beams

    International Nuclear Information System (INIS)

    McDonald, J.C.; Ma, I.C.; Laughlin, J.S.

    1978-01-01

    A portable tissue-equivalent (TE) calorimetric, constructed of A-150 plastic, has been employed for the measurement of absorbed dose in several neutron radiotherapy fields. Comparisons of spherical, cylindrical, and thimble shaped TE ionization chambers have been carried out using either air, or a flow of TE gas in the chamber

  14. Broadband non-polarizing terahertz beam splitters with variable split ratio

    KAUST Repository

    Wei, Minggui

    2017-08-15

    Seeking effective terahertz functional devices has always aroused extensive attention. Of particular interest is the terahertz beam splitter. Here, we have proposed, designed, manufactured, and tested a broadband non-polarizing terahertz beam splitter with a variable split ratio based on an all-dielectric metasurface. The metasurface was created by patterning a dielectric surface of the N-step phase gradient and etching to a few hundred micrometers. The conversion efficiency as high as 81% under the normal incidence at 0.7 THz was achieved. Meanwhile, such a splitter works well over a broad frequency range. The split ratio of the proposed design can be continuously tuned by simply shifting the metasurface, and the angle of emergences can also be easily adjusted by choosing the step of phase gradients. The proposed design is non-polarizing, and its performance is kept under different polarizations.

  15. Geometric considerations of polar mesospheric summer echoes in tilted beams using coherent radar imaging

    Science.gov (United States)

    Sommer, S.; Stober, G.; Chau, J. L.; Latteck, R.

    2014-11-01

    We present observations of polar mesospheric summer echoes (PMSE) using the Middle Atmosphere Alomar Radar System in Northern Norway (69.30° N, 16.04° E). The radar is able to resolve PMSE at high spatial and temporal resolution and to perform pulse-to-pulse beam steering. In this experiment, 81 oblique beam directions were used with off-zenith angles up to 25°. For each beam pointing direction and range gate, coherent radar imaging was applied to determine the mean backscatter location. The location of the mean scatterer in the beam volume was calculated by the deviation from the nominal off-zenith angle of the brightest pixel. It shows that in tilted beams with an off-zenith angle greater than 5°, structures appear at the altitudinal edges of the PMSE layer. Our results indicate that the mean influence of the location of the maximum depends on the tilt of the beam and on the observed area of the PMSE layer. At the upper/lower edge of the PMSE layer, the mean backscatter has a greater/smaller off-zenith angle than the nominal off-zenith angle. This effect intensifies with greater off-zenith beam pointing direction, so the beam filling factor plays an important role in the observation of PMSE layers for oblique beams.

  16. Precision measurement of thermal neutron beam densities using a 3He proportional counter

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Bahnsen, A.; Brown, W.K.

    1967-01-01

    of ±0.4%. Fundamental advantages of the method include the 1ν dependence of the 3He(n, p)T cross section up to 1 keV, and the assurance of homogeneity even for very small macroscopic cross sections, because of the gaseous detector material. Although the method requires a relatively clean neutron beam...

  17. Design of a novel multi channel photonic crystal fiber polarization beam splitter

    Science.gov (United States)

    Zhao, Yunyan; Li, Shuguang; Wang, Xinyu; Wang, Guangyao; Shi, Min; Wu, Junjun

    2017-10-01

    A kind of multi channel dual-core photonic crystal fiber polarization beam splitter is designed. We analyze the effects of the lattice parameters and the thickness of gold layer on the beam splitting by the finite element method. Numerical results show that the thickness of metal layer and the size of the air holes near the fiber cores are closely linked with the nature of the polarization beam splitter. We also obtain that extinction ratio can reach -73.87 dB at 1 . 55 μm wavelength and at 1 . 41 μm, 1 . 65 μm extinction ratio can reach 30.8978 dB and 31.1741 dB, respectively. The comparison of the effect on the characteristic of the photonic crystal fiber with coating no gold is also taken into account.

  18. Scintillation spectrometer system for measuring fast-neutron spectra in beam geometry

    International Nuclear Information System (INIS)

    Simons, G.G.; Larson, J.M.; Reynolds, R.S.

    1977-05-01

    A high-energy liquid-organic scintillation spectrometer system is described. This spectrometer was developed to measure neutron spectra in extracted beams from zero-power fast reactors. The highly efficient NE-213 scintillation solution was used as the neutron detection medium. Identification and removal of gamma-ray-induced events was accomplished using electronic pulse shape discrimination. Instrumentation used to process the discrete pulses stemming from neutron and gamma-ray interactions, within the scintillation solution, is described in detail. Evaluation of the system's performance is discussed for a gamma-ray discrimination ratio of nominally 1000:1, a total countrate of 3000 cps, and a dynamic range corresponding to neutron energies from 1 to 10 MeV. Operation above 10 MeV is certainly possible. However, since the neutron flux above 10 MeV was negligible in the radiation fields of interest in this work, the operating characteristics of the spectrometer were not evaluated above 10 MeV. Neutron spectra are reported for extracted beam measurements made on ZPPR assembly 4, phase 2

  19. Application of semiconductors for dosimetry of fast-neutron therapy beam

    International Nuclear Information System (INIS)

    Yudelev, M.; Alyousef, K.; Brandon, J.; Perevertailo, V.; Lerch, M. L. F.; Rosenfeld, A. B.

    2004-01-01

    Two types of ion implanted miniature p-i-n diodes were tested in a d(48.5) + Be fast-neutron beam produced in the Detroit superconducting cyclotron. The increase in forward voltage drop caused by neutron-induced damage was correlated with neutron dose measured in a water phantom. The neutron and gamma dose components were predetermined using twin detector (Tissue-equivalent ion chamber paired with miniature Geiger-Mueller counter) method. The increase in the voltage drop for 1 mA injection current was monitored together with the cyclotron beam target current, thus the differential voltage drop could be defined precisely for given radiation dose. The average neutron sensitivities of tested diodes were 1.284 ± 0.014 and 0.528 ± 0.058 mV per cGy. The miniature detectors can be utilised in characterisation of small radiation fields and in the regions of high dose gradient as well as for in vivo dosimetry of the patients undergoing fast-neutron therapy. (authors)

  20. In-phantom spectra and dose distributions from a high-energy neutron therapy beam

    CERN Document Server

    Benck, S; Denis, J M; Meulders, J P; Nath, R; Pitcher, E J

    2002-01-01

    In radiotherapy with external beams, healthy tissues surrounding the target volumes are inevitably irradiated. In the case of neutron therapy, the estimation of dose to the organs surrounding the target volume is particularly challenging, because of the varying contributions from primary and secondary neutrons and photons of different energies. The neutron doses to tissues surrounding the target volume at the Louvain-la-Neuve (LLN) facility were investigated in this work. At LLN, primary neutrons have a broad spectrum with a mean energy of about 30 MeV. The transport of a 10x10 cm sup 2 beam through a water phantom was simulated by means of the Monte Carlo code MCNPX. Distributions of energy-differential values of neutron fluence, kerma and kerma equivalent were estimated at different locations in a water phantom. The evolution of neutron dose and dose equivalent inside the phantom was deduced. Measurements of absorbed dose and of dose equivalent were then carried out in a water phantom using an ionization ch...

  1. A novel design of beam shaping assembly to use D-T neutron generator for BNCT.

    Science.gov (United States)

    Kasesaz, Yaser; Karimi, Marjan

    2016-12-01

    In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT. The final epithermal neutron flux is about 6e9 n/cm2.s. The final proposed BSA has some different advantages: 1) it consists of usual and well-known materials (Pb, Al, Fluental and Cd); 2) it has a simple geometry; 3) it does not need any additional gamma filter; 4) it can provide high flux of epithermal neutrons. As this type of neutron source is under development in the world, it seems that they can be used clinically in a hospital considering the proposed BSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC

    Energy Technology Data Exchange (ETDEWEB)

    Magee, R. M., E-mail: rmagee@trialphaenergy.com; Clary, R.; Korepanov, S.; Jauregui, F.; Allfrey, I.; Garate, E.; Valentine, T.; Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10{sup 7} n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.

  3. Radiobiological intercomparisons of fast neutron beams used for therapy in Japan and the United States

    International Nuclear Information System (INIS)

    Hall, E.J.; Withers, H.R.; Geraci, J.P.; Meyn, R.E.; Rasey, J.; Todd, P.; Sheline, G.E.

    1979-01-01

    A variety of portable biological systems have been used to intercompare the neutron beams used for radiotherapy in Japan and in the United States. The two neutron centers in Japan have been compared with the four in th United States; all of the machines differ in energy and consequently the biological effectiveness varies from one to another. The biological systems used included survival in three lines of mammalian cells cultured in vitro, the response of mouse skin, the survival of crypt cells in the mouse jejunum, and the loss of weight or DNA in the mouse testes. Based on the biological data, estimates have been made of the relative potency of the various neutron beams that will be invaluable when the time comes to evaluate clinical results

  4. Measurement of the Spin Structure Function of the Neutron G1(N) from Deep Inelastic Scattering of Polarized Electrons from Polarized Neutrons in He-3

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J

    2004-01-06

    Polarized electrons of energies 19.42, 22.67, and 25.5 GeV were scattered off a polarized {sup 3}He target at SLAC's End Station A to measure the spin asymmetry of the neutron. From this asymmetry, the spin dependent structure function g{sub 1}{sup n}(x) was determined over a range in x from 0.03 to 0.6 with an average Q{sup 2} of 2 (GeV/C){sup 2}. The value of the integral of g{sub 1}{sup n} over x is {integral}g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.009. The results were interpreted in the frame work of the Quark Parton Model (QPM) and used to test the Ellis-Jaffe and Bjorken sum rules. The value of the integral is 2.6 standard deviations from the Ellis-Jaffe prediction while the Bjorken sum rule was found to be in agreement with this data and proton data from SMC and E-143.

  5. First attempt of the measurement of the beam polarization at an accelerator with the optical electron polarimeter POLO

    CERN Document Server

    Collin, B; Essabaa, S; Frascaria, R; Gacougnolle, R; Kunne, Ronald Alexander; Aulenbacher, K; Tioukine, V

    2004-01-01

    The conventional methods for measuring the polarization of electron beams are either time consuming, invasive or accurate only to a few percent. We developped a method to measure electron beam polarization by observing the light emitted by argon atoms following their excitation by the impact of polarized electrons. The degree of circular polarization of the emitted fluorescence is directly related to the electron polarization. We tested the polarimeter on a test GaAs source available at the MAMI electron accelerator in Mainz, Germany. The polarimeter determines the polarization of a 50 keV electron beam decelerated to a few eV and interacting with an effusive argon gas jet. The resulting decay of the excited states produces the emission of a circularly polarized radiation line at 811.5 nm which is observed and analyzed.

  6. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    Energy Technology Data Exchange (ETDEWEB)

    Gryzinski, M.A.; Maciak, M. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock-Swierk (Poland)

    2015-07-01

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological research or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is

  7. Measurement of neutrino and proton asymmetry in the decay of polarized neutrons

    International Nuclear Information System (INIS)

    Schumann, M.

    2007-01-01

    The Standard Model of Particle Physics is in excellent agreement with all experimental results. However, it is not believed to be the most fundamental theory. It requires, for example, too many free parameters and is not able to explain the existence of effects such as parity-violation or CP-violation. Thus measurements have to be performed to probe the Standard Model and to search for ''new physics''. An ideal laboratory for this is the decay of the free polarized neutron. In this thesis, we present measurements of the neutrino asymmetry B and the proton asymmetry C in neutron decay. These coefficients describe the correlation between neutron spin and momentum of the respective particle, and provide detailed information on the structure of the underlying theory. The experiment was performed using the electron spectrometer PERKEO II installed at the Institut Laue-Langevin (ILL). It was equipped with a combined electron-proton detector to reconstruct the neutrino in a coincidence measurement. The uncertainty of our neutrino asymmetry result, B=0.9802(50), is comparable to the present best measurement, and, for the first time ever, we obtained a precise value for the proton asymmetry, C=-0.2377(36). Both results are used to analyze neutron decay for hints on ''Physics beyond the Standard Model'' by studying possible admixtures of right-handed currents and of scalar and tensor couplings to the interaction. (orig.)

  8. Measurement of neutrino and proton asymmetry in the decay of polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, M.

    2007-05-09

    The Standard Model of Particle Physics is in excellent agreement with all experimental results. However, it is not believed to be the most fundamental theory. It requires, for example, too many free parameters and is not able to explain the existence of effects such as parity-violation or CP-violation. Thus measurements have to be performed to probe the Standard Model and to search for ''new physics''. An ideal laboratory for this is the decay of the free polarized neutron. In this thesis, we present measurements of the neutrino asymmetry B and the proton asymmetry C in neutron decay. These coefficients describe the correlation between neutron spin and momentum of the respective particle, and provide detailed information on the structure of the underlying theory. The experiment was performed using the electron spectrometer PERKEO II installed at the Institut Laue-Langevin (ILL). It was equipped with a combined electron-proton detector to reconstruct the neutrino in a coincidence measurement. The uncertainty of our neutrino asymmetry result, B=0.9802(50), is comparable to the present best measurement, and, for the first time ever, we obtained a precise value for the proton asymmetry, C=-0.2377(36). Both results are used to analyze neutron decay for hints on ''Physics beyond the Standard Model'' by studying possible admixtures of right-handed currents and of scalar and tensor couplings to the interaction. (orig.)

  9. Ultracompact 1×4 TM-polarized beam splitter based on photonic crystal surface mode.

    Science.gov (United States)

    Jiang, Bin; Zhang, Yejin; Wang, Yufei; Liu, Anjin; Zheng, Wanhua

    2012-05-01

    We provide an improved surface-mode photonic crystal (PhC) T-junction waveguide, combine it with an improved PhC bandgap T-junction waveguide, and then provide an ultracompact 1×4 TM-polarized beam splitter. The energy is split equally into the four output waveguides. The maximal transmission ratio of each output waveguide branch equals 24.7%, and the corresponding total transmission ratio of the ultracompact 1×4 beam splitter equals 98.8%. The normalized frequency of maximal transmission ratio is 0.397(2πc/a), and the bandwidth of the ultracompact 1×4 TM-polarized beam splitter is 0.0106(2πc/a). To the best of our knowledge, this is the first time such a high-efficiency 1×4 beam splitter exploiting the nonradiative surface mode as a guided mode has been proposed. Although we only employed a 1×4 beam splitter, our design can easily be extended to other 1×n beam splitters.

  10. Polarized small-angle neutron scattering (SANSPOL) for discrimination of nano sized components in ferro fluids

    International Nuclear Information System (INIS)

    Heinemann, A.; Wiedenmann, A.; Kammel, M.; Hoell, A.

    2003-01-01

    The use of polarized neutron technique in small-angle scattering (SANS) have led to new results in the case of magnetic nanometer-scale structure analysis. Different magnetic cross sections for spin-up and spin-down neutron scattering can be combined with chemical contrast variation methods. We show that the analysis of the interference term of nuclear and magnetic scattering respectively enables the extraction of additional information on the composition and magnetization profiles of the samples. This technique profits by the clear distinction between the magnetic and nonmagnetic scattering contributions and the strong auxiliary conditions for model fitting procedures. Beside general formulas for some special cases of present experimental interest, we apply the approach to cobalt bases ferro fluid scattering data obtained in the HMI-V4 experiment. (authors)

  11. Low-angle polarized neutron and X-ray scattering from magnetic nanolayers and nanostructures

    CERN Document Server

    Paul, Amitesh

    2017-01-01

    This research monograph presents the latest results related to the characterization of low dimensional systems. Low-angle polarized neutron scattering and X-ray scattering at grazing incidence are used as the two main techniques to explore various physical phenomena of these systems. Special focus is put on systems like thin film transition metal and rare-earth layers, oxide heterostructures, hybrid systems, self-assembled nanostructures and self-diffusion.  Readers will gain in-depth knowledge about the usage of specular scattering and off-specular scattering techniques. Investigation of in-plane and out-of-plane structures and magnetism with vector magnetometric information is illustrated comprehensively. The book caters to a wide audience working in the field of nano-dimensional magnetic systems and the neutron and X-ray reflectometry community in particular.

  12. Signatures of field induced spin polarization of neutron star matter in seismic vibrations of paramagnetic neutron star

    CERN Document Server

    Bastrukov, S I; Podgainy, D V; Weber, F

    2003-01-01

    A macroscopic model of the dissipative magneto-elastic dynamics of viscous spin polarized nuclear matter is discussed in the context of seismic activity of a paramagnetic neutron star. The source of the magnetic field of such a star is attributed to Pauli paramagnetism of baryon matter promoted by a seed magnetic field frozen into the star in the process of gravitational collapse of a massive progenitor. Particular attention is given to the effect of shear viscosity of incompressible stellar material on the timing of non-radial torsional magneto-elastic pulsations of the star triggered by starquakes. By accentuating the fact that this kind of vibration is unique to the seismology of a paramagnetic neutron star we show that the high-frequency modes decay faster than the low-frequency modes. The obtained analytic expressions for the period and relaxation time of this mode, in which the magnetic susceptibility and viscosity enter as input parameters, are then quantified by numerical estimates for these parameter...

  13. Precision neutron polarimetry for neutron beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Penttila, S. I. (Seppo I.); Bowman, J. D. (J. David)

    2004-01-01

    The abBA collaboration is developing a new type of field-expansion spectrometer for measurement of the three correlation coefficients a, A, and B and shape parameter b. The measurement of A and B requires precision neutron polarimetry. We will polarize a pulsed cold neutron beam from SNS using a {sup 3}He neutron spin filter. The well-known polarizing cross section for n-{sup 3}He has 1/v dependence, which is used to determine the absolute beam polarization through a time-of-flight (TOF) measurement. We show that measuring the TOF dependence of A and B, the coefficients and the neutron polarization can be determined with small loss of statistical precision and negligible systematic error. We conclude that it is possible to determine the neutron polarization averaged over a run in the neutron beta decay experiment to better than 10{sup -3}. We discuss various sources of systematic uncertainties in the measurement of A and B and conclude that they are less than 10{sup -4}.

  14. Precision neutron polarimetry for neutron beta decay

    International Nuclear Information System (INIS)

    Penttila, S.I.; Bowman, J.D.

    2004-01-01

    The abBA collaboration is developing a new type of field-expansion spectrometer for measurement of the three correlation coefficients a, A, and B and shape parameter b. The measurement of A and B requires precision neutron polarimetry. We will polarize a pulsed cold neutron beam from SNS using a 3 He neutron spin filter. The well-known polarizing cross section for n- 3 He has 1/v dependence, which is used to determine the absolute beam polarization through a time-of-flight (TOF) measurement. We show that measuring the TOF dependence of A and B, the coefficients and the neutron polarization can be determined with small loss of statistical precision and negligible systematic error. We conclude that it is possible to determine the neutron polarization averaged over a run in the neutron beta decay experiment to better than 10 -3 . We discuss various sources of systematic uncertainties in the measurement of A and B and conclude that they are less than 10 -4 .

  15. Peripheral photon and neutron doses from prostate cancer external beam irradiation.

    Science.gov (United States)

    Bezak, Eva; Takam, Rundgham; Marcu, Loredana G

    2015-12-01

    Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. The n_TOF facility: Neutron beams for challenging future measurements at CERN

    Science.gov (United States)

    Chiaveri, E.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Bečvář, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Meo, S. Lo; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schumann, D.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    The CERN n_TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n_TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental program and the range of possible measurements has been expanded with the construction of a second experimental area (EAR-2), located 20 m on the vertical of the n_TOF spallation target. This upgrade, which benefits from a neutron flux 30 times higher than in EAR-1, provides a substantial extension in measurement capabilities, opening the possibility to collect data on neutron cross-section of isotopes with short half-lives or available in very small amounts. This contribution will outline the main characteristics of the n_TOF facility, with special emphasis on the new experimental area. In particular, we will discuss the innovative features of the EAR-2 neutron beam that make possible to perform very challenging measurements on short-lived radioisotopes or sub-mg samples, out of reach up to now at other neutron facilities around the world. Finally, the future perspectives of the facility will be presented.

  17. The n_TOF facility: Neutron beams for challenging future measurements at CERN

    Directory of Open Access Journals (Sweden)

    Chiaveri E.

    2017-01-01

    Full Text Available The CERN n_TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1, low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n_TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental program and the range of possible measurements has been expanded with the construction of a second experimental area (EAR-2, located 20 m on the vertical of the n_TOF spallation target. This upgrade, which benefits from a neutron flux 30 times higher than in EAR-1, provides a substantial extension in measurement capabilities, opening the possibility to collect data on neutron cross-section of isotopes with short half-lives or available in very small amounts. This contribution will outline the main characteristics of the n_TOF facility, with special emphasis on the new experimental area. In particular, we will discuss the innovative features of the EAR-2 neutron beam that make possible to perform very challenging measurements on short-lived radioisotopes or sub-mg samples, out of reach up to now at other neutron facilities around the world. Finally, the future perspectives of the facility will be presented.

  18. Model-free polarized neutron diffraction study of an acentric crystal: Metamagnetic UCoAl

    International Nuclear Information System (INIS)

    Papoular, R.J.; Delapalme, A.

    1994-01-01

    For the first time, a model-free procedure is developed to analyze polarized neutron diffraction data pertaining to acentric crystals. It consists of a two-step process, featuring first an effective flipping ratio and second a linear inverse problem. The latter is solved either by a new generalized inverse Fourier transform or by using maximum entropy. Using metamagnetic UCoAl as a test case, we find the following results: (i) the U and Co(2) moments increase with an applied magnetic field whereas the Co(1) moment remains almost constant, (ii) the U and Co(2) magnetic densities are weakly anisotropic

  19. Anomalous spin distribution in the superconducting ferromagnet UCoGe studied by polarized neutron diffraction

    OpenAIRE

    Prokes, K.; de Visser, A.; Huang, Y. K.; Fak, B.; Ressouche, E.

    2010-01-01

    We report a polarized neutron diffraction study conducted to reveal the nature of the weak ferromagnetic moment in the superconducting ferromagnet UCoGe. We find that the ordered moment in the normal phase in low magnetic fields (B // c) is predominantly located at the U atom and has a magnitude of about 0.1 muB at 3 T, in agreement with bulk magnetization data. By increasing the magnetic field the U moment grows to about 0.3 muB in 12 T and most remarkably, induces a substantial moment (abou...

  20. Spin susceptibility of the topological superconductor UPt3 from polarized neutron diffraction

    Science.gov (United States)

    Gannon, W. J.; Halperin, W. P.; Eskildsen, M. R.; Dai, Pengcheng; Hansen, U. B.; Lefmann, K.; Stunault, A.

    2017-07-01

    Experiment and theory indicate that UPt3 is a topological superconductor in an odd-parity state, based in part from the temperature independence of the NMR Knight shift. However, quasiparticle spin-flip scattering near a surface, where the Knight shift is measured, might be responsible. We use polarized neutron scattering to measure the bulk susceptibility with H ∥c , finding consistency with the Knight shift but inconsistency with theory for this field orientation. We infer that neither spin susceptibility nor a Knight shift are a reliable indication of odd parity.

  1. Neutron xyz – polarization analysis at a time-of-flight instrument

    Directory of Open Access Journals (Sweden)

    Ehlers G.

    2015-01-01

    Full Text Available When implementing a dedicated polarization analysis setup at a neutron time-of-flight instrument with a large area detector, one faces enormous challenges. Nevertheless, significant progress has been made towards this goal over the last few years. This paper addresses systematic limitations of the traditional method that is used to make these measurements, and a possible strategy to overcome these limitations. This will be important, for diffraction as well as inelastic experiments, where the scattering occurs mostly out-of-plane.

  2. Novel design concepts for generating intense accelerator based beams of mono-energetic fast neutrons

    International Nuclear Information System (INIS)

    Franklyn, C.B.; Govender, K.; Guzek, J.; Beer, A. de; Tapper, U.A.S.

    2001-01-01

    Full text: Successful application of neutron techniques in research, medicine and industry depends on the availability of suitable neutron sources. This is particularly important for techniques that require mono-energetic fast neutrons with well defined energy spread. There are a limited number of nuclear reactions available for neutron production and often the reaction yield is low, particularly for thin targets required for the production of mono-energetic neutron beams. Moreover, desired target materials are often in a gaseous form, such as the reactions D(d,n) 3 He and T(d,n) 3 He, requiring innovative design of targets, with sufficient target pressure and particle beam handling capability. Additional requirements, particularly important in industrial applications, and for research institutions with limited funds, are the cost effectiveness as well as small size, coupled with reliable and continuous operation of the system. Neutron sources based on high-power, compact radio-frequency quadrupole (RFQ) linacs can satisfy these criteria, if used with a suitable target system. This paper discusses the characteristics of a deuteron RFQ linear accelerator system coupled to a high pressure differentially pumped deuterium target. Such a source, provides in excess of 10 10 mono- energetic neutrons per second with minimal slow neutron and gamma-ray contamination, and is utilised for a variety of applications in the field of mineral identification and materials diagnostics. There is also the possibility of utilising a proposed enhanced system for isotope production. The RFQ linear accelerator consists of: 1) Deuterium 25 keV ion source injector; 2) Two close-coupled RFQ resonators, each powered by an rf amplifier supplying up to 300 kW of peak power at 425 MHz; 3) High energy beam transport system consisting of a beam line, a toroid for beam current monitoring, two steering magnets and a quadrupole triplet for beam focusing. Basic technical specifications of the RFQ linac

  3. A polarized hydrogen/deuterium atomic beam source for internal target experiments

    International Nuclear Information System (INIS)

    Szczerba, D.; Buuren, L.D. van; Brand, J.F.J. van den; Bulten, H.J.; Ferro-Luzzi, M.; Klous, S.; Kolster, H.; Lang, J.; Mul, F.; Poolman, H.R.; Simani, M.C.

    2000-01-01

    A high-brightness hydrogen/deuterium atomic beam source is presented. The apparatus, previously used in electron scattering experiments with tensor-polarized deuterium (Ferro-Luzzi et al., Phys. Rev. Lett. 77 (1996) 2630; van den Brand et al., Phys. Rev. Lett. 78 (1997) 1235; Zhou et al., Phys. Rev. Lett. 82 (1998) 687; Bouwhuis et al., Phys. Rev. Lett. 82 (1999) 3755), was configured as a source for internal target experiments to measure single- and double-polarization observables, with either polarized hydrogen or vector/tensor polarized deuterium. The atomic beam intensity was enhanced by a factor of ∼2.5 by optimizing the Stern-Gerlach focusing system using high tip-field (∼1.5 T) rare-earth permanent magnets, and by increasing the pumping speed in the beam-formation chamber. Fluxes of (5.9±0.2)x10 16 1 H/s were measured in a diameter 12 mmx122 mm compression tube with its entrance at a distance of 27 cm from the last focusing element. The total output flux amounted to (7.6±0.2)x10 16 1 H/s

  4. Broadband non-polarizing beam splitter based on guided mode resonance effect

    International Nuclear Information System (INIS)

    Ma Jian-Yong; Xu Cheng; Qiang Ying-Huai; Zhu Ya-Bo

    2011-01-01

    A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that this double layer SOI structure can provide ∼50/50 beam ratio with the maximum divergences between reflection and transmission being less than 8% over the spectrum of 1.4 μm∼1.7 μm and 1% in the telecommunication band for both TE and TM polarizations. The physical basis of this broadband non-polarizing property is on the simultaneous excitation of the TE and TM strong modulation waveguide modes near the designed spectrum band. Meanwhile, the electric field distributions for both TE and TM polarizations verify the resonant origin of spectrum in the periodic SOI structure. Furthermore, it is demonstrated with our calculations that the beam splitter proposed here is tolerant to the deviations of incident angle and structure parameters, which make it very easy to be fabricated with current IC technology. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  5. Polarization measurement of atomic hydrogen beam spin-exchanged with optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Ueno, Akira; Ogura, Kouichi; Wakuta, Yoshihisa; Kumabe, Isao

    1988-01-01

    The spin-exchange reaction between hydrogen atoms and optically oriented sodium atoms was used to produce a polarized atomic hydrogen beam. The electron-spin polarization of the atomic hydrogen beam, which underwent the spin-exchange reaction with the optically oriented sodium atoms, was measured. A beam polarization of -(8.0±0.6)% was obtained when the thickness and polarization of the sodium target were (5.78±0.23)x10 13 atoms/cm 2 and -(39.6±1.6)%, respectively. The value of the spin-exchange cross section in the forward scattering direction, whose scattering angle in the laboratory system was less than 1.0 0 , was obtained from the experimental results as Δσ ex =(3.39±0.34)x10 -15 cm 2 . This value is almost seven times larger than the theoretical value calculated from the Na-H potential. The potential was computed quantum mechanically in the space of the appropriate wave functions of the hydrogen and the sodium atoms. (orig./HSI)

  6. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G

    2004-03-25

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  7. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  8. Run05 Proton Beam Polarization Measurements by pC-Polarimeter (ver. 1.1)

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa,I.; Alekseev, I.; Bazilevsky, A.; Bravar, A.; Bunce, G.; Dhawan, S.; Eyser, K.O.; Gill, R.; Haeberli, W.; Huang, H.; Makdisi, Y.; Nass, A.; Okada, H.; Stephenson, E.; Svirida, D.N.; Wise, T.; Wood, J.; Yip, K.; Zelenski, A.

    2008-07-01

    The polarization of the proton beams [1, 2] at the Relativistic Heavy Ion Collider (RHIC)[3] RHIC ring. The H-Jet polarimeter is located at the collision point allowing measurements of absolute normalization is provided by the hydrogen polarimeter, which measures over 1 {approx} 2 another measurement rather than measuring the absolute polarization. both beams. Two identical pC-polarimeters are equipped in the yellow and blue rings, where carbon ribbon target, providing fast feedback to beam operations and experiments. The days to obtain {approx} 5% statistical uncertainty (in Run05). Thus, the operation of the carbon is measured using both an atomic beam source hydrogen gas jet (H-Jet)[4, 5] and proton-carbon polarimeters was focused on better control of relative stability between one measurement to statistical accuracy within 20 to 30 seconds using an ultra-thin (typically 6 {approx} 8 {micro}g/cm{sup 2}) the rings are separated. The pC-polarimeter measures relative polarization to a few percent.

  9. Characterisation of the polarised neutron beam at the small angle scattering instrument SANS-I with a polarised proton target

    International Nuclear Information System (INIS)

    Aswal, V.K.; Brandt, B. van den; Hautle, P.; Kohlbrecher, J.; Konter, J.A.; Michels, A.; Piegsa, F.M.; Stahn, J.; Petegem, S. van; Zimmer, O.

    2008-01-01

    A transmission neutron polariser (Fe/Si supermirror) has been successfully implemented in the small angle neutron scattering instrument SANS-I at the SINQ neutron source. The polariser is needed for investigations of magnetic nanostructures as well as for spin contrast variation techniques relying on the spin-dependent neutron scattering length of polarised nuclei. The V-shaped polariser is installed in the first section of the collimator system of the SANS instrument and its performance is optimised for neutrons with a wavelength between 0.5 and 1.0 nm. For a precise polarisation analysis of a beam with selectable incident divergence, such as in SANS experiments, an opaque spin filter is ideal. We used a solid polarised proton target exploiting the strong spin-dependent neutron scattering cross-section of hydrogen and determined the neutron beam polarisation to a precision of δp/p∼0.5% for different collimations in a broad wavelength band

  10. Characterisation of the polarised neutron beam at the small angle scattering instrument SANS-I with a polarised proton target

    Science.gov (United States)

    Aswal, V. K.; van den Brandt, B.; Hautle, P.; Kohlbrecher, J.; Konter, J. A.; Michels, A.; Piegsa, F. M.; Stahn, J.; Van Petegem, S.; Zimmer, O.

    2008-02-01

    A transmission neutron polariser (Fe/Si supermirror) has been successfully implemented in the small angle neutron scattering instrument SANS-I at the SINQ neutron source. The polariser is needed for investigations of magnetic nanostructures as well as for spin contrast variation techniques relying on the spin-dependent neutron scattering length of polarised nuclei. The V-shaped polariser is installed in the first section of the collimator system of the SANS instrument and its performance is optimised for neutrons with a wavelength between 0.5 and 1.0 nm. For a precise polarisation analysis of a beam with selectable incident divergence, such as in SANS experiments, an opaque spin filter is ideal. We used a solid polarised proton target exploiting the strong spin-dependent neutron scattering cross-section of hydrogen and determined the neutron beam polarisation to a precision of δp/p˜0.5% for different collimations in a broad wavelength band.

  11. In the wonderland of ultra-parallel neutron beams

    Indian Academy of Sciences (India)

    Revealing vital statistics sans all fat. May I present her sizzling hot physiques. To readers of Pramana ... loss in the beam intensity. 2. Bragg collimators. With the advent of nearly perfect ... mented by Rauch's group to attain a substantial reduction [5] in the tail intensities. 798. Pramana – J. Phys., Vol. 71, No. 4, October 2008 ...

  12. Luminosity class of neutron reflectometers

    International Nuclear Information System (INIS)

    Pleshanov, N.K.

    2016-01-01

    The formulas that relate neutron fluxes at reflectometers with differing q-resolutions are derived. The reference luminosity is defined as a maximum flux for measurements with a standard resolution. The methods of assessing the reference luminosity of neutron reflectometers are presented for monochromatic and white beams, which are collimated with either double diaphragm or small angle Soller systems. The values of the reference luminosity for unified parameters define luminosity class of reflectometers. The luminosity class characterizes (each operation mode of) the instrument by one number and can be used to classify operating reflectometers and optimize designed reflectometers. As an example the luminosity class of the neutron reflectometer NR-4M (reactor WWR-M, Gatchina) is found for four operation modes: 2.1 (monochromatic non-polarized beam), 1.9 (monochromatic polarized beam), 1.5 (white non-polarized beam), 1.1 (white polarized beam); it is shown that optimization of measurements may increase the flux at the sample up to two orders of magnitude with monochromatic beams and up to one order of magnitude with white beams. A fan beam reflectometry scheme with monochromatic neutrons is suggested, and the expected increase in luminosity is evaluated. A tuned-phase chopper with a variable TOF resolution is recommended for reflectometry with white beams.

  13. Circular polarization of γ-quanta radiated in the capture of polarized neutrons by protons and the quark compound bag model

    International Nuclear Information System (INIS)

    Grach, I.L.; Shmatkov, M.Zh.

    1983-01-01

    The circular polarization Psub(γ) of γ-quanta radiated in the capture of polarized neutrons by protons is calculated The contribution of the M1 and E2 radiation of nucleons to Psub(γ) is found using the accurate wave functions of the continuous spectrum. The contribution of the six-quark bag to the polarization Psub(γ) is determined. The value of Psub(γ) is related to the admixture of the 6q-bag in the deuteron. Experimental value of Psub(γ) corresponds to small (< or approximately 0.7%) admixture of the bag

  14. ION BEAM POLARIZATION DYNAMICS IN THE 8 GEV BOOSTER OF THE JLEIC PROJECT AT JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Kondratenko, A. M. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058, Russia; Kondratenko, M. A. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058, Russia; Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei; Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Filatov, Yuri [MIPT, Dolgoprudniy, Moscow Region, Russia

    2016-05-01

    In the Jefferson Lab’s Electron-Ion Collider (JLEIC) project, an injector of polarized ions into the collider ring is a superconducting 8 GeV booster. Both figure-8 and racetrack booster versions were considered. Our analysis showed that the figure-8 ring configuration allows one to preserve the polarization of any ion species during beam acceleration using only small longitudinal field with an integral less than 0.5 Tm. In the racetrack booster, to pre-serve the polarization of ions with the exception of deu-terons, it suffices to use a solenoidal Siberian snake with a maximum field integral of 30 Tm. To preserve deuteron polarization, we propose to use arc magnets for the race-track booster structure with a field ramp rate of the order of 1 T/s. We calculate deuteron and proton beam polari-zations in both the figure-8 and racetrack boosters includ-ing alignment errors of their magnetic elements using the Zgoubi code.

  15. TOF-SEMSANS—Time-of-flight spin-echo modulated small-angle neutron scattering

    NARCIS (Netherlands)

    Strobl, M.; Tremsin, A.S.; Hilger, A.; Wieder, F.; Kardjilov, N.; Manke, I.; Bouwman, W.G.; Plomp, J.

    2012-01-01

    We report on measurements of spatial beam modulation of a polarized neutron beam induced by triangular precession regions in time-of-flight mode and the application of this novel technique spin-echo modulated small-angle neutron scattering (SEMSANS) to small-angle neutron scattering in the very

  16. Radioactive Ion Beam Production by Fast-Neutron-Induced Fission in Actinide Targets at EURISOL

    CERN Document Server

    Herrera-Martínez, Adonai

    The European Isotope Separation On-Line Radioactive Ion Beam Facility (EURISOL) is set to be the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, the production of high-intensity RIBs of specific neutron-rich isotopes is obtained by inducing fission in large-mass actinide targets. In our contribution, the use of uranium targets is shown to be advantageous to other materials, such as thorium. Therefore, in order to produce fissions in U-238 and reduce the plutonium inventory, a fast neutron energy spectrum is necessary. The large beam power required to achieve these RIB levels requires the use of a liquid proton-to-neutron converter. This article details the design parameters of the converter, with special attention to the coupled neutronics of the liquid converter and fission target. Calculations performed with the ...

  17. Summary of mirror experiments relevant to beam-plasma neutron source

    International Nuclear Information System (INIS)

    Molvik, A.W.

    1988-01-01

    A promising design for a deuterium-tritium (DT) neutron source is based on the injection of neutral beams into a dense, warm plasma column. Its purpose is to test materials for possible use in fusion reactors. A series of designs have evolved, from a 4-T version to an 8-T version. Intense fluxes of 5--10 MW/m 2 is achieved at the plasma surface, sufficient to complete end-of-life tests in one to two years. In this report, we review data from earlier mirror experiments that are relevant to such neutron sources. Most of these data are from 2XIIB, which was the only facility to ever inject 5 MW of neutral beams into a single mirror call. The major physics issues for a beam-plasma neutron source are magnetohydrodynamic (MHD) equilibrium and stability, microstability, startup, cold-ion fueling of the midplane to allow two-component reactions, and operation in the Spitzer conduction regime, where the power is removed to the ends by an axial gradient in the electron temperature T/sub e/. We show in this report that the conditions required for a neutron source have now been demonstrated in experiments. 20 refs., 15 figs., 3 tabs

  18. Development of a prompt gamma activation analysis facility using diffracted polychromatic neutron beam

    CERN Document Server

    Byun, S H; Choi, H D

    2002-01-01

    A prompt gamma activation analysis facility has recently been developed at Hanaro, the 24 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic thermal neutrons are extracted by setting pyrolytic graphite crystals at a Bragg angle of 45 deg. . The detection system comprises a large single n-type HPGe detector, signal electronics and a fast ADC. Neutron beam characterization was performed both theoretically and experimentally. The neutron flux was measured to be 7.9x10 sup 7 n/cm sup 2 s in a 1x1 cm sup 2 beam area at the sample position with a uniformity of 12%. The corresponding Cd-ratio for gold was found to be 266. The beam quality was compared with other representative thermal neutron prompt gamma activation analysis. The detection efficiency was calibrated up to 11 MeV using a set of radionuclides and the (n,gamma) reactions of N and Cl. Finally, the sensitivities and the detection limits were obtained for several elements.

  19. Characterization of the New n_TOF Neutron Beam: Fluence, Profile and Resolution

    CERN Document Server

    Guerrero, C; Perkowski, J; Andriamonje, S; Carrapico, C; Moinul, M; Vannini, G; Quesada, J M; Harrisopulos, S; Milazzo, P M; Berthier, B; Lozano, M; Krticka, M; Domingo-Pardo, C; Nolte, R; Chiaveri, E; Jericha, E; Ferrari, A; Massimi, C; Giubrone, G; Avrigeanu, V; Martinez, T; Andrzejewski, J; Karadimos, D; Mengoni, A; Mendoza, E; Ganesan, S; Vlachoudis, V; Praena, J; Becares, V; Cortes, G; Variale, V; Quinones, J; Calvino, F; Kappeler, F; Gunsing, F; Gramegna, F; Colonna, N; Marrone, S; Pavlik, A; Berthoumieux, E; Paradela, C; Mastinu, P F; Vaz, P; Tassan-Got, L; Kadi, Y; Tarrio, D; Cano-Ott, D; Brugger, M; Wallner, A; Audouin, L; Fernandez-Ordonez, M; Sarmento, R; Becvar, F; Goncalves, I F; Martin-Fuertes, F; Cerutti, F; Pina, G; Mosconi, M; Tagliente, G; Duran, I; Ioannides, K; Weiss, C; Mirea, M; Gomez-Hornillos, M B; Vlastou, R; Calviani, M; Lederer, C; Gonzalez-Romero, E; Marganiec, J; Lebbos, E; Leeb, H; Heil, M; Dillmann, I; Tain, J L; Belloni, F

    2011-01-01

    After a halt of four years, the n\\_TOF spallation neutron facility at CERN has resumed operation in November 2008 with a new spallation target characterized by an improved safety and engineering design, resulting in a more robust overall performance and efficient cooling. The first measurement during the 2009 run has aimed at the full characterization of the neutron beam. Several detectors, such as calibrated fission chambers, the n\\_TOF Silicon Monitor, a MicroMegas detector with (10)B and (235)U samples, as well as liquid and solid scintillators have been used in order to characterize the properties of the neutron fluence. The spatial profile of the beam has been studied with a specially designed ``X-Y{''} MicroMegas which provided a 2D image of the beam as a function of neutron energy. Both properties have been compared with simulations performed. with the FLUKA code. The characterization of the resolution function is based on results from simulations which have been verified by the study of narrow capture...

  20. Generation and self-healing of vector Bessel-Gauss beams with variant state of polarizations upon propagation.

    Science.gov (United States)

    Li, Peng; Zhang, Yi; Liu, Sheng; Cheng, Huachao; Han, Lei; Wu, Dongjing; Zhao, Jianlin

    2017-03-06

    We propose a generalized model for the creation of vector Bessel-Gauss (BG) beams having state of polarization (SoP) varying along the propagation direction. By engineering longitudinally varying Pancharatnam-Berry (PB) phases of two constituent components with orthogonal polarizations, we create zeroth- and higher-order vector BG beams having (i) uniform polarizations in the transverse plane that change along z following either the equator or meridian of the Poincaré sphere and (ii) inhomogeneous polarizations in the transverse plane that rotate during propagation along z. Moreover, we evaluate the self-healing capability of these vector BG beams after two disparate obstacles. The self-healing capability of spatial SoP information may enrich the application of BG beams in light-matter interaction, polarization metrology and microscopy.